Как прозвонить стабилитрон мультиметром: Проверка стабилитрона на плате с помощью мультиметра

Содержание

Как работает стабилитрон и для чего он нужен?

Что такое стабилитрон, какой у него принцип действия и назначение. Основные характеристики стабилитронов и их маркировка. Условное обозначение на схеме.

Основой надежной и продолжительной работы электронной аппаратуры является стабильное напряжение питания. Для этого применяют стабилизированные источники питания. Можно сказать, что основным элементом, который определяет уровень выходного напряжения блока питания, это полупроводниковый прибор – стабилитрон. Он может быть как основой линейного стабилизатора, так и пороговым элементом в цепи обратной связи импульсного источника питания. В этой статье мы расскажем читателям сайта Сам Электрик про устройство и принцип работы стабилитрона.

Содержание:

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

Основные характеристики

При проектировании блоков питания, следует уметь правильно произвести расчет и подобрать по значениям необходимый элемент. Неправильно подобранный стабилитрон сразу выйдет из строя или не будет поддерживать напряжение на необходимом уровне.

Основными характеристиками являются:

  • напряжение Ucт. стабилизации;
  • номинальный ток стабилизации Iст., протекающий через стабилитрон;
  • допустимая мощность рассеивания;
  • температурный коэффициент стабилизации;
  • динамическое сопротивление.

Эти характеристики определены заводом-изготовителем и указываются в справочной литературе.

Условно графическое обозначение на схемах

Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).

На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.

Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.


Схема подключения

Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.

Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.

Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.

Он равен 5 мА. На рисунке снизу представлена часть справочника.

Предполагаем, что ток нагрузки равен 100 мА:

R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.

Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.

Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.

Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.

На нижеприведенном рисунке представлена схема на транзисторе.

Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема — TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.

Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.

Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.

Маркировка

В зависимости от мощности диода, они выпускаются в различных корпусах. На металлических корпусах большой мощности указывается буквенное обозначение типа прибора.

На нижеприведенных фото представлены приборы советского производства, и как они выглядели.


Сейчас маломощные диоды выпускаются в стеклянных корпусах. Маркировка импортных приборов имеет цветовое обозначение. На корпус наносится маркировка полосами или цветными кольцами.

На нижеприведенном рисунке представлена маркировка SMD-диодов.

Отечественные диоды в стеклянных корпусах маркируют полосами или кольцами. Определить тип и параметры можно по любому справочнику радиоэлектронных компонентов. Например, зеленая полоса обозначает стабилитрон КС139А, а голубая полоса (или кольцо) указывает на КС133А.

На мощных устройствах в металлических корпусах указывается буквенное обозначение, например, Д816, как показано на фото вверху. Это необходимо для того, чтобы знать, как подобрать аналог.

Вот мы и рассмотрели, какие бывают стабилитроны, как они работают и для чего нужны. Если остались вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

  • Что такое транзистор-тестер
  • Как работает резистор
  • Как выпаивать радиодетали из плат
Опубликовано: 25.03.2020 Обновлено: 25.03.2020 нет комментариев

Как проверить стабилитрон мультиметром и сделать для него тестер своими руками

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя.

Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение.

Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Проверка тестером

Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.

Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:

  • переключателем устанавливают диапазон измерения Омов;
  • к выводам радиодетали подсоединяются измерительные щупы;
  • мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
  • поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение.

При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого.

Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Полупроводник уменьшает свое внутреннее сопротивление до тех пор, пока не достигнет напряжения стабилизации. Поэтому при измерениях необходимо это учитывать.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет.

Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Тестер для стабилитронов

Проверка стабилитронов мультиметром не дает 100% гарантии их исправности. Это связано с тем, что он не может проверить его основные параметры. Поэтому многие радиолюбители изготавливают тестер стабилитронов своими руками.

Схема самого простого варианта состоит из набора аккумуляторов, постоянного резистора номиналом 200 Ом, переменного сопротивления на 2 кОм и мультиметра.

Аккумуляторы соединяются последовательно для получения потенциала необходимого для измерения параметров стабилитронов. Напряжения стабилизации в основном лежат в пределах 1,8-16 В.

Поэтому собирается батарея на 18 В. Затем к ее выводам параллельно подсоединяем последовательную цепочку из переменного резистора на 2 кОм мощностью 5 Вт и постоянного на 200 Ом.

Второй будет играть роль ограничивающего сопротивления. Выводы переменного резистора присоединяются к трехконтактной клеммной колодке.

К первому контакту присоединяется вывод, подключенный к плюсу батареи, ко второму другой крайний вывод, а к третьему средний подвижный контакт резистора.

В других вариантах тестеров можно применять импульсные источники питания с регулируемым напряжением выходного каскада, но суть не меняется, измерителем остается мультиметр.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления.

Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора.

Проверка происходит в режиме измерения постоянного напряжения. Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально.

Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном.

При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

Как проверить диод мультимтером и отличить его от стабилитрона

Определение пригодности радиодеталей – основная процедура, проводимая при ремонте или обслуживании радиоэлектронной аппаратуры. И если с пассивными элементами все более или менее понятно, то активные требуют специальных подходов. Проверить сопротивление резистора или целостность катушки индуктивности не составляет труда.

С активными компонентами дело обстоит немного сложнее. Необходимо отдельно разобраться в том, как проверить диод мультиметром своими руками, учитывая, что это простейший и наиболее часто встречающийся полупроводниковый элемент электронных схем.

Виды диодов и их предназначение

Вкратце можно сказать, что диод представляет собой полупроводниковый компонент электронной схемы, предназначенный для однонаправленного пропускания тока. Другими словами, прибор пропускает ток в одном направлении, запирая его течение в обратном, образуя своеобразный электрический вентиль.

На принципиальных схемах диод обозначается в виде стрелки-указателя, на конце которой изображена черта, означающая запирание. Стрелка указывает направление течения тока.

Нужно помнить, что в теоретической физике ток образуют позитивно заряженные частицы. Поэтому для открытия p-n перехода положительный потенциал прикладывают к началу стрелки, а отрицательный к ее концу. При таких условиях через прибор потечет прямой ток.

Рассмотрим наиболее распространенные типы диодов, учитывая, что интерес в плане проверки представляют лишь некоторые, а именно:

  • обычные диоды, созданные на основе p-n перехода;
  • с барьером Шоттки, чаще называемые просто диоды Шоттки;
  • стабилитрон, служащий для стабилизации потенциала и другие виды.

Существует еще множество типов диодов – варикапы, светодиоды или фотодиоды, например. Но ввиду сходности проверки работоспособности или малой распространенности эти устройства здесь не рассматриваются.

Определение типа элемента

Хорошо если размер корпуса позволяет нанести на нем хоть сколько-нибудь понятную маркировку. Но чаще всего диоды настолько малы, что их трудно маркировать даже цветом. В этом случае отличить диод от стабилитрона, например, не представляется возможным, ведь они как близнецы-братья.

В подобных ситуациях поможет лишь принципиальная схема аппарата, из которого извлечен элемент. В соответствии с ней можно определить тип компонента и его марку.

Если же отсутствует эта информация, можно попробовать поискать принципиальную схему ремонтируемого аппарата в интернете или сделать фотоснимок элемента и также обратиться в Сеть и провести поиск по изображению.

Проверка диодов мультиметром или другим тестером должна проводиться только после определения их типа и марки, потому что разные виды тестируются по-разному.

Применение тестера

Простейшим, но от этого ничуть не менее эффективным, прибором для тестирования элементов электронных схем, полупроводниковых диодов, в том числе, является тестер радиодеталей.

Более того, этот инструмент наиболее распространен в среде радиомастеров по причине неприхотливости, малых массогабаритных параметров и возможности измерения практически любых характеристик радиоэлементов и цепей, важных при ремонте.

Считается, что цифровые мультиметры, благодаря своей точности и удобству в эксплуатации, постепенно вытесняют аналоговые. Однако не стоит грешить на точность старенькой «цешки».

В ее состав уже входят микросхемы, а мостовые резисторы имеют погрешность 1-2% (это очень высокая точность даже для интегральных микросхем). Поэтому, чтобы проверить исправность диода или транзистора нет необходимости покупать новый мультиметр, при наличии аналогового.

Цифровая индикация прижилась из-за отсутствия механических узлов в мультиметре. Это повысило его удароустойчивость и срок эксплуатации.

Проверка диодов упростилась и с появлением звукового сигнала, позволяющего даже не обращать внимания на дисплей. В большинстве мультиметров существует специальный режим, позволяющий в прямом и переносном смысле прозвонить диод. Он отмечен на корпусе соответствующим знаком.

Достаточно вставить черный штекер в разъем COM, а красный в разъем измерения сопротивления (Ω), установить переключатель на режиме прозвонки диодов, и можно начинать проверку.

Методика проверки

Проверка диодов мультиметром заключается в выяснении работоспособности их p-n перехода. Вообще, в радиоэлектронике бывают лишь две неисправности. Первая представляет собой разрыв цепи (перегорание), когда ток не течет ни в одном из направлений. Вторая же вызвана коротким замыканием (пробой) электродов, что превращает компонент в кусок обычного провода.

Методика тестирования предельно проста. При соединении анода с плюсовым щупом мультиметра, а катода с минусовым, p-n переход должен быть открыт, следовательно, его сопротивление близко к нулю.

Цифровые измерители должны подать характерный сигнал. При обратном подключении p-n переход обязан быть заперт, о чем должно свидетельствовать бесконечное (в теории) его сопротивление.

На дисплее цифрового тестера индицируется цифра 1. Так звонится рабочий диод. Если же ток проходит, вне зависимости от полярности подключения, налицо короткое замыкание. В случае когда прибор не звонится ни в ту ни в другую сторону имеет место разрыв.

Нередко можно услышать вопрос о том, как проверить диод Шоттки. Действительно, эти компоненты принципиально отличаются от прочих.

Дело в том, что p-n переход даже в открытом состоянии имеет сопротивление, хотя и небольшое. Это, в свою очередь, вызывает потери энергии, рассеиваемые в виде тепла.

Для сокращения последних один из полупроводниковых электродов диода был заменен металлом. И хотя ток потерь в этом случае немного увеличивается, но в открытом состоянии сопротивление перехода очень низко, что обуславливает экономичность прибора.

В остальном проверка диода Шоттки с использованием мультиметра ничем не отличается от тестирования обычного p-n перехода.

Стабилитроны

Особняком стоит вопрос о проверке стабилитронов. Проверять их по описанной выше методике нет смысла, разве что можно убедиться в целостности p-n перехода. В отличие от обычного выпрямительного диода, стабилитрон использует обратную ветвь вольтамперной характеристики (ВАХ). Поэтому для исследования стабилизирующих свойств рабочую точку нужно сместить именно на этот участок графика.

Для этого используется простенькая схема из источника питания и токоограничительного резистора. В этом случае мультиметром измеряется не сопротивление перехода, а напряжение, при плавном повышении питающего потенциала.

Стабилитрон считается рабочим, если при повышении напряжения питания разница потенциалов на его электродах остается постоянной и равной заявленной в документации на прибор.

Без выпаивания

Отдельно нужно рассмотреть вопрос о том, можно ли проводить тестирование мультиметром непосредственно на плате, не выпаивая из нее элемент.

Здесь все зависит от сложности схемы и квалификации мастера. Смонтированное на плате изделие может звониться через обмотки трансформатора, резистивные элементы, сгоревший конденсатор или что-то еще. Поэтому получить более или менее адекватные показатели чаще всего не удается.

Разумеется, если мастер читает принципиальную схему как открытую книгу или «набил руку» на подобных аппаратах, он может оценить работоспособность прибора. Существуют даже методики проверок без демонтажа для автомобильного питания, например.

Но лучше все же выпаивать элемент из схемы. К тому же достаточно «повесить в воздух» только одну ножку изделия, что занимает 2-3 секунды. А после тестирования мультиметром за тот же промежуток времени диод возвращается в первоначальное положение на плате.

Как проверить транзистор мультиметром: пошаговая инструкция по проверке

Для проверки работоспособности транзистора можно использовать простейшие стрелочные или цифровые тестеры, а также самые современные мультиметры. Главное в этом знать, как проверить транзистор мультиметром. В случае аналоговых измерительных приборов, необходимо выбирать нижние его пределы. Прежде чем приступать к самой проверки, человек должен знать способы тестирования исправности. p-n перехода или другими словами, как тестировать диоды.

В данной статье будут рассмотрены все тонкость и нюансы этой работы, а также подробно описан весь алгоритм работы. В качестве дополнительной информации, статья содержит два ролика и одну статью по электротехнике. Благодаря этому материалу, начинающий радиолюбитель поймет, как правильно это сделать.

Аналоговый мультиметр

В аналоговом мультиметре результаты измерений наблюдается по движению стрелки (как на часах) по измерительной шкале, на которой подписаны значения: напряжение, ток, сопротивление. На многих (особенно азиатских производителей) мультиметрах шкала реализована не совсем удобно и для того, кто первый раз взял такой прибор в руку, измерение может доставить некоторые проблемы.

Популярность аналоговых мультиметров объясняется их доступностью и ценой (2-3$), а основным недостатком является некоторая погрешность в результатах измерений. Для более точной подстройки в аналоговых мультиметрах имеется специальный построечный резистор, манипулируя которым можно добиться немного большей точности. Тем не менее, в случаях когда желательны более точные измерения, лучшим будет использование цифрового мультиметра.

Проверка работоспособности транзистора.

Цифровой мультиметр

Главный отличием от аналогового является то, что результаты измерения отображаются на специальном экране (в старых моделях на светодиодах, в новых на жидкокристаллическом дисплее). К тому же цифровые мультиметры обладают более высокой точностью и отличаются простотой использования, так как не приходится разбираться во всех тонкостях градирования измерительной шкалы, как в стрелочных вариантах.

Материал по теме: Что такое реле контроля.

О транзисторе

Давайте вспомним о том, что вне зависимости от того, проверяем мы транзистор с прямой или обратной проводимостью, они имеют два p-n перехода. Любой из этих переходов можно сопоставить с диодом. Исходя из этого, можно с уверенностью заявить, что транзистор представляют собой пару диодов, соединённых параллельно, а место их соединения, является базой.

Таким образом получается, что у одного из диодов выводы будут представлять собой базу и коллектор, а у второго диода выводы будут представлять базу и эмиттер, или наоборот. В таблице ниже представлена цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.

Таблица маркировки маломощных среднечастотных и высокочастотных транзисторов.

Исходя из выше написанного, наша задача сводится к проверке напряжения падения на полупроводниковом приборе, или проверки его сопротивления.

Если диоды работоспособны, значит и проверяемый элемент рабочий.Для начала рассмотрим транзистор с обратной проводимостью, то есть имеющим структуру проводимости N-P-N.

На электрических схемах, разных устройств, структуру транзистора определяют с помощью стрелки, которая указывает эмиттерный переход.

Так если стрелка указывает на базу, значит, мы имеем дело c с транзистором прямой проводимости, имеющим структуру p-n-p, а если наоборот, значит это транзистор с обратной проводимостью, имеющий структуру n-p-n.

Для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h31э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.

Для открытия транзистора с прямой проводимостью, нужно дать отрицательное напряжение на базу. Для этого берём мультиметр, включаем его, и после этого выбираем режим измерения прозвонки, обычно он обозначается символическим изображением диода. В этом режиме прибор показывает падение напряжения в мВ. Благодаря этому мы можем определить кремниевый или германиевый диод или транзистор. Если падение напряжения лежит в пределах 200-400 мВ, то перед нами германиевый полупроводник, а если 500-700 кремниевый.

Современный многофункциональный мультиметр.

Проверка работоспособности транзистора

Подключаем на базу полевого транзистора плюсовой щуп (красный цвет), другим щупом (черный- минус) подключаем к выводу коллектора и делаем измерение. Затем минусовым щупом подключаем к выводу эмиттера и измеряем. Если переходы транзистора не пробиты, то падение напряжения на  коллекторном и эмиттерном переходе должно быть на границе от 200 до 700 мВ.

Для этого берем, подключаем черный щуп к базе, а красный по очереди подключаем к эмиттеру и коллектору, производя измерения.

Теперь произведём обратное измерение коллекторного и эмиттерного перехода.

Во время измерения, на экране прибора высветится цифра «1», что в свою очередь означает, что при выбранном нами режиме измерения, падение напряжения отсутствует.

Точно также, можно проверить элемент, который находиться на электронной плате, от какого-либо устройства.

При этом во многих случаях можно обойтись и без выпаивания его из платы.

Бывают случаи, когда на впаянные элементы в схеме, оказывают большое влияние резисторы с малым сопротивлением.

Но такие схематические решения, встречаются очень редко. В таких случаях при измерении обратного коллекторного и эмиттерного перехода, значения на приборе будут низкие, и тогда нужно выпаивать элемент из печатной платы. Способ проверки работоспособности элемента с обратной проводимостью (P-N-P переход), точно такой же, только на базу элемента подключается минусовой щуп измерительного прибора.

Признаки неисправностей

Теперь мы знаем, как определить рабочий транзистор, а как проверить транзистор мультиметром и узнать, что он не рабочий? Тут тоже всё достаточно легко и просто. Первая неисправность элемента, выражается в отсутствии падения напряжения или в бесконечном большом сопротивлении, прямого и обратного p-n перехода.

То есть, при прозвонке прибор показывает «1». Это обозначает, что измеряемый переход в обрыве и элемент не рабочий. Другая неисправность элемента, выражается в наличии большого падения наряжения на полупроводнике (прибор при этом как правило пищит), или около нулевом значении сопротивления прямого и обратного p-n перехода. В таком случае пробита внутренняя структура элемента (короткозамкнута), и он не рабочий.

Определение цоколевки у транзистора

Теперь давайте научимся определять, где у транзистора находится база, эмиттер и коллектор. В первую очередь начинают искать базу элемента. Для этого включаем мультиметр в режим прозвонки.

Положительный щуп закрепляем на левую ножку, а минусовым последовательно производим измерение на средней и правой ножке. Мультиметр нам показал «1» между левой и средней ножкой, а между левой и правой ножкой показания составили 555 мВ.

Пока эти измерения не дают нам возможности, сделать какие-либо выводы. Двигаемся вперёд. Закрепляемся плюсовым щупом на средней ножке, а минусовым последовательно производим измерение на левой и правой ноге. Тостер показал значение равное «1» между левой и средней ногой, и 551 мВ, между средней и правой ногой.

Прозвонка диода мультиметром.

Эти измерения, тоже не дают возможности сделать вывод и определить базу. Двигаемся дальше. Закрепляем плюсовой щуп на правой ноге, а минусовым щупом по очереди закрепляем среднюю и левую ногу, при этом производим измерения. В ходе измерения мы видим, что величина падения напряжения между правой и средней ножкой равна единице, и между правой и левой ножкой тоже равно единице (бесконечность). Таким образом, мы нашли базу транзистора, и она находиться на правой ноге.

Теперь нам осталось определить, на какой ноге коллектор, а на какой эмиттер. Для этого прибор следует переключить в измерение сопротивления 200 кОм. Измеряем на средней и левой ноге, для чего закрепим щуп с минусом на правой ноге(база), а плюсовой по очереди будем закреплять на средней ноге и левой, при этом проводя измерения сопротивления.

Получив измерения мы видим, что на левой ноге R=121,0 кOм, а на средней ноге R=116.4 кOм. Следует запомнить раз и навсегда, если вы будете в дальнейшем проверять и находить эмиттер и коллектор, что сопротивление коллекторного перехода в любых случаях меньше, чем сопротивление эмиттера.

Простая проверка транзисторов

При ремонте бытовой радиоаппаратуры возникает необходимость проверить исправность полупроводниковых триодов (транзисторов) без выпайки их из схемы. Один из способов такой проверки — измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором (рис. 56, а) и при соединении базы с эмиттером (рис. 56,6).

При этом источник коллекторного питания отключается от схемы. При исправном транзисторе в первом случае омметр покажет малое сопротивление, во втором — порядка нескольких сотен тысяч или десятков тысяч ом. Проверка транзисторов, не включенных в схему, на отсутствие коротких замыканий производится измерением сопротивления между их электродами.

Схема проверки полупроводников.

Для этого омметр подключают поочередно к базе и эмиттеру, к базе и коллектору, к эмиттеру и коллектору, меняя полярность подключения омметра. Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод. Для проверки исправности транзисторов омметр подключают к соответствующим выводам транзистора (на рис. показано, как измеряют прямое и обратное сопротивления каждого из переходов транзистора).

У исправного транзистора прямые сопротивления переходов составляют 30—50 Ом, а обратные — 0,5—2 МОм. При значительных отклонениях от этих величин транзистор можно считать неисправным. При проверке ВЧ транзисторов напряжение батареи омметра не должно превышать 1,5 В. Для более тщательной проверки транзисторов используются специальные приборы.

Материал в тему: Что такое конденсатор

Тестирование однопереходных и программируемых однопереходных транзисторов

Однопереходный транзистор (ОПТ) отличается наличием на его вольт-амперной характеристике участка, с отрицательным сопротивлением. Наличие такого участка говорит о том, что такой полупроводниковый прибор может использоваться для генерирования колебаний (ОПТ, туннельные диоды и др.).

Однопереходный транзистор используется в генераторных и переключательных схемах. Для начала разберем, чем отличается однопереходный транзистор от программируемого однопереходного транзистора. Это несложно:

  • общим для них является трехслойная структура (как у любого транзистора) с 2мя р-n переходами;
  • однопереходный транзистор имеет выводы, называемые база 1 (Б1), база 2 (Б2), эмиттер.
  • Он переходит в состояние проводимости, когда напряжение на эмиттере превышает значение критического напряжения переключения;
  • находится в этом состоянии до тех пор, пока ток эмиттера не снизится до некоторого значения, называемого током запирания. Все это очень напоминает работу тиристора.
  1. Программируемый однопереходный транзистор имеет выводы, называемые анод (А), катод (К) и управляющий электрод (УЭ). По принципу работы он ближе к тиристору.
  2. Переключение его происходит тогда, когда напряжение на управляющем электроде превышает напряжение на аноде (на величину примерно 0,6 В — прямое напряжение р-n перехода).
  3. Изменяя с помощью делителя напряжение на аноде, можно изменять напряжение переключения такого прибора т.е. “программировать” его.

Чтобы проверить исправность однопереходного и программируемого однопереходного транзистора следует измерить омметром сопротивление между выводами Б1 и Б2 или А и К для проверки на пробой. Но наиболее точные результаты можно получить, собрав схему для проверки однопереходных и программируемых однопереходных транзисторов.

Различные типы транзисторов.

Проверка цифровых транзисторов

Цифровой транзистор внешне не отличается от обычного, но результаты его «прозвонки» могут поставить в тупик даже опытного мастера. Для многих они как были «непонятными», так таковыми и остались. В некоторых статьях можно встретить утверждение – “тестирование цифровых транзисторов затруднено.

Лучший вариант – замена на заведомо исправный транзистор”. Бесспорно, это самый надежный способ проверки. Попробуем разобраться, так ли это на самом деле. Давайте разберемся, как правильно протестировать цифровой транзистор и какие выводы сделать из результатов измерений.

Интересно почитать: принцип действия и основные характеристики варисторов.

В прямом направлении цепь база-коллектор рассматриваемого транзистора состоит из последовательно соединенных резистора R1 и сопротивления собственно перехода база-коллектор. Сопротивлением перехода, так как оно значительно меньше сопротивления резистора R1, можно пренебречь.

Этот замер даст величину, приблизительно равную значению сопротивления резистора R1, которое в нашем примере равно 10 кОм. В обратном направлении переход остается закрытым, и ток через этот резистор не течет. Стрелка авометра должна показать «бесконечность».

Цепь база-эмиттер представляет собой смешанное соединение резисторов R1, R2 и сопротивления собственно перехода база-эмиттер (VD2 на рис. 4 слева). Резистор R2 включен параллельно этому переходу и практически не изменяет его сопротивления.

Следовательно, в прямом направлении, когда переход открыт, ампервольтомметр вновь покажет величину сопротивления, приблизительно равную значению сопротивления базового резистора R1. При изменении полярности тестера переход база-эмиттер остается закрытым. Ток протекает через последовательно соединенные резисторы R1 и R2. В этом случае тестер покажет сумму этих сопротивлений. В нашем примере она составит приблизительно 32 кОм.

Как видите, в прямом направлении цифровой транзистор тестируется так же, как и обычный биполярный транзистор. Разница в том, что стрелка прибора показывает значение сопротивления базового резистора.

По разности измеренных сопротивлений в прямом и обратном направлениях можно определить величину сопротивления резистора R2.

Теперь рассмотрим тестирование цепи эмиттер-коллектор. Эта цепь представляет собой два встречно включенных диода, и при любой полярности тестера его стрелка должна была бы показать «бесконечность». Однако, это утверждение справедливо только для обычного кремниевого транзистора.

В рассматриваемом случае из-за того, что переход база-эмиттер (VD2) оказывается зашунтированным резистором R2, появляется возможность открыть переход база-коллектор при соответствующей полярности измерительного прибора. Измеренное при этом сопротивление транзисторов имеет некоторый разброс, но для предварительной оценки можно ориентироваться на значение примерно в 10 раз меньшее сопротивления резистора R1.

При смене полярности тестера сопротивление перехода база-коллектор должно быть бесконечно большим. Для транзистора прямой проводимости стрелка будет означать «-» измерительного прибора. В качестве измерительного прибора необходимо использовать стрелочные (аналоговые) АВОметры с током отклонения головки около 50 мкА (20 кОм/В).

Многофункциональный тестер.

Следует отметить, что вышеизложенное носит несколько идеализированный характер, и на практике, могут быть ситуации, требующие логического осмысления результатов измерений. Особенно в случаях, если цифровой транзистор окажется дефектным.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

В статье разобраны все вопросы проверки транзистора. Более детальную информацию можно узнать в статье Проверка работоспособности транзисторов.В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.electrongrad.ru

www.radiostorage.net

www.works.doklad.ru

www.xn--b1agveejs.su

Предыдущая

ПрактикаКак сделать мигающий светодиод?

Следующая

ПрактикаКак правильно прозвонить транзистор?

как прозвонить с помощью мультиметра диод и стабилитрон

Часто у мастеров возникает необходимость проверить на исправность такой радиоэлемент, как полупроводниковый диод. Его назначение состоит в том, чтобы пропускать ток при его протекании в одном направлении (от анода к катоду) и не пропускать при протекании его в обратном направлении (от катода к аноду). Это свойство объясняет само название полупроводник. В этом и состоит суть проверки диода: он должен выполнять заданные функции так, как требуется в схеме.

Пороговое значение напряжения

Одна из основных характеристик полупроводниковых элементов — пороговое значение напряжения, то есть значение прикладываемого напряжения к элементу в прямом включении, при котором через него начинает протекать ток. Для разных типов диодов это напряжение имеет разные диапазоны значений. Для германиевых этот диапазон составляет от 0,3 до 0,7 вольта, для кремниевых — от 0,7 до 1,0 вольта. По этому значению судят об исправности полупроводникового диода.

Основные неисправности полупроводников

Диоды могут выходить из строя по разным причинам. Наиболее распространенные из них: протекание повышенного тока через схему, превышение максимального значения обратного напряжения и другие (например, тепловое или механическое воздействие). Основные неисправности этих полупроводников — пробой и обрыв. Обе неисправности можно выявить с помощью мультиметра. При пробое подключенный к элементу мультиметр в режиме измерения сопротивления показывает минимальное сопротивление порядка единиц Ом. При обрыве измерительный прибор в том же режиме покажет бесконечное сопротивление как при прямом, так и при обратном подключении.

Проверка измерителем

Перед началом работы любые типы элементов нуждаются в проверке. Не пренебрегайте этим правилом. Существует несколько способов проверить диод:

  • Основной способ проверки — с помощью мультиметра. Встроенная в измеритель проверка. Большинство мультиметров имеют режим прозвонки p-n перехода. Этот режим обычно обозначен значком диода на их передней панели. Чтобы прозвонить мультиметром диод, установите ручку регулятора вашего измерительного прибора на обозначение диода либо нажмите кнопку с этим обозначением на передней панели прибора. Далее подключите красный измерительный щуп к аноду проверяемого элемента, а черный щуп — к катоду. Узнать, какой из выводов анод, а какой катод, можно в интернете, прочитав описание на используемый вами диод. В описаниях обычно указывается маркировка. При подключении описанным способом мультиметр должен показать пороговое прямое напряжение тестируемого диода. Если элемент неисправен, то прибор покажет ноль или сильно отличающееся от порогового показание. При обратном подключении (черный щуп мультиметра к аноду, красный щуп — к катоду) мультиметр должен показать нулевое напряжение.
  • Вам нужно прозвонить диод, если ваш мультиметр не поддерживает режим проверки полупроводниковых приборов. Соберите простую схему. Соедините последовательно источник питания постоянного тока номинальным напряжением 5 вольт, резистор сопротивлением 100 Ом и проверяемый полупроводник. Катод соедините с минусом источника питания, а анод — с резистором. Далее переключите мультиметр в режим определения постоянного напряжения. Красный щуп мультиметра соедините с анодом тестируемого диода, а черный щуп — с катодом. При исправности элемента измеритель покажет пороговое прямое напряжение на нем.
  • Проверка диода в случае отсутствия у мультиметра режима прозвонки полупроводников. Выберите на мультиметре режим измерения сопротивления, диапазон измеряемого сопротивления до 2 кОм. Подсоедините красный щуп прибора к аноду, черный щуп к катоду элемента. При этом измерительный прибор должен показать сопротивление порядка сотен Ом. Если подсоединить мультиметр к полупроводнику наоборот (черный щуп к аноду, красный — к катоду), то он должен показать бесконечное сопротивление или разрыв цепи. Если выдаются другие показания, значит, элемент неисправен.

Диагностика исправности стабилитрона

Стабилитроном называется полупроводниковый элемент, стабилизирующий напряжение в довольно узком диапазоне. При этом через него могут протекать разные токи как большие, так и маленькие. Диапазон стабилизации стабилитрона по напряжению обычно ограничен сотней милливольт. Конструктивно стабилитрон представляет собой диод, и в прямом включении он так и работает. Стабилизацию напряжения он производит при подаче на него напряжения в обратном включении. Проверить исправность стабилитрона мультиметром можно точно так же, как и исправность обычного диода.

Замер напряжения стабилизации

Необходимо собрать небольшую схему. Для этого нужно последовательно соединить регулируемый источник питания (он должен показывать напряжение и ток через нагрузку), токоограничивающее сопротивление (номиналом от одного до 10 кОм, мощность рассеивания зависит от напряжения стабилизации, но берите не менее 0,125 Вт) и стабилитрон. Катод стабилитрона подключается к плюсу источника питания, анод соединяется с токоограничивающим резистором. Далее выполните следующие действия:

  1. Подключите мультиметр к стабилитрону (красный щуп к катоду, черный к аноду), переключите его в режим определения постоянного напряжения и выберите диапазон измерения до 200 В.
  2. На источнике питания установите минимальное напряжение.
  3. Включите источник питания и постепенно увеличивайте уровень напряжения на нем.
  4. Как только увидите, что начал протекать ток через схему, прекратите регулировку источника питания и отследите на мультиметре напряжение стабилизации стабилитрона.

Тестирование диода без выпаивания

При проверке элементов внутри схем возникают некоторые трудности с определением их характеристик, так как измерительный прибор тестирует все части схемы, включенные между его измерительными щупами. Таким образом, нужно исключить возможные варианты протекания тока в схеме, в которую установлен нужный элемент. Самый простой вариант — выпаять один из выводов нужного вам для проверки диода. Тогда результаты измерения будут достоверными. После проведения выпаивания одного из выводов элемента можно проверить его любым из перечисленных выше способов.

Если выпаять один из выводов проблематично, отключите источник питания схемы и попробуйте проверить диод, не выпаивая его. При этом в схеме не должно быть элементов, шунтирующих проверяемый элемент. Результаты проверки также должны быть достоверны.

Как проверить стабилитрон мультиметром расписано по шагам

Любой электроприбор нуждается в стабильном энергоснабжении. Для этого существуют стабилизаторы, ШИМ контроллеры и прочие разновидности блоков питания.

Какой бы простой не была схема стабилизатора, она стоит определенных денег. В некоторых случаях высокое качество питания не требуется. Чаще всего такая ситуация бывает, когда надо обеспечить часть большой электросхемы напряжением, отличным от основного, стабильного.

Самый простой элемент, обеспечивающий относительно стабильное напряжение – это стабилитрон.

Поскольку это единичная деталь, ремонт блока питания представляется несложным. Как проверить стабилитрон? Как и любую другую деталь, только есть нюансы, связанные с конструкцией.

Как работает этот элемент?

И внешне, и по реализации p-n перехода, этот элемент похож на полупроводниковый диод. Даже схематическое обозначение не сильно отличается.

Через него также протекает ток в одном направлении, при этом есть одна особенность. Диод организует движение частиц только от анода к катоду, прохождение обратного тока является аварийной ситуацией: то есть пробоем радиоэлемента.

В стабилитроне обратный ток является нормальной ситуацией, именно эта особенность определяет его назначение. При возникновении на его выводах определенного значения вольтажа, открывается движение электронов в направлении от катода к аноду, и элемент становится обратно проводимым.

Причем это напряжение является основной характеристикой: например, стабилитрон на 12 вольт при достижении этого значения начинает пропускать ток в обратном направлении.

Рассмотрим это явление на простом примере

Допустим, у нас есть сосуд для воды со сливным патрубком на определенном уровне.

Когда жидкость достигает необходимой высоты, происходит перелив из сливного патрубка. То есть, сосуд будет заполняться только до определенного значения, которое будет оставаться стабильным до определенного напора. Если поступление воды превысит возможности сливного патрубка, сосуд переполнится или лопнет.

Переводим ситуацию в электронику.

  • напор воды – это максимальная сила тока, на которую рассчитан стабилитрон без электрического (термического) разрушения;
  • необходимый уровень – это напряжение срабатывания стабилитрона.

При достижении заданного напряжения, оно фиксируется, и «лишний» ток движется в обратную сторону. Таким образом, элемент стабилизирует напряжение. Если сила тока будет слишком высокой, стабилитрон сгорит.

Обратите внимание

Стабилитроны работают только в цепях постоянного тока, стабилизация происходит только по напряжению.

Основная цель определения работоспособности – проверка стабилитрона на напряжение стабилизации.

Как проверить стабилитрон мультиметром на исправность?

Методика аналогична классическому диоду. Выставляем переключатель в положение проверки диодов (присутствует на любом устройстве) и соединяем щупы с контактами детали. Прямое подключение показывает протекание тока, обратное – запертое состояние p-n перехода.

Важно! Напряжение на проводах прибора должно быть ниже значения срабатывания радиоэлемента. Иначе проверить стабилитрон мультиметром не получится: он будет открыт одинаково в каждом направлении.

Этот тест говорит лишь о том, что элемент не «пробит». Замерить параметры таким способом не получится.

А как проверить стабилитрон тестером на соответствие напряжения срабатывания?

Для начала надо узнать, на сколько вольт стабилитрон. Как это сделать? По маркировке. В зависимости от типа корпуса, это может быть символьное или цветовое обозначение. Таблицы маркировок есть в справочниках, подробно останавливаться на этом вопросе не будем.

Собираем несложную схему с балластным резистором (для ограничения тока, поскольку нагрузка не предусмотрена).

Важно: Обратите внимание на подключение детали: в отличие от диода плюс соединен с минусом, минус с плюсом.

Подопытный стабилитрон рассчитан на значение стабилизации 5,1 вольта. Как проверить исправность? Подать на вход различные значения напряжения с помощью регулируемого блока питания.

Сначала выставляем значение, ниже уровня срабатывания: 4 вольта. На выходе получаем тоже самое. Это означает, что p-n переход не пробит.

Постепенно повышаем входное значение. Если деталь исправна, после значения 5,1 вольта напряжение на выходе будет стабильным, и не должно превышать напряжения срабатывания.

Что мы и видим на иллюстрации:

То есть наш стабилитрон исправен.

Важно помнить (как при тестировании, так и при проверках), что сила тока не может быть бесконечно большой. Любой стабилитрон рассчитан на определенные режимы работы: как правило, на небольшие токи.

Можно ли проверить стабилитрон не выпаивая?

Да, это возможно, но тестируются не все режимы радиоэлемента. Стабилитрон всегда имеет электрические связи с остальными элементами схемы, поэтому проверить его на пробой в составе изделия невозможно.

Вы сможете проверить стабилитрон мультиметром на плате только на стабильность напряжения питания. Для этого необходимо включить электроприбор, и соединить щупы тестера с ножками детали.

Естественно, вы должны знать исходное значение по маркировке. При этом надо замерить напряжение на входе и после стабилизатора. Если значение на входе выше или равно напряжению после стабилитрона, значит он исправен.

Как проверить двусторонний стабилитрон?

Эта деталь представляет собой два стабилитрона в одном корпусе, соединенная навстречу друг другу.

Такой элемент может работать с импульсным напряжением, и с переменной полярностью. Проверка на пробой бессмысленна, поэтому можно лишь тестировать соответствие напряжения стабилизации.

Для этого собирается схема, аналогичная описаниям выше. Для проверки необходимо также подавать на вход завышенное напряжение, только различной полярности.

В обоих случаях на выходе должно быть стабилизированное значение напряжения, в соответствии с маркировкой. Разумеется, проверка возможна и на монтажной плате, если обеспечить входное напряжение разной полярности.

Проверяем стабилитрон мультиметром — видео

About sposport

View all posts by sposport

Загрузка…

Electronics Club — Мультиметры, цифровые, аналоговые, выбор, использование для измерения напряжения, тока и сопротивления

Electronics Club — Мультиметры, цифровые, аналоговые, выбор, использование для измерения напряжения, тока и сопротивления

Выбор | Цифровой | Аналог | Напряжение | Текущий | Сопротивление | Диод | Транзистор

Следующая страница: Сопротивление

См. Также: Метры | Напряжение и ток

Введение

Мультиметры — очень полезные инструменты для тестирования.Путем управления многопозиционным переключателем на метр, их можно быстро и легко настроить на вольтметр , амперметр или омметр . У них есть несколько настроек, называемых «диапазонами», для каждого типа метр и выбор измерения переменного или постоянного тока.

Некоторые мультиметры имеют дополнительные функции, такие как тестирование транзисторов и диапазоны для измерение емкости и частоты.


Выбор мультиметра

Цифровой мультиметр — лучший выбор для вашего первого мультиметра , даже самый дешевый подойдет для тестирования простых проектов и рекомендую от Rapid Electronics: Цифровой мультиметр (базовый)
Он имеет все диапазоны, необходимые для тестирования простых проектов: постоянное напряжение, постоянный ток (включая полезный диапазон 10 А), сопротивление, проверка диодов и напряжение переменного тока.Все эти функции описаны ниже.

Для более расширенного использования , включая измерение переменного тока, емкости и частоты, Рекомендую мультиметр от Rapid Electronics: Цифровой мультиметр (расширенный)

Опытные пользователи могут быть готовы заплатить значительно больше за счетчик с расширенными функциями, соответствующими их требованиям, см. полный ассортимент Rapid Electronics здесь: Цифровые мультиметры серии

Фотография мультиметра © Rapid Electronics

Если вы выбираете аналоговый мультиметр , убедитесь, что он имеет высокую чувствительность 20к / В или больше в диапазонах постоянного напряжения, меньшее не подходит для электроники.Чувствительность обычно указывается в углу шкалы, игнорируйте нижнее значение переменного тока. (чувствительность в диапазонах переменного тока менее важна), более высокое значение постоянного тока является критическим. Остерегайтесь дешевых аналоговых мультиметров, продаваемых для электромонтажных работ на автомобилях, потому что их чувствительность может быть слишком низкой.

Если вам особенно нужен аналоговый мультиметр , я рекомендую этот от Rapid Electronics: Аналоговый мультиметр (Чувствительность 20к / В)


Не хватает денег на проекты в области электроники? Продайте свой старый iPhone, iPad, MacBook или другое устройство Apple: macback.co.uk


Мультиметры цифровые

Все цифровые счетчики содержат батарею для питания дисплея, поэтому они практически не потребляют энергию от тестируемой цепи. Это означает, что в их диапазонах постоянного напряжения они очень высокое сопротивление (обычно называемое входным импедансом) 1 млн или более, обычно 10 млн, и они вряд ли повлияют на тестируемую цепь.

Типичные диапазоны для цифровых мультиметров, подобных показанному на рисунке (значения являются максимальными показаниями для каждого диапазона):

  • Напряжение постоянного тока: 200 мВ, 2000 мВ, 20 В, 200 В, 600 В.
  • Напряжение переменного тока: 200 В, 600 В.
  • Постоянный ток: 200 мкА, 2000 мкА, 20 мА, 200 мА, 10 А *.
    * Диапазон 10А обычно не используется и подключается через специальную розетку.
  • Переменный ток: нет (вряд ли вам нужно это измерять).
  • Сопротивление: 200, 2000 г., 20к, 200к, 2000к, Диодный тест.

Цифровые измерители имеют специальные настройки проверки диодов, так как их диапазоны сопротивления нельзя использовать для проверки диодов и других полупроводников.

Фотография мультиметра © Rapid Electronics



Аналоговые мультиметры

Аналоговые измерители потребляют немного энергии от тестируемой цепи для работы своих указатель.У них должна быть высокая чувствительность не менее 20к / В или они могут нарушить тестируемую цепь и дать неверные показания. См. Более подробную информацию в разделе о чувствительности ниже.

Батарейки внутри измерителя обеспечивают питание для диапазонов сопротивления, их хватит на несколько лет, но не следует оставлять измеритель настроенным на диапазон сопротивления, если провода случайно коснуться и разрядить аккумулятор.

Типичные диапазоны аналоговых мультиметров, подобных показанному на рисунке (значения напряжения и тока являются максимальными показаниями для каждого диапазона):

  • Напряжение постоянного тока: 0.5 В, 2,5 В, 10 В, 50 В, 250 В, 1000 В.
  • Напряжение переменного тока: 10 В, 50 В, 250 В, 1000 В.
  • Постоянный ток: 50 мкА, 2,5 мА, 25 мА, 250 мА. (в измерителях этого типа часто отсутствует большой диапазон тока).
  • Переменный ток: нет (вряд ли вам нужно это измерять).
  • Сопротивление: 20, 200, 2к, 20к, 200к. Эти значения сопротивления находятся в середине шкалы для каждого диапазона.

Рекомендуется оставить аналоговый мультиметр настроенным на диапазон постоянного напряжения, например 10 В. когда не используется.Меньше вероятность его повреждения из-за неосторожного использования в этом диапазоне, и есть большая вероятность, что это будет тот диапазон, который вам в любом случае понадобится!

Фотография мультиметра © Rapid Electronics

Чувствительность аналогового мультиметра

Мультиметры должны иметь высокую чувствительность не менее 20к / В. в противном случае их сопротивление в диапазонах постоянного напряжения может быть слишком низким, чтобы не допустить нарушения тестируемой цепи и неверное чтение. Для получения достоверных показаний сопротивление счетчика должно быть как минимум в 10 раз больше, чем сопротивление цепи. сопротивление (принимайте это за максимальное значение резистора рядом с тем местом, где подключен счетчик).Вы можете увеличить сопротивление измерителя, выбрав более высокий диапазон напряжения, но это может дать значение, которое слишком мало для точного чтения!

В любом диапазоне постоянного напряжения:

Сопротивление аналогового измерителя = Чувствительность × Макс. чтение диапазона

Например: счетчик с 20 к / В чувствительность в диапазоне 10 В имеет сопротивление 20 к / В × 10В = 200к.

Напротив, цифровые мультиметры имеют постоянное сопротивление не менее 1 млн (часто 10 млн) на всех диапазонах постоянного напряжения.Этого более чем достаточно практически для всех схем.


Измерение напряжения и тока мультиметром

  1. Выберите диапазон на больше, чем вы ожидаете от показания.
  2. Подключите измеритель , убедившись, что провода проложены правильно. Цифровые счетчики можно безопасно подключать в обратном направлении, но аналоговый счетчик может быть поврежден.
  3. Если показание выходит за пределы шкалы: немедленно отключите и выберите более высокий диапазон.
Мультиметры
легко повредить из-за неосторожного обращения, поэтому соблюдайте следующие меры предосторожности:
  • Всегда отключайте мультиметр перед настройкой переключателя диапазонов.
  • Всегда проверяйте настройку переключателя диапазонов перед подключением к цепи.
  • Никогда не оставляйте мультиметр, настроенный на текущий диапазон, когда он не используется (на случай, если вы забудете проверить его при следующем использовании).

Наибольший риск повреждения возникает на диапазонах тока, поскольку счетчик имеет низкое сопротивление.

Измерение напряжения в точке

При тестировании цепей вам часто нужно найти напряжения в различных точках, например, напряжение на выводе 2 микросхемы таймера 555. Это может показаться запутанным — куда подключить второй провод вольтметра?

  • Подключите черный (отрицательный -) провод вольтметра к 0 В, обычно к отрицательному клемму аккумулятора или источника питания.
  • Подсоедините красный (положительный +) провод вольтметра к точке. вы там, где вам нужно измерить напряжение.
  • Черный провод можно оставить постоянно подключенным к 0 В, пока вы используете красный провод как зонд для измерения напряжений в различных точках.
  • Вы можете использовать зажим «крокодил» на проводе , черный, , чтобы удерживать его на месте.

Напряжение в точке действительно означает разницу напряжений между этой точкой и 0 В (ноль вольт), который обычно является отрицательной клеммой аккумулятора или источника питания. Обычно 0V обозначается на принципиальной схеме в качестве напоминания.

Чтение аналоговых весов

Аналоговые шкалы мультиметра, такие как показанные ниже, сначала могут показаться пугающими, но помните что вам нужно читать только по одной шкале за раз. Верхняя шкала используется при измерении сопротивления.

Проверьте настройку переключателя диапазонов и выберите подходящую шкалу . Для некоторых диапазонов вам может потребоваться умножить или разделить на 10 или 100, как показано в образцах значений ниже. Для диапазонов переменного напряжения используйте красные отметки, потому что калибровка шкалы немного отличается.

Пример показаний на показанных шкалах:
Диапазон 10 В постоянного тока: 4,4 В (прямое считывание шкалы 0-10)
Диапазон 50 В постоянного тока: 22 В (прямое считывание шкалы 0-50)
Диапазон 25 мА постоянного тока: 11 мА (считайте 0-250 и разделите на 10)
Диапазон 10 В переменного тока: 4,45 В (используйте красную шкалу 0-10)

Если вы не знакомы с чтением аналоговых шкал, см. Аналоговый дисплей.


Измерение сопротивления мультиметром

Для измерения сопротивления компонента нельзя включать его в цепь. Если вы попытаетесь измерить сопротивление компонентов в цепи, вы, вероятно, получите ложное показания (даже при отключенном питании), и вы можете повредить мультиметр.

Методы, используемые для каждого типа счетчиков, очень разные, поэтому они рассматриваются отдельно.

Измерение сопротивления цифровым мультиметром

  1. Установите измеритель на диапазон сопротивления больше, чем вы ожидаете.
    Обратите внимание, что дисплей измерителя показывает «зашкаливает» (обычно пустое, за исключением 1 слева).Не волнуйтесь, это не ошибка, это правильно — сопротивление воздуха очень высокое!
  2. Соедините щупы измерителя и убедитесь, что он показывает ноль.
    Если он не показывает ноль, поверните переключатель в положение «Установить ноль», если ваш счетчик это и попробуйте еще раз.
  3. Поместите щупы на компонент.
    Не прикасайтесь к более чем одному контакту одновременно, или ваше сопротивление нарушит показания!

Измерение сопротивления АНАЛОГОВЫМ мультиметром

Шкала сопротивления на аналоговом измерителе обычно находится вверху, это необычно. масштаб, потому что он читает в обратном направлении и является нелинейным (равномерно распределенным).Это прискорбно, но это связано с тем, как работает счетчик.

  1. Установите измеритель на подходящий диапазон сопротивления.
    Выберите диапазон так, чтобы ожидаемое сопротивление было около середина шкалы. Например: со шкалой, показанной ниже, и ожидаемым сопротивлением около 50к выберите диапазон × 1k.
  2. Удерживая зонды измерителя вместе, отрегулируйте ручку на передней панели измерителя. обычно обозначается ‘0 ADJ’ , пока указатель не станет равным нулю (на ПРАВОЙ помните!).
    Если вы не можете отрегулировать его до нуля, значит, батарею внутри измерителя необходимо заменить.
  3. Поместите щупы на компонент.
    Не прикасайтесь к более чем одному контакту одновременно, или ваше сопротивление нарушит показания!

Считывание аналоговых шкал сопротивления

Для сопротивления используйте верхнюю шкалу , отметив, что она считывается в обратном направлении и не является линейной.

Проверьте настройку переключателя диапазонов, чтобы знать, на сколько умножить показание.

Пример показаний на показанных шкалах:
× 10 диапазон: 260
× 1k диапазон: 26к

Если вы не знакомы с чтением аналоговых шкал, см. Аналоговый дисплей.



Проверка диода мультиметром

Методы, используемые для каждого типа счетчиков, очень разные, поэтому они рассматриваются отдельно.

a = анод, k = катод

Проверка диода мультиметром ЦИФРОВЫМ

  • Цифровые мультиметры имеют специальную настройку для проверки диода, обычно помеченную символом диода.
  • Подключите красный (+) вывод к аноду, а черный (-) к катоду. Диод должен проводить, и измеритель будет отображать значение (обычно напряжение на диоде в мВ, 1000 мВ = 1 В).
  • Поменяйте местами соединения. Диод НЕ должен вести себя таким образом, чтобы измеритель отображение «вне шкалы» (обычно пустое, за исключением 1 слева).

Проверка диода АНАЛОГОВЫМ мультиметром

  • Установите аналоговый мультиметр на диапазон низкого сопротивления, например × 10.
  • Важно отметить, что полярность выводов аналогового мультиметра обратная в диапазонах сопротивления , таким образом, черный провод является положительным (+), а красный провод — отрицательным (-). Это прискорбно, но это связано с тем, как работает счетчик.
  • Подсоедините черный (+) провод к аноду, а красный (-) к катоду. Диод должен проводить, и измеритель покажет низкое сопротивление (точное значение не имеет значения).
  • Поменяйте местами соединения.Диод НЕ должен вести себя таким образом, чтобы измеритель покажет бесконечное сопротивление (слева от шкалы).

Дополнительную информацию см. На странице диодов. Возможно, вам будет проще проверить диод с помощью простого тестера.


Проверка транзистора мультиметром

Установите цифровой мультиметр для проверки диодов, а аналоговый мультиметр — на диапазон низкого сопротивления, например × 10, как описано выше для проверки диода.

Проверить каждую пару проводов в обе стороны (всего шесть тестов):

  • Переход база-эмиттер (BE) должен вести себя как диод, а проводить только в одну сторону, .
  • Переход база-коллектор (BC) должен вести себя как диод, а проводить только в одну сторону, .
  • Коллектор-эмиттер (CE) не должен проводить ни в коем случае .

На схеме показано, как ведут себя переходы в NPN-транзисторе. В транзисторе PNP диоды перевернуты, но можно использовать ту же процедуру тестирования.

Проверка транзистора NPN

Дополнительную информацию см. На странице транзисторов.Возможно, вам будет проще проверить транзистор с помощью проекта простого тестера.

Некоторые мультиметры имеют функцию «проверки транзисторов». Подробные сведения см. В инструкциях, прилагаемых к мультиметру.


Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент мультиметров, а также компонентов, инструментов и материалов для электроники, и я рад рекомендую их как поставщика.


Следующая страница: Сопротивление | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2020

Веб-сайт размещен на Tsohost

Кривые зависимости тока от напряжения стабилитрона

[Analog Devices Wiki]

Эта версия (22 сен 2018 02:58) была одобрена компанией dmercer .

Цель:

Целью данной работы является исследование вольт-амперных характеристик области обратного пробоя стабилитронов.

Примечания:

Как и во всех лабораториях ALM, мы используем следующую терминологию при описании подключений к разъему M1000 и настройке оборудования. Зеленые прямоугольники обозначают подключения к разъему аналогового ввода-вывода M1000. Контакты аналогового канала ввода / вывода обозначаются как CA и CB.При настройке для принудительного измерения напряжения / измерения тока –V добавляется, как в CA- V , или при настройке для принудительного измерения тока / измерения напряжения –I добавляется, как в CA-I. Когда канал настроен в режиме высокого импеданса только для измерения напряжения, –H добавляется как CA-H.

Следы осциллографа также обозначаются по каналу и напряжению / току. Например, CA- V , CB- V для сигналов напряжения и CA-I, CB-I для сигналов тока.

Фон:

Диод с PN-переходом — это устройство, которое обычно используется в схемах, таких как выпрямление, где ток может течь только в одном направлении.Когда диод изготовлен из кремния, прямое падение напряжения обычно составляет 0,7 В , а характеристика В D в зависимости от I D , связывающая напряжение и ток диода, может быть описана экспоненциальной зависимостью:

alm-lab2-e1.png

где I S и n — масштабные коэффициенты, а kT / q (≈ 25,4 мВ при комнатной температуре) — так называемое тепловое напряжение В T .

Условные обозначения на схеме диода:

Каждый тип диода имеет определенный схематический символ, который представляет собой вариацию обычного символа диода, показанного слева на рисунке 1.Катод в форме буквы «Z» обозначает стабилитрон, как показано во втором символе на рисунке 1. Катод в форме буквы «S» обозначает диод Шоттки, как показано в следующем символе. Стрелки, указывающие от диода, обозначают светодиод, как в символе справа. Стрелки, указывающие на диод, будут представлять фотодиодный детектор света.

Рисунок 1, условные обозначения диодов

Основы стабилитрона:

Стабилитрон похож по конструкции и работе на обычный диод.В отличие от обычного диода, предназначенного для предотвращения тока в обратном направлении, стабилитрон в основном используется в обратной области выше напряжения пробоя. Характеристика I vs V аналогична кривой обычного диода. Регулируя легирование сторон P и N перехода, можно создать стабилитрон, который пробивается при любом напряжении от нескольких вольт до нескольких сотен вольт. См. Рис. 2. В этой области пробоя или стабилитрона напряжение на диоде будет оставаться примерно постоянным в широком диапазоне токов.Максимальный потенциал обратного смещения, который может быть приложен до входа в область стабилитрона, называется пиковым обратным напряжением (PIV) или пиковым обратным напряжением (PRV).

Рисунок 2, Характеристики прямого и обратного стабилитрона I / V

При напряжениях выше начала пробоя увеличение приложенного напряжения вызовет прохождение большего тока через диод, но напряжение на диоде останется почти на уровне В Z .Стабилитрон работает в обратном пробое может обеспечить опорное напряжение для систем, таких как регуляторы напряжения или компараторы напряжения.

Измерения напряжения пробоя стабилитрона:

Материалы:

Аппаратный модуль ADALM1000
Макетная плата без пайки
Перемычки
1 — Резистор (100 Ом или любое аналогичное значение от 100 Ом до 1 кОм)
1 — Резистор 470 кОм
1 — Резистор 1 МОм
1 — 1N4735 Стабилитрон 6,2 В
2 — последовательно соединенные элементы на 1,5 В (например, элементы AA)
или
1 — Инвертор напряжения LT1054
1 — 10 кОм Резистор
1 — 20 кОм резистор
1 — Потенциометр 50 кОм
1 — 0.01 мкФ конденсатор
1 — 10 мкФ конденсатор
1 — 47 мкФ конденсатор

Направление:

Чтобы измерить обратное напряжение пробоя стабилитрона, нам нужно получить разность напряжений, превышающую напряжение пробоя 6,2 В 1N4735 диода. Аппаратное обеспечение ADALM1000 может создавать (и измерять) напряжения только до 5 В максимум. Мы можем добавить внешний источник отрицательного напряжения, чтобы в сочетании с положительным внутренним напряжением произвести общее напряжение, достаточно высокое для этого эксперимента.Самый простой способ — добавить фиксированное отрицательное напряжение от внешней батареи (3 В, ), как показано на рисунке 3. При использовании разного количества 1,5 В ячеек, отрицательные напряжения могут составлять -1,5, -3 и -4,5. . Полное обратное напряжение, приложенное к стабилитрону, будет отрицательным напряжением, вычтенным из положительного напряжения, генерируемого каналом A AWG.

Рисунок 3, стабилитрон I в зависимости от напряжения В Настройка

В качестве альтернативы преобразователь отрицательного напряжения постоянного тока в постоянный ток LT1054 из комплекта деталей может быть сконфигурирован для создания отрицательного напряжения от постоянного положительного источника питания 5 В ADALM1000.Как показано на рисунке 4, отрицательное выходное напряжение LT1054 может быть отрегулировано примерно от 0 до -5 В путем добавления цепи потенциометра. Резистор R 1 составляет 10 кОм, резистор R 2 составляет 20 кОм, а потенциометр R POT составляет 50 кОм. Конденсатор C 1 — 10 мкФ, C 2 — 47 мкФ и конденсатор фильтра шумов C 3 — 0,01 мкФ.

Рис. 4. Регулируемый источник отрицательного напряжения.

Чтобы измерить отрицательное напряжение, приложенное к нижнему концу стабилитрона, нам нужно включить следующую схему делителя напряжения на вход канала B в режиме Hi-Z.Для калибровки настроек усиления и смещения делителя напряжения подключите R 1 поочередно к GND и фиксированному источнику питания + 5V. Изменяйте настройки постоянного тока, пока среднее значение измерения напряжения для CH-B не будет правильным. Теперь, подключив к нему R 1 , вы можете измерить отрицательное напряжение на нижнем конце стабилитрона.

Рисунок 5, Делитель входного напряжения

Используя значения, показанные на рисунке 5, диапазон входного напряжения канала B должен теперь быть больше +10 до -10 вольт.Более подробную информацию об использовании этих делителей напряжения можно найти в Приложении ниже.

Настройка оборудования:

Генератор канала A должен быть настроен на треугольную волну 100 Гц с максимальным напряжением 5 вольт и минимальным напряжением 0 вольт, чтобы он колебался от 0 до +5 вольт. Этот размах, добавленный к отрицательному смещению от LT1054 или внешней батареи, должен быть достаточно большим, чем напряжение пробоя стабилитрона 6,2 вольта 1N4735 для измерения напряжения пробоя. Перед выполнением измерений обязательно подключите внешнее отрицательное напряжение.Ток в канале А будет измеряться током стабилитрона. Если вы используете одну из более поздних моделей плат ADALM1000 с 8-контактным аналоговым разъемом, вы можете использовать режим Split I / O на канале A для подачи треугольной волны на конец резистора R 1 на рисунке 3 с помощью CHA. при измерении напряжения на положительном конце стабилитрона с помощью вывода AIN. Теперь вы можете использовать математическую кривую CAV — CBV, чтобы построить полное напряжение на стабилитроне.

Процедура:

Загрузите необработанные захваченные данные для каждого примера стабилитрона в программу анализа данных, такую ​​как MATLAB или электронную таблицу (Excel), и вычислите ток диода I D .Обязательно примите во внимание отрицательное смещение напряжения к измерениям для канала B, чтобы получить истинное напряжение на стабилитроне. Если вы используете внешнюю батарею, вам, вероятно, следует измерить фактическое напряжение для точных измерений напряжения пробоя. Постройте график зависимости тока от рассчитанного напряжения обратного смещения на диоде.

Вопросы:

Каков наклон (эффективное сопротивление) кривой выше напряжения пробоя?
Насколько изменяется напряжение при изменении тока от 100 мкА до 10 мА ?

Приложение:

Измерение напряжения за пределами диапазона 0-5 В:

Чтобы снизить стоимость производства платы ADALM1000, пришлось пойти на определенные компромиссы.Один заключался в отказе от программируемых диапазонов входного усиления, в которых используются резистивные делители и, возможно, конденсаторы с регулируемой частотной компенсацией. Это проблематичное ограничение ADALM1000, ограничивающее диапазон входного напряжения от 0 до +5 В .

Перед созданием каких-либо схем, которые работают от источников питания за пределами собственного диапазона 0–5 В и ADALM1000, нам необходимо защитить аналоговые входы в режиме Hi-Z и расширить используемый диапазон напряжений. Между выводами аналогового ввода-вывода и землей и внутренним источником питания +5 В установлены большие защитные диоды, которые обычно имеют обратное смещение, когда напряжение на выводах находится в диапазоне от 0 до 5 В .Если напряжение на выводе будет превышать прямое напряжение диода за пределами этого диапазона, диоды, возможно, будут проводить большие токи.

Ограничение допустимых напряжений, которые могут быть измерены напрямую, может быть расширено за счет использования внешнего делителя напряжения. Входная емкость C INT аналоговых входов в режиме высокого Z составляет приблизительно 390 пФ (для конструкции rev D и немного выше для конструкции rev F). Эта относительно большая емкость вместе с относительно высоким сопротивлением делителей может значительно снизить частотную характеристику.На рисунке A1 мы еще раз возвращаемся к входной структуре ADALM1000 и подключению внешнего резистивного делителя напряжения R 1 и R 2,3 . Содержимое синего поля представляет вход ADALM1000 в режиме Hi-Z. Чтобы ввести дополнительное смещение постоянного тока для измерения отрицательных напряжений, в комплект входит резистор R 2 , который может быть подключен к фиксированным источникам 2,5 В или 5 В на ADALM1000. C INT и эффективное сопротивление цепи делителя образуют полюс нижних частот в АЧХ.Чтобы дать вам общее представление, давайте используем 400 пФ для C INT и 1 МОм для резисторного делителя. Это приведет к низкочастотному отклику со спадом 3 дБ , начинающимся примерно с 400 Гц. Обычно требуется конденсатор на входном резисторе R 1 для компенсации частоты делителя. Такое аппаратное решение обычно требует, чтобы конденсатор (или, альтернативно, резисторы делителя) был регулируемым.

Рисунок A1, Варианты внешнего делителя напряжения.

Было бы неплохо не использовать компенсационный конденсатор, регулируемый или какой-либо другой. ALICE Desktop может регулировать усиление и смещение по постоянному току при использовании внешнего делителя. Функция цифровой (программной) частотной компенсации также включена в программный пакет ALICE 1.2 Desktop (загрузите последнюю версию с GitHub).

Программная частотная компенсация для каждого канала состоит из каскада двух настраиваемых фильтров верхних частот первого порядка. Постоянная времени и коэффициент усиления каждого каскада можно регулировать.Обычные фильтры верхних частот первого порядка не пропускают постоянный ток, поэтому коэффициент усиления постоянного тока в 1 тракт добавляется к общему фильтру программной компенсации верхних частот второго порядка. Эту структуру часто называют полочным фильтром из-за формы ее частотной характеристики.

На рисунке A2 показаны элементы управления компенсацией входной частоты. Для включения и выключения компенсации для каналов A и B в раскрывающемся меню «Кривые» добавлены флажки. Включение компенсации применяется как к инструментам «Осциллограф», так и к инструментам «Спектр» (измерения времени и частоты).Постоянную времени фильтра и настройки усиления можно установить с помощью новых слотов ввода на экране «Элементы управления настройками». Регуляторы регулировки усиления и смещения постоянного тока не изменились.

Рисунок A2, Элементы управления программной компенсацией

Прямоугольный сигнал от 0 до 5 В с частотой 500 Гц из выхода AWG канала A используется для наблюдения за переходной характеристикой резисторного делителя и регулировки настроек компенсационного фильтра для плоского отклика.

Для дальнейшего чтения:

Диоды

Вернуться в ALM Lab Activity Содержание

университет / курсы / alm1k / alm-lab-zener-diode.txt · Последнее изменение: 22 сен 2018 02:58 от dmercer

Что такое стабилитрон? — Определение, работа, характеристическая кривая и приложения

Определение: Сильнолегированный полупроводниковый диод, который предназначен для работы в обратном направлении, известен как стабилитрон. Другими словами, диод, специально разработанный для оптимизации области пробоя, известен как стабилитрон.

Символическое изображение стабилитрона показано на рисунке ниже.

Схема стабилитрона

Принципиальная схема стабилитрона показана на рисунке ниже. Стабилитрон используется в режиме обратного смещения. Обратное смещение означает, что материал диода n-типа подключается к положительной клемме источника питания, а материал P-типа подключается к отрицательной клемме источника питания. Область обеднения диода очень тонкая, потому что он сделан из сильно легированного полупроводникового материала.

Работа стабилитрона

Стабилитрон изготовлен из сильно легированного полупроводникового материала.Сильно легированный означает, что в материал добавляются высокоуровневые примеси, чтобы сделать его более проводящим. Область обеднения стабилитрона очень тонкая из-за примесей. Сильно легирующий материал увеличивает напряженность электрического поля в обедненной области стабилитрона даже при небольшом обратном напряжении.

Когда на стабилитрон не подается смещение, электроны остаются в валентной зоне материала p-типа, и ток через диод не течет.Зона, в которой находятся валентные электроны (электрон на самой внешней орбите), называется электроном валентной зоны. Электроны валентной зоны легко переходят из одной зоны в другую, когда к ней приложена внешняя энергия.

Когда на диод подается обратное смещение и напряжение питания равно напряжению стабилитрона, он начинает проводить в обратном направлении смещения. Напряжение стабилитрона — это напряжение, при котором область обеднения полностью исчезает.

Обратное смещение, приложенное к диоду, увеличивает напряженность электрического поля в области обеднения.Таким образом, он позволяет электронам перемещаться из валентной зоны материала P-типа в зону проводимости материала N-типа. Этот перенос электронов валентной зоны в зону проводимости уменьшает барьер между материалом p- и n-типа. Когда обедненная область полностью исчезает, диод начинает проводить обратное смещение.

Характеристика стабилитрона

График ВАХ стабилитрона показан на рисунке ниже. Эта кривая показывает, что стабилитрон при прямом смещении ведет себя как обычный диод.Но когда на него подается обратное напряжение, а обратное напряжение превышает заданное значение, в диоде происходит пробой стабилитрона.

При напряжении пробоя стабилитрона ток начинает течь в обратном направлении. График пробоя стабилитрона не совсем вертикальный, показанный выше, что показывает, что стабилитрон имеет сопротивление. Напряжение на стабилитроне представлено уравнением, показанным ниже.

V = V Z + I Z R Z

Применение стабилитрона

Стабилитрон в основном используется в коммерческих и промышленных приложениях.Ниже приведены основные области применения стабилитрона.

Как стабилизатор напряжения — Стабилитрон используется для регулирования напряжения. Он обеспечивает постоянное напряжение от источника переменного напряжения до нагрузки. Стабилитрон включен параллельно нагрузке и поддерживает постоянное напряжение V Z и, следовательно, стабилизирует напряжение.

Для защиты измерителя — стабилитрон обычно используется в мультиметрах для управления перемещением измерителя от случайных перегрузок.Он подключен параллельно диоду. Когда происходит перегрузка диода, большая часть тока проходит через диод. Таким образом предохраняет счетчик от повреждений.

For Wave Shaping — Стабилитрон используется для преобразования синусоидальной волны в прямоугольную. Это можно сделать, разместив два стабилитрона последовательно с сопротивлением. Диод подключается спина к спине и в обратном направлении.

Когда напряжение, приложенное к клемме, меньше напряжения стабилитрона, диоды обеспечивают ток с высоким сопротивлением, и входное напряжение, приложенное к диоду, появляется на выходной клемме.Когда напряжение поднимается выше напряжения стабилитрона, они обеспечивают путь с низким сопротивлением и большой ток, протекающий через диод. Из-за чего происходит сильное падение напряжения на сопротивлении и отсечка входной волны на пике. Таким образом, прямоугольная волна появляется на выходной клемме

.

Введение диода | Прядильные номера

Эти маленькие стеклянные корпуса имеют внутри кремниевые диоды. Черная полоса на одном конце — это катод, сторона, где ток выходит из диода.

Диод — наш первый полупроводниковый прибор. Отличительная особенность диода в том, что он проводит ток в одном направлении, но не в другом. Мы не будем вдаваться в подробности того, как диод делает это и как он устроен. К счастью, вам не нужно знать, как сделать диод, прежде чем вы сможете использовать его в цепи.

Автор Вилли Макаллистер.


Содержание


Куда мы направляемся

  • Диод сильно проводит в одном направлении и практически 0 $ в другом.

  • Научитесь определять выводы реального диода — катода и анода .

  • Понять диодные термины — прямое смещение , обратное смещение , ток насыщения и пробой .


Диод — это любое электрическое устройство, проводящее в одном направлении, а не в противоположном. Каждый диод, который вы встретите в современной электронике, сделан из полупроводникового материала.

Что такое полупроводник?

Полупроводники материалов находятся между изоляторами и проводниками. Они полупроводниковые. Полупроводники обычно действуют как изоляторы, но мы можем контролировать их проводимость, изменяя способ их изготовления — добавляя небольшое количество примесных атомов — и прикладывая напряжение.

Самый известный и хорошо изученный полупроводниковый материал — это кремний (Si, атомный номер $ 14) в периодической таблице. Кремний на сегодняшний день является наиболее распространенным материалом, используемым для создания полупроводниковых устройств.О кремнии известно больше, чем о любом другом материале на Земле.

Часть периодической таблицы, показывающая кремний (Si) и другие близлежащие полупроводниковые материалы. B — бор, C — углерод, N — азот, Al — алюминий, Si — кремний, P — фосфор, Ga — галлий, Ge — германий, As — мышьяк.

Другие полупроводниковые материалы включают германий (Ge, атомный номер $ 32 $, прямо под кремнием) и арсенид галлия, галлий и мышьяк в соотношении $ 1: 1 $, также известный как GaAs (атомные номера $ 31 $ и 33 $, на обе стороны от германия).

Наша способность точно контролировать проводящие свойства кремния позволяет нам создавать современные чудеса, такие как компьютеры, мобильные телефоны и любые другие сложные электронные устройства. Детали того, как работает полупроводник, регулируются квантовой механикой.

Обозначение диода

Условное обозначение диода выглядит так:

Черная стрелка ► в символе указывает направление прямого тока диода, $ \ blueD i $. Напряжение диода, $ \ goldD v $, ориентировано со знаком $ + $ на конце, где прямой ток проходит в диода, точно так же, как условные обозначения для пассивных компонентов.

Диодные клеммы

Когда вы рисуете диоды, символ четко указывает направление прямого тока. Обычно имена для двух терминалов не нужны. Вы встретите их в технических паспортах: Anode и Cathode .

Как мне запомнить анод и катод?

Долгое время я не мог вспомнить, какой конец диода был анодом, а какой — катодом — я каждый раз искал его.Наконец-то я придумал средство для запоминания. Немецкое слово катод — Kathode . Большой K выглядит как символ диода.

Поверните символ диода, пока он не станет похож на K. Катод — это клемма слева.

Aneng an113d интеллектуальный цифровой мультиметр с автоматическим измерением истинных среднеквадратичных значений 6000 отсчетов сопротивление диодный тестер целостности цепи измеритель напряжения переменного / постоянного тока модернизирован с an8002 Распродажа

Совместимость

Чтобы подтвердить, что эта деталь подходит вашему автомобилю, введите данные вашего автомобиля ниже.

Эта запчасть совместима с автомобилем (ами) 0 . Показать все подходящие автомобили

Эта деталь совместима с автомобилем (ами) 1 , совпадающим с

Эта деталь несовместима с

  • Год
  • Марка
  • Модель
  • Субмодель
  • Накладка
  • Двигатель

Хорошие новости!

ANENG AN113D уже выпущена обновленная версия ANENG AN8002.

В этом новом продукте есть не только ручной редуктор, такой как AN8002, но также добавлена ​​кнопка автоматического измерения, которая обеспечивает более удобное измерение и более удобное управление для новичков.

Annnnd, Он также оснащен черным экраном EBTN, который может четко отображаться без подсветки !!!

Характеристики:

Этот продукт представляет собой многофункциональный цифровой мультиметр с автоматическим выбором диапазона и ЖК-дисплеем на 6000 отсчетов.

1. Функции измерения включают переменное / постоянное напряжение, переменный / постоянный ток, сопротивление, проверку / целостность диодов, NCV, частоту / рабочий цикл, емкость.

2. Поддержка True-RMS

3. Поддержка автоматического отключения питания

4. Поддержка измерения температуры

5. Поддержка хранения данных


Спецификация :

Дисплей (ЖК-дисплей): 6000 отсчетов

Диапазон: Auto

Материал: АБС / ПВХ

Скорость обновления: 3 раза в секунду

Индикация низкого заряда батареи: √

Вес продукта: 114 г (батарейки в комплект не входят)

Размер продукта: 130 * 65 * 32 мм
Условия хранения: температура 0 ~ 40 ℃, влажность <75%
Условия хранения: температура -20 ~ 60 ℃, влажность <80%

Напряжение постоянного тока: 6.000 В (0,001 В) / 60,00 В (0,01 В) / 600,0 В (0,1 В) / 1000 В (1 В) ± (0,5% + 3)
Напряжение постоянного тока: 60,00 мВ (0,01 мВ) / 600 мВ (0,1 мВ) ± (0,5 % + 3)
Напряжение переменного тока: 6.000 В (0,001 В) / 60,00 В (0,01 В) / 600,0 В (0,1 В) / 750 В (1 В) ± (1,0% + 3)
Напряжение переменного тока: 60,00 мВ (0,01 мВ) / 600,0 мВ (0,1 мВ) ± (1,0% + 3)
Постоянный ток: 6.000 А (0,001 А) / 10,00 А (0,01 А) ± (1,2% + 3)
Постоянный ток: 60,00 мА (0,01 мА) / 600,0 мА (0,1 мА)
Переменный ток: 6.000 А (0,001 А) / 10,00 А (0,01 А) ± (1,5% + 3)
Переменный ток: 60,00 мА (0,01 мА) / 600.0 мА (0,1 мА) ± (1,5% + 3)
Сопротивление: 600,0 Ом (0,1 Ом) / 6,000 кОм (0,001 кОм) / 60,00 кОм (0,01 кОм) / 600,0 кОм (0,1 кОм) / 6 000 МОм (0,001 МОм) ± (0,5% + 3) / 60,00 МОм (0,01 МОм) ± (1,5% + 3)
Емкость: 9,999 нФ (0,001 нФ) ± (5,0% + 20) /99,99 нФ (0,01 нФ) 999,9 нФ (0,1 нФ) / 9,999 мкФ (0,001 мкФ) / 99,99 мкФ (0,01 мкФ) / 999,9 мкФ (0,1 мкФ) ± (2,0% + 5) / 9,999 мФ (0,001 мФ) ± (5,0% + 5)
Частота: 99,99 Гц (0,01 Гц) /999,9 Гц (0,1 Гц) / 9,999 кГц (0,001 кГц) / 99,99 кГц (0,01 кГц) / 999,9 кГц (0,1 кГц) / 9,999 МГц (0,001 МГц) ± (0,1% + 2)
Рабочий цикл 1% ~ 99% 0.1% ± (0,1% + 2)
Температура (-20 ~ 1000) ℃ 1 ℃ ± (2,5% + 5) 1000 ℃ (-4 ~ 1832) ℉ 1 ℉ 1832 ℉

Диод: √
Целостность: √

В комплект входит:

1 мультиметр
1 пара измерительных проводов
1 термопара
1 руководство пользователя на английском языке

Подробные изображения:



Цепи стабилизации напряжения

с использованием транзистора (BJT) и стабилитрона

Цепи регулирования напряжения (регуляторы напряжения):

Регулировка напряжения в цепи означает, что нам в голову придет стабилитрон.Но это не универсальное решение для регулирования напряжения.
В этом коротком посте мы вкратце обсудим различные схемы регуляторов напряжения ….
Рекомендуется прочитать о том, как стабилитрон обеспечивает стабилизацию напряжения в цепи. прежде чем продолжить ….

Стабилитрон на основе стабилитрона:



Мы можем сделать простой стабилизатор напряжения, используя стабилитрон, как показано на рисунке ниже.
Поскольку мы уже подробно обсуждали регулирование напряжения с помощью стабилитрона, здесь мы увидим ограничения / ограничения.

  1. Выходное напряжение V OUT не может быть настроено на точное значение.
  2. Стабилитрон обеспечивает лишь умеренную защиту от пульсаций напряжения.
  3. При изменении импеданса нагрузки стабилизатор стабилитрона не работает эффективно.
  4. Для соответствия большим колебаниям нагрузки следует использовать стабилитрон с большой номинальной мощностью. Это будет дорого.

Транзисторный стабилизатор напряжения: Схема № 1

На схеме ниже показан стабилизатор напряжения на транзисторе.
По сравнению с стабилизатором напряжения стабилитрон обеспечивает лучшее регулирование.
Эта схема обеспечивает регулировку напряжения при большом изменении нагрузки.
В дополнение к этому, он обеспечивает высокий выходной ток с лучшей стабильностью.

Эта схема аналогична предыдущей, за исключением того, что стабилитрон подключен к базе npn-транзистора.

  • Стабилитрон используется для регулирования тока от коллектора к эмиттеру.
  • Конденсатор (C) встроен для уменьшения шума стабилитрона.
  • В сочетании с резистором (R) он также образует RC-фильтр, который используется для уменьшения пульсаций напряжения.
  • BJT используется в конфигурации эмиттер-повторитель.
    т.е. эмиттер будет следовать за базой.
  • Стабилитрон используется для регулирования базового напряжения, которое приводит к регулируемому напряжению эмиттера.

Обратите внимание, что в транзисторе ток, требуемый базой, всего в 1 / hFE умноженный на ток эмиттера и коллектора. Таким образом, стабилитрон малой мощности может регулировать базовое напряжение BJT, которое может пропускать через него огромный ток.

Регулятор напряжения на основе BJT: Схема № 2
  • В некоторых случаях стабилитрон, подключенный к базе транзистора, не обеспечивает достаточного тока базы.
  • Для решения этой проблемы используется дополнительный транзистор, как показано на следующей схеме.
  • Этот дополнительный транзистор действует как усилитель.
  • Он усиливает ток, посылаемый на базу верхнего транзистора (т. Е. Ток базы верхнего BJT).

Спасибо, что прочитали о схемах регулирования напряжения…

Подробнее:

Идеи проекта Arduino в реальном времени (проекты аналогового ввода)
Разница между механическим и электронным коммутатором
Мини-проект электроники для студентов-дипломников
Как использовать микросхему мостового выпрямителя? Как определить терминалы?

Пожалуйста, оставьте свои комментарии ниже …


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *