Схема для проверки тиристоров | Практическая электроника
У каждого радиолюбителя должна быть своя маленькая лаборатория. Но что делать, если денег не хватает даже на простенькую паяльную станцию? В этой статье пойдет речь о том, как же сделать из доступных радиоэлементов нехитрый приборчик для проверки тиристоров, который добавится в вашу копилку полезных устройств для радиолюбителя. Теперь вы уже точно будете знать, пробит ли ваш тиристор или все-так жив.
Схема для проверки тиристоров
Тиристор относится к классу диодо в. Его можно провери ть с помощью мультиметра, но если руки растут из нужного места, то конечно проще собрать приборчик для проверки. А вот и схемка:
Схема состоит из:
– трансформатора, который выдает нам на выходе 5-10 Вольт
– диод Д226, ну что было под рукой. Можно использовать любой маломощный.
– электролитический конденсатор на 1000 мкФ х 25 Вольт
– тумблер (S1) на три положения, одно из которых нейтрально (N)
– кнопочка с возвратом (S2)
– резистор на 47 Ом
– лампочка накаливания на 6,3 Вольта
Сборка и описание
Итак, начнем с того, что нам понадобится фольгированный текстолит. Я достал у себя в загашнике текстолит не первой свежести. Для того, чтобы не париться с разводкой элементов, травлением платы и еще различным геморроем, для простых схем я тупо нарезаю квадратики и делаю простейшую самопальную плату. Поверьте, так намного быстрее, если под рукой нет готовых китайских макетных плат. Для этого беру пилку по железу, железную линейку и выцарапываю неглубокие канавки:
Лишь бы не было меди между квадратиками. Кто-то умудряется делать специальные заточки из пилки по железу, но они мне не нравятся, так как быстро тупеют и их приходится затачивать.
Далее все это дело надо зашкурить мелкой шкуркой:
Следующим шагом подбираем трансформатор. Трансформатор подбираем таким образом, чтобы он выдавал переменное напряжение какого-либо значения от 5 и до 10 Вольт. У меня трансформатор на выходе вторичной обмотки выдает 12 Вольт. Пришлось отмотать половину витков со вторичной обмотки. Теперь он выдает 6 Вольт. Кто не знает как устроен трансформатор, можете прочитать в этой статье.
Делаем отверстия под трансформатор, монтируем его на край нашей самопальной печатной платы и выводим на квадратики его выводы со вторичной обмотки. Для того, чтобы залудить квадратик, нам достаточно его чуточку проканифолить и добавить капельку припоя:Примерно вот так выглядит трансформатор на плате:
А вот и законченная конструкция в сборе. Осталось только найти для нее подходящий корпус.
Как проверять тиристоры
Схема работает следующим образом:
1)Цепляем проверяемый тиристор Т1 к проводам схемы.
2)Переключаем тумблер S1 с нейтральным положением на значок “~”, нажимаем кнопочку S2.
3)Лампочка при нажатии загорается, при отпускании тухнет.
Таким образом мы проверили тиристор на переменном токе.
4)Далее ставим тумблер S1 в положение “=”
5)Нажимаем кнопку S2, лампочка зажигается, отпускаем кнопку S2, лампочка все равно продолжает гореть.
Так мы проверили тиристор на постоянном токе.
Если все операции прошли успешно, значит тиристор у нас в полном здравии.
А вот и видео, кому лень читать вышестоящий текст. Здесь я проверял тиристор КУ202Н.
Как проверить тиристор мультиметром: особенности тестирования
Довольно большое распространение получили тиристоры. Они применяются при создании различных электрических приборов и мощных силовых установок. Особенности рассматриваемых полупроводников заключаются в том, что проверить их при применении мультиметра достаточно сложно. Для полноценной проверки нужно собрать сложную схему. Важно понимать, как проверить тиристор мультиметром, так как пробой и внутренний обрыв являются распространенными проблемами.
Предварительная подготовка
Подобный измерительный прибор получил широкое распространение: применяется для определения различной информации. Предварительная подготовка предусматривает расшифровку спецификации, для чего достаточно рассмотреть маркировку на полупроводниковом изделии.
После определения типа изделия и цоколевки можно приступить к тесту пробоя при помощи мультиметра. В большинстве случаев проводится проверка на пробой, для чего изделие можно оставить на плате, поэтому на этом этапе не требуется паяльник.
Тест на пробой
Проверка тиристора начинается с определения пробоя. Рекомендуется начинать с предварительного тестирования, которое связано с измерением сопротивления между двумя выходами «А» и «К», «К» и «УЭ». Алгоритм действий имеет следующие особенности:
- Для тестирования применяется мультиметр. Его включают в режим «прозвонки», и снимаются показатели между двумя выводами «УЭ» и «К». Если устройство находится в хорошем техническом состоянии, то снятые показатели будут в диапазоне от 40 Ом до 0,55 кОм. Низкое значение может указывать на некоторые проблемы с устройством.
- Далее рекомендуется сменить положение щупов, и процесс повторяется. Снятые показатели должны соответствовать тем, которые были получены в первом случае.
- Следующий шаг заключается в измерении сопротивления между выводами «К» и «А». В этом случае показатель сопротивления должен стремиться к бесконечности. Значение может варьироваться в зависимости от полярности измерительного устройства. Низкий показатель указывает на то, что есть пробой в переходе. Для более точного результата рекомендуют выпаивать устройство, которое тестируется.
Проверка симистора мультиметром подобным образом не позволяет получить точный показатель. Немного усложнив процесс тестирования, можно существенно повысить точность полученных результатов.
Проверка открытого и закрытого положения
Тестирование на пробой не позволяет определить, есть ли внутренний обрыв. Именно поэтому применяемая схема существенно усложняется. Более точный показатель можно достигнуть следующим образом:
- Применяемый мультиметр переводится в режим «прозвонки», после чего к нему подключается тиристор. Щуп, который имеет черный провод, подключается к выводу «К», а красный к «А».
- При применении подобной схемы подключения измерительный прибор указывает бесконечное сопротивление.
- Следующий шаг заключается в подключении «УЭ» с выходом «А». В этом случае происходит частичное падение показателя сопротивления, и после обрыва соединения он снова стремится к значению бесконечности. Тока, проходящего через штыри измерительного прибора, недостаточно для сдерживания тиристора в закрытом состоянии.
Еще больше повысить точность измерений можно при сборке собственного измерительного прибора.
Самодельный пробник
Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении.
Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.Схема самодельного пробника представлена сочетанием следующих элементов:
- Лампочка небольшого размера с показателями 0,3 А и 6,3 В.
- Трансформатор со вторичной обмоткой 6,3 В. Рекомендуется использовать вариант исполнения ТН2.
- Диод выпрямительного типа с обратным напряжением около 10 Вольт и сопротивлением не менее 300 мА. Примером можно назвать вариант исполнения Д226.
- В схему также включается конденсатор, емкость которого составляет 1000 мкФ. Устройство должно быть рассчитано на напряжение 16 В.
- Создается сопротивление с номиналом 47 Ом.
- Предохранитель на 0,5 А. При применении мощного силового трансформатора следует повысить номинал предохранителя.
Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.
Особенности процедуры
Следует учитывать, что самодельная конструкция позволяет точно определить работоспособность устройства. Пошаговая инструкция выглядит следующим образом:
- К собранной самодельной конструкции подключается полупроводниковый элемент.
- Для того чтобы тесты могли проводиться в режиме постоянного тока, устанавливается переключатель.
- Включается пробник при помощи тумблера. При этом ток не должен попасть на лампу.
- К тестируемому устройству подводится напряжение через резистор. В этом случае тиристор переводится в открытие положение, на лампочку подается напряжение, и она начинает светиться.
- Далее отпускается кнопка, но тиристор находится в открытом положении, и индикатор должен гореть.
- Проводится смена положения переключателя, после чего тиристор переходит в закрытое состояние, и лампочка гаснет.
- При переводе измерительного устройства в режим работы с переменным током лампочка начинает гореть не полностью.
Если проверяемое устройство проявляло себя так, как в описании, то тиристор находится в хорошем техническом состоянии и работает правильно. Если лампочка горит постоянно, то это говорит о пробое. Если при нажатии на клавишу она не загорается, то это указывает на внутренний обрыв. Именно поэтому можно обойтись без мультиметра.
Тестирование детали на плате
При необходимости можно проверить тиристор мультиметром без демонтажа детали. Однако при применении самодельной конструкции придется выпаять элемент, так как в качестве индикатора используется лампочка.
- Требуется паяльник. Подобный инструмент требуется при проведении различной работы с электроникой. Мощность и диаметр жилы выбираются в соответствии с тем, какие размеры имеет плата.
- При проведении работы следует учитывать, что нельзя оказывать слишком высокую температуру на плату. Это может привести к повреждению дорожек и других элементов.
- Нельзя повредить выходы, так как это может осложнить проводимые тесты.
Необходимость в выпаивании детали определяет то, что многие решают использовать мультиметр для проверки. В большинстве случаев полученных результатов вполне достаточно для оценки состояния тиристора.
Прозвонка динистора
При необходимости можно провести проверку динистора. К ключевым моментам относятся следующие моменты:
- Для проведения теста требуется источник питания с высоким напряжением, показатель которого выше, чем у динистора.
- Ограничить ток можно при подключении резистора с показателем сопротивления от 100 до 1000 Ом.
- Плюсовой провод подключается к аноду, а катод к клемме ограничительного резистора. Свободный конец сопротивления соединяется с минусом блока питания.
Применяемый измерительный прибор в соответствующем режиме через специальные щупы соединяется с анодом и катодом. Тестер должен лежать в пределе милливольта, после чего динистор открывается.
Определение исправности устройства
Исправность рассматриваемого устройства можно проверить при применении обычного источника света и измерительного прибора. К особенностям этой техники относятся следующие моменты:
- Источник постоянного тока соединяется через тринистор. В цепь также включается лампа с соответствующим напряжением.
- Щупы мультиметра подводятся к катоду и аноду. Следует установить режим измерения, соответствующий постоянному напряжению.
- Устройство должно быть рассчитано на измерение показателей, которые превышают значения применяемого источника напряжения.
- В качестве источника питания можно использовать батарейку любого номинала.
- Осуществляется подача напряжения для теста устройства.
На момент подключения источника питания тринистор открывается, ток подводится к лампочке, и она загорается. После снятия управляющего воздействия лампа должна продолжать гореть, так как проходит ток удержания.
Выбор мультиметра
Для тестирования различного электрического оборудования требуется специальный измерительный прибор, который называют мультиметром. Основные критерии выбора:
- При выборе практически всегда уделяется внимание степени функциональности устройства.
- Практически все устройства можно разделить на две основные категории: стрелочные и цифровые. Сегодня стрелочные практически не применяются, так как они отображают небольшое количество информации, точность данных может быть невысокой.
- Показатель погрешности может варьировать в довольно большом диапазоне. Качественные модели имеют погрешность не более 3%. Лучше выбирать мультиметр с наименьшим значением погрешности, однако они обходятся дорого.
- Степень комфорта при использовании конструкции. Измерительное устройство может иметь самые различные размеры и форму. Если оно будет некомфортным в применении, то могут возникнуть серьезные проблемы.
- Уделяется внимание и степени защиты от пыли, влаги, ударных нагрузок. При изготовлении измерительного устройства могут использоваться самые различные материалы, некоторые из них характеризуются высокой защитой от воздействия влаги и пыли.
- Класс электробезопасности. По этому показателю устройства классифицируются согласно установленным стандартам.
- Популярность бренда. Хорошие производители цифровых тестеров неоднократно проверяют надежность и качество выпускаемой продукции.
Рассматривая то, как проверить тиристор ку202н мультиметром, следует учитывать, что все подобные измерительные приборы разделяются на несколько классов:
- CAT 1 — устройства, подходящие для работы с низковольтными сетями.
- CAT 11 — класс устройства, подходящего к сети питания.
- CAT 111 — класс, предназначенный для работы внутри сооружений.
- CAT 1 V — для работы с цепью, которая расположена вне здания. Устройства этого класса имеют высокую защиту от воздействия окружающей среды.
После выбора измерительного инструмента можно приступить к тестам. Полученная информация может записываться в блокнот или сохраняться в память устройства, если у него есть соответствующая функция.
Как проверить симистор: тестером, схема включения
Симистором называют полупроводниковый выключатель для переменного тока. Часто встречается международное название TRIAC, что означает то же самое (TRIode for Alternate Current). Чтобы разобраться в устройстве симистора (симметричного тиристора) и узнать, как проверить симистор, важно сначала понять, что он состоит из двух встречно-параллельно включенных тиристоров (если совсем правильно, тринисторов, но тиристор употребляется чаще), имеющих общую цепь управления. Теперь осталось понять, что такое тиристор.
Что это такое
Как показано на Рис.2, тиристор составлен из двух транзисторов разной проводимости: npn и pnp, включенных «навстречу» друг-другу. Если приоткрыть один из транзисторов (npn), приложив между его эмиттером и базой напряжение порядка 0,6 … 0,8 В (напряжение открывания кремниевого p-n перехода), то в коллекторе потечет ток.
Схема тиристораПоявившееся напряжение между базой и эмиттером второго транзистора начнет открывать его и, одновременно, через коллектор второго транзистора, — первый транзистор. Все это будет лавинообразно нарастать с очень большой скоростью, и теперь уже независимо от начального напряжения. Достаточно только «подтолкнуть» процесс открывания небольшим начальным импульсом.
Для закрывания тиристора необходимо понизить ток в его цепи до минимальной величины, называемой током удержания, и чуть ниже. Поскольку переменный ток так себя и ведет в каждом полупериоде, то каждая половинка симистора будет закрываться, когда меняется полярность в цепи тока.
Схема и устройство симистораСхема симистора показана на рисунке Рис. 3 слева, а его физическое устройство, — справа. Напоминаем, что это два встречно-параллельно включенных тиристора. Выводы Т1 и Т2 уже нельзя назвать анодом и катодом, в цепи переменного тока они становятся равноправными. Однако, в цепи постоянного тока триак ведет себя как обычный тиристор и даже содержит «запасной», хотя для его использования придется поменять полярность управляющего напряжения.
Дополнительная информация! Кстати говоря, как тиристор, так и симистор, могут быть составлены из обычных транзисторов разной структуры, имея ту же работоспособность. Главное, чтобы они были рассчитаны на требуемый ток и допустимое напряжение. Но на практике это не используется, с очень давних времен (1960-е) тиристоры стали выпускать в виде готовых приборов в одном корпусе.
Современный тиристор или симистор средней мощности выглядит, как показано на Рис. 4.
Триак BTA136Характеристики
Симистор имеет несколько параметров, которые можно расположить по порядку убывания важности (лучше сказать, частоты использования) следующим образом:
- Напряжение обратного пробоя, Uобр, В;
- Напряжение закрытого состояния, Uзс, В;
- Ток открытого состояния средний, Iос, А;
- Время включения, tвк, мкс;
- Время выключения, tвык, мкс;
- Ток открытого состояния импульсный, Iос, А;
- Ток закрытого состояния, Iзс, мА;
- Обратный ток, Iобр, мА;
- Напряжение открытого состояния, Uос, В;
- Управляющее напряжение, Uупр, В;
- Ток управления, Iупр, мА;
- Скорость нарастания напряжения, dU/dt, В/мкс;
- Скорость нарастания тока, dI/dt, А/мкс.
Обратите внимание! Параметр «напряжение обратного пробоя» означает максимальное напряжение, которое способен выдержать симистор или тринистор без выхода из строя. Напряжение закрытого состояния характеризует только динисторный эффект.
Проверка исправности
Если принять во внимание уже написанное в этой статье, то такую проверку выполнить несложно. Как проверить симистор? Это можно сделать несколькими способами. Самый простой проверить исправность, — это способ замены. Вместо подозреваемого симистора устанавливаем заведомо исправный, и смотрим, как будет работать схема. Но обычно симисторы проверяют при помощи мультиметра или тестера, иногда без отключения от схемы. Тестером называют мультиметр старого типа, стрелочный. Кроме того, есть еще один способ проверки, при помощи тумблера, лампочки и кнопки. Рассмотрим два последних способа проверять триак более подробно.
Проверка с помощью тестера
Симистор имеет три вывода, которые потребуется попарно прозвонить. В этом и состоит проверка. Включите тестер в режим измерения сопротивления на диапазоне килоом и установите его стрелку на нуль, замкнув между собой щупы. В старых стрелочных приборах это необходимая операция. Полезно знать, какой из щупов тестера имеет положительную полярность, — это позволит определить вид p-n перехода, связанного с управляющим электродом.
Тестер и его настройка для проверки симистораПоскольку конструкция симисторов бывает разной, каким-либо образом отметьте проверочный симитор, любым способом, это просто условность. Затем выполните прозвонку всех трех возможных пар электродов, меняя полярность их подключения, и результаты запишите в таблицу. В зависимости от состояния прибора, и даже типа, вы получите различные результаты. Проверка облегчается, если вы заранее знаете тип прибора (при недостатке знаний и опыта можно спутать с транзистором). Поскольку речь в статье идет именно о симисторе (триаке), то дальше будем считать, что мы проверяем именно его.
Некоторые типичные сопротивления при проверке:
- 0Ом — пробой, короткое замыкание;
- 50 … 100Ом — открытый (прямосмещенный) p-n переход;
- 1 … 10кОм — утечка, испорчен кристалл полупроводника;
- 1МОм … ∞ — запертый (обратносмещенный) p-n переход или обрыв.
Признак исправности симистора — есть пара выводов, дающая при любой полярности щупов тестера признаки исправного p-n перехода, при этом с третьим выводом любой из двух показывает очень большое сопротивление. Остальные случаи показывают, как минимум, очень сомнительное состояние прибора.
Проверка мультиметром
Мультиметром называют тот же тестер, просто в более современном исполнении, с микропроцессором внутри и цифровым дисплеем. Функции у него те же самые. У мультиметра не требуется устанавливать ноль шкалы, достаточно просто переключить прибор на измерение сопротивлений. Более того, так как в режиме измерения сопротивлений цифровой мультиметр выдает в цепь слишком маленькое напряжение, почти у всех мультиметров есть функция проверки диодов или, что то же самое, p-n переходов. Иногда она объединяется с прозвонкой. Здесь в цепь дается достаточное напряжение, чтобы открыть переход.
МультиметрОбратите внимание! Для исправного p-n перехода (или диода) цифровой мультиметр покажет не сопротивление, а напряжение в милливольтах, падающее на открытом p-n переходе, или «бесконечность» на запертом переходе. «Бесконечность» в обе стороны означает обрыв, а ноль в обе стороны — пробой p-n перехода.
Разумеется, никакой бесконечности тут нет, просто в цепь выдается напряжение, превышающее 2 вольта, на которые рассчитана полная шкала милливольтметра (2,5 В от источника опорного напряжения АЦП), и милливольтметр просто зашкаливает, если он не зашунтирован такой нагрузкой, как открытый диод.
Проверка лампочкой и переменой полярности
Это самый надежный способ проверки работоспособности симистора. Мультиметровый способ не дает полной уверенности в его исправности. Если такая проверка производится достаточно часто, есть смысл собрать простой испытательный стенд. Его схема (и схема проверки в любом случае) показана на Рис. 8.
Проверка симистора лампойНа схеме Рис. 8, аккумулятор B подключается через тумблер S2 с двумя группами контактов. Они соединены так, что тумблер меняет плюс с минусом, то есть, фактически имитирует переменный ток (частота тут не важна, меняется только подключение).
Рабочий симистор VS поведет себя следующим образом: пока не будет нажата кнопка S1, небольшая автомобильная лампа L (от поворотника, например) не загорится, как S2 не переключай. После нажатия кнопки S1 лампа должна зажечься при любом положении тумблера и продолжать гореть при отпускании кнопки. Но при переключении тумблера лампа гаснет. Если лампочка включается и при новом положении тумблера, продолжая гореть, значит, триак, он же симистор, исправен.
Если лампочка не зажигается при одном из положений тумблера, то это либо простой тиристор, либо вышла из строя одна половина симистора, превратив его в тиристор.
Важно! Не рекомендуется использовать частично работающий симистор в качестве замены для тиристора, так как его надежность под большим сомнением.
Если лампочка не зажигается при любых переключениях, то симистор в обрыве, а если лампочка горит при любых переключениях, то симистор «битый», замкнут накоротко или «пробит».
Проверка без выпаивания из схемы
Такая проверка сводится к проверке тестером или мультиметром. Выпаивание не производится. Но при этом есть особенности, которые необходимо учесть. Так как проверка симистора мультиметром без выпаивания содержит свои «подводные камни». Как проще проверить симистор мультиметром не выпаивая? Во-первых, симистор может быть зашунтирован другими элементами схемы, и это может ввести в заблуждение. Во-вторых, монтаж или плата может препятствовать доступу к выводам, как показано на Рис. 9. Выпаивать симистор может помешать заливка корпуса компаундом. Тогда выпаять будет невозможно.
Симистор в монтажеПоэтому проверку надо производить, по возможности, отключая все, что можно: нагрузку в цепи симистора, цепь управления и т. п. если есть возможность вытаскивать разъемы или клеммы. Крайне желательно при этом руководствоваться принципиальной схемой устройства. Для простых регуляторов схема может быть нарисована по имеющемуся монтажу.
Симистор, или триак, это мощный полупроводниковый ключ, способный работать в цепях со значительным током и напряжением, достигающим 1 кВ и больше. Точное значение определяется по марке прибора и его даташиту. Благодаря своей двусторонней проводимости и простоте управления, симисторы еще долго будут применяться в технике. Не последнее место в этом занимает достаточная надежность и простота проверки симисторов, не требующая специального оборудования.
тестовая схема на примере тиристора ку 202н, проверка без выпаивания
Динистор — это важный радиоэлемент в электрических цепях. Предназначен он для схем с автоматической коммутацией устройств, импульсных генераторов, высокочастотных преобразователей сигналов. Из-за невысокой стоимости и простой конструкции такая радиодеталь считается идеальной для использования в регуляторах мощности.
Но как и любой электронный элемент, она может выйти из строя. Поэтому крайне важно уметь правильно проверить динистор мультиметром.
Назначение динистора
Динистор — это полупроводниковый элемент, обладающий двумя устойчивыми состояниями: закрытым и открытым. Изготавливается он из полупроводникового монокристалла с несколькими p-n переходами. В общем случае его можно рассматривать как электронный ключ, когда одно его состояние (закрытое) соответствует низкой проводимости, а другое (открытое) — высокой.
Динистор относится к «тиристорному семейству» радиоэлементов и не имеет принципиальных различий с тиристором. Единственное, что его отличает — это условия смены устойчивого состояния. В отличие от тиристора, имеющего три вывода, у динистора имеется их только два, то есть у него нет управляющего входа.
Отсюда и второе его название — диодный тиристор. Выводы динистора называются анодом и катодом. Первый выводится из крайней p-области, а второй — из n-области.
Изобретение тиристоров связывают с именем английского физика Уильяма Брэдфорда Шокли. После изобретения точечного транзистора учёный посвятил свои эксперименты созданию монолитного элемента. Так, в 1949 году был представлен прототип плоскостного транзистора, а уже в следующем году Спаркс и Тил, помощники Шокли, сумели изготовить трёхслойную структуру, позволяющую выпускать высокочастотные радиоэлементы на основе p-n переходов. Исследования учёного привели к созданию полупроводникового диода, названного диодом Шокли. Его конструкция представляет собой четырехслойный элемент со структурой pnpn типа.
В современной электронике динистор чаще всего применяется в схеме запуска энергосберегающих ламп и пускорегулирующих устройств дневного света.
На схемах и в литературе элемент обозначается с помощью латинских букв VD или VS, а за его графическое обозначение принят треугольник вместе с проходящей через его середину прямой линией, символизирующей электрическую цепь. В результате образуется своего рода стрелка, указывающая направление прохождения тока. Перпендикулярно прямой линии посередине и около вершины треугольника рисуются две короткие черты. Первая обозначает базовую область, а вторая — катод.
Принцип работы
Рассматривая динистор в качестве четырёхструктурного элемента, его можно представить в виде двух взаимосвязанных транзисторов n и p типа проводимости. Для работы транзистора необходимо появление тока на переходе база-эмиттер. Если на него не подано напряжение, тогда через радиоэлемент проходить ток не будет. Связано это с тем, что открытие транзисторов контролируется друг другом. Иными словами, чтобы открыть один из этих транзисторов, необходимо перевести в открытое состояние другой.
Между выводами динистора должно присутствовать напряжение определённой величины, позволяющее перевести работу одного из двух транзисторов в режим насыщения. В результате откроется второй элемент, и динистор начнёт пропускать ток.
Для перевода структуры в режим отсечки тока понадобится понизить величину напряжения, что приведёт к пропаданию тока смещения и, соответственно, тока базы на втором транзисторе. Динистор перестанет пропускать ток.
Существенную роль играет и полярность приложенного к выводам радиодетали напряжения. Когда на анод подаётся минус, через элемент ток практически не проходит. Такое включение называют обратным. Если же полярность поменять, то через устройство начнёт протекать ток небольшой величины — ток закрытия. Напряжение, соответствующее ему, определяет наибольшее значение, при котором динистор находится в закрытом состоянии. Чтобы динистор открыть, понадобится напряжение порядка десятков вольт.
Динисторы, как и тринисторы, пропускают ток только в одном направлении. Чтобы ток проходил в обоих направлениях, они включаются по встречно-параллельной схеме. Также для этого может использоваться пятислойная структура pnpnp типа.
youtube.com/embed/4BIMMrzI3Pw»/>
Характеристики устройства
Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду. Эту характеристику разделяют на шесть зон:
- Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
- Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
- Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
- Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
- Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.
Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:
- Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
- Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
- Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
- Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
- Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
- Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.
Диагностика прибора
Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений. При этом неважно, аналоговый или цифровой тип измерителя используется.
Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера. При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить. Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.
Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.
Прозвонка без выпаивания
Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.
Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.
При этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.
Известно, что радиоэлемент открывается только при подаче на его выводы определённого уровня напряжения, поэтому можно попытаться достичь этого порогового значения.
В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.
Тестовая схема
Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:
- регулируемого источника питания;
- резистора;
- индикатора.
В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.
Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.
Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.
Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.
Как проверить тиристор и симистор мультиметром
Устройство, принцип действия и параметры тиристоров
Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки. Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.
Устройство тиристораПри подаче напряжения на катушку, контакты реле замыкаются и пропускают токи большой величины. Такой же принцип работы и у электронного ключа – тиристора. На управляющий электрод подаётся управляющее напряжение до 10 В, открываются p-n переходы и пропускают большие токи, которые зависят от мощности тиристоров.
По сравнению с электромеханическим реле у тиристора нет дребезга контактов. Бесшумная работа электронного ключа и хорошая совместимость с любой электронной схемой, главные достоинства тиристоров. Используется тиристоры и симисторы там, где нужна регулировка больших токов.
Тиристоры также могут работать от светового луча, если в качестве управляющего электрода использовать фотоэлемент. Такой электронный ключ называется фототиристором. Если тиристор пропускает только положительную полуволну переменного напряжения, то симистор прозрачен для токов в обоих направлениях, т. е. он рассчитан на работу с переменным напряжением. К основным параметрам электронного ключа относятся:
- Iоткр.max – максимально допустимый ток тиристора.
- Uу – напряжение открывания.
- Uобр.max – наибольшее обратное напряжение элемента.
- Iуд – ток удержания в открытом состоянии ключа.
Как проверить тиристор мультиметром
Проверить работоспособность тиристора можно батарейкой или источником питания и лампочкой. Для проверки напряжение источника питания или батарейки должны соответствовать напряжению питания лампочки. Если плюс источника приложить к аноду элемента, минус через лампочку подать на катод, а батарейку приложить плюсом к управляющему электроду, а минусом к аноду, то исправный тиристор откроется и лампочка загорится.
Схема проверки тиристора с дополнительным источником питания и батарейкойЕсли убрать напряжение с управляющего электрода ключа лампочка не погаснет. Чтобы она погасла нужно снять напряжение источника питания с тиристора, или кратковременно изменить полярность управляющего напряжения. Лампочка не гаснет после снятия напряжения с управляющего электрода, потому что через тиристор протекает ток выше его тока удержания.
Определить ток удержания можно, если плавно снижать напряжение блока питания и через амперметр проконтролировать ток, при котором произойдет отключение лампочки. Таким образом, можно выбрать тиристор с наименьшим током удержания. Проверить работоспособность тиристора можно также одним мультиметром.
Прозвонка тиристора мультиметромПереключатель режима измерения ставят в положение проверки диодов и проверяют сопротивление перехода УЭ – катод в обоих направлениях, оно должна быть в пределах от 50 до 500 ом. Электронный ключ с наибольшим сопротивлением перехода УЭ – катод будет более чувствительный, с меньшим напряжением, при котором тиристор откроется. Сопротивление катод – анод должно быть большим, на дисплее отображается 1.
Мы прозвонили тиристор мультиметром, а теперь проверим его на открытие перехода анод – катод. Плюс щупа мультиметра присоединяют к аноду, а минус к катоду. В положении X1 переключателя замыкают управляющий электрод на анод элемента. При исправном электронном ключе мультиметр показывает несколько десятков ом, т. е. тиристор открылся.
При отсоединении электрода от анода, тиристор закроется и мультиметр покажет единицу. При проверке мультиметром его ток меньше тока удержания ключа, поэтому тиристор закрывается. Удобно проверять электронные ключи на схеме ниже.
Схема проверки тиристора с дополнительным источником питанияВ качестве источника используют блок питания или автомобильный аккумулятор. Подключают к схеме тиристор, подают питание на него кнопкой КН-1 и подключают УЭ кнопкой КН-2. Лампочка загорается. Отключают КН-2, лампочка продолжает гореть, т. к. ток удержание элемента ниже, чем ток источника питания. Кнопкой КН-1 отключают источник питания, лампочка гаснет. Для источника питания 25 В сопротивление резистора 270 Ом. Для других напряжений питания:
R = (0,9 – 1)Uпит/Iу.откр, где Iу.откр – ток удержания управляющим электродом (в справочнике)
Если в этой же схеме заменить источник постоянного напряжения, на трансформатор, с необходимым переменным напряжением вторичной обмотки, т. е. будем подавать переменное напряжение на тиристор, то лампочка будет гореть в половину накала, ведь этот элемент пропускает только положительную полуволну переменного напряжения. Для источника питания 25 В сопротивление резистора 270 Ом.
Если подключить симистор, то лампа загорится ярко, т. к. симистор пропускает полное переменное напряжение. Симистор проверяется по той же методике что и тиристор. Проверить тиристор и симистор мультиметром не выпаивая, не получится. Для полной проверки этих ключей нужно подавать постороннее напряжение на электронную схему, что чревато выходом ее элементом из строя.
Как прозвонить тиристор мультиметром видео — Moy-Instrument.Ru
Довольно большое распространение получили тиристоры. Они применяются при создании различных электрических приборов и мощных силовых установок. Особенности рассматриваемых полупроводников заключаются в том, что проверить их при применении мультиметра достаточно сложно. Для полноценной проверки нужно собрать сложную схему. Важно понимать, как проверить тиристор мультиметром, так как пробой и внутренний обрыв являются распространенными проблемами.
Подобный измерительный прибор получил широкое распространение: применяется для определения различной информации. Предварительная подготовка предусматривает расшифровку спецификации, для чего достаточно рассмотреть маркировку на полупроводниковом изделии.
После определения типа изделия и цоколевки можно приступить к тесту пробоя при помощи мультиметра. В большинстве случаев проводится проверка на пробой, для чего изделие можно оставить на плате, поэтому на этом этапе не требуется паяльник.
Проверка тиристора начинается с определения пробоя. Рекомендуется начинать с предварительного тестирования, которое связано с измерением сопротивления между двумя выходами «А» и «К», «К» и «УЭ». Алгоритм действий имеет следующие особенности:
Проверка симистора мультиметром подобным образом не позволяет получить точный показатель. Немного усложнив процесс тестирования, можно существенно повысить точность полученных результатов.
Тестирование на пробой не позволяет определить, есть ли внутренний обрыв. Именно поэтому применяемая схема существенно усложняется. Более точный показатель можно достигнуть следующим образом:
Еще больше повысить точность измерений можно при сборке собственного измерительного прибора.
Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.
Схема самодельного пробника представлена сочетанием следующих элементов:
Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.
Следует учитывать, что самодельная конструкция позволяет точно определить работоспособность устройства. Пошаговая инструкция выглядит следующим образом:
Если проверяемое устройство проявляло себя так, как в описании, то тиристор находится в хорошем техническом состоянии и работает правильно. Если лампочка горит постоянно, то это говорит о пробое. Если при нажатии на клавишу она не загорается, то это указывает на внутренний обрыв. Именно поэтому можно обойтись без мультиметра.
При необходимости можно проверить тиристор мультиметром без демонтажа детали. Однако при применении самодельной конструкции придется выпаять элемент, так как в качестве индикатора используется лампочка. К особенностям этого процесса относятся следующие моменты:
Необходимость в выпаивании детали определяет то, что многие решают использовать мультиметр для проверки. В большинстве случаев полученных результатов вполне достаточно для оценки состояния тиристора.
При необходимости можно провести проверку динистора. К ключевым моментам относятся следующие моменты:
Применяемый измерительный прибор в соответствующем режиме через специальные щупы соединяется с анодом и катодом. Тестер должен лежать в пределе милливольта, после чего динистор открывается.
Исправность рассматриваемого устройства можно проверить при применении обычного источника света и измерительного прибора. К особенностям этой техники относятся следующие моменты:
На момент подключения источника питания тринистор открывается, ток подводится к лампочке, и она загорается. После снятия управляющего воздействия лампа должна продолжать гореть, так как проходит ток удержания.
Для тестирования различного электрического оборудования требуется специальный измерительный прибор, который называют мультиметром. Основные критерии выбора:
Рассматривая то, как проверить тиристор ку202н мультиметром, следует учитывать, что все подобные измерительные приборы разделяются на несколько классов:
После выбора измерительного инструмента можно приступить к тестам. Полученная информация может записываться в блокнот или сохраняться в память устройства, если у него есть соответствующая функция.
Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.
Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.
Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.
Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).
Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.
Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:
Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм.
Рис 3. Измеряем сопротивление между УЭ и К
Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).
Проверка без выпаивания детали с платы
В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.
Как проверить тиристор мультиметром
Прежде потрудитесь узнать, как работает тиристор. Заимейте представление о разновидностях: триак, динистор. Требуется правильно оценить результат теста. Ниже расскажем, как проверить тиристор мультиметром, даже приведем небольшую схему, помогающую выполнить задуманное в массовом порядке.
Разновидности тиристоров
Тиристор отличается от биполярного транзистора наличием большего количества p-n переходов:
- Типичный тиристор p-n переходов содержит три. Структуры с дырочной, электронной проводимостью чередуются на манер зебры. Можно встретить понятие n-p-n-p тиристор. Присутствует или отсутствует управляющий электрод. В последнем случае получаем динистор. Работает по приложенному меж катодом и анодом напряжением: при некотором пороговом значении открывается, начинается спад, ход электронам отсекается. Что касается тиристоров с электродами, управление производится в любом из двух срединных p-n переходов – стороны коллектора, либо эмиттера. Коренное отличие изделий от транзистора в неизменности режим после пропадания управляющего импульса. Тиристор остается открытым, пока ток не упадет ниже фиксированного уровня. Обычно называют током удержания. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
- Симисторы отличаются количеством p-n переходов, становится больше минимум на один. Способны пропускать ток в обоих направлениях.
Начало тестирования тиристора мультиметром
Сначала потрудитесь расположение электродов определить:
Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.
Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.
Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.
- Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
- Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.
Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:
- Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
- Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.
Схема проверки тиристора
Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.
Проверка тиристоров на разъеме мультиметра для транзисторов
Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным. Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.
Где взять питание тестировщику
Положение электродов мультиметра
Адаптер телефона дает ток 100 – 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:
- Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
- Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.
Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).
Раскладка портов USB
Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль. Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.
Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:
- +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
- Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
- – 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
- Оранжевый провод обычно несет напряжение +3,3 В.
Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться. Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА. Случай, когда не любой телефонный зарядник годится провести опыт.
Методы проверки тиристоров на исправность
Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.
Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:
- Высокая проводимость (открытое).
- Низкая проводимость (закрытое).
Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.
Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.
Самые известные типы данных устройств:
- Диодный. Переходит в проводящий режим, когда уровень тока повышается.
- Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
- Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
- Оптотиристор. Работает благодаря потоку света.
- Запираемые.
Применение тиристоров
Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.
Общее применение делится на четыре группы:
- Экспериментальные устройства.
- Пороговые устройства.
- Силовые ключи.
- Подключение постоянного тока.
Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.
Вот некоторые характеристики данного тиристора:
- Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
- Напряжение в положении низкой проводимости 100 В.
- Импульс в состоянии высокой проводимости – 30 А.
- Повторный импульс в этом же положении – 10 А.
- Постоянное напряжение 7 В.
- Обратный ток – 4 мА
- Ток постоянного типа – 200 мА.
- Среднее напряжение -1,5 В.
- Время включения – 10мкс.
- Выключение – 100 мкс.
Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.
Тиристоры быстродействующие ТБ333-250
Проверка с помощью метода лампочки и батарейки
Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.
При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.
Проверка методом лампочки и батарейки осуществляется по трём схемам:
- В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
- Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
- На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.
Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.
При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях
Проверка мультиметром
Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.
Что нужно, чтобы проверить тиристор мультиметром:
- Подцепить черный щуп с минусом к катоду.
- Подцепить красный щуп с плюсом к аноду.
- Один конец выключателя соединить с разъемом красного щупа.
- Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
- Быстро включить и отключить выключатель.
- Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
- В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
- Если перекидывание щупов не помогло, то тиристор неисправен.
Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.
Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели
Другие варианты проверки
Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.
Чтобы проверить устройство тестером нужно следовать следующей схеме:
- Проверка тимистора с помощью омметра Включить тестер между катодом и анодом: должно показать «бесконечность», потому что тиристор в состоянии низкой проводимости.
- Подключить батарейку между УЭ и катодом. На тестере должно спасть сопротивление, так как появилась проводимость.
- Если подачи питания совсем нет, то устройство работает неправильно.
- Если подача питания постоянная, при любом напряжении на электроды, то и в этом случае с тиристором что-то не так.
Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:
- Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
- Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.
Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).
Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.
Блиц-советы
Рекомендации:
- Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
- Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
- Во избежание неприятных ситуаций все схемы должны собираться в точности.
- В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.
Защита тиристора:
Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.
Как проверить тиристор мультиметром?
Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.
Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.
Предварительная подготовка
Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.
Маркировка обозначена красным овалом
Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).
Даташит на BT151 (аналог КУ202Н)
Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.
Тестирование на пробой
Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:
- Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм. Рис 3. Измеряем сопротивление между УЭ и К
- Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
- Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.
Рис 4. Измеряем сопротивление перехода Анод-Катод
Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.
Проверка на открытие-закрытие
Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).
Рис. 5. Подключение для проверки на открытие
При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.
Самодельный пробник для тиристоров
В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.
Рисунок 6. Пробник для тиристоров
Обозначения:
- Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
- L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
- VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
- С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
- R1 – сопротивление с номиналом 47 Ом.
- VD2 – тестируемый тиристор.
- FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).
После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:
- Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
- Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
- Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
- Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
- Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
- Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
- Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
- Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.
Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).
Проверка без выпаивания детали с платы
В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.
Проверка тиристоров всех видов мультиметром
Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.
Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.
Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.
Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.
Основные характеристики
Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.
Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.
Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.
Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.
Определение управляющего напряжения
Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.
У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:
- для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
- подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
- перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
- убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.
Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.
Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.
Проверка исправности
Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.
К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.
Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.
Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.
После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.
Проверка динистора
Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.
Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.
Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.
Значения тестера должны лежать в пределах милливольт. Динистор открылся.
Необычный способ
Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.
Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.
На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.
Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.
Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.
Проверка в схеме
Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.
Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.
Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.
Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.
Тестирование высоковольтного тиристора
В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.
Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.
Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.
Как проверить TRIAC с помощью мультиметра
Как проверить TRIAC цифровым мультиметром ИЛИ омметром?
В этом посте мы обсудим, как тестировать симистор. Введение в симистор:
- TRIAC = TRI ode для A lternating C urrent.
- TRIAC — это 5-слойный, 3-контактный силовой полупроводниковый прибор.
- Он имеет пару тиристоров с регулируемой фазой, подключенных обратно параллельно на одном кристалле.
- Это двунаправленное устройство, что означает, что оно может проводить ток в обоих направлениях.
Пошаговая процедура проверки симистора:
- Перевести цифровой мультиметр в режим омметра.
- Используя соединительный диод, определите, какой вывод омметра положительный, а какой отрицательный. Омметр покажет целостность цепи только тогда, когда положительный провод подключен к аноду, а отрицательный провод подключен к катоду.
- Подсоедините положительный провод омметра к MT2, а отрицательный провод к MT1. Омметр должен показать отсутствие обрыва цепи через симистор.
- С помощью перемычки подключите затвор симистора к MT2. Мультиметр должен показать , прямой диодный переход .
- Подсоедините симистор так, чтобы MT1 был подключен к положительному проводу омметра, а MT2 — к отрицательному выводу. Мультиметр должен показать , отсутствие непрерывности через симистор.
- С помощью перемычки снова подключите затвор к MT2. Омметр должен показать , прямой диодный переход .
Engineering Tutorial Ключевые слова:
- как проверить симистор
- испытать симистор
- испытать симистор с помощью мультиметра
- испытать симистор
- как испытать симистор с помощью цифрового мультиметра
- как проверить симистор
- как испытать симистор с мультиметром
- проверка симистора
- как проверить симистор с помощью измерителя
- испытать симистор с помощью омметра
Как использовать мультиметр
В качестве партнера Amazon Я зарабатываю на соответствующих покупках
Вам когда-нибудь приходилось проверять напряжение, переменный постоянный ток или сопротивление ваших приборов или других электрических компонентов? Большинство из нас в какой-то момент вызвали электрика, чтобы сделать именно это, но вы можете сделать это самостоятельно с помощью мультиметра, если знаете, как пользоваться мультиметром.
Мультиметр — это устройство, измеряющее токи в цепи. С помощью этого устройства вы сможете увидеть, есть ли в цепи напряжение и есть ли проблемы с электричеством.
Мультиметр предназначен в основном для измерения напряжения, но в новые модели встроены другие функции, которые автоматизируют множество задач. У него много функций, но это не значит, что им сложно пользоваться. В следующем пошаговом руководстве показано, как его использовать.
Как измерить сопротивление
Шаг 1.Настройте мультиметр на сопротивление или Ом
Включите мультиметр. Найдите шкалу Ом, обычно она находится на самой верхней шкале с самыми высокими значениями вдоль левой стороны шкалы, спускающимися до нуля справа. Это противоположно другим измерениям, которые имеют самые низкие значения слева и идут вверх справа.
Шаг 2. Проверьте индикатор измерителя
Если измерительные провода ничего не касаются, стрелка аналогового измерителя должна находиться в самой левой части.Это указывает на то, что сопротивление бесконечно и цепь разомкнута. Это также означает, что между черным и красным зондами нет пути и нет непрерывности.
Шаг 3. Подсоедините измерительные провода.
Подсоедините черный измерительный провод к разъему с меткой «-» или «общий». Подключите красный измерительный провод к разъему с символом ома или омега / R. Отрегулируйте диапазон до R x 100, если опция доступна.
Шаг 4. Возьмите концы щупа щупа и соедините их вместе
Теперь указатель переместится вправо.Найдите ручку с надписью «Регулировка нуля» и поверните ее так, чтобы измеритель находился как можно ближе к нулю.
Обязательно обнулите мультиметр после изменения сопротивления, иначе следующее показание будет неправильным.
Шаг 5. Измерьте сопротивление
- Чтобы испытать мультиметр, возьмите лампочку и найдите две точки ее электрического контакта. Это нижний центр основания и основание с резьбой.
- Возьмите лампочку или попросите друга подержать ее для вас. Установите красный зонд напротив центра нижней части основания, а черный зонд — на резьбовое основание.
- Наблюдайте за иглой, двигающейся слева направо.
Как измерить напряжение
Шаг 1. Установите мультиметр на максимально допустимый диапазон переменного напряжения
Часто проверяемое напряжение имеет неизвестное значение. Выбирая максимальное значение, мультиметр гарантирует, что вы не повредите устройство.
Шаг 2. Вставьте щупы в гнезда
Вставьте черный щуп в гнездо, помеченное «-» или COM. Вставьте красный щуп в гнездо с отметкой «+» или V.
Шаг 3. Найдите шкалы напряжения
Диапазон, выбранный ручкой, определяет, какая шкала оценивается. Шкала максимального значения должна соответствовать диапазонам переключателя на ручке.
Шаг 4. Проверьте розетку
- В США и других странах напряжение составляет 120 или 240 вольт, хотя в других странах оно может быть 380 вольт.
- Установите черный щуп в одно из гнезд электрической розетки.Контакт розетки захватывает зонд, чтобы вы могли его отпустить.
- Вставьте красный датчик в другой слот.
- Проверьте свой мультиметр. Он должен показывать напряжение, близкое к 120 или 240.
Шаг 5. Снимите щупы
Поверните ручку переключателя на самый низкий доступный диапазон, который выше, чем полученное вами измерение напряжения.
Шаг 6. Вставьте зонды обратно в
Вставьте зонды так же, как и раньше. На этот раз счетчик может показывать 125 или 110 вольт.Имейте в виду, что диапазон измерителя имеет решающее значение для получения точных показаний.
Если указатель не двигается, это означает, что выбран постоянный ток, а не переменный ток. Дважды проверьте и убедитесь, что выбран AC.
При проверке напряжения делайте это так, чтобы вам не приходилось удерживать их одновременно. К счастью, во многих мультиметрах есть зажимы из крокодиловой кожи, которые помогают в этом.
Как измерить амперы
Шаг 1. Убедитесь, что напряжение было снято.
Вы должны проверить, является ли это цепью постоянного или переменного тока.Измерьте напряжение так же, как описано выше.
Шаг 2. Настройте мультиметр на максимальный диапазон ампер переменного или постоянного тока
Имейте в виду, что некоторые мультиметры измеряют только небольшие уровни тока в диапазоне мА и мкА. 1 мА равно. 0,001 ампер и 1 мкА — это 000001.
Это значения тока, которые протекают в сложных электронных схемах. Это меньше, чем типичный расход в электрических цепях бытовых приборов и автомобилей. Просто для справки, в сеть входит обычная лампочка на 120 вольт.833 ампер.
Как использовать клещи на амперметре
Это устройство идеально подходит для измерения тока через резистор Ом (4700) при 9 В постоянного тока. Это больше подходит для домовладельцев, которые хотят проверить бытовую технику и оборудование. Вот как вы его используете.
- Вставьте черный щуп в гнездо COM.
- Найдите гнездо A и поместите туда красный датчик.
- Выключить силовую цепь.
- Разомкните часть цепи, которую вы будете тестировать.
- Включите счетчик в цепь таким образом, чтобы цепь замкнулась.Вы должны ставить амперметр последовательно, а не поперек, поскольку это не сработает.
- Проверить полярность. Ток должен сместиться с положительного на отрицательный. Отрегулируйте текущий диапазон до максимального значения.
- Подайте питание и отрегулируйте диапазон в сторону уменьшения, чтобы получить лучшее показание.
Как измерить напряжение батареи
Выполните следующие действия.
Шаг 1. Вставьте датчики
Вставьте черный датчик в COM, а красный датчик в гнездо с меткой A или mAV.Установите мультиметр на 2 В постоянного тока.
Шаг 2. Подключите датчик и батарею
Соедините черный датчик со знаком — батареи, а красный датчик со знаком плюс. Слегка сожмите щупы.
Шаг 3. Прочтите результаты
Если батарея новая, показание должно быть 1,5 В или около того. Для напряжения постоянного тока убедитесь, что ручка установлена там, где линия V прямая.
Если вам понравилась эта статья, вас также заинтересуют:
Советы и предупреждения
Используете ли вы мультиметр впервые или уже много лет пользуетесь им, всегда соблюдайте меры безопасности.
Выберите правильный мультиметр
- Убедитесь, что мультиметр имеет необходимые характеристики и возможности. Мультиметр также должен быть разработан для среды, в которой вы собираетесь его использовать.
- Мультиметр должен иметь достаточную защиту от перегрузки.
- Рейтинг категории (CAT II, CAT III, CAT IV) должен соответствовать задачам, которые вы имеете в виду.
- Всегда выбирайте мультиметр, который соответствует высшей категории, в которой он может использоваться.Если вы собираетесь измерять 4880 вольт, ваш мультиметр должен иметь категорию CAT III 600 В, CAT IV 600 В или CAT III 1000 В.
Всегда проверяйте мультиметр перед использованием
- Осмотрите мультиметр перед его использованием. Не используйте, если есть признаки физического повреждения.
- Используйте испытательный блок или источник известного напряжения перед использованием мультиметра в цепи под напряжением.
- Храните мультиметр и щупы в сумке для переноски, чтобы избежать повреждений.
Как проверить измерительные щупы
- Снимите испытательные щупы с гнезд.Ищите признаки повреждения или износа.
- Датчики должны быть надежно вставлены в гнезда.
- Проведите пальцами по щупу. Проверить на признаки износа изоляции.
- Для защиты от короткого замыкания используйте только измерительные провода с как можно меньшим количеством оголенных металлических концов.
- Не используйте сломанные измерительные щупы. Замени, не ремонтируйте их.
Советы по предотвращению поражения электрическим током
- Всегда исходите из предположения, что цепь находится под напряжением, пока она не разрядится.
- Носите защитную одежду, такую как головной убор, перчатки и резиновые коврики с изоляцией. Они необходимы, если вы собираетесь работать в непосредственной близости от открытых цепей, превышающих 50 В.
- Следите за индикаторами безопасности на мультиметре. Они сообщат вам о потенциальных опасностях.
- Не проверяйте электрические цепи, если вы находитесь рядом с паром или легковоспламеняющимися материалами.
- Не проводите измерения во влажных и влажных местах.
Последствия поражения электрическим током зависят от нескольких факторов, таких как:
- Пораженные участки тела
- Путь, по которому проходит ток
- Как долго ваше тело подвергалось воздействию
- Состояние вашего тела
Вы всегда следует помнить о потенциальных опасностях использования мультиметра.Помимо описанного выше, имейте в виду следующее.
Перенапряжение
Переходное перенапряжение — это кратковременный скачок напряжения. Оно может достигать тысяч вольт, и наиболее частыми причинами являются многократное включение и выключение питания, отсутствие фильтров, молнии и двигатели.
Взрывы дуги и вспышки
Это электрические токи, которые возникли в воздушном зазоре. Это происходит из-за случайного контакта двух проводов. Это также может быть связано с слишком высоким напряжением, которое ионизирует воздух.
Вспышка дуги может также произойти, если при использовании мультиметра произойдет скачок напряжения или разряд молнии. Он может попасть в электрическую систему, над которой вы работаете, поэтому важно использовать только мультиметры с рейтингом CAT, чтобы предотвратить повреждение.
Номинальные значения и напряжение CAT
В каждой категории есть номинальное напряжение, которое определяет ее способность выдерживать более высокие переходные процессы.
Например, мультиметр CAT III 1000 В обеспечивает лучшую защиту, чем мультиметр CAT III 600 В.Однако CAT II 1000 V не обеспечивает дополнительной защиты по сравнению с CAT III 6000 V.
Итог: чем выше категория, тем больше обеспечивается защита.
CAT II
Эти мультиметры предназначены для портативных инструментов, бытовой техники и других устройств с такими же нагрузками.
CAT III
Они предназначены для стационарного оборудования, такого как многофазные двигатели и распределительные устройства. Другими примерами являются устройства с короткими служебными входными разъемами, коммерческие системы освещения, короткие ответвления и фидеры.
Мультиметры категории CAT III также подходят для фидеров промышленных предприятий и устройств, которые питаются напрямую от распределительных панелей.
CAT IV
Они часто используются для начальной установки, линий метро, воздушных линий, служебных и внешних входов, устройств защиты от перегрузки по току и многого другого.
Прочие соображения
- Прочтите руководство пользователя и следуйте указанным в нем указаниям.
- Не используйте мультиметр там, для чего он не предназначен.
- Разрядите и обесточьте цепь перед подключением и отключением мультиметра.
- Цепь никогда не должна быть запитана при измерении сопротивления.
- При измерении цепей мультиметр всегда следует подключать последовательно. Измерения напряжения также должны проводиться параллельно.
- Убедитесь, что мультиметр установлен в режим переменного тока, если вы собираетесь измерять переменный ток, или в режим постоянного тока, если вы будете проверять постоянный ток.
- Соблюдайте полярность при измерениях постоянного тока.
- Выключите мультиметр, когда закончите. Если выключателя нет, просто установите его на максимальное значение переменного тока.
- Независимо от марки или дизайна, всегда начинайте измерение переменного тока и напряжения с максимально допустимого диапазона мультиметра.
- После изменения сопротивления установите значение 0 Ом. Сделайте это также после проверки сопротивления.
- Никогда не используйте мультиметр, если он неисправен.
- Не используйте мультиметр с электрическими розетками или оборудованием с признаками повреждения.
Заключение
Итак, у вас есть много способов использования мультиметра. Приведенные выше шаги предназначены только для общего руководства, так как ваш мультиметр может иметь другие функции и функционировать иначе.
Например, некоторые мультиметры могут автоматически определять, измеряете ли вы ток, напряжение или сопротивление. Устройство автоматически настраивается, поэтому вам не придется много возиться.
Важно помнить, что необходимо приобрести качественный мультиметр и использовать его по назначению.Сделайте это, и вы не ошибетесь.
МУЛЬТИМЕТР НА ОСНОВЕ ARDUINO
15 июл.2019 г. | от: ELECTRONOOBS В этом уроке мы объединим все части, которые видели в прошлых уроках. В этих уроках мы увидели, как измерять сопротивление, ток, индуктивность и емкость. Измерять напряжение очень просто. В этом уроке мы создаем мультиметр 5 в 1 на основе Arduino, модуля АЦП и цепи LC-резервуара.Корпус напечатан на 3D-принтере. У вас есть схема, код и все, что вам нужно для реализации этого проекта.Схема
У вас есть схема этого проекта ниже. Вам понадобится Arduino, модуль ADS1115 ADC, OLED-дисплей, модуль тока ACS712, зарядное устройство на основе TP4056 и еще несколько компонентов. У вас есть все значения, указанные ниже. После подключения вы можете загрузить код, загрузить его в Arduino и протестировать.
Нам нужно:
- 1 x Arduino NANO / UNO: LINK eBay
- 1 x датчик ADS1115: LINK eBay
- 1 x i2c OLED-экран: LINK eBay
- 1 x TP4056 модуль зарядки: LINK eBay
- 1 датчик тока ACS712: LINK eBay
- 1 x LM324 OPAMP: LINK eBay
- 10 штекерных разъемов типа Bullet: LINK eBay
- 2 штекерных разъема типа Bullet: LINK eBay
- 3 кнопки: LINK eBay
- 1 шт. ползунковый переключатель: LINK eBay
- 1 x 3.Липо аккумулятор 7 В: LINK eBay
- РЕЗИСТОРЫ: 1×150, 1×220, 1×330, 2x2K, 1×6.8K, 1x10K, 1x20K, 1x470k: LINK eBay
- 2 диода 1n4001: LINK eBay
- 2 x 1 мкФ неполяризованный конденсатор: LINK eBay eBay
- проволока, припой, паяльник, 3D корпус и др.
Схема
Измерение напряжения
Ниже у вас есть полный код этого проекта.Загрузите его и прочтите построчно, чтобы лучше понять. Вам также потребуются библиотека OLED и библиотека для модуля ADS1115, поэтому загрузите их и установите в своей среде разработки Arduino.
Загрузите библиотеку Adafruit_ADS1015: LINK
Загрузите библиотеку Adafruit_GFX.h: LINK
Загрузите библиотеку Adafruit_SSD1306.h: LINK
Но сначала давайте шаг за шагом посмотрим, как мы измеряем каждое значение: напряжение, затем сопротивление, затем емкость, индуктивность и ток. . Начнем с вола, потому что это очень просто.Ниже приведен пример кода для модуля ADS1115, использующего библиотеку. Мы читаем и выводим значения на серийный монитор. ADS1115 имеет свою собственную ссылку, поэтому не имеет значения, будет ли напряжение батареи 3,7 или 4,2 или любое другое значение, выход всегда будет точным.
Итак, выполните подключения и подключите его к Arduino. Он будет измерять напряжение с высокой точностью. Но !, вам понадобится делитель напряжения на входе, чтобы измерить напряжение до 20 В. В противном случае модуль ADS1115 сгорит.См. Схему для значений делителя напряжения и того, как их интегрировать в измерение кода.
Мультиметр
ФАЙЛЫ ДЛЯ ЗАГРУЗКИ НА ЭТОМ ШАГЕ
Измерение сопротивления
Для получения более подробной информации см. РУКОВОДСТВО ПО ИЗМЕРИТЕЛЮ СОПРОТИВЛЕНИЯ.Но для расчета сопротивления мы будем использовать базовый делитель напряжения. Как известно, делитель напряжения состоит из двух последовательно соединенных сопротивлений (R1 и R2). Выходное напряжение в средней точке равно [R2 / (R1 + R2)] Vin. Используя эту формулу и зная значение одного из двух резисторов и измерив Vout, очень легко рассчитать сопротивление резистора для воды.
На нашей схеме измерение сопротивления производится резисторами 2 кОм, 20 кОм и 470 кОм, подключенными к контактам D6, D7 и D8. Таким образом, у нас есть 3 разных шкалы.Если мы установим D6 как OUPTUT и установим LOW, это будет наш GND для делителя напряжения. Другие контакты, D7 и D8, установлены на ВХОД, поэтому они имеют высокий импеданс. Итак, наш делитель напряжения состоит из резистора 2K и неизвестного резистора. Измеряем напряжение на выводе ADC1 и по формуле получаем сопротивление. Мы делаем это для всех масштабов.
Убедитесь, что вы измерили номинальные значения резисторов 2 кОм, 20 кОм и 470 кОм, чтобы знать точное значение и указать его позже в полном коде.Переведите мультиметр в режим сопротивления и попробуйте разные значения. Настройте свои значения в коде, пока не получите хороших результатов.
Делители напряжения
Измерьте емкость
Подробнее об этом см. В предыдущем руководстве. Но это довольно просто. Заряжаем конденсатор с помощью одного из выводов Arduino.Потом разряжаем через резистор. Формула говорит нам, что значение емкости равно времени, которое потребовалось для достижения 63,2% от полностью заряженного напряжения, деленного на номинал резистора.
Итак, в коде при выборе емкостного режима мы заряжаем конденсатор, разряжаем его и считаем время. Когда конденсатор достигает 63,2% от Vcc, мы останавливаем счетчик времени и вычисляем значение емкости по формуле.
Измерение индуктивности
Для получения более подробной информации см. РУКОВОДСТВО ПО СЧЕТЧИКУ ИНДУКТИВНОСТИ.Но катушка индуктивности, подключенная параллельно конденсатору, называется LC-цепью, и она будет электронно «звонить», как звонок. Что ж, независимо от частоты или силы удара в колокол, он будет звонить на резонансной частоте. Мы ударим электронным способом в колокол LC, немного подождем, пока все отреагирует, а затем произведем измерение. Есть некоторое внутреннее сопротивление, так что это действительно цепь RLC.
Когда мультиметр находится в режиме индуктивности, мы считаем время между каждым импульсом резонансной частоты.Если мы знаем значение частоты, а также используемую емкость, в данном случае 2 мкФ, мы можем получить значение индуктивности и распечатать его на OLED-экране.
Колебание
Измерьте индуктивность
Измерение тока
Эта часть тоже простая.Мы используем модуль ACS712 для измерения тока. Датчик тока ACS712 представляет собой экономичное решение для измерения тока, он работает внутри с датчиком на эффекте Холла, который обнаруживает магнитное поле, создаваемое индукцией тока, протекающего по измеряемой линии. Датчик дает нам выходное напряжение, пропорциональное току, в зависимости от приложения мы можем использовать ACS712-05A, ACS712-20A или ACS712-30A для диапазонов 5, 20 или 30 ампер соответственно.
Мы знаем значение мВ / А для каждого диапазона, поэтому все, что нам нужно сделать, это измерить падение напряжения с датчика тока и разделить его на значение в мВ, и мы получим текущее значение.Это просто. Но датчик дает нам значение 2,5 В для тока 0 А, а затем увеличивается пропорционально чувствительности, имея линейную зависимость между выходным напряжением датчика и током. Это соотношение представляет собой прямую линию на графике «Напряжение в зависимости от тока», где наклон представляет собой чувствительность, а пересечение по оси Y составляет 2,5 вольта. Уравнение строки будет следующим:
Не забудьте загрузить полный код. Настройте значения в начале кода.Также установите библиотеки adafruit для модуля ADS1115 и OLED-экрана. Скомпилируйте, установите соединения и загрузите. Проверьте мультиметр.
Значения модели
3D чехол
Загрузите файлы 3D снизу. Я использовал 2 периметра, заполнение 20% и 0.Сопло 4 мм и материал PLA. Корпус состоит из 2 частей и 3 пластиковых кнопок. Вырежьте печатную плату по размеру корпуса и поместите ее внутрь. На нем есть место для OLED-экрана, ползункового переключателя и USB-разъемов для Arduino и зарядного модуля.
Корпус
ФАЙЛЫ ДЛЯ ЗАГРУЗКИ НА ЭТОМ ШАГЕ
Финальное видео
% PDF-1.3 % 64 0 объект > endobj xref 64 68 0000000016 00000 н. 0000001725 00000 н. 0000001867 00000 н. 0000002006 00000 н. 0000002523 00000 н. 0000002754 00000 н. 0000002834 00000 н. 0000002958 00000 н. 0000003064 00000 н. 0000003170 00000 н. 0000003224 00000 н. 0000003331 00000 н. 0000003385 00000 н. 0000003536 00000 н. 0000003590 00000 н. 0000003687 00000 н. 0000003741 00000 н. 0000003829 00000 н. 0000003912 00000 н. 0000003966 00000 н. 0000004071 00000 н. 0000004125 00000 н. 0000004179 00000 п. 0000004283 00000 н. 0000004337 00000 н. 0000004471 00000 н. 0000004525 00000 н. 0000004578 00000 н. 0000004660 00000 н. 0000004762 00000 н. 0000004815 00000 н. 0000004868 00000 н. 0000004922 00000 н. 0000005004 00000 н. 0000005101 00000 п. 0000005154 00000 н. 0000005208 00000 н. 0000005409 00000 н. 0000005615 00000 н. 0000006302 00000 п. 0000006412 00000 н. 0000006628 00000 н. 0000006724 00000 н. 0000006940 00000 н. 0000007635 00000 п. 0000007657 00000 н. 0000008402 00000 п. 0000008424 00000 н. 0000008537 00000 н. 0000008843 00000 н. 0000008930 00000 н. 0000009632 00000 н. 0000009654 00000 н. 0000009767 00000 н. 0000010474 00000 п. 0000010496 00000 п. 0000011208 00000 п. 0000011230 00000 п. 0000011411 00000 п. 0000012124 00000 п. 0000012146 00000 п. 0000012819 00000 п. 0000012841 00000 п. 0000013413 00000 п. 0000013435 00000 п.