Как работает люминесцентная лампа
Люминесцентная лампа, явившаяся результатом целого ряда открытий и исследований (подробнее об этом в статье история люминесцентной лампы), сегодня стала одним из основных источников искусственного света, как в офисных помещениях, так и в частных домах и квартирах. Ряд выгодных отличий от популярной еще пару десятков лет назад лампы накаливания, позволили люминесцентной лампе достаточно успешно конкурировать с «фаворитными» источниками света, а также привело к созданию ее боле совершенных и компактных модификаций. Но речь в этой статье пойдет не о ее достоинствах или недостатках, а о том, как она работает.
Все виды люминесцентных ламп, будь то популярные сейчас «экономки» или старые длинные лампы дневного света, построены и работают примерно по одному и тому же принципу. Отличие может быть лишь в электронной схеме подключения к источнику питания.
Конструкция люминесцентной лампы
Лампа состоит из стеклянной колбы (может быть самой разнообразной формы и размеров), двух (иногда четырех) электродов, инертного газа, ртути (паров), люминофора и схемы запуска (в экономках она находится внутри корпуса лампы).
Электрод представляет собой два проводящих электрических контакта (обычно из проволоки), к которым подводится электрический ток и нить накала, покрытую специальным эмиссионным веществом для более эффективного испускания электронов в процессе работы и большей продолжительности службы самой лампы.
Принцип работы люминесцентной лампы
Когда электрическая цепь лампы подает на электроды ток, они начинают постепенно разогреваться и испускать электроны. Но этих электронов недостаточно, чтобы зажечь между электродами, так называемый тлеющий разряд – поток ионизированных частиц газа. Тогда в работу вступает та часть схемы управления, которая отвечает за запуск лампы. Кратковременный импульс напряжения зажигает инертный газ в лампе, а затем и пары ртути.
Симбиоз этих веществ, ионизированных электрическим током, приводит к возникновению свечения в невидимой для нас ультрафиолетовой области спектра.Чтобы преобразовать ультрафиолетовый свет в видимый свет, используется люминофор, нанесенный на стенки стеклянной колбы. Получается двойное преобразование. Сначала электроны, испускаемые электродами лампы, ионизируют газ и пары ртути, а затем ионизированные частицы возбуждают люминофор, заставляя его испускать видимый для нашего глаза свет.
Разница в принципе работы обычной длинной лампы дневного света и «экономки» лишь в том, что в первом случае схема запуска состоит из дросселя (индуктивности), конденсатора и стартера. Во втором же эти функции выполняет более сложная электрическая схема, в состав которой входят другие электронные компоненты.
Сейчас производители используют различный состав люминофора, чтобы менять цвет свечения люминесцентных ламп или как еще говорят – его температуру. Более желтое (теплое) свечение имеет температуру порядка 2700 К, естественное дневное (белое) – порядка 4100 К, я яркое (холодный свет) – примерно 6000 К. Подобную маркировку можно встретить и на самих лампах.
< Предыдущая | Следующая > |
---|
Светильники с люминесцентными лампами: устройство
На фоне постоянного роста цен на электричество населению приходится экономить. Наиболее простой способ сделать это – установить люминесцентные лампы. Они потребляют в 3-4 раза меньше, чем классические, давая практически такой же световой поток. Давайте разберем, чем хорош светильник для люминесцентной лампы, есть ли смысл менять обычные лампочки накаливания на “энергосберегайки” и в чем их основные достоинства.
Введение
Светильники, работающие по принципу люминесцента, были изобретены в середине 30-х годов прошлого века. Их придумали в США. Распространяться по стране они начали в 50-е годы, в 60-е они появились в Европе и СССР. Сегодня люминесцентные светильники находятся на втором месте по распространенности (первое занимают лампы накаливания), но их процентное соотношение постоянно растет. И даже светодиодные лампы не вытесняют люминесцентные с рынка
Использование этих светильников долгое время было ограничено из-за их больших размеров. Если в общественных заведениях их еще можно было разместить, то для дома они не очень подходили. Но в 90-е годы ученым удалось усовершенствовать конструкцию, уменьшить ширину трубки до 12 мм и скрутить ее в спираль, создав аналог обычной лампочки. Это придало люминесцентным лампам новую жизнь.
Устройство светильника
Теперь давайте разберем, из чего состоит люминесцентная лампа (речь идет о компактных вариантах, или КЛЛ):
- Колба.
- Цоколь.
Колба представляет собой тонкую трубку, завитую в спираль. Внутри трубки расположены электроды из вольфрама, окрашенные оксидами стронция, бария и кальция. Трубка герметично закрыта, в ней находится инертный газ, смешанный с парами ртути.
Именно эти пары ионизируются и испускают ультрафиолет. Принцип работы следующий: на вольфрамовые контакты подается напряжение, между ними возникает заряд и происходит запуск светильника. Пары ртути излучают свет в ультрафиолетовом спектре. Чтобы сделать его видимым, на стенки трубки наносят специальное вещество – люминофор. В результате облучения от ультрафиолета он тоже “зажигается” и светится в видимом спектре. При помощи толщины слоя люминофора и его состава можно менять цвет и насыщенность потока. По сути, именно от него зависит, насколько хорошо устройство будет светить.Современные люминесцентные лампыВнимание: при производстве КЛЛ используются различные редкоземельные элементы, нанесенные в 3-5 слоев в качестве люминофора. Следите за тем, чтобы цоколь не разбился – в нем много вредных веществ. Именно за счет использования более дорогих люминофоров, нанесенных толстым слоем, ученым удалось добиться значительного сокращения длины трубки.
Изучая устройство светильника с люминесцентными лампами, следует рассказать про вторую часть конструкции – цоколь. Он не только удерживает светильник в патроне, но и содержит внутри ЭПРА (пуско-регулирующую аппаратуру или, в просторечии, стартер/балласт). Они выдают токи с высокими частотами, из-за чего у комнатных ламп полностью отсутствует эффект мерцания, который хорошо заметен у обычных линейных ламп накаливания. Высокочастотные токи образуются в результате работы инвертора, выпрямляющего их и преобразующего в импульсы. Современные ЭПРА также способны усиливать мощностные коэффициенты, что позволяет создавать активные нагрузки и не компенсировать при работе косинус фи.
Внимание: по сути, срок службы лампы зависит от качества балласта. Расчетное время свечения люминофора около 20 тысяч часов, но устройство обычно работает меньше и выходит из строя в результате поломки ЭПРА.
При выборе старайтесь не экономить – дешевые лампы собираются из недорогих комплектующих, которые служат максимум полтора года. Также они крайне чувствительны к скачкам напряжения – при просадке на 10-20% балласт может выйти из строя.
Типы ламп
Все устройства можно разделить на два типа:
- Имеющие встроенный ЭПРА.
- Имеющие внешний дроссель.
Встроенные ЭПРА, входящие в состав люминесцентной лампы, обычно подключаются к классическому цоколю E27 или E14 – они могут использоваться в любых люстрах и светильниках. Лампы под внешние ЭПРА представляют собой обычную трубку с цоколем под штырьковые крепления. Обычно их используют в настольных светильниках – дроссель находится внутри корпуса, а лампа является расходным материалом.
Цоколь у них может быть рассчитан на подключение к 2 или 4 штырькам. При замене лампы нужно учитывать тип цоколя, чтобы не перепутать – промышленность выпускает более 10 видов подобных устройств.
Некоторые нюансы
Раньше люминесцентные лампы не очень любили, поскольку они давали “больничный” безжизненный белый свет. Сегодня ситуация изменилась – промышленность выпускает устройства с диапазоном работы от 2700 до 6500 градусов Кельвина, что практически полностью перекрывает возможные диапазоны от “лампового” желтого до практически голубого.
Сгоревший ЭПРА в люминесцентной лампеМощность подобных светильников варьируется от 5 до 23 ватт, для жилых помещений используют 9-15 ваттные варианты. Выбирая себе качественную лампу, обязательно спрашивайте у продавца про устройство люминесцентного светильника. Чем качественнее ЭПРА, тем дольше она прослужит. Стандартный срок службы сертифицированных ламп – 10 00 часов, тогда как дешевые китайские подделки служат 1000-3000 часов. Изделия от лидеров рынка, таких как PHILIPS или OSRAM, легко выхаживают по 15 тысяч часов, особенно если в сети нет провалов напряжения.
Внимание: люминесцентные светильники не работают вместе с диммерами. Если вам важен процесс регулировки уровня освещения, то приобретайте классические лампы накаливания.
И еще один совет напоследок. Не гонитесь за дешевыми устройствами – они служат очень мало. Если хотите сэкономить, то покупайте комплекты из 2, 4, 8 светильников – они обходятся значительно дешевле, чем одиночные. Выбирайте лампы от проверенных производителей – они гарантировано проработают весь положенный им срок.
Люди часто спрашивают, какой газ в люминесцентных лампах используют и не вреден ли он. В большинстве устройств используют аргон с парами ртути. Ничего страшного не произойдет, если вы разобьете ее в доме, но лучше все же не допускать подобного и сдавать их в пункты утилизации.
Лампы люминесцентные мощность и характеристики, делаем проверку
Люминесцентные лампы являются одними из самых популярных источников света. Они показывают очень высокие технические характеристики и способны удовлетворить любые потребности пользователей и внешней среды. Широкий ассортимент позволяет сделать выбор очень качественно и легко. Но случаются и неприятные ситуации, тогда лампы не хотят работать либо проявляются другие неисправности.
Поможем разобраться с вопросом проверки мощности лампы и как проверить люминесцентную лампу, и расскажем для чего это делается. Но мощность не единый показатель, который следует проверить, необходимо убедиться также в общей работоспособности устройства и выявить неисправности, в этом мы вам также поможем.
Классификация люминесцентных ламп
Люминесцентные лампы существуют в ограниченном варианте исполнения. По большему счёту существуют только два варианта, линейные и компактные. Есть ещё кольцевые и U-образные, но их зачастую относят к разновидностям линейных. Они обладают той же структурой, размером и формой стеклянной трубки.
com/embed/-GeEifiVeW8″ frameborder=»0″ allowfullscreen=»allowfullscreen»/>
Люминесцентные источники света разделяют на устройства общего освещения и специализированные приборы. Для общего освещения обычно используют устройства с мощностью от пятнадцати до восьмидесяти ват. При этом могут присутствовать дополнительные характеристики света и различного спектра освещения.
Они могут имитировать обычное освещение различного цвета и оттенка. Критериями разделения таких ламп является мощность, тип разряда, по типу излучения, за формой колбы и по способу распределения света.
Различные формы
Каждый из представленных вариантов обладает отдельными подгруппами, которые более точно характеризуют устройство. Например, мощность может быть 15 ват, такая лампа будет маломощной. При использовании прибора на 80 ват, лампа называется сверхмощной.
Излучение света разделяется на такие типы:
- Естественный свет.
- Излучение цветного спектра света.
- Специальные типы излучения для особых случаев и условий.
Маркировка производится с помощью буквенных обозначений. Начинается она с буквы Л, это показывает что устройство люминесцентное. Следующая буква показывает спектр излучаемого света, например, Д – естественное дневное освещение, Б – белый свет и прочие варианты, где буква соответствует первой букве используемого цвета освещения.
Если источник света выдаёт тёплый свет, тогда перед обозначением цвета будет буква Б, соответственно холодный обозначается буквой Х.
Маркировка для отечественной продукции
Также дополнительные обозначения осуществляют помощью следующих букв:
- Ц – улучшенное качество передачи света.
- ЦЦ – сверх качественная передача.
- Р – показывает что тип рефлекторный.
- Б – устройство быстрого или мгновенного старта.
В самом конце указывают обозначение из цифр, которое отображает мощность прибора в ватах.
Зависимость рабочих характеристик от напряжения
Люминесцентные лампы работают от напряжения в 220 вольт, и при частоте пятьдесят герц, что вполне соответствует нашей стандартной домашней сети. Колебания этих показателей сказывается практически на всех технических характеристиках люминесцентного устройства. Таким образом, ухудшая его работоспособность и качество освещения.
Какие показатели изменяются и насколько это критично:
- Мощность устройства может как падать, так и повышаться при значительных колебаниях входящего напряжения. Таким образом, приобретая сверхмощную лампу для освещения вашего дворика, вы можете получить некачественное слабое освещение из-за низкого показателя входящего напряжения. Многие начинают наговаривать сразу на устройство и связывать падение мощности с браком конструкции, не разобравшись с корнем проблемы. Стоит измерять напряжение в вашей домашней сети, после чего делать выводы о неисправности.
- Качество светового потока. При слишком большой амплитуде изменения сетевого напряжения или при резких перепадах, качество света значительно снижается. Так, при смене частоты тока, коэффициент мерцания значительно увеличивается, лампа начинает излучать сильно мерцающий свет, который перенапрягает глаза и вредит зрению человека. Также свет может быть не насыщенным и тусклым, что тоже увеличивает напряжение глаз и может повредить зрение, если находится в таких условиях продолжительное время. Особенно это сказывается, если работать при таком освещении.
- Срок эксплуатационной службы прибора. Скачки и нестабильное напряжение способствует быстрому изнашиванию и ухудшению работоспособности прибора. Производители утверждают, что допустимой границей колебания тока, является десять процентов от номинального показателя. Превышение этой отметки может сократит срок службы изделия до пятидесяти процентов.
Проверка мощности
Измерение мощности лампочки позволяет создать для неё более подходящие условия и использовать по назначению. Вам ведь не нужна сверхмощная лампа для чтения книги или маломощная для выполнения мелких работ.
Благодаря измерению мощности можно распределить лампочки на необходимые места в соответствии с требованиями. Как правило, проверка производится на тех лампах, где маркировка стёрлась.
Проще всего осуществить измерение мультиметром. С его помощью измерение будет произведено быстро и с высокой точностью. Но если такого прибора нет под рукой, можно воспользоваться другим способом, который также довольно эффективный.
Вам понадобится иметь вольтметр и амперметр. Подключаются они к схеме включения лампы, амперметр последовательно, а вольтметр параллельно. После чего следует включить подачу тока на устройство. Затем снимаете показатели с обоих измерителей и записываете. Разделив полученную силу тока на напряжение, которое показал вольтметр, вы получите значение в ватах. Этот показатель и будет номинальной мощность вашей лампочки.
Тестируем работоспособность
Проверка работоспособности является очень лёгким проверочным процессом. Первое что следует сделать, это, конечно же, попробовать подключить лампу к сети напрямую или установить в соответствующий светильник. После чего можно сделать выводы про исправность и функционирование устройства.
Причины поломоки их ремонт
Более детальная проверка будет заключаться в тестировании каждого элемента по отдельности, но этой займёт значительно больше сил и потребует от вас определённых познаний в данной области.
Причины поломок и их ремонт
Существует множество вариантом неисправности люминесцентных ламп, мы подготовили для вас наиболее распространённые виды и способы их решения.
Разобравшись с причиной неисправности можно легко решить её, давайте приступим к изучению нашего списка:
- Устройство не включается – причина такое неисправности может заключаться в потере работоспособности лампы или обрыве проводов, схем и контактов. Необходимо заменить лампу, если это не помогло, следует искать причину в соединениях и проводах, возможно, где-то присутствует разрыв схемы.
- Лампа начинает мигать, но никак не зажигается до стабильного свечения – Это происходит из-за замыкания в проводах или между контактами. Необходимо проверить изоляцию и при необходимости заменить провода. Если это не помогло, возможно, следует заменить саму лампу.
- Тусклое свечение на обеих, или одном конце устройства – это случается из-за нарушения герметичности колбы. Такое устройство необходимо заменять, ремонту оно не подлежит.
- Потемнение концов и полное выключение в процессе работы – причиной такого явления может стать неисправный балласт. Вам следует произвести его полную замену и снова протестировать устройство.
- Циклическое затухание и зажигание лампы – чаще всего причиной такой неисправности становится стартер. Его следует заменить, как в случае с поломанным балластом.
- Перегорание и почернение концов во время включения – такое случается, когда входящее напряжение не соответствует номинальному. Балластное сопротивление не выдерживает повышенной нагрузки, и лампа сразу перегорает. Также причиной может быть неисправность балласта. В этом случае балласт также заменяется на новый.
Как работает лампа дневного света схема. Из чего состоит люминесцентная лампа
Люминесцентные светильники давно удерживают первенство в освещении нашего быта, чему способствуют долговечность и экономичность данных устройств. Схем подключения люминесцентного светильника существует много, и у каждой из них есть свои особенности.
Сначала разберемся в принципе работы самой лампы . Длинная стеклянная трубка от нескольких сантиметров до… Если учитывать всевозможные современные спирали и изгибы, я не знаю, какова их может быть конечная длина? Мы все же займемся прямыми трубками, которые ограничивались в недавнем прошлом 80 ваттами, и тех, наверное, уже не существует.
Труба заполнена инертным газом с присутствием капельки ртути. Кстати, из-за ртути и утилизируют использованные люминесцентные лампочки в установленном законом порядке, иначе бы случилась экологическая катастрофа.
Суть работы лампы такова: между двумя электродами, представляющими собой нити накала на концах колбы, надо сделать устойчивый электрический пробой , испаряющий и ионизирующий ртуть. Ионизированные пары ртути создают ультрафиолетовое излучение , воздействующее на люминофор , которым изнутри покрыта колба. В зависимости от состава люминофора свечение может принимать все оттенки радуги.
Наверное, слышали о бактерицидных лампах или о кварцевании ? Так вот в этих светильниках люминофор отсутствует, стекло кварцевое, без препятствий пропускающее ультрафиолетовые лучи, более того, в салонах для загара именно такие светильники и применяются, а ультрафиолет может и раковую опухоль нажить — возьмите на заметку!
Как же создается электрический пробой? Рассмотрим некоторые варианты схем подключения люминесцентного светильника.
схема подключения однолампового люминесцентного светильника
Для начала надо разогреть нити накала, чтоб они могли излучать электроны — это называется электронной эмиссией . Данную функцию выполняет стартер . Его контакты настолько близки друг от друга, что при подаче 220В возникает между ними дуга, разогревающая биметаллическую пластину устройства. Пластина соединяется с рядом стоящим контактом, замыкая цепь накала люминесцентной лампы. Цепочка соединений всех элементов схемы представлена на Рис.1, по-моему, комментировать здесь нечего. О роли конденсаторов читайте ниже.
Чтобы не было короткого замыкания, в цепь подключается пускорегулирующий аппарат — ПРА , ограничивающий пусковой ток. Это катушка индуктивности, намотанная на сердечник из электротехнической стали, отсюда и название «дроссель».
Как только разогретые электроды начинают излучать электроны, напряжение на контактах стартера падает, они разрываются, на дросселе возникает высокое напряжение самоиндукции , способное между электродами создать устойчивый электрический пробой. Люминесцентный светильник зажигается, напряжение на лампочке падает наполовину засчет ПРА, и стартер, выполнив свою функцию, уходит на отдых до следующего этапа зажигания. Его в это время можно даже удалить, все равно светильник будет работать.
схема подключения двухлампового люминесцентного светильника
Смотря какие лампочки подключаете. Если лампы-сороковки, то это простое параллельное подключение: к схеме, указанной чуть выше, добавить еще такую, получим двухламповый люминесцентный светильник. Здесь присутствуют два конденсатора (раньше были, теперь их может и не быть). Маленький конденсатор (С1) уничтожает радиопомехи, большой (С2) — дросселя. Резистор R предназначен для разрядки С2 после выключения. Уберем это усложнение — все равно будет успешное зажигание, что, в общем-то, в современных светильниках и делается.
Другое дело, двадцатки — лампочки мощностью 18Вт (Рис.2 и 3). Их рабочее напряжение всего 60В, тогда как сороковки (36Вт) работают на 108 вольтах, поэтому 18-ваттные часто подключаются к сети 220В парой. Соединяются они последовательно, и у каждой — свой стартер, но балласт общий. Четырехламповые светильники 18Вт — просто два двухламповых в одном. Техника зажигания все та же.
Санитарные нормы не рекомендуют длительное пребывание в местах, освещенных стартерными люминесцентными светильниками, ввиду негативного воздействия мерцающего эффекта на зрение. В качестве альтернативы предлагается
схема подключения люминесцентного светильника с ЭПРА.
ЭПРА — это электронный пускорегулирующий аппарат , представляющий собой своеобразный преобразователь частоты и умножитель напряжения. Высокая частота, на которой работает с этим аппаратом люминесцентная лампа, становится не заметна глазу. Такая схема подключения люминесцентного светильника не только безопасна, но еще и экономичнее, в плане потребления электроэнергии, процентов на 15. Значительная потеря в массе из-за отсутствия электротехнической стали делает светильник более удобным при установке.
Основной упор ЭПРА делает на схему подключения двухлампового люминесцентного светильника, схема вычерчивается на крышке аппарата, поэтому проблемы с подключением сводятся к минимуму.
На моем рисунке фаза сети подается на клемму L, рядом — клемма N, на которую подключается «ноль», а на третий контакт. Все остальное видно на чертеже. Конечно, модификаций ЭПРА много, но не стоит бояться замены одного другим, чертеж на крышке все расставит по своим местам, только если монтаж проводов светильника изменить придется.
Люминесцентные лампы — 2-ой в мире по распространенности источник света, а в Стране восходящего солнца они занимают даже 1-ое место, обогнав лампы накаливания. Раз в год в мире делается более 1-го млрд люминесцентных ламп.
1-ые образцы люминесцентных ламп современного типа были показаны американской
компанией General Electric на Глобальной выставке в Нью-Йорке в 1938 году. За 70 лет существования они крепко вошли в нашу жизнь, и на данный момент уже тяжело представить какой-либо большой магазин либо кабинет, в каком не было бы ни 1-го осветительного прибора с люминесцентными лампами.
Люминесцентная лампа — это обычный разрядный источник света низкого давления , в каком разряд происходит в консистенции паров ртути и инертного газа , в большинстве случаев — аргона. Устройство лампы показано на рис. 1.
Пробирка лампы — это всегда цилиндр 1 из стекла с внешним поперечником 38, 26, 16 либо 12 мм. Цилиндр может быть прямым либо изогнутым в виде кольца, буковкы U либо более сложной фигуры. В торцевые концы цилиндра герметично впаяны стеклянные ножки 2, на которых с внутренней стороны смонтированы электроды 3. Электроды по конструкции подобны биспиральному телу накала ламп накаливания и также делаются из вольфрамовой проволоки. В неких типах ламп электроды изготовлены в виде триспирали, другими словами спирали из биспирали. С внешней стороны электроды подпаяны к штырькам 4 цоколя 5. В прямых и U-образных лампах употребляется только два типа цоколей — G5 и G13 (числа 5 и 13 указывают расстояние меж штырьками в мм).
Как и в лампах накаливания, из пробирок люминесцентных ламп воздух кропотливо откачивается через штенгель 6, впаянный в одну из ножек. После откачки объем пробирки заполняется инертным газом 7 и в него вводится ртуть в виде маленький капли 8 (масса ртути в одной лампе обычно около 30 мг ) либо в виде так именуемой амальгамы, другими словами сплава ртути с висмутом, индием и другими металлами.
На биспиральные либо триспиральные электроды ламп всегда наносится слой активирующего вещества — это обычно смесь окислов бария, стронция, кальция, время от времени с маленький добавкой тория.
Если к лампе приложено напряжение большее, чем напряжение зажигания, то в ней меж электродами появляется электронный разряд, ток которого непременно ограничивается какими-либо наружными элементами. Хотя пробирка заполнена инертным газом, в ней всегда находятся пары ртути, количество которых определяется температурой самой прохладной точки пробирки. Атомы ртути возбуждаются и ионизируются в разряде еще легче, чем атомы инертного газа, потому и ток через лампу, и ее свечение определяются конкретно ртутью.
В ртутных разрядах низкого давления толика видимого излучения не превосходит 2 % от мощности разряда, а световая отдача ртутного разряда — всего 5-7 лм/Вт. Но больше половины мощности, выделяемой в разряде, преобразуется в невидимое уф-излучение с длинами волн 254 и 185 нм. Из физики понятно: чем короче длина волны излучения, тем большей энергией это излучение обладает. При помощи особых веществ, именуемых люминофорами, можно перевоплотить одно излучение в другое, при этом, по закону сохранения энергии, «новое» излучение может быть только «менее энергичным», чем первичное. Потому уф-излучение можно перевоплотить в видимое при помощи люминофоров, а видимое в ультрафиолетовое — нельзя.
Вся цилиндрическая часть пробирки с внутренней стороны покрыта узким слоем конкретно такового люминофора 9, который и превращает уф-излучение атомов ртути в видимое. В большинстве современных люминесцентных ламп в качестве люминофора употребляется галофосфат кальция с добавками сурьмы и марганца (как молвят спецы, «активированный сурьмой и марганцем»). При облучении такового люминофора уф-излучением он начинает сиять белоснежным светом различных цветов. Диапазон излучения люминофора — сплошной с 2-мя максимумами — около 480 и 580 нм (рис. 2).
1-ый максимум определяется наличием сурьмы, 2-ой — марганца. Меняя соотношение этих веществ (активаторов), можно получить белоснежный свет различных цветовых цветов — от теплого до дневного. Потому что люминофоры превращают в видимый свет больше половины мощности разряда, то конкретно их свечение определяет светотехнические характеристики ламп.
В 70-е годы прошлого века начали делать лампы не с одним люминофором, а стремя, имеющими максимумы излучения в голубой, зеленоватой и красноватой областях диапазона (450, 540 и 610 нм). Эти люминофоры были сделаны сначало для кинескопов цветного телевидения, где с помощью их удалось получить полностью применимое проигрывание цветов. Композиция 3-х люминофоров позволила и в лампах достигнуть существенно наилучшей цветопередачи при одновременном увеличении световой отдачи, чем при использовании галофосфата кальция. Но новые люминофоры еще дороже старенькых, потому что в их употребляются соединения редкоземельных частей — европия, церия и тербия. Потому в большинстве люминесцентных ламп как и раньше используются люминофоры на базе галофосфата кальция.
Электроды в люминесцентных лампах делают функции источников и приемников электронов и ионов, за счет которых и протекает электронный ток через разрядный просвет. Для того чтоб электроны начали перебегать с электродов в разрядный просвет (как молвят, для начала термоэмиссии электронов), электроды должны быть нагреты до температуры 1100 – 1200 0С. При таковой температуре вольфрам сияет очень слабеньким вишневым цветом, испарение его сильно мало. Но для роста количества вылетающих электронов на электроды наносится слой активирующего вещества, которое существенно наименее термостойко, чем вольфрам, и при работе этот слой равномерно распыляется с электродов и оседает на стенах пробирки. Обычно конкретно процесс распыления активирующего покрытия электродов определяет срок службы ламп.
Для заслуги большей эффективности разряда, другими словами для большего выхода уф-излучения ртути, нужно поддерживать определенную температуру пробирки. Поперечник пробирки выбирается конкретно из этого требования. Во всех лампах обеспечивается приблизительно однообразная плотность тока — величина тока, деленная на площадь сечения пробирки. Потому лампы разной мощности в колбах 1-го поперечника, обычно, работают при равных номинальных токах. Падение напряжения на лампе прямо пропорционально ее длине. А потому что мощность равна произведению тока наальна их д напряжение, то при схожем поперечнике пробирок и мощность ламп прямо пропорционлине. У самых массовых ламп мощностью 36 (40) Вт длина равна 1210 мм, у ламп мощностью 18 (20) Вт — 604 мм.
Большая длина ламп повсевременно заставляла находить пути ее уменьшения. Обычное уменьшение длины и достижение подходящих мощностей за счет роста тока разряда нерационально, потому что при всем этом возрастает температура пробирки, что приводит к повышению давления паров ртути и понижению световой отдачи ламп. Потому создатели ламп пробовали уменьшить их габариты за счет конфигурации формы — длинноватую цилиндрическую пробирку сгибали напополам (U-об- различные лампы) либо в кольцо (кольцевые лампы). В СССР уже в 50-е годы делали U-образные лампы мощностью 30 Вт в пробирке поперечником 26 мм и мощностью 8 Вт в пробирке поперечником 14 мм.
Но кардинально решить делему уменьшения габаритов ламп удалось исключительно в 80-е годы, когда начали использовать люминофоры, допускающие огромные электронные нагрузки, что позволило существенно уменьшить поперечник пробирок. Пробирки стали делать из стеклянных трубок с внешним поперечником 12 мм и неоднократно изгибать их, сокращая тем общую длину ламп. Появились так называемые компактные люминесцентные лампы. По механизму работы и внутреннему устройству малогабаритные лампы не отличаются от обыденных линейных ламп.
Посреди 90-х годов на мировом рынке появилось новое поколение люминесцентных ламп, в маркетинговой и технической литературе называемое «серией Т5» (в Германии — Т16). У этих ламп внешний поперечник пробирки уменьшен до 16 мм (либо 5/8 дюйма, отсюда и заглавие Т5). По механизму работы они также не отличаются от обыденных линейных ламп. В конструкцию ламп внесено одно очень принципиальное изменение — люминофор с внутренней стороны покрыт узкой защитной пленкой, прозрачной и для ультрафиолетового, и для видимого излучения. Пленка защищает люминофор от попадания на него частиц ртути, активирующего покрытия и вольфрама с электродов, по этому исключается «отравление» люминофора и обеспечивается высочайшая стабильность светового потока в течение срока службы. Изменены также состав наполняющего газа и конструкция электродов, что сделало неосуществимой работу таких ламп в старенькых схемах включения. Не считая того — в первый раз с 1938 года — изменены длины ламп таким макаром, чтоб размеры осветительных приборов с ними соответствовали размерам стандартных модулей очень престижных на данный момент навесных потолков.
Люминесцентные лампы, в особенности последнего поколения в колбах поперечником 16 мм, существенно превосходят лампы накаливания по световой отдаче и сроку службы. Достигнутые сейчас значения этих характеристик равны 104 лм/Вт и 40000 часов.
Но люминесцентные лампы имеют и огромное количество недочетов, которые следует знать и учесть при выборе источников света:
1. Огромные габариты ламп нередко не позволяют перераспределять световой поток необходимым образом.
2. В отличие от ламп накаливания, световой поток люминесцентных ламп очень находится в зависимости от окружающей температуры (рис. 3).
3. В лампах содержится ртуть — очень ядовитый металл, что делает их экологически небезопасными.
4. Световой поток ламп устанавливается не сходу после включения, а спустя некое время, зависящее от конструкции осветительного прибора, окружающей температуры и самих ламп. У неких типов ламп, в которые ртуть вводится в виде амальгамы, это время может достигать 10-15 минут.
5. Глубина пульсаций светового потока существенно выше, чем у ламп накаливания, в особенности у ламп с редкоземельными люминофорами. Это затрудняет внедрение ламп в почти всех производственных помещениях и, не считая того, негативно сказывается на самочувствии людей, работающих при таком освещении.
6. Как было сказано выше, люминесцентные лампы, как и все газоразрядные приборы, требуют для включения в сеть использования дополнительных устройств.
На фоне постоянного роста цен на электричество населению приходится экономить. Наиболее простой способ сделать это — установить люминесцентные лампы. Они потребляют в 3-4 раза меньше, чем классические, давая практически такой же световой поток. Давайте разберем, чем хорош есть ли смысл менять обычные лампочки накаливания на “энергосберегайки” и в чем их основные достоинства.
Светильники, работающие по принципу люминесцента, были изобретены в середине 30-х годов прошлого века. Их придумали в США. Распространяться по стране они начали в 50-е годы, в 60-е они появились в Европе и СССР. Сегодня люминесцентные светильники находятся на втором месте по распространенности (первое занимают лампы накаливания), но их процентное соотношение постоянно растет. И даже светодиодные лампы не вытесняют люминесцентные с рынка — они занимают нишу обычных ламп накаливания.
Классические люминесцентные линейные лампы старого типа
Использование этих светильников долгое время было ограничено из-за их больших размеров. Если в общественных заведениях их еще можно было разместить, то для дома они не очень подходили. Но в 90-е годы ученым удалось усовершенствовать конструкцию, уменьшить ширину трубки до 12 мм и скрутить ее в спираль, создав аналог обычной лампочки. Это придало люминесцентным лампам новую жизнь.
Устройство светильника
Теперь давайте разберем, (речь идет о компактных вариантах, или КЛЛ):
- Колба.
- Цоколь.
Колба представляет собой тонкую трубку, завитую в спираль. Внутри трубки расположены электроды из вольфрама, окрашенные оксидами стронция, бария и кальция. Трубка герметично закрыта, в ней находится инертный газ, смешанный с парами ртути. Именно эти пары ионизируются и испускают ультрафиолет. Принцип работы следующий: на вольфрамовые контакты подается напряжение, между ними возникает заряд и происходит запуск светильника. Пары ртути излучают свет в ультрафиолетовом спектре. Чтобы сделать его видимым, на стенки трубки наносят специальное вещество — люминофор. В результате облучения от ультрафиолета он тоже “зажигается” и светится в видимом спектре. При помощи толщины слоя люминофора и его состава можно менять цвет и насыщенность потока. По сути, именно от него зависит, насколько хорошо устройство будет светить.
Внимание: при производстве КЛЛ используются различные редкоземельные элементы, нанесенные в 3-5 слоев в качестве люминофора. Следите за тем, чтобы цоколь не разбился — в нем много вредных веществ. Именно за счет использования более дорогих люминофоров, нанесенных толстым слоем, ученым удалось добиться значительного сокращения длины трубки.
Современные люминесцентные лампы
Изучая следует рассказать про вторую часть конструкции — цоколь. Он не только удерживает светильник в патроне, но и содержит внутри ЭПРА (пуско-регулирующую аппаратуру или, в просторечии, стартер/балласт). Они выдают токи с высокими частотами, из-за чего у комнатных ламп полностью отсутствует эффект мерцания, который хорошо заметен у обычных линейных ламп накаливания. Высокочастотные токи образуются в результате работы инвертора, выпрямляющего их и преобразующего в импульсы. Современные ЭПРА также способны усиливать мощностные коэффициенты, что позволяет создавать активные нагрузки и не компенсировать при работе косинус фи.
Внимание: по сути, срок службы лампы зависит от качества балласта. Расчетное время свечения люминофора около 20 тысяч часов, но устройство обычно работает меньше и выходит из строя в результате поломки ЭПРА.
При выборе старайтесь не экономить — дешевые лампы собираются из недорогих комплектующих, которые служат максимум полтора года. Также они крайне чувствительны к скачкам напряжения — при просадке на 10-20% балласт может выйти из строя.
Типы ламп
Все устройства можно разделить на два типа:
- Имеющие встроенный ЭПРА.
- Имеющие внешний дроссель.
Встроенные ЭПРА, входящие в состав люминесцентной лампы, обычно подключаются к классическому цоколю E27 или E14 — они могут использоваться в любых люстрах и светильниках. Лампы под внешние ЭПРА представляют собой обычную трубку с цоколем под штырьковые крепления. Обычно их используют в настольных светильниках — дроссель находится внутри корпуса, а лампа является расходным материалом.
Цоколь у них может быть рассчитан на подключение к 2 или 4 штырькам. При замене лампы нужно учитывать тип цоколя, чтобы не перепутать — промышленность выпускает более 10 видов подобных устройств.
Некоторые нюансы
Раньше люминесцентные лампы не очень любили, поскольку они давали “больничный” безжизненный белый свет. Сегодня ситуация изменилась — промышленность выпускает устройства с диапазоном работы от 2700 до 6500 градусов Кельвина, что практически полностью перекрывает возможные диапазоны от “лампового” желтого до практически голубого.
Сгоревший ЭПРА в люминесцентной лампе
Мощность подобных светильников варьируется от 5 до 23 ватт, для жилых помещений используют 9-15 ваттные варианты. Выбирая себе качественную лампу, обязательно спрашивайте у продавца про устройство люминесцентного светильника. Чем качественнее ЭПРА, тем дольше она прослужит. Стандартный срок службы сертифицированных ламп — 10 00 часов, тогда как дешевые китайские подделки служат 1000-3000 часов. Изделия от лидеров рынка, таких как PHILIPS или OSRAM, легко выхаживают по 15 тысяч часов, особенно если в сети нет провалов напряжения.
Внимание: люминесцентные светильники не работают вместе с диммерами. Если вам важен процесс регулировки уровня освещения, то приобретайте классические лампы накаливания.
И еще один совет напоследок. Не гонитесь за дешевыми устройствами — они служат очень мало. Если хотите сэкономить, то покупайте комплекты из 2, 4, 8 светильников — они обходятся значительно дешевле, чем одиночные. Выбирайте лампы от проверенных производителей — они гарантировано проработают весь положенный им срок.
Люди часто спрашивают, какой газ в люминесцентных лампах используют и не вреден ли он. В большинстве устройств используют аргон с парами ртути. Ничего страшного не произойдет, если вы разобьете ее в доме, но лучше все же не допускать подобного и сдавать их в пункты утилизации.
Как работает стартер лампы дневного света, как проверить дроссель на светильнике?
Люминесцентные лампы от сети напряжением 220 вольт напрямую не включаются. Для них нужен специальный блок, который называется пускорегулирующая аппаратура, укорочено ПРА. Этот блок состоит из трех элементов: дроссель, конденсатор и стартёр. Нас в этой статье будет интересовать стартер для ламп дневного света (ЛДС), что он собой представляет, какие функции на него возложены.
По сути, стартёр – это стеклянная колба, заполненная газом (обычно используется или неон, или смесь гелий с водородом). То есть, это газоразрядная лампа миниатюрного типа, внутри которой тлеет разряд. Здесь же расположены электроды, поддерживающие данный разряд. Существует стартеры двух типов: симметричные и несимметричные. В первом все электроды являются подвижными, во втором – один стационарный. Электроды изготавливаются из биметалла. Чаще всего в люминесцентных светильниках используются конструкции симметричные.
Газоразрядная лампа помещается в металлический или пластмассовый корпус. Крепится она на специальной панели диэлектрического типа, где установлены два контакта. Здесь же устанавливается и конденсатор, который подсоединен к газоразрядной лампе параллельно.
Как работает
Когда в схему, где установлен стартер, подается напряжение, оно попадает на его электроды, между которыми появляется тлеющий разряд. Сила тока разряда незначительная, в пределах от 20 до 50 мА. Именно этот разряд начинает нагревать электроды, которые под действием тепла изгибаются и через какое-то время соприкасаются друг с другом. То есть, электрическая цепочка замыкается, и ток подается далее на дроссель, конденсатор и на лампы дневного света. При этом тлеющий разряд прекращается.
Обратите внимание, что напряжение включение стартера должно быть чуть меньше номинального сети, то есть, 220 вольт, но при этом оно должно быть больше, чем напряжения включения самих ламп дневного света.
Итак, электроды соприкоснулись между собой, что дальше? Так как между ними нет тлеющего разряда, соответственно нет температуры, которая их нагревает. Происходит их остывание, что в конечном итоге приведет к размыканию электродов и цепочки. Именно в этот момент появляется так называемое импульсное напряжение высокой величины внутри дросселя. От него и происходит зажигание люминесцентного осветительного устройства. В процессе работы самой лампы дневного света в цепочке ток имеет значение, равное силе тока источника света. Падение же напряжения, а соответственно и силы тока, делится между самой осветительным прибором и дросселем на равные части.
Зажигание
Как происходит зажигание стартера для лампы? Необходимо отметить, что на эффективность зажигания влияют две позиции:
- величина силы тока на катодах лампы в момент размыкания электродов;
- продолжительность нагрева катодов.
Электромагнитная сила внутри дросселя зависит от силы тока в нем. Понятно, что недостаточность силы тока не приведет к зажиганию люминесцентного устройства. А сила тока напрямую зависит от напряжения в цепи. И если последний показатель ниже номинального, то есть большая вероятность, что лампа сразу не зажжется. Поэтому стартер будет в автоматическом режиме пытаться снова и снова проделать ту же операцию, пока она не загорится. Периодичность попыток стандартная – 10 секунд.
Если в питающей сети напряжение падает ниже 80% от номинального, то этого недостаточно, чтобы электроды нагрелись до необходимой температуры. То есть, при таком падении осветительное устройство просто не зажигается.
Конденсатор
Конденсатор в системе ПРА устанавливается параллельно стартеру. Эти два прибора взаимосвязаны. Основное назначение конденсатора:
- снижение помех в процессе замыкания и размыкание электродов стартера;
- увеличения длительности действия импульса при размыкании электродов;
- предотвращение спаивания электродов за счет высокого импульсного напряжения.
Чаще всего в ПРА используются конденсаторы емкостью 0,003-0,1 мкФ.
Как долго работает
Со временем эксплуатации стартера напряжение, создающее тлеющий разряд, снижается. Это может привести к обратному эффекту, когда при работающем люминесцентном светильнике электроды стартера вдруг начнут самопроизвольно замыкаться, что приведет к гашению самой лампы. Тут же будет происходить размыкание электродов, а соответственно и зажигание светильника. Оба процесса моментальные, что приводит к миганию светильника. Это не только влияет на эффективность его работы, но и снижает срок эксплуатации дросселя, потому что при такой работе он будет просто перегреваться.
Поэтому совет – периодически проверять стартер, и при необходимости менять его на новый. Как только увидели, что светильник замигал, не откладывайте замену в долгий ящик.
Схема подключения люминесцентного светильника
Схема подключения лампы дневного света – это несколько вариантов, зависящих от количества ламп дневного света в светильнике. Вот самая простейшая из них на рисунке ниже:
Здесь четко видно, что две спирали лампы дневного света подключаются: одна через дроссель, вторая через стартер. Такое соединение чаще всего применяется, когда необходимо подключить один источник света. Если, к примеру, есть необходимость подключить светильник с двумя лампами дневного света, то приходится устанавливать два стартера на каждую, как это хорошо видно на рисунке схемы ниже (вариант номер два):
При этом необходимо учитывать, что мощность дросселя не должна быть меньше мощности двух источников света. К примеру, если у него мощность 40 Вт (этот показатель наносится на корпус элемента), то две лампы в сумме должны иметь мощность не больше 40 Вт (к примеру, по 20 Вт).
Одной из ярких представителей этой категории осветительных приборов является марка ЛВО 4х18. То есть, это металлический прибор с четырьмя лампами, мощностью каждой по 18 Вт. ЛВО 4х18 чаще всего используются в качестве встраиваемых осветительных устройств. Их обычно монтируют в потолках Армстронг, в гипсокартонных потолочных конструкциях и в других видах потолков. Причины популярности марки ЛВО 4х18 – это невысокая цена от отечественного производителя, простота установки, эффективное свечение и простая схема подключения.
Как работают стартеры люминесцентных ламп
Стартер представляет собой небольшую газоразрядную лампу тлеющего разряда. Стеклянная колба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмассовый корпус, на верхней крышке которого имеется смотровое окно.
Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания.
В некоторых конструкциях стартеров смотровое окно отсутствует. Стартер имеет два электрода. Различают несимметричную и симметричную конструкции стартеров. В несимметричных стартерах один электрод неподвижный, а второй подвижный, изготовлен
из биметалла.
В настоящее время наибольшее распространение получила симметричная конструкция стартеров, у которых оба электрода изготовляются из биметалла. Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.
Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего напряжения, устанавливающегося на люминесцентной лампе при ее горении.
Схема подключения двух люминесцентных ламп через стартер.
При включении схемы на напряжение сети оно полностью окажется приложенным к стартеру. Электроды стартера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА). Этот ток нагревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится.
Через дроссель и последовательно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, чтобы ток предварительного подогрева катодов в 1,5 2,1 раза превышал номинальный ток лампы. Длительность предварительного подогрева катодов определяется временем, в течение которого электроды стартера остаются замкнутыми.
Когда электроды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды размыкаются. Так как дроссель обладает большой индуктивностью, то в момент размыкания электродов стартера в дросселе возникает большой импульс напряжения, зажигающий лампу.
После зажигания лампы в цепи установится ток, равный номинальному рабочему току лампы. Этот ток обусловит такое падение напряжения на дросселе, что напряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер включен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стартере, его электроды останутся разомкнутыми при горении лампы.
Стартеры тлеющего заряда.
Возможность зажигания лампы зависит от длительности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера. Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с. и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Согласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до 10 сек.
Параллельно электродам стартера включен конденсатор емкостью 0,003-0,1 мкф. Этот конденсатор обычно размещается в корпусе стартера. Конденсатор выполняет две функции: снижает уровень радиопомех, возникающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденсатор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряжения, образуемого в момент размыкания электродов стартера, и увеличивает его длительность.
При отсутствии конденсатора напряжение на лампе очень быстро возрастает, достигая нескольких тысяч вольт, но продолжительность его действия очень небольшая. В этих условиях резко снижается надежность зажигания ламп. Кроме того, включение конденсатора параллельно электродам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в результате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.
Принципиальная схема включения люминесцентной лампы.
Применение конденсаторов в стартёре не обеспечивает полного подавления радиопомех, создаваемых люминесцентной лампой. Поэтому необходимо дополнительно на входе схемы установить два конденсатора емкостью не менее 0,008 мкф каждый, соединенных последовательно, и среднюю точку заземлить.
Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметрированной обмоткой где обмотка дросселя разделена на две совершенно одинаковые части, имеющие равное число витков, намотанных на один общий сердечник.
Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дросселя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмотками.
В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т. е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величина которого определяется соотношением индуктивного сопротивления дросселя и активного сопротивления всей сети. Такие схемы называются отстающими.
В ряде случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лампу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается конденсатор, емкость которого рассчитывается таким образом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.
Устройство люминесцентной лампы.
В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину. Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки.
При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возрастает, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера компенсирующая катушка отключается, и в рабочем режиме лампы она не участвует. Индуктивность дополнительной катушки компенсирует емкость конденсатора, установленного в стартере. Поэтому в схему вводится дополнительный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.
Один из недостатков рассмотренных схем — низкий коэффициент мощности. Он составляет величину 0,5-0,6. Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании таких аппаратов согласно правилам устройства электроустановок (ПУЭ) для повышения низкого коэффициента мощности необходимо предусматривать групповую компенсацию коэффициента мощности, обеспечивающую доведение его для всей осветительной установки до величины 0,9-0,95.
При невозможности или экономической неэффективности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, изготовленный по этой схеме, называют компенсированным. Расчеты показывают, что для ламп мощностью 20 и 40 вт при напряжении 220 в емкость конденсатора составляет 3-5 мкф.
Основной недостаток стартерных схем зажигания — их низкая надежность, которая обусловлена ненадежностью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со снижением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических электродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает контактирования электродов, и лампа не будет зажигаться. Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.
Схема запуска сгоревшей люминисцентной лампы.
У люминесцентной лампы по мере старения наблюдается увеличение ее рабочего напряжения, а у стартера, наоборот, с ростом срока службы напряжение зажигания тлеющего разряда уменьшается. В результате этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет.
При размыкании электродов стартера лампа вновь загорается и наблюдается мигание лампы. Такое мигание лампы, помимо вызываемого им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лампы. Подобные же явления могут иметь место при использовании старых стартеров в сети с пониженным уровнем напряжения. При появлении миганий лампы необходимо заменить стартер на новый.
Стартеры имеют значительные разбросы времени контактирования электродов, и оно очень часто недостаточно для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после нескольких промежуточных попыток, что увеличивает длительность переходных процессов, снижающих срок службы ламп.
Общий недостаток всех одноламповых схем — невозможность уменьшить создаваемую одной люминесцентной лампой пульсацию светового потока. Поэтому такие схемы можно применять в помещениях, где устанавливается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульсации светового потока лампы включать в различные фазы трехфазной цепи. Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от двух-трех ламп, включенных в разные фазы сети.
Двухламповые схемы включения. Применение двухламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пульсации светового потока каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. Поэтому суммарный световой поток двух ламп никогда не будет равен нулю, а колеблется около некоторого среднего значения с частотой, меньшей, чем при одной лампе. Кроме того, эти схемы обеспечивают высокий коэффициент мощности комплекта лампа — ПРА.
Наибольшее распространение получила двухламповая схема, называемая часто схемой с расщепленной фазой. Схема состоит из двух элементов-ветвей: отстающей и опережающей. В первой ветви ток отстает по фазе от напряжения на угол 60°, а во второй — опережает на угол 60°. Благодаря этому ток во внешней цепи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.
Эту схему можно отнести к группе компенсированных, и по сравнению с одноламповой некомпенсированной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повышения коэффициента мощности. При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для двух и одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.
Люминесцентные лампы
Применение трубчатых люминесцентных ламп позволяет изменить визуальную геометрию и дизайн освещаемых помещений.
Люминесцентные лампы являются вторым по распространенности источником света, а в некоторых странах (например, в Японии) они лидируют, оставив позади лампы накаливания. Каждый год в мире выпускается больше миллиарда этих ламп.
Первые люминесцентные лампы в том виде, в котором они дошли до наших дней, были созданы американской компанией General Electric в 1938 году. За прошедшие годы люминесцентные лампы проникли во многие сферы деятельности людей и сейчас используются практически в каждом магазине или офисе.
Принцип образования электромагнитного излучения в люминесцентных лампах
Люминесцентный источник — это газоразрядная лампа низкого давления, в которой электрический разряд образуется в смеси ртутных паров и инертного газа (обычно аргона). Колба лампы всегда выполняется в виде стеклянного цилиндра 12, 16, 26 или 38 миллиметров в диаметре. Цилиндр может выполняться изогнутым в форме окружности, буквы U или другой сложной фигуры. По обеим сторонам цилиндра к нему герметично припаяны ножки из стекла, с внутренней стороны которых расположены электроды.
По своей конструкции электроды напоминают биспиральное тело ламп накаливания и тоже изготавливаются в виде вольфрамовой нити. В некоторых лампах электроды выполнены в форме триспирали, в которых из биспирали образована новая спираль. С внешней стороны электроды припаяны к цоколю. В прямых и U-образных люминесцентных лампах применяется две разновидности цоколей — G5 и G13 (цифры обозначают расстояние между ножками в миллиметрах).
Подобно лампам накаливания, воздух из колб люминесцентных ламп полностью откачивается штенгелем, впаянным в ножку. После откачивания воздуха в колбу нагнетается инертный газ и вводится небольшая капля ртути (около 30 мг) или сплав ртути с другими металлами (висмут, индий и т.д.). На устанавливаемые в лампах электроды наносится слой из смеси оксидов стронция, кальция, бария, тория для повышения их активности.
Если на лампу подано напряжение, превышающее напряжение зажигания, то между электродами происходит разряд, ток которого должен ограничиваться дополнительными внешними компонентами. Колба лампы заполнена инертным газом, но в ней постоянно находятся ртутные пары, объем которых зависит от температуры самого холодного участка колбы. Частицы ртути ионизируются при разряде быстрее частиц инертного газа, поэтому свечение лампы и проходящий через нее ток определяются именно ртутью.
Меры, обеспечивающие увеличение доли видимого излучения
В ртутных лампах низкого давления доля излучения составляет не более двух процентов от мощности самого разряда, а светоотдача разряда — лишь 5–7 лм/Вт. Однако больше половины мощности разряда преобразуется в ультрафиолет с волнами длиной 254 и 185 нм. Из курса физики известно, что при сокращении длины волны излучения увеличивается энергия этого излучения. С помощью люминофоров можно преобразовать одно излучение в другое, причем в соответствии с законом сохранения энергии преобразованное излучение будет менее энергичным, чем первоначальное. Этим путем ультрафиолет можно преобразовать в видимое излучения, применяя люминофоры, а обратное преобразование невозможно.
Изнутри цилиндрическая колба покрыта слоем специального вещества – люминофора, который преобразует ультрафиолетовые лучи ртутных паров в видимый свет. Чаще всего в люминесцентных лампах в качестве люминофора применяется галофосфат кальция с добавлением марганца и сурьмы. При попадании на такой люминофор ультрафиолетовых лучей он начинает светиться сплошным белым светом различных тонов. Излучение люминофора имеет сплошной спектр с двумя максимумами — 480 и 580 нм. Первый максимум зависит от доли сурьмы в люминофоре, а второй — марганца. Изменение содержания этих веществ позволяет получать белый свет различных тональностей цвета — от теплых оттенков до оттенков дневного света.
Корректировка цветопередачи
В 70-е годы прошлого века начался выпуск ламп с тремя люминофорами, обладающими максимумами спектра излучения в синей, зеленой и красной областях (450, 540 и 610 нм, соответственно). Эти люминофоры изначально создавались для кинескопов цветных телевизоров, и с их помощью формировалась качественная передача цветов. Совместное применение трех люминофоров дало возможность и в лампах добиться улучшения цветопередачи и светоотдачи по сравнению с применением одного люминофора. Однако такие люминофоры имеют довольно высокую стоимость по сравнению с традиционными, что обусловлено применением в них редких химических элементов — европия, тербия и церия. Поэтому до сих пор чаще всего в люминесцентных лампах используются традиционные люминофоры на основе галофосфата кальция.
В люминесцентных лампах электроды являются как источниками, так и приемниками электронов и ионов, которые обеспечивают протекание электрического тока через разрядный промежуток. Для попадания электронов в разрядный промежуток они должны нагреваться до 1100–1200 градусов. При таких высоких температурах вольфрам излучает слабое свечение вишневого оттенка, а его испарение очень незначительно. Для повышения числа электронов электроды покрываются слоем активирующего состава, имеющим значительно меньшую термостойкость, чем вольфрам, и в процессе работы слой распыляется и оседает на внутренних стенках колбы. Главным образом именно этот процесс распыления активирующего слоя определяет продолжительность службы ламп.
Потребность в разноразмерных колбах
Для повышения эффективности разряда, то есть для максимального излучения ртутного ультрафиолета, нужно поддерживать необходимую температуру самой колбы, для чего в каждом конкретном случае подбирается диаметр колбы. Все лампы имеют приблизительно равную плотность тока, исчисляющуюся отношением величины тока к площади сечения колбы, поэтому лампы разной мощности в одинаковых колбах обычно работают при одинаковых номинальных токах. Снижение напряжения на лампе пропорционально ее длине, а так как мощность является произведением величины тока на напряжение, то при равном диаметре колб мощность ламп пропорциональна их длине. У ламп мощностью 36–40 Вт длина колбы равна 1210 мм, а у ламп мощностью 18–20 Вт — 604 мм.
Укорачивание ламп и последующее достижение необходимых мощностей за счет повышения разрядного тока не оправдывает себя, так как при этом повышается температура колбы, что ведет к повышению давления ртутных паров и снижению светоотдачи ламп. Производители ламп уменьшают их общую длину с помощью изменения формы ламп, изготавливая U-образные или кольцевые лампы. Уже в 50-е годы ХХ века в СССР изготавливались U-образные лампы мощностью 30 Вт с диаметром колбы 26 мм и мощностью 8 Вт с диаметром колбы 14 мм.
Полностью устранить проблему снижения размеров ламп получилось лишь в 80-е годы с началом применения люминофоров, которые допускают использование высоких электрических нагрузок. Колбы люминесцентных ламп стали изготавливать из трубок с диаметром 12 мм и изгибать их, уменьшая этим общую длину ламп. Началось производство компактных люминесцентных ламп, по конструкции и принципу работы не отличающихся от линейных ламп.
Люминесцентные лампы прочно вошли в нашу жизнь как один из экономичных источников света. Благодаря не ослабевающему вниманию к ним со стороны изобретателей, они продолжают быть интересны и производителям светотехнической продукции.
Как работает люминесцентная лампа. Электронный балласт компактной люминесцентной лампы дневного света фирмы DELUX
Очередная прогулка по магазинам завершилась покупкой балласта для ламп дневного освещения. Балласт на 40 ватт, способен питать одну мощную ЛДС или две маломощные по 20 ватт.Интересно то, что цена такого балласта недорога, всего 2 доллара. Для некоторых, покажется, что все-таки 2$ за балласт дороговато, но после вскрытия, оказалось, что в нем использованы компоненты в разы дороже общей цены балласта. Одна только пара мощных высоковольтных транзисторов 13009 уже стоят более доллара каждый.
Кстати, срок службы ЛДС зависит от способа запуска лампы. Из графиков видно, что холодный старт резко сокращает срок службы лампы.
Особенно в случае применения упрощенных электронных балластов, которые резко выводят ЛДС в рабочий режим. Да и способ питания лампы постоянным током также снижает срок службы. Незначительно — но всё-таки снижает. Примеры — на схемах ниже:
Простая схема электронного балласта (без микросхемы управления) почти мгновенно зажигает лампу. И для долговечности лампы это плохо. За короткое время нить накала не успевает разогреться, а высокое напряжение, приложенное между ее нитями, вырывает из нити накала требуемое количество электронов, необходимое для зажигания лампы, и этим разрушает накал, понижая его эмиссионную способность. Типовая принципиальная схема электронного балласта:
Поэтому рекомендуется выбирать белее серьёзную схему, с задержкой подачи питания (клик для увеличения):
В схеме купленного балласта особенно порадовал сетевой фильтр — чего нет в электронных трансформаторов для галогенных ламп. Фильтр оказался не простой: дроссель, варистор, предохранитель (не резистор как в ЭТ, а самый настоящий предохранитель), емкости перед и после дросселя. Дальше идет выпрямитель и два электролита — это не похоже на китайцев.
После уже идет стандартная, но в разы улучшенная схема двухтактого преобразователя. Тут сразу на глаза бросаются две вещи — теплоотводы транзисторов и применение более мощных резисторов в силовых цепях, обычно китайцам без разницы, где ток в цепи больше или меньше, они используют стандартные резисторы 0,25вт.
После генератора идут два дросселя, именно благодаря им происходит повышение напряжения, тут тоже все очень аккуратно, никаких претензий. Даже в мощных электронных трансформаторах китайские производители редко используют теплоотводы для транзисторов, но здесь как видим они есть, и не только есть, но и очень аккуратны — транзисторы прикручены через дополнительные изоляторы и через шайбы.
С обратной стороны плата тоже сияет аккуратностью монтажа, никаких острых выводов и испорченных дорожек, олово так-же не пожалели, все очень красиво и качественно.
Подключил устройство — оно отлично работает! Я уже начал думать, что сборку делали немцы, под суровым контролем, но тут вспомнил цену и почти поменял свое мнение о китайских производителях — молодцы парни, поработали на славу! Обзор подготовил АКА КАСЬЯН.
Обсудить статью ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС
Если кто-то не знает, как работают люминесцентные лампы, то важным моментом здесь является электрический ток, но не в плане питания, а в плане его вида. Люминесцентные лампы работают от постоянного тока, поэтому в электрическую схему светильника устанавливается так называемый регулируемый высокочастотный инвертор или по-другому электронный балласт. По сути, это обычный выпрямитель, только от стандартного прибора его отличает небольшие размеры, а соответственно и небольшой вес. Как приятное добавление инвертор не издает шума при работе. Давайте рассмотрим в этой статье, что собой представляет электронный балласт – схема его внутренней начинки.
В первую очередь необходимо отметить тот факт, что прибор отвечает не только за выпрямление переменного тока, но и за пуск самой лампы. То есть, его можно сравнить с обычным (стандартным) дроссельным контактом. Правда, надо быть до конца откровенным и сказать, что электронный балласт для люминесцентных ламп является прибором капризным, поэтому его срок годности оставляет желать лучшего.
Разновидности и назначение
В настоящее время производители предлагают два основных типа:
- Одиночные.
- Парные.
Здесь все понятно. Одиночные предназначаются для включения одной лампы, парные для нескольких, соединенных в единую сеть. Самое важно, выбирая инвертор, необходимо учитывать общую яркость светильника в целом, потому что именно по этому показателю и подбирается балласт для люминесцентных ламп.
Итак, кроме вышеописанных функций, для чего еще необходим электронный балласт.
- Установленный в схему инвертор должен обеспечить подачу постоянного тока, тем самым обеспечить источник света равномерным излучением без мерцания.
- При помощи него производится быстрое включение лампы. Без него она загорится тоже, но только через несколько секунд и при работе будет обязательно гудеть.
- Скачки напряжения – враг номер один для системы освещения. Так вот балласт сглаживает данные скачки за счет выпрямления тока в независимости от его амплитуды.
- В схеме электронного балласта есть специальный регулятор. Он фиксирует неисправности внутри самого светильника. Если поломка обнаружена, регулятор тут же отключает источник света от подачи электрического тока.
Внимание! Многие производители в схемах используют различные детали и элементы, с помощью которых можно экономить потребляемую электроэнергию. Во многих моделях данный показатель составляет 20%. Неплохой результат.
Как работает балласт
Как уже было сказано выше, балласт для люминесцентных ламп – это практически дроссель. Поэтому данный прибор и выпрямляет электрический ток, и тут же нагревает катоды люминесцентных ламп. После чего на них поступает то количество напряжения, которое быстро включает осветительный прибор. Напряжение выставляется специальным регулятором, который установлен в схеме инвертора, именно им устанавливается диапазон напряжений. Вот почему мерцание источника света отсутствует.
В схеме также присутствует свой собственный стартер. Он отвечает за передачу напряжения и за зажигание. Когда включается лампа, на микросхеме балласта напряжение падает, соответственно снижается и сила тока. Это дает возможность найти оптимальный режим работы светильника.
В настоящее время люминесцентные светильники комплектуются двумя видами балластов:
- С плавным запуском – это так называемый холодный вариант.
- Быстрый запуск – горячий. Сюда в основном относятся дроссели ПРА.
| |
В данной статье я расскажу распространенные поломки современных «балластов» люминесцентных ламп, способы их ремонта, приведу аналоги радиодеталей, которые можно использовать для ремонта. Т.к. данные лампы еще довольно распространены в быту (например, у меня ежедневно используется 5 таких ламп), думаю, тема более чем актуальна.
Если у Вас перестала светить люминесцентная лампа, первым делом необходимо заменить саму люминесцентную «колбу». В ней может быть две неисправности: выход из строя одного из каналов (обрыв спирали накала) или банальный эффект «старения».
Если в темноте на включенной лампе наблюдается еле заметное свечение нитей накала, то, вероятней всего, поломка электронного «балласта» заключается в пробое конденсатора, соединяющего нити накаливания (см. рис. п.2). Его емкость 4,7n, рабочее напряжение 1,2kV. Лучше заменить на такой же, только с рабочим напряжением – 2kV. В дешевых балластах встречаются конденсаторы на 400 или даже 250V. Они и выходят первые из строя.
Когда действия из предыдущего абзаца не помогли, нужно начинать проверку радиодеталей с предохранителя на схеме. Он часто есть в наличии, но у меня на плате он отсутствует (см. рис. п.1).
Следующее на что следует обратить внимание – транзисторы (см. рис. п.1). Они могут выйти из строя из-за скачков напряжения, например, если дома стоит релейный стабилизатор напряжения, или часто Вами или соседями используется сварка. Данные транзисторы для замены можно найти в блоках питания энергосберегающих ламп. Т.к. такие лампы часто выходят из строя из-за поломок колбы, то схема и, соответственно, транзисторы, остаются рабочими.
Если таких лам нет, то можно заменить транзисторы аналогами. Аналоги транзисторов 13001, 13003, 13005, 13007, 13009 приведены в таблице ниже. Самими популярными заменами являются такие аналоги как КТ8164А и КТ872А.
Иногда нужно прозвонить остальные радиодетали и заменить их, в случае, если найдены поврежденные. После каждого этапа ремонта балласта люминесцентных ламп, первое их включение рекомендуется производить через последовательно включенную лампочку накаливания в 40 Ватт. По ее свечению можно будет увидеть наличие короткого замыкания.
Важно помнить, что современные электронные балласты – это импульсные устройства, которые включать без нагрузки (в нашем случае – люминесцентной лампы) строго запрещается, т.к. это приведет к выходу их из строя.
В случае если Вы все перепробовали, но ничего не помогло, или возиться с балластом нет желания, то можно использовать импульсный блок питания от энергосберегающей лампы. Его размеры настолько малы, что легко помещаются в некоторых корпусах для люминесцентных ламп. В таком случае нити накала люминесцентной лампы подключаются к контактам на плате, куда подключались контакты колбы энергосберегающей лампы. Мощность блока питания должна приблизительно соответствовать мощность лампы. Лично у меня 36W люминесцентную лампу питает блок питания от лампы 32W.
Лампы накаливания хотя и стоят дешево, но потребляют много электроэнергии, поэтому многие страны отказываются от их производства (США, страны Западной Европы). Взамен им приходят компактные люминесцентные лампы дневного света (энергосберегающие), их закручивают в те же патроны Е27, что и лампы накаливания. Однако стоят они в 15-30 раз дороже, зато в 6-8 раз дольше служат и в 4 раза меньше потребляют электроэнергии, что и определяет их судьбу. Рынок переполнен разнообразием таких ламп, в основном китайского производства. Одна из таких ламп, фирмы DELUX, показана на фото.
Ее мощность 26 Вт -220 В, а блок питания, называемый еще электронным балластом, расположен на плате размерами 48×48 мм (рис.1 ) и находится в цоколе этой лампы.
Ее радиоэлементы размещены на монтажной плате навесным монтажом, без применения ЧИП-элементов. Принципиальная схема нарисована автором из осмотра монтажной платы и показана на рис.2.
Примечание к схеме: на схеме отсутствует точка, обозначающая соединение динистора, диода D7 и базы транзистора EN13003A
Вначале уместно напомнить принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для зажигания люминесцентной лампы необходимо разогреть ее нити накала и приложить напряжение 500…1000 В, т.е. значительно больше, чем напряжение электросети. Величина напряжения зажигания прямо пропорциональна длине стеклянной колбы люминесцентной лампы. Естественно, для коротких компактных ламп она меньше, а для длинных трубчатых ламп — больше. После зажигания лампа резко уменьшает свое сопротивление, а значит, надо применять ограничитель тока для предотвращения КЗ в цепи. Схема электронного балласта для компактной люминесцентной лампы представляет собой двухтактный полумостовой преобразователь напряжения. Вначале сетевое напряжение с помощью 2-полупериодного моста выпрямляется до постоянного напряжения 300…310 В. Запуск преобразователя обеспечивает симметричный динистор, обозначенный на схеме Z, он открывается, когда, при включении электросети, напряжение в точках его подключения превысит порог срабатывания. При открывании, через динистор проходит импульс на базу нижнего по схеме транзистора, и преобразователь запускается. Далее двухтактный полумостовой преобразователь, активными элементами которого являются два транзистора n-p-n, преобразует постоянное напряжение 300…310 В, в высокочастотное напряжение, что позволяет значительно уменьшить габариты блока питания. Нагрузкой преобразователя и одновременно его управляющим элементом является тороидальный трансформатор (обозначенный в схеме L1) со своими тремя обмотками, из них две управляющие обмотки (каждая по два витка) и одна рабочая (9 витков). Транзисторные ключи открываются противофазно от положительных импульсов с управляющих обмоток. Для этого управляющие обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Отрицательные выбросы напряжения с этих обмоток гасятся диодами D5, D7. Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке. Переменное напряжение с рабочей обмотки подается на люминесцентною лампу через последовательную цепь, состоящую из: L3 — нити накала лампы -С5 (3,3 нФ 1200 В) — нити накала лампы — С7 (47 нФ/400 В). Величины индуктивностей и емкостей этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя. При резонансе напряжений в последовательной цепи, индуктивное и емкостное сопротивления равны, сила тока в цепи максимальна, а напряжение на реактивных элементах L и С может значительно превышать прикладываемое напряжение. Падение напряжения на С5, в этой последовательной резонансной цепи, в 14 раз больше, чем на С7, так как емкость С5 в 14 раз меньше и его емкостное сопротивление в 14 раз больше. Следовательно, перед зажиганием люминесцентной лампы максимальный ток в резонансной цепи разогревает обе нити накала, а большое резонансное напряжение на конденсаторе С5 (3,3 нФ/1200 В), включенного параллельно лампе, зажигает лампу. Обратите внимания на максимально допустимые напряжения на конденсаторах С5=1200 В и С7= 400 В. Такие величины подобраны неслучайно. При резонансе напряжение на С5 достигает около 1 кВ и он должен его выдерживать. Зажженная лампа резко уменьшает свое сопротивление и блокирует (закорачивает) конденсатор С5. С резонансной цепи исключается емкость С5, и резонанс напряжений в цепи прекращается, но уже зажженная лампа продолжает светиться, а дроссель L2 своей индуктивностью ограничивает ток в зажженной лампе. При этом преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь процесс зажигания длится меньше 1 с. Следует отметить, что на люминесцентную лампу все время подается переменное напряжение. Это лучше, чем постоянное, так как обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок ее службы. При питании ламп от постоянного тока срок ее службы уменьшается на 50%, поэтому постоянное напряжения на газоразрядные лампы не подают.
Назначения элементов преобразователя.
Типы радиоэлементов указаны на принципиальной схеме (рис.2).
1. EN13003A- транзисторные ключи (на монтажной схеме производители их почему-то не обозначили). Это биполярные высоковольтные транзисторы средней мощности, n-p-n проводимости, корпус ТО-126, их аналоги MJE13003 или КТ8170А1 (400 В; 1,5 А; в импульсе 3 А), можно и КТ872А (1500 В; 8 А; корпус Т26а), но по габаритам они больше. В любом случае надо правильно определить выходы БКЭ, так как у разных производителей могут быть разные их последовательности, даже у одного и того же аналога.
2. Тороидальный ферритовый трансформатор, обозначенный производителем L1, размеры кольца 11x6x4,5, вероятная магнитная проницаемость 2000, имеет 3 обмотки, две из них по 2 витка и одна 9 витков.
3. Все диоды D1-D7 однотипные 1N4007 (1000 В, 1 А), из них диоды D1-D4 — выпрямительный мост, D5, D7 — гасят отрицательные выбросы управляющего импульса, a D6 — разделяет источники питания.
4. Цепочка R1СЗ обеспечивает задержку пуска преобразователя с целью «мягкого пуска» и не допущения броска пускового тока.
5. Симметричный динистор Z типа DB3 Uзс.max=32 В; Uoc=5 В; Uнеотп.и.max=5 В) обеспечивает первоначальный запуск преобразователя.
6. R3, R4, R5, R6 — ограничительные резисторы.
7. С2, R2 — демпферные элементы, предназначенные для гашения выбросов транзисторного ключа в момент его закрытия.
8. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. Вначале дроссель участвует в резонансе напряжений (совместно с С5 и С7) для зажигания лампы, а после зажигания своей индуктивностью гасит ток в цепи люминесцентной лампы, так как зажженная лампа резко уменьшает свое сопротивление.
9. С5 (3,3 нФ/1200 В), С7 (47 нФ/400 В) — конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания С7 поддерживает свечения.
10. С1 — сглаживающий электролитический конденсатор.
11. Дроссель с ферритовым сердечником L4 и конденсатор С6 составляют заградительный фильтр, не пропускающий импульсные помехи преобразователя в питающую электросеть.
12. F1 — мини-предохранитель в стеклянном корпусе на 1 А, находится вне монтажной платы.
Ремонт.
Перед тем как ремонтировать электронный балласт, необходимо «добраться» до его монтажной платы, для этого достаточно ножом разъединить две составные части цоколя. При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением!
Перегорание (обрыв) накальных спиралей люминесцентной лампы , при этом электронный балласт остается исправным. Это типичная неисправность. Восстановить спираль невозможно, а стеклянные люминесцентные колбы к таким лампам отдельно не продаются. Какой же выход? Или приспособить исправный балласт к 20-ватному светильнику, имеющему прямую стеклянную лампу, вместо его «родного» дросселя (светильник будет работать надежнее и без гула) или использовать элементы платы как запчасти. Отсюда рекомендация: закупайте однотипные компактные люминесцентные лампы — легче будет ремонтировать.
Трещины в пайке монтажной платы. Причина их появления — периодическое нагревание и последующее, после выключения, остывание места пайки. Нагревается место пайки от элементов, которые греются (спирали люминесцентной лампы, транзисторные ключи). Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины.
Повреждение отдельных радиоэлементов. Отдельные радиоэлементы могут повредиться как от трещин в пайке, так и от скачков напряжения в питающей электросети. Хотя в схеме и есть предохранитель, но он не защитит радиоэлементы от скачков напряжений, как это мог бы сделать варистор. Предохранитель сгорит от пробоев радиоэлементов. Безусловно, самым слабым местом из всех радиоэлементов данного устройства являются транзисторы.
Радiоаматор №1, 2009г.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
Биполярный транзистор | MJE13003A | 2 | N13003A, КТ8170А1, КТ872А | Поиск в LCSC | В блокнот | |
D1-D7 | Выпрямительный диод | 1N4007 | 7 | Поиск в LCSC | В блокнот | |
Z | Динистор | 1 | Поиск в LCSC | В блокнот | ||
C1 | Электролитический конденсатор | 100 мкФ 400 В | 1 | Поиск в LCSC | В блокнот | |
C2, C3 | Конденсатор | 27 нФ 100 В | 2 | Поиск в LCSC | В блокнот | |
C5 | Конденсатор | 3.3 нФ 1200 В | 1 | Поиск в LCSC | В блокнот | |
C6 | Конденсатор | 0.1 мкФ 400 В | 1 | Поиск в LCSC | В блокнот | |
C7 | Конденсатор | 47 нФ 400 В | 1 | Поиск в LCSC | В блокнот | |
R1, R2 | Резистор | 1.0 Ом | 2 |
Как работают люминесцентные лампы — блог 1000Bulbs.com
Люминесцентные лампы состоят из покрытых люминофором стеклянных трубок с вольфрамовыми катодами на обоих концах, заполненных аргоном и небольшим количеством паров ртути. Когда к трубке прикладывается большое количество электричества, она создает электрическую дугу, которая возбуждает пары ртути, заставляя их высвобождать дополнительные электроны на ультрафиолетовых (УФ) частотах. Невидимый ультрафиолетовый свет стимулирует внутреннее люминесцентное покрытие трубки, превращаясь в видимый свет, когда он проходит через трубку по дуге и производит знакомое флуоресцентное свечение.Существует два распространенных типа флуоресцентных ламп: люминесцентные лампы с горячим катодом и люминесцентные лампы с холодным катодом.
Люминесцентные лампы с горячим катодомКлючом к лампам с горячим катодом является балласт. Чтобы создать дугу и последующее свечение света, балласт нагнетает стандартные 120 вольт почти вдвое. Высокое напряжение быстро нагревает вольфрамовые нити, заставляя ток через газы запускать дугу. Однако почти сразу же повышенное напряжение отключается, чтобы предотвратить короткое замыкание лампы.У газа есть сопротивление, зависящее от температуры. Чем холоднее газ, тем большее сопротивление он имеет, и для начала требуется более высокое напряжение. Высокое напряжение опасно, и его трудно создать, поэтому пускорегулирующий аппарат управляет током, зажигает искры и поддерживает свет. Балласты бывают либо магнитными, либо электронными, и существует несколько типов методов запуска, которые балласты могут использовать для запуска люминесцентных ламп. Наиболее известные методы — это предварительный нагрев, быстрый запуск, мгновенный запуск и запрограммированный запуск.
В старых лампах использовался метод предварительного нагрева, при котором отдельный выключатель стартера нагревал катоды перед включением лампы, что позволяло использовать более низкие напряжения. В современных лампах часто используются электронные балласты мгновенного пуска, чтобы быстро подать на лампу сотни вольт для мгновенного зажигания, а не постепенного прогрева.
Флуоресцентные лампы с холодным катодомВы можете знать их в основном как неоновые вывески и иногда по спиральным трубкам под А-образной крышкой. В CCFL, не путать с CFL, используются твердые металлические катоды в виде гильз, которые более долговечны, чем вольфрамовые катушки ламп с горячим катодом.Катоды не нагреваются заранее, и подается высокое напряжение, позволяющее лампам мгновенно включаться на полную яркость. Лампы с холодным катодом используют более высокое напряжение, чем обычные линейные люминесцентные лампы, для ионизации паров ртути.
3. Как работают люминесцентные лампы?
3.4. Физические характеристики ламп
Принципы работы
Люминесцентная лампа излучает свет от столкновений с горячим газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть — в какие электроны поднимаются на более высокие уровни энергии, а затем отступать при излучении на двух линиях УФ-излучения (254 нм и 185 нм).Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке фонарь. Химический состав этого покрытия подобран таким образом, чтобы излучать в желаемом спектре.
Строительство
Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть путем ударной ионизации. Ионизация может происходить только в исправных лампочках.Следовательно, вредное воздействие на здоровье от этого процесса ионизации невозможно. Кроме того, лампы часто комплектуются двумя конверты, что значительно снижает количество УФ-излучения испускается.
Электрические аспекты эксплуатации
Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия.В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны разные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до конца срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, то есть излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где Схема не может быть заменена перед люминесцентными лампами.Это снизило количество технических сбоев, вызывающих эффекты, как указано выше.
ЭМП
Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц — вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e.грамм. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.
Мерцание
Все лампы будут различать интенсивность света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.Для лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на 120 Гц не видно, в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».
Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и «немерцающие» люминесцентные источники света (Хазова и О’Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой частот, либо только в часть лампы или во время цикла запуска в несколько минут.
Световое излучение, УФ-излучение и синий свет
Имеются характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специальных покрытий из стекло и часто продаются с атрибутом «теплый» или «Холодные» или, точнее, их цветовая температура для профессиональные световые приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. свет, чем лампы накаливания.Есть на международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, настроенными на защиту от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.
УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити накала и поглощение стекла. Некоторый КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г.).
Как работают люминесцентные лампы?
Люминесцентные лампы — это энергоэффективный и экономичный способ освещения коммерческих помещений. На этой странице вы можете узнать больше о том, как работают люминесцентные лампы, в том числе:
Хотите заменить имеющееся освещение на люминесцентные лампы?У нас в наличии тубы ведущих брендов по низким ценам, для оформления заказа звоните по телефону 0113 8876270.
Как они работают?
Люминесцентные лампы часто встречаются в общественных местах, офисах и школах, но как много вы на самом деле знаете о внутренней работе люминесцентной лампы? Знание того, как работает лампа, может помочь вам понять, что могло произойти, когда она перестала работать, и вам будет проще узнать, как это исправить.
Ниже мы рассмотрим, что происходит внутри люминесцентной лампы, когда вы щелкаете выключателем света.
Где все началось?
По данным Смитсоновского института в Вашингтоне, люминесцентная лампа появилась благодаря исследованию американского инженера-электрика и изобретателя Питера Купера Хьюитта работы физика Джулиуса Плюккера и стеклодува Генриха Гайсслера. В 1901 году, когда Хьюитт пропустил электрический ток через крошечные количества ртути в одной из стеклянных трубок Плюккера, она загорелась, что сделало ее самой первой люминесцентной лампой, в которой использовалась ртуть.Сегодня эти лампы работают примерно так же, с некоторыми изменениями, конечно.
Что внутри трубки?
Внутри люминесцентной лампы находятся различные химические компоненты и два электрода на каждом конце, подключенные к электрической цепи. Эти химические компоненты:
- Инертный газ
- Меркурий
- Люминофор на внутренней стороне трубки
Электрическая цепь подключается к источнику переменного тока через контактные штыри на конце трубки, которые подключаются к осветительной арматуре.Внутри стеклянной трубки находится небольшое количество ртути и инертный газ, например аргон. Если вы сломали люминесцентную лампу или вошли в контакт с внутренней частью лампы, вы могли заметить порошкообразное вещество, это порошок люминофора, который покрывает внутреннюю часть стекла.
Включение света
Основной процесс зажигания люминесцентной лампы включает в себя электрический ток, вызывающий химические реакции, в результате которых излучается свет. Вот что происходит при включении света:
- Ток течет по электрической цепи к электродам.
- Напряжение от электродов заставляет электроны перемещаться через газообразный аргон от одного конца трубки к другому.
- Энергия от этого превращает часть жидкой ртути в газ.
- Когда электроны и заряженные атомы движутся по трубке, они сталкиваются с атомами газа ртути.
- Столкновения возбуждают атомы, поэтому уровень энергии электронов увеличивается.
- Когда электроны успокаиваются и возвращаются к своему первоначальному уровню энергии, они испускают световые фотоны.
- Эти фотоны являются ультрафиолетовыми, но при попадании на люминофорное покрытие трубки они превращаются в видимый свет.
- Производители могут предложить лампы разных оттенков, например, теплый белый, холодный белый или даже яркие цвета, используя различную смесь люминофоров для каждого цвета.
Люминесцентные лампы более эффективны, чем лампы накаливания, по двум причинам:
- Лампы накаливания излучают свет через нагретую нить накала и, следовательно, из-за этого тепла выделяют много энергии. Люминесцентные лампы не нагреваются так сильно, как ток, протекающий через них, создает ультрафиолетовый свет при низком давлении.Люминесцентные лампы излучают немного тепла, но не так сильно, как лампы накаливания. Тепло распространяется быстрее из-за большего размера, и оно может варьироваться в зависимости от температуры в зависимости от их размера.
- Хотя и лампы накаливания, и люминесцентные лампы используют ультрафиолет, люминесцентная лампа заставляет работать избыточный ультрафиолетовый свет, тогда как лампа накаливания излучает ультрафиолет, но ничего не делает с ним.
Мы можем резюмировать этот процесс следующим образом:
- Включить свет
- Электрический ток превращает ртуть в газ
- Газообразная ртуть сталкивается с электронами и атомами
- Электроны возбуждаются и увеличиваются в энергии
- Электроны релаксируют через некоторое время и уровень энергии падает
- Это вызывает высвобождение фотонов света
- Фотоны попадают в люминофор и становятся видимым светом
Часто задаваемые вопросы о люминесцентных лампах
В нашем подробном руководстве вы найдете ответы на ваши вопросы о люминесцентных лампах и лампах, чтобы вы могли делать покупки у нас с уверенностью.Если вы не можете найти здесь ответ на свой вопрос, не стесняйтесь обращаться к нам.
Сколько стоит эксплуатация люминесцентных ламп?
Стоимость эксплуатации люминесцентных ламп зависит от нескольких факторов: мощности лампы, стоимости электроэнергии, а также от того, используете ли вы высокочастотную или переключаемую пускорегулирующую аппаратуру. Лампы работают намного эффективнее при использовании высокочастотных балластов, но гораздо менее эффективно при использовании пускового переключателя. Пусковой балласт при переключении приведет к тому, что лампа будет потреблять около 10% больше, поэтому лампа 40 Вт будет работать при 44 Вт.Если вы замените 2-футовую лампу T12 на 2-футовую 18-ваттную лампу, вы перейдете с 20-ватной лампы на 18-ваттную лампу, что приведет к меньшим затратам электроэнергии. Если вы заменили 2-футовый фитинг t8 на 2-футовый фитинг t5, вы перейдете с 18 Вт на 14 Вт.
Классифицируются ли люминесцентные лампы как опасные или опасные?
Согласно данным Mercury Recycling, ртуть, содержащаяся всего в одной люминесцентной лампе, может загрязнить 30 000 литров воды, что делает ее небезопасной для потребления человеком. Это означает, что безопасная утилизация трубок жизненно важна для минимизации негативного воздействия на окружающую среду и риска отравления.
Люминесцентные лампы классифицируются как опасные отходы и, несмотря на небольшой риск для здоровья человека, могут нанести вред окружающей среде. Компания Mercury Recycling рекомендует утилизировать люминесцентные лампы, а не утилизировать их, как наиболее безопасный и дешевый вариант. Для получения дополнительной информации прочтите наше руководство по утилизации люминесцентных ламп.
Подходят ли люминесцентные лампы для аквариумов или аквариумов?
Да, и их использование может принести большую пользу вашей рыбе. Прочтите наше руководство для получения дополнительной информации.
Можно ли выращивать растения с помощью люминесцентных ламп?
Да, прочтите наше подробное руководство о том, как выращивать растения в помещении с помощью люминесцентных ламп.
Нужен ли стартер для люминесцентных ламп?
Вам понадобится стартер, если вы используете лампы с пусковым механизмом переключения. Если вы используете высокую частоту, стартер не нужен. Если вы последовательно используете лампы T8 мощностью 2 фута 18 Вт (более одной трубки в фитинге), вам понадобится серийный стартер. Если вы используете одну лампу мощностью от 4 до 65 Вт, вы должны использовать универсальный стартер.Любые лампы мощностью более 65 Вт нуждаются в стартере большой мощности.
Можно ли затемнять люминесцентные лампы?
Да, но требуются регулируемый балласт и соответствующая система затемнения.
Можно ли красить люминесцентные лампы?
Это не рекомендуется, так как люминесцентные лампы во время работы немного нагреваются. Если вам нужна цветная трубка, лучше купить ее или цветную гильзу, чтобы надеть ее на трубку.
Мы продаем целый ряд цветных люминесцентных ламп Т5 или Т8, а также набор цветных гильз для этой цели.
Сколько люмен в одной люминесцентной лампе?
Световой поток зависит от мощности, в наших описаниях продуктов указан световой поток каждой трубки, поэтому у вас будет точная информация, которая вам нужна.
Почему моя люминесцентная лампа продолжает мигать?
Для этого будет ряд возможных причин. Это может быть лампочка, если она почернела на концах, вероятно, она довольно старая и нуждается в замене. Если он все еще мигает, возможно, неисправен стартер (в цепях запуска переключателя).Если он все еще мигает, возможно, неисправен балласт и его необходимо заменить.
Прочтите наше руководство по устранению неполадок для получения дополнительной информации.
Почему моя люминесцентная лампа продолжает мигать?
Причина в том, что стартер или балласт не работают должным образом и могут нуждаться в замене.
Почему моя люминесцентная лампа продолжает дуть?
Это может быть связано с заменой балласта. Балласт регулирует подачу электричества в лампу, и к концу срока ее службы он может начать делать это менее эффективно, посылая слишком большой или недостаточный ток в лампу, что отрицательно сказывается на среднем сроке службы лампы.
Прочтите наше руководство по устранению неполадок для получения дополнительной информации.
Обратите внимание: информация в этой статье предназначена только для ознакомления. Мы настоятельно рекомендуем поговорить с электриком, прежде чем пытаться самостоятельно выполнять какие-либо электромонтажные работы. Любые ссылки, включенные в эту статью, предназначены только для информационных целей, и Lamp Shop Online не поддерживает веб-сайты, на которые есть ссылки.Что такое люминесцентное освещение?
Люминесцентное освещение. Вы, наверное, уже имеете представление о том, что это такое.Может быть, вы хоть немного разбираетесь в том, как это работает.
Конечно, люминесцентное освещение опасно для глаз и размывает цвет лица.
Но флуоресцентное освещение — это гораздо больше, чем просто неидеальные побочные эффекты, включая некоторые приятные преимущества.
Вот что мы обсуждаем в этом посте:
Что такое люминесцентное освещение?
Флуоресцентное освещение — это универсальный тип освещения, с которым вы, скорее всего, столкнетесь в офисе, школе или продуктовом магазине.Он известен своей энергоэффективностью по сравнению с лампами накаливания и галогеновыми лампами и более низкой ценой по сравнению со светодиодами.
Существует несколько различных типов люминесцентного освещения, включая линейные люминесцентные лампы, люминесцентные изогнутые лампы, люминесцентные лампы с круговой линией и компактные люминесцентные лампы.
В этой статье мы сосредоточимся на линейных люминесцентных лампах из-за их популярности. Люминесцентные лампы обычно используются в потолочных светильниках, таких как troffers, во всех типах коммерческих зданий.
Как работают люминесцентные лампы?
Флуоресцентное освещение зависит от химической реакции внутри стеклянной трубки для создания света. Эта химическая реакция включает взаимодействие газов и паров ртути, в результате чего образуется невидимый ультрафиолетовый свет. Этот невидимый ультрафиолетовый свет освещает люминофорный порошок, покрывающий внутреннюю часть стеклянной трубки, излучающий белый «флуоресцентный» свет.
Вот более подробная разбивка процесса:
Электричество сначала поступает в осветительную арматуру, как трос, и через балласт.Балласт, который регулирует напряжение, ток и т. Д. И необходим для работы люминесцентной лампы, подает электричество на контакты люминесцентной лампы на обоих концах.
Подробнее: Что такое балласт и как он работает?
Затем, после того, как электричество проходит через контакты, оно течет к электродам внутри герметичной стеклянной трубки, в которой поддерживается низкое давление. Электроны начинают перемещаться по трубке от одного катода к другому.
Внутри стеклянной трубки находятся инертные газы и ртуть, возбуждаемые электрическим током.Ртуть испаряется, когда течет электричество, и газы начинают реагировать друг с другом, создавая невидимый ультрафиолетовый свет, который мы фактически не видим невооруженным глазом.
Но мы, очевидно, замечаем люминесцентные лампы, излучающие свет, так что же именно мы видим?
Каждая люминесцентная лампа покрыта люминофорным порошком. Если воткнуть палец в тюбик и потереть его изнутри, это будет выглядеть так, как будто вы только что насладились порошкообразным пончиком.
Это люминофорное покрытие светится, когда оно возбуждается невидимым ультрафиолетовым светом, и это то, что мы видим нашими глазами — светящийся порошок люминофора, который создает «белый свет».Отсюда и термин «флуоресцентный» — «светящийся белый свет».
Из-за содержания ртути в люминесцентных лампах важно утилизировать лампы после того, как они перегорели. У нас есть служба утилизации, которая позволяет легко и быстро избавиться от старых перегоревших ламп из вашего шкафа и забыть о них. Мы также продаем коробки для вторсырья.
Зачем люминесцентным лампам балласт?
Основная цель балласта — принимать переменный ток, проходящий через провода в ваших стенах — буквально волнами, вверх и вниз — и превращать его в постоянный и прямой поток электричества.Это стабилизирует и поддерживает химическую реакцию, происходящую внутри колбы.
Чтобы правильно выбрать балласт для ваших ламп, вам необходимо ответить на эти три вопроса:
- Какому типу лампы требуется питание? (Например, это T8, T5? 4 фута? 2 фута? И т. Д.)
- Сколько ламп нужно мощности?
- Какое напряжение идет на светильник?
Балласты влияют на потребление энергии через так называемый балластный фактор.Подробнее о балластном факторе и его влиянии на потребление энергии читайте здесь.
Почему люминесцентные лампы становятся розовыми и оранжевыми?
Если вы посмотрите на большую комнату, освещенную в основном люминесцентными лампами, то с большой вероятностью вы увидите все виды разных цветов, исходящих с потолка. Почему?
Эта концепция называется «смещение цвета». Чем дольше горят флуоресцентные лампы, тем больше вероятность того, что химические свойства изменятся и вызовут несбалансированную реакцию, в результате чего флуоресценция станет менее белой и менее яркой, чем была раньше.
Если последовательность действительно важна для вашего проекта освещения, вы можете подумать о групповой замене этих лампочек. Заменяя все трубки партиями, вы можете устранить проблему несоответствия цветов и яркости в вашем помещении.
Еще одно соображение — это обновление светодиодов для ваших ламп. О вариантах светодиодных ламп T8 мы поговорим в этой статье.
В чем разница между линейными люминесцентными лампами и компактными люминесцентными лампами?
Чтобы уточнить, как в линейных, так и в компактных люминесцентных лампах используется одна и та же технология для создания искусственного света.Самая большая разница — это форм-фактор или размер и конфигурация ламп CFL.
Компактные люминесцентные лампы (КЛЛ) — это просто усовершенствование линейной люминесцентной технологии, потребляющее меньше энергии. Они также предназначены для ввинчивания в обычную розетку для лампы накаливания или для вставки в утопленную банку. Их часто называют «пружинными лампами» или «подключаемыми» КЛЛ в зависимости от назначения и формы.
Узнайте больше о компактных люминесцентных лампах в нашем посте «Что такое лампы CFL и где их следует использовать?»
Где вы используете линейное люминесцентное освещение?
Хотя люминесцентные лампы используются в самых разных областях, они работают не везде.Самая распространенная причина, по которой люди используют люминесцентные лампы, — это экономия энергии с минимальными первоначальными затратами.
Вот некоторые типичные области применения линейного люминесцентного освещения:
Коммерческие офисы
Обычно офисные помещения не слишком заботятся о декоративном и акцентном освещении. Главный приоритет — общее освещение, функциональное для офисной среды. Из-за этого линейные люминесцентные лампы являются основными лампами, используемыми в офисных помещениях в США.
Склады
Если вы не знакомы с T5 с высокой выходной мощностью, вам необходимо это знать.Эти лампы могут прослужить до 90 000 часов и производить больше света (люмен), чем более толстые линейные люминесцентные лампы, такие как T12s и T8s. Из-за этого они являются отличным выбором для складов — или вообще для любого многоярусного потолка, где требуется значительное количество света.
Больницы
Подобно офисным помещениям, в больницах также используются линейные люминесцентные лампы для экономии энергии и получения белого, чистого и эффективного источника света.
Розничные магазины
При создании уникального дизайна освещения для розничной торговли мы рекомендуем правило 20/80 — 20 процентов вашего освещения должно быть декоративным и уникальным (например, настенные бра, люстры, чаши с облаками).И 80 процентов его должно быть стандартным общим освещением.
В таких универмагах, как Macy’s, JC Penney, Kohl’s и Target, 80-процентное общее освещение является основной областью для линейных флуоресцентных ламп.
Плюсы и минусы линейного люминесцентного освещения
Линейные люминесцентные профи
- Энергоэффективность
Переоборудовав лампы накаливания или галогенные на линейные люминесцентные лампы, вы можете рассчитывать на 40-процентную экономию на счетах за электроэнергию.
- Разнообразие цветовых температур
Если вам нужно действительно «прохладное» пространство, такое как коридор больницы или станция метро, флуоресцентные лампы предлагают такую прохладную цветовую температуру, как 6500 Кельвинов. Хотя не так много приложений, в которых требуется настолько холодный свет, диапазон цветов от теплого до холодного — это гибкость для флуоресцентных ламп.
- Стоимость
По сравнению со светодиодами, линейное люминесцентное освещение, как правило, более доступно.Фактически, светодиоды привели к снижению цен на флуоресцентные лампы за последние несколько лет.
Линейные флуоресцентные лампы
- Сдвиг цвета или уменьшение светового потока
Как мы упоминали выше, чем дольше горят флуоресцентные лампы, тем больше вероятность того, что химические свойства изменятся, что вызовет несбалансированную реакцию, что сделает флуоресценцию менее белой и менее яркой, чем была раньше. Светоотдача снижается, и со временем ваше освещение может выглядеть как лоскутное одеяло.
- Резкий свет
Флуоресцентные лампы не приятны для глаз! Если вы обнаружите, что ваши глаза часто налиты кровью или сухие, вы можете оценить источник света, под которым вы находитесь большую часть дня. Например, линейные люминесцентные лампы в параболических троферах в офисном помещении могут вызвать у вас подсознательное косоглазие из-за резкого света. Лучшим применением были бы линейные флуоресцентные лампы в центральном фильтре корзины, который смягчает свет, достигающий земли.
- Период прогрева
Для того, чтобы флуоресцентные лампы достигли своей полной яркости, вам, возможно, придется подождать 10-30 секунд для прогрева.
- Воздействие на окружающую среду или Затраты на переработку
Хотя затраты на переработку перевешиваются за счет экономии энергии, создаваемой флуоресцентными лампами, существуют дополнительные расходы, чтобы убедиться, что люминесцентные лампы правильно утилизированы. Если вы не хотите вообще заниматься ртутью и переработкой, светодиоды могут быть для вас лучшим вариантом.
Есть еще вопросы о том, подходит ли флуоресцентное освещение для вашей области применения? Поговорите со специалистом по освещению, который расскажет о специфике вашего помещения.
Как работают люминесцентные лампы?
Мы углубимся, чтобы научить вас, как разные источники света производят свет. Эта информация может помочь вам, когда вы выбираете светильники для нового проекта освещения или обслуживаете уже имеющиеся светильники. Если вы когда-либо пробовали исследовать эту информацию, вы знаете, что она может оказаться ошеломляющей и сложной. Итак, я собираюсь упростить это для вас. В этом посте мы расскажем о люминесцентных лампах…
Люминесцентные лампы бывают разных форм и размеров, таких как линейные, круглые и всегда популярные вихревые компактные люминесцентные лампы.
Хотя различные типы люминесцентных ламп выглядят по-разному, принцип их работы в основном одинаков.
Люминесцентные лампы содержат:
- Пары ртути
- Электроды, подключенные к электрической цепи
- Стеклянный конверт с внутренним покрытием из белого люминофора
Довольно просто, правда? Теперь давайте посмотрим, как эти элементы работают вместе, чтобы светить:
1. При включении лампы через электроды течет электрический ток. Электроны проходят в трубке вперед и назад.
2. Электроны возбуждают пары ртути в трубке, поднимая электроны атомов на более высокие уровни. Это заставляет ртуть испускать УФ-фотоны или УФ-свет, невидимый человеческому глазу.
3. Люминофорное покрытие преобразует УФ-свет в видимый свет. Это происходит, когда УФ-фотон сталкивается с атомом люминофора, толкая один из электронов люминофора на более высокий энергетический уровень и нагревая атом.Когда электрон возвращается к своему нормальному уровню, он выделяет энергию как видимый фотон — свет, который вы видите.
Последнее замечание о люминесцентных лампах:
Для работы всех люминесцентных ламп требуется пускорегулирующий аппарат. Иногда этот компонент встроен в саму лампочку, а иногда это отдельный элемент, который необходимо использовать вместе с лампой.
Балласт — это электрическое устройство, используемое для подачи правильного напряжения для запуска люминесцентной лампы и ограничения его во время работы.
Люминесцентным лампам необходимы балласты, потому что их газовые компоненты проводят электричество для работы. Для включения лампам нужен определенный ток. По мере того как лампа продолжает работать, ее электрическое сопротивление уменьшается. Заряженные частицы размножаются, и ток может подниматься по собственному газовому разряду. Если вы держите напряжение постоянно высоким, лампа может перегореть, поэтому это помогает регулировать балласт.
Какие вопросы у вас есть о люминесцентных лампах? Поделитесь ими в комментариях!
(Чтобы узнать, как работают светодиоды, ознакомьтесь с этим сообщением в блоге.)
СвязанныеФлуоресцентные лампы
Томас Эдисон не был первым человеком, который работал с лампами накаливания — действительно, такие ранние ученые, как Хамфри Дэви и Алессандро Вольта, пытались использовать электричество, чтобы нагреть вещество до раскаленного состояния. Однако Эдисон был первым, кто создал практичную и коммерчески жизнеспособную лампочку. Поскольку лампы накаливания меняют культуру, они сталкиваются с одной серьезной проблемой: неэффективностью. До 90% энергии, выделяемой лампой накаливания, составляет тепло.Это может быть полезно, если вы живете на Северном полюсе, но в большинстве стран с умеренным климатом это просто увеличивает повышение температуры, с которым необходимо бороться с помощью кондиционирования воздуха. Лампы накаливания не являются оптимальным источником света.
Однако есть несколько способов генерировать свет. Он использует идеи квантовой механики вместо теплофизики.
ФлуоресценцияФлуоресценция — это процесс, при котором вещество поглощает свет, а затем излучает свет с другой длиной волны.В большинстве случаев флуоресцентные материалы излучают свет с более низкой частотой и энергией, чем поглощается, хотя иногда бывают двухфотонные излучения, при которых излучаемый свет имеет более высокую энергию. Слово «флуоресценция» придумал британский физик Г.Г. Стокса в 1852 году после минерала флюорита (кристаллический CaF 2 ), который сильно флуоресцирует из-за примесей. Он наблюдался еще в 1560-х годах, но только в середине 19 века Стокс описал это явление после экспериментов с ультрафиолетовым светом (который сам был идентифицирован как часть спектра только в 1801 году).
Рисунок 1: Схема процесса флуоресценции: 1 = возбуждение, 2 = релаксация и 3 = излучение. Начальное и промежуточное возбужденные состояния могут быть разными электронными состояниями или даже двумя разными состояниями в колебательном многообразии одного и того же электронного состояния. Подробности см. В тексте.
Механизм флуоресценции должен был подождать до понимания квантованных энергий в атомах в молекулах, но упрощенная версия механизма показана на рисунке 1. Атом или молекула поглощает фотон света (шаг 1 на рисунке 1).За конечное, но короткое время система находится в возбужденном состоянии, она теряет энергию по какому-то механизму, например, столкновениям с молекулами растворителя или передаче колебательной энергии соседним атомам или молекулам. Этот шаг (шаг 2 на рисунке) обычно называют «безызлучательной релаксацией» или «безызлучательным распадом». Потеря энергии останавливается в некотором промежуточном, но более низком энергетическом состоянии. Затем система излучает фотон и возвращается в основное (или другое более низкое) состояние (шаг 3 на рисунке). Поскольку промежуточное состояние имеет более низкую энергию, чем начальное возбужденное состояние, испускаемый фотон имеет меньшую энергию, чем возбуждающий фотон, что приводит к кажущемуся сдвигу длины волны или цвета; это называется сдвигом Стокса в честь вышеупомянутого британского физика.Наконец, в процессах флуоресценции задействованные энергетические состояния имеют одинаковую множественность (то есть общий спин электрона), поэтому сдвиги между состояниями разрешены квантово-механически и поэтому происходят довольно быстро — порядка наносекунд. Таким образом, мы воспринимаем процессы флуоресценции, как непосредственно связанные с наличием источника возбуждающих фотонов. (Сравните это с фосфоресценцией, которая включает в себя запрещенный по спину переход и, следовательно, является относительно медленной, имея время жизни порядка минут или часов.)
Многие минералы и органические молекулы флуоресцируют. Геология использует флуоресценцию, чтобы помочь идентифицировать определенные минералы и драгоценные камни. Хинин, природное противомалярийное соединение, содержащееся в хинном дереве, флуоресцирует, как и вазелин. Зеленый флуоресцентный белок (GFP) — это белок из 238 аминокислот, широко используемый в молекулярной и клеточной биологии; его разработчики получили Нобелевскую премию по химии 2008 года в знак признания его важности. Флуоресцентная спектроскопия сама по себе является одним из основных видов спектроскопии, но это уже другая колонка.
Флуоресцентные лампы: разработкаВ 1856 году немецкий стеклодув Генрих Гайсслер изобрел вакуумный насос на основе ртути, который мог откачивать стекло лучше, чем это было ранее. Когда через трубку пропускали электрический ток, остаточные пары ртути в трубке светились ярко-зеленым светом. (Давление паров ртути при комнатной температуре составляет около 0,002 торр, поэтому это был лучший вакуум, который Гейслер мог получить в то время.) Присутствие других газовых примесей в этих так называемых трубках Гейсслера могло давать другие цвета, поэтому они стали популярными. развлечения.Позже создание более качественного вакуума уменьшило количество производимого света, но трубки Гейсслера были предшественниками электронно-лучевых трубок (ЭЛТ), которые были основой лампового телевидения; Трубки Крукса, эксперименты в которых привели к открытию электрона; и люминесцентные лампы.
В 1859 году Эдмон Беккерель (отец Анри Беккереля, открывшего радиоактивность) покрыл трубку Гейсслера флуоресцентным материалом, создав первый элементарный люминесцентный свет. Однако он работал недолго и давал очень слабый свет.Хотя Эдисон и Николай Тесла возились с подобными системами, только в 1895 году Дэниел Мур, бывший сотрудник Эдисона, сконструировал работоспособный флуоресцентный свет с использованием углекислого газа в качестве излучающего вещества. Она была примерно в три раза эффективнее, чем лампы накаливания того времени, и по иронии судьбы стимулировала разработку более эффективных ламп накаливания, что в конечном итоге вытеснило лампу Мура с рынка.
В 1901 году американский инженер Питер Купер Хьюитт запатентовал газоразрядную трубку на парах ртути, аналогичную оригинальной трубке Гейсслера.Однако излучаемый ею свет был тяжелым сине-зеленым, что давало неестественный цвет. С другой стороны, они были гораздо более энергоэффективными, так как использовали гораздо более низкие напряжения для обеспечения такой же яркости, как лампа накаливания. Разработка трубок, содержащих пары ртути, продолжалась, но в основном в Европе. К 1930-м годам покрытия из флуоресцентных материалов использовались для коррекции цвета и увеличения количества излучаемого видимого света, а также в качестве балласта для регулирования тока на начальных этапах работы.Коммерческая продажа приемлемых, относительно современных люминесцентных ламп началась компанией General Electric в 1938 году, а к 1950-м годам в Соединенных Штатах флуоресцентные лампы производили больше света, чем лампы накаливания.
Современные люминесцентные лампыСовременные люминесцентные лампы (рис. 2) имеют длину от нескольких дюймов до нескольких метров. Обычно флуоресцентный свет содержит несколько миллиграммов ртути, которые необходимо испарить, чтобы свет работал должным образом. Свет также заполнен несколькими торрами инертного газа, такого как неон или аргон — не слишком много, иначе газ внутри колбы будет настолько резистивным, что электрический ток не сможет пройти.Внутренняя часть лампы покрыта люминофором (довольно странный термин для материала в люминесцентных лампах, но слово «флюор» звучит забавно), который обычно представляет собой легированную соль металла. Старые люминофоры для люминесцентных ламп: (Sr, Mg) 3 (PO 4 ) 2 с добавлением олова и Ca 5 (F, Cl) (PO 4 ) 3 с примесью сурьмы и марганца ; В современных люминесцентных лампах используются различные соли редкоземельных металлов, такие как LaPO 4 , легированный тербием и церием, в сочетании с Y 2 O 3 , легированный европием.
Рисунок 2: Несколько моделей современных люминесцентных ламп (Getty Images).
Когда он включен, электроды люминесцентного света генерируют электроны, которые сталкиваются с атомами ртути и возбуждают электроны в ртути. Эти электроны возвращаются в свое основное состояние, испуская свет. Поскольку свет генерирует ионы, его проводимость увеличивается, поэтому ток должен регулироваться балластом, чтобы ограничить ток. Но, как упоминалось выше, большая часть генерируемого света находится в ультрафиолетовом и синем конце спектра.Этот свет возбуждает люминофорное покрытие на стеклянной колбе, которое флуоресцирует с эффективностью более 80%, то есть 80% УФ-фотонов преобразуются в фотоны видимого света (остальные преобразуются в тепло). Комбинированный спектр ртути и люминофора дает характерный свет люминесцентной лампы. Люминесцентные лампы преобразуют более 20% электроэнергии в свет, что в 10 раз эффективнее, чем лампы накаливания. Кроме того, они генерируют только около одной трети тепла, которое выделяет лампа накаливания, что значительно снижает тепловыделение при том же количестве света.
Хотя флуоресцентный свет приближается к естественному белому свету, спектр флуоресцентного света не является непрерывным спектром лампы накаливания. На рисунке 3 показано сравнение двух типов лампочек. Лампа накаливания излучает непрерывный спектр, так как он приближается к черному телу. Однако флуоресцентный свет состоит из широких, но дискретных частей спектра. Это то, что составляет воспринимаемую разницу между мощностью двух разных типов лампочек.
Рисунок 3: Сравнение спектров (а) лампы накаливания и (б) типичного люминесцентного света. Лампа накаливания дает непрерывный спектр, а флуоресцентный свет дает дискретные линии, типичные для спектра ртути и люминофора.
(Хотите быстро определить, является ли свет лампы накаливанием или флуоресцентным? Воспользуйтесь компакт-диском или DVD-диском, чтобы создать спектр лампы — крошечные бороздки на диске действуют как решетка. Если светильник накаливания, вы увидеть полный спектр.Если свет флуоресцентный, спектр будет разделен на определенные цвета, как на рисунке 3. Попробуйте! Это не повредит диску.)
Компактные люминесцентные лампы (КЛЛ) стали модной заменой обычных лампочек в лампах. Хотя они были впервые построены в середине 1970-х годов, они не были коммерчески доступны до середины 1990-х годов и с тех пор пользуются все большей популярностью. Почему им потребовалось так много времени, чтобы стать коммерчески жизнеспособными? Потому что для таких маленьких ламп нужно было разработать новые балласты.Требуется стандартная 4-футовая люминесцентная лампа, ну, 4 фута для установки, и балласт может быть такого же большого размера. Но чтобы вставить люминесцентную лампу в настольную лампу, потребовалось, чтобы балласт был намного меньше, если вся конструкция должна была заменить вашу стандартную лампу накаливания мощностью 100 Вт.
Дэвид В. Болл — профессор химии Кливлендского государственного университета в Огайо. Многие из его колонок «Базовый уровень» были переизданы как Основы спектроскопии , доступные через SPIE Press.Профессор Болл рассматривает спектроскопию с точки зрения физической химии, потому что это его опыт. Недавно он работал заслуженным приглашенным профессором в Академии ВВС США, но сейчас вернулся домой в Огайо. С ним можно связаться по адресу [email protected].
Дэвид В. Болл
Флуоресцентные стартеры | Все, что вам нужно знать
Флуоресцентные стартеры или стартеры накаливания используются для зажигания люминесцентных ламп и ламп на начальном этапе их работы.
Проще говоря, люминесцентные пускатели — это реле с таймером. Переключатель открывается и закрывается до тех пор, пока люминесцентная лампа не «загорится» и не загорится. Если люминесцентная лампа не загорается, переключатель повторяет цикл открытия / закрытия, и люминесцентные лампы снова пытаются зажечься.
Прочтите, если вы хотите узнать больше об этом процессе…
Когда питание впервые подается на люминесцентный светильник, ток создает внутри люминесцентного стартера два электрода, которые нагреваются и светятся.Это заставляет один из электродов люминесцентного стартера изгибаться и контактировать с другим электродом. Это замыкает переключатель, и теперь ток проходит через люминесцентный стартер к остальной части светильника. Это означает, что цепь между люминесцентной лампой и балластом в арматуре будет эффективно переключаться «последовательно» с питающим напряжением.
Ток, который сейчас течет в люминесцентную лампу, заставляет нити на каждом конце люминесцентной лампы нагреться и начать испускать электроны в газ, который существует внутри люминесцентной лампы, с помощью процесса, известного как термоэлектронная эмиссия.
Внутри люминесцентного стартера прикосновение электродов замыкает поддерживающее их напряжение, и они начинают остывать и отклоняться друг от друга. Это затем открывает переключатель в течение секунды или двух.
Ток через нити в люминесцентной лампе и балласт затем прерывается, и, когда цепь больше не включена последовательно, полное напряжение подается на нити люминесцентной лампы, и это создает индуктивный толчок, который обеспечивает высокое напряжение, необходимое для включите люминесцентную лампу.
Если нити были недостаточно горячими во время начального цикла, люминесцентная лампа не загорается, и цикл повторяется, при этом стартер нагревается и снова замыкает цепь.
Обычно требуется несколько циклов зажигания люминесцентной лампы, что вызывает мерцание и щелчки на этапе запуска.
После зажигания люминесцентной лампы выключатель стартера не замыкается снова, потому что напряжение на зажженной люминесцентной лампе недостаточно для возобновления процесса нагрева электродов в люминесцентном пускателе.
Чем старше люминесцентная лампа и чем старше люминесцентный стартер, тем менее эффективно они зажигают. Трубка, запуск которой занимает более нескольких секунд, является явным индикатором того, что трубка и стартер могут нуждаться в замене.
Типы люминесцентных пускателей
Флуоресцентные пускатели можно определить по обозначенной мощности, написанной на боковой стороне. Мощность напрямую зависит от длины люминесцентной лампы, для работы с которой она предназначена.
Ниже перечислены 3 наиболее распространенных типа люминесцентных стартеров:
Серия с двумя лампами
Стартер серии FS2
До 22 Вт
Для использования с фитингами с несколькими люминесцентными лампами.
Одноламповый стартер
FSU Universal
4–65 Вт
Люминесцентные лампы 2 фута 18 Вт, 3 фута 30 Вт, 4 фута 36 Вт и 5 футов 58 Вт.
Одноламповый стартер
FS125
От 70 до 125 Вт
6-футовые люминесцентные лампы мощностью 70 Вт и более.
Лампы 2D и круглые лампы T9
Как правило, лампы с 2 контактами имеют стартер, встроенный в корпус лампы, но для версий с 4 контактами требуется внешний люминесцентный стартер.
При замене двухмерной или круглой лампы убедитесь, что вы заменили аналогичную лампу соответствующей мощности.
Как узнать, нужен ли вам новый стартер?
- Мерцающая люминесцентная лампа.
- Люминесцентная лампа не светится.
- Люминесцентная лампа освещает только один конец.
- Люминесцентная лампа освещает только концы, но не середину.
При рассмотрении вопроса о замене лампы на участке с несколькими лампами мы предлагаем заменить все старые лампы на новые.
Старые трубки теряют цвет и со временем могут казаться тусклыми. Новые рядом будут выглядеть ярче и чище.
Замена всех ламп в комнате вместе даст общий однородный вид.
Обязательно прочтите наше удобное руководство по замене люминесцентных ламп.
Мы также рекомендуем заменять все люминесцентные стартеры при каждой замене лампы. Это обеспечивает быстрый и эффективный запуск, обеспечивает максимальную производительность трубки и может продлить срок ее службы.