Как рассчитать мощность резистора: Мощность резистора.

Мощность резистора, что это, как подобрать, как узнать

Резисторы есть в любой электрической схеме. Но в разных схемах протекают различной величины ток. Не могут же одни и те же элементы работать при 0,1 А и при 100 А. Ведь при прохождении тока сопротивление греется. Чем выше ток, тем более интенсивный нагрев. Значит, и резисторы должны быть на разную величину тока. Так и есть. Отображает их способность работать при различных токах такой параметр, как мощность резистора. На деталях покрупнее она указывается прямо на корпусе. Для мелких корпусов есть другой метод определения (см. ниже).

Содержание статьи

Содержание

Что такое мощность резистора

Мощность определяется как произведение силы тока на сопротивление: P = I * R и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности. То есть, этот параметр надо выбирать для каждой схемы отдельно — по максимальному рабочему току.

Как подобрать резистор: по номиналу и мощности

Как определить мощность резистора по внешнему виду: надо знать соответствие размеров и мощностей

Физически рассеиваемая мощность резистора — это то количество тепла, которое его корпус может «отдать» в окружающую среду и не перегреться при этом до фатальных последствий. При этом, нагрев не должен слишком сильно влиять на сопротивление резистора.

Стандартный ряд мощностей резисторов и их обозначение на схемах

Обратите внимание, что резисторы одного номинала могут быть с разной мощностью рассеивания. Этот параметр зависит от технологии изготовления, материала корпуса. Есть определенный ряд мощностей и их графическое обозначение по ГОСТу.

ВтУсловное обозначение не схемах
мощность резистора 0,05 ВтМощность резистора 0,05 Vt

Как обозначается на схеме мощность рассеивания резистора 0,05 Вт

мощность резистора 0,125 Вт
Схематическое изображение мощности резистора в 0,125 Вт

Мощность резистора 0,125 Вт на схеме

мощность резистора 0,025 ВтОбозначение резистора мощностью 0,25 Вт

Как на схеме выглядит резистор мощностью 0,25 Вт

мощность резистора 0,5 ВтСхематичное изображение резистора с рассеиваемой мощностью 0,5 Вт

Так на схеме обозначается резистор мощностью 0,5 Вт

мощность резистора 1 ВтТак на схемах обозначается максимальна рассеиваемая мощность резистора в 1 Вт

Мощность резистора 1 Вт схематически обозначается так

мощность резистора 2 ВтСхематическое изображение мощности рассеивания сопротивления 2Вт

Рассеиваемая на резисторе мощность 2 Вт

мощность резистора 5 ВтСхематическое изображение резистора мощностью 5 Ватт

Обозначение на схеме мощности резистора 5 Вт

Графическое обозначение мощности резисторов на схеме — черточки и римские цифры, нанесенные на поверхность сопротивления. Самое малое стандартное значение 0,05 Вт, самое большое — 25 Вт, но есть и более мощные. Но это уже специальная элементная база и в бытовой аппаратуре не встречается.

Как обозначаются мощность маломощных резисторов надо просто запомнить. Это косые линии на прямоугольниках, которыми обозначают сопротивления на схемах. Количество косых черточек обозначает количество четвертей дюйма. При номиналах сопротивлений от 1 Вт на изображении ставятся римские цифры: I, II, III, V, VI и т.д. Цифра эта и обозначает мощность резистора в ваттах. Тут немного проще, так как соответствие прямое.

Как определить по внешнему виду

На принципиальной схеме указана нужная мощность резистора — тут все понятно. Но как определить мощность сопротивления по внешнему виду на печатной плате? Вообще, чем больше размер корпуса, тем больше тепла он рассеивает. На достаточно крупных по размеру сопротивлениях указывается номинальное сопротивление и его мощность в ваттах.

Тут есть некоторая путаница, но не все так страшно. На отечественных сопротивлениях рядом с цифрой ставят букву В. В зарубежных ставят W. Но эти буквы есть не всегда. В импортных может стоять V или SW перед цифрой. Еще в импортных может тоже стоять буква B, а в отечественных МЛТ может не стоять ничего или буква W. Запутанная история, конечно. Но с опытом появляется хоть какая-то ясность.

Где не резисторе написана мощность

Как определить мощность резистора: стоит в маркировке

А ведь есть маленькие резисторы, на которых и номинал-то с трудом помещается. В импортных он нанесен цветными полосками. Как у них узнать мощность рассеивания?

В старом ГОСТе была таблица соответствий размеров и мощностей. Резисторы отечественного производства по прежнему делают в соответствии с этой таблицей. Импортные, кстати, тоже, но они по размерам чуть меньше отечественных. Тем не менее их также можно идентифицировать. Если сомневаетесь, к какой группе отнести конкретный экземпляр, лучше считать что он имеет более низкую способность рассеивать тепло. Меньше шансов, что деталь скоро перегорит.

Тип резистораДиаметр, ммДлинна, ммРассеиваемая мощность, Вт
ВС2,57,00,125
УЛМ, ВС5,516,50,25
ВС5,526,50,5
7,630,51
9,848,52
25755
3012010
КИМ1,83,80,05
2,580,125
МЛТ260,125
370,125
4,2
10,80,5
6,6131
8,618,52

С размерами сопротивлений и их мощностью вроде понятно. Не все так однозначно. Есть резисторы большого размера с малой рассеивающей способностью и наоборот. Но в таких случаях, проставляют этот параметр в маркировке.

Мощность SMD-резисторов

SMD-компоненты предназначены для поверхностного монтажа и имеют миниатюрные размеры. Мощность резисторов SMD определяется по размерам. Также она есть в характеристиках, но необходимо знать серию и производителя. Таблица мощности СМД резисторов содержит наиболее часто встречающиеся номиналы.

Как определить мощность SMD сопротивлений

Размеры SMD-резисторов — вот по какому признаку можно определить мощность этих элементов

Код imperial
Код metrik
Длинна inch/mmШирина inch/mmВысота inch/mmМощность, Вт
020106030,024/0,60,012/0,30,01/0,251/20 (0,05)
040210050,04/1,00,02/0,50,014/0,351/16 (0,062)
060316080,06/1,550,03/0,850,018/0,451/10 (0,10)
080521120,08/2,00,05/1,20,018/0,451/8 (0,125)
120632160,12/3,20,06/1,60,022/0,551/4 (0,25)
121032250,12/3,20,10/2,50,022/0,551/2 (0,50)
121832460,12/3,20,18/4,60,022/0,551,0
201050250,20/2,00,10/2,50,024/0,63/4 (0,75)
251263320,25/6,30,12/3,20,024/0,61,0

В общем-то, у этого типа радиоэлементов нет другого оперативного способа определения тока, при котором они могут работать, кроме как по размерам. Можно узнать по характеристикам, но их найти не всегда просто.

Как рассчитать мощность резистора в схеме

Чтобы рассчитать мощность резисторов в схеме, кроме сопротивления (R) необходимо знать силу тока (I). На основании этих данных можно рассчитать мощность. Формула обычная: P = I² * R. Квадрат силы тока умножить на сопротивление. Силу тока подставляем в Амперах, сопротивление — в Омах.

Если номинал написан в килоомах (кОм) или мегаомах (мОм),  его переводим в Омы. Это важно, иначе будет неправильная цифра.

Пример расчета мощности резистора для схемы

Схема последовательного соединения резисторов

Для примера рассмотрим схему на рисунке выше. Последовательное соединение сопротивлений характерно тем, что через каждый отдельный резистор цепи протекает одинаковый ток. Значит мощность сопротивлений будет одинаковой. Последовательно соединенные сопротивления просто суммируется: 200 Ом + 100 Ом + 51 Ом + 39 Ом = 390 Ом. Ток рассчитаем по формуле: I = U/R. Подставляем данные: I = 100 В / 390 Ом = 0,256 А.

По расчетным данным определяем суммарную мощность сопротивлений: P = 0,256² * 390 Ом = 25,549 Вт.  Аналогично рассчитывается мощность каждого из резисторов. Например, рассчитаем мощность резистора R2 на схеме. Ток мы знаем, его номинал тоже. Получаем: 0,256А² * 100 Ом = 6,55 Вт. То есть, мощность этого резистора должна быть не ниже 7 Вт. Брать с более низкой мощностью точно не стоит — быстро перегорит. Если позволяет конструктив прибора, то можно поставить резистор большей мощности, например, на 10 Вт.

Способы определения мощности сопротивления

Есть резисторы серии МЛТ, в которых мощность рассеивания тепла указана сразу после названия серии без каких-либо букв. В данном случае — МЛТ-2 означает, что мощность этого экземпляра 2 Вт, а номинал 6,8 кОм.

При параллельном подключении расчет аналогичен. Нужно только правильно рассчитать ток, но это тема другой статьи. А формула расчета мощности резистора от типа соединения не зависит.

Как подобрать резистор на замену

Если вам необходимо поменять резистор, брать надо либо той же мощности, либо выше. Ни в коем случае не ниже — ведь резистор и без того вышел из строя. Происходит это обычно из-за перегрева. Так что установка резистора меньшей мощности исключена. Вернее, вы его поставить можете. Но будьте готовы к тому, что скоро его снова придется менять.

Определение мощности резистора по размерам

Примерно определить мощность резистора можно по размерам

Если место на плате позволяет, лучше поставить деталь с большей мощностью рассеивания, чем была у заменяемой детали. Или поднять резистор той же мощности повыше (можно вообще не подрезать выводы) — чтобы охлаждение было лучше. В общем, при замене резистора, мощность берем либо ту же, либо выше на шаг.

Как рассчитать мощность резистора — Moy-Instrument.Ru

В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.

Характеристики резисторов

1. Основной параметр резистора – это номинальное сопротивление.

2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.

3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.

4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.

5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.

6. Шумовые характеристики.

7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.

8. Влаго- и термоустойчивость.

Есть еще две характеристики, о которых начинающие чаще всего не знают, это:

1. Паразитная индуктивность.

2. Паразитная ёмкость.

Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.

На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.

Мощность резистора

Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I

Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:

Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:

Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.

У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.

В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).

На картинке пример кристаллической решетки, для наглядности.

Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?

То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.

Но как это относится к резисторам?

Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. Мы описывали это в статье о биполярных транзисторах. Из формулы выше станет ясно, что ток снижается, за счет снижения напряжения. Лишнее напряжение можно сказать, что сгорает в виде тепла на резисторе, мощность при этом считается по той же формуле, что и общая мощность:

Здесь U – это количество вольт «сожженных» на резисторе, а I – это ток, который через него протекает.

Выделение тепла на резисторе объясняется законом Джоуля-Ленца, который связывает количество выделенной теплоты с током и сопротивлением. Чем больше первое или второе, тем больше выделится тепла.

Чтобы было удобно из этой формулы, путем подстановки закона Ома для участка цепи, выведено еще две формулы.

Для определения мощности через приложенное напряжение к резистору:

Для определения мощности через ток, протекающий через резистор:

Немного практики

Для примера, давайте определим, какая мощность выделяется на резистор номиналом в 1 Ом, подключенного к источнику напряжения в 12В.

Для начала посчитаем ток в цепи:

Теперь мощность по классической формуле:

Одного действия при расчетах можно избежать, если пользоваться вышеупомянутыми формулами, давайте это проверим:

Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.

Какие бывают резисторы и как они обозначаются на схеме

Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5

Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.

Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.

Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.

Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).

Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).

Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.

В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента. Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е. охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.

Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.

В продолжение этой темы:

Что делать, если нет резистора нужной мощности?

Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.

На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.

1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3

2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.

На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.

Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I

Мощность, выделяемая на каждом из них, снизится соответствующим образом.

Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0.5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.

Я не просто так написал «ПОЧТИ ВСЕГДА». Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.

Заключение

Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.

При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.

Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.

«Маленькие хитрости». Часть 4.

Формулы для радиолюбительских расчетов.

Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!

Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.

Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.

Закон Ома.

Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:

Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).

Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.

Как рассчитать сопротивление гасящего резистора.

Сопротивление гасящего резистора рассчитывают по формуле: R= U /I

Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).

Как рассчитать мощность гасящего резистора.

Расчет мощности гасящего резистора проводят по формуле: P=I 2 R

Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

Как рассчитать напряжение падения на сопротивлении.

Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад . =RI

Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

Как рассчитать ток потребляемый устройством или цепью.

Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U

Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

Как рассчитать мощность устройства в Вт.

Рассчитать мощность устройства в Вт. можно по формуле: P=IU

Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

Как рассчитать длину радиоволны.

Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ

Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.

Как рассчитать частоту радиосигнала.

Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ

Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

Как рассчитать номинальную выходную мощность звуковой частоты.

Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U 2 вых./ R ном .

Где U 2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.

Как рассчитать сопротивление двух параллельно включенных резисторов.

Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)

Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).

Как рассчитать сопротивление более двух включенных параллельно резисторов.

Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…

Где R1, R2, Rn — сопротивление первого, второго и последующих резисторов соответственно (Ом).

Как рассчитать емкость включенных параллельно двух или более конденсаторов.

Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn

Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно двух конденсаторов.

Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2

Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно более двух конденсаторов.

Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn

Где C1, C2 и Cn — емкость первого, второго и последующих конденсаторов (мФ).

Рекомендуем посмотреть:

Резистор тока.

Резистор тока выполняет сразу несколько очень важных задач: служит ограничителем электрического тока в цепи, создает падение напряжения на отдельных ее участках и разделяет пульсирующий ток.

Помимо номинального сопротивления, одним из наиболее важных параметров резистора является рассеиваемая мощность. Она зависима от напряжения и тока. Мощность – это то тепло, которое выделяется на резисторе, когда под воздействием протекающего тока он нагревается. При пропуске тока, превышающего заданное значение мощности, резистор может сгореть.

Мощность постоянного тока может быть рассчитана по простой формуле P(Вт) = U(В) * I(А),

Чтобы избежать сгорания резистора тока, необходимо учитывать его мощность. Соответственно, если схема указывает на замену резистора с мощностью 0,5 Ватт – 0,5 Ватт в данном случае – минимум.

Мощность резистора может зависеть от его размеров. Как правило, чем меньше резистор — тем меньше мощность его рассеивания. Стандартный ряд мощностей резисторов тока состоит из значений:

Рассмотрим на примере: номинальное сопротивление нашего резистора тока – 100 Ом. Через него течет ток 0,1 Ампер. Чтобы узнать мощность, на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом),

  • P(Вт) – мощность,
  • R(Ом) – сопротивление цепи (в данном случае резистора),
  • I(А) – ток, протекающий через резистор.

Внимание! При расчётах следует соблюдать размерность. Например, 1 кА= 1000 А . Это же касается и других величин.

Итак, рассчитаем мощность для нашего резистора тока: P(Вт) = 0,12(А) *100 (Ом)= 1(Вт)

Получилось, что минимальная мощность нашего резистора составляет 1 Ватт. Однако в схему следует установить резистор с мощностью в 1,5 – 2 раза выше рассчитанной. Соответственно идеальным для нас будет резистор тока мощностью 2 Вт.

Бывает, что ток, протекающий через резистор неизвестен. Для расчёта мощности в таком случае предусмотрена специальная формула:

Соединение цепи может быть последовательным и параллельным. Однако никакого труда не составляет рассчитать мощность резистора тока как в параллельной, так и в последовательной цепи. Следует учитывать лишь то, что в последовательно цепи через резисторы течет один ток.

Например, нам необходимо произвести замену резистора тока сопротивлением 100 Ом. Ток, протекающий через него – 0,1 Ампер. Соответственно, его мощность – 1 Ватт. Следует рассчитать мощность двух соединенных последовательно резисторов для его замены. Согласно формуле расчёта мощности, мощность рассеивания резистора на 20 Ом – 0,2 Вт, мощность резистора на 80 Ом – 0,8 Вт. Стандартный ряд мощностей поможет выбрать резисторы тока:

R1 – 20 Ом (0.5 Вт)

R2 – 80 Ом (1 Вт)

Из всего вышесказанного можно сделать вывод, что разное сопротивление резисторов гарантирует их разную выделяемую мощность, так как она распределяется между резисторами разных номиналов. Если не учитывать это обстоятельство, то можно столкнуться с большим количеством трудностей. Если один из резисторов выбран неправильно – второй работает в тяжелом температурном режиме. Также присутствует угроза возгорания резистора из-за несоблюдения правил мощности.

Для того, чтобы сэкономить время и не рассчитывать мощность каждого отдельного резистора тока нужно запомнить одно простое правило: мощность заменяемого резистора должна быть равна мощности каждого резистора, составляющего параллельную или последовательную цепь. То есть при замене резистора мощностью 0,5 Вт надо следить за тем, чтобы каждый из резисторов для замены имел мощность не менее 0,5 Вт.

При параллельном соединение резисторов важно помнить, что чем меньше сопротивление резистора, тем больший ток через него протекает, а значит на нем будет рассеяна большая мощность.

Резисторы

Резистор — один из наиболее распространённых компонентов в электронике. Его назначение — простое: сопротивляться течению тока, преобразовывая его часть в тепло.

Основной характеристикой резистора является сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем большая часть тока рассеивается в тепло. В схемах, питаемых небольшим напряжением (5 – 12 В), наиболее распространены резисторы номиналом от 100 Ом до 100 кОм.

Закон Ома

Закон Ома позволяет на заданном участке цепи определить одну из величин: силу тока I, напряжение U, сопротивление R, если известны две остальные:

Для обозначения напряжения наряду с символом U используется V.

Рассмотрим простую цепь

Расчитаем силу тока, проходящего через резистор R1 и, соответственно, затем через лампу L1. Для простоты будем предполагать, что сама лампа обладает нулевым собственным сопротивлением.

Аналогично, если бы у нас был источник питания на 5 В и лампа, которая по документации должна работать при токе 20 мА, нам нужно бы было выбрать резистор подходящего номинала.

В данном случае, разница в 10 Ом между идеальным номиналом и имеющимся не играет большого значения: можно смело брать стандартный номинал — 240 или 220 Ом.

Аналогично, мы могли бы расчитать требуемое напряжение, если бы оно было не известно, а на руках были значения сопротивления и желаемая сила тока.

Соединение резисторов

При последовательном соединении резисторов, их сопротивление суммируется:

При параллельном соединении, итоговое сопротивление расчитывается по формуле:

Если резистора всего два, то:

В частном случае двух одинаковых резисторов, итоговое сопротивление при параллельном соединении равно половине сопротивления каждого из них.

Таким образом можно получать новые номиналы из имеющихся в наличии.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

Мощность резисторов

Резисторы помимо сопротивления обладают ещё характеристикой мощности. Она определяет нагрузку, которую способен выдержать резистор. Среди обычных керамических резисторов наиболее распространены показатели 0.25 Вт, 0.5 Вт и 1 Вт. Для расчёта нагрузки, действующей на резистор, используйте формулу:

При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении — резистор может начать плавиться и вызвать воспламенение. Будьте осторожны!

Резистор тока.

Резистор тока выполняет сразу несколько очень важных задач: служит ограничителем электрического тока в цепи, создает падение напряжения на отдельных ее участках и разделяет пульсирующий ток.

Помимо номинального сопротивления, одним из наиболее важных параметров резистора является рассеиваемая мощность. Она зависима от напряжения и тока. Мощность – это то тепло, которое выделяется на резисторе, когда под воздействием протекающего тока он нагревается. При пропуске тока, превышающего заданное значение мощности, резистор может сгореть.

Мощность постоянного тока может быть рассчитана по простой формуле P(Вт) = U(В) * I(А),

Чтобы избежать сгорания резистора тока, необходимо учитывать его мощность. Соответственно, если схема указывает на замену резистора с мощностью 0,5 Ватт – 0,5 Ватт в данном случае – минимум.

Мощность резистора может зависеть от его размеров. Как правило, чем меньше резистор — тем меньше мощность его рассеивания. Стандартный ряд мощностей резисторов тока состоит из значений:

Рассмотрим на примере: номинальное сопротивление нашего резистора тока – 100 Ом. Через него течет ток 0,1 Ампер. Чтобы узнать мощность, на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом),

  • P(Вт) – мощность,
  • R(Ом) – сопротивление цепи (в данном случае резистора),
  • I(А) – ток, протекающий через резистор.

Внимание! При расчётах следует соблюдать размерность. Например, 1 кА= 1000 А . Это же касается и других величин.

Итак, рассчитаем мощность для нашего резистора тока: P(Вт) = 0,12(А) *100 (Ом)= 1(Вт)

Получилось, что минимальная мощность нашего резистора составляет 1 Ватт. Однако в схему следует установить резистор с мощностью в 1,5 – 2 раза выше рассчитанной. Соответственно идеальным для нас будет резистор тока мощностью 2 Вт.

Бывает, что ток, протекающий через резистор неизвестен. Для расчёта мощности в таком случае предусмотрена специальная формула:

Соединение цепи может быть последовательным и параллельным. Однако никакого труда не составляет рассчитать мощность резистора тока как в параллельной, так и в последовательной цепи. Следует учитывать лишь то, что в последовательно цепи через резисторы течет один ток.

Например, нам необходимо произвести замену резистора тока сопротивлением 100 Ом. Ток, протекающий через него – 0,1 Ампер. Соответственно, его мощность – 1 Ватт. Следует рассчитать мощность двух соединенных последовательно резисторов для его замены. Согласно формуле расчёта мощности, мощность рассеивания резистора на 20 Ом – 0,2 Вт, мощность резистора на 80 Ом – 0,8 Вт. Стандартный ряд мощностей поможет выбрать резисторы тока:

R1 – 20 Ом (0.5 Вт)

R2 – 80 Ом (1 Вт)

Из всего вышесказанного можно сделать вывод, что разное сопротивление резисторов гарантирует их разную выделяемую мощность, так как она распределяется между резисторами разных номиналов. Если не учитывать это обстоятельство, то можно столкнуться с большим количеством трудностей. Если один из резисторов выбран неправильно – второй работает в тяжелом температурном режиме. Также присутствует угроза возгорания резистора из-за несоблюдения правил мощности.

Для того, чтобы сэкономить время и не рассчитывать мощность каждого отдельного резистора тока нужно запомнить одно простое правило: мощность заменяемого резистора должна быть равна мощности каждого резистора, составляющего параллельную или последовательную цепь. То есть при замене резистора мощностью 0,5 Вт надо следить за тем, чтобы каждый из резисторов для замены имел мощность не менее 0,5 Вт.

При параллельном соединение резисторов важно помнить, что чем меньше сопротивление резистора, тем больший ток через него протекает, а значит на нем будет рассеяна большая мощность.

Мощность резистора по размеру

Внезапно, возникла проблема: на резисторах мощностью до 2 Вт не указана их мощность. А всё потому, что мощность определяется размером:

Таблица размер-мощность аксиальных (цилиндрических) резисторов

Но, всё не так однозначно. Бывают резисторы одинаковой мощности разного размера и разной мощности одинакового размера:

Аксиальные (с осевыми выводами) резисторы с внезапной маркировкой на них мощности ваттах (W)

Мощность чип-резисторов тоже связана с их размером:

Правая часть второй колонки (код типоразмера, состоящий из 4-х цифр) — кодирует длину (первые две цифры) и ширину (вторые две цифры) детали в 1/100 долях дюйма (точнее в 1/1000, а между двумя цифрами подразумевается десятичная точка)

Значения мощности в третьей колонке указаны при температуре 70°С и это некие «стандартные» значения, которые являются «круглыми» долями одного ватта: 0.031 — это 1/32 ватта, 0.05 — 1/20, 0.063 — 1/16 и т. д. Также у разных производителей существуют резисторы такого же размера повышенной мощности [Panasonic High Power SMD Resistors] и пониженной [зато плоские; Thick Film Chip Resistors].

Что такое мощность резистора?

Вообще, мощность (измеряемая в ваттах) — это энергия (измеряемая в джоулях), передаваемая (или потребляемая, или отдаваемая) в секунду. Энергия электрического тока в проводнике состоит из кинетической энергии скорости электронов и их количества (сила тока, I), и потенциальной энергии сжатости электронного газа (напряжение, U). Мощность электрического тока, проходящего через резистор, определяется по формуле P=U·I=R·I 2 , где U — падение напряжения на выводах резистора, R — заявленное сопротивление резистора.

Электроны врезаются в молекулы полупроводника-резистора и нагревают их (увеличивают амплитуду колебаний), энергия электронного тока частично переходит в тепловую энергию нагрева резистора. Резистор рассеивает это тепло в окружающую среду (воздух), спасаясь от перегрева, и чем быстрее он это делает (чем больше джоулей тепла в секунду отдаёт во вне) тем больше его мощность [рассеивания] и тем более мощный ток он может через себя пропустить. Соответственно, резистор тем мощнее, чем больше поверхность его тушки (или радиатора, к которому он привинчен), чем холоднее и плотнее окружающая среда (воздух, вода, масло), чем большую температуру разогрева себя, любимого, может выдержать резистор.

Так вот, мощность резистора — это максимальная мощность тока, проходящего через резистор, которую резистор выдерживает бесконечно долго, не ломаясь от перегрева и не меняя слишком сильно своего исходного (номинального; при 25°С) сопротивления.

Как же может сломаться резистор, если он сделан из таких материалов как графит (температура плавления >3800°С), керамика (>2800°С), сплава «константан» (=1260°С), нихрома, … ? Ломаются резисторы обычно путём трескания напополам их тщедушного тельца или отваливания (отгорания) от тела колпачков-выводов на концах. Обугливание краски

Мощный резистор, целый, но обуглилась краска на нём, так что пропала маркировка

поломкой не считается. Но чтобы не терять маркировку, в последнее время стало модно запихивать резистор мощностью ≥ 3 Вт в керамический параллелепипед, который снаружи выглядит как новый даже после многих лет напряжённой работы-разогрева резистора.

Т.к. мощный резистор сильно греется, по сути печка, нагревательный элемент, то его обычно на платах подвешивают в пространстве на длинных ножках,

Дистанцирование мощного резистора от платы

чтобы удалить от деталей на плате, особенно от и без того бодро иссыхающих со временем электролитических конденсаторов.

Какой формулой рассчитать мощность резисторов

Резисторы применяются практически во всех электросхемах. Это наиболее простой компонент, в основном, служащий для ограничения или регулирования тока, благодаря наличию сопротивления при его протекании.

Резисторы

Виды резисторов

Внутреннее устройство детали может быть различным, но преимущественно это изолятор цилиндрической формы, с нанесённым на его внешнюю поверхность слоем либо несколькими витками тонкой проволоки, проводящими ток и рассчитанными на заданное значение сопротивления, измеряемое в омах.

Существующие разновидности резисторов:

  1. Постоянные. Имеют неизменное сопротивление. Применяются, когда определенный участок электроцепи требует установки заданного уровня по току или напряжению. Такие компоненты необходимо рассчитывать и подбирать по параметрам;
  2. Переменные. Оснащены несколькими выводными контактами. Их сопротивление поддается регулировке, которая может быть плавной и ступенчатой. Пример использования – контроль громкости в аудиоаппаратуре;
  3. Подстроечные – представляют собой вариант переменных. Разница в том, что регулировка подстроечных резисторов производится очень редко;
  4. Есть еще резисторы с нелинейными характеристиками – варисторы, терморезисторы, фоторезисторы, сопротивление которых меняется под воздействием освещения, температурных колебаний, механического давления.

Важно! Материалом для изготовления практически всех нелинейных деталей, кроме угольных варисторов, применяемых в стабилизаторах напряжения, являются полупроводники.

Параметры резисторного элемента

  1. Для резисторов применяется понятие мощности. При прохождении через них электротока происходит выделение тепловой энергии, рассеиваемой в окружающее пространство. Мощность детали является параметром, который показывает, сколько энергии она может выделить в виде тепла, оставаясь работоспособной. Мощность зависит от габаритов детали, поэтому у маленьких зарубежных резисторов ее определяют на глаз, сравнивая с российскими, технические характеристики которых известны;

Важно! Импортные резисторные элементы идентичной мощности имеют несколько меньшие размеры, так как российские производятся с некоторым запасом по этому показателю.

На схеме мощность показана следующим образом.

Условное обозначение мощности

  1. Второй параметр – сопротивление элемента. На российских деталях типа МЛТ и крупных импортных образцах оба параметра указываются на корпусе (мощность – Вт, сопротивление – Ом, кОм, мОм). Для визуального определения сопротивления миниатюрных импортных элементов применяется система условных обозначений с помощью цветных полосок;

Цветовая маркировка резисторов

  1. Допуски. Невозможно изготовить деталь с номинальным сопротивлением, в точности соответствующим заявленному значению. Поэтому всегда указываются границы погрешности, называемые допуском. Его величина – 0,5-20%;
  2. ТКС – коэффициент температуры. Показывает, как варьируется сопротивление при изменении внешней температуры на 1°С. Желательно, но не обязательно подбирать элементы с близким или идентичным значением этого показателя для одной цепи.

Расчет резисторов

Для расчета сопротивления резистора формула применяемая в первую очередь – это закон Ома:

I = U/R.

Исходя из этой формулы, можно вывести выражение для сопротивления:

R = U/I,

где U – разность потенциалов на выводных контактах резистора.

Пример. Необходимо провести зарядку аккумулятора 2,4 В зарядным током 50 мА от автомобильной 12-вольтовой батареи. Прямое соединение сделать нельзя из-за слишком высоких показателей по току и напряжению. Но возможно поставить в схему сопротивление, которое обеспечит нужные параметры.

Предварительно нужно рассчитать резистор:

  • Расчет начинается с определения падения напряжения, которое должен обеспечить резисторный элемент:

U = 12-2,4 = 9,6 B

  • Протекающий по детали ток – 50 мА. Следовательно, R = 9,6/0,05 = 192 Ом

Теперь можно уже подобрать нужный резистор по одному показателю.

Если рассчитанной детали не нашлось, можно применить соединение из нескольких резисторных элементов, установив их последовательно или параллельно. Расчет сопротивлений при этом имеет свои особенности.

Последовательное соединение

Последовательно соединенные сопротивления складываются:

R = R1+ R2.

Если нужно получить общий результат 200 Ом, и имеется один резистор на 120 Ом, то расчет другого:

R2 = R-R1 = 200-120 = 80 Ом.

Последовательное соединение

Параллельное соединение

При параллельной схеме другая зависимость:

1/R = 1/R1 + 1/R2.

Или преобразованный вариант:

R = (R1 x R2)/ (R1 + R2).

Важно! Параллельное соединение можно использовать, когда в наличии детали с большим сопротивлением, чем требуется, последовательное наоборот.

Пример. Необходимо сопротивление 200 Ом. Имеется деталь R2 на 360 Ом. Какое сопротивление подобрать еще? R1 = R2/(R2/R-1) = 360/(360/200-1) = 450 Ом.

Параллельное соединение

Смешанное соединение

В смешанных схемах присутствуют последовательно-параллельные комбинации. Расчет таких схем сводится к их упрощению путем преобразований. На рисунке ниже представлено, как упростить схему, рассчитывая общий показатель для шести резисторов с учетом их соединения.

Расчет сопротивления в смешанной схеме

Мощность

Определив сопротивление, еще нельзя выбрать деталь. Чтобы обеспечить надежную работу схемы, необходимо найти и другой параметр – мощность. Для этого надо знать, как рассчитать мощность резисторного элемента.

Формулы, по которым можно рассчитать мощность резистора:

Пример. I = 50 мА; R = 200 Ом. Тогда P = I² x R = 0,05² x 200 = 0,5 Вт.

Если не учитывать значение тока, расчет мощности резистора ведется по другой формуле.

Пример. U = 9,6 В, R = 200 Ом. P = U²/R = 9,6²/200 = 0,46 Вт. Получился тот же результат.

Теперь, зная точные параметры рассчитываемого резисторного элемента, подберем радиодеталь.

Важно! При выборе деталей возможно их заменить на резисторы с мощностью, больше рассчитанной, но обратный вариант не подходит.

Это основные формулы для расчета резисторных деталей, на основании которых производится анализ узлов схемы, где главным является определение токов и напряжений, протекающих через конкретный элемент.

Видео

Оцените статью:
Как определить мощность резистора. | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. Резистор является самым используемым радиокомпонентом, без которого не обходится ни одна электронная схема. Основными параметрами резистора являются электрическое сопротивление, мощность и допуск.

Если с сопротивлением и допуском все понятно, то определение мощности малогабаритных резисторов вызывает некоторые трудности, особенно на первых порах занятием радиолюбительством. В статье о цветовой и цифровой маркировке резисторов я уже рассказывал о мощности резисторов, но судя по Вашим комментариям, этот параметр был раскрыт не полностью. В этой статье я постараюсь устранить этот пробел.

Резисторы

Итак. Резисторы бывают разного устройства и конструкции, но в большинстве случаев они представляют собой небольшой цилиндр из фарфора или какого-нибудь другого изолятора, на который нанесен токопроводящий слой, обладающий определенным электрическим сопротивлением. В других конструкция на цилиндр наматывается требуемое количество витков тонкой проволоки из сплавов, обладающих большим сопротивлением.

Резисторы применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора в ваттах (Вт): двойной косой чертой обозначают резистор мощностью 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римской цифрой обозначается мощность от 1 Вт и выше.

Обозначение мощности резисторов на схемах

Как правило, резисторы разной мощности отличаются размерами и чем больше мощность резистора, тем размер его больше. На крупногабаритных резисторах величина мощности указывается на корпусе в виде цифрового значения, а вот малогабаритные резисторы приходится определять на «глаз».

Но все же определить мощность того или иного резистора не так уж и трудно, так как габаритные размеры соответствуют стандарту, которого стараются придерживаться все производители электронных компонентов. В Советском Союзе даже выпускались таблицы для определения мощности резисторов по их размерам: диаметру и длине.

На отечественных резисторах типа МЛТ и некоторых зарубежных мощностью 1Вт и выше величина мощности указывается на корпусе цифровым значением. На остальных импортных резисторах рядом с цифрой дополнительно ставят латинскую букву W.

Обозначение мощности на корпусе резисторов

Правда, встречаются некоторые зарубежные экземпляры, где после цифрового значения может стоять другая буква. Как правило, подобную маркировку ставит производитель, который сам изготавливает некоторые компоненты для своей аппаратуры, не придерживаясь стандартов.

Не стандартное обозначение мощности

Однако с размерами есть небольшой нюанс, который надо знать: габариты отечественных и импортных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.

Это объясняется тем, что отечественные радиокомпоненты выпускаются с некоторым запасом по мощности, тогда как у зарубежных аналогов такого запаса нет. Поэтому при замене отечественных резисторов зарубежными, зарубежный аналог следует брать на порядок мощнее.

Отечественный и импортный резистор одинаковой мощности

Есть еще один тип резисторов, выпускаемые как зарубежными, так и отечественными производителями, габариты которых не подходят под стандартные размеры. Как правило, это низкоомные высокоточные резисторы, имеющие допуск по номинальному сопротивлению от 1% и ниже. Такие резисторы применяются в измерительных приборах, медицинском, военном или высокоточном оборудовании.

Резисторы нестандартных размеров

Если с крупногабаритными резисторами все понятно, то малогабаритные резисторы мощностью 0,5 Вт и ниже приходится различать только исходя из их размеров. Но и в этом случае сложного ничего нет, так как на первое время достаточно в качестве образца иметь по одному резистору с мощностями от 0,125Вт до 0,5Вт, чтобы сравнивать их с искомыми резисторами.

Малогабаритные резисторы

А в дальнейшем, когда придет опыт, Вы сможете без труда определять мощность резисторов по их габаритам.

Ну и в довершении статьи картинка с резисторами отечественного и зарубежного производства в порядке возрастания их мощности. А чтобы легче было ориентироваться в габаритах, на каждой картинке предоставлена спичка, относительно которой можно судить о размерах того или иного резистора.

Резисторы разной мощности

И еще надо сказать о замене: резистор мощностью 0,125Вт можно заменить резистором мощностью 0,125Вт и выше. Лишь бы позволял размер платы. А вот резистор мощностью 0,5Вт нельзя заменить резисторами 0,125Вт и 0,25Вт, так как их мощность меньше и в процессе работы они могут перегреться и выйти из строя.

И по традиции видеоролик, где показывается еще один вариант определения мощности резисторов.

Удачи!

Резистор и сопротивление [База знаний]

Резистор и сопротивление

Теория

КОМПОНЕНТЫ
ARDUINO
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Резистор — искусственное «препятствие» для тока. Сопротивление в чистом виде. Резистор ограничивает силу тока, переводя часть электроэнергии в тепло. Сегодня невозможно изготовить ни одно, сколько-нибудь функциональное, электронное устройство без резисторов. Они используются везде: от компьютеров до систем охраны.

Обозначения резисторов

Сопротивление резистора — его основная характеристика. Основной единицей электрического сопротивления является Ом. На практике используются также производные единицы — килоом (кОм), мегаом (МОм), гигаом (ГОм), которые связаны с основной единицей следующими соотношениями:

1 кОм = 1000 Ом,
1 МОм = 1000 кОм,
1 ГОм = 1000 МОм

Ниже на рисунке видна маркировка резисторов на схемах:

Маркировка резисторов на схемах

Наклонные линии обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры), указывают на мощность резистора в несколько Ватт, в соответствии со значением римской цифры.

 

Для соединения резисторов в схемах используются три разных способа подключения: параллельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

 


Последовательное соединение резисторов

Маркировка резисторов на схемах Последовательное соединение резисторов применяется для увеличения сопротивления. Т.е. когда резисторы соединены последовательно, общее сопротивление равняется сумме сопротивлений каждого резистора. Например, если резисторы R1 и R2 соединены последовательно, их общее сопротивление высчитывается по формуле: Rобщ = R1 + R2

Это справедливо и для большего количества соединённых последовательно резисторов:

Rобщ = R1 + R2 + R3 + … + Rn

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Мощность при последовательном соединении

При соединении резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200 + 100 + 51 + 39 = 390 Ом

Маркировка резисторов на схемах

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять

I = U/R = 100 В/390 Ом = 0,256 A

На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле:

P = I2 x R = 0,2562 x 390 = 25,55 Вт

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

P1 = I2 x R1 = 0,2562 x 200 = 13,11 Вт;
P2 = I2 x R2 = 0,2562 x 100 = 6,55 Вт;
P3 = I2 x R3 = 0,2562 x 51 = 3,34 Вт;
P4 = I2 x R4 = 0,2562 x 39 = 2,55 Вт.

Если сложить полученные мощности, то общая Р составит:

Робщ = 13,11 + 6,55 + 3,34 + 2,55 = 25,55 Вт

 


Параллельное соединение резисторов

Маркировка резисторов на схемах Параллельное соединение резисторов необходимо для уменьшения общего сопротивления и, как вариант, для увеличения мощности нескольких резисторов по сравнению с одним.

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Rобщ = (R1 × R2) / (R1 + R2)

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

1 / Rобщ = 1 / R1 + 1 / R2 + … + 1 / Rn

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Мощность при параллельном соединении

При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же. 1/R = 1/200 + 1/100 + 1/51 + 1/39 ≈ 0,06024 Ом
R = 1 / 0,06024 ≈ 16,6 Ом

Маркировка резисторов на схемах

Используя значение напряжения 100 В, по закону Ома рассчитывается сила тока

I = U/R = 100 В x 0,06024 Ом = 6,024 A

Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом

P = I2 x R = 6,0242 x 16,6 = 602,3 Вт

Расчет силы тока для каждого резистора выполняется по формулам:

I1 = U/R1 = 100/200 = 0,5 A;
I2 = U/R2 = 100/100 = 1 A;
I3 = U/R3 = 100/51 = 1,96 A;
I4 = U/R4 = 100/39 = 2,56 A

На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов:

P1 = U2/R1 = 1002/200 = 50 Вт;
P2 = U2/R2 = 1002/100 = 100 Вт;
P3 = U22/R3 = 1002/51 = 195,9 Вт;
P4 = U22/R4 = 1002/39 = 256,4 Вт

Если сложить полученные мощности, то общая Р составит:

Робщ = 50 + 100 + 195,9 + 256,4 = 602,3 Вт

 


Калькулятор


Цветовая маркировка резисторов

Наносить номинал резистора на корпус числами — дорого и непрактично: они получаются очень мелкими. Поэтому номинал и допуск кодируют цветными полосками. Разные серии резисторов содержат разное количество полос, но принцип расшифровки одинаков. Цвет корпуса резистора может быть бежевым, голубым, белым. Это не играет роли. Если не уверены в том, что правильно прочитали полосы, можете проверить себя с помощью мультиметра или калькулятора цветовой маркировки.

Цветовая маркировка резисторов
Калькулятор цветовой маркировки резисторов

Основные характеристики

Сопротивление (номинал)RОм
Точность (допуск)±%
МощностьPВатт

Переменный резистор

Переменный резистор — это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом. Переменные резисторы (их также называют реостатами или потенциометрами) предназначены для постепенного регулирования силы тока и напряжения. Разница в том, что реостат регулирует силу тока в электрической цепи, а потенциометр — напряжение. Выглядят переменные резисторы так:

Переменные резисторы

На радиосхемах переменные резисторы обозначаются прямоугольником с пририсованной к их корпусу стрелочкой.

Сравнение потенциометра с делителем напряжения

Регулировать величину сопротивления переменных резисторов можно с помощью вращения специальной ручки. Те из резисторов, у которых регулировка сопротивления резистора может осуществляться только с помощью отвертки или специального ключа-шестигранника, называются подстроечными переменными резисторами.

Подстроечные резисторы

Термисторы, варисторы и фоторезисторы

Кроме реостатов и потенциометров есть и другие виды резисторов: термисторы, варисторы и фоторезисторы. Термисторы, в свою очередь, делятся на термисторы и позисторы. Позистор – это термистор, у которого сопротивление возрастает вместе с ростом температуры окружающей среды. У термисторов, наоборот, чем выше температура вокруг, тем меньше сопротивление. Это свойство обозначают как ТКС – тепловой коэффициент сопротивления.

Термисторы

В зависимости от ТКС (отрицательный он или положительный) обозначают на схеме термисторы следующим образом:

Следующий особый класс резисторов – это варисторы. Они изменяют силу сопротивления в зависимости от подаваемого на них напряжения. Зная свойства варистора, можно догадаться, что такой резистор защищает электрическую цепь от перенапряжения.

Варисторы

На схемах варисторы обозначаются так:

В зависимости от интенсивности освещения изменяет свое сопротивление еще один вид резисторов – фоторезисторы. Причем не важно, каков источник освещения: искусственный или естественный. Их особенность еще и в том, что ток в них протекает как в одном, так и в другом направлении, то есть еще говорят, что фоторезисторы не имеют p-n перехода. Фоторезистор

А на схемах изображаются так:


Как определить мощность резисторов. Мощность резисторов при параллельном соединении

Все электронные устройства содержат резисторы, являющиеся их основным элементом. С его помощью изменяют величину тока в электрической цепи. В статье приведены свойства резисторов и методы расчёта их мощности.

Назначение резистора

Для регулировки тока в электрических цепях применяются резисторы. Это свойство определено законом Ома:

I=U/R (1)

Из формулы (1) хорошо видно, что чем меньше сопротивление, тем сильнее возрастает ток, и наоборот, чем меньше величина R, тем больше ток. Именно это свойство электрического сопротивления используется в электротехнике. На основании этой формулы создаются схемы делителей тока, широко применяющиеся в электротехнических устройствах.

мощность резисторов

В этой схеме ток от источника делится на два, обратно пропорциональных сопротивлениям резисторов.

Кроме регулировки тока, резисторы используются в делителях напряжения. В этом случае опять используется закон Ома, но немного в другой форме:

U=I∙R (2)

Из формулы (2) следует, что при увеличении сопротивления увеличивается напряжение. Это свойство используется для построения схем делителей напряжения.

мощность резисторов на схеме

Из схемы и формулы (2) ясно, что напряжения на резисторах распределяются пропорционально сопротивлениям.

Изображение резисторов на схемах

По стандарту резисторы изображаются прямоугольником с размерами 10 х 4 мм и обозначаются буквой R. Часто указывается мощность резисторов на схеме. Изображение этого показателя выполняется косыми или прямыми чёрточками. Если мощность более 2 Ватт, то обозначение производится римскими цифрами. Обычно это делается для проволочных резисторов. В некоторых государствах, например в США, применяются другие условные обозначения. Для облегчения ремонта и анализа схемы часто приводится мощность резисторов, обозначение которых выполняется по ГОСТ 2.728-74.

Технические характеристики устройств

Основная характеристика резистора – номинальное сопротивление Rн, которое указывается на схеме возле резистора и на его корпусе. Единица измерения сопротивления – ом, килоом и мегаом. Изготавливаются резисторы с сопротивлением от долей ома и до сотен мегаомов. Существует немало технологий производства резисторов, все они имеют и преимущества, и недостатки. В принципе, не существует технологии, которая позволила бы абсолютно точно изготавливать резистор с заданным значением сопротивления.

Второй важной характеристикой является отклонение сопротивления. Оно измеряется в % от номинального R. Существует стандартный ряд отклонения сопротивления: ±20, ±10, ±5, ±2, ±1% и далее вплоть до значения ±0,001%.

Следующей важной характеристикой является мощность резисторов. При работе они нагреваются от проходящего по ним тока. Если рассеиваемая мощность будет превышать допустимое значение, то устройство выйдет из строя.

Резисторы при нагревании изменяют своё сопротивление, поэтому для устройств, работающих в широком диапазоне температур, вводится ещё одна характеристика – температурный коэффициент сопротивления. Он измеряется в ppm/°C, то есть 10-6 Rн/°C (миллионная часть от Rн на 1°C).

Последовательное соединение резисторов

Резисторы могут соединяться тремя разными способами: последовательным, параллельным и смешанным. При последовательном соединении ток поочерёдно проходит через все сопротивления.

как определить мощность резисторов

При таком соединении ток в любой точке цепи один и тот же, его можно определить по закону Ома. Полное сопротивление цепи в этом случае равно сумме сопротивлений:

R=200+100+51+39=390 Ом;

I=U/R=100/390=0,256 А.

Теперь можно определить мощность при последовательном соединении резисторов, она рассчитывается по формуле:

P=I2∙R= 0,2562∙390=25,55 Вт.

Аналогично определяется мощность остальных резисторов:

P1= I2∙R1=0,2562∙200=13,11 Вт;

P2= I2∙R2=0,2562∙100=6,55 Вт;

P3= I2∙R3=0,2562∙51=3,34 Вт;

P4= I2∙R4=0,2562∙39=2,55 Вт.

Если сложить мощность резисторов, то получится полная P:

P=13,11+6,55+3,34+2,55=25,55 Вт.

Параллельное соединение резисторов

При параллельном соединении все начала резисторов подключаются к одному узлу схемы, а концы – к другому. При таком соединении ток разветвляется и течёт по каждому устройству. Величина тока, согласно закону Ома, обратно пропорциональна сопротивлениям, а напряжение на всех резисторах одинаково.

мощность резисторов обозначение

Прежде чем найти ток, нужно рассчитать полную проводимость всех резисторов по общеизвестной формуле:

1/R=1/R1+1/R2+1/R3+1/R4=1/200+1/100+1/51+1/39=0,005+0,01+0,0196+0,0256= 0,06024 1/Ом.

Сопротивление – величина, обратная проводимости:

R=1/0,06024= 16,6 Ом.

Воспользовавшись законом Ома, находят ток через источник:

I= U/R=100∙0,06024=6,024 A.

Зная ток через источник, находят мощность параллельно соединённых резисторов по формуле:

P=I2∙R=6,0242∙16,6=602,3 Вт.

По закону Ома рассчитывается ток через резисторы:

I1=U/R1=100/200=0,5 А;

I2=U/R2=100/100=1 А;

I3=U/R1=100/51=1,96 А;

I1=U/R1=100/39=2,56 А.

Немного по другой формуле можно рассчитать мощность резисторов при параллельном соединении:

P1= U2/R1=1002/200=50 Вт;

P2= U2/R2=1002/100=100 Вт;

P3= U2/R3=1002/51=195,9 Вт;

P4= U2/R4=1002/39=256,4 Вт.

Если всё это сложить, то получится мощность всех резисторов:

P= P1+ P2+ P3+ P4=50+100+195,9+256,4=602,3 Вт.

Смешанное соединение

Схемы со смешанным соединением резисторов содержат последовательное и одновременно параллельное соединение. Эту схему несложно преобразовать, заменив параллельное соединение резисторов последовательным. Для этого заменяют сначала сопротивления R2 и R6 на их общее R2,6, используя формулу, приведённую ниже:

R2,6=R2∙R6/R2+R6.

Точно так же заменяются два параллельных резистора R4, R5 одним R4,5:

R4,5=R4∙R5/R4+R5.

В результате получается новая, более простая схема. Обе схемы приведены ниже.

мощность при последовательном соединении резисторов

Мощность резисторов на схеме со смешанным соединением определяется по формуле:

P=U∙I.

Для расчёта по этой формуле сначала находят напряжение на каждом сопротивлении и величину тока через него. Можно использовать другой метод, чтобы определить мощность резисторов. Для этого используется формула:

P=U∙I=(I∙R)∙I=I2∙R.

Если известно только напряжение на резисторах, то применяют другую формулу:

P=U∙I=U∙(U/R)=U2/R.

Все три формулы часто используются на практике.

Расчёт параметров схемы

Расчёт параметров схемы заключается в нахождении неизвестных токов и напряжений всех ветвей на участках электрической цепи. Имея эти данные, можно рассчитать мощность каждого резистора, входящего в схему. Простые методы расчёта были показаны выше, на практике же дело обстоит сложнее.

В реальных схемах часто встречается соединение резисторов звездой и треугольником, что создаёт значительные трудности при расчётах. Для упрощения таких схем были разработаны методы преобразования звезды в треугольник, и наоборот. Этот метод проиллюстрирован на схеме, представленной ниже:

мощность параллельно соединенных резисторов

Первая схема имеет в своём составе звезду, подключенную к узлам 0-1-3. К узлу 1 подсоединён резистор R1, к узлу 3 – R3, а к узлу 0 – R5. На второй схеме к узлам 1-3-0 подключены резисторы треугольника. К узлу 1 подключены резисторы R1-0 и R1-3, к узлу 3 – R1-3 и R3-0, а к узлу 0 – R3-0 и R1-0. Эти две схемы полностью эквивалентны.

Для перехода от первой схемы ко второй рассчитываются сопротивления резисторов треугольника:

R1-0=R1+R5+R1∙R5/R3;

R1-3=R1+R3+R1∙R3/R5;

R3-0=R3+R5+R3∙R5/R1.

Дальнейшие преобразования сводятся к вычислению параллельно и последовательно соединённых сопротивлений. Когда будет найдено полное сопротивление цепи, находят по закону Ома ток через источник. Используя этот закон, несложно найти токи во всех ветвях.

Как определить мощность резисторов после нахождения всех токов? Для этого используют общеизвестную формулу: P=I2∙R, применяя её для каждого сопротивления, найдём их мощности.

Экспериментальное определение характеристик элементов схемы

Для экспериментального определения нужных характеристик элементов требуется собрать заданную схему из реальных компонентов. После этого с помощью электроизмерительных приборов выполняют все необходимые измерения. Этот метод трудоёмкий и дорогостоящий. Разработчики электрических и электронных устройств для этой цели используют моделирующие программы. С помощью них производятся все необходимые вычисления, и моделируется поведение элементов схемы в различных ситуациях. Только после этого собирается опытный образец технического устройства. Одной из таких распространённых программ является мощная система моделирования Multisim 14.0 фирмы National Instruments.

Как определить мощность резисторов с помощью этой программы? Это можно сделать двумя методами. Первый метод – это измерить ток и напряжение с помощью амперметра и вольтметра. Перемножив результаты измерений, получают искомую мощность.

мощность резисторов при параллельном соединении

Из этой схемы определяем мощность сопротивления R3:

P3=U∙I=1,032∙0,02=0,02064 Вт=20,6 мВт.

Второй метод – это непосредственное измерение мощности при помощи ваттметра.

Ключевые словамощность резисторов

Из этой схемы видно, что мощность сопротивления R3 равна P3=20,8 мВт. Расхождение из-за погрешности в первом методе больше. Точно так же определяются мощности остальных элементов.

Маленькие хитрости. Часть 4. — КульбакиМастер.ru

 

Формулы для радиолюбительских расчетов.

Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко,  а порой и невозможно справиться с подобного рода задачей!


Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.

Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.

 

Закон Ома.

Известный из школьного курса  физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике.  Закон Ома выражается в трех формулах:

                 I=U/R

                 U=IR

                 R=U/I

 

Где: I – сила тока (А),  U – напряжение (В),  R– сопротивление,  имеющееся в цепи (Ом).

Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.

 

Как рассчитать сопротивление гасящего резистора.

Сопротивление гасящего резистора рассчитывают по формуле:  R=U/I

Где:  U – излишек напряжения, который необходимо погасить (В),  I – ток потребляемый цепью или устройством (А).

 

Как рассчитать мощность гасящего резистора.

Расчет мощности гасящего резистора проводят по формуле:  P=I2R

Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

 

Как рассчитать напряжение падения на сопротивлении.

Напряжение падения на сопротивлении можно рассчитать  по формуле:  Uпад. =RI

Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

 

Как рассчитать ток потребляемый устройством  или цепью.

Рассчитать ток потребляемый устройством или цепью можно по формуле:  I=P/U

Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

Как рассчитать мощность устройства в Вт.

Рассчитать мощность устройства в Вт. можно по формуле:   P=IU

Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

 

Как рассчитать длину радиоволны.

Рассчитать длину радиоволны можно по формуле:  ƛ=300000/ƒ

Где  ƒ-частота в килогерцах, ƛ- длинна волны в метрах.

 

Как рассчитать частоту радиосигнала.

Частоту радиосигнала можно рассчитать по формуле:  ƒ=300000/ƛ

Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

 

Как рассчитать номинальную выходную мощность звуковой частоты.

Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле:   P=U2вых./ Rном.

Где U2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

 

И в завершении еще несколько формул.  По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях,  когда возникает необходимость в параллельном или последовательном их соединении.

 

Как рассчитать сопротивление двух параллельно включенных резисторов.

Расчет соединенных параллельно двух резисторов производят по формуле:  R=R1R2/(R1+R2)

Где R1 и R2  — сопротивление первого и второго резистора соответственно (Ом).

 

Как рассчитать сопротивление более двух включенных параллельно резисторов.

Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле:  1/R=1/R1+1/R2+1/Rn…

Где R1, R2, Rn— сопротивление первого, второго и последующих резисторов соответственно (Ом).

 

Как рассчитать емкость включенных параллельно двух или более конденсаторов.

Расчет емкости соединенных  параллельно нескольких конденсаторов проводят по формуле:  C=C1+ C2+Cn

Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).

 

Как рассчитать емкость включенных  последовательно двух конденсаторов.

Расчет емкости двух соединенных  последовательно конденсаторов проводят по формуле:  C=C1 C2/C1+C2

Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).

 

Как рассчитать емкость включенных последовательно более двух конденсаторов.

Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле:  1/C=1/C1+1/C2+1/Cn

Где C1, C2 и Cn— емкость первого, второго и последующих конденсаторов (мФ).

СЛЕДУЮЩИЙ МАТЕРИАЛ: Виртуальный осциллограф

Рекомендуем посмотреть:

Программы для  радиолюбительских расчетов и измерений

Справочники по радиоэлектронике


SMD резистор калькулятор кодов

SMD резистор калькулятор кодов

Этот простой калькулятор поможет вам определить значение любого резистора SMD. Для начала введите 3 или 4-значный код и нажмите кнопку «Рассчитать» или Введите .

Примечание: Программа была тщательно протестирована, но все же может иметь несколько ошибок. Поэтому, когда вы сомневаетесь (и когда это возможно), не стесняйтесь использовать мультиметр для двойной проверки критических компонентов.

См. Также калькулятор цветового кода на этой странице для MELF и стандартных сквозных резисторов.

Как рассчитать значение SMD резистора

Большинство чип-резисторов помечены трехзначным или четырехзначным кодом — числовым эквивалентом знакомого цветового кода для сквозных компонентов. Недавно на прецизионных SMD появилась новая система кодирования (EIA-96).

3-значный код

Резисторы SMD со стандартным допуском обозначены простым 9-значным трехзначным кодом .Первые два числа будут обозначать значащие цифры, а третье будет множителем, сообщая вам степень десяти, на которую нужно умножить две значащие цифры (или сколько нулей добавить). Сопротивления менее 10 Ом не имеют множителя, вместо этого используется буква «R» для указания положения десятичной точки.

Примеры 3-значного кода:

4-значный код

Четырехзначный код используется для маркировки прецизионных поверхностных резисторов.Она похожа на предыдущую систему, единственное отличие состоит в количестве значащих цифр: первые три числа сообщат нам значащие цифры, а четвертое будет множителем, указывающим степень десяти, на которую должны быть умножены три значащие цифры. (или сколько нулей добавить). Сопротивления менее 100 Ом помечены буквой «R», указывающей положение десятичной точки.

Примеры 4-значного кода:

EIA-96

Недавно на 1% SMD резисторах появилась новая система кодирования (EIA-96).Он состоит из трехсимвольного кода: первые 2 цифры сообщат нам 3 значащие цифры значения резистора (см. Таблицу поиска ниже), а третья отметка (буква) укажет множитель.

Код Значение Код Значение Код Значение Код Значение
01 100 25 178 49 316 73 562
02 102 26 182 50 324 74 576
03 105 27 187 51 332 75 590
04 107 28 191 52 340 76 604
05 110 29 196 53 348 77 619
06 113 30 200 54 357 78 634
07 115 31 205 55 365 79 649
08 118 32 210 56 374 80 665
09 121 33 215 57 383 81 681
10 124 34 221 58 392 82 698
11 127 35 226 59 402 83 715
12 130 36 232 60 412 84 732
13 133 37 237 61 422 85 750
14 137 38 243 62 432 86 768
15 140 39 249 63 442 87 787
16 143 40 255 64 453 88 806
17 147 41 261 65 464 89 825
18 150 42 267 66 475 90 845
19 154 43 274 67 487 91 866
20 158 44 280 68 499 92 887
21 162 45 287 69 511 93 909
22 165 46 294 70 523 94 931
23 169 47 301 71 536 95 953
24 174 48 309 72 549 96 976
Код Множитель
Z 0.001
Y или R 0,01
X или S 0,1
A 1
B или H 10
C 100
D 1000
E 10000
F 100000

Примеры кода EIA-96:

01Y = 100 х 0.01 = 1Ом
68X = 499 x 0,1 = 49,9 Ом
76X = 604 x 0,1 = 60,4 Ом
01A = 100 x 1 = 100 Ом
29B = 196 x 10 = 1,96 кОм
01C = 100 x 100 = 10 кОм

больше примеров EIA-96 SMD …

Примечания:

  • SMD-резистор с маркировкой 0, 00, 000 или 0000 является перемычкой (нулевое сопротивление).
  • чип-резистор, помеченный стандартным трехзначным кодом, а короткая полоса под маркировкой обозначает прецизионный (1% или менее) резистор со значением, взятым из серии E24 (эти значения обычно зарезервированы для резисторов 5%).Например: 1 2 2 = 1,2 кОм 1%. Некоторые производители подчеркивают все три цифры — не путайте это с кодом, используемым на резисторах с низким значением тока.
  • SMD со значениями в порядке миллиом Ом, предназначенные для применения в текущих измерениях, часто помечаются с помощью букв M, m или L, показывающих местоположение десятичной точки (со значением в миллиомах). Например: 1M50 = 1,50 мОм, 2M2 = 2,2 мОм, 5L00 = 5 мОм.
  • Определяющие ток SMD также могут быть помечены длинной полосой сверху (1m5 = 1.5 мОм, R001 = 1 мОм и т. Д.) Или длинный столбец под кодом ( 101 = 0,101 Ом, 047 = 0,047 Ом). Подчеркивание используется, когда начальный «R» должен быть пропущен из-за ограниченного пространства на корпусе резистора. Так, например, R068 становится 068 = 0,068 Ом (68 мОм).

Номинальная мощность

Чтобы узнать приблизительную номинальную мощность вашего SMD-резистора, измерьте его длину и ширину. Несколько часто используемых размеров упаковки с соответствующими типичными номинальными характеристиками мощности представлены в таблице ниже.Используйте эту таблицу только в качестве руководства и всегда обращайтесь к спецификации компонента для точного значения.

Упаковка Размер в дюймах (ДхВт) Размер в мм (ДхВт) Номинальная мощность
0201 0,024 «x 0,012» 0,6 мм x 0,3 мм 1/20 Вт
0402 0,04 «х 0,02» 1,0 мм х 0,5 мм 1/16 Вт
0603 0.063 «x 0,031» 1,6 мм x 0,8 мм 1/16 Вт
0805 0,08 «х 0,05» 2,0 мм х 1,25 мм 1/10 Вт
1206 0,126 «х 0,063» 3,2 мм х 1,6 мм 1/8 Вт
1210 0,126 «х 0,10» 3,2 мм х 2,5 мм 1/4 Вт
1812 0,18 «x 0,12» 4,5 мм x 3,2 мм 1/3 Вт
2010 0.20 «x 0,10» 5,0 мм x 2,5 мм 1 / 2W
2512 0,25 «x 0,12» 6,35 мм x 3,2 мм 1 Вт

Допуск

Стандартный 3-х и 4-х значный код не позволяет нам определить допуск резистора SMD.

Однако в большинстве случаев вы обнаружите, что резистор для поверхностного монтажа, отмеченный 3-значным кодом, имеет допуск 5%, а резистор, отмеченный 4-значным кодом, или новый код EIA-96 имеет допуск 1%. или менее.

Из этого правила есть много исключений, поэтому всегда проверяйте технические данные производителя, особенно если допуск компонента имеет решающее значение для вашего приложения.

,
Основы: рассеиваемая мощность и электронные компоненты

Lovely Resistors

Когда-либо существующей проблемой в дизайне электронных схем является выбор подходящих компонентов, которые не только выполняют поставленную задачу, но и выживают в предсказуемых условиях эксплуатации. Большая часть этого процесса заключается в обеспечении того, чтобы ваши компоненты оставались в безопасных рабочих пределах с точки зрения тока, напряжения и мощности. Из этих трех «энергетическая» часть часто является наиболее сложной (как для новичков, так и для экспертов), поскольку безопасная рабочая зона может так сильно зависеть от особенностей ситуации.

В дальнейшем мы представим некоторые основные концепции рассеивания мощности в электронных компонентах, чтобы понять, как выбирать компоненты для простых цепей с учетом ограничений по мощности.

— НАЧАТЬ ПРОСТО —

Давайте начнем с одной из простейших схем: батарея, подключенная к одному резистору:

resistor1

Здесь у нас одна батарея 9 В, а одна 100? (100 Ом) резистор, подключенный с проводами, чтобы сформировать полную цепь.

Достаточно просто, правда? Но теперь вопрос: если вы хотите на самом деле построить эту схему, насколько «большой» из 100? резистор нужно использовать, чтобы убедиться, что он не перегревается? То есть мы можем просто использовать «обычный» резистор ¼ W, как показано на рисунке ниже, или нам нужно увеличить его?

100 Ohm, 1/4 W

Чтобы выяснить это, нам нужно вычислить количество энергии, которое резистор рассеивает.
Вот общее правило для расчета рассеиваемой мощности:

Правило мощности: P = I × В
Если через данный элемент в вашей цепи протекает ток I , то при этом теряется напряжение В , то мощность, рассеиваемая этой цепью Элемент является произведением этого тока и напряжения: P = I × V .

В стороне :
Как текущее временное напряжение может дать нам измерение «мощности»?

Чтобы понять это, нам нужно вспомнить, что физически представляют ток и напряжение.

Электрический ток — это скорость потока электрического заряда через цепь, обычно выражаемая в амперах, где 1 ампер = 1 кулон в секунду. (Кулон — это единица СИ электрического заряда.)

Напряжение, или, более формально, электрический потенциал, является потенциальной энергией на единицу электрического заряда — через рассматриваемый элемент схемы.В большинстве случаев вы можете думать об этом как о количестве энергии, «израсходованной» в элементе, на единицу заряда, которая проходит через него. Электрический потенциал обычно измеряется в вольтах, где 1 вольт = 1 джоулей на кулон. (Джоуль — это единица энергии СИ.)

Итак, если мы возьмем ток, умноженный на напряжение, то это даст нам количество энергии, которое «расходуется» в элементе на единицу заряда, в раз по количеству этих единиц заряда, проходящих через элемент в секунду. :

1 ампер × 1 вольт =
1 (кулон / секунда) × 1 (джоул / кулон) =
1 джоулек / секунда

Полученная величина выражается в единицах по одному джоулю в секунду: скорость потока энергии, более известная как мощность.Единица мощности СИ — это ватт, где 1 ватт = 1 джоуль в секунду.

Наконец то у нас

1 ампер × 1 вольт = 1 ватт

resistor1

Вернуться к нашей схеме! Чтобы использовать правило мощности ( P = I × В ), нам нужно знать как ток через резистор, так и напряжение на резисторе.

Сначала мы используем закон Ома ( В, = I, × R, ), чтобы найти ток через резистор.
• Напряжение на резисторе составляет В, = 9 В.
• Сопротивление резистора составляет R, = 100 Ом.

Следовательно, ток через резистор составляет:

I = В / R = 9 В / 100? = 90 мА

Затем мы можем использовать правило мощности ( P = I × В ), чтобы найти мощность, рассеиваемую резистором.
• Ток через резистор I, = 90 мА.
• Напряжение на резисторе составляет В, = 9 В.

Следовательно, мощность, рассеиваемая в резисторе, равна:

P = I × В = 90 мА × 9 В = 0,81 Вт

Итак, вы можете использовать резистор 1/4 Вт?

Нет, потому что он, скорее всего, не перегреется.
100? резистор в этой цепи должен быть рассчитан как минимум на 0,81 Вт. Как правило, выбирается следующий больший доступный размер, в данном случае 1 Вт.

Резистор мощностью 1 Вт обычно поставляется в гораздо большем физическом корпусе, как показано здесь:

51 ohm, 1 W

(резистор 1 Вт, 51 Ом, для сравнения размеров.)

Поскольку физически резистор мощностью 1 Вт намного больше, он должен справляться с рассеиванием большего количества энергии, с его большей площадью поверхности и более широкими выводами. (Это может все еще быть очень горячим на ощупь, но это не должно быть достаточно горячим, чтобы он вышел из строя.)

power3

Вот альтернативное расположение, которое работает с четырьмя 25? резисторы в серии (что до 100?).В этом случае ток через каждый резистор по-прежнему составляет 90 мА. Но так как напряжение на каждом резисторе составляет всего одну четверть, то на каждый резистор рассеивается только одна четверть мощности. Для этой схемы требуется только четыре резистора, рассчитанных на 1/4 Вт.

В стороне: проработка этого примера.

Поскольку четыре резистора соединены последовательно, мы можем сложить их значения вместе, чтобы получить их общее сопротивление, равное 100 Ом. Использование закона Ома с этим полным сопротивлением снова дает нам ток 90 мА.И снова, поскольку резисторы включены последовательно, через каждый из них должен течь один и тот же ток (90 мА) обратно к батарее. Напряжение на каждые 25? тогда резистор В = I × R или 90 мА × 25? = 2,25 В. (Чтобы дважды проверить, что это разумно, обратите внимание, что напряжения на четырех резисторах составляют до 4 × 2,25 В = 9 В.)

Власть на каждого человека 25? резистор P = I × В = 90 мА × 2,25 В? 0,20 Вт, безопасный уровень для использования с резистором 1/4 Вт.Интуитивно понятно, что если вы разделите 100? Резистор на четыре равные части, каждая должна рассеивать одну четверть общей мощности.

— НА ВНЕШНИХ РЕЗИСТОРАХ —

5vreg1

В нашем следующем примере давайте рассмотрим следующую ситуацию: Предположим, что у вас есть схема, которая получает питание от источника питания 9 В, и имеет встроенный линейный регулятор для понижения напряжения до 5 В, где все фактически работает. Ваша нагрузка на конце 5 В может достигать 1 А.

Как выглядит сила в этой ситуации?

Регулятор, по сути, действует как большой переменный резистор, который регулирует свое сопротивление по мере необходимости для поддержания постоянного выхода 5 В. Когда выходная нагрузка составляет 1 А, выходная мощность, подаваемая регулятором, составляет 5 В × 1 А = 5 Вт, а мощность, подводимая к цепи от источника питания 9 В, составляет 9 Вт. Напряжение на регуляторе падает. равно 4 В, а при 1 А это означает, что линейный регулятор рассеивает 4 Вт, а также разницу между потребляемой мощностью и выходной мощностью.

В каждой части этой цепи соотношение мощностей задается как P = I × В . Две части — регулятор и нагрузка — это места, где рассеивается мощность. А в части цепи, проходящей через источник питания, P = I × В описывает мощность , вводимую в систему — напряжение увеличивается на по мере прохождения тока через источник питания.

Кроме того, стоит отметить, что мы не сказали , какая нагрузка тянет, что 1 А.Энергопотребление потребляется, но это не обязательно означает, что оно преобразуется в (просто) тепловую энергию — это может быть питание двигателя или, например, набор зарядных устройств.

в стороне:
Несмотря на то, что подобная установка линейного стабилизатора напряжения представляет собой общую конфигурацию , очень для электроники, стоит отметить, что это также невероятно неэффективное устройство : 4/9 входной мощности просто сгорает как тепло, даже при работе на более низких токах.

— КОГДА НЕ ПРОСТАЯ СПЕЦИФИКАЦИЯ «МОЩНОСТИ» —

Далее, немного более сложная часть: убедиться, что ваш регулятор может справиться с мощностью. В то время как резисторы имеют четкую маркировку по мощности, линейные регуляторы не всегда. В приведенном выше примере с регулятором давайте предположим, что мы используем регулятор L7805ABV от ST (таблица данных здесь).

pin numbers - 05
(Фото: типичный корпус TO-220, тип, обычно используемый для линейных регуляторов средней мощности)

L7805ABV — это линейный стабилизатор на 5 В в корпусе TO-220 (аналогичный показанному выше), рассчитанный на 1.Выходной ток 5 А и входное напряжение до 35 В.

Наивно, вы можете догадаться, что вы можете подключить это прямо к входному напряжению до 35 В и ожидать получения 1,5 А выходного сигнала, а это означает, что регулятор будет излучать 30 В * 1,5 А = 45 Вт мощности. Но это крошечная пластиковая упаковка; на самом деле он не может справиться с такой силой. Если вы посмотрите в таблице данных в разделе «Абсолютные максимальные рейтинги», чтобы попытаться выяснить, какую мощность он может выдержать, все, что он говорит, «внутренне ограничено» — что само по себе далеко не ясно.

Оказывается, что есть фактическая номинальная мощность, но она обычно несколько «скрыта» в таблице. Вы можете понять это, посмотрев на пару связанных спецификаций:

• T OP , Диапазон рабочих температур: от -40 до 125 ° C

• R thJA , Тепловое сопротивление, соединение-окружение: 50 ° C / Вт

• R thJC , Термостойкий соединительный кожух: 5 ° C / Вт

Диапазон рабочих температур соединения, T OP , определяет, насколько горячему «соединению» — активной части интегральной схемы регулятора — можно дать нагреться до того, как он перейдет в режим термического отключения.(Термическое отключение является внутренним пределом, который делает мощность регулятора «внутренне ограниченной».) Для нас это максимум 125 ° C.

Тепловое сопротивление переход-окружение R thJA (часто записывается как? JA ), говорит нам, насколько горячим становится переход, когда (1) регулятор рассеивает заданное количество энергии и (2) регулятор находится в на открытом воздухе при заданной температуре окружающей среды. Предположим, что нам нужно спроектировать наш регулятор так, чтобы он работал только в скромных коммерческих условиях, которые не будут превышать 60 ° C.Если нам нужно поддерживать температуру соединения ниже 125 ° C, то максимальное допустимое повышение температуры составляет 65 ° C. Если у нас R thJA при 50 ° C / Вт, то максимально допустимая рассеиваемая мощность составляет 65/50 = 1,3 Вт, если мы не хотим, чтобы регулятор перешел в режим термического отключения. Это намного ниже 4 Вт, что мы ожидаем при токе нагрузки 1 А. Фактически мы можем допустить только 1,3 Вт / 4 В = 325 мА среднего выходного тока, не отправляя регулятор в режим термического отключения.

Это, однако, для случая, когда TO-220 излучает в атмосферный воздух — почти наихудшая ситуация. Если мы сможем добавить радиатор или иным образом охладить регулятор, мы сможем сделать это намного лучше.

Противоположный конец спектра задается другой термической спецификацией: распределительная коробка теплового сопротивления, R thJC . Это указывает, какую разницу температур вы можете ожидать между соединением и внешней стороной корпуса TO-220: всего 5 ° C / Вт. Это соответствующий номер , если , вы можете быстро отвести тепло от упаковки, например, если у вас есть очень хороший радиатор, подключенный к внешней стороне корпуса TO-220.При большом радиаторе и идеальном подключении к этому радиатору, при 4 Вт, температура соединения поднимется всего на 20 ° C выше температуры вашего радиатора. Это представляет собой абсолютный минимум отопления, который вы можете ожидать в идеальных условиях.

В зависимости от технических требований, вы можете начать с этого момента, чтобы создать полный бюджет мощности, чтобы учесть теплопроводность каждого элемента вашей системы, от самого регулятора до теплообменной площадки между ним и радиатором, к тепловой связи радиатора с окружающим воздухом.Затем вы можете проверить соединения и относительную температуру каждого компонента с помощью бесконтактного инфракрасного термометра с точечным считыванием. Но часто лучше переоценить ситуацию и посмотреть, есть ли лучший способ сделать это.

pin numbers - 15

В данной ситуации можно было бы рассмотреть возможность перехода к регулятору поверхностного монтажа, который предлагает лучшую возможность управления мощностью (используя печатную плату в качестве радиатора), или может быть целесообразно добавить силовой резистор (или стабилитрон) до того, как Регулятор сбрасывает большую часть напряжения за пределы регулятора, ослабляя нагрузку на него.Или, что еще лучше, посмотреть, есть ли способ построить схему без ступенчатого линейного регулятора с потерями.

— AFTERWORD —

Inside the monster

Мы рассмотрели основы понимания рассеивания мощности в нескольких простых цепях постоянного тока.

Принципы, которые мы рассмотрели, носят общий характер и могут быть использованы для понимания потребления энергии в большинстве типов пассивных элементов и даже в большинстве типов интегральных схем. Однако существуют реальные ограничения, и можно потратить всю жизнь на изучение нюансов энергопотребления, особенно при более низких токах или высоких частотах, когда малые потери, которыми мы пренебрегли, становятся важными.

В цепях переменного тока многие вещи ведут себя совершенно по-разному, но правило мощности по-прежнему сохраняется в большинстве случаев: P (t) = I (t) × V (t) для изменяющихся во времени тока и напряжения. И не все регуляторы несут в себе все эти потери: импульсные источники питания могут преобразовывать (например) 9 В постоянного тока в 5 В постоянного тока с эффективностью 90% или выше — это означает, что при хорошем дизайне может потребоваться всего около 0,6 А при 9 В до производить 5 В при 1 А. Но это история для другого времени.

,
Ом закон калькулятор вычисление вычислить формулы мощности математический закон Ома круговая диаграмма электрическое падение напряжения формула сопротивления электрического тока закон ватта эдс магический треугольник подсказка онлайн напряжение вольт сопротивление резисторов усилители ампер аудиоинженерия E V = I R — P = V I рассчитываю отношение удельного сопротивления проводимости Калькулятор расчета закона Ома вычислить формулы мощности математическая круговая диаграмма закона Ома электрическое падение напряжения формула сопротивления электрического тока закон ватта эдс магический треугольник подсказка совет онлайн напряжение вольт сопротивление резисторов усилители ампер аудиоинженерия EV = IR — P = VI calc отношение удельного сопротивления проводимости — sengpielaudio Sengpiel Берлин


= сброс.

Формулы: V = I R I = V / R R = V / I

Математические формулы закона Ома

Закон

Ом можно переписать тремя способами для расчета тока, сопротивления и напряжения.
Если ток I должен протекать через резистор R , можно рассчитать напряжение В .
Первая версия формулы (напряжения): V = I × R

Если на резисторе R имеется напряжение В , через него протекает ток I . I можно рассчитать.
Вторая версия (текущей) формулы: I = V / R

Если ток I протекает через резистор, и на резисторе имеется напряжение В . R можно рассчитать.
Третий вариант формулы (сопротивления): R = V / I

Все эти вариации так называемого «закона Ома» математически равны между собой.

Напряжение Сопротивление
Наименование Формула знак Единица Символ
В или E вольт В
текущий I ампер (ампер) A
R Ом Ω
мощность P Вт Вт

Какая формула для электрического тока?
Когда ток постоянный:
I = Δ Q / Δ т
I — ток в амперах (A)
Δ Q — электрический заряд в кулонах (C),
, который течет во времени Δ , t в секундах.

Напряжение В = ток I × сопротивление R

Мощность P = напряжение В × ток I

В электрических проводах, в которых ток и напряжение пропорциональны
друг другу, применяется закон Ома: В ~ I или В I = постоянное.

Провода Constantan или другие металлические провода, поддерживаемые при постоянной температуре, хорошо соответствуют закону Ома.

« В I = R = постоянн.» ИСТ не закон ом. Это определение сопротивления.
После этого в каждой точке, даже с изогнутой кривой, можно рассчитать значение сопротивления.

Для многих электрических компонентов, таких как диоды, закон Ома не применяется.

«Закон Ома» не был изобретен г-ном Омом

« U I = R = постоянн.« — это не , а закон Ома или закон Ома. Это определение сопротивления.
После этого в каждой точке — даже с изогнутой кривой — значение сопротивления можно рассчитать.
Закон Ома« постулирует »следующие соотношения: Когда на объект подается напряжение, электрический ток
, протекающий через него, изменяет силу, пропорциональную напряжению. Другими словами, электрическое сопротивление
, определенное как отношение напряжения и тока, является постоянным, и это
независимо от напряжения и ток.Название закона «чтит» Георга Саймона Ома, который мог
доказать эту связь для некоторых простых электрических проводников как один из первых искателей.
«Закон Ома» действительно не был изобретен Омом.


Подсказка: магический треугольник Ома

Магический треугольник V I R можно использовать для расчета всех формулировок закона Ома.
Используйте палец, чтобы скрыть вычисляемое значение. Затем два других значения показывают
, как выполнить расчет.

Символ I или J = латиница: влияние, международный ампера и R = сопротивление. В = напряжение или
разность электрических потенциалов, также называемая падением напряжения, или E = электродвижущая сила (эдс = напряжение).
Расчет падения напряжения — расчет постоянного / однофазного тока
Падение напряжения В в вольт (В) равно току провода I в амперах (А), умноженному на
длины провода L в футах ( футов) умножить сопротивление провода на 1000 футов R в омах (Ом / кфт)
, деленное на 1000:
V , падение (В) = I провод (A) × R провод (Ω)
= I провод (A) × (2 × L (футы) × R провод (Ом / кфт) / 1000 (фут / кфт))

Падение напряжения В в вольт (В) равно току провода I в амперах (A), умноженному на
, длину провода L, в метрах (м), умноженную на сопротивление провода на 1000 метров R в омах
(Ом / км), деленное на 1000:
В падение (В) = I провод (A) × R провод (Ом)
= I провод (A) × (2 × L (м) × R , проволока (Ом / км) / 1000 (м / км))

Если устройство питания P = I × V и напряжения В = I · R необходимо,
ищут «Большая сила» Формулы «:
Расчеты: мощность (ватт), напряжение, ток, сопротивление

Некоторые считают, что Георг Симон Ом рассчитал «удельное сопротивление».
Поэтому они думают, что только следующее может быть истинным законом Ома.

Количество сопротивления
R = сопротивление Ом
ρ = удельное сопротивление Ом × м
л = двойная длина кабеля м
A = сечение мм 2

Электрическая проводимость (проводимость) σ (сигма) = 1/ ρ
Удельное электрическое сопротивление (удельное сопротивление) 10009 = / σ

Разница между удельным электрическим сопротивлением и электропроводностью

Проводимость в сименах является обратной величиной сопротивления в омах.

Просто введите значение слева или справа.
Калькулятор работает в обоих направлениях знака .
Значение электрической проводимости (проводимости) и удельного электрического сопротивления
(удельного сопротивления) является зависящей от температуры постоянной материала. Главным образом это дано в 20 или 25 ° C.
Сопротивление R = ρ × ( л / А ) или R 000000 σ × A )

Для всех проводников удельное сопротивление изменяется с температурой.В ограниченном диапазоне температур
он приблизительно линейный:
где α — температурный коэффициент, T — температура и T 0 — любая температура,
, например T 0 = 293,15 K = 20 ° C, при которой удельное электрическое сопротивление ρ ( T 0 ) известен.

Площадь поперечного сечения — поперечное сечение — плоскость среза

Теперь возникает вопрос:
Как мы можем рассчитать площадь поперечного сечения (плоскость среза) A
из проволоки диаметром d и наоборот?

Расчет сечения A (плоскость среза) от диаметра d :

r = радиус проволоки
d = диаметр проволоки

Расчетный диаметр d из сечения A (плоскость среза ) :

Сечение A проволоки в мм 2 , вставленное в эту формулу, дает диаметр d в мм.

Расчет — Круглые кабели и провода:
• Диаметр в поперечном сечении и наоборот •

Электрическое напряжение В = I × R (закон Ома VIR)
Электрическое напряжение = сила тока × сопротивление (закон Ома)
Пожалуйста, введите два значения , будет вычислено третье значение.
Электроэнергия P = I × В (Степенной закон PIV)
Электроэнергия = сила тока × напряжение (закон Ватта)
Пожалуйста, введите два значения , будет вычислено третье значение.
закон Ома. В = I × R , где В — это потенциал на элементе схемы, I — это ток
через него, а R — его сопротивление. Это не общеприменимое определение сопротивления
. Он применим только к омическим резисторам, у которых сопротивление R является постоянным
в интересующем диапазоне и V строго подчиняется линейному отношению I . Материалы
считаются омическими, когда V линейно зависит от R .Металлы омические, пока один
поддерживает их постоянную температуру. Но изменение температуры металла немного меняет R
. Когда ток меняется быстро, как при включении света или при использовании источников переменного тока
, можно наблюдать слегка нелинейное и неомическое поведение. Для неомических резисторов
R зависит от тока, и определение R = d В / d I является гораздо более полезным. Это
иногда называют динамическим сопротивлением.Твердотельные устройства, такие как термисторы, являются
неомическими и нелинейными. Сопротивление термистора уменьшается, когда он нагревается, поэтому его динамическое сопротивление
является отрицательным. Туннельные диоды и некоторые электрохимические процессы
имеют сложную кривую от I до V с областью действия с отрицательным сопротивлением. Зависимость сопротивления
от тока частично обусловлена ​​изменением температуры устройства
с увеличением тока, но другие тонкие процессы также способствуют изменению сопротивления
в твердотельных устройствах.

Расчет: параллельное калькулятор сопротивления (резистора)

Калькулятор цветового кода для резисторов

Электрический ток, электроэнергия, электричество и электрический заряд

Колесо формулы — формулы электротехники

В акустике мы использовать «закон Ома в качестве акустического эквивалента »



Как работает электричество. Закон Ома
ясно объяснил.

[начало страницы]

,

Ом Закон Калькулятор

Укажите любые 2 значения и нажмите «Рассчитать», чтобы получить другие значения в уравнениях закона Ома V = I × R и P = V × I.

Связанные: резистор калькулятор

Закон Ома

Закон

Ома гласит, что ток через проводник между двумя точками прямо пропорционален напряжению. Это справедливо для многих материалов в широком диапазоне напряжений и токов, и сопротивление и проводимость электронных компонентов, изготовленных из этих материалов, остаются постоянными.Закон Ома справедлив для цепей, которые содержат только резистивные элементы (без конденсаторов или катушек индуктивности), независимо от того, является ли напряжение или ток возбуждения постоянным (DC) или изменяющимся во времени (AC). Это можно выразить, используя ряд уравнений, обычно все три вместе, как показано ниже.

Где:

В — напряжение в Вольтах
Сопротивление в Омах
Я тока в амперах

Электроэнергия

Мощность — это скорость, с которой электрическая энергия передается по электрической цепи в единицу времени, обычно выражаемая в единицах ватт СИ (Международная система единиц).Электроэнергия обычно вырабатывается электрогенераторами и поставляется предприятиям и домам через электроэнергетику, но может также поставляться с помощью электрических батарей или других источников.

В резистивных цепях Закон Джоуля можно объединить с Законом Ома, чтобы получить альтернативные выражения для количества рассеиваемой мощности, как показано ниже.

P = V × I
P =
P = I 2 × R

Где:

P — мощность в ваттах

Колесо формулы закона Ома

Ниже приведено колесо формулы для отношений закона Ома между P, I, V и R.По сути, это то, что делает калькулятор, и является просто представлением алгебраических манипуляций с уравнениями выше. Чтобы использовать колесо, выберите переменную для поиска в середине колеса, а затем используйте отношение для двух известных переменных в поперечном сечении круга.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *