Как тестером проверить фазу и ноль: определяем где фаза где ноль по проводам и с индикаторной отверткой

Содержание

Как определить фазу и ноль индикаторной отверткой

Определение фазы и нуля без приборов

Бывают ситуации, когда для правильности подключения необходимо узнать какой провод фаза, а какой ноль. Например, для обеспечения нормальной работы осветительного прибора, в разрыв (через выключатель) и дет фазный провод, а нулевой прокладывается непосредственно к осветительному прибору. В настоящее время, проводка в домах и квартирах прокладывается трехжильными проводами, которые подразделяют на три вида.

Виды проводников:

  • Фаза;
  • Ноль;
  • Заземление.

Отличить в проводке фазу от нуля представляется возможным визуально

Но для этого должно быть соблюдено одно важное условие. Проводка в доме или квартире должна быть выполнена с применением разноцветных проводников

Фазный проводник согласно правилам ГОСТ, обязательно должен маркироваться следующими цветами: черный, белый, коричневый, фиолетовый, бирюзовый, красный, серый, розовый и оранжевый.

Нулевой проводник легко найти, так как он всегда маркируется голубым цветом. Провод заземления имеет желто – зеленую расцветку.

Стоит отметить, что электрический ток, который подается к жилым секторам, является переменным, поэтому полярность подключения электроприборов не имеет значения

Правильность подключения важно только для оборудования, работающего на постоянном токе

Применение лампы накаливания

Это метод использования лампы накаливания для определения проводников соответствующего цвета в сети из 3 проводников. Этот метод предусматривает соблюдение повышенных мер безопасности.

Для применения этого метода в патрон вкручивается обычная лампа накаливания. На клеммы патрона прикручиваются провода, не имеющие на концах изоляции.

Если не имеется комплекта деталей для этого метода, можно использовать стандартную настольную лампу. В таком случае, чтобы получить результат следует попеременно, по цветам присоединять проводники к вилке.

Недостатком этого способа является то, что применив его, невозможно будет наверняка узнать какой из двух проводников фазный. То есть, таким методом, мы скорее проверяем систему на работоспособность.

А преимущество состоит в том, что с большой долей вероятности будем знать следующее: 1 провод нуль, другой провод фаза. Если при тестировании свет не горит, это указывает на отсутствие фазы в проверяемых проводниках.

Разновидности и функции отверток

Чисто внешне рассматриваемый прибор выглядит как самая простенькая отвертка. Разница будет видна в ручке. В рассматриваемой версии данного инструмента в корпусе ручки имеется резистор, соединенный с жалом, выполненным из металла. Именно оно и будет выступать проводником.

Наличие сопротивляющейся части позволяет сократить токовую силу до максимума, что дает возможность применять подобную отвертку максимально безопасно. В каркас устройства еще и встроен световой диод либо лампочка на основе неона, что подсоединяются к пятачку внешнего типа на пластине контакта, что расположена с внешней стороны прибора.

Получается, что электричество идет по щупу и в дальнейшем по резистору, снижается до такого уровня, чтобы его показатель был максимально безопасным для осуществления работ. Именно это и является главным аспектом использования индикаторной отвертки.

Если говорить о категориях подобных отверток, то новейшие модели, представленные на рынке, могут найти напряжение в жиле даже через глиняный, побелочный или штукатурный слой, что будет крайне удобно, ведь избавит от необходимости разбивать часть стены, чтобы добраться непосредственно до провода.

Вообще, алгоритм действия подобных инструментов в большинстве случаев одинаков. Хотя существуют различия, возникающие в зависимости от категорий, моделей и наявных функций, которые есть у той или иной модели с индикаторной функцией. Бывает так, что по своему функционалу такая отвертка индикаторного типа может заменить целый ряд довольного дорогостоящего оборудования. Например, есть решения на батарейках, что позволяют проверить целостность проводов, даже когда они обесточены, и ток по ним не идет.

Подобные варианты дадут следующие данные о цепи, что проверяется:

  • присутствие звукового сигнала позволит понять, есть ли в цепи напряжение либо оно отсутствует;
  • цифровое табло показывает величину напряжения, что обычно отображается в вольтах;
  • использование рассматриваемой отвертки дает возможность проверить цепь постоянного и переменного тока в бытовой электротехнике;
  • установить сетевую полярность;
  • прозвонка электрической цепи звуковой либо световой индикацией.

Вообще, существуют две категории отверток такого типа.

С неоновой лампой. Этот вариант является распространенным и его устройство описано выше. Преимуществом такого решения будет дешевизна и простота. А недостатком является малый диапазон напряжения, с котором можно работать. Как правило, речь идет о диапазоне от 90 до 380 вольт. Да и фазный провод определить в указанном случае можно исключительно при непосредственном электроконтакте.

Благодаря наличию резистора ограничения щуп подключается к контакту с разными полярностями у диодного мостовыпрямителя. А второй контакт выводится на индикаторную рукоять, чтобы можно было прикоснуться пальцем. Малый постоянный, который возник, уходит на накопительный конденсатор. После этого активируется транзистор лавинного типа, который активирован по инверсной схеме. В финале всего этого светодиод получает пульсирующий ток. Такая отвертка может осуществить определение фазы даже при напряжении от 45 вольт. А если подключить не щуп, а маленькую антенну, то можно легко найти электрополе переменного типа.

Если говорить об области применения, то при помощи подобных отверток можно выполнять следующие типы работ:

  • проверка к розеточному или выключательному контакту подключается проводник фазы;
  • если розетка на удлинителе не функционирует, то можно осуществить проверку всех гнезд с применением пробника;
  • осуществить проверку, куда именно подведена фаза на патроне: на основной контакт или на резьбу;
  • узнать, есть ли напряжение в определенном электрическом приборе;
  • проверить, насколько исправен заземлительный проводник.

Принцип действия индикаторных отверток

Для того чтобы эффективно и правильно пользоваться индикаторными отвертками, рекомендуется ознакомиться с их устройством и общими принципами работы. Несмотря на внешние различия, у каждой из них основной функцией является проверка наличия и отсутствия напряжения, определение фазы и нуля. Для этого достаточно подключиться рабочим органом к одному из контактов.

Наиболее простым устройством считается индикаторная отвертка с неоновой лампочкой. В ее конструкцию входит металлический токопроводящий стержень, на конце у которого расположено плоское жало. В схему индикаторной отвертки дополнительно включен токоограничивающий резистор и неоновая лампочка. Стальная пружина прижимает лампу к резистору.

Отвертка на светодиоде может работать и с более низким напряжением – до 45 вольт. Для нормального функционирования требуется импульсный режим, то есть, с увеличением силы тока пропорционально снижается время непрерывного горения светодиода. Кроме ограничительного резистора, в схеме имеется диодный мост, выполняющий функцию выпрямителя. Незначительное количество тока, появившееся на контактах моста, поступает к накопительному конденсатору. Далее через транзистор пульсирующий ток подается на светодиод, который начинает гореть мерцающим светом.

Принцип работы с такой отвёрткой заключается в следующем. Человеческое тело представляет собой своеобразный конденсатор с достаточной емкостью. Когда палец касается сенсора, в цепи возникают слабые электрические токи в пределах 0,5 мкА. Если жало инструмента одновременно касается фазного проводника, происходит увеличение силы тока до значения, достаточного для открытия транзистора. Далее выполняется подключение питающего элемента к светодиоду, который начинает излучать свет.

Показатель напряжения срабатывания составляет около 50 вольт. Порог чувствительности удается снизить за счет использования собственных источников питания. Это дает возможность отличить ложные срабатывания, возникающие под действием наводок электрического поля.

Как найти фазу мультиметром

Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения — уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».

В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.

Общие сведения

В нашей повседневной жизни мы сталкиваемся с электричеством практически в любом месте, где пребываем. Будь это работа или различные заведения: кино, театр, магазины, спортивные комплексы — перечислять можно очень долго. Что и говорить, мы пользуемся многими электроприборами ежедневно, причем лет так 20 или 30 лет назад их было не так много, как в настоящее время.

Причем их число растет с завидной периодичностью.

Но все электрическое оборудование не может работать вечно и рано или поздно оно начинает ломаться, что просто неизбежно. Вечного двигателя пока еще никто не изобрел, поэтому на чудо надеяться не стоит. Некоторые люди хотят научиться чему-то новому, неизведанному и электричество не является исключением. Хотя бы потому, что можно самостоятельно проводить ремонт бытовой техники. Конечно, лучше приглашать специалиста, но легкую работу можно выполнить самостоятельно. Только для этого необходимо изучить фундаментальные понятия, дабы разобраться, что такое ноль и фаза.

Дополнительная информация

Выше рассматривались ситуации, когда нет индикационной отвертки, но имеется мультиметр или токовые клещи. Предполагалось, что до входа в помещение есть земля, фаза и нуль, а помещение со стороны потребителя прозванивается. В случае с тремя жилами метод еще проще, так как между фазой и любым проводом разница потенциалов равна 220 В.

При этом нужно заметить, что способ не подойдет в других ситуациях, к примеру, когда имеется нулевая разница межфазного напряжения. В указанном случае тестер будет бесполезен.

Есть и другая методика проверки, применение которой в промышленных условиях, однако, запрещено.
Понадобится лампа в патроне с парой оголенных проводов. С помощью лампы определяется фаза — любую жилу можно замкнуть на заземление. Использование с этой целью водопроводных, канализационных или газовых коммуникаций запрещено. Можно использовать кабельную антенну, оплетка которой, согласно нормативам, должна быть заземлена, а это означает, что найти фазу можно будет с помощью тестера (или, как говорилось выше, можно использовать лампу в патроне).

Также можно использовать пожарные лестницы или металлические громоотводные шины. Необходимо зачистить сталь до появления блеска, а затем прозвонить фазу на зачищенном участке. Следует сказать, что далеко не всякая пожарная лестница имеет заземление в отличие от громоотводной шины. При обнаружении такого дефекта рекомендуется обращаться с жалобами на нарушение технологии защитного зануления в управляющие или государственные организации.

Как проверить фазу и ноль?

Теперь перейдем непосредственно к проверке ноля и фазы. Но перед стартом работ подобного типа, следует проверить работоспособность самого прибора, чтобы он отображал правильные данные, которые позволили провести нужные действия, выполняя следующие действия:

  1. сначала следует осуществить визуальный осмотр и убедиться, что конструкция прибора полностью целостна и не имеет повреждений механического характера;
  2. после выполнения этого действия, если никаких изъянов не найдено, следует протестировать устройство;
  3. щуп следует при проверке вставить в оба отверстия рабочей розетки, одновременно с этим требуется большой палец руки держать на части рукояти диэлектрического сенсора – если что-то не так, индикатор не сработает;
  4. при применении решения с индикатором неонового типа на батарейке можно зажать пальцами отверточное жало и пятачок; в случае активации светового диода, это будет означать исправность устройства.

Объясним определение фазы и ноля на самой обычной розетке. Нужно вставить отвертку в одно из розеточных отверстий и, как описано выше, прикоснуться пальцем к рукояточной пластинке. Если индикатор активировался, значит, удалось найти фазу. Потом вставляем устройство в иное отверстие – активации лампочки произойти не должно. Если все так, как и должно быть – это ноль.

Если же она и тогда светится от нулевого провода, чего вроде как быть не может, это значит, что есть две фазы. Не следует бояться, ведь это возможно, если просто исчез контакт на нулевом кабеле. Например, это можно произойти где-то в коробке. В розетке не может быть две фазы никоим образом: одна будет просто идти во второе отверстие через какие-то включенные электрические приборы (лампочки, стиральные машины, холодильники и так далее).

Следует отметить, что довольно часто многие путают простую индикаторную отвертку с прозвоночным вариантом. Во втором случае у отверток имеется батарейка. Если с использованием такой отвертки осуществить определение земли, то нет необходимости касаться пятки. Либо же лампочка будет активна, как в случае касания фазы, как и при касании нуля.

Определение нуля и фазы

Для того чтобы не перепутать нуль и фазу на выключателе, или при проведении других электромонтажных работ нужно пользоваться специальными фазоуказывающими инструментами или пробниками. Наиболее простым способом будет использование индикаторной отвертки.

Индикаторная отвертка

Чтобы знать, как определить фазу и ноль индикаторной отверткой, нужно понять принцип ее работы. Она настроена таким образом, что внутренняя неоновая лампа загорается при появлении разности потенциалов
между рабочим контактом отвертки и металлическим выводом на конце ее ручки. Для правильного указания фазы отверткой нужно выполнить простые действия:

  1. Отключить питание от электросети автоматом;
  2. Зачистить концы испытываемых проводников и развести их на безопасное расстояние;
  3. Подать питание в электросеть;
  4. Прикоснуться жалом пробника к концу испытываемого проводника;
  5. Пальцем нажать на металлический вывод на конце ручки отвертки, касаться жала отвертки во время работы запрещается;
  6. Если тестируется фаза — лампочка внутри пробника должна засветиться.

Кроме обычной индикаторной, существует отвертка для прозвонки. Она отличается тем, что имеет в своем составе батарейки и указывает фазу без касания пальцем ее противоположного металлического конца. Также существует индикаторная отвертка
с функцией обнаружения скрытой проводки. Она может определить, где внутри стены проходит электрическая сеть квартиры. В ней используется бесконтактный способ определения по электромагнитному полю, возникающему вокруг проводника.

Контрольная лампа

Еще один способ, как определить фазу и нуль без приборов — это изготовление контрольной лампы. Такой индикатор создается просто: нужно припаять провода достаточной длины к выводам патрона и вкрутить в него лампу накаливания или неоновую. Один из выводов такого определителя фазы присоединяется к батарее, а вторым можно проверить наличие питающего напряжения в сети
. Для этого зачищенным концом провода нужно коснуться испытываемого проводника. Если это фаза — лампа должна вспыхнуть. Этот способ весьма опасен, поэтому им нужно пользоваться только в исключительных случаях, к тому же он запрещен Правилами Безопасной Эксплуатации Электроустановок.

Измерение мультиметром

При отсутствии индикаторной отвертки и для более точных измерений напряжения питания сети используется мультиметр, еще его называют тестер. С помощью него можно определить фазовый, нулевой и заземляющий проводник
в трехпроводной сети. Дело в том, что индикаторная отвертка может показать только большие различия в потенциалах, то есть показывает только фазу. Мультиметр работает с различными сигналами: высокого и низкого уровня, положительными и отрицательными. Его задача — показывать параметры электроцепи.

Чтобы узнать, как найти фазу и ноль мультиметром, а также заземляющий провод, нужно правильно настроить и подключить это устройство измерения. Проводится это так:

  1. Установить черный щуп мультиметра в гнездо, маркированное COM, а красный щуп — в гнездо с надписью U, Ω, Hz ;
  2. Ручкой на передней панели выбрать режим измерения переменного тока, предел измерения больше 220 В.

После настройки нужно одновременно прикоснуться двумя концами щупов к двум тестируемым выводам. Значение на экране мультиметра:

  • Более 100 В — найдены фаза и ноль;
  • Более 160 В — найдены фаза и заземляющая линия;
  • Менее 70 В — это ноль и заземляющий.

Протестировав таким образом все три линии, можно с уверенностью определить, где присутствует искомый потенциал.

Более простой способ, как определить фазу мультиметром, заключается в том, чтобы щупом, установленным в отверстие U, Ω, Hz поочередно прикоснуться ко всем концам электросети. В случае соприкосновения с фазовым
проводником мультиметр будет показывать напряжение 8 -15 В. В остальных случаях показания будут на уровне 0 — 3 вольта

Пользоваться мультиметром надо с осторожностью, используя изолирующую обувь и никогда не прикасаться руками к концам щупов без изоляции

При любых работах с электрической проводкой нужно соблюдать технику безопасности, то есть обесточивать помещение при монтаже и ремонте электрики, а во время теста на работоспособность при включенном автомате обеспечивать себе надежную защиту изоляцией.

При подключении различных электрических устройств (розетка или выключатель), не обязательно учитывать полярность проводников. Но что делать, если используемая проводка в доме трехжильная и не имеет цветовой маркировки, а устройства необходимо подключить с заземляющим проводником. Для этого существует несколько способов как проверить, какой из проводов является фазой, нулем или заземлением.

Как отличить по внешнему виду

Узнать, какие провода проходят в конкретной квартире, можно по их внешнему виду. Знать, как определить фазу и ноль без приборов, нужно, если отсутствуют оба из указывающих инструментов. Отличить провода можно по цвету их изоляции. Но этот метод применим только тогда, когда электропроводка выполнена с соблюдением всех правил ее укладки
. Желто-зеленый цвет изоляции указывает на то, что этот проводник — заземляющий. Голубой или синий цвет говорит о том, что провод нулевой, а коричневый, белый или черный цвет указывает на фазовую линию.

Но даже при уверенности в цвете проводки лучше ее перепроверить индикаторной отвёрткой или мультиметром, так как неправильное подключение чревато электротравмой.

Описание процесса

Начнём с фазы. Требуется включить устройство, после чего выставить на нём определение напряжения переменного характера, что на корпусе устройства обычно обозначается значком V~. Также следует выбрать предел измерения выше предполагаемого сетевого напряжения. Часто говорят о 400–700 В. Щупы тогда будут подключаться так: чёрный следует установить в разъём с пометкой COM, а красный – VΩmA. Но прежде чем осуществлять это, следует проверить работоспособность мультиметра в выбранном режиме. Проще попытаться выяснить напряжение в простой розетке. Для этого вставляем щупы в розеточные отверстия. Если устройство рабочее, и таковой будет розетка, то мультиметр покажет вам значение около 220–230 В.

Теперь приступим непосредственно к поиску фазы на примере 2 кабелей, торчащих из потолка и использующихся для включения люстры. Всё будет довольно легко. Требуется сформировать условия для прохождения электричества по прибору и установить этот факт. Создаётся электрическая цепь примерно такая, как с отвёрткой-индикатором.

При выяснении напряжения переменного характера с установленной границей 500 вольт, красным щупом нужно коснуться проверяемого кабеля, а чёрный прижать пальцами или коснуться предмета, что заземлён. Им может стать каркас стены из стали, отопительный радиатор и так далее. Если на проверяемом кабеле будет фаза, тестер высветит на дисплее величину напряжения около 220 В. Она может чуть различаться из-за условий, но будет примерно такой. Если провод не фаза, то появится 0 либо прибор покажет не более пары десятков вольт.

Теперь поговорим о том, как найти ноль. Он обычно находится уже относительно фазы. Сначала ищем её и логически предполагаем, что провод, расположенный рядом, ноль либо земля. Определить, является кабель нулём либо заземлением с помощью рассматриваемого устройства относительно сложно из-за того, что данные проводники почти одинаковы и повторяют друг друга.

Проще всего будет отключить от заземлительной шины в электрощитке кабель ввода. При осуществлении проверки напряжения между кабелями заземления и фазой нельзя будет получить 220 вольт, как при проверке фазы и нуля. Кроме того, следует сказать, что если в электрощите стоит защита дифференциального типа, то она точно сработает при проверке кабелей заземления относительно иного проводника, даже нулевого.

Если надо установить ноль в розетке, то следует красный щуп поставить в фазовую розеточную дырку, а чёрный поднести к иному контакту, после чего сделать эти же действия с третьим контактом. Обязательно следует запомнить напряжение в обоих случаях. Где оно будет меньше, там будет заземление. А там, где показатель будет чуть выше – там будет нулевой провод. В общем, как можно убедиться, ничего сложного в поиске нуля и фазы мультиметром нет.

Особенности домашних электрических сетей

Практически во всех квартирах электричество подается через однофазную сеть, с напряжением 220 вольт и частотой 50 Гц. Общее питание к жилому дому подводится посредством мощной трехфазной линии, а потом электроэнергия коммутируется в распределительных щитах. Дальнейшее движение тока к потребителям осуществляется по однофазным линиям с фазным и нулевым проводами.

Распределение нагрузки на каждую фазу должно быть максимально равномерным, чтобы избежать перекосов в процессе эксплуатации. В современных домах дополнительно прокладывается контур защитного заземления. Таким образом, в электрической сети добавляется еще один провод, который в дальнейшем тоже придется идентифицировать при необходимости.

В частном секторе нередко используются трехфазные линии. Напряжение в 380 вольт может напрямую подводиться к отдельным потребителям – отопительным котлам, электродвигателям и другому оборудованию. Однако для внутренней разводки внутри частного дома все равно используются однофазные линии, в которых равномерно распределяются все три фазы. Таким образом, к розеткам оказывается подведенными три провода – фазный, нулевой и заземление.

Определение фазы, нуля и заземляющего провода

Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

  1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

При ремонте электрической проводки, или ее обслуживании часто может потребоваться определить какой провод подключен к нулю, а какой к фазе. Это требуется для установки выключателей или коммутации другого электрооборудования. Прежде, чем рассказать, как определить ноль и фазу, расскажем о связанных с этим предрассудках.

Фаза

Сами по себе термины «фаза», «ноль» и «земля» хорошо знакомы профессиональным электрикам. Но, к примеру, фаза встречается и в физике — под этим определением можно назвать несколько состояний воды:

  • жидкое;
  • твердое;
  • газообразное.

Помимо этого, под фазой можно понимать несколько стадий колебания, что может относиться к волновому движению. В астрономии здесь несколько иное значение, что можно понять по наблюдению за луной.

Чуть выше было рассмотрено, как рождается электричество на станциях. Так вот именно на рабочую фазу, которую электрики называют просто — фазой, подается напряжение. Чтобы более точно представить себе, что это значит, следует раскрыть следующее понятие — ноль.

Алгоритм визуального осмотра

Во-первых, откройте щиток. Внимательно рассмотрите автоматические выключатели, количество которых зависит от расчетной нагрузки. К автоматам существует 2 варианта подключения:

  • провод содержит только фазу;
  • как фазу, так и ноль.

Провод заземления подключается непосредственно к шине.

Теперь, когда вы знаете значение расцветки и месторасположение кабелей, осталось лишь проверить, чтобы в щитке все соответствовало стандарту.

Далее, при условии, что в щитке ваша изоляция проводов соответствует правилам, необходимо открыть каждую распределительную коробку и визуально изучить состояние скруток. Здесь тоже не должно быть неточностей.

Очень часто бывают такие моменты, на которых не стоит заострять внимание. Например:.

  • Распределительная коробка содержит выключатель, подсоединенный к фазе.
  • Монтажники использовали провода с двумя жилами, изоляция которых отличалась от стандарта.

В обязательном порядке придерживайтесь правил техники безопасности и будьте осторожны и предельно внимательны, когда решаете вопросы с электричеством самостоятельно.

Как использовать прибор?

Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.

Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:

  • Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
  • На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.

Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.

Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.

Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.

Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.

Как определить фазу и ноль без приборов как найти мультиметром

В состав любого кабеля в обязательном порядке входит одна нулевая жила и одна либо несколько фазных.

От правильного определения функционального назначения жил кабеля зависит простота монтажа и эксплуатации системы электроснабжения, а также безопасность лиц, обслуживающих ее и производящих какие-либо электромонтажные работы.

Основные понятия

Давайте сперва разберемся, что такое ноль и фаза в электричестве.

Итак, фаза в электричестве – это проводник, по которому электрический ток движется в направлении энергопринимающего устройства. Ноль, в свою очередь, является проводником, по которому электрический ток движется в обратном направлении.

Современные требования, предъявляемые к безопасности организации электрических сетей, предполагают также наличие еще одного проводника в составе токоведущего кабеля, который будет выполнять защитную функцию. Заземляющий проводник – это элемент, преднамеренно соединенный с заземляющим контуром и предназначенный для того, чтобы уберечь человека от поражения электрическим током.

Неправильное определение, а также соединение нулевых и фазных жил токоведущего кабеля может привести к непредвиденным ситуациям – короткому замыканию, выходу из строя дорогостоящего оборудования и поражению человека электрическим током. По этой причине чрезвычайно важно уметь отличать фазный и нулевой проводники.

Как отличить фазу от нуля

Существует целый ряд способов – как профессиональных, так и не очень – для определения функционального назначения проводников, входящих в состав кабеля.

С применением мультиметра

Как мультиметром определить фазу и ноль

Просто и надежно определить, где ноль, а где фаза в электропроводке, можно при помощи мультиметра (тестера). Прежде всего, необходимо включить мультиметр в режим измерения переменного напряжения и выбираем подходящий предел измерения (выше напряжения в электрической сети). Далее вы можете избрать один из описанных ниже способов идентификации фазного проводника.

  1. Один из щупов мультиметра зажимается пальцами, другим необходимо коснуться той или иной жилы токоведущего кабеля. В случае соприкосновения щупа с фазой на дисплее мультиметра отобразится показание, приближенное к 220 В.
  2. Если вы ни в коем случае не желаете прикасаться к щупам мультиметра руками, то один из них, как и в предыдущем случае, скоммутируйте с идентифицируемым контактом, а другим дотроньтесь до оштукатуренной стены либо заведомо заземленной металлической поверхности.
  3. Как упоминалось выше, в современных системах электроснабжения предусмотрен также заземляющий проводник. Чтобы разобраться в назначении жил трехжильного либо многожильного кабеля следует попеременно касаться пар проводов щупами мультиметра. На его дисплее при контакте с фазой и нулем, а также с фазой и заземлением будет отображаться значение напряжения, близкое к 220 В (при этом фаза и заземление дают меньшее значение, нежели фаза и ноль). При одновременном касании щупами нулевого и заземляющего проводов, как и при касании двух фаз, на дисплее мультиметра будет «0».

Важно! При идентификации проводников по первому из вышеописанных методов обязательно убедитесь в том, что мультиметр включен в режим измерения напряжения, до того, как будете касаться пальцами одного из его щупов.

Как определить ноль и фазу индикаторной отверткой или отверткой для прозвонки сети

Со специальной индикаторной отверткой работать еще проще. Этот инструмент внешне очень похож на отвертку обыкновенную, но имеет относительно непростую внутреннюю конструкцию. Такую отвертку в народе также называют «контролькой».

 

Индикаторные отвертки

Важно! Не следует применять индикаторную отвертку для осуществления манипуляций над винтовыми соединениями (откручивания винтов и их закручивания). Такие действия являются наиболее распространенной причиной выхода из строя описываемого устройства.

Для того, чтобы определить функциональное назначение кабельных жил с ее помощью, нужно просто поочередно коснуться каждой из них жалом данного инструмента, нажимая при этом специальную кнопку в торцевой его части. Если в процессе указанных манипуляций светодиодная лампочка на отвертке загорится, значит, вы касаетесь фазного проводника, в противном случае – нулевого.

Не стоит путать индикаторную отвертку с отверткой, предназначенной для прозвонки сети. Последней также можно определить функционал той или иной жилы, однако нажимать на металлическую пластину в ее верхней части не нужно – иначе отвертка будет светиться в любом случае. Отвертка для прозвонки сети предусматривает в своей конструкции наличие батареек.

Визуальное определения фазы и нуля

При отсутствии вышеупомянутого инструментария вы можете задаться вопросом, как определить фазу и ноль без приборов. Одним из таких способов является их визуальная идентификация. Дело в том, что в соответствии с требованиями к монтажу электропроводки изоляция каждой жилы кабеля должна быть окрашена в свой собственный цвет.

При этом если с заземлением и нулем все понятно – они должны иметь желто-зеленую (желтую, зеленую) и синюю (голубую) окраску соответственно, то изоляционный слой фазного провода может быть выполнен в одном из следующих цветов: коричневый, черный, серый, а также красный, фиолетовый, розовый, белый, оранжевый, бирюзовый, — в зависимости от действующих на момент прокладки кабельной трассы нормативов.

По цвету проводки

Помимо цветовой, имеет место и буквенно-цифровая маркировка кабельных жил. В соответствии с ней ноль, фаза и земля обозначаются соответственно буквами N (neutral), L (line), PE (protectearth).

Контрольная лампочка

Еще один способ решения вопроса, как найти фазу и ноль без приборов, это самостоятельная сборка так называемой контрольной лампочки. Для ее изготовления потребуется обыкновенная лампа накаливания, подходящий к ней патрон, а также два отрезка медного провода (примерно по 50 сантиметров длиной).

Лампочка вкручивается в патрон, а проводники подключаются к его контактам. Другой конец одного из проводников необходимо закрепить на зачищенном до металлического блеска радиаторе системы отопления (либо на иной заведомо заземленной поверхности), а другим концом второго следует попеременно касаться проводников неопределенного функционала. При этом во время контакта с фазным проводом лампочка должна начать светиться.

Важно! В случае планирования систематического использования контрольной лампочки целесообразно ее саму поместить в защитный кожух, а к концам подсоединенных к патрону проводников прикрепить щупы (как у мультиметра).

Контрольной лампочкой

Контрольная картофелина

Название данного подраздела звучит весьма абсурдно, но тем не менее можно определить функциональное назначение токоведущих жил электрического кабеля и при помощи обыкновенной картофелины. Как и в вышеописанном методе с использованием самодельной контрольной лампочки, нам понадобятся два пятидесятисантиметровыхпровода.

Картофель разрезается пополам и в срез овоща на довольно приличном друг от друга расстоянии вставляются подготовленные проводники. Далее конец одного размещается на отопительной батарее(либо на иной заведомо заземленной поверхности), а конец другого соединяется с идентифицируемой жилой кабеля. Чтобы получить результат, придется подождать пять-десять минут. Если по прошествии указанного времени на срезе картофелины образовалось темное пятно, значит вы проверяли фазный проводник. Если изменений не произошло – нулевой.

Важно! Последние два из вышеописанных методов идентификации функционала токоведущих проводников кабеля системы электроснабжения вы используете на свой страх и риск. При работе с такого рода конструкциями следует соблюдать предельную осторожность, чтобы не получить поражение электрическим током.

Разобравшись с тем, что такое фаза и ноль в электричестве, а также найдя для себя сразу несколько ответов на вопрос, как найти эти самые фазу и ноль в проводке, вы можете выбрать любой подходящий для вас способ. Тем не менее, для того, чтобы проверить фазу и ноль, рекомендуем вам такие методы, как проверка тестером либо специализированной отверткой.

Как проверить фазу мультиметром — Multimetri.ru

Проще всего фаза определяется индикаторной отвёрткой. Но если её нет или сломана, можно найти фазу с помощью мультиметра. Делается это довольно просто, но нужно быть предельно внимательным.

Готовим мультиметр

В первую очередь осматриваем корпус прибора. Если он разваливается в руках, нужно принять меры — защёлкнуть держатели или завернуть винты. Осматриваем провода. Если изоляция местами слезла, меняем провод. Либо обматываем изолентой. Красиво починить провод может термоусадочная трубка. Щупы тоже подвергаем ревизии. Если на корпусах есть острые сколы — выравниваем, чтобы случайно не пораниться. Если видны токонесущие части — изолируем любыми подручными средствами — изоляционной лентой, клеевым пистолетом, термоусадкой подходящего диаметра. Проверяем работоспособность. Кабель чёрного цвета включаем в гнездо Com, а красного — в гнездо с символами единиц измерения — латинские A и V, греческая большая Омега.

После включения прибор должен что-то показать на дисплее. Если не показывает — проверяем элементы питания. Устанавливаем селектор прибора на измерение переменного напряжения, выбираем первое значение выше 220 В. Скорее всего, это будет 500 В. Не касаясь оголённых частей шупов, вставляем их в розетку 220 В. Прибор должен показать значение, близкое к 220 В, хотя бывает всякое. В одном из малых городов автору встретилось напряжение в обычной бытовой сети в 158 В. На самом деле, это повод обратиться к сбытовой организации, но фазу искать не мешает. Итак, если прибор показал напряжение в сети — он исправен. Можно искать фазу.

Читайте также

Как проверить свечи зажигания мультиметром. Почему свеча не работает?

»

к содержанию ↑

Для чего искать фазу

Казалось бы, чего проще — установить выключатель лампочки. Разрывай любой провод, ставь на него рубильник — и свет будет послушен воле человека. Тем не менее, по действующим Правилам установки электрооборудования — ПУЭ — выключатель должен ставится исключительно в разрыв фазного провода. Это вполне логично — разомкнув цепь мы должны обезопасить себя или другого человека от поражения током, если надо будет поменять патрон или весь светильник, даже лампочку. Разумеется, при замене светильника, в первую очередь монтажник или домашний мастер проверяет наличие фазы. И, если уж поставить выключатель правильно нет возможности, придётся отключать автомат в щитке, чтобы гарантировано обесточить проводники для лампы. Всегда проверяйте наличие фазы в том оборудовании, которое собираетесь ремонтировать или менять.

к содержанию ↑

Как определить фазу мультиметром

Если в розетке, люстре, распределительной коробке три провода, то всё просто. Оставив мультиметр в том же режиме — измерения переменного напряжения с пределом 500 В, попарно касаемся проводов. Ищем пару проводников, напряжение между которыми будет нулевым. Оставшийся провод — фаза. Если же провода два, придётся стать частью электрической цепи. Берём в руку жало чёрного щупа. Он в разъёме Com —это важно. Красным щупом касаемся провода. Если тестер показывает напряжение в районе 220 В — это фаза. Собственную руку можно заменить, например, радиатором отопления — гарантированно заземлёным проводником. Часто от лампы до батареи проводник не дотягивается — поэтому и приходится брать чёрный щуп руками. Это не опаснее, чем пользоваться индикаторной отвёрткой — там монтажник тоже становится частью цепи. Помните — мультиметр должен быть переключен в режим измерения переменного напряжения на предел в 500 В — и никак иначе.

Берегите себя, соблюдайте правила безопасности.

Как проверить напряжение и найти фазу в домашней проводке

“Бабушка, подай, пожалуйста, вон тот провод”, попросил один электрик проходящую мимо него старушку. А через минуту заявил своему напарнику: “Вот видишь, Миша. Ты утверждал, что здесь фаза, а оказалось — ноль”.

Такой анекдот с бородой очень ярко раскрывает идеологию проверки напряжения в домашней проводке, да и не только в ней.


Содержание статьи

Принцип работы индикаторов напряжения

Внутри любого физического тела находится определенное количество различных электрических зарядов: электронов, анионов, катионов, дырок. Их численность формирует величину потенциала, который может быть положительным или отрицательным.

В электротехнике под термином напряжения понимается разность этих потенциалов, способных при их соединении создать поток зарядов по замкнутому контуру, называемым электрическим током.

Разное количество зарядов образует неодинаковое число движущихся частиц. Подсчитывать их численность в теле технически сложно и нереально, но на практике требуется как-то оценивать. Делают это измерительными приборами, но используют косвенные методы, связанные с действием тока.

Тела с мощными потенциалами разных знаков способны при соприкосновении (пробое изоляции) создать огромные токи. Например, молнии, возникающие при разряде грозовых облаков, могут своим тепловым воздействием разрушать или сжигать многоэтажные здания, раскалывать вдоль ствола вековые деревья.


Когда мы видим подобные явления, то точно знаем, что облака накопили огромный потенциал и между ними или землей создалось значительное напряжение.

Разности потенциалов домашней электроэнергии тоже достаточно для совершения значительных разрушений. Если потенциалом фазного провода создать контакт с землей, то возникнет ток короткого замыкания, по величине которого можно судить о напряжении сети, что и раскрывает суть анекдота про электриков.

Понятно, что этот метод действенный, достоверный, но опасный и поэтому неприемлемый. Однако, с учетом знания закона Георга Ома (I=U/R), им успешно пользуются с момента возникновения энергетики. Для этого на пути тока устанавливают сопротивление, ограничивающее количество движущихся зарядов до безопасной величины, а по способности их преобразовывать электрическую энергию в световую, звуковую или магнитную, судят о значении напряжения.

Таким образом, любой индикатор напряжения подключается своими контактами в домашней проводке к потенциалам фазы и нуля. При этом встроенный в его корпус токоограничивающий резистор, снижает протекающий ток до минимального, безопасного значения, которое способно выполнить механическую работу.

По результатам этого действия судят о наличии напряжения. Например, загорелась индикаторная лампочка или появился звуковой сигнал встроенного динамика — значит на проводе фазы присутствует напряжения. В противном случае — его нет.

Среди электриков, нарушающих требования правил безопасности, используется метод проверки напряжения «контрольными лампами». Он основан на подключении между проводом фазы в сети и землей исправной лампы накаливания, которая светится под нагрузкой и не горит без нее.

Внутри квартиры с однофазной сетью мы пользуемся этим способом, когда вставляем в розетку вилку настольной лампы. А основное нарушение, из-за которого запрещены «контрольки» состоит в том, что при ошибочном контакте между двумя фазными проводами трехфазной сети они подключаются к напряжению не 220, а 380 вольт и в результате их колбы от взрывного воздействия температуры разлетаются мелкими частицами стеклянного потока, травмируя людей.


Электрик, держащий в руке такую лампу, инстинктивным движением бросает ее. Подключенный к цоколю патрона потенциал фазы вместе с летящей лампой, касаясь любого оказавшегося на его пути предмета, создает опасный ток короткого замыкания… Даже случайное падение такой конструкции с открытой колбой ведет к поражению электрическим током.

Не пользуйтесь этим методом и разъясняйте его опасность окружающим.

Виды указателей напряжения для домашней сети

Частой ошибкой неопытных пользователей, создающей травмоопасную ситуацию, является использование электрических приборов не по их прямому назначению.

Все электрические приборы, включая индикаторы, создаются для работы только под определенным видом напряжения.

Эта величина всегда указывается производителем на корпусе.

Нельзя пользоваться индикатором на 220 вольт в сети 380 или выше. Это опасно для жизни.

Указатели напряжения до 0,4 кВ могут срабатывать на основе прохождения через них тока с:

  1. емкостным;
  2. или активным характером.

В первом случае ток идет через тело оператора, а во втором — минуя его по подключенным к цепи проводникам указателя.

Емкостные индикаторы напряжения

Их выполняют в виде отвертки с контактным кольцом. Острие указателя прикладывают к металлу проверяемого провода или контакту коммутационного прибора, а специальную металлическую площадку касаются пальцем руки.

В этом случае создается электрическая цепь переменного тока, ограниченного встроенным в указатель резистором, по пути:

  • потенциал фазы;
  • проверяемый проводник;
  • внутренняя схема индикатора до контактной площадки;
  • человеческое тело;
  • контур земли.

Естественно, что ток указателя ограничен до безопасной величины в доли миллиампера. При его появлении загорается свет от вмонтированной в корпусе неоновой лампочки.


Среди старых моделей индикаторов до сих пор работают приборы типов УНН-1х, УНН-1м, ИН-91, УНН-90 и другие подобные конструкции. Зажигание лампочек указателя происходит при контакте с проводником, находящимся под напряжением порядка 70 вольт или больше. На меньшее значение они не среагируют.
Рынок современных указателей емкостного типа заполнен многочисленными изделиями из Китая и других стран. В принципе, они оправдывают в работе свою цену, но среди этих конструкций встречаются приборы со светодиодными лампочками, которые не всегда хорошо налажены и отстроены от токов наводок. Обладая завышенной чувствительностью, они могут светиться от наведенного напряжения. Это часто вводит в заблуждение домашнего мастера.


Профессиональные указатели напряжения емкостного типа менее подвержены этому явлению, но все равно полностью не избавлены от него, хоть и могут выполнять ряд дополнительных функций.

Работая с подобными индикаторами можно ошибиться еще и по той причине, что при ярком свете солнца зрительное восприятие светящейся лампочки индикатора ослабляется, ее загорание можно просто не увидеть. Особенно это характерно для светодиодных бюджетных моделей.

При таких условиях лучше работают индикаторы с автономным питанием, дополнительно сигнализирующие о появлении напряжения писком зуммера.

Двухполюсные индикаторы напряжения

Эти указатели тоже работают по факту проходящего через них тока. Их наконечники прикладывают между проверяемыми потенциалами фазы и нуля. Человек не вступает в контакт с контролируемым током, отделен от него слоем усиленной изоляции.

Подобные указатели имеют в своем корпусе сигнальную лампу и два резистора:

  1. токоограничивающий;
  2. шунтирующий.


Оба корпуса выполнены из прочного изоляционного материала с щупами и защитными ограничительными кольцами, за пределы которых запрещено располагать пальцы при проверках напряжения. Связь между щупами создана гибким проводом со слоем изоляции повышенной прочности и надежности.

Из старых моделей до сих пор популярны МИН-1. УНН-10. Диапазон рабочего напряжения лежит в пределах 70÷660 вольт, а лампа указателя зажигается от 60÷65. Эти приборы могут работать как в схемах переменного, так и постоянного тока.

Ассортимент современных приборов обширен. Среди них встречаются дорогие электронные и микропроцессорные изделия со множеством дополнительных функций, включающих:

  • проверку чередования фаз;
  • самодиагностику;
  • оценку работы УЗО;
  • автовключение;
  • подсветку зоны измерения;
  • звуковую индикацию и многие другие возможности.


Рекомендовать какую-то марку и производителя на основе опыта их использования довольно сложно.

На показания прибора такой конструкции не влияют паразитные емкости кабеля и связи. За счет этого их информация более достоверна и надежна, чем у емкостных аналогов.


Приборы измерения напряжения

Индикаторы либо указатели своим действием указывают на наличие какого-то уровня напряжения на проверяемом участке. Они не предназначены для определения его величины.

Функция измерения возложена на приборы, которые наделены определенными метрологическими характеристиками — вольтметрами.


Принцип их работы основан на использовании измерительной головки, чувствительной к очень маленьким токам порядка микроампера. Она подключается к контролируемой цепи напряжения клеммами через токоограничивающий резистор. У приборов, имеющих несколько пределов измерения, устанавливается переключатель номиналов резисторов.
Таким образом, создавая последовательную цепочку из определенных резисторов, коммутируемую к измерительной головке, осуществляют выбор режима измерения вольтметра, создавая один и тот же предел для отклонения стрелки.

У цифровых приборов функции измерительной головки возложены на измерительные, логические и информационные органы.

Домашнему мастеру для выполнения подобной работы рекомендуется приобрести комбинированный прибор, обладающий функциями измерения напряжения, тока, сопротивления.


Из старых моделей, выпускаемых в СССР, хорошо работает тестер Ц4324. Полузатертый от длительного использования знак качества, нанесенный на корпусе, до сих пор оправдывает свое предназначение.

Конечно, такие стрелочные приборы в современное время считаются анахронизмом. Они требуют внимания, знаний, умения выполнять переключения и быстро делать математические расчеты в уме. А ошибки в положении тумблеров при измерениях заканчиваются выгоранием внутренних элементов схемы.


Раньше приходилось выручать товарищей, спаливших по невнимательности свои приборы и помогать им в ремонте.

С тех пор остались схемы советских тестеров. Если кому нужны — пишите в комментариях, вышлю на почту фотографии необходимых страниц.

Современные измерители электрических параметров называют авометрами, ампервольтомметрами или мультиметрами.


Суть их едина: на основе электронной или микропроцессорной схемы выполняются точные замеры иногда практически в автоматическом режиме с мгновенным выводом информации в текстовом виде на дисплей.

Однако переключатели и кнопки остались, пользоваться ими надо осмысленно.


Неприятные и курьезные случаи из жизни электрика

Опасная ошибка

Работая релейщиком на ПС-330 кВ в конце 90-х годов пришлось срочно выезжать на аварийное отключение системы шин удаленной подстанции 110/10 кВ.

Прибыв на место происшествия, увидели, что к забору ограждения приставлена лестница. Дверь сооружения с высоковольтным оборудованием открыта, рядом валяется взломанный замок. Внутри КРУН около шин обнаружен мужчина в обгорелой одежде без признаков жизни. Рядом с ним — набор слесарного инструмента и на полу — указатель напряжения типа УНН-90.

Выяснилось, что это электрик ЖКХ, промышлявший воровством цветного металла, который решил поживиться на необслуживаемой подстанции. Но знаний электротехники и ТБ явно не хватило. Он пользовался индикатором напряжения поиска фазы в схеме 0,4 кВ, не соответствующим классу сети. 10 киловольт моментально создало ток, который не выдержало тело пострадавшего…

Затрудненный поиск неисправности

В здании Брежневской постройки из ж/б плит, построенном доблестным стройбатом, проводка выполнена алюминиевой лапшой, разбросанной по полу под лагами деревянного пола. Для освещения комнат провода выводятся с верхнего этажа на нижний через отверстие в полу/потолке. Соединения сделаны скрутками без распределительных коробок.

Владельцы квартиры попросили исправить розетку около телевизора, который периодически отключался. Указатель ИН-90 показал фазу. Проверил контакт нуля прозвонкой цепи. Вроде бы все нормально, а телевизор не включается. Замерил напряжение в розетке тестером: вместо 220 между фазой и нулем оказалось 100 вольт. Пришлось разбираться в клубке запутанных проводов в трех разных местах.

В итоге обнаружен облом одной жилы фазы на месте изгиба провода и касание между собой обгорелых подвижных концов, которые при нагрузке отодвигались.

Рекомендации по замеру напряжения и пользованию индикаторами

Измерительные приборы подключаются к величине опасного потенциала. По действующим правилам ТБ до начала работы с ними необходимо проверить их исправность. Изоляция любого указателя, даже только что купленного в специализированном магазине, должна быть испытана в электротехнической лаборатории повышенным напряжением с оформлением протокола, гарантирующего право безопасной работы на определенный срок.

Перед каждым использованием индикатор следует осматривать на предмет механического состояния корпуса и качества изоляции, а затем проверять работоспособность контрольным замером в точке с гарантированным наличием напряжения фазы. Иначе пользование поломанным прибором приведет к ошибке, связанной с КЗ в сети или травмой человека.

Все двухпроводные индикаторы и вольтметры указывают напряжение в том месте, куда их подключили, а не там, где хотели подключить. Будьте внимательны при замерах.

Применение измерительного прибора, соответствующего классу сети — очень важное условие безопасности, поэтому уже третий раз на нем заострено внимание.

Проверяя напряжение, всегда придавайте телу устойчивое положение, исключайте случаи неожиданного падения, не контактируйте с заземленными предметами. Опытные электрики при работе под напряжением стараются держать одну руку в кармане, чтобы не создать путь тока утечки через нее.

Самая важная рекомендация под конец: работы по определению фазы и нуля, замеру напряжения относятся к опасным и к ним, согласно правилам безопасности, допускается только подготовленный, сдавший экзамены и отданный приказом по электротехническому предприятию персонал.

Если вы работаете на свой страхи риск в собственной квартире, то хотя бы прочитайте правила безопасности до начала каких-либо действий с напряжением. Электроэнергия опасна и не прощает ошибок никому. От нее постоянно гибнут люди, даже опытные электрики с большим стажем, совершая случайные ошибки.

Практические рекомендации по обзору и использованию индикаторов напряжения в сети 0,4 кВ хорошо показал электрик ЖКХ Серегей Панушкин в своем видеоролике. Рекомендую посмотреть его прямо в статье.

Возможно, вы заметите расхождения моей статьи с его рекомендациями. Задавайте вопросы в комментариях, а я объясню вам свою точку зрения.

Полезные товары

Как найти фазу и ноль

Выполняя работы по дому, часто возникает необходимость отремонтировать розетку или выключатель, перевесить люстру или установить новую розетку. Для подключения дополнительного электрооборудования необходимо уметь отличить фазу от нуля. Это довольно просто, если дом построен недавно, а электропроводку делали квалифицированные специалисты.

Простой способ определения

Для того чтобы самому найти назначение каждого проводника достаточно знать правила цветового обозначения электропроводов. Современные коттеджи должны иметь контур заземления. А это значит, что разводка выполнена трехпроводным кабелем, а цвета должны соответствовать:

  • Желто-зеленая оплетка обозначает подключение жилы к контуру заземления;
  • Синий или голубой цвет говорит, что это нулевая жила;
  • Фазный провод обозначают любым другим цветом. Он может быть красным, белым, коричневым, фиолетовым и т. п.

Таким образом, в идеале должна маркироваться вся электропроводка. Однако нет гарантии, что ее монтаж производил действительно специалист или на вводе не переключались электропровода.

ВАЖНО! Никогда не доверяйте цветовому обозначению кабеля, если не вы производили монтаж электропроводки.

Инструменты и материалы для выполнения работы

Прежде чем приступить к работе, необходимо приготовить инструменты и материалы, которые могут потребоваться во время ремонта:

  • индикаторная отвертка для определения фазы и нуля;
  • тестер или мультиметр, но ими нужно знать, как определить фазу ноль или землю;
  • плоскогубцы и кусачки — бокарезы;
  • маркировочный материал. Это могут быть цветной термоусадочный кембрик или маркировочные клипсы.

Всегда перед началом работы необходимо определить ноль и фазу.

Как с помощью индикаторной отвертки определить фазную жилу кабеля

Для того чтобы узнать, где ноль, а где фаза пользуются как индикаторной отверткой, так и мультиметром. Если ремонт производит не специалист, у которого нет соответствующих приборов, то для определения, где фазовый провод достаточно иметь индикатор.

Его можно купить в магазине за символическую плату. Методика определения очень проста, достаточно вставить жало индикаторной отвертки в розетку, а пальцем руки дотронуться до контакта на ее ручке. Если загорелся индикатор, то это и есть фазная жила.

Если проводка в доме двухжильная, то второй проводник будет нулевым. Сейчас уже не выполняют электропроводку в квартирах и домах двухжильным кабелем.

Если проводка старая, бывают случаи, когда индикатор определяет фазу в розетке на обоих контактах. Аналогичная ситуация может быть и при монтаже новой электропроводки.

В этом случае определение фазы будет затруднено, такая ситуация возникает, если нулевой проводник в щитке не подключен. Достаточно подсоединить его в щитке или распределительной коробке.

Все работы, связанные с монтажом, переключением или подключением проводов, следует производить при отключенных автоматах, т. е. проводка должна быть обесточена. Подробнее про индикаторы напряжения можно узнать тут.

Работа с мультиметром

Специалист, выполняющий работы должен иметь понятие, как проверить мультиметром напряжение в сети. Для этого достаточно вставить щупы в розетку, предел измерений устанавливают на напряжение больше измеряемого.

А измерения производиться на переменном напряжении. Показания должны соответствовать напряжению сети 220 вольт. Электрик, производящий монтаж электропроводки, обязан уметь пользоваться измерительными приборами.

Он должен иметь понятие, как с помощью мультиметра определить фазу или ноль. Специалист, который умеет работать с тестером, знает не только как можно определить фазу или ноль. Но и сможет проверить целостность электропроводки.

При монтаже осветительных приборов возникает необходимость в проверке исправности лампочек. Важно не только иметь знания, как проверить лампочку мультимтером, но и учитывать, что энергосберегающие и светодиодные лампы таким прибором проверить невозможно.

Определение напряжения без индикатора и мультиметра

Если у электрика нет под рукой мультиметра или измерительной отвертки, он должен понимать, как определить фазу с помощью контрольной лампы.

ВАЖНО! Пользоваться контрольной лампой могут только профессиональные электрики, знакомые с техникой безопасности и имеющие специальный допуск работы в электроустановках.

Что необходимо знать перед началом ремонта

Прежде чем приступать к ремонту электропроводки необходимо иметь ввиду:

  • некоторые специалисты утверждают, что на нулевом проводе отсутствует напряжение. Эти утверждения ошибочные;
  • в розетке не обязательно знать, где фазный контакт, а где нулевой, что в корне неправильно. Существует оборудование, которое при подключении требует строгого соблюдения полярности;
  • в целях соблюдения техники безопасности, следует понимать, как правильно подключить выключатель света, что подключается к светильнику — ноль или фаза.

Трехпроводная электропроводка

Если электропроводка выполнена трехпроводным кабелем, то у электрика не должно возникнуть затруднений, как определить заземление. Согласно нормам желто-зеленый провод всегда подсоединяют к контуру заземления.

Иногда проводку выполняют отдельными проводами без учета цветового обозначения. Используют провода, какие есть под рукой. В этом случае необходимо воспользоваться тестером или мультиметром.

Прежде всего, определяют, на какой провод подводится фаза. Для этого проще всего воспользоваться индикаторной отверткой. Применяя следующий алгоритм проверки можно узнать назначение двух других проводов.

Измеряя напряжение на жилах кабеля, можно понять, где земля. Между фазной и нулевой жилами  напряжение всегда будет выше, чем между фазной и землей.

Данная методика применима только в коттеджах или индивидуальных домах. Где имеется отдельный контур заземления. В многоквартирных домах применяют схему с глухо заземленной нейтралью. В этом случае показания прибора будут одинаковыми.

Существует еще один способ как определить провод заземления. Он справедлив только при условии, если подводящие в дом провода промаркированы.

Для того чтобы знать как определить где фаза, а где ноль достаточно прозвонить прибором все провода и таким образом довольно легко определяется назначение электропроводов.

Если у вас нет опыта или не знаете как с помощью индикаторной отвертки или с помощью мультиметра определить ноль или фазу в проводах. Следует обратиться за помощью к профессиональному электрику.

Перед началом самостоятельного ремонта электропроводки необходимо изучить технику безопасности при работе с электроустановками. Не стоит слушать советы как проверить фазу или ноль без приборов, даже если проверенный способ кажется достоверным.

Всегда нужно помнить, что электричество не определяется нашими органами чувств. У него нет звука, запаха или цвета. Поэтому люди, не имеющие опыта работы с электричеством, чаще всего получают травмы от электричества. Если вы не знаете, как определить фазу ноль и землю, как проверить напряжение в розетке, лучше доверить эти работы профессионалам.

Как определить фазу и ноль правильно: советы и рекомендации

Категория: Электромонтажные работы

Для того чтобы починить розетку или подключить люстру, не обязательно звать на помощь электрика. Все эти работы при наличии определенного минимума знаний может выполнить даже школьник. Чтобы освоить элементарные навыки работы с электрической проводкой в квартире или частом доме необходимо сначала понять принцип устройства электросети, а также обзавестись индикаторной отверткой и недорогим тестером со стрелочной или цифровой индикацией, который называется мультиметром в связи с возможностью измерения сразу нескольких электрических параметров (сила тока, напряжение, сопротивление). Кроме того, для снятия изоляции, резания, сжатия или скрутки проводов, необходимо купить в магазине пассатижи, кусачки, нож и набор отверток различного размера. При этом необходимо чтобы весь инструмент имел надежные рукоятки, изготовленные из изоляционного материала. Из материалов нужна будет только изоляционная лента и клемники, позволяющие быстро соединять провода внутри коробок.

Перед тем, как приступать к подключению или починке электрического устройства или к ремонту электропроводки своими руками, необходимо в первую очередь понять, что представляют собой такие понятия, как фаза и ноль, которыми обычно оперируют электрики. Давайте рассмотрим, чем они отличаются, и как определить фазу и ноль при помощи различных приборов.

Что такое фаза?

Как известно, генератор, который вырабатывает электроэнергию, в сущности, представляет собой несколько огромных катушек провода, в которых возбуждается электрический ток движением постоянных магнитов. Все эти катушки соединены между собой таким образом, что один конец каждой из них соединен с землей (заземление), а другой представляет собой изолированный проводник, идущий к потребителям в виде воздушной линии или изолированного провода. Соответственно, один из двух проводов, которые заведены в квартиру, протянут от заземленного конца катушек электростанции, и представляет собой так называемый «ноль», а другой, который не соединен с землей, называется «фаза».

Как известно, в обычной бытовой розетке всегда есть ноль и одна фаза. В квартирах заведена всегда только одна фаза и ноль, поскольку все бытовые приборы и оборудование рассчитаны на однофазное питание. Однако от электростанции к потребителям идет всегда три фазы и ноль. Так куда же деваются еще две фазы? Почему их нет в квартире? На этот вопрос ответ находится в подвале многоэтажного дома, где установлен силовой щит. К нему подведены все три фазы, которые затем распределяются равномерно между квартирами для обеспечения одинаковой нагрузки.

Что такое ноль и заземление?

Гораздо проще обстоит дело с нолем. Этот проводник должен быть везде, вне зависимости от количества фаз в помещении. Как уже упоминалось, на электростанции ноль заземлен. Тогда почему же к розетке подведены три провода? Третий провод – это заземление, которое необходимо из соображения безопасности эксплуатации бытовых (и промышленных, кстати, тоже) электроприборов.

Дело в том, что если произойдет разрыв нулевого провода к объекту (жилому дому, предприятию, отдельному помещению), внутри объекта окажется только один (либо три) фазный провод, который подключен к огромному количеству различных устройств и приборов. Это значительно повышает вероятность поражения людей электрическим током путем прикосновения к металлическому корпусу или деталям прибора. Именно поэтому все корпуса бытового и промышленного оборудования дополнительно заземляются непосредственно на месте подключения и эксплуатации.

Как отличить друг от друга фазу и ноль?

Для начала отметим, что сегодня приобрела популярность цветовая маркировка проводов, согласно которой заземление должно представлять собой провод желто-зеленого цвета (зеленый с желтой полоской), фазный провод – в коричневой изоляции, и ноль – в синей (голубой). В случае наличия трех фаз остальные две фазы должны быть серого и черного цвета. Однако не рекомендуется доверять визуальному определению, поскольку во многих случаях оно является ошибочным.

Итак, как найти фазу и ноль, если провода не промаркированы или же вы не доверяете цветной маркировке? В бытовых условиях это можно сделать при помощи нескольких приборов: самодельного индикатора (так называемой «контрольки»), индикаторной отвертки и тестера (мультиметра). В первых двух случаях используется один и тот же принцип, который заключается в том, что между нулем и заземлением не должно быть разницы потенциалов (напряжения). В случае использования индикаторной отвертки проверяется каждый провод отдельно.

Итак, «контролька» – это классическое, хотя и примитивное, самодельное устройство, которое представляет собой небольшую лампочку на 220 вольт с патроном и двумя проводами длиной в несколько десятков сантиметров. «Контролькой» можно легко проверить наличие напряжения в розетке, сунув проводки в отверстия, а также определить таким же методом работоспособность проводки, которая идет к люстре, если она не работает. Для этого нужно лишь подключить «контрольку» параллельно проводам, к которым подключен осветительный прибор. Фаза определяется этим способом путем прикладывания одного провода «контрольки» к заземлению, а другого поочередно к проводам фазы и ноля. В данном случае от ноля лампочка, естественно, не будет светиться, а от фазы зажжется.

При определении мультиметром его необходимо включить в режим измерения переменного напряжения не менее 250 вольт. Принцип определения ноля и фазы точно такой же, как в предыдущем случае, просто индикатором в данном случае будет не лампочка, а стрелка или цифровые сегменты прибора. Преимущество в данном случае заключается в том, что тестером можно еще измерить величину напряжения. Один щуп (провод) прибора подключаем на землю, а вторым ищем ноль и фазу. При прикосновении к нулевому проводу стрелка отклоняться не будет, а на фазном проводе мультиметр покажет напряжение в 220 вольт (разумеется, с небольшой погрешностью).

Дополнительные рекомендации

Так чем же лучше всего воспользоваться, чтобы найти ноль и фазу в розетке? Неужели нельзя воспользоваться самодельной «контролькой» и отказаться от покупки других приборов? Конечно же можно, однако стоимость индикаторной отвертки копеечная, а в использовании она гораздо удобнее лампочки с патроном. Кроме того, некоторые современные отвертки имеют очень высокую чувствительность и способны индицировать фазный провод даже на расстоянии в несколько сантиметров.

Что касается мультиметра, его целесообразно приобрести тем, кто ближе знаком с электрическими приборами и электроникой. Этот прибор имеет широкие функциональные возможности в плане измерения различных электрических величин, поэтому он пригодится далеко не каждому человеку.

Избрав для себя оптимальный способ определения фазы и ноля, помните, что все электрические работы связаны с опасностью поражения током, поэтому строго соблюдайте правила техники безопасности при работе с электроприборами! Более наглядно процесс определения фазы и ноля изложен в видео к этому уроку.

STLC (жизненный цикл тестирования программного обеспечения) Фазы, вход, критерии выхода

  • Home
  • Testing

      • Back
      • Agile Testing
      • BugZilla
      • Cucumber
      • Testing Database
      • Testing Database
      • Testing Database
      • JIRA
      • Назад
      • JUnit
      • LoadRunner
      • Ручное тестирование
      • Мобильное тестирование
      • Mantis
      • Почтальон
      • QTP
      • Центр контроля качества
      • RP
      • Selenium
      • SoapUI
      • Управление тестированием
      • TestLink
  • SAP

      • Назад 90 004
      • ABAP
      • APO
      • Начинающий
      • Basis
      • BODS
      • BI
      • BPC
      • CO
      • Назад
      • CRM
      • HRM
      • Crystal Reports
      • Crystal Reports
      • Crystal Reports
      • QM
      • Заработная плата
      • Назад
      • PI / PO
      • PP
      • SD
      • SAPUI5
      • Безопасность
      • Менеджер решений
      • Successfactors
      • SAP Tutorials
    • 000
    • 9000
    • 9000
    • 9000 9000 Web Назад
    • Apache
    • AngularJS
    • ASP.Net
    • C
    • C #
    • C ++
    • CodeIgniter
    • СУБД
    • JavaScript
    • Назад
    • Java
    • JSP
    • Kotlin
    • Linux
    • Linux js
    • Perl
    • Назад
    • PHP
    • PL / SQL
    • PostgreSQL
    • Python
    • ReactJS
    • Ruby & Rails
    • Scala
    • SQL
    • 0000003 SQL000
    • SQL
    • 000
    • UML
    • VB.Net
    • VBScript
    • Веб-службы
    • WPF
  • Обязательно учите!

      • Назад
      • Бухгалтерский учет
      • Алгоритмы
      • Android
      • Блокчейн
      • Business Analyst
      • Создание веб-сайта
      • Облачные вычисления
      • COBOL
      • Назад
      • Compiler
      • Встроенный
      • Compiler Design
      • 9003

      Как написать тестовые примеры: образец шаблона с примерами

      • Home
      • Testing

          • Back
          • Agile Testing
          • BugZilla
          • Cucumber
          • 000
          • 9000 Testing 9000 Testing Database JIRA
          • Назад
          • JUnit
          • LoadRunner
          • Ручное тестирование
          • Мобильное тестирование
          • Mantis
          • Почтальон
          • QTP
          • Назад
          • Центр качества (ALM)
          • RPA
          • Тестирование SAP
          • Selenium
          • SoapUI
          • 03

          • SAP Test Management
          • Управление тестированием
            • Назад
            • ABAP
            • APO
            • Начинающий
            • Basis
            • BODS
            • BI
            • BPC
            • CO
            • Back
            • 9000 CRM 9000 Отчеты Crystal
            • 9000 CRM 9000
            • MM
            • QM
            • Расчет заработной платы
            • Назад
            • PI / PO
            • PP
            • SD
            • SAPU I5
            • Security
            • Solution Manager
            • Successfactors
            • SAP Tutorials
        • Web

            • Назад
            • Apache
            • AngularJS
            • Net
            • C
            • C #
            • C ++
            • CodeIgniter
            • СУБД
            • JavaScript
            • Назад
            • Java
            • JSP
            • Kotlin
            • Linux
            • Linux js
            • Perl
            • Назад
            • PHP
            • PL / SQL
            • PostgreSQL
            • Python
            • ReactJS
            • Ruby & Rails
            • Scala
            • SQL
            • 0000003 SQL000
            • SQL
            • 000
            • UML
            • VB.Net
            • VBScript
            • Веб-службы
            • WPF
        • Обязательно учите!

            • Назад
            • Бухгалтерский учет
            • Алгоритмы
            • Android
            • Блокчейн
            • Business Analyst
            • Создание веб-сайта
            • Облачные вычисления
            • COBOL
            • Встроенный компилятор
            • Встроенный
            • 9009

          Как проверить правильность подключения динамиков

          Любая система хороша ровно настолько, насколько хорошо ее самое слабое звено, и аудиосистемы, безусловно, не являются исключением из правил.Предполагая, что ваша музыкальная система издает достаточно приятные звуки, вы, возможно, никогда не перестанете задумываться над ней, но с помощью нескольких простых тестов вы можете убедиться, что ваши динамики подключены правильно и что вы получаете максимум от ваша система.

          Для подключения динамиков к системе Hi-Fi обычно требуется всего несколько кабелей. Вы бы не подумали, что перепутать эти кабели будет большой проблемой, не так ли, если ваша музыка воспроизводится нормально и из системы не выходит дым?

          Что ж, в большинстве случаев вы были бы правы, с простым микшированием каналов является наиболее вероятным результатом, но если у вас есть реальный талант возвращать вещи на передний план, то вы можете подключить свои динамики на проводов. -of-phase , что, хотя и не причинит никакого вреда, определенно не поможет вам извлечь максимальную пользу из вашей системы.

          Эти потенциальные проблемы легко обнаружить с помощью нескольких простых тестов, и, к счастью, соответствующие средства их устранения также просты.

          Левая и правая тесты

          По большому счету, перепутать ваши левый и правый громкоговорители не является большой проблемой. Если ваши левый и правый динамики перепутаны, ваша музыка все равно будет воспроизводиться в прекрасном стерео (при условии, конечно, что вы слушаете стереодорожку), просто то, что должно выходить из левого динамика, — это фактически выходит из правого динамика и наоборот.

          Рекорд-продюсеры и инженеры микширования тратят недели на микширование и продюсирование альбома, и как часть процесса они решают, где в миксе разместить определенные инструменты. Итак, если у вас есть любимый трек, в котором инструмент панорамирован на (музыка говорит о стереопозиционировании звуков) в сторону, разве вы не предпочтете слушать его так, как задумал исполнитель, а не наверху?

          Ты бы стал? Хорошо.

          Затем попробуйте следующие два довольно очевидных теста на своей музыкальной системе.Слушая тест для левого динамика , вы должны услышать голос Винни, исходящий из левого динамика (или наушников) только и наоборот для теста правого динамика.

          Тест левого динамика:

          [powerpress url = ”https://www.richardfarrar.com/audio/left.mp3 ″]

          Или, скачать : left.mp3 [ 0 ’04”, 68kB ]

          Тест правого динамика:

          [powerpress url = ”https: // www.richardfarrar.com/audio/right.mp3 ″]

          Или, скачать : right.mp3 [ 0 ’04”, 80kB ]

          Если что-то пойдет не по плану, то у вас либо перепутаны динамиков, проводов (или неправильно повернуты наушники), либо аудиокабель ( показан справа ) от вашего воспроизводящего устройства к усилитель перешел.

          Обычно аудиокабелей (в отличие от кабелей громкоговорителей) имеют цветовую маркировку: красный штекер идет к красной розетке и белый к белому на каждом конце кабеля.

          Вам нужно будет проверить проводку вашей системы, при необходимости перемонтировать, а затем повторить два теста, чтобы убедиться, что оба канала работают и находятся в правильном порядке.

          На следующей схеме показано, как подключить динамики к усилителю:

          Проверка баланса

          Теперь, когда вы счастливы, что у вас разобрались с левыми и правыми, следующая вещь, которую нужно проверить, — это баланс колонок .

          Когда вы слушаете следующий тест, поместите голову как можно посередине между двумя динамиками; Вы должны услышать, как Винни выходит из мертвых в центре ваших динамиков.В этом случае вы слышите одинаковых звуков Винни из обоих динамиков .

          Проверка центральной балансировки:

          [powerpress url = ”https://www.richardfarrar.com/audio/centre.mp3 ″]

          Или, скачать : centre.mp3 [ 0 ’04”, 67kB ]

          Если звук Винни идет слева или справа от центрального положения, вам может потребоваться проверить, есть ли в вашем усилителе или системе регулятор баланса .Если это так, убедитесь, что регулятор баланса находится в центральном положении .

          Если после проверки контроля баланса все по-прежнему звучит односторонне, у вас может быть более серьезная проблема с вашей системой, которая требует исследования или профессионального внимания. Это может быть так же просто, как грязное соединение или изворотливый соединительный кабель , или, если дела обстоят хуже, это может быть более укоренившаяся проблема с электроникой или динамиком.

          В качестве альтернативы, если вы не можете определить, что звук явно исходит из центра, у вас может быть проблема с фазированием…

          Проверка фазы динамика

          phasing Проблема с динамиками очень просто исправить, но может значительно ухудшить звуковые характеристики вашей системы.

          Попытаться описать, как звучат динамики не в фазе, немного сложно, если вы не испытали это на собственном опыте. Вы, вероятно, услышите значительно меньше басов , и вместо того, чтобы создавать сильное центральное изображение, кажется, что звук остается в динамиках, что делает звучание скорее отключенным .

          Послушайте следующее, и вы сможете сами почувствовать разницу:

          Проверка фазы динамика:

          [powerpress url = ”https: // www.richardfarrar.com/audio/out-of-phase.mp3 ″]

          Или, скачать : out-of-phase.mp3 [ 0 ’07”, 128kB ]

          Если вышеприведенный тест звучит отлично, но предыдущий тест центрального канала звучал очень странно, то ваши динамики не в фазе.

          Устранение проблемы

          К счастью, хотя эффект может быть довольно странным, исправить это действительно просто.

          Выберите динамик , но не оба , это нужно сделать только на одном динамике .Теперь поменяйте местами два провода на задней части динамика. Обычно динамик имеет два подключения; один черный (отрицательный разъем или ) и один красный ( положительный или + разъем).

          Вот и все, работа сделана. Теперь послушайте тест центра / баланса и фазовый тест еще раз, чтобы убедиться, что у вас все работает, черт возьми.

          Сядьте и расслабьтесь

          Теперь, когда ваши динамики подключены правильно, левый и правый уголки там, где они должны быть, и отсутствуют странные эффекты, не совпадающие по фазе, вы можете лечь, поднять ноги и послушать мой последний подкаст , хорошо зная свою работу сделанный.

          У вас не было проблем; отлично, так что нет причин не слушать мой последний подкаст ! 🙂

          Нулевой фазовый отклик цифрового фильтра

          Синтаксис

          [Hr, w] = нулевая фаза (b, a)
          [Hr, w] = нулевая фаза (sos)
          [Hr, w] = нулевая фаза (d)
          [ Hr, w] = нулевая фаза (..., nfft)
          [Hr, w] = нулевая фаза (..., nfft, 'целое')
          [Hr, w] = нулевая фаза (..., w)
          [Hr , f] = нулевая фаза (..., f, fs)
          [Hr, w, phi] = нулевая фаза (...)
          нулевая фаза (...)

          Описание

          [Hr, w] = нулевая фаза (b, a) возвращает нулевой фазовый отклик Hr , а частотный вектор w (в радиан / сэмпл), при котором часа вычисляется, учитывая фильтр, определяемый числителем b и знаменателем a . Для КИХ-фильтров, где a = 1 , вы можете опустить значение a из команда. Отклик при нулевой фазе оценивается равным 512 . точки на верхней половине единичного круга.

          Отклик при нулевой фазе, H r ( ω ), относится к частотной характеристике, H ( e ), на

          , где φ ( ω ) непрерывная фаза.

          Примечание

          Отклик при нулевой фазе всегда реален, но не эквивалентен отклика величины. Первое может быть отрицательным, а второе не может быть отрицательным.

          [Hr, w] = zerophase (sos) возвращает нулевую фазу ответ для матрицы секций второго порядка, sos . sos есть а К -по-6 матрица, где количество секций, К , должно быть больше или равно 2. Если количество разделов меньше чем 2, нулевая фаза считает вход вектор числителя, b . Каждая строка sos соответствует к коэффициентам фильтра второго порядка (биквадратного). i th строка матрицы sos соответствует [bi (1) bi (2) bi (3) ai (1) ai (2) ai (3)] .

          [Hr, w] = zerophase (d) возвращает нулевую фазу ответ для цифрового фильтра, d .Используйте designfilt для создания d на основе по характеристикам частотной характеристики.

          [Hr, w] = zerophase (..., nfft) возвращает нулевой фазовый отклик Hr и частотный вектор w (радианы / выборка), используя nfft частотных точек в верхней половине единичный круг. Для достижения наилучших результатов установите nfft на значение больше, чем порядок фильтрации.

          [Hr, w] = zerophase (..., nfft, 'целое') возвращает нулевой фазовый отклик Hr и частотный вектор w (радианы / выборка), с использованием nfft частотных точек вокруг всего блока круг.

          [Hr, w] = zerophase (..., w) возвращает нулевой фазовый отклик Hr и частотный вектор w (радианы / выборка) на частотах в векторе w . Вектор w должен иметь как минимум два элемента.

          [Hr, f] = zerophase (..., f, fs) возвращает нулевой фазовый отклик Hr и частотный вектор f (Гц), используя частоту дискретизации фс (в Гц), чтобы определить вектор частоты f (в Гц), при котором час вычислено.Вектор f должен иметь как минимум два элемента.

          [Hr, w, phi] = zerophase (...) возвращает нулевой фазовый отклик Hr , частотный вектор w (рад / выборка), и компонент непрерывной фазы, phi . (Запись что эта величина не эквивалентна фазовой характеристике фильтр, когда отклик с нулевой фазой отрицательный.)

          zerophase (...) строит график зависимости отклика с нулевой фазой от частота. Если вы введете коэффициенты фильтра или матрицу секций второго порядка, используется окно текущего рисунка.Если вы вводите digitalFilter , переходная характеристика отображается в FVTool .

          Примечание

          Если вход в нулевую фазу имеет одинарную точность, характеристика с нулевой фазой рассчитывается с использованием арифметики с одинарной точностью. Результат Hr одинарной точности.

          Различные типы тестирования с подробностями

          Какие бывают типы тестирования программного обеспечения?

          Мы, как тестировщики, знаем о различных типах тестирования программного обеспечения, таких как функциональное тестирование, нефункциональное тестирование, автоматическое тестирование, гибкое тестирование и их подтипы и т. Д.

          Каждый из нас столкнулся бы с несколькими типами тестирования на своем пути к тестированию. Возможно, мы слышали некоторые из них и могли работать над некоторыми, но не все знают обо всех типах тестирования.

          У каждого типа тестирования есть свои особенности, преимущества и недостатки. Однако в этой статье я рассмотрел в основном каждый тип тестирования программного обеспечения, который мы обычно используем в повседневной жизни.

          Пойдем посмотрим на них.

          Различные типы тестирования программного обеспечения

          Ниже приводится список некоторых распространенных типов тестирования программного обеспечения:

          Типы функционального тестирования включают:

          • Модульное тестирование
          • Интеграционное тестирование
          • Тестирование системы
          • Проверка работоспособности
          • Дымовые испытания
          • Тестирование интерфейса
          • Регрессионное тестирование
          • Бета / приемочные испытания

          Типы нефункционального тестирования включают:

          • Тестирование производительности
          • Нагрузочные испытания
          • Стресс-тестирование
          • Объемные испытания
          • Тестирование безопасности
          • Тест на совместимость
          • Тестирование установки
          • Тестирование восстановления
          • Тестирование надежности
          • Юзабилити-тестирование
          • Тестирование на соответствие
          • Тестирование локализации

          Давайте подробнее рассмотрим эти типы тестирования.

          # 1) Альфа-тестирование

          Это наиболее распространенный тип тестирования, используемый в индустрии программного обеспечения. Целью этого тестирования является выявление всех возможных проблем или дефектов до выпуска продукта на рынок или для пользователя.

          Альфа-тестирование проводится в конце фазы разработки программного обеспечения, но перед бета-тестированием. Тем не менее, в результате такого тестирования могут быть внесены незначительные изменения в конструкцию.

          Alpha Testing проводится на сайте разработчика.Для этого типа тестирования может быть создана собственная виртуальная пользовательская среда.

          # 2) Приемочные испытания

          Приемочное испытание выполняется клиентом и проверяет, соответствует ли сквозной поток системы бизнес-требованиям или нет, и соответствует ли это потребностям конечного пользователя. Клиент принимает программное обеспечение только тогда, когда все функции и функции работают должным образом.

          Это последний этап тестирования, после которого программа запускается в производство.Это также называется приемочным тестированием пользователя (UAT).

          # 3) Специальное тестирование

          Само название предполагает, что это тестирование выполняется на специальной основе, то есть без ссылки на тестовый пример, а также без какого-либо плана или документации для такого типа тестирования.

          Целью этого тестирования является обнаружение дефектов и нарушение работы приложения путем выполнения любого потока приложения или любых случайных функций.

          Специальное тестирование - это неформальный способ поиска дефектов, который может выполнить любой участник проекта.Трудно идентифицировать дефекты без тестового примера, но иногда возможно, что дефекты, обнаруженные во время специального тестирования, не могли быть идентифицированы с использованием существующих тестовых примеров.

          # 4) Тестирование доступности

          Целью тестирования доступности является определение доступности программного обеспечения или приложения для людей с ограниченными возможностями.

          Здесь под инвалидностью понимаются глухие, дальтоники, умственно отсталые, слепые, пожилые и другие группы инвалидов. Выполняются различные проверки, такие как размер шрифта для людей с ограниченными возможностями по зрению, цвет и контрастность для цветовой слепоты и т. Д.

          # 5) Бета-тестирование

          Бета-тестирование - это формальный вид тестирования программного обеспечения, проводимый заказчиком. Это выполняется в Real Environment перед выпуском продукта на рынок для реальных конечных пользователей.

          Бета-тестирование

          проводится для того, чтобы убедиться, что в программном обеспечении или продукте нет серьезных сбоев, и оно удовлетворяет бизнес-требованиям с точки зрения конечного пользователя. Бета-тестирование считается успешным, когда заказчик принимает программное обеспечение.

          Обычно это тестирование проводится конечными пользователями или другими лицами. Это заключительное тестирование, проводимое перед выпуском приложения в коммерческих целях. Обычно выпущенная бета-версия программного обеспечения или продукта ограничена определенным количеством пользователей в определенной области.

          Итак, конечный пользователь фактически использует программное обеспечение и делится отзывами с компанией. Затем компания предпринимает необходимые действия перед выпуском программного обеспечения по всему миру.

          # 6) Внутреннее тестирование

          Всякий раз, когда ввод или данные вводятся в интерфейсное приложение, они сохраняются в базе данных, и тестирование такой базы данных называется тестированием базы данных или тестированием серверной части.

          Существуют различные базы данных, такие как SQL Server, MySQL, Oracle и т. Д. Тестирование базы данных включает в себя тестирование структуры таблицы, схемы, хранимой процедуры, структуры данных и так далее.

          В Back-end тестировании графический интерфейс не участвует, тестировщики напрямую подключаются к базе данных с надлежащим доступом, и тестировщики могут легко проверять данные, выполняя несколько запросов к базе данных.

          Во время внутреннего тестирования могут быть выявлены такие проблемы, как потеря данных, взаимоблокировка, повреждение данных и т. Д., И эти проблемы критически необходимо исправить до того, как система перейдет в производственную среду.

          # 7) Тестирование совместимости браузера

          Это подтип тестирования совместимости (описание которого приводится ниже), выполняемый группой тестирования.

          Тестирование совместимости браузера выполняется для веб-приложений и гарантирует, что программное обеспечение может работать с комбинацией различных браузеров и операционных систем. Этот тип тестирования также проверяет, работает ли веб-приложение во всех версиях всех браузеров или нет.

          # 8) Тестирование обратной совместимости

          Это тип тестирования, который проверяет, хорошо ли новое разработанное или обновленное программное обеспечение работает со старой версией среды или нет.

          Тестирование обратной совместимости проверяет, правильно ли новая версия программного обеспечения работает с форматом файлов, созданным более старой версией программного обеспечения; он также хорошо работает с таблицами данных, файлами данных, структурами данных, созданными более старой версией этого программного обеспечения.

          Если какое-либо программное обеспечение обновлено, оно должно хорошо работать поверх предыдущей версии этого программного обеспечения.

          # 9) Тестирование черного ящика

          Внутренний дизайн системы не рассматривается в этом типе тестирования.Тесты основаны на требованиях и функциональности.

          Подробную информацию о преимуществах, недостатках и типах тестирования черного ящика можно увидеть здесь .

          # 10) Проверка граничных значений

          Этот тип тестирования проверяет поведение приложения на граничном уровне.

          Проверка граничных значений выполняется для проверки наличия дефектов на граничных значениях. Тестирование граничных значений используется для тестирования другого диапазона чисел.Для каждого диапазона есть верхняя и нижняя границы, и тестирование выполняется на этих граничных значениях.

          Если для тестирования требуется диапазон значений от 1 до 500, то проверка граничных значений выполняется для значений 0, 1, 2, 499, 500 и 501.

          # 11) Тестирование ветвей

          Это тип тестирования белого ящика, который проводится во время модульного тестирования. Тестирование ветвей, само название предполагает, что код тщательно тестируется путем обхода каждой ветки.

          # 12) Сравнительное тестирование

          Сравнение сильных и слабых сторон продукта с его предыдущими версиями или другими аналогичными продуктами называется сравнительным тестированием.

          # 13) Тестирование совместимости

          Это тип тестирования, при котором проверяется, как программное обеспечение ведет себя и работает в другой среде, веб-серверах, оборудовании и сетевой среде.

          Тестирование совместимости гарантирует, что программное обеспечение может работать в другой конфигурации, в другой базе данных, в разных браузерах и их версиях. Тестирование совместимости выполняется командой тестирования.

          # 14) Тестирование компонентов

          В основном выполняется разработчиками после завершения модульного тестирования.Тестирование компонентов включает в себя тестирование нескольких функций как единого кода, и его цель - определить, существует ли какой-либо дефект после соединения этих нескольких функций друг с другом.

          # 15) Сквозное тестирование

          Подобно системному тестированию, сквозное тестирование включает в себя тестирование всей среды приложения в ситуации, которая имитирует использование в реальном мире, например, взаимодействие с базой данных, использование сетевых коммуникаций или взаимодействие с другим оборудованием, приложениями или системами. при необходимости.

          # 16) Эквивалентное разбиение

          Это методика тестирования и разновидность тестирования черного ящика. Во время этого разделения на эквивалентность выбирается набор группы и выбираются несколько значений или чисел для тестирования. Подразумевается, что все значения из этой группы генерируют одинаковый результат.

          Целью этого тестирования является удаление избыточных тестовых примеров в определенной группе, которые генерируют одинаковые выходные данные, но без каких-либо дефектов.

          Предположим, приложение принимает значения от -10 до +10, поэтому при использовании разделения по эквивалентности значения, выбранные для тестирования, равны нулю, одному положительному значению, одному отрицательному значению.Таким образом, разделение эквивалентности для этого тестирования составляет от -10 до -1, 0 и от 1 до 10.

          # 17) Пример тестирования

          Это означает тестирование в реальном времени. Пример тестирования включает сценарий в реальном времени, а также сценарии, основанные на опыте тестировщиков.

          # 18) Исследовательское тестирование

          Исследовательское тестирование - это неформальное тестирование, проводимое командой тестирования. Целью этого тестирования является исследование приложения и поиск дефектов, существующих в приложении.

          Иногда может случиться так, что во время этого тестирования обнаруженный серьезный дефект может даже вызвать сбой системы.

          Во время исследовательского тестирования рекомендуется отслеживать, какой поток вы тестировали и какие действия выполняли перед запуском конкретного потока.

          Метод исследовательского тестирования выполняется без документации и тестовых примеров.

          # 20) Функциональное тестирование

          Этот тип тестирования игнорирует внутренние части и фокусируется только на выходе, чтобы проверить, соответствует ли он требованиям или нет.Это тестирование типа «черный ящик», ориентированное на функциональные требования приложения. Для получения подробной информации о функциональном тестировании щелкните здесь.

          # 21) Тестирование графического интерфейса пользователя (GUI)

          Целью этого тестирования графического интерфейса является проверка графического интерфейса пользователя в соответствии с бизнес-требованиями. Ожидаемый графический интерфейс приложения упоминается в подробном проектном документе и на экранах макета графического интерфейса.

          Тестирование графического интерфейса пользователя включает размер кнопок и поля ввода на экране, выравнивание всего текста, таблиц и содержимого в таблицах.

          Он также проверяет меню приложения, после выбора различных меню и пунктов меню, он проверяет, что страница не колеблется и выравнивание остается неизменным после наведения курсора мыши на меню или подменю.

          # 22) Тестирование горилл

          Gorilla Testing - это тип тестирования, выполняемый тестировщиком, а иногда и разработчиком. В Gorilla Testing один модуль или его функциональность проверяется тщательно и тщательно. Целью этого тестирования является проверка устойчивости приложения.

          # 23) Тестирование счастливого пути

          Цель тестирования счастливого пути - успешно протестировать приложение в положительном потоке. Он не ищет отрицательных или ошибочных состояний. Основное внимание уделяется только действительным и положительным входным данным, с помощью которых приложение генерирует ожидаемый результат.

          # 24) Тестирование инкрементальной интеграции

          Инкрементное интеграционное тестирование - это восходящий подход к тестированию, то есть непрерывное тестирование приложения при добавлении новых функций.Функциональность и модули приложения должны быть достаточно независимыми, чтобы их можно было тестировать отдельно. Это делают программисты или тестировщики.

          # 25) Тестирование установки / удаления
          Установка и удаление

          Тестирование выполняется для процессов полной, частичной или обновленной установки / удаления в разных операционных системах в разной аппаратной или программной среде.

          # 26) Интеграционное тестирование

          Тестирование всех интегрированных модулей для проверки объединенной функциональности после интеграции называется интеграционным тестированием.

          Модули

          обычно представляют собой модули кода, отдельные приложения, клиентские и серверные приложения в сети и т. Д. Этот тип тестирования особенно актуален для клиент-серверных и распределенных систем.

          # 27) Нагрузочное испытание

          Это тип нефункционального тестирования, и цель нагрузочного тестирования - проверить, какую нагрузку или максимальную рабочую нагрузку может выдержать система без какого-либо снижения производительности.

          Load Testing помогает определить максимальную емкость системы при определенной нагрузке и любых проблемах, вызывающих снижение производительности программного обеспечения.Нагрузочное тестирование выполняется с использованием таких инструментов, как JMeter, LoadRunner, WebLoad, Silk performer и др.

          # 28) Тестирование на обезьянах

          Обезьяна Тестирование проводится тестером, предполагающим, что если обезьяна использует приложение, то как случайный ввод, значения будут вводиться Обезьяной без какого-либо знания или понимания приложения.

          Цель Monkey Testing - проверить, не вылетает ли приложение или система, путем предоставления случайных входных значений / данных. Тестирование обезьян выполняется случайным образом, тестовые случаи не создаются, и

          не требуется.

          Monkey Testing выполняется случайным образом, тестовые сценарии не создаются, и нет необходимости знать обо всех функциональных возможностях системы.

          # 29) Тестирование мутации

          Мутационное тестирование - это тип тестирования белого ящика, при котором изменяется исходный код одной из программ и проверяется, могут ли существующие тестовые примеры идентифицировать эти дефекты в системе.

          Изменения в исходном коде программы очень минимальны, поэтому они не влияют на все приложение, только конкретная область, имеющая влияние, и соответствующие тестовые примеры должны быть в состоянии идентифицировать эти ошибки в системе.

          # 30) Отрицательное тестирование

          Тестировщики с мышлением «ломать голову» и с помощью отрицательного тестирования подтверждают это, если система или приложение ломаются.Методика отрицательного тестирования выполняется с использованием неверных данных, неверных данных или ввода. Он подтверждает, что система выдает ошибку о недопустимом вводе и ведет себя должным образом.

          # 31) Нефункциональное тестирование

          Это тип тестирования, для которого каждая организация имеет отдельную команду, которая обычно называется командой нефункционального тестирования (NFT) или командой производительности.

          Нефункциональное тестирование включает в себя тестирование нефункциональных требований, таких как нагрузочное тестирование, стресс-тестирование, безопасность, объем, тестирование восстановления и т. Д.Цель тестирования NFT - убедиться, что время отклика программного обеспечения или приложения достаточно быстрое в соответствии с бизнес-требованиями.

          Загрузка любой страницы или системы не должна занимать много времени и должна выдерживаться при пиковой нагрузке.

          # 32) Тестирование производительности

          Этот термин часто используется как синоним «стресс-тестирования» и «нагрузочного» тестирования. Тестирование производительности проводится для проверки соответствия системы требованиям к производительности. Для этого тестирования используются различные инструменты производительности и загрузки.

          # 33) Тестирование восстановления

          Это тип тестирования, который проверяет, насколько хорошо приложение или система восстанавливаются после сбоев или сбоев.

          Recovery Testing определяет, может ли система продолжить работу после аварии. Предположим, что приложение получает данные через сетевой кабель, и внезапно этот сетевой кабель был отключен.

          Через некоторое время подключите сетевой кабель; тогда система должна начать получать данные с того места, где она потеряла соединение из-за отсоединения сетевого кабеля.

          # 34) Регрессионное тестирование

          Тестирование приложения в целом на предмет модификации любого модуля или функциональности называется регрессионным тестированием. Сложно охватить всю систему регрессионным тестированием, поэтому для этих типов тестирования обычно используются инструменты автоматического тестирования.

          # 35) Тестирование на основе рисков (RBT)

          При тестировании на основе рисков функциональные возможности или требования проверяются на основе их приоритета. Тестирование на основе рисков включает в себя тестирование критически важных функций, которые оказывают наибольшее влияние на бизнес и в которых вероятность отказа очень высока.

          Приоритетное решение основывается на потребностях бизнеса, поэтому, как только приоритет установлен для всех функций, сначала выполняются функции с высоким приоритетом или тестовые примеры, а затем функции со средним и затем низким приоритетом.

          Функциональность с низким приоритетом может быть протестирована или не протестирована в зависимости от доступного времени.

          Тестирование на основе рисков проводится, если для тестирования всего программного обеспечения недостаточно времени, и программное обеспечение необходимо внедрять вовремя без каких-либо задержек.Такой подход сопровождается только обсуждением и одобрением клиента и высшего руководства организации.

          # 36) Проверка здравомыслия

          Sanity Testing проводится, чтобы определить, достаточно ли хорошо работает новая версия программного обеспечения, чтобы принять ее для серьезного тестирования или нет. Если приложение дает сбой при первоначальном использовании, значит, система недостаточно стабильна для дальнейшего тестирования. Следовательно, для его исправления назначается сборка или приложение.

          # 37) Тестирование безопасности

          Это вид тестирования, проводимый специальной командой тестировщиков.Система может быть взломана любым способом.

          Security Testing проводится для проверки защиты программного обеспечения, приложения или веб-сайта от внутренних и внешних угроз. Это тестирование включает в себя, насколько программное обеспечение защищено от вредоносных программ и вирусов, а также насколько безопасны и надежны процессы авторизации и аутентификации.

          Он также проверяет, как программное обеспечение ведет себя в случае любых хакерских атак и вредоносных программ, и как поддерживается программное обеспечение для защиты данных после такой хакерской атаки.

          # 38) Дымовые испытания

          Всякий раз, когда команда разработчиков предоставляет новую сборку, группа тестирования программного обеспечения проверяет сборку и гарантирует отсутствие серьезных проблем.

          Команда тестирования гарантирует, что сборка будет стабильной, и будет проведен детальный уровень тестирования. Smoke Testing проверяет, что в сборке не существует дефекта, показывающего стопор, что помешает команде тестирования подробно протестировать приложение.

          Если тестировщики обнаруживают, что основная критическая функциональность нарушена на самом начальном этапе, группа тестирования может отклонить сборку и сообщить об этом группе разработчиков.Дымовое тестирование проводится на детальном уровне любого функционального или регрессионного тестирования.

          # 39) Статические испытания

          Статическое тестирование - это тип тестирования, который выполняется без какого-либо кода. Выполнение документации выполняется на этапе тестирования.

          Он включает в себя обзоры, пошаговое руководство и проверку результатов проекта. Статическое тестирование не выполняет код вместо синтаксиса кода, проверяются соглашения об именах.

          Статическое тестирование также применимо для тестовых случаев, плана тестирования, проектной документации.Команда тестирования должна выполнять статическое тестирование, поскольку дефекты, выявленные во время этого типа тестирования, экономически эффективны с точки зрения проекта.

          # 40) Стресс-тестирование

          Это тестирование проводится, когда система подвергается нагрузке, превышающей ее спецификации, чтобы проверить, как и когда она выходит из строя. Это выполняется при большой нагрузке, такой как вывод большого числа за пределы емкости хранилища, сложные запросы к базе данных, постоянный ввод в систему или загрузка базы данных.

          # 41) Тестирование системы

          В соответствии с методом тестирования системы вся система тестируется в соответствии с требованиями.Это тестирование типа «черный ящик», основанное на общих технических требованиях и охватывающее все комбинированные части системы.

          # 42) Модульное тестирование

          Тестирование отдельного программного компонента или модуля называется модульным тестированием. Обычно это делается программистом, а не тестировщиками, поскольку для этого требуются подробные знания внутренней структуры программы и кода. Также может потребоваться разработка модулей тестовых драйверов или тестовых жгутов.

          # 43) Юзабилити-тестирование

          При тестировании удобства использования выполняется проверка удобства использования.Поток приложения проверяется, чтобы узнать, может ли новый пользователь легко понять приложение или нет. Соответствующая справка документируется, если пользователь застрял в какой-либо точке. В основном в этом тесте проверяется системная навигация.

          # 44) Тестирование уязвимости

          Тестирование, которое включает выявление слабых мест в программном обеспечении, оборудовании и сети, известно как тестирование уязвимостей. Вредоносные программы, хакер может взять под контроль систему, если она уязвима для такого рода атак, вирусов и червей.

          Таким образом, перед производством необходимо проверить, проходят ли эти системы тестирование на уязвимость. Он может выявить критические дефекты, изъяны в безопасности.

          # 45) Объемные испытания

          Volume Testing - это тип нефункционального тестирования, выполняемого группой тестирования производительности.

          Программное обеспечение или приложение обрабатывает огромный объем данных, и Volume Testing проверяет поведение системы и время отклика приложения, когда система обнаруживает такой большой объем данных.Такой большой объем данных может повлиять на производительность системы и скорость обработки.

          # 46) Тестирование белого ящика

          White Box Testing основан на знании внутренней логики кода приложения.

          Это также известно как Тестирование стеклянных ящиков. Для выполнения этого типа тестирования необходимо знать, как работает внутреннее программное обеспечение и код. Эти тесты основаны на покрытии операторов кода, ветвей, путей, условий и т. Д.

          Заключение

          Вышеупомянутые типы тестирования программного обеспечения являются лишь частью тестирования.Однако до сих пор существует список из более чем 100+ типов тестирования, но не все типы тестирования используются во всех типах проектов. Итак, я рассмотрел некоторые общие типы тестирования программного обеспечения, которые в основном используются в жизненном цикле тестирования.

          Кроме того, в разных организациях используются альтернативные определения или процессы, но основная концепция везде одинакова. Эти типы тестирования, процессы и методы их реализации продолжают меняться по мере изменения проекта, требований и содержания.

          Как найти нули функции с помощью TI-84 Plus

          1. Education
          2. Графические калькуляторы
          3. Как найти нули функции с помощью TI-84 Plus

          Джефф МакКалла, CC Edwards

          Вы можете использовать свой калькулятор TI-84 Plus, чтобы найти нули функции. нулей функции y = f ( x ) являются решениями уравнения f ( x ) = 0.Поскольку y = 0 в этих решениях, эти нули (решения) на самом деле являются просто координатами x точек пересечения x графика y = f ( x ). (Пересечение x - это точка, в которой график пересекает или касается оси x .)

          Чтобы найти нуль функции, выполните следующие действия:

          1. Постройте график функции в окне просмотра, которое содержит нули функции.

            Чтобы получить окно просмотра, содержащее ноль функции, этот ноль должен находиться между Xmin, и Xmax , а на графике должен быть виден интервал x в этом нуле.

          2. Нажмите [2nd] [TRACE], чтобы войти в меню расчетов.

          3. Нажмите [2], чтобы выбрать опцию нуля.

          4. При необходимости несколько раз нажмите клавиши со стрелками вверх и вниз, пока соответствующая функция не появится в рамке в верхней части экрана.

          5. Установите левую границу нуля, который вы хотите найти.

            Для этого используйте

            , чтобы поместить курсор на график немного левее нуля, а затем нажмите [ENTER]. Или вы можете ввести число и нажать [ENTER], чтобы установить левую границу.

            На TI-84 Plus C на экране появляется левая вертикальная линия (как показано пунктирной линией с небольшим треугольным индикатором на первом экране).

          6. Установите правую границу нуля.

            Для этого используйте

            , чтобы поместить курсор на график немного правее нуля, а затем нажмите [ENTER]. Или вы можете ввести число и нажать e, чтобы установить правильную границу.

            На TI-84 Plus C на экране появляется пунктирная линия справа с небольшим треугольным индикатором, как показано на втором экране.

          7. Скажите калькулятору, где, по вашему мнению, находится ноль.

            Это предположение необходимо, потому что калькулятор использует числовую программу для нахождения нуля.Подпрограмма - это итеративный процесс, для запуска которого требуется семя (предположение). Чем ближе семя к нулю, тем быстрее процедура находит ноль. Для этого используйте

            , чтобы поместить курсор на график как можно ближе к нулю, а затем нажмите [ENTER]. Значение нуля отображается в рамке в нижней части экрана, как показано на третьем экране.

          Калькулятор использует научную нотацию для обозначения действительно больших или маленьких чисел.Например, –0,00000001 отображается на калькуляторе как –1E – 8, а 0,000000005 отображается как 5E – 8.

          Об авторе книги

          Джефф МакКалла - учитель математики в епископальной школе Святой Марии в Мемфисе, штат Теннесси. Он стал соучредителем группы TI-Nspire SuperUser и получил президентскую награду за выдающиеся достижения в области преподавания естественных наук и математики. C.C. Эдвардс - педагог, который провел множество семинаров по использованию калькуляторов TI.

          .
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *