Как усиливает транзистор: Почему биполярный транзистор может усиливать сигналы

Содержание

Почему биполярный транзистор может усиливать сигналы

 

Итак, мы уже знаем, что усиление электрических сигналов возможно в приборах с управляемыми потоками электрических зарядов. Однако сама по себе данная фраза ничего не значит. Возникает естественный вопрос: как, имея управляемый поток зарядов и подавая на вход слабый сигнал, на выходе прибора получить сильный сигнал?

Для начала, видимо, следует разобраться в том, что же такое усиление электрических сигналов. Предположим, что мы имеем источник электрического сигнала, который при определенном сопротивлении нагрузки может обеспечить некоторые ток и напряжение сигнала на ней. Если нас не удовлетворяет напряжение на нагрузке, то, используя простейшие пассивные элементы (например, трансформатор), мы можем легко поднять его до необходимого уровня. Расплатой за это будет падение сигнального тока. И наоборот, если мы увеличим ток — снизится напряжение. В любом случае полезная мощность сигнала \(P_C = U_С I_С\) , передаваемая в нагрузку, при добавлении любых пассивных компонентов в схему может только снижаться.

Для увеличения этой мощности нужны так называемые активные компоненты — усилители. Именно они позволяют из слабых входных воздействий получать мощные сигналы на выходе устройства.

Что же необходимо для работы усилительного устройства? Рассмотрим простой пример. Водитель автомобиля давит на педаль газа, и чем большее усилие он прикладывает к маленькой педали, тем быстрее едет большой и тяжелый автомобиль. Однако всем известно, что автомобиль двигает не слабый водитель, а мощный двигатель. Т.е. педаль — это лишь средство воздействия на двигатель, который и выполняет всю работу. На таком же принципе основано действие и усилителей электрических сигналов. В них создается отдельный мощный сигнал, который и попадает на выход усилителя, а слабый входной сигнал лишь воздействует на этот мощный сигнал, заставляя его изменяться по тому же закону.

Как уже говорилось, в полупроводниках могут существовать потоки электрических зарядов. Если такой поток протекает от одного электрода полупроводникового прибора к другому, то между этими двумя электродами возникает электрический ток, абсолютная величина которого пропорциональна мощности потока (количеству перемещаемых за единицу времени зарядов). Очевидно, что при определенных условиях с помощью мощного внешнего источника питания мы можем создавать в полупроводниковых структурах самые разнообразные потоки зарядов. Вопрос, однако, заключается в том, как обеспечить воздействие на эти потоки слабого сигнала, который мы хотим усилить. Вернемся теперь к рассмотрению биполярного транзистора.

На рис. 1.2 показана схема, в которой на выводы эмиттера и коллектора транзистора \(n\)-\(p\)-\(n\)-типа подано достаточно большое напряжение от внешнего мощного источника питания плюсом к коллектору и минусом к эмиттеру. Если бы между эмиттерной и коллекторной \(n\)-областями транзистора не было тонкой базовой прослойки с проводимостью \(p\)-типа, то очевидно, что в полупроводнике возник бы мощный поток электронов от эмиттера к коллектору.

 

Рис. 1.2. Схема подачи напряжений на биполярный транзистор n-p-n-типа для обеспечения режима усиления

 

Однако на практике даже весьма тонкой базовой прослойки оказывается достаточно, чтобы предотвратить это явление. Все изменяется, если мы приложим к базе транзистора некоторое незначительное по величине и положительное относительно эмиттера напряжение (рис. 1.2). При этом эмиттерный p-n-переход транзистора оказывается под напряжением, соответствующим его проводящему состоянию, и в \(p\)-\(n\)-структуре эмиттер—база образуется поток электронов в том же направлении, в котором он мог бы возникнуть при отсутствии базовой области. Электроны, достигая базовой области, по логике должны уходить в базовый электрод, обеспечивая прохождение тока в цепи база—эмиттер транзистора, но на практике происходит другое. Подгоняемые большим напряжением, приложенным между коллектором и эмиттером, электроны быстро пролетают через узкую базовую область и уходят к коллекторному электроду, т.е. возникает тот самый мощный поток зарядов между эмиттером и коллектором, который мы не могли получить ранее. Только крайне незначительная часть электронов попадает в базовый электрод. Таким образом, мы имеем слабый ток в цепи эмиттер—база и сильный ток в цепи эмиттер—коллектор (напомним, что направление электрического тока считается противоположным направлению движения отрицательных зарядов, в нашем случае — электронов).

Повышая напряжение на базе транзистора, мы будем наращивать мощность потока электронов, при этом токи в цепях будут расти соответственно.

Итак, оказывается, что в биполярном транзисторе можно создать сильный электрический ток в цепи «коллектор — эмиттер — внешний мощный источник питания» при достаточно слабом токе в цепи «база — эмиттер — маломощный источник сигнала». Причем данное слабое воздействие на базу оказывает управляющее действие на ток в коллекторно-эмиттерной цепи. Если далее в коллекторную или эмиттерную цепь транзистора (рис. 1.2) включить некоторое сопротивление (нагрузку), то окажется, что ток и напряжение на нем повторяют форму входного сигнала на базе транзистора, но мощность, подаваемая на него, гораздо выше мощности входного сигнала, т.е. происходит усиление.

Мы описали работу биполярного транзистора \(n\)-\(p\)-\(n\)-типа. Для приборов \(p\)-\(n\)-\(p\)-типа все выглядит совершенно аналогично. Только здесь мы должны рассматривать не потоки электронов, а потоки положительных зарядов — дырок.

При этом полярности всех внешних напряжений меняются на обратные. Других отличий нет.

 

 

< Предыдущая   Следующая >

Усиление сигналов с помощью транзистора

Усиление с помощью транзистора. На рис.7.3 изображена схема усилительного каскада с транзистором типа n-p-n. Принято данную схему называть схемой с общим эмиттером, так как эмиттер является общей точкой для входа и выхода схемы.

Входное напряжение UВХ, которое нужно усилить, подается от источника колебаний на участок база – эмиттер. На базу подано также положительное смещение от источника Е1, являющееся прямым напряжением для эмиттерного перехода. При этом в цепи базы протекает некоторый ток. Цепь коллектора питается от источника Е2. Для получения усиленного выходного напряжения в эту цепь включена нагрузка RН. 

Рис.7.3. Схема включения транзистора в усилительный каскад (схема с общим эмиттером) 

 

Работа усилительного каскада с транзистором происходит следующим образом. Изобразим эквивалентную схему усилительного каскада (рис.7.4). 

 

Рис.7.4. Эквивалентная схема усилительного каскада 

Напряжение источника Е2 делится между сопротивлением нагрузки RН и сопротивлением транзистора rтр постоянному току коллектора. Это сопротивление приблизительно равно сопротивлению коллекторного перехода rК0 для постоянного тока. Напряжение на коллекторе транзистора определяется из выражения:

UК = Е2 – IКRН.   Если во входную цепь включается источник колебаний, то при изменении его напряжения меняется ток эмиттера, а, следовательно, сопротивление коллекторного перехода rК0. Тогда напряжение источника Е2 будет перераспределяться между RН и rтр. При этом переменное напряжение на резисторе нагрузки может быть получено в десятки раз большим, чем входное переменное напряжение. Изменения тока коллектора почти равны изменениям тока эмиттера и во много раз больше изменений тока базы. Поэтому в рассматриваемой схеме получается значительное усиление тока, напряжения и мощности.

Временные диаграммы напряжений и токов транзистора изображены на рис.7.5. Следует обратить внимание, что напряжение UКЭ инвертировано по фазе относительно входного сигнала. Этот свойство схемы вытекает из выражения (7.5).

 

Транзистор

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

На этом занятии

Школы начинающего радиолюбителя мы продолжим изучение полупроводников. На прошлом занятии мы рассматривали диоды, а на этом занятии рассмотрим  более сложный полупроводниковый элемент – транзисторы.

Транзистор является более сложной полупроводниковой структурой, чем диод. Он состоит из трех слоев кремния (бывают еще и германиевые транзисторы) с разной проводимостью. Это могут быть структуры типа n-p-n или p-n-p. Функционирование транзисторов, также как и диодов, основывается на свойствах p-n переходов.

Центральный, или средний слой, называют базой (Б), а два других соответственно – эмиттер (Э) и коллектор (К).  Следует отметить, что существенной разницы между двумя типами транзисторов нет, и многие схемы могут быть собраны с тем или другим типом, при соблюдении соответствующей полярности источника питания. На рисунке ниже приведено схемное изображение транзисторов, транзистор p-n-p отличается от транзистора n-p-n направлением стрелки эмиттера:

Выделяют два основных типа транзисторов: биполярные и униполярные, которые различаются по конструктивным особенностям. В рамках каждого типа существует много разновидностей. Главное различие этих двух типов транзисторов заключается в том, что управление процессами, происходящими в ходе работы прибора, в биполярном транзисторе осуществляется входным током, а в униполярном транзисторе – входным напряжением.

Биполярные транзисторы, как уже говорилось выше, представляют собой слоенный пирог из трех слоев. В упрощенном виде транзистор можно представить как два встречно включенных диодов:

(при этом, следует отметить, что переход база – эмиттер представляет собой обычный стабилитрон, напряжение стабилизации которого 7…10 вольт). Исправность транзистора можно проверить также как и исправность диода, обычным омметром, измеряя сопротивление между его выводами. Переходы, аналогичные имеющимся в диоде, существуют в транзисторе между базой и коллектором, а также между базой и эмиттером. На практике такой способ для проверки транзисторов используется очень часто. Если омметр подключить между коллекторным и эмиттерным выводами, прибор покажет разрыв цепи (при исправном транзисторе), что естественно так как диоды включены встречно. А это означает, что при любой полярности приложенного напряжения один из диодов включен в прямом направлении, а второй в обратном, поэтому ток проходить не будет.

Объединение двух пар переходов приводит к проявлению чрезвычайно интересного свойства, именуемого транзисторным эффектом. Если к транзистору между коллектором и эмиттером приложить напряжение, тока практически не будет (о чем и говорилось чуть выше). Если же произвести подключение в соответствии со схемой (как на рисунке ниже), где на базу через ограничивающее сопротивление (чтобы не повредить транзистор) подается напряжение, то через коллектор будет проходить ток более сильный чем ток базы. При повышении тока базы ток коллектора тоже будет увеличиваться.

С помощью измерительного прибора можно определить соотношение токов базы, коллектора и эмиттера. Это можно проверить простым способом. Если сохранить напряжение питания, к примеру на уровне 4,5 В, изменив значение сопротивления в цепи базы с R до R/2, ток базы удвоится, пропорционально увеличится и ток коллектора, к примеру:

U=4,5 В; сопротивление =RU=4,5 В; сопротивление =R/2
Iб=1 мАIб=2 мА
Iэ=100 мАIэ=200 мА
Iк=99 мАIк=198 мА

Следовательно, при любом напряжение на сопротивление R, ток коллектора будет в 99 раз больше тока базы, то есть транзистор имеет коэффициент усиления по току равный 99. Другими словами, транзистор усиливает ток базы в 99 раз. Этот коэффициент обозначают буквой ?. Коэффициент усиления равен отношению тока коллектора к току базы:

? = Iк/Iб

На базу транзистора можно подать и переменное напряжение. Но, необходимо, чтобы транзистор работал в линейном режиме. Для нормального функционирования в линейном режиме транзистору следует подать на базу постоянное напряжение смещения и подвести переменное напряжение, которое он будет усиливать. Таким образом транзисторы усиливают слабые напряжения, поступающие к примеру с микрофона, до уровня, который способен привести в действие громкоговоритель. Если коэффициент усиления не достаточен, можно использовать несколько транзисторов или их последовательных каскадов. Чтобы при соединении каскадов не нарушать режимов работы каждого из них по постоянному току ( при которых обеспечивается линейность), используют разделительные конденсаторы. Биполярные транзисторы обладают электрическими характеристиками, обеспечивающими им определенные преимущества по сравнению с другими усилительными компонентами.

Как мы уже знаем, существуют еще (кроме биполярных) и униполярные транзисторы. Коротко рассмотрим два их них – полевые и однопереходные транзисторы. Как и биполярные они бывают двух типов и имеют по три вывода:

Электродами полевых транзисторов являются: затвор – З, сток – С, соответствующий коллектору и исток – И, отождествляемый с эмиттером. Полевые транзисторы с n- и p- каналом различаются по направлению стрелки затвора. Однопереходные транзисторы, которые иногда называют двухбазовыми диодами, в основном используются в схемах генераторов импульсных периодических сигналов.

Имеется три фундаментальных схемы включения транзисторов в усилительном каскаде:

?

с общим эмиттером (а)

?

с общим коллектором (б)

?

с общей базой (в)

Биполярный транзистор, включенный по схеме с общим эмиттером, в зависимости от выходного сопротивления источника питания R1 и сопротивления нагрузки Rн усиливает входной сигнал и по напряжению, и по току. Коэффициент усиления биполярного транзистора обозначается как h31э (читается: аш-два-один-э, где э – схема с общим эмиттером), и у каждого транзистора он разный. Величина коэффициента h31э (его полное название – статический коэффициент передачи тока базы h31э) зависит только от толщины базы транзистора (ее изменить нельзя) и от напряжения между коллектором и эмиттером, поэтому при небольшом напряжении (менее 20 В) его коэффициент передачи тока при любом токе коллектора практически неизменен и незначительно увеличивается при увеличении напряжения на коллекторе.

Коэффициент усиления по току – Кус.i и коэффициент усиления по напряжению – Кус.u биполярного транзистора, включенного по схеме с общим эмиттером, зависит от отношения сопротивления нагрузки (на схеме обозначено как Rн) и источника сигнала (на схеме обозначено как R1). Если сопротивление источника сигнала в h31э раза меньше сопротивления нагрузки, то коэффициент усиления по напряжению чуть меньше единицы (0,95…0,99), а коэффициент усиления по току равен h31э. Когда сопротивление источника сигнала более чем в h31э раза меньше сопротивления нагрузки, то коэффициент усиления по току остается неизменным (равным h31э), а коэффициент усиления по напряжению уменьшается. Если же, наоборот, входное сопротивление уменьшить, то коэффициент усиления по напряжению становится больше единицы, а коэффициент усиления по току, при ограничении протекающего через переход база-эмиттер транзистора тока, не изменяется. Схема с общим эмиттером – единственная схема включения биполярного транзистора, которая требует ограничения входного (управляющего) тока. Можно сделать несколько выводов: – базовый ток транзистора нужно ограничивать, иначе сгорит или транзистор, или управляющая им схема; – с помощью транзистора, включенного по схеме ОЭ, очень легко управлять высоковольтной нагрузкой низковольтным источником сигнала. Через базовый, а следовательно и коллекторный переходы протекает значительный ток при напряжении база-эмиттер всего 0,8…1,5 В. Если амплитуда (напряжение) больше этого значения – нужно поставить между базой транзистора и выходом управляющей схемы токоограничивающий резистор (R1). Рассчитать его сопротивление можно по формулам:

Ir1=Irн/h31э            R1=Uупр/Ir1    где:

Irн – ток через нагрузку, А; Uупр – напряжение источника сигнала, В; R1 – сопротивление резистора, Ом.

Еще одна особенность схемы с ОЭ – падение напряжения на переходе коллектор-эмиттер транзистора можно практически уменьшить до нуля. Но для этого надо значительно увеличивать базовый ток, что не очень выгодно. Поэтому такой режим работы транзисторов используют только в импульсных, цифровых схемах.

Транзистор, работающий в схеме усилителя аналогового сигнала, должен обеспечивать примерно одинаковое усиление сигналов с разной амплитудой относительно некоторого “среднего” напряжения. Для этого его нужно немножко “приоткрыть”, постаравшись не “переборщить”. Как видно из рисунка ниже (левый):

ток коллектора и падение напряжения на транзисторе при плавном увеличении тока базы вначале изменяются почти линейно, и лишь потом, с наступлением насыщения транзистора, прижимаются к осям графика. Нас интересуют только прямые части линий (до насыщения) – очевидно, что они символизируют линейное усиление сигнала, то есть, при изменении управляющего тока в несколько раз во столько же раз изменится и ток коллектора (напряжение в нагрузке).

Форма аналогового сигнала показана на рисунке выше (справа). Как видно из графика, амплитуда сигнала постоянно пульсирует относительно некоего среднего напряжения Uср, причем она может как увеличиваться, так и уменьшаться. Но биполярный транзистор реагирует только на увеличение входного напряжения (вернее тока). Вывод: нужно сделать так, чтобы транзистор даже при минимальной амплитуде входного сигнала был немножко приоткрыт. При средней амплитуде Uср он откроется чуть сильнее, а при максимальной Umax откроется максимально. Но при этом он не должен входить в режим насыщения (см.рис. выше) – в этом режиме выходной ток перестает линейно зависеть от входного, в следствии чего происходит сильное искажение сигнала.

Обратимся снова к форме аналогового сигнала. Так как и максимальная и минимальная амплитуды входного сигнала относительно средней примерно одинаковы по величине (и противоположны по знаку), то нам нужно подать на базу транзистора такой постоянный ток (ток смещения – Iсм), чтобы при “среднем” напряжении на входе транзистор был открыт ровно наполовину. Тогда при уменьшении входного тока транзистор будет закрываться и ток коллектора будет уменьшатся, а при увеличении входного тока он будет открываться еще сильнее.



Как усиливает биполярный транзистор. Мгту «мами» — кафедра «автоматика и процессы управления

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, «мысленный эксперимент» фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей «мысленных экспериментов» является обман слушателя или читателя путем замены настоящего физического эксперимента его «куклой» — фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, «мысленными экспериментами» привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие «фантики» от настоящих ценностей.

Релятивисты и позитивисты утверждают, что «мысленный эксперимент» весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: «Если факт не соответствует теории — измените факт» (В другом варианте » — Факт не соответствует теории? — Тем хуже для факта»).

Максимально, на что может претендовать «мысленный эксперимент» — это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК. Для транзистора n-р-n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме об

IЭ = f(UЭБ) при UКБ = const (а).

IК = f(UКБ) при IЭ = const (б).


Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость Iк от UКБ; 2 – слабая зависимость Iк от UКБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения UКБ.

Характеристики транзистора, включённого по схеме оэ:

Входной характеристикой является зависимость:

IБ = f(UБЭ) при UКЭ = const (б).

Выходной характеристикой является зависимость:

IК = f(UКЭ) при IБ = const (а).

Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р-n- перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р-n- перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы — усиление, генерация.

Усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Ек, управляемый элемент – транзистор VT и резистор Rк. Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор Ср является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Ек.


Резистор RБ, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя IБ = Ек/RБ. С помощью резистора Rк создается выходное напряжение. Rк выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Ек = Uкэ + IкRк,

сумма падения напряжения на резисторе Rк и напряжения коллектор-эмиттер Uкэ транзистора всегда равна постоянной величине – ЭДС источника питания Ек.

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Ек в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

5)Что такое полевой транзистор? Какие виды бывают?

Полевой транзистор (ПТ) – полупроводниковый прибор, в котором ре-

гулирование тока осуществляется изменением проводимости проводящего

канала с помощью поперечного электрического поля. В отличие от биполяр-

ного ток полевого транзистора обусловлен потоком основных носителей.

Электроды полевого транзистора называют истоком (И), стоком (С) и

затвором (З). Управляющее напряжение прикладывается между затвором и ис-

током. От напряжения между затвором и истоком зависит проводимость кана-

ла, следовательно, и величина тока. Таким образом, полевой транзистор можно

рассматривать как источник тока, управляемый напряжением затвор-исток. Ес-

ли амплитуда изменения управляющего сигнала достаточно велика, сопротив-

ление канала может изменяться в очень больших пределах. В этом случае поле-

вой транзистор можно использовать в качестве электронного ключа.

По конструкции полевые транзисторы можно разбить на две группы:

С управляющим p–n-переходом;

С металлическим затвором, изолированным от канала диэлектриком.

Транзисторы второго вида называют МДП-транзисторами (металл –

диэлектрик – полупроводник). В большинстве случаев диэлектриком является

двуокись кремния SiO2, поэтому обычно используется название МОП-

транзисторы (металл – окисел – полупроводник). В современных МОП-

транзисторах для изготовления затвора часто используется поликристаллический

кремний. Однако название МОП-транзистор используют и для таких приборов.

Проводимость канала полевого транзистора может быть электронной

или дырочной. Если канал имеет электронную проводимость, то транзистор

называют n-канальным. Транзисторы с каналами, имеющими дырочную про-

водимость, называют p-канальными. В МОП- транзисторах канал может быть

обеднён носителями или обогащён ими. Таким образом, понятие «полевой

транзистор» объединяет шесть различных видов полупроводниковых прибо-

МОП-транзисторы находят широкое применение в современной электро-

нике. В ряде областей, в том числе в цифровой электронике, они почти полно-

стью вытеснили биполярные транзисторы. Это объясняется следующими при-229

чинами. Во-первых, полевые транзисторы имеют высокое входное сопротивле-

ние и обеспечивают малое потребление энергии. Во-вторых, МОП-транзисторы

занимают на кристалле интегральной схемы значительно меньшую площадь,

чем биполярные. Поэтому плотность компоновки элементов в МОП-

интегральных схемах значительно выше. В-третьих, технологии производства

интегральных схем на МОП-транзисторах требуют меньшего числа операций,

чем технологии изготовления ИС на биполярных транзисторах.

6)Что такое стабилитрон? Объясните принцип его работы. Нарисуйте его вольт-амперные характеристики.

Стабилитронами называют полупроводниковые диоды, использующие особенность обратной ветви вольтамперной характеристики на участке пробоя изменяться в широком диапазоне изменения токов при сравнительно небольшом отклонении напряжения. Это свойство широко используется при создании специальных устройств – стабилизаторов напряжения.

Напряжение пробоя стабилитрона зависит от ширины р-n -перехода, которая определяется удельным сопротивлением материала полупроводника. Поэтому существует определенная зависимость пробивного напряжения (т. е. напряжения стабилизации) от концентрации примесей.

Низковольтные стабилитроны выполняют на основе сильно легированного кремния. Ширина р-n -перехода в этом случае получается очень маленькой, а напряженность электрического поля потенциального барьера – очень большой, что создает условия для возникновения туннельного пробоя. При большой ширине р-n -перехода пробой носит лавинный характер.

Вольт-амперная характеристика стабилитрона представлена на рис. 6.1 Рабочий ток стабилитрона (его обратный ток) не должен превышать максимально допустимого значения во избежание перегрева полупроводниковой структуры и выхода его из строя.


Рис. 6.1. Конструкция корпуса (а), вольт-амперная характеристика и условное графическое обозначение стабилитрона

Существенной особенностью стабилитрона является зависимость его напряжения стабилизации от температуры. В сильно легированных полупроводниках вероятность туннельного пробоя с увеличением температуры возрастает. Поэтому напряжение стабилизации у таких стабилитронов при нагревании уменьшается, т. е. они имеют отрицательный температурный коэффициент напряжения стабилизации (ТКН)

.

В слабо легированных полупроводниках при увеличении температуры уменьшается длина свободного пробега носителей, что приводит к увеличению порогового значения напряжения, при котором начинается лавинный пробой. Такие стабилитроны имеют положительный ТКН. (рис. 6.2).


Рис. 6.2. Температурная зависимость вольт-амперной характеристика стабилитрона

Для устранения этого недостатка и создания термокомпенсированных стабилитронов последовательно в цепь стабилитрона включают обычные диоды в прямом направлении. Как известно, у обычных диодов в прямом направлении падение напряжения на р-n -переходе при нагревании уменьшается. И если последовательно со стабилитроном (рис. 6.3) включить диодов в прямом направлении, где , (– изменение прямого падения напряжения на диоде при нагревании отдо), то можно почти полностью компенсировать температурную погрешность стабилитрона.


Рис. 6.3. Термокомпенсация стабилитрона

Основные параметры стабилитронов:

Предельные параметры стабилитронов:

У которых не меньше чем три вывода. В определенных ситуациях они способны усиливать мощность, генерировать колебания или преобразовывать сигнал. Существует очень много самых разных конструкций этих приборов, и среди них — pnp-транзистор.

Классифицируют транзисторы по полупроводниковому материалу. Они бывают из кремния, германия и др.

Если у транзистора из трех областей две имеют дырочную проводимость, он называется «транзистор с прямой проводимостью», или «транзистор с переходом pnp». Устройство, у которого две области имеют электронную проводимость, называют транзистором с обратной проводимостью, или с переходом npn. Работают оба транзистора одинаково, а разница заключается исключительно в полярности.

Где применяется pnp-транзистор?

В зависимости от того, какие характеристики у транзитора, он может использоваться для самых разных целей. Как уже было сказано, транзистор применяют для генерирования, преобразования и усиления электрических сигналов. За счет того, что входное напряжение или ток изменяются, осуществляется управление током входной цепи. Небольшие изменения параметров на входе приводят к еще большему изменению тока и напряжения на выходе. Такое свойство усиления применяется в аналоговой технике (радио, связь и т. д.).

В наше время для аналоговой техники применяется А вот другая, очень важная отрасль — цифровая техника — почти отказалась от него и использует только полевой. появился намного раньше полевого, потому его в обиходе называют просто транзистором.

Исполнение и параметры транзисторов

Транзисторы конструктивно изготавливаются в пластмассовых и металлических корпусах. Учитывая различное назначение транзисторов, подбираются эти устройства по определенным параметрам. Например, если нужен транзистор для усиления высоких частот, он должен обладать высокой частотой усиления сигнала. А если же транзистор pnp используется в у него должен быть высокий рабочий ток коллектора.

Справочная литература содержит основные характеристики транзисторов:

  • Ik — рабочий (максимально допустимый) коллекторный ток;
  • h31э — коэффициент усиления;
  • Fgr — максимальная частота усиления;
  • Pk — рассеиваемая мощность коллектора.

Фототранзисторы

Фототранзистор — это устройство, чувствительное к который его облучает. В герметичном корпусе такого транзистора проделано окно, к примеру, из прозрачной пластмассы или стекла. Излучение через него попадает в зону базы фототранзистора. Если база облучается, то носители заряда генерируются. Фототранзистор откроется, когда носители заряда перейдут в коллекторный переход, и чем больше будет освещена база, тем ток коллектора станет существеннее.

Без транзисторов нельзя представить современную электронику. Практически ни один серьезный прибор не обходится без них. За годы применения и совершенствования транзисторы существенно изменились, но принцип их работы остается тем же.

Итак, третья и заключительная часть повествования о биполярных транзисторах на нашем сайте =) Сегодня мы поговорим об использовании этих замечательных устройств в качестве усилителей, рассмотрим возможные схемы включения биполярного транзистора и их основные преимущества и недостатки. Приступаем!

Эта схема очень хороша при использовании сигналов высоких частот. В принципе для этого такое включение транзистора и используется в первую очередь. Очень большими минусами являются малое входное сопротивление и, конечно же, отсутствие усиления по току. Смотрите сами, на входе у нас ток эмиттера , на выходе .

То есть ток эмиттера больше тока коллектора на небольшую величину тока базы. А это значит, что усиление по току не просто отсутствует, более того, ток на выходе немного меньше тока на входе. Хотя, с другой стороны, эта схема имеет достаточно большой коэффициент передачи по напряжению) Вот такие вот достоинства и недостатки, продолжаем….

Схема включения биполярного транзистора с общим коллектором

Вот так вот выглядит схема включения биполярного транзистора с общим коллектором. Ничего не напоминает?) Если взглянуть на схему немного под другим углом, то мы узнаем тут нашего старого друга – эмиттерный повторитель. Про него была чуть ли не целая статья (), так что все, что касается этой схемы мы уже там рассмотрели. А нас тем временем ждет наиболее часто используемая схема – с общим эмиттером.

Схема включения биполярного транзистора с общим эмиттером.

Эта схема заслужила популярность своими усилительными свойствами. Из всех схем она дает наибольшее усиление по току и по напряжению, соответственно, велико и увеличение сигнала по мощности. Недостатком схемы является то, что усилительные свойства сильно подвержены влиянию роста температуры и частоты сигнала.

Со всеми схемами познакомились, теперь рассмотрим подробнее последнюю (но не последнюю по значимости) схему усилителя на биполярном транзисторе (с общим эмиттером). Для начала, давайте ее немножко по-другому изобразим:

Тут есть один минус – заземленный эмиттер. При таком включении транзистора на выходе присутствуют нелинейные искажения, с которыми, конечно же, нужно бороться. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база. Действительно, в цепи эмиттера ничего «лишнего» нету, все входное напряжение оказывается приложенным именно к переходу база-эмиттер. Чтобы справиться с этим явлением, добавим резистор в цепь эмиттера. Таким образом, мы получим отрицательную обратную связь.

А что же это такое?

Если говорить кратко, то принцип отрицательной обратно й связи заключается в том, что какая то часть выходного напряжения передается на вход и вычитается из входного сигнала. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи.

И тем не менее, отрицательная обратная связь для нас оказывается очень полезной. Давайте разберемся, каким образом она поможет уменьшить влияние входного напряжения на напряжение между базой и эмиттером.

Итак, пусть обратной связи нет, Увеличение входного сигнала на 0.5 В приводит к такому же росту . Тут все понятно 😉 А теперь добавляем обратную связь! И точно также увеличиваем напряжение на входе на 0.5 В. Вслед за этим возрастает , что приводит к росту тока эмиттера. А рост приводит к росту напряжения на резисторе обратной связи. Казалось бы, что в этом такого? Но ведь это напряжение вычитается из входного! Смотрите, что получилось:

Выросло напряжение на входе – увеличился ток эмиттера – увеличилось напряжение на резисторе отрицательной обратной связи – уменьшилось входное напряжение (из-за вычитания ) – уменьшилось напряжение .

То есть отрицательная обратная связь препятствует изменению напряжения база-эмиттер при изменении входного сигнала.

В итоге наша схема усилителя с общим эмиттером пополнилась резистором в цепи эмиттера:

Есть еще одна проблема в нашем усилителе. Если на входе появится отрицательное значение напряжения, то транзистор сразу же закроется (напряжения базы станет меньше напряжения эмиттера и диод база-эмиттер закроется), и на выходе ничего не будет. Это как то не очень хорошо) Поэтому необходимо создать смещение . Сделать это можно при помощи делителя следующим образом:

Получили такую красотищу 😉 Если резисторы и равны, то напряжение на каждом из них будет равно 6В (12В / 2). Таким образом, при отсутствии сигнала на входе потенциал базы будет равен +6В. Если на вход придет отрицательное значение, например, -4В, то потенциал базы будет равен +2В, то есть значение положительное и не мешающее нормальной работе транзистора. Вот как полезно создать смещение в цепи базы)

Чем бы еще улучшить нашу схему…

Пусть мы знаем, какой сигнал будем усиливать, то есть знаем его параметры, в частности частоту. Было бы отлично, если бы на входе ничего, кроме полезного усиливаемого сигнала не было. Как это обеспечить? Конечно, же при помощи фильтра высоких частот) Добавим конденсатор, который в сочетании с резистором смещения образует ФВЧ:


Вот так схема, в которой почти ничего не было, кроме самого транзистора, обросла дополнительными элементами 😉 Пожалуй, на этом и остановимся, скоро будет статья, посвященная практическому расчету усилителя на биполярном транзисторе. В ней мы не только составим принципиальную схему усилителя , но и рассчитаем номиналы всех элементов, а заодно и выберем транзистор, подходящий для наших целей. До скорой встречи! =)

Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.

Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общим эмиттером

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:

  • схема с эмиттерной стабилизацией.

Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена принципиальная схема каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.


Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером

Расчет элементов данной схемы по постоянному току можно посмотреть в статье . Сейчас нас будут интересовать параметры усилительного каскада, собранного по схеме с общим эмиттером. Наиболее важными характеристиками усилительного каскада является его входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.

Входное сопротивление схемы с общим эмиттером

В схеме с общим эмиттером входное сопротивление транзистора R вхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения U б от тока базы I б) приведен на рисунке 4.


Рисунок 4 Входная характеристика кремниевого транзистора

Как видно из этого рисунка, входное сопротивление транзистора R вхОЭ зависит от тока базы I б0 и определяется по следующей формуле:

(1)

Как определить ΔU б0 и ΔI б0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.


Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора

Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.

(2)

где I б — ток базы в рабочей точке;
U бэ — напряжение базы в рабочей точке;
I s — обратный ток перехода эмиттер-база;
— температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.

В этом выражении коэффициентом, нормирующим экспоненту, является ток I s , поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:

(3)

Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:

(4)

Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы r бб» .

Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.


Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером

Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.


Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером

Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы R вых и h 21 ×i вх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.

И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:

(5)

После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).


Рисунок 8 Схема измерения входного сопротивления усилительного каскада

В случае, если сопротивление R и будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление R и при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:

(6)

Выходное сопротивление схемы с общим эмиттером

Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.


Рисунок 9 Выходные характеристики кремниевого транзистора

К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.

Литература:

Вместе со статьей «Схема с общим эмиттером (каскад с общим эмиттером)» читают:


http://сайт/Sxemoteh/ShTrzKask/KollStab/


http://сайт/Sxemoteh/ShTrzKask/EmitStab/

О ТРАНЗИСТОРАХ НА ПАЛЬЦАХ — Наука природы

О транзисторах «на пальцах». Часть 1. Биполярные транзисторы.

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и расчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы.

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn. Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. © Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора:

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения. При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки. При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Итак, c теорией пока закончили.  Едем дальше.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): IБ*β=IK.

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить hFE. Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (IК=β*IБ) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз — напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

И снова вперёд!

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером.

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой.

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(IК+IБ)/IБ=β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Продолжение следует…    МАТЕРИАЛ   http://radiohlam.ru/teory/transistor.htm  

ИНТЕРЕСНО  http://www.junradio.com/index/tranzistory/0-80

нет публикаций

нет публикаций

Видео YouTube

Видео YouTube

Видео YouTube



Глава 28. Усилители . Введение в электронику

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Описать назначение усилителя.

• Перечислить три основных типа транзисторных усилительных цепей.

• Перечислить классы усилителей.

• Описать работу усилителей с непосредственной связью, усилителей звуковой частоты, видеоусилителей, усилителей радиочастоты, усилителей промежуточной частоты и операционных усилителей.

• Нарисовать принципиальные схемы усилителей различных типов.

Усилители — это электронные цепи, используемые для увеличения амплитуды электрического сигнала. Цепь, рассчитанная на преобразование низкого напряжения в высокое, называется усилителем напряжения. Цепь, рассчитанная на преобразование слабого тока в большой по величине, называется усилителем тока.

28-1. ТИПЫ УСИЛИТЕЛЕЙ

Для обеспечения усиления транзистор должен принять входной сигнал и выдать выходной, значительно больший, чем входной.

Входной сигнал управляет током, текущим через транзистор. Этот ток, в свою очередь, управляет напряжением на нагрузке. Транзисторная цепь рассчитана таким образом, чтобы брать напряжение от внешнего источника питания (VCC) и подавать его на резистор нагрузки (RL) в виде выходного напряжения.

Транзистор используется, главным образом, как усилительное устройство. Существует несколько способов включения в цепь транзистора: схема с общей базой, схема с общим эмиттером и схема с общим коллектором. В каждой из этих схем один из выводов транзистора служит общей точкой, а два других являются входом и выходом.

Каждая схема может быть собрана как с р-n-р, так и с n-р-n транзистором. В каждом случае на переход эмиттер-база подается напряжение смещения в прямом направлении, а на переход коллектор-база — в обратном. Каждая схема имеет преимущества и недостатки.

В схеме с общей базой (рис. 28-1) входной сигнал подается в цепь эмиттер-база, а выходной наблюдается в цепи коллектор-база. База является общим элементом для входа и выхода.

Рис. 28-1. Схема усилителя с общей базой.

В схеме с общим эмиттером (рис. 28-2) входной сигнал подается в цепь эмиттер-база, а выходной сигнал снимается с нагрузки в цепи коллектор-эмиттер. Эмиттер является общим для входа и выхода. Этот способ включения транзистора используется наиболее широко.

Рис. 28-2. Схема усилителя с общим эмиттером

Третий тип соединения (рис. 28-3) — это схема с общим коллектором. В этой схеме входной сигнал подается в цепь база-коллектор, а выходной сигнал снимается с цепи эмиттер-коллектор. Здесь коллектор является общим для входа и выхода. Эта схема используется для согласования импедансов.

Рис. 28-3. Схема усилителя с общим коллектором.

В таблице, изображенной на рис. 28-4, приведены входные и выходные сопротивления, а также величина усиления по напряжению, току и мощности для трех схем включения транзистора.

Рис. 28-4. Характеристики усилительных цепей.

На рис. 28-5 показаны фазовые соотношения входного и выходного сигналов для трех схем включения транзистора. Заметим, что схема с общим эмиттером обеспечивает изменение фазы выходного сигнала на 180° по отношению к фазе входного.

Рис. 28-5. Фазовые соотношения между входным и выходным сигналами усилительных цепей.

28-1. Вопросы

1. Нарисуйте схемы трех основных конфигураций транзисторных усилительных цепей.

2. Перечислите характеристики:

а. Цепи с общей базой;

б. Цепи с общим эмиттером;

в. Цепи с общим коллектором.

3. Составьте таблицу, показывающую фазовые соотношения входного и выходного сигналов для трех схем включения транзистора.

4. Составьте таблицу, показывающую входные и выходные сопротивления для трех схем включения транзистора.

5. Составьте таблицу, показывающую усиление по напряжению, току и мощности для трех схем включения транзистора.

28-2. ЦЕПИ СМЕЩЕНИЯ УСИЛИТЕЛЯ

Основными конфигурациями транзисторных усилительных цепей являются схемы с общей базой, с общим эмиттером и с общим коллектором. Для подачи правильного напряжения смещения на n-р-n или р-n-р переходы все они требуют двух источников тока. На переход база-эмиттер должно быть подано смещение в прямом направлении, а на переход база-коллектор — в обратном направлении. Однако оба напряжения смещения могут быть обеспечены с помощью одного источника тока.

Поскольку цепи с общим эмиттером используются наиболее часто, они детально описываются. Те же принципы применимы и к цепям с общей базой и общим коллектором.

На рис. 28-6 изображен транзисторный усилитель с общим эмиттером, использующий один источник питания. Эта же цепь схематически изображена на рис. 28-7.

Рис. 28-6. Усилитель с общим эмиттером и одним источником питания.

Рис. 28-7. Схематическое представление усилителя с общим эмиттером и одним источником питания.

Источник питания обозначен +VCC. Символ заземления является отрицательным выводом источника питания VCC. Один источник питания обеспечивает подачу правильного напряжения смещения для переходов база-эмиттер и база-коллектор. Два резистора (RB и RL) используются для распределения напряжения, обеспечивающего правильную работу транзистора. Резистор RL, сопротивление нагрузки коллектора, соединен последовательно с коллектором. Когда через коллектор течет ток, на резисторе RL появляется падение напряжения. Падение напряжения на резисторе RL и падение напряжения на переходе коллектор-эмиттер транзистора должны в сумме равняться приложенному напряжению.

Резистор RB, соединяющий базу с источником питания, управляет величиной тока базы. Ток базы, текущий через резистор RB, создает на нем падение напряжения, составляющего большую часть напряжения источника питания. Меньшая часть этого напряжения падает на переходе база-эмиттер транзистора, обеспечивая правильное прямое смещение.

Один источник питания может обеспечить необходимые напряжения прямого и обратного смещения. В случае n-р-n транзистора потенциал на базе и коллекторе транзистора должен быть положительным по отношению к эмиттеру.

Следовательно, источник питания может быть связан с базой и коллектором через резисторы RB и RL. Эту цепь часто называют цепью смещения базы, так как ток базы управляется величиной резистора RB и напряжением источника питания. Входной сигнал подключается между базой транзистора и его эмиттером или между выводом входа и землей.

Значение входного сигнала либо складывается с прямым смещением на эмиттерном переходе, либо вычитается из него. Это служит причиной изменения коллекторного тока, что, в свою очередь, приводит к изменению падения напряжения на резисторе RL. Выходной сигнал появляется между выводом выхода и землей.

Цепь, изображенная на рис. 28-6, является нестабильной, так как она не может компенсировать изменения тока смещения при отсутствии сигнала. Изменения температуры приводят к изменению внутреннего сопротивления транзистора, что заставляет изменяться ток смещения и сдвигает рабочую точку транзистора, уменьшая его усиление. Этот процесс называется температурной нестабильностью.

Существует возможность компенсации температурных изменений в схеме транзисторного усилителя посредством организации отрицательной обратной связи в нем. Если часть нежелательного выходного сигнала подать на вход цепи, этот сигнал будет противодействовать изменениям в транзисторе. Такой процесс называется отрицательной обратной связью (рис. 28-8).

Рис. 28-8. Усилитель с общим эмиттером и коллекторной обратной связью.

В цепи, использующей отрицательную обратную связь, базовый резистор RB соединен непосредственно с коллектором транзистора. Если температура увеличивается, то ток коллектора и падение напряжения на резисторе RL тоже увеличиваются. Напряжение коллектор-эмиттер уменьшается, уменьшая также напряжение приложенное, к RB. Это уменьшает ток базы, что служит причиной уменьшения тока коллектора. Таким образом действует коллекторная цепь обратной связи.

На рис. 28-9 показан другой тип обратной связи. Эта цепь похожа на цепь, изображенную на рис. 28-7, за исключением того, что последовательно с выводом эмиттера включен резистор RE. Резисторы RB и RE и переход транзистора эмиттер-база соединены последовательно с источником питания VCC.

Рис. 28-9. Усилитель с общим эмиттером и эмиттерной обратной связью.

Увеличение температуры служит причиной увеличения коллекторного тока. Ток эмиттера также увеличивается, увеличивая падение напряжения на резисторе RE и уменьшая падение напряжения на резисторе RB. Ток базы уменьшается, что уменьшает как ток коллектора, так и ток эмиттера. Поскольку сигнал обратной связи создается на эмиттере транзистора, эта цепь называется цепью эмиттерной обратной связи.

В цепи этого типа происходит уменьшение общего усиления цепи, связанное с тем, что входной сигнал переменного тока появляется как на резисторе RL, так и на резисторе RE и на транзисторе. При подсоединении конденсатора параллельно резистору RE (рис. 28–10), сигнал переменного тока обходит резистор RE, так как сопротивление конденсатора существенно меньше RE. Этот конденсатор часто называют блокировочным конденсатором.

Рис. 28–10. Эмиттерная обратная связь с блокировочным конденсатором.

Блокировочный конденсатор устраняет любые быстрые изменения напряжения на резисторе RE, благодаря тому, что он обладает низким импедансом для переменного тока. Блокировочный конденсатор удерживает напряжение на резисторе RE неизменным, в то же самое время не мешая работе цепи обратной связи, обеспечиваемой RE.

Цепь обратной связи с делителем напряжения обеспечивает большую стабильность транзистора (рис. 28–11). Эта цепь используется наиболее широко. Резистор RB заменяется двумя резисторами, R1 и R2. Эти соединенные последовательно резисторы подключены параллельно источнику питания VСС. Резисторы делят напряжение питания на два напряжения, образуя делитель напряжения.

Рис. 28–11. Усилитель с общим эмиттером и обратной связью на основе делителя напряжения.

На резисторе R2 падает меньшее напряжение, чем на резисторе R1. Напряжение на базе по отношению к земле равно падению напряжения на резисторе R2. Цель делителя напряжения — установить постоянное напряжение на базе транзистора по отношению к земле. Ток, текущий через резистор R2, направлен к базе. Следовательно, подсоединенный к базе конец резистора R2, имеет положительный потенциал по отношению к земле.

Так как через резистор RE течет ток эмиттера, то на конце резистора RE, подсоединенном к эмиттеру, положительный потенциал по отношению к земле. Напряжение на переходе эмиттер-база является разностью двух положительных напряжений — напряжения на резисторе R2 и напряжения на резисторе RE. Для того, чтобы на транзисторе имело место правильно приложенное прямое смещение, положительный потенциал базы должен быть немного выше положительного потенциала эмиттера.

При увеличении температуры токи коллектора и эмиттера также увеличиваются. Увеличение тока эмиттера приводит к увеличению падения напряжения на резисторе RE. Это приводит к тому, что положительный потенциал эмиттера по отношению к земле увеличивается. Тогда прямое смещение перехода эмиттер-база уменьшается, что приводит к уменьшению тока базы. Уменьшение тока базы уменьшает токи коллектора и эмиттера. Противодействие также имеет место и при понижении температуры: ток базы увеличивается, что приводит к увеличению токов эмиттера и коллектора.

Усилители, обсуждавшиеся до сих пор, имели такое напряжение смещения, что выходной сигнал был таким же, как и входной сигнал в течение всего периода, только величина его была больше. Усилитель, смещение которого такое, что ток через него течет и усиливается во время всего периода сигнала, называется усилителем, работающим в классе А (рис. 28–12).

Рис. 28–12. Выходное напряжение усилителя класса А.

Усилитель, смещение которого таково, что выходной ток через него течет и усиливается в течение времени меньшем, чем полный период, но большем половины периода, называется усилителем, работающим в классе АВ (рис. 28–13).

Рис. 28–13. Выходное напряжение усилителя класса АВ.

Усилитель, смещение которого такое, что выходной ток через него течет только половину периода входного сигнала — это усилитель, работающий в классе В. Только во время половины периода входной сигнал переменного тока усиливается в режиме класса В (рис. 28–14).

Рис. 28–14. Выходное напряжение усилителя класса В.

Усилитель, смещение которого такое, что выходной ток через него течет меньше, чем половину периода входного сигнала переменного тока — это усилитель, работающий в классе С. Меньше, чем половина периода входного сигнала усиливается в режиме класса С (рис. 28–15).

Рис. 28–15. Выходное напряжение усилителя класса С.

Усилители класса А создают наименьшие искажения и называются линейными. Они также имеют самую низкую выходную мощность и наименее эффективны. Усилители класса А находят широкое применение в тех случаях, когда требуется точное сохранение входного сигнала, как, например, при усилении сигналов звуковой частоты в радиоприемниках и телевизорах. Однако из-за высоких требований по мощности, транзисторы обычно работают в режиме класса АВ или класса В.

Усилители классов АВ, В и С вносят значительные искажения. Это обусловлено тем, что они усиливают только часть входного сигнала. Для усиления полного входного сигнала переменного тока необходимы два транзистора, соединенные в двухтактную схему (рис. 28–16).

Рис. 28–16. Схема двухтактного усилителя.

Усилители класса В используются в качестве выходных каскадов в стереосистемах и мощных концертных усилителях, а также в промышленности. Усилители класса С используются в качестве усилителей высокой мощности в передатчиках, где необходимо усиление только одной частоты, например в радио и телевизионных передатчиках.

28-2. Вопросы

1. Нарисуйте схему транзисторного усилителя с общим эмиттером, использующего один источник питания.

2. Как компенсируются изменения температуры в транзисторном усилителе?

3. Нарисуйте схему цепи обратной связи с делителем напряжения.

4. Перечислите классы усилителей и укажите их выходные мощности.

5. Перечислите применения усилителей каждого класса.

28-3. СОЕДИНЕНИЕ УСИЛИТЕЛЕЙ

Для получения большого усиления, транзисторные усилители могут быть соединены вместе. Однако для избежания влияния смещения одного усилителя на работу другого, они должны соединяться специальным образом.

Используемый метод соединения усилителей не должен нарушать работу какой-либо цепи. Возможны следующие методы соединения усилителей: посредством резистивно-емкостной, импедансной, трансформаторной и непосредственной (гальванической) связей.

Резистивно-емкостная связь или RC связь состоит из двух резисторов и конденсатора, соединенных как показано на рис. 28–17.

Рис. 28–17. RC связь.

Резистор R3 является коллекторной нагрузкой первого каскада. Конденсатор C1 является блокирующим для постоянного тока и конденсатором связи для переменного тока. Резистор R4 является входной нагрузкой, а также замыкает по постоянному току цепь перехода база-эмиттер второго каскада. Резистивно-емкостная связь используется, главным образом, в усилителях низкой частоты.

Конденсатор связи C1 должен иметь низкое реактивное сопротивление для минимизации ослабления сигнала на низких частотах. Обычно используется емкость в пределах от 10 до 100 микрофарад. Конденсатор связи обычно бывает электролитическим.

Реактивное сопротивление конденсатора связи увеличивается при уменьшении частоты. Низкочастотная граница определяется величиной емкости конденсатора связи. Высокочастотная граница определяется типом использованного транзистора.

Импедансная связь подобна RC связи, только вместо резистора в качестве нагрузки коллектора первого каскада усиления используется катушка индуктивности (рис. 28–18).

Рис. 28–18. Импедансная связь.

Импедансная связь работает совершенно аналогично RC связи. Ее преимуществом является то, что катушка индуктивности имеет очень низкое сопротивление постоянному току. Выходной сигнал переменного тока на катушке индуктивности такой же, как и на нагрузочном резисторе. Однако катушка индуктивности потребляет меньшую мощность, чем резистор, что увеличивает общую эффективность цепи.

Недостатком импедансной связи является то, что индуктивное сопротивление увеличивается при увеличении частоты. Поэтому коэффициент усиления по напряжению изменяется при изменении частоты. Этот тип связи идеален для одночастотного усиления, то есть при усилении очень узкой полосы частот.

В цепи с трансформаторной связью два усилительных каскада связаны между собой через трансформатор (рис. 28–19).

Рис. 28–19. Трансформаторная связь.

Трансформатор может эффективно согласовать высокоимпедансный источник с низкоимпедансной нагрузкой. Недостатком этого метода является то, что трансформаторы громоздки и дороги. Кроме того, как и усилитель с импедансной связью, усилитель с трансформаторной связью может использоваться только в узком диапазоне частот.

Когда необходимо усилить очень низкие частоты или сигнал постоянного тока, следует использовать усилитель с непосредственной (гальванической) связью (рис. 28–20).

Рис. 28–20. Гальваническая связь.

Усилители с гальванической связью обеспечивают равномерное усиление по току и напряжению в широком диапазоне частот. Усилители этого типа могут усиливать частоты от нуля герц (постоянный ток) до многих тысяч герц. Однако усилители с гальванической связью преимущественно применяются на низких частотах.

Недостатком усилителей с гальванической связью является то, что они нестабильны. Любые изменения выходного тока первого каскада усиливаются вторым каскадом. Это происходит потому, что смещение второго каскада непосредственно связано с первым каскадом. Для повышения стабильности требуется использование дорогих прецизионных компонентов.

28-3. Вопросы

1. Каковы четыре основных метода соединения транзисторных усилителей?

2. Где, в основном, используется резистивно-емкостная связь?

3. В чем разница между резистивно-емкостной связью и импедансной связью?

4. В чем недостаток трансформаторной связи?

5. Какой метод связи используется при усилении низкочастотных сигналов и сигналов постоянного тока?

28-4. УСИЛИТЕЛИ С ГАЛЬВАНИЧЕСКОЙ СВЯЗЬЮ

Усилители с гальванической связью или усилители постоянного тока используются для усиления низкочастотных сигналов или для усиления сигналов постоянного тока. Усилитель постоянного тока также используется для устранения индуктивных потерь в цепях связи. Усилители постоянного тока применяются в компьютерах, измерительном и тестирующем оборудовании и в промышленной аппаратуре для управления производственными процессами.

Простейший усилитель постоянного тока изображен на рис. 28–21.

Рис. 28–21. Простой усилитель постоянного тока.

Чаще всего используется усилитель с общим эмиттером. Изображенная схема содержит цепь смещения на основе делителя напряжения и эмиттерную цепь обратной связи. В цепях этого типа не используется конденсатор связи. Входной сигнал подается прямо на базу транзистора. Выходной сигнал снимается с коллектора.

Усилитель постоянного тока может обеспечивать усиление как по току, так и по напряжению. Однако, он применяется, главным образом, в качестве усилителя напряжения. Усиление по напряжению одинаково для сигналов постоянного и переменного токов.

В большинстве случаев одного каскада усиления недостаточно. Для получения более высокого усиления требуются два или более каскадов. Соединенные вместе два или более каскадов называются многокаскадным усилителем.

На рис. 28–22 изображен двухкаскадный усилитель.

Рис. 28–22. Двухкаскадный усилитель постоянного тока.

Входной сигнал усиливается первым каскадом. После этого усиленный сигнал поступает на базу транзистора второго каскада. Общее усиление цепи равно произведению коэффициентов усиления по напряжению двух каскадов. Например, если и первый, и второй каскады имеют коэффициент усиления по напряжению равный 10, то общий коэффициент усиления цепи равен 100.

На рис. 28–23 изображен усилитель постоянного тока другого типа. В нем используются транзисторы типов n-р-n и р-n-р. Цепь такого типа называется комплементарным усилителем. Функции этой цепи такие же, как и у цепи, изображенной на рис. 28–22. Разница только в том, что транзистор второго каскада р-n-р типа, р-n-р транзистор, перевернут, так что на эмиттер и коллектор подается напряжение смещения правильно.

Рис. 28–23. Комплементарный усилитель постоянного тока.

На рис. 28–24 изображены два соединенных вместе транзистора, работающих, как одно целое. Эта цепь называется схемой Дарлингтона. Транзистор Q1 используется для управления проводимостью транзистора Q2. Входной сигнал, поданный на базу транзистора Q1, управляет током базы транзистора Q2. Схема Дарлингтона может быть изготовлена в одном корпусе с тремя выводами: эмиттер (Э), база (Б) и коллектор (К). Она используется как простой усилитель постоянного тока с высоким коэффициентом усиления по напряжению.

Рис. 28–24. Схема Дарлингтона.

Основным недостатком многокаскадных усилителей является их высокая температурная нестабильность. В цепях, требующих три или четыре каскада усиления постоянного тока, оконечный каскад может не усиливать исходный сигнал постоянного или переменного тока, так как он будет сильно искажен. Та же самая проблема существует и со схемой Дарлингтона.

В случаях, когда требуется и высокий коэффициент усиления, и высокая температурная стабильность, необходим усилитель другого типа. Это — дифференциальный усилитель (рис. 28–25).

Рис. 28–25. Дифференциальный усилитель.

Его особенность в том, что он имеет два отдельных входа и может обеспечить либо один, либо два выходных сигнала. Если сигнал подан на вход транзистора Q1, усиленный сигнал появится между выходом А и землей, как в обычном усилителе. Однако малый сигнал появится также на резисторе R4 и на эмиттере транзистора Q2. Транзистор Q2 работает, как усилитель с общей базой. Усиленный выходной сигнал появится между выходом В и землей. Выходной сигнал с выхода В сдвинут по фазе на 180 градусов по отношению к сигналу на выходе А. Это делает дифференциальный усилитель более универсальным, чем обычный.

Обычно дифференциальный усилитель не используется для получения выходного напряжения между одним из выходов и землей. Выходной сигнал получают между выходом А и выходом В. Поскольку два выходных сигнала сдвинуты относительно друг друга на 180 градусов по фазе, то между этими точками существует значительное выходное напряжение. Входной сигнал может быть подан на любой вход.

Дифференциальный усилитель обладает высокой температурной стабильностью, так как транзисторы Q1 и Q2 расположены близко друг к другу и испытывают одинаковое влияние температуры. Кроме того, коллекторные токи транзисторов Q1 и Q2 испытывают одинаковые тенденции к увеличению и уменьшению, так что выходное напряжение остается постоянным.

Дифференциальный усилитель широко используется в интегральных микросхемах и в электронном оборудовании. Он используется для усиления и(или) сравнения амплитуд сигналов как постоянного, так и переменного токов. Дифференциальные усилители можно соединять последовательно для получения более высокого усиления. В некоторых случаях дифференциальный усилитель используется в качестве первого каскада в многокаскадных обычных усилителях. Дифференциальные усилители, благодаря их универсальности и температурной стабильности, являются наиболее важным типом усилителей с гальванической связью.

28-4. Вопросы

1. В каких случаях используют усилители с гальванической связью?

2. Какую конфигурацию усилителя обычно используют в усилителях с гальванической связью?

3. Нарисуйте схемы следующих цепей:

а. Комплементарный усилитель.

б. Схему Дарлингтона.

в. Дифференциальный усилитель.

4. Как дифференциальный усилитель отличить от обычного?

5. Где, в основном, используются дифференциальные усилители?

28-5. УСИЛИТЕЛИ ЗВУКОВОЙ ЧАСТОТЫ

Усилители звуковой частоты усиливают сигналы переменного тока в диапазоне частот примерно от 20 до 20000 герц. Они могут усиливать весь диапазон звуковых частот или только небольшую часть его.

Усилители звуковой частоты делятся на две категории: усилители напряжения и усилители мощности. Усилители напряжения применяются, главным образом, для получения высокого усиления по напряжению. Усилители мощности используются для передачи большой мощности в нагрузку. Например, усилитель напряжения применяется, главным образом, для повышения напряжения выходного сигнала до уровня, достаточного для раскачки усилителя мощности. После этого используется усилитель мощности для получения высокой мощности, необходимой для передачи сигнала на усилительные колонки или другое устройство высокой мощности. Обычно усилители напряжения работают как усилители класса А, а усилители мощности — как усилители класса В.

На рис. 28–26 изображен простой усилитель напряжения.

Рис. 28–26. Усилитель напряжения

Изображенная цепь является цепью с общим эмиттером. Смещение транзистора выбрано для работы в классе А, чтобы обеспечить минимальные искажения. Усилитель может обеспечить заметное усиление по напряжению в широком диапазоне частот. Наличие конденсатора связи не позволяет цепи усиливать сигнал постоянного тока.

Два или более усилителя напряжения могут быть соединены последовательно для получения большего усиления. Каскады могут быть соединены с помощью RC связи или трансформаторной связи. Трансформаторная связь более эффективна. Трансформатор используется для согласования входного и выходного импеданса двух каскадов. Это предохраняет второй каскад от перегрузки первым каскадом. Перегрузка возникает, когда устройство создает большую нагрузку и сильно влияет на выход, потребляя слишком большой ток. Трансформатор, используемый для связи двух каскадов, называется меж каскадным трансформатором.

Когда достаточный уровень выходного напряжения достигнут, используется усилитель мощности для раскачки нагрузки. Усилители мощности рассчитаны для раскачки определенных нагрузок и характеризуются мощностью в ваттах. Обычно сопротивление нагрузки лежит в пределах от 4 до 16 Ом.

На рис. 28–27 изображена схема усилителя мощности на двух транзисторах, которая называется двухтактной.

Рис. 28–27. Двухтактный усилитель мощности.

Верхняя половина цепи является зеркальным отображением нижней. Каждая половина представляет собой усилитель на одном транзисторе. Выходное напряжение снимается с первичной обмотки трансформатора в течение чередующихся полупериодов входного сигнала. Оба транзистора работают как усилители класса АВ или В. Вход двухтактного усилителя требует сдвинутых по фазе на 180° входных сигналов. Это означает, что один сигнал должен быть инвертирован по отношению к другому. Однако оба сигнала должны иметь одинаковую амплитуду и частоту. Цепь, создающая такой фазовый сдвиг сигнала, называется фазовращателем. Фазовращатель на одном транзисторе изображен на рис. 28–28. Выходы взяты с коллектора и эмиттера транзистора.

Рис. 28–28. Фазовращатель.

Фазовращатель работает, как усилитель класса А, обеспечивая наименьшие искажения выходного сигнала. Конденсаторы связи необходимы для компенсации разницы между коллекторным и эмиттерным напряжениями постоянного тока.

Двухтактный усилитель, не требующий фазовращателя, называется комплементарным двухтактным усилителем.

Для работы двухтактного каскада в нем используются транзисторы n-р-n и р-n-р (рис. 28–29).

Рис. 28–29. Комплементарный двухтактный усилитель мощности.

Два транзистора соединены последовательно, эмиттерами друг к другу. Когда на каждый транзистор подается напряжение смещения в прямом направлении, между его базой и эмиттером возникает напряжение 0,7 вольт или 1,4 вольт между двумя базами. Два диода помогают поддерживать разность потенциалов 1,4 вольт постоянной. Выходное напряжение берется из точки соединения эмиттеров через конденсатор связи.

Для усилителей мощностью более 10 ватт, трудно и дорого подобрать пару n-р-n и р-n-р транзисторов с одинаковыми характеристиками. На рис. 28–30 изображена цепь, использующая два n-р-n транзистора в качестве мощного выходного транзистора. Мощные транзисторы раскачиваются двумя транзисторами n-р-n и р-n-р меньшей мощности. Верхний набор транзисторов образует схему Дарлингтона.

Рис. 28–30. Квазикомплементарный усилитель мощности.

Нижний набор транзисторов использует транзисторы n-р-n и р-n-р. Работая как одно устройство, они соответствуют р-n-р транзистору. Усилитель этого типа называется квазикомплементарным усилителем. Он работает так же, как и комплементарный усилитель, но не требует комплементарных выходных транзисторов высокой мощности.

Так как усилители мощности развивают высокую мощность, некоторые его детали сильно нагреваются. Для отвода накопленного тепла используются радиаторы. Радиатор — это устройство, имеющее большую площадь, которая может излучать тепло. На рис. 28–31 изображены различные типы радиаторов для транзисторов.

Рис. 28–31. Типы радиаторов

28-5. Вопросы

1. В каком диапазоне частот используются усилители звуковой частоты?

2. Каковы два типа усилителей звуковой частоты?

3. Что такое межкаскадный трансформатор?

4. Нарисуйте схемы следующих устройств:

а. Двухтактного усилителя.

б. Комплементарного двухтактного усилителя.

в. Квазикомплементарного двухтактного усилителя.

28-6. ВИДЕОУСИЛИТЕЛИ

Видеоусилители — это широкополосные усилители, используемые для усиления видеоинформации. Диапазон частот видеоусилителя значительно шире, чем диапазон частот усилителя звуковой частоты. Он занимает полосу частот от нескольких герц до 5 или 6 мегагерц. Например, для передачи телевизионного сигнала требуется полоса частот от 60 герц до 4 мегагерц. Радиолокаторы используют полосу частот от 30 герц до 2 мегагерц. В цепях, использующих пилообразное или импульсное напряжение, необходим частотный диапазон от одной десятой наименьшей частоты сигнала до десятикратно увеличенной наибольшей частоты.

Такой широкий диапазон частот необходим потому, что несинусоидальное напряжение содержит в своем составе много гармоник и все они должны быть одинаково усилены.

Так как видеоусилители должны иметь однородную амплитудно-частотную характеристику, в них используется только гальваническая или RC связь между каскадами.

Гальваническая связь обеспечивает наилучшую амплитудно-частотную характеристику, тогда как RC связь имеет экономические преимущества. Усилитель с RC связями имеет плоскую амплитудно-частотную характеристику в области средних частот диапазона, подходящую для видеоусилителей. Плоская амплитудно-частотная характеристика — это термин, показывающий, что усиление усилителя только незначительно меняется в пределах заданного частотного диапазона. Амплитудно-частотная характеристика такого усилителя представляет собой почти прямую линию; отсюда и термин — плоская амплитудно-частотная характеристика.

Фактор, ограничивающий усиление транзисторного усилителя на высоких частотах — это шунтирование транзистора паразитной емкостью цепи. Между переходами транзистора существует небольшая емкость, ее величина определяется размером перехода и расстоянием между выводами транзистора, а также смещением, приложенным к переходу. Переход база-эмиттер, смещенный в прямом направлении имеет большую емкость, чем переход коллектор-база, смещенный в обратном направлении.

Для того, чтобы уменьшить влияние шунтирующей емкости и увеличить усиление на высоких частотах, в транзисторных видеоусилителях используются корректирующие катушки индуктивности. На рис. 28–32 изображен метод параллельной коррекции.

Рис. 28–32. Параллельная коррекция.

Небольшая индуктивность включается последовательно с резистором нагрузки. В диапазоне низких и средних частот корректирующая индуктивность почти не влияет на амплитудно-частотную характеристику. На высоких частотах катушка индуктивности резонирует с емкостью цепи, что приводит к увеличению выходного импеданса и поднимает усиление.

Другим методом является включение небольшой индуктивности последовательно с конденсатором межкаскадной связи. Этот метод называется последовательной коррекцией (рис. 28–33).

Рис. 28–33. Последовательная коррекция.

Корректирующая индуктивность эффективно отделяет входные и выходные емкости двух каскадов. Часто параллельная и последовательная коррекции комбинируются для того, чтобы усилить преимущества обоих методов (рис. 28–34). Это комбинирование может расширить полосу пропускания усилителя до частот, превышающих 5 мегагерц.

Рис. 28–34. Последовательно-параллельная коррекция.

Чаще всего видеоусилители используются в телевизионных приемниках (рис. 28–35).

Рис. 28–35. Видеоусилитель телевизионного приемника.

Транзистор Q1 включен, как эмиттерный повторитель. Сигнал на транзистор Q1 подается с видеодетектора. Видеодетектор получает видеосигнал с усилителя промежуточной частоты. В цепи коллектора Q2 транзистора включена параллельная корректирующая индуктивность (L1). На пути выходного сигнала включена последовательная корректирующая индуктивность (L2). После этого видеосигнал подается на электронно-лучевую трубку через конденсатор связи С5.

28-6. Вопросы

1. Что такое видеоусилитель?

2. Каков диапазон частот видеоусилителя?

3. Какими способами соединяются каскады видеоусилителей?

4. Дайте определения следующих понятий:

а. Параллельная коррекция.

б. Последовательная коррекция.

5. Где используются видеоусилители?

28-7. УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ

Усилители радиочастоты похожи на другие усилители. Они отличаются, главным образом, диапазоном рабочих частот, занимающим область от 10 до 30 мегагерц. Существуют два класса усилителей радиочастоты: перестраиваемые и неперестраиваемые. Основной функцией неперестраиваемого усилителя является усиление, а его амплитудно-частотная характеристика должна занимать как можно более широкий диапазон радиочастот. В перестраиваемом усилителе высокое усиление должно достигаться в узкой области частот или на отдельной частоте. Обычно, когда говорят об усилителях радиочастоты, подразумевают, что они являются перестраиваемыми, если не оговорено другое.

В радиоприемных устройствах усилители радиочастоты служат для усиления сигнала и выделения сигнала, соответствующей частоты. В передающих устройствах усилители радиочастоты служат для усиления сигнала на определенной частоте перед его подачей в антенну. В основном, приемные усилители радиочастоты являются усилителями напряжения, а передающие усилители радиочастоты являются усилителями мощности.

В приемных цепях усилитель радиочастоты должен обеспечивать достаточное усиление приемного сигнала, обладать низким собственным шумом, обеспечивать хорошую избирательность и иметь плоскую амплитудно-частотную характеристику на выбранных частотах.

На рис. 28–36 изображен усилитель радиочастоты, используемый в радиоприемнике с амплитудной модуляцией.

Рис. 28–36. Усилитель радиочастоты в радиоприемнике сигналов с амплитудной модуляцией.

Конденсаторы C1 и С4 настраивают антенну и выходной трансформатор T1 на одну и ту же частоту. Входной сигнал с помощью индуктивной связи подается на базу транзистора Q1. Транзистор работает, как усилитель класса А. Конденсатор С4 и трансформатор T1 обеспечивают высокое усиление по напряжению на резонансной частоте для цепи коллекторной нагрузки. Трансформатор T1 имеет отвод для обеспечения хорошего согласования импедансов с транзистором.

На рис. 28–37 изображен усилитель радиочастоты, используемый в телевизионном высокочастотном тюнере.

Рис. 28–37. Усилитель радиочастоты в телевизионном высокочастотном тюнере.

Цепь настраивается катушками индуктивности L1A; L1B и L1C. При повороте ручки переключателя каналов в цепь включается новый набор катушек. Это обеспечивает усиление в необходимой полосе частот для каждого канала. Входной сигнал попадает в перестраиваемую цепь, состоящую из L1A, C1 и С2. Транзистор Q1 работает, как усилитель класса А. Выходная коллекторная цепь представляет собой двойной перестраиваемый трансформатор. Катушка L1B настраивается конденсатором С4, а катушка — L1C конденсатором С7. Резистор R2 и конденсатор С6 образуют развязывающий фильтр, предотвращающий попадание радиочастот в блок питания и их взаимодействие с другими цепями.

В радиоприемниках с амплитудной модуляцией входной радиосигнал преобразуется в сигнал постоянной промежуточной частоты. После этого используется усилитель промежуточной частоты с фиксированной настройкой для увеличения уровня сигнала до необходимой величины.

Усилитель промежуточной частоты — это одночастотный (узкополосный) усилитель. Обычно для усиления сигнала до необходимого уровня используются два или три каскада усиления промежуточной частоты. Чувствительность приемника определяется усилением усилителя промежуточной частоты. Чем выше усиление, тем выше чувствительность. На рис. 28–38 показан типичный усилитель промежуточной частоты радиоприемника амплитудно-модулированных сигналов. Промежуточная частота равна 455000 герц. На рис. 28–39 изображен усилитель промежуточной частоты телевизионного приемника.

Рис. 28–38. Усилитель промежуточной частоты в радиоприемнике сигналов с амплитудной модуляцией.

Рис. 28–39. Усилитель промежуточной частоты в телевизионном приемнике.

На рис. 28–40 приведена таблица, в которой сравниваются частоты радио и телевизионных приемников.

Рис. 28–40. Сравнение радио и телевизионных частот.

28-7. Вопросы

1. Чем усилители радиочастоты отличаются от других усилителей?

2. Какие два типа усилителей радиочастоты вы знаете?

3. Где используются усилители радиочастоты?

4. Что такое усилитель промежуточной частоты?

5. Что самое главное в усилителе промежуточной частоты?

28-8. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ

Операционный усилитель — это усилитель постоянного тока с очень высоким усилением. Обычно операционные усилители имеют коэффициент усиления от 20 000 до 1000000.

На рис. 28–41 изображено схематическое обозначение операционного усилителя. Вход, помеченный знаком (-), называется инвертирующим входом, а вход, помеченный знаком (+) — неинвертирующим входом.

Рис. 28–41. Схематическое обозначение операционного усилителя.

На рис. 28–42 изображена блок-схема операционного усилителя.

Рис. 28–42. Блок-схема операционного усилителя.

Операционный усилитель состоит из трех каскадов. Каждый каскад является усилителем со своими характерными особенностями.

Входной каскад — это дифференциальный усилитель. Он позволяет операционному усилителю реагировать только на разность входных сигналов. Кроме того, дифференциальный усилитель усиливает сигнал, пропорциональный разности входных напряжений, и не реагирует на одинаковые сигналы на обоих входах. Это называется ослаблением синфазного сигнала. Ослабление синфазного сигнала полезно при измерении слабых сигналов на фоне шума с частотой 60 герц. Шум с частотой 60 герц является общим для обоих входов и поэтому он ослабляется, а операционный усилитель усиливает только малую разность сигналов на обоих входах. Амплитудно-частотная характеристика дифференциального усилителя обеспечивает усиление от области низких частот до постоянного тока. Это означает, что дифференциальный усилитель может усиливать не только низкочастотные сигналы переменного тока, но и сигналы постоянного тока.

Второй каскад — это усилитель напряжения с высоким коэффициентом усиления. Этот каскад состоит из нескольких пар транзисторов, соединенных по схеме Дарлингтона, достигает усиления по напряжению в 200000 раз и более, обеспечивая большую часть усиления операционного усилителя.

Последний каскад — это выходной усилитель. Обычно это эмиттерный повторитель на комплементарных транзисторах. Он используется для того, чтобы операционный усилитель имел низкий выходной импеданс. Операционный усилитель может обеспечить несколько миллиампер тока нагрузки.

Операционные усилители рассчитаны на питание от двухполярного источника напряжения от ±5 до ±15 вольт. Положительный вывод источника питания должен обеспечивать от +5 до +15 вольт по отношению к земле, а отрицательный от -5 до -15 вольт по отношению к земле. Это позволяет выходному напряжению изменяться в сторону положительных и отрицательных значений по отношению к земле. Однако в некоторых случаях операционные усилители могут работать и от однополярного источника питания.

Принципиальная схема типичного операционного усилителя изображена на рис. 28–43.

Рис. 28–43. Схема операционного усилителя.

Изображенный усилитель называется LM741 (отечественный аналог К140УД7). Этот операционный усилитель не требует частотной коррекции, защищен от короткого замыкания, не имеет проблем с запиранием. Хорошие эксплуатационные качества при низкой цене обеспечивают его широкое использование.

Устройство, содержащее в одном корпусе два операционных усилителя LM741, называется LM747 (наш аналог КР140УД20). Благодаря отсутствию конденсаторов связи эти операционные усилители могут усиливать сигналы переменного и постоянного токов.

Нормальный режим работы операционного усилителя — это режим работы с обратной связью. В нем используется отрицательная обратная связь, что уменьшает общее усиление операционного усилителя, но обеспечивает лучшую стабильность.

При работе операционного усилителя с обратной связью, выходной сигнал подается на один из входов в качестве сигнала обратной связи. Этот сигнал обратной связи противодействует входному сигналу, так как находится в противофазе. Существуют две основные цепи с обратной связью: инвертирующая и неинвертирующая. Инвертирующая конфигурация более популярна.

На рис. 28–44 изображен операционный усилитель с инвертирующей обратной связью: входной сигнал подается на инвертирующий вход (-) через резистор R1. Обратная связь обеспечивается с помощью резистора R2.

Рис. 28–44. Операционный усилитель в качестве инвертирующего усилителя.

Величина сигнала на инвертирующем входе определяется как входным, так и выходным напряжением. Знак минус указывает на то, что выходной сигнал отрицателен, когда входной сигнал положителен. Знак плюс указывает на то, что выходной сигнал положителен, когда входной сигнал отрицателен. Выходной сигнал сдвинут по фазе на 180 градусов по отношению ко входному. В зависимости от отношения резисторов R2 и R1 усиление инвертирующего усилителя может быть меньше, равно или больше 1. Когда усиление равно 1, его называют усилителем с единичным усилением, и используют для инвертирования полярности входного сигнала.

На рис. 28–45 изображен операционный усилитель с неинвертирующей обратной связью: выходной сигнал находится в фазе со входным.

Рис. 28–45. Операционный усилитель в качестве неинвертирующего усилителя.

Входной сигнал подается на неинвертирующий вход операционного усилителя. Выходное напряжение делится с помощью резисторов R2 и R1 для того, чтобы подать напряжение обратной связи на инвертирующий (-) вход. Усиление по напряжению по неинвертирующему входу всегда больше 1.

Коэффициент усиления операционного усилителя зависит от частоты. Обычно усиление, указываемое в справочных данных — это усиление по постоянному току. При увеличении частоты усиление уменьшается. Без использования методов увеличения полосы пропускания, операционный усилитель хорош только для усиления сигналов постоянного тока. Для расширения полосы пропускания используется обратная связь, уменьшающая усиление. Насколько уменьшается усиление, настолько увеличивается полоса пропускания. С помощью этого способа полоса пропускания операционного усилителя 741 может быть увеличена до 1 мегагерца.

Операционные усилители применяются для сравнения, инвертирования или неинвертирования сигналов, они также могут использоваться для сложения сигналов, как показано на рис. 28–46. Такой усилитель называется суммирующим усилителем.

Рис. 28–46. Операционный усилитель в качестве суммирующего усилителя.

Отрицательная обратная связь удерживает потенциал инвертирующего входа близким к потенциалу земли. Следовательно, все входные сигналы электрически изолированы друг от друга. На выходе усилителя получается инвертированная сумма входных сигналов.

В суммирующем усилителе резистор, соединяющий неинвертирующий вход с землей, выбран равным полному сопротивлению параллельно включенных входному сопротивлению и сопротивлению обратной связи. Если сопротивление обратной связи увеличить, то цепь может обеспечить и усиление. Если используются различные входные сопротивления, сигналы могут быть сложены с различным усилением.

Суммирующие усилители используются при смешивании сигналов звуковой частоты. В качестве входных сопротивлений используются потенциометры для регулирования уровня каждого из входных сигналов.

Операционные усилители также могут использоваться в качестве активных фильтров. Фильтры, использующие резисторы, катушки индуктивности и конденсаторы, называются пассивными. Активные фильтры — это безындуктивные фильтры, использующие интегральные микросхемы. Преимущество активных фильтров в отсутствии катушек индуктивности, имеющих большие размеры.

При использовании операционных усилителей в качестве активных фильтров недостатком является то, что они требуют источника питания, могут создавать шум и превращаться в генератор (возбуждаться) вследствие температурного дрейфа или старения компонентов.

На рис. 28–47 изображен фильтр верхних частот, использующий операционный усилитель. Фильтр верхних частот подавляет низкие частоты и пропускает частоты, расположенные выше частоты среза.

Рис. 28–47. Операционный усилитель в качестве фильтра верхних частот.

На рис. 28–48 изображен фильтр нижних частот, использующий операционный усилитель. Фильтр нижних частот пропускает низкие частоты и не пропускает частоты, расположенные выше частоты среза.

Рис. 28–48. Операционный усилитель в качестве фильтра нижних частот.

На рис. 28–49 изображен полосовой фильтр, использующий операционный усилитель. Полосовой фильтр пропускает частоты, расположенные вблизи некоторой центральной частоты, и ослабляет более высокие и более низкие частоты.

Рис. 28–49. Операционный усилитель в качестве полосового фильтра.

Разностный усилитель вычитает один сигнал из другого. На рис. 28–50 изображен стандартный разностный усилитель. Эта цепь называется вычитающим устройством, поскольку она вычитает значение Е2 из значения E1.

Рис. 28–50. Операционный усилитель в качестве разностного усилителя.

28-8. Вопросы

1. Что такое операционный усилитель?

2. Нарисуйте блок-схему операционного усилителя.

3. Кратко объясните, как работает операционный усилитель.

4. Что такое нормальный режим работы операционного усилителя?

5. Какое усиление может быть получено с помощью операционного усилителя?

6. Нарисуйте схемы следующих цепей:

а. Инвертирующий усилитель;

б. Суммирующий усилитель;

в. Фильтр верхних частот;

г. Фильтр нижних частот;

д. Разностный усилитель.

РЕЗЮМЕ

• Усилители — это электронные цепи, используемые для увеличения амплитуды электрического сигнала.

• Транзистор используется, главным образом, в качестве усилительного устройства.

• Транзисторные усилители могут быть трех типов: усилитель с общей базой, с общим коллектором и с общим эмиттером.

• Усилители с общим коллектором используются для согласования импедансов.

• Усилители с общим эмиттером обеспечивают обращение фазы выходного сигнала по отношению к входному.

• Все транзисторные усилители требуют двух напряжений для правильной подачи напряжения смещения.

• Один источник питания может обеспечить необходимые напряжения прямого и обратного смещения с помощью делителя напряжения.

• Цепь обратной связи с делителем напряжения является наиболее широко используемой цепью для напряжения смещения.

• Транзисторный усилитель может быть смещен таким образом, что на выходе будет усиливаться весь период входного сигнала или только его часть.

• Усилители класса А смещены таким образом, что выходной ток течет в течение всего периода.

• Усилители класса АВ смещены таким образом, что выходной ток течет в течение промежутка времени, большего, чем половина периода входного сигнала, но меньшего, чем период.

• Усилители класса В смещены таким образом, что выходной ток течет в течение только половины периода входного сигнала.

• Усилители класса С смещены таким образом, что выходной ток течет в течение промежутка меньшего половины периода входного сигнала.

• Для соединения одного транзистора с другим используют резистивно-емкостную, импедансную, трансформаторную и непосредственную (гальваническую) связи.

• Усилители с гальванической связью используются для получения высокого усиления на низких частотах или для усиления сигнала постояннного тока.

• Усилители с гальванической связью используются, главным образом, в качестве усилителей напряжения.

• Дифференциальный усилитель имеет два отдельных входа и может обеспечивать или один, или два выхода.

• Усилители звуковой частоты усиливают сигналы переменного тока в диапазоне частот от 20 до 20000 герц.

• Усилители звуковой частоты делятся на усилители напряжения и усилители мощности.

• Видеоусилители — это широкополосные усилители, используемые для усиления видеосигналов.

• Видеочастоты занимают полосу от нескольких герц до 5 или б мегагерц.

• Усилители радиочастоты работают в диапазоне от 10 до 30 мегагерц.

• Усилители радиочастоты делятся на перестраиваемые и неперестраиваемые.

• Операционные усилители — это усилители с гальванической связью и очень высоким коэффициентом усиления.

• Операционные усилители могут иметь коэффициент усиления от 20000 до 1000000.

• Операционные усилители обычно работают в режиме с обратной связью.

• Существуют два режима работы с обратной связью — инвертирующий и неинвертирующий.

Глава 28. САМОПРОВЕРКА

1. Кратко опишите, как используется транзистор для усиления сигналов.

2. Почему схема усилителя с общим эмиттером применяется наиболее широко?

3. Какие факторы влияют на усиление транзистора, и что может быть сделано для их компенсации?

4. Как поданное напряжение смещения влияет на класс работы усилителя?

5. Какой фактор необходимо учесть при соединении одного усилителя с другим?

6. Как метод связи, используемый для соединения усилителей, влияет на его рабочий диапазон частот?

7. При каких условиях могут использоваться усилители постоянного тока?

8. Как решается проблема температурной стабильности в усилителях постоянного тока с большим коэффициентом усиления?

9. В чем основные отличия между усилителями напряжения звуковой частоты и усилителями мощности звуковой частоты?

10. Каковы практические преимущества использования квазикомплементарного усилителя мощности перед комплементарным двухтактным усилителем?

11. Чем видеоусилитель отличается от усилителя звуковой частоты?

12. Какой фактор ограничивает усиление видеоусилителя на высоких частотах?

13. Для чего предназначен усилитель радиочастоты?

14. Для чего используются усилители промежуточной частоты?

15. Перечислите три каскада операционного усилителя и опишите их функции.

16. Где используются операционные усилители?

Как работает усилитель звука (УНЧ) на транзисторе

Рубрика: Статьи обо всем Опубликовано 12.04.2020   ·   Комментарии: 2   ·   На чтение: 9 мин   ·   Просмотры:

Post Views: 989

Транзистор — это полупроводниковый прибор, который позволяет генерировать, создавать и усиливать электрические колебания. С помощью него можно усилить любой электрический сигнал. Разберем типовую. схему включения биполярного n-p-n транзистора.

Разбор схемы

Это моно-усилитель мощности звуковой частоты.

Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).

В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.

Как именно определяется схема включения? Входящий сигнал подается на базу и эмиттер, а выходящий снимается с коллектора и эмиттера. То есть, по сути, общий контакт эмиттер. Поэтому схема называется с общим эмиттером. Эмиттер – это силовая часть транзистора, которая позволяет усилить сигнал по максимуму.

Данная схема имеет один каскад усиления.

Что такое каскад

Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

К тому же, электролитические конденсаторы должны разряжаться после выключения. Тем более, есть предел для увеличения емкости для схемы. Если в эту схему подключить конденсатор емкостью 1 фарад (1 000 000 мкФ), то уровень шума на выходе усилителя будет такой же, как и при 1000 мкФ. Это связано с тем, что у транзистора так же есть и свои «шумы», отсутствие экранировки на входе, динамические искажения и другие параметры.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Можно подключить как левый канал, так и правый и оба сразу.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.

По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Не путайте этот эффект со свистом. Свист – это влияние положительной обратной связи, а в данном случае будет режим насыщения из-за короткого замыкания на входе. И на выходе усилителя будет слышен именно хрип, а не свит или звук.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.

Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.

Ток, который протекает через R1 и R2 поступает на базу транзистора VT1, который потом уходит через эмиттер, тем самым его открывая. Это называется базовое смещение транзистора, то есть его открытие. Напряжение смещения определяет рабочую точку. В данном случае усилитель А класса.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.


А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Также от рабочей точки зависит и чувствительность усилителя.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

Поэтому, схемотехники и инженеры изобрели цифровые усилители. У них аналоговый сигнал преобразовывается в цифровой, и только потом подается на вход усилителя. Транзистор не искажает входной цифрой сигнал. После усиления сигнал снова преобразовывается в аналоговый с наименьшими потерями и искажениями.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.

Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

Выход усилителя

На выход к усилителю можно подключить как другой усилитель, который усилит сигнал еще больше, так и динамическую головку.
Динамическая головка — это обычный динамик. Он воспроизведёт звук с выхода транзистора VT1.

Однако и тут есть много нюансов.

Самое важное касается согласование сопротивления нагрузки и сопротивления усилителя.

Если сопротивление выхода транзистора намного больше, чем у динамической головки, то он не сможет передать всю мощность. Как минимум большая часть напряжения останется на его контактах.

Для данной схемы нужен динамик с сопротивлением около 1 кОм.

Если поставить меньше, например, на 4 Ома, то и половина мощности не воспроизведется, а коллектор VT1 начнет еще сильнее нагреваться.

Согласование сопротивлений входа, выхода и нагрузки усилителя рассчитывается на этапе проектирования схемы. Поэтому не следует их нарушать.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.

Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.

В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

От чего зависит мощность схемы

У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.

В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.

У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h31э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.

Как собрать схему

Схему можно собрать на текстолите или на макетной плате. Перейдите по ссылке на эту статью, в ней подробнее описывается процесс сборки и проверки схемы.

Используйте качественные детали и хороший припой. Она рабочая. Это вообще классическая схема включения биполярного транзистора с общим эмиттером.

Также на сайте есть и другие схемы усилителей, которые не сложны в сборке и не дорогие по стоимости деталей.

Как проверить работу схемы

Достаточно прикоснуться до входа УНЧ отверткой, и на выходе послышаться треск. Это переменная наводка, которая усилится схемой.

Post Views: 989

Биполярные транзисторы как усилители

  • Изучив этот раздел, вы сможете:
  • Распознавать основные режимы подключения транзисторного усилителя.
  • • Эмиттер обыкновенный.
  • • Общий коллектор.
  • • Общая база.
  • Опишите основные параметры каждого режима усилителя.
  • • Коэффициент усиления по напряжению.
  • • Текущее усиление.
  • • Входное и выходное сопротивление.

Как подключен транзистор для создания усилителя.

Рис. 3.6.1 Подключение усилителя.

Поскольку усилитель должен иметь два входа и два выхода, транзистор, используемый в качестве усилителя, должен иметь один из трех контактов, общих как для входа, так и для выхода, как показано на рисунке 3.6.1. Выбор клеммы, используемой в качестве общего подключения, оказывает заметное влияние на характеристики усилителя.

Транзистор, подключенный в трех режимах, показанных на рис. 3.6.2–3.6.4 будут показывать совершенно разные характеристические кривые для каждого режима. Эти различия могут быть использованы разработчиком схем для создания усилителя с характеристиками, наиболее подходящими для конкретной цели. Обратите внимание, что схемы показаны здесь в уменьшенном виде и не предназначены для использования в качестве практических схем.

В схеме транзисторного усилителя, показанной на рис. 3.6.2–3.6.4, линия питания + V и линия 0V могут рассматриваться как одна и та же точка, если речь идет о любом сигнале переменного тока. Это связано с тем, что, хотя очевидно, что между этими двумя точками существует напряжение (напряжение питания), источник постоянного тока всегда отключается большим конденсатором (например, резервуарным конденсатором в источнике питания), поэтому не может быть разницы в напряжении переменного тока. между шинами + V и 0V.

Рис.3.6.2 Режим общего эмиттера.

Режим общего эмиттера

Наиболее распространенная функция транзистора — использование в режиме ОБЩЕГО ЭМИТТЕРА. В этом методе подключения небольшие изменения тока базы / эмиттера вызывают большие изменения тока коллектора / эмиттера. Следовательно, это схема усилителя ТОКА. Для усиления НАПРЯЖЕНИЯ в цепь коллектора должен быть подключен нагрузочный резистор (или импеданс, например, настроенная цепь), чтобы изменение тока коллектора приводило к изменению напряжения, возникающего на нагрузочном резисторе.Значение резистора нагрузки влияет на УСИЛЕНИЕ НАПРЯЖЕНИЯ усилителя. Это связано с тем, что чем больше резистор нагрузки, тем большее изменение напряжения будет вызвано данным изменением тока коллектора. Обратите внимание, что из-за этого метода подключения форма выходного сигнала будет противофазна входному сигналу. Это связано с тем, что увеличение напряжения базы / эмиттера вызовет увеличение тока базы. Это, в свою очередь, приведет к увеличению тока коллектора, но по мере увеличения тока коллектора падение напряжения на нагрузочном резисторе увеличивается, и, поскольку напряжение на верхнем конце нагрузочного резистора (напряжение питания) не изменится, напряжение на резисторе нагрузки не изменится. нижний конец должен уменьшиться.Следовательно, увеличение напряжения база / эмиттер вызывает снижение напряжения коллектор / эмиттер.

Общие параметры эмиттера

Усиление напряжения: высокое (около 100).

Текущее усиление: высокое (от 50 до 800).

Входное сопротивление: среднее (от 3 кОм до 5 кОм).

Выходное сопротивление: среднее (приблизительное значение резистора нагрузки).

Рис. 3.6.3 Режим общего коллектора.

Режим общего коллектора

Рис.3.6.3 иллюстрирует режим ОБЩИЙ КОЛЛЕКТОР; также называется режимом эмиттерного повторителя, поскольку в этой схеме форма выходного сигнала на эмиттере не инвертируется и поэтому «следует» за формой входного сигнала на базе. Этот метод подключения часто используется в качестве БУФЕРНОГО УСИЛИТЕЛЯ для таких задач, как согласование импедансов между двумя другими цепями. Это связано с тем, что этот режим дает усилителю высокий входной импеданс и низкий выходной импеданс. Коэффициент усиления по напряжению в этом режиме немного меньше единицы (x 1), но доступен высокий коэффициент усиления по току (называемый h fc в режиме общего коллектора).Другой способ использования этого режима подключения — УСИЛИТЕЛЬ ТОКА, часто используемый для выходных цепей, которые должны управлять сильноточными устройствами переменного тока, такими как громкоговорители или устройствами постоянного тока, такими как двигатели и т. Д.

Параметры общего коллектора

Коэффициент усиления напряжения: чуть меньше единицы (1).

Текущее усиление: высокое (от 50 до 800)

Входное сопротивление: высокое (несколько кОм)

Выходное сопротивление: низкое (несколько Ом)

Рис.3.6.4 Режим общей базы.

Режим общей базы

COMMON BASE MODE обычно используется для усилителей VHF и UHF, где, хотя коэффициент усиления по напряжению невелик, существует небольшая вероятность того, что выходной сигнал будет возвращен во входную цепь (что может быть проблемой на этих частотах). Поскольку в этом режиме база транзистора заземлена, он образует эффективный заземленный экран между выходом и входом. Поскольку ток коллектора в этом режиме будет равен току эмиттера минус ток базы, коэффициент усиления по току (h fb в режиме общей базы) меньше единицы (<1).

Параметры общей базы

Коэффициент усиления по напряжению: средний (от 10 до 50).

Текущее усиление: менее единицы (<1)

Входное сопротивление: низкое (около 50 Ом)

Выходное сопротивление: высокое (около 1 МОм)

Начало страницы

Транзисторные усилители — обзор

Каскады усиления напряжения усилителя мощности

Общие конструктивные системы, используемые в транзисторных каскадах усиления, были рассмотрены в главе 4.Однако для высококачественных усилителей мощности звука потребуются более высокие коэффициенты усиления каскада с разомкнутым контуром и более низкие характеристики фазового сдвига — чтобы облегчить использование большого количества общего NFB для линеаризации неоднородностей выходного каскада — чем это необходимо для предыдущего слабого сигнала. этапы усиления.

Действительно, при очень многих современных конструкциях аудиоусилителей вся схема предварительного усилителя малых сигналов основана на использовании высококачественных операционных усилителей на интегральных схемах, число которых растет, и они совместимы по выводам с популярными TL071 и TL072 с одним и двумя входами на полевых транзисторах op.усилители. Для каскадов напряжения усилителя мощности, ни выходное напряжение, ни фазовый сдвиг, ни переходные характеристики большого сигнала такого op. Для каскадов усилителей мощности «Класса А» основными требованиями к конструкции были хорошая симметрия, высокое произведение коэффициента усиления / ширины полосы, хорошая переходная характеристика, соответствующие усилители. и низкие значения фазового сдвига в пределах звукового диапазона.

Для этой цели использовался широкий спектр схемных устройств, таких как источники постоянного тока, токовые зеркала, активные нагрузки и «пары с длинными хвостовиками» во многих оригинальных схемах.В качестве типичного примера схема схемы, показанная на рис. 5.20, первоначально использованная National Semi-wirectors Inc. в ее операционном усилителе LH0001 и принятая Hitachi в схеме, рекомендованной для использования с ее силовыми полевыми МОП-транзисторами, обеспечивает высокую степень симметрии. , поскольку Q 3 / Q 4 , действуя как токовое зеркало, обеспечивают активную нагрузку, эквивалентную симметрично работающему транзисторному усилителю, для транзистора оконечного усилителя, Q 6.

Рис. 5.20. Симметричный каскад с высоким коэффициентом усиления.

Эта схема обеспечивает усиление по напряжению около 200 000 на низких частотах, со стабильной фазовой характеристикой и высокой степенью симметрии. Происхождение и развитие этой схемы было проанализировано автором в работе Wireless World (июль 1982 г.).

Альтернативная компоновка схемы, разработанная Хафлером, была описана Э. Борбели ( Wireless World , март 1983 г.) и показана на рис. 5.21. Он намеренно выбран полностью симметричным, настолько быстрым, насколько позволяют характеристики транзистора, чтобы свести к минимуму любую тенденцию к ограничению скорости нарастания напряжения, возникающую в результате зарядки или разрядки паразитных емкостей через источники постоянного тока.Однако коэффициент усиления разомкнутого контура / контура несколько ниже, чем у схемы NS / Hitachi на рис. 5.20.

Рис. 5.21. Симметричный пуш-пул-сцена от Borbely.

И эмиттерные резисторы без обхода, и резисторы с подавлением полного сопротивления базовой цепи были свободно использованы в конструкции Borbely для линеаризации передачи и улучшения фазовых характеристик биполярных транзисторов, используемых в этой конструкции, и дальнейшего улучшения линейности выходного сигнала. Вытягивающие пары Дарлингтона (Q 5 / Q 6 / Q 8 / Q 9 ) получают с помощью каскодно подключенных буферных транзисторов Q 7 и Q l0 .

Особое достоинство каскодной схемы в аудиосистеме состоит в том, что ток, протекающий через каскодный транзистор, почти полностью управляется транзистором драйвера, включенным последовательно с его эмиттером. Напротив, коллекторный потенциал транзистора драйвера остается практически постоянным, что устраняет вредное влияние нелинейных внутренних сопротивлений утечки, зависящих от напряжения, или емкостей коллектор-база от устройства драйвера.

Очень высокая степень проработки, используемая в недавних высококачественных японских усилителях с целью улучшения характеристик усилителя, показана в схеме каскада усиления напряжения Technics SE — A100, показанной в несколько упрощенной форме на рис.5.22.

Рис. 5.22. Каскад усиления напряжения Technics.

В этой конфигурации входной пары с длинным хвостом, основанной на транзисторных полевых транзисторах (Q 1 , Q 4 с CC 1 ), чтобы воспользоваться преимуществом высокой линейности этих устройств, каскодная изоляция (с помощью Q 2 , Q 3 ) от схемы токового зеркала (CM 1 ), которая объединяет выходные сигналы входных устройств, чтобы максимизировать усиление и симметрию этого каскада, и управляет парным усилителем PNP Дарлингтона. stage (Q 5 , Q 6 ).

Выходной транзистор Q 6 управляет токовым зеркалом (CM 2 ) через каскодный изолирующий транзистор (Q 7 ) от коллектора Q 6 и еще один каскодный изолированный каскад усилителя (Q 8). , Q 9 ) от своего эмиттера, для которого токовое зеркало CM 2 служит активной нагрузкой. Усиленный диодный транзистор Q 10 служит для генерирования потенциала смещения постоянного тока, стабилизированного термистором (TH 1 ), для прямого смещения последующей двухтактной пары эмиттерных повторителей.

В качестве меры эффективности этой разработки схемы приведенные значения гармонических искажений для всего усилителя обычно составляют порядка 0,0002%.

Транзистор как усилитель тока

Закон Ома

Электричество и магнетизм

Транзистор как усилитель тока

Практическая деятельность для 14–16

Класс практический

Минутный ток в цепи база-эмиттер используется для управления гораздо большим током в цепи коллектор-эмиттер.

Аппаратура и материалы

На каждую студенческую группу

  • Транзистор NPN (если возможно, установить)
  • Амперметры, 0-100 мА., 2 (в зависимости от транзистора)
  • Элемент, 1,5 В в держателе
  • Ячейки, 1,5 В в держателе, 4 (или стабилизированный низковольтный источник постоянного тока)
  • Реостат
  • Резистор (680 Ом, 1 Вт)
  • Лампа в патроне, 6 В 60 мА.
  • Выводы, 4 мм, 10
  • Зажимы Crocodile, 3 (при необходимости)

Здоровье и безопасность и технические примечания

Поможет, если транзистор будет установлен на базе с тремя выводами 4 мм. В противном случае сделайте к нему соединения с помощью зажимов «крокодил».

Прочтите наше стандартное руководство по охране труда и технике безопасности

Процедура

  1. В транзисторе незначительный ток в цепи база-эмиттер используется для управления гораздо большим током в цепи коллектор-эмиттер.Расположите компоненты схемы, как показано на схеме, и подключите их следующим образом.
  2. Подключите реостат, чтобы сформировать делитель напряжения на элементе 1,5 В.
  3. Подключите ползунковый зажим к фиксированному сопротивлению 680 Ом., Один амперметр (диапазон
  4. 100 мА.) И вывод базы транзистора.
  5. Подключите один конец делителя напряжения к выводу эмиттера транзистора.
  6. Подключите коллектор транзистора к другому миллиамперметру (диапазон 100 мА.), фонарик и 6-вольтовый аккумулятор и обратно к эмиттеру (который уже подключен к делителю напряжения).
  7. Теперь попробуйте следующие эксперименты:
  8. Во-первых, оставьте цепь базы разомкнутой, без подключения к базе. Вы не увидите обнаруживаемого тока в цепи коллектора.
  9. Подключите базовую цепь. Напряжение для подходящего базового тока составляет менее 1 вольт. Начните без напряжения на делителе напряжения и увеличивайте напряжение до тех пор, пока не загорится лампа в цепи коллектора.
  10. Считайте миллиамперметр в этой цепи.
  11. Посмотрите на другой миллиамперметр в цепи база-эмиттер. Есть ли ток к базе? Если кажется, что тока нет, попробуйте включить и выключить питание и посмотреть, двигается ли стрелка миллиамперметра вообще.
  12. Ваш транзистор усиливает ток . Сравнение двух показаний миллиамперметра дает вам представление об усилении.
  13. Немного увеличьте базовый ток, что приведет к увеличению тока коллектора.Соотношение двух токов останется примерно постоянным.
  14. Ток коллектора стабилизируется примерно до 60 мА, что является пределом, установленным лампой в цепи. Любое дальнейшее увеличение базового тока не будет иметь дальнейшего эффекта.

Учебные заметки

  • Студенты, возможно, раньше не экспериментировали с транзисторами. Вы можете описать им транзистор так:
  • Транзистор — это крошечный кристалл из полупроводниковых материалов.Это скорее похоже на бутерброд из куска сыра между двумя ломтиками хлеба.
    • Эмиттер транзистора соответствует тонкому ломтику хлеба
    • База транзистора соответствует сыру
    • Коллектор транзистора соответствует толстому ломтику хлеба.
  • Транзистору требуется небольшое напряжение для протекания тока базы: менее 1 вольт. Это легко получить с помощью делителя напряжения (потенциометр ) на ячейке.-Возможно, вам потребуется убедиться, что учащиеся знакомы с использованием трехконтактного переменного резистора для снятия напряжения таким образом.
  • Учащиеся должны построить график зависимости тока коллектора от тока базы. Это один из нескольких возможных графиков характеристик транзистора.
  • Эксперимент можно расширить, добавив вольтметры. Затем студенты могли бы посмотреть, например, как ток базы и ток коллектора зависят от входного напряжения Vinput.

Этот эксперимент прошел испытания на безопасность в октябре 2006 г.

Усиление транзистора

The 2 встречных диодных перехода эмиттера и коллектора вынесены вперед смещен, когда ток течет из базы в NPN и в транзистор PNP .
A малый базовый ток управляет гораздо более большим током E-C который управляет нагрузкой (динамик, соленоид, свет и т. д.)



Усиливающий действие транзистора начинается с сигнала от преобразователя , такого в качестве микрофона, проигрывателя компакт-дисков или инструмента управления технологическим процессом и т. д.
Этот сигнал слабый, но при подаче на базу его достаточно для прямого смещения. эмиттер / коллектор и позволяют току течь пропорционально базовый ток.

Существует множество типов усилителей, но все они имеют одно и то же принципы.


Прирост это термин, используемый для описания количества усиления, которое усилитель способен. (также называется бета или H fe )

Пример: если сигнал с микрофона мощностью 10 милливатт усиливается до Тогда выходная мощность 1 ватт…
УСИЛЕНИЕ = P выход / P дюйм = 1000 МВт / 10 МВт = 100 (нет единицы, которую они делят !!)



УСИЛИТЕЛЬ ТЯГАЮЩИЙ

Усилитель Push Pull класса B — это типовой выходной каскад усилителя мощности



Усилители часто состоят из 2 или более ступеней для улучшения усиление.За каскадом предусилителя может последовать более мощный драйвер выходной каскад. Усилитель, в котором используются транзисторы PNP и NPN, — это Push. Усилитель тяги . Транзистор NPN усиливает положительную сторону волна, и PNP усиливает отрицательную сторону волны.


Этот двухступенчатый двухтактный усилитель имеет 2 ступени. Предусилитель и мощность.

Конденсаторы на входе и выходе позволяют попеременно подавать сигнал. ток к «пропустить» через при стабилизации транзистора схемы.


T

его аудио усилитель имеет 2 секции (левые правые каналы), каждая с транзистор большой мощности.

В радиаторы должны излучать тепло от транзисторы.



делать ты знаешь, как работают колонки?



транзисторная коммутация >>>>>>>

пара схем усилителя >>>>>


Усиливает ли транзистор ток или напряжение

Транзистор

— это устройство с регулируемым током.усиление тока только в обычном базовом режиме, происходит только усиление напряжения, в режиме общего коллектора происходит только усиление тока, в режиме общего эмиттера происходит усиление напряжения и тока.

Транзистор усиливает ток или напряжение?

Транзистор — это устройство, которое регулирует ток или напряжение и служит переключателем или затвором для электронных сигналов. Транзисторы состоят из трех слоев полупроводникового материала, каждый из которых способен поддерживать ток.Небольшое изменение тока или напряжения на внутреннем полупроводниковом слое (который служит управляющим электродом) вызывает большое и быстрое изменение тока, протекающего через весь слой. составная часть. Таким образом, компонент может действовать как переключатель, открывая и закрывая электронные ворота несколько раз в секунду.

Транзисторы

разработаны с учетом требований приложения, и это достигается путем изменения параметров конкретной категории транзисторов. найденный на нем алфавит также указывает категорию этого транзистора.Однако на рынке есть транзисторы, способные усиливать ток, а также напряжение или мощность в зависимости от их способности обрабатывать ток. Усилители высокой мощности — это транзисторы, способные выдерживать большой ток.

Транзистор

— это устройство с регулируемым током. поэтому он усиливает ток, а не напряжение. но также невозможно ввести ток в транзистор без напряжения. поэтому мы правильно поляризуем транзистор, чтобы мы могли подавать входной ток для усиления.

Аналогичным образом выходной ток также снимается на клемме коллектора, и в этой точке можно наблюдать усиление.

это усиление или коэффициент усиления транзистора равен?. для большинства транзисторов общего назначения он имеет значение от 20 до 200.

: транзистор может усиливать ток и напряжение, и он может делать и то, и другое одновременно.

Фактически он не усиливает ток, входящий в транзистор, но проверяет ток, входящий в базовый кабель, и позволяет передавать более высокий ток по шине питания и через кабели коллектор-эмиттер.говорят, что транзистор работает в режиме эмиттер-повторитель, чтобы это произошло. (и другие режимы тоже)

транзистор также может усиливать напряжение, видимое на базе.

это выполняется в синфазном режиме передатчика, когда передатчик подключен к шине 0 В, а коллектор имеет нагрузочный резистор.

  • , когда напряжение на базе очень близко к 0,6 В, транзистор находится как раз в той точке, где он горит, а напряжение на коллекторе будет 8 В для источника питания 9 В.
  • Если напряжение на базе увеличится на 50 мВ, транзистор включится еще больше, и напряжение на коллекторе упадет, скажем, до 3 В.
  • мы называем это повышение напряжения, потому что 50 мВ произвело изменение на 5000 мВ, и это усиление 100: 1 или 100-кратное усиление (100x)

в то же время нам может не понадобиться ток 0,1 мА для обеспечения 50 мВ подъема на базу транзистора, а коллектор может обеспечить 1 мА и 3 В для внешней нагрузки. это усиление по току, в 10 раз превышающее 100-кратное усиление по напряжению.

Базовый транзисторный усилитель — биполярные транзисторы

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Прежде чем перейти к простому транзисторному усилителю, вам следует ознакомиться с двумя терминами: УСИЛИТЕЛЬ и УСИЛИТЕЛЬ.Усиление — это процесс увеличения силы СИГНАЛА. Сигнал — это просто общий термин, используемый для обозначения любого конкретного тока, напряжения или мощности в цепи. Усилитель — это устройство, которое обеспечивает усиление (увеличение тока, напряжения или мощности сигнала) без существенного изменения исходного сигнала.

Транзисторы часто используются в качестве усилителей. Некоторые транзисторные схемы представляют собой усилители ТОКА с небольшим сопротивлением нагрузки; остальные схемы рассчитаны на усиление НАПРЯЖЕНИЯ и имеют высокое нагрузочное сопротивление; другие усиливают СИЛУ.

Базовый транзисторный усилитель (версия NPN)

Теперь взглянем на NPN-версию базового транзисторного усилителя на рисунке выше и посмотрим, как он работает.

Путем вставки одного или нескольких резисторов в схему могут быть достигнуты различные методы смещения, и эмиттер-база аккумулятор устранен. Помимо устранения батареи, некоторые из этих методов смещения компенсируют незначительное изменения характеристик транзистора и изменения проводимости транзистора в результате температурных отклонений.Обратите внимание на рисунок выше, что батарея эмиттер-база была удалена, а резистор смещения Rb был вставлен. между коллектором и цоколем. Резистор Rb обеспечивает необходимое прямое смещение для перехода эмиттер-база. Ток течет в цепи смещения эмиттер-база от земли к эмиттеру, через вывод базы и через Rb к Vcc. Поскольку ток в базовой цепи очень мал (несколько десятков микроампер) и прямое сопротивление цепи транзистор имеет низкий уровень, только несколько десятых вольт положительного смещения будут ощущаться на базе транзистора.Тем не мение, этого достаточно напряжения на базе, вместе с землей на эмиттере и большим положительным напряжением на коллекторе, правильно смещать транзистор.

При правильном смещении Q1 постоянный ток течет непрерывно, с входным сигналом или без него, на всем протяжении схема. Постоянный ток, протекающий по цепи, вызывает не только базовое смещение; он также развивает напряжение коллектора (Vc), протекающее через Q1 и Rl. Обратите внимание на напряжение коллектора на графике выхода.Поскольку он присутствует в схеме без входного сигнала, то выходной сигнал начинается с уровня Vc и либо увеличивается, либо уменьшается. Эти постоянные напряжения и токи, которые существуют в цепи до применения сигнала известны как напряжения и токи в состоянии покоя (состояние покоя схемы).

Резистор Rl, резистор нагрузки коллектора, помещен в схему, чтобы сохранить полный эффект коллектора. напряжение питания от коллектора. Это позволяет напряжению коллектора (Vc) изменяться в зависимости от входного сигнала, что, в свою очередь, позволяет транзистору усиливать напряжение.Без Rl в цепи напряжение на коллекторе всегда будет равно Vcc.

Конденсатор связи (Cc) — еще одно новое дополнение к схеме транзистора. Он используется для передачи входного сигнала переменного тока и заблокируйте постоянное напряжение от предыдущей схемы. Это предотвращает появление постоянного тока в схеме слева от муфты. конденсатор от воздействия смещения на Q1. Конденсатор связи также блокирует смещение Q1 от попадания на вход. источник сигнала.

На вход усилителя подается синусоидальная волна, которая колеблется на десятки милливольт выше и ниже нуля.Он вводится в цепь за счет конденсатора связи и применяется между базой и эмиттером. Когда входной сигнал становится положительным, напряжение на переходе эмиттер-база становится более положительным. Фактически это увеличивает прямое смещение, которое вызывает базовый ток увеличивается с той же скоростью, что и входной синусоидальный сигнал. Также увеличиваются токи эмиттера и коллектора. но намного больше, чем базовый ток. С увеличением тока коллектора на R1 возникает большее напряжение. С напряжение на Rl и напряжение на Q1 (коллектор-эмиттер) должны в сумме равняться Vcc, т.е. увеличение напряжения на Rl приводит к одинаковому снижению напряжения на Q1.Следовательно, выходное напряжение усилителя, снятое на коллектор Q1 по отношению к эмиттеру представляет собой отрицательное изменение напряжения, которое больше, чем входное, но имеет одинаковые характеристики синусоидальной волны.

Во время отрицательного изменения входа входной сигнал противодействует прямому смещению. Это действие уменьшает базу ток, что приводит к уменьшению как эмиттерных, так и коллекторных токов. Уменьшение тока через Rl уменьшается его падение напряжения и заставляет напряжение на транзисторе расти вместе с выходным напряжением.Следовательно, на выходе для отрицательного чередования входа — положительное чередование напряжения, которое больше, чем входное, но имеет те же характеристики синусоидальной волны.

Изучая как входные, так и выходные сигналы для одного полного чередования входа, мы можем видеть, что выход усилитель является точным воспроизведением входного сигнала, за исключением обратной полярности и увеличенной амплитуды. (десятки милливольт по сравнению с несколькими вольт).

Базовый транзисторный усилитель (версия PNP)

Версия PNP этого усилителя показана выше.Основное отличие NPN а усилитель PNP — полярность источника напряжения. При отрицательном Vcc базовое напряжение PNP немного отрицательное. относительно земли, что обеспечивает необходимое условие прямого смещения между эмиттером и базой.

Когда входной сигнал PNP становится положительным, он противодействует прямому смещению транзистора. Это действие отменяет некоторые из отрицательное напряжение на переходе эмиттер-база, которое снижает ток через транзистор.Следовательно напряжение на нагрузочном резисторе уменьшается, а напряжение на транзисторе увеличивается. Поскольку Vcc отрицательно, напряжение на коллекторе (Vc) идет в отрицательном направлении (как показано на выходном графике) в сторону -Vcc (например, от -5 вольт до -7 вольт). Таким образом, выходной сигнал представляет собой отрицательное изменение напряжения, которое изменяется с той же скоростью, что и выходное напряжение. входной синусоидальной волны, но имеет противоположную полярность и гораздо большую амплитуду.

Во время отрицательного изменения входного сигнала ток транзистора увеличивается, потому что входное напряжение помогает прямой уклон.Следовательно, напряжение на R1 увеличивается, и, следовательно, напряжение на транзисторе уменьшается или идет в положительном направлении (например: с -5 вольт до -3 вольт). Это действие приводит к положительному выходное напряжение, которое имеет те же характеристики, что и входное, за исключением того, что оно усилено и полярность наоборот.

Таким образом, входные сигналы в предыдущих схемах были усилены из-за небольшого изменения тока базы. вызвало большое изменение тока коллектора.И, поместив резистор Rl последовательно с коллектором, напряжение усиление было достигнуто.

Как транзистор действует как усилитель? — MVOrganizing

Как транзистор действует как усилитель?

Транзистор действует как усилитель, увеличивая силу слабого сигнала. Напряжение смещения постоянного тока, приложенное к переходу базы эмиттера, заставляет его оставаться в прямом смещенном состоянии. Таким образом, небольшое входное напряжение приводит к большому выходному напряжению, что показывает, что транзистор работает как усилитель.

Какой транзистор используется в качестве усилителя?

Существует несколько конфигураций с использованием транзисторов NPN, но мы будем использовать «конфигурацию с общим эмиттером», потому что она позволяет получить высокий коэффициент усиления по напряжению. Почему его называют «усилителем с общим эмиттером»? — поскольку база — это вход, коллектор — это выход, а «общий» или земля — ​​это эмиттер.

Как транзистор работает как переключатель и усилитель?

Превращая небольшой входной ток в большой выходной ток, транзистор действует как усилитель.Но в то же время он действует как переключатель. Когда на базу нет тока, ток между коллектором и эмиттером практически отсутствует. Таким образом, ток базы включает и выключает весь транзистор.

В чем разница между транзистором и усилителем?

В этом смысле усилитель модулирует выходной сигнал источника питания, чтобы выходной сигнал был сильнее входного. Транзистор — это полупроводниковое устройство, используемое для усиления и переключения электронных сигналов и электроэнергии.

Какие бывают усилители?

Транзисторные усилители:

  • Усилители напряжения: это наиболее распространенные усилители, используемые в электронных устройствах.
  • Усилители тока:
  • Усилители мощности:
  • Усилители звуковой частоты (A.F.
  • Усилители промежуточной частоты (I.F.
  • Радиочастотные усилители (R.F.
  • )
  • Ультразвуковые усилители:
  • Широкополосные усилители:

Какие типы транзисторов?

Транзисторы

в целом делятся на три типа: биполярные транзисторы (транзисторы с биполярным переходом: BJT), полевые транзисторы (FET) и биполярные транзисторы с изолированным затвором (IGBT).Биполярный транзистор — это тип транзистора, в котором в качестве носителей заряда используются как электроны, так и дырки.

Какие бывают 2 типа транзисторов?

Типы транзисторов и обозначения их схем Ранее мы упоминали, что существует два типа транзисторов; Биполярные и полевые транзисторы. В этом разделе мы углубимся в каждый тип транзистора и объясним, как он работает.

Каков принцип работы транзистора?

Транзистор состоит из двух PN-диодов, соединенных спина к спине.Он имеет три вывода: эмиттер, базу и коллектор. Основная идея транзистора заключается в том, что он позволяет вам управлять потоком тока через один канал, изменяя интенсивность гораздо меньшего тока, протекающего через второй канал.

Какие два основных типа транзисторов?

Типы транзисторов

  • Существует два типа стандартных транзисторов (с биполярным переходом), NPN и PNP, с разными обозначениями схем, как показано.
  • Выводы помечены как база (B), коллектор (C) и эмиттер (E).
  • Помимо транзисторов с биполярным переходом, существуют полевые транзисторы, которые обычно называют полевыми транзисторами.

В каких 5 устройствах используются транзисторы?

Транзисторы

также используются в кардиостимуляторах, слуховых аппаратах, фотоаппаратах, калькуляторах и часах. Большинство этих устройств питаются от крошечных батарей. Большинство космических аппаратов также используют микрочипы и, следовательно, транзисторы. Транзистор — это действительно «нервная клетка» информационного века.

Что такое транзистор и его применение?

Транзисторы

— это трехконтактное полупроводниковое устройство, используемое для регулирования тока или для усиления входного сигнала в более сильный выходной сигнал.Транзисторы также используются для переключения электронных сигналов. Циркуляция электрического тока через все типы транзисторов регулируется добавлением электронов.

Какая единица измерения у транзистора?

Другими словами, это переключающее устройство, которое регулирует и усиливает электрический сигнал, например напряжение или ток. Транзистор состоит из двух PN-диодов, соединенных спиной друг к другу. Он имеет три вывода: эмиттер, базу и коллектор. Основа — это средняя часть, состоящая из тонких слоев.

Что такое схема транзистора?

На схеме «A» показан NPN-транзистор, который часто используется в качестве переключателя. Небольшой ток или напряжение на базе позволяет большему напряжению проходить через два других вывода (от коллектора к эмиттеру). Схема, показанная на схеме B, основана на транзисторе NPN.

Что означает транзистор PNP?

PNP против транзистора NPN

Транзистор PNP Транзистор NPN
Символ
Напряжение коллектор-эмиттер отрицательный Положительно
Излучатель стрелка Указывается на Выделено

Какой тип транзистора наиболее распространен?

МОП-транзистор

Какой транзистор лучше всего переключать?

Лучшие транзисторы: БЮЦ

  • # 1 NPN — 2N3904.Чаще всего вы можете встретить NPN-транзисторы в схемах переключателя низкого напряжения.
  • №2 ПНП — 2Н3906. Для цепей переключателя высокого напряжения вам понадобится BJT типа PNP.
  • # 3 Питание — TIP120.
  • # 4 N-канал (логический уровень) — FQP30N06L.

Какой транзистор лучше всего подходит для аудиоусилителя?

4 ответа. Вы можете успешно собрать аудиоусилитель из разных типов BJT. Это будет схема, а не транзистор, который заставит усилитель работать хорошо. Я бы выбрал желейные детали, такие как 2N4401 (NPN) и 2N4403 (PNP), и придерживался их для всего, кроме транзисторов конечной выходной мощности.

Какой транзистор PNP или NPN лучше?

Транзистор NPN имеет электроны в качестве основных носителей заряда, тогда как транзистор PNP имеет дырки в качестве основных носителей заряда. Подвижность электронов лучше подвижности дырок. подвижность электронов больше, чем у дырок, поэтому транзисторы npn быстрее, чем pnp, поэтому они предпочтительнее.

PNP нормально открыт?

PNP — (транзистор PNP) NO — нормально открытый, это означает, что на выходе нет напряжения, пока датчик не сработал (см. Рисунок, выходной разъем датчика PNP отсутствует.4).

NPN быстрее, чем PNP?

Таким образом, транзистор NPN работает быстрее, чем транзистор PNP. Основными носителями заряда в транзисторе NPN являются электроны, а в транзисторе PNP — дырки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *