Как устроен трансформатор | Двигатель прогресса
May 22, 2015
Трансформатор (от лат. transformare , изменить, преобразовать) представляет собой электромагнитное устройство, которое преобразует электрическую энергию от одной системы к другой при помощи электромагнитной индукции без изменения частоты, является неотъемлемой частью электрических систем. Трансформаторы могут быть самых разных размеров от малого, внутри электронного прибора, до огромных, используемых в электросетях, мощностью до нескольких мегаватт.
История
Закон электромагнитной индукции, на котором основана работа трансформатора, был открыт Фарадеем в 1831 году. В том же году Фарадей представил «кольцо индукции», первый прототип трансформатора. Он использовал его для демонстрации принципа электромагнитной индукции и не видел в нем практического применения.
Первая «индукционная катушка» была изобретена Николаем Иосифом Каллан в Ирландском национальном университете Мейнут в 1836 году.
Между 1830 и 1870 годами исследования индукционных катушек, в основном методом проб и ошибок, позволили определить принципы работы трансформатора. В 1848 году французский инженер Г. Румкорф представил индукционную катушку особой конструкции, которая стала прообразом трансформатора. Устройства пригодного для практического применения не появлялось до 1880 года, но в течение следующих десяти лет трансформаторы сыграли важнейшую роль в развитии электричества.
В 1876 году российский инженер Павел Николаевич Яблочков изобрел систему освещения на основе набора катушек индуктивности. Первичная обмотка катушек подключалась к источнику питания переменного тока, а вторичная к нескольким лампам. Катушки, используемые в системе, работали по принципу трансформатора. В патенте указывалось «источник различных точек света с различной интенсивностью от одного источника питания».
В 1882 году в Лондоне Люсьен Галард и Джон Гиббс впервые представили «вторичный генератор» – устройство с металлическим сердечником, а затем продали идею американской компании Westinghouse Electric. Подобная система была разработана в Турине, Италия, где она использовалась в системах электрического освещения.
В 1883 году группа инженеров венгерской компании «Ganz & K» разработала и запустила в производство трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов. Они использовались для производства осветительного оборудования в Австрии и Венгрии.
В конце 1880-х годов инженеры Westinghouse Electric разработали масляную систему охлаждения трансформатора. Основные элементы трансформатора помещались в емкости с маслом для охлаждения, что позволило существенно повысить эффективность изоляции обмоток. Эта же американская компания начала использовать трансформатор в коммерческих целях, что привело к дополнительному интересу к этому устройству множества ученых.
Принцип работы и основные элементы
Трансформатор представляет собой устройство, которое преобразует напряжение переменного тока определенного уровня в напряжение переменного тока другого уровня. Работа трансформатора основана на двух базовых принципах: электромагнетизм и электромагнитная индукция. Трансформатор, как правило, состоит из двух изолированных друг от друга катушек проводящего материала, намотанной на том же ядре. Ядро, как правило но из электротехнической стали – сплава оптимизирующего магнитный поток. На первичную обмотку подаётся напряжение от внешнего источника. Переменный ток в первичной обмотке создает магнитный поток. Этот поток будет вызывать электромагнитную индукцию, появление электродвижущей силы во вторичной обмотке. Напряжение во вторичной обмотке, непосредственно зависит от отношения количества витков к числу витков первичной обмотки.
Основными компонентами трансформатора являются: магнитопровод, обмотка, каркас обмотки, изоляция, система охлаждения, прочие вспомогательные элементы.
Магнитная система трансформатора(магнитопровод) изготовлена из кремнийсодержащих ферритных сплавов стали с высокой магнитной проницаемостью. Предназначается для локализации магнитного потока в пределах трансформатора. Конструкция может состоять из набора тонких пластин с изоляционным слоем между каждой, тонкой ленты, нескольких «подков» и др. Магнитная система в сочетании со всеми деталями необходимыми для скрепления всех узлов в единую конструкцию называется остовом трансформатора.
Обмотка – совокупность электрических проводников обернутых вокруг сердечника (витков) образующих электрическую цепь. Суммарный электрический ток каждого витка определяет суммарную электродвижущую силу трансформатора. Большее число витков вызывает более высокое напряжение. Обмотка трехфазного трансформатора представляет собой совокупность обмоток каждой из трех фаз соединенных между собой. В качестве материала, используемого в обмотке трансформатора с учетом его применения, используется проводящие металлы и сплавы.
Обычно используется проводящий элемент квадратного сечения (жила). Для более мощных трансформаторов, с целью улучшения функционирования обмотки, сечение жилы может быть разделено на несколько параллельных проводящих элементов. Каждая жила изолируется при помощи тонкой (несколько микрометров) промасленной бумаги или эмали.
Чтобы избежать избыточного нагрева и потерь в трансформаторе применяется система охлаждения. В низковольтных трансформаторах применяется «сухая» система охлаждения с применением изолирующих синтетических смол. В более высоковольтных трансформаторах для отвода избыточного тепла используется масло, как правило минеральное.
Основные виды трансформаторов
Силовой трансформатор используется для преобразования электроэнергии в электрических сетях. Название «силовой» подразумевает возможность работы с напряжением большой мощности. Их применение необходимо для доставки конечному потребителю электроэнергии необходимой мощности. Напряжение в линиях электропередач может достигать 750 кВ, тогда как напряжение требуемое для работы электроприборов в сети конечного потребления колеблется от 220 до 380 В. Для обеспечения работы применяется одна или несколько вторичных обмоток. Часто используется предохранитель предотвращающий возникновению пожара при перегреве трансформатора.
Автотрансформатор – вариант с последовательным соединением первичной и вторичной обмоток. За счет этого связь между обмотками не только электромагнитная, но и электрическая. Такой трансформатор меньше и дешевле, используется для преобразования напряжения с незначительной разницей между входящим и выходным. Имеет высокий КПД. Недостатком является отсутствие гальванической развязки между обмотками.
Трансформатор тока используется для снижения первичного тока источника до величины требуемой для защиты, измерения, сигнализации и др. Первичная обмотка подсоединяется в цепь переменного тока который необходимо измерить или защитить, а вторичная к измерительному прибору.
Трансформатор напряжения, по области применения, схож с трансформатором тока. Применяется для преобразования высокого напряжения в измерительных цепях. Также существуют: импульсные трансформаторы, разделительные, согласующие, пик-трансформатор, трансфлюксор.
Как устроен трехфазный трансформатор | Русэлт
Трансформатор представляет собой магнитное устройство, заряженное статическим электричеством. Он нужен для преобразования напряжений электрического тока. При этом его частота остаётся неизменной. Существует несколько видов подобных устройств. Один из них-это трёхфазный трансформатор.
Особенности в конструкции устройства
Трансформаторы состоят из следующих частей:
- Обмотка в каркасе.
- Магнитопровод.
- Изоляция.
- Охлаждающая система.
- Элементы для установки и защиты аппарата.
Около стержня трансформатора располагаются обмотки низшего напряжения, на которых размещаются провода с высоким напряжением. Их фазы снабжаются пометками, которые предотвращают неправильное соединение.
Фазы и обмотки аппарата
Среди электромагнитных устройств данного типа выделяется трёхфазный трансформатор. Он имеет магнитную и гальваническую связи фаз. Наличие схемы первого типа обусловлено соединением магнитопроводов в одну систему. При этом потоки магнитного воздействия расположены относительно друг друга под углом 120 °. Стержень в данной системе не нужен, так как при объединении центров трёх фаз сумма электромагнитных русел равняется нулю вне зависимости от времени. Благодаря этому схема с шестью стержнями преобразуется в трёхстержневую.
В соединении обмоток устройства можно использовать схемы трёх типов:
- Соединение в виде звезды может осуществляться с выводом от общих точек или же без него. Здесь каждую обмотку соединяют с нейтральной точкой.
- По треугольной схеме фазы соединяются последовательно.
- Зигзаг-это схема, которая чаще всего применяется во время отвода от общей точки. В ней соединяются три обмотки, расположенные на разных стержнях магнитопроводов.
Применение трёхфазного трансформатора является более экономичным, чем использование соединённых однофазных конструкций. Наш сайт предлагает приобрести надёжную аппаратуру, качество которой подтверждено сертификатами. Благодаря этому покупатель может быть уверенным в безопасности и долговечности приобретаемого товара.
Что такое трансформатор и как его проверить 🔴
Сварочный аппарат, микроволновка, компьютер, блок питания, телевизор — такие разные электроприборы но в каждом из них есть трансформатор. Как прозвонить обмотки и замерить напряжение выдаваемое трансформатором, как посчитать допустимую мощность и что такое ток холостого хода — вопросы на которые Вы получите исчерпывающие ответы и несколько практических советов по работе с трансформаторами. В конце расскажу о трансформаторе тока и где он используется.
Для чего нужен трансформатор?
Основное свойство трансформатора преобразование напряжения или тока до требуемого значения и гальванической развязки — это очень полезное свойство трансформаторов о котором расскажем ниже.
И так, например, в домашней электро-розетке напряжение 220 вольт 50 герц (AC — так на схемах и блоках питания обозначают переменное напряжение — AC 220v 50hz), т.е., переменное напряжение, а для питания ноутбука нам нужно 18 вольт постоянного тока (DC — так обозначается постоянное напряжение DC 18v). С помощью трансформатора мы можем преобразовать напряжение до требуемой величины, а затем выпрямить его. После чего, это напряжение будет пригодно для питания Вашего ноутбука. Не совсем понятно? Не хватает термина — Коэффициент трансформации.
Как рассчитать обмотки трансформатора
В нашем примере, 220/18=12,22 это соотношение количества витков обмоток и это значение коэффициента трансформации.
Зная, коэффициент трансформации , этим числом можно посчитать количество витков трансформатора. Если поменять обмотки, т.е., подать напряжение 220 вольт на вторичную обмотку, с первичной мы получим 2688 вольт — но делать так я не рекомендую, транс сгорит сразу или выбьет автомат в щитке.
Допустим, вы знаете что в первичной обмотке транса 2200 витков, а сколько витков должно быть во вторичной обмотке для получения 18 вольт? Все просто, 18 (напряжение в вольтах)*12,22 (коэффициент трансформации) = 220 витков.
Как устроен трансформатор?
Простейший трансформатор, это две независимых обмотки связанных магнитопроводом. В первой обмотке создается магнитное поле, затем через магнитопровод передается на вторую обмотку, в которой в зависимости от коэффициента трансформации повышается или понижается. На самом деле, все значительно сложнее, много факторов влияющих на выходное напряжение, но для данного контекста этого достаточно.
Какие бывают трансформаторы?
- — Повышающий трансформатор (высоковольтный) — повышает напряжение до требуемой величины, но снижает ток пропорционально. При повышении напряжения более чем 20-30 раз большое значение имеет КПД трансформатора, как правило для частоты 50 герц это предел, дальше начинаются значительные потери. Для повышения КПД трансформаторов увеличивают частоту, так высоковольтный трансформатор в электро-шокере повышает напряжение до 20-100 тысяч вольт и работает на частотах от 800гц до 2,4кгц. При этом, ток пропорционально снижается.
- — Понижающий трансформатор (силовой) — понижает напряжение до требуемой величины, пропорционально увеличивает допустимый ток. Например сварочный аппарат, снижает напряжение до 50 вольт (в 4,4 раза), увеличивает ток в 4,4 раза. Но для соблюдения этого условия сечение провода во вторичной обмотке тоже, должно быть больше в 4,4 раза.
Автотрансформатор (ЛАТР) — понижающий трансформатор с одной обмоткой, с которой с помощью ручки реостата, получают напряжение от 1 до 180 вольт. Такие трансы используются в лабораторных условиях для проверки различных устройств. В быту используется в некоторых регуляторах напряжения.
Масляный трансформатор — трансформатор монстр! с обмотками трубами, заполненными минеральным маслом. Такие устанавливают в силовых подстанциях для снижения напряжения с 10000 вольт до 220. Если передавать на большое расстояние напряжение в 220 вольт по обычным проводам, потери будут значительны. Как известно, чем выше напряжение, тем меньше влияет сопротивление провода. С ТЭЦ и ГРЭС по Линиям Электро Передач передается вообще 100000 вольт!
Импульсный трансформатор — без него не обходится не один современный электроприбор, будь то ТВ, ноутбук, компьютер или зарядник для телефона. Как правило работает на частотах свыше 800гц в паре с контроллером ШИМ который увеличивает частоту импульсов в возрастанием нагрузки. Гениальное изобретение, позволяющее получать большие токи при скромных размерах. Сравните размеры традиционного сварочного аппарата и сварочного инвертора работающего на этом принципе.
Как отличить первичную обмотку от вторичной в трансформаторе
Существует три основных признака первичной обмотки трансформатора:
1) В понижающем трансформаторе сопротивление первичной обмотки значительно выше, чем вторичной.
2) Как правило, первичная обмотка наматывается более тонким проводом.
3) Первичная обмотка транса наматывается ближе к магнитопроводу для увеличения КПД трансформатора.
4) Если трансформатор запаян в схему, можно посмотреть по выводам. Во вторичной обмотке, как правило включается диодный мостик и за ним электролитический конденсатор большой емкости (от 1000мкф). В первичной, обычно ставят предохранитель.
Подробно, как определить где первичная обмотка смотрите видео ниже.
В некоторых трансформаторах устанавливают самовосстанавливаемый предохранитель, его скрывает защитная пленка на первичной обмотке. Я часто сталкивался с обрывом обмотки, который на самом деле оказывался сгоревшим предохранителем. Вскрываешь защитную пленку, перепаиваешь и вуаля! Заработало!
Как прозвонить обмотки трансформатора?
Если в вашем распоряжении цешка или мультиметр, выяснить где и какая обмотка не так сложно. Включаем тестер в режим измерения сопротивления (100ом) и прозваниваем выводы трансформатора. Допустим, тестер показал на одной из обмоток 89ом, на другой всего 7ом — соответственно это вторичка.
Как узнать ток холостого хода у трансформатора?
Ток холостого хода — это ток, который транс потребляет без нагрузки, чем он ниже, тем качественнее рассчитан и изготовлен трансформатор. Низкое качество магнитопровода, межвитковое замыкание, неправильное подключение увеличивают ток холостого хода. Этот ток преобразуется в тепло и если он велик (более 20-100ма) транс может сгореть. Переключите тестер в режим измерения тока и включите последовательно с первичной обмоткой трансформатора. по результату измерения, решайте сами не опасно ли использовать такой трансформатор.
Как найти первичную обмотку и проверить трансформатор — смотрите видео:
Принцип работы понижающего трансформатора напряжения и его устройство
Большинство электрических инструментов, приборов, оборудования работает от сетевого напряжения переменного тока, равного 220 В. Но для низковольтных электропотребителей – галогенных осветительных приборов, низковольтных обогревателей, светодиодных светильников и других – его значение снижают до определенной величины. Для решения этой задачи применяются аппараты без подвижных компонентов – понижающие трансформаторы, которые понижают величину напряжения до нужного значения, оставляя частоту неизменной. Различные модели этих аппаратов могут использоваться в энергетической отрасли, промышленности, а также в быту для получения значения напряжения, безопасного для пользователя.
Устройство и принцип работы понижающего трансформатора
В состав аппарата входит ферромагнитный сердечник с двумя обмотками – первичной и вторичной. На обмотки наматываются проводники, каждый слой которых изолируется кабельной бумагой. Поперечное сечение проводника может быть круглым или прямоугольным (шина).
Первичная и вторичная обмотки между собой электрически не контактируют. Отсутствие электроконтакта обеспечивают изоляционные прокладки, изготовленные из электрокартона или других изоляторов. Большинство аппаратов со всеми компонентами заключается в защитный корпус.
Принцип действия:
- На первичную обмотку, имеющую большее количество витков по сравнению с вторичной, поступает сетевой ток. Он образует магнитное поле, пересекающее вторичную обмотку.
- Во вторичной обмотке образуется ЭДС, под воздействием которой генерируется выходное напряжение со значением, необходимым для электропитания электронных приборов. Отношение входного (высокого, ВН) напряжения к выходному (низкому, НН) равно отношению количества витков первичной обмотки к числу витков вторичной. Конструкция понижающего трансформатора может предусматривать одновременное подключение нескольких низковольтных потребителей.
- В ходе трансформации происходят потери мощности, равные примерно 3 %.
Понижающие трансформаторы не меняют частоту тока. Для ее изменения, в том числе для получения постоянного тока, в схему включают выпрямители. Чаще всего они представляют собой диодные мосты. Современные приборы могут дополняться другими полупроводниковыми и интегральными схемами, которые улучшают эксплуатационные характеристики аппаратов.
Чтобы определить, какой перед вами трансформатор – понижающий или повышающий, необходимо посмотреть маркировки обмоток. В понижающем аппарате первичной является высоковольтная обмотка, которая маркируется буквой «Н», вторичной – низковольтная обмотка, обозначаемая буквой «Х». В повышающем устройстве первичной является низковольтная обмотка «Х», вторичной – высоковольтная «Н».
Виды понижающих трансформаторов
В зависимости от конструктивных особенностей и принципа действия выделяют следующие типы устройств:
- Стержневые. Эти модели, в которых обмотки располагаются вокруг сердечников магнитопровода, обладают средней или высокой мощностью. Стержневые понижающие трансформаторы имеют простую конструкцию, их обмотки легко изолировать, обслуживать и осуществлять ремонт. Их разновидность – броневые аппараты, в которых обмотки «броней» охватывают магнитопровод. Это простой и дешевый аппарат, но его трудно обслуживать и ремонтировать.
- Тороидальные. Сердечник в таких аппаратах имеет форму тора. Тороидальные модели применяются в маломощных радиоэлектронных устройствах. Они легкие, имеют небольшие размеры, позволяют достигать высокой плотности тока. Ток намагничивания – минимальный. Аппараты могут выдерживать достаточно высокие температуры.
- Многообмоточные. Имеют две или более вторичных обмоток. Позволяют получать несколько значений выходного напряжения, то есть обеспечивают питание нескольких потребителей.
По роду тока, с которым работают трансформаторы, их разделяют на:
- Однофазные. Наиболее распространенный тип, имеющий профессиональное и бытовое применение. Фазный и нулевой провода электропроводки подсоединяются к первичной обмотке.
- Трехфазные. Востребованы в энергетике, на производственных предприятиях, реже – в бытовых условиях. Служат для трансформации трехфазного напряжения.
Для чего нужен понижающий трансформатор
Разнообразие конструкций, имеющихся в продаже, позволяет выбрать оптимальную модель для конкретной области применения:
- В энергетической индустрии используют понижающие аппараты высокой мощности – до 1000 МВА. Выпускаемые модели – 765/220 кВ, 410/220 кВ, 220/110 кВ.
- Для адаптации высокого напряжения к параметрам бытовой электросети используют малые распределительные трансформаторы, мощность которых достигает 1-5 МВА. На стороне высокого напряжения могут быть предусмотрены значения 10, 20, 35 кВ, на низкой – 400 или 230 В.
- Для бытовой техники обычно применяют трансформаторы, изменяющие напряжение с 220-230 В до 42, 36, 12 В. Конкретная величина Uвых определяется требованиями потребителя.
При подборе оптимальных устройств учитывают суммарную мощность потребителей, напряжение на входе и выходе, необходимость (или ее отсутствие) изменения частоты, габариты и массу.
Как устроен блок питания, часть 4. Силовой трансформатор блока питания. Устройство импульсного блока питания
Как я уже сказал, речь сегодня пойдет о силовом трансформаторе, а также об узле, именуемом Снаббер.И если трансформатор наверное знает большинство, то снаббер в основном те, кто занимается блоками питания более плотно.
Весь узел на фото выделен красным, а снаббер я обвел зеленым.
Также его можно увидеть в народном блоке питания. На фото я вычеркнул диод, не имеющий отношения к снабберу.
И в моем самодельном блоке питания. Здесь его схема отличается и об этом я расскажу немного позже.
Схема типового обратноходового блока питания думаю знакома многим, подобные схемы часто встречаются в моих обзорах.
Выделим из нее ту часть, о которой я и буду рассказывать.
В нее входит снаббер, трансформатор, входной конденсатор и высоковольтный транзистор.
Отсечем ту часть, которая не имеет отношения к теме разговора, останется совсем мало деталей, думаю что так будет проще для понимания процессов.
Что же происходит в импульсном блоке питания во время работы.
Сначала открывается силовой ключ, через цепь выделенную красным, течет ток, энергия в это время запасается в магнитопроводе трансформатора.
После закрытия ключа полярность на обмотках трансформатора меняется на противоположную и ток начинает течь в нагрузку.
Но так как трансформатор и выходные цепи неидеальны, то на первичной обмотке возникает выброс напряжения, который начинает течь через снаббер.
Если вы посмотрите внимательно, то увидите, что начала обмоток помеченные точками, одинаково сориентированы по отношению к диодам D1 и D2, потому во время открытого состояния силового ключа эти цепи не работают.
Функция снаббера поглотить паразитный выброс, который возникает в первичной обмотке и тем самым защитить высоковольтный транзистор. У некоторых совсем дешевых блоках питания снаббера нет вообще, и это весьма вредно, так как снижает надежность.
В типовом блоке питания данный участок схемы выглядит так. Номиналы подбираются в зависимости от индуктивности обмотки трансформатора, частоты работы и мощности блока питания. Я не буду рассказывать о методике расчета, это довольно долго, но скажу лишь что здесь не работает принцип — чем больше, тем лучше, цепь должна быть оптимальная для определенных условий.
Некоторые наверное увидели диод в схеме снаббера и подумали — что-то знакомое.
Да, так и есть, ближайший аналог, это цепь защиты транзистора, который коммутирует питание обмотки реле. В данном случае он выполняет похожую функцию, не допускает выброса напряжения на транзисторе при выключении. Кстати если диод в этой схеме заменить стабилитроном, то работать должно лучше.
Так как вариант с диодом неприменим в варианте с трансформатором, то последовательно с ним ставят либо резистор с конденсатором, либо супрессор, как на этой схеме.
Еще одно новое слово — супрессор. Не пугайтесь, супрессор это по сути просто стабилитрон, но если у стабилитрона функция обеспечить стабильное напряжение, то у супрессора акцент сделан на импульсный ток и рассеиваемую мощность, стабильность напряжения в данном случае не так важна.
Выглядит он как обычный диод, при этом бывает двунаправленным, но тогда катод не маркируется. Наиолее распространенные супрессоры серий P6KE и 1.5KE. Первый имеет импульсную мощность 600 Ватт, второй 1500 Ватт. Существуют и более мощные, но нас они не интересуют.
Я немного переверну схему так, чтобы было более понятно как работает эта схема. В подобных схемах чаще применяют супрессоры на напряжение в 200 Вольт, например P6KE200A.
Благодаря этому напряжение на обмотке трансформатора не может быть больше чем 200 Вольт. Напряжение на входном конденсаторе около 310 Вольт.
Получается что на транзисторе напряжение около 510 Вольт. На самом деле напряжение будет немного выше, так как детали неидеальны, а кроме того в сети может быть и более высокое напряжение.
В даташитах к микросхемам серии ТОР часто была показана именно такая схема включения супрессора.
Такая схема имеет более жесткую характеристику ограничения, так как до 200 Вольт не ограничивает совсем, а потом старается обрезать все что выше 200 Вольт. Схема с конденсатором имеет немного другую характеристику ограничения, но на самом деле это не критично.
Для уменьшения мощности, рассеиваемой на супрессоре, параллельно ему можно подключить конденсатор.
Или вообще сделать гибрид из двух схем, где есть все элементы обоих вариантов, такое часто применяется в мощных обратноходовых блоках питания.
Иногда применяется альтернативный вариант защиты транзистора, супрессор включенный параллельно ему. Такой вариант применяется довольно редко, чаще в блоках питания имеющих низкое входное напряжение.
Например такое включение супрессора можно увидеть в РоЕ блоке питания, входное напряжение здесь не 310 Вольт постоянного тока, а всего до 70 Вольт.
Теперь можно перейти к трансформатору.
Трансформатор состоит из магнитопровода и каркаса, иногда конструкция дополняется специальным скобами, которые фиксируют магнитопровод на каркасе.
Чаще всего для них используются Ш-образные магнитопроводы. Если блок питания обратноходовый, каким является подавляющее большинство недорогих маломощных блоков питания, то между половинками магнитопровода должен быть зазор. Зазор делается либо между половинками, либо используется специальный магнитопровод, где центральный керн уже имеет зазор, а этом случае ширина зазора должна быть в два раза больше.
Обычно в качестве материала магнитопровода используется феррит, у фирменных магнитопроводов может быть нанесена маркировка и по даташиту можно узнать его характеристики, у более дешевых магнитопроводом чаще маркировки нет.
Вначале мотаются обмотки трансформатора, а затем на этот магнитопровод устанавливается каркас.
Процесс намотки мелких трансформаторов довольно прост.
Сначала мотаем первичную обмотку.
Затем вторичную, иногда в два и более проводов.
Если есть третья обмотка, чаще всего это обмотка питания ШИМ контроллера, то мотаем и ее.
В целях безопасности изолируем всю конструкцию.
После этого берем подобранный магнитопровод, в данном случае здесь у одной половинки средний керн укорочен.
Собираем всю конструкцию вместе. Магнитопровод чаще всего склеивается, но я обычно дополнительно фиксирую скотчем.
В итоге получаем небольшой аккуратный трансформатор. На фото трансформатор мощностью около 25-30 Ватт.
Этот трансформатор уже имеет мощность до 80-100 Ватт. Мотаются они подобным образом, но с некоторыми отличиями.
У трансформаторов рассчитанных на низкое выходное напряжение и большой ток выходная обмотка может мотаться либо литцендратом, либо шиной.
Величина выбора с первичной обмотке напрямую зависит от правильности намотки трансформатора и если для маломощных трансформаторов это не очень критично, то неправильная намотка мощного трансформатора может привести к печальным последствиям.
Обычно наматывают обмотки в три слоя (если используется три обмотки), первичная, вторичная и вспомогательная.
Но связь между обмотками можно сильно улучшить если вторичную обмотку разместить между двумя половинами первичной.
Кроме того рекомендуется мотать провод не внавал, а виток к витку, равномерно заполняя всю площадь каркаса. Обмотки рассчитанные на большой ток мотать лучше несколькими тонкими проводами, а не одним толстым.
Проблемы, которые могут возникнуть в этом узле:
1. Межвитковое КЗ в случае выхода из строя высоковольтного транзистора.
2. Перегрев трансформатора, последующее резкое уменьшение его индуктивности и выход из строя транзистора инвертора
3. Пробой диода снаббера, крайне редко.
4. Частичный пробой супрессора, например супрессор на 200 Вольт превращается в супрессор на 100 Вольт, ничего не выгорает, но БП не работает.
Как проверить трансформатор мультиметром ⋆ diodov.net
Начинающим радиолюбителям очень полезно уметь и знать, как проверить трансформатор мультимтером. Такие знания полезны по той причине, что позволяют сэкономить время и деньги. В большинстве линейных блоков питания львиную долю стоимости составляет трансформатор. Поэтому, если в руках оказался трансформатор с неизвестными параметрами не спешите его выбрасывать. Лучше возьмите в руки мультиметр. Также для некоторых опытов нам понадобится лампа накаливания с патроном.
С целью более осознанного выполнения дальнейших опытов и экспериментов следует понимать, как устроен и работает трансформатор трансформатора. Рассмотрим здесь это в упрощенной форме.
Простейший трансформатор представляет собой две обмотки, намотанных на сердечник или магнитопровод. Каждая обмотка представляет собой изолированные друг от друга проводники. А сердечник набирается из тонких изолированных друг от друга листов из специальной электротехнической стали. На одну из обмоток, называемую первичной, подается напряжение, а со второй, называемой вторичной, оно снимается.
При подаче переменного напряжения на первичную обмотку, поскольку электрическая цепь замкнута, то в ней создается пуль для протекания переменного электрического тока. Вокруг проводника с переменным током всегда образуется переменное магнитное поле. Магнитное поле замыкается и усиливается посредством сердечника магнитопровода и наводит во вторичной обмотке переменную электродвижущую силу ЭДС. При подключении нагрузки ко вторично обмотке в ней протекает переменный ток i2.
Этих знаний на еще не достаточно, чтобы полностью понимать, как проверить трансформатор мультиметром. Поэтому рассмотрим еще ряд полезных моментов.
Как проверить трансформатор мультимтером правильноНе вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах
E ~ w.
Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.
Так как
E1 > E2,
то
w1 > w2.
Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:
S1 = S2.
А так как мощность – это произведение тока i на напряжение u
S = u∙i,
то
S1 = u1∙i1; S2 = u2∙i2.
Откуда получаем простое уравнение:
u1∙i1 = u2∙i2.
Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток. Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция. Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.
Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:
kт = w1 / w2 = E1 / E2.
Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.
Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков. Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины. Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.
Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.
Как определить обмотки трансформатора
Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.
В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В. Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно. Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.
Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.
Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.
Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).
Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.
Соединение обмоток трансформатора
Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.
Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток. При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей. Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.
При встречном соединении начала или концы обмоток соединяются вместе. При встречном соединении ЭДС направлены встречно. На выводах получают разницу ЭДС: от большего значения отнимается меньшее значение. Если соединить встречно две обмотки с равными значениями ЭДС, то на выводах будет ноль.
Теперь мы знаем, как, как проверить трансформатор мультиметром, а также можем найти первичную и вторичную обмотки.
Еще статьи по данной теме
Что представляет собой трансформатор масляный, разберем все подробно
Как предупредить выход из строя оборудования, подключаемого к электрической сети? Ответ один – добиться их стабильной работы без скачков напряжения. Сделать это можно используя специальные устройства, одним из которых является трансформатор масляного типа. Этот прибор предназначен для преобразования переменного тока в сетях с напряжением более 6000 В. Он имеет широкую сферу применения, затрагивающую различные сферы промышленности.
Конструктивные особенности трансформатора
В устройстве этого прибора нет ничего сложного. Его основным элементом является ферромагнитный сердечник на который намотаны две обмотки. В некоторых моделях их может быть больше. Но есть и такие, где только одна обмотка. Они получили название автотрансформаторов.
Отличия в конструкции не ограничиваются только числом обмоток. Они касаются и типа сердечника.
Устройство масляного вида
Также в состав устройства трансформатора с масляным охлаждением включены системы:
- Магнитная;
- Охлаждения.
Масляный трансформатор имеет некоторые отличия в устройстве. И самым главным из них являются компактные размеры. Обычно он выпускается таких габаритов, которые позволяют легко размещать прибор в любом помещении и даже использовать его в уличных условиях. Корпус прибора имеет защиту от агрессивного воздействия окружающей среды. Внутри него располагается гильза для жидкостного термометра. Он используется для контроля за температурой верхних слоев масла.
Балки, на которых крепятся обмотки защищены особым корпусом. На крышке имеются специальные проходные изоляторы. Они предназначены для проведения цепей, связанных с обмоткой и обеспечивают безопасную работу устройства.
Смотрим видео, сфера применения и его конструкция:
Над крышкой корпуса установлен расширитель. Его соединение с баком выполнено при помощи трубопровода с газовым реле. Для вывода наружу вредных газов используется специальная выхлопная труба. Управление работой трансформатора осуществляется при помощи специальной рукоятки, установленной на крышке бака.
Принцип работы
Действие таких приборов основывается на электромагнитной индукции. Оно заключается в следующем. На первичную обмотку прибора из внешней сети подается переменный ток. За счет него создается переменное магнитное поле. Оно, в свою очередь, приводит к образованию тока.
Если сформулировать принцип работы устройства согласно законам физике, то он заключается в создании электродвижущей силы магнитным потоком, который изменяется во времени.
Классификация агрегатов осуществляется по различным признакам. Одним из них является способ изготовления, согласно этому критерию трансформаторы бывают:
- Стержневые;
- Броневые.
Первые имеют конструкцию, в которой обмотка наматывается на сердечник. У броневых она, наоборот, полностью скрыта. Кроме того, имеются отличия и в способе расположения обмотки. Если у стержневых трансформаторов она находится в горизонтальном положении, то у броневых – в вертикальном.
Смотрим видео, принцип работы агрегата:
Подразделение агрегатов на виды осуществляется и в зависимости от характеристик. Согласно предназначению, трансформаторы бывают двух видов:
- Тока;
- Напряжения.
В зависимости от применения в электросетях различают одно и трансформатор силовой трехфазный масляный. Но кроме этих отличий существует разница и в сфере применения. Например, в сетях производственных объектов или крупных населенных пунктов используют силовые агрегаты. Они предназначены для понижения напряжения до 220 В. Для защиты техники от скачков в сети применяют бытовые трансформаторы, при проведении сварочных работ – приборы, способные понижать напряжение до нужного для эффективной работы оборудования.
Еще один вид – это масляные трансформаторы ТМГ. Они предназначены для сетей более 6000 В. Они состоят из магнитопровода, собранного из двух стальных листов, обмотки из медного провода и бака.
Кроме того, имеются еще и сухие трансформаторы. В последнее время они находят широкое распространение. Преимущество сухих трансформаторов перед масляными заключаются в их высоком уровне безопасности. Поэтому они очень часто используются в местах с повышенными требованиями, таких как учебные заведения, парковки и другие.
Критерии выбора оборудования
Существует множество различных аспектов, которые должны быть учтены при использовании силового оборудования. Так на выбор модели трансформатора влияют условия его потенциальной эксплуатации и в частности:
- Сфера применения;
- Место установки;
- Суммарная мощность потребителей.
Рассмотрим специфику выбора с учетом каждого из них. Одним из главных параметров является сфера применения. Ориентируясь на нее нужно определиться с такими характеристиками, как:
- Мощность, она должна соответствовать предполагаемым нагрузкам и позволять агрегату справляться с перегрузками;
- Возможность эксплуатации прибора при росте нагрузки;
- Стоимость и срок службы.
Однако выбирая трансформатор нужно уметь правильно определять его основные параметры:
- Первичное и вторичное напряжение;
- Частоту тока;
- Фазность;
- Нагрузку;
- Способ расположения;
- Особенности размещения.
Но кроме всех, перечисленных характеристик должны учитываться и функционал агрегата, а также его непосредственное назначение. Если предполагается подключение трансформатора к цепи измерительных приборов, то используют соответствующий вид устройства. Для защиты от скачков в сети выбирают агрегат, не отличающийся высокой точностью, но обладающий необходимыми функциями. Наибольшей популярностью в последнее время пользуются сухие трансформаторы, они часто используются вместо масляных и имеют большое количество плюсов.
И хотя основным назначением трансформаторов является повышение или понижение тока они находят широкое применение и в схемах питания бытовой техники. В этом случае обычно используются агрегаты, имеющие несколько обмоток.
Что касается масляных трансформаторов, то они находят применение в самых различных сферах деятельности человека.
Учесть все факторы и не ошибиться простому обывателя будет очень сложно. Поэтому лучший вариант – это обращение за помощью к профессионалам. Только они смогут выбрать оптимальную модель трансформатора с учетом особенностей вашего объекта.
Особенности обслуживания и эксплуатации силового оборудования
Чтобы агрегат мог эффективно использоваться на протяжении всего периода работы необходимо регулярно проводить техническое обслуживание трансформатора масляного по КТПН. Согласно нормативным документам плановое ТО подразделяется на:
- Техническое обследование;
- Профилактический осмотр.
Кроме этих видов обслуживания могут проводиться и внеплановые работы. Их необходимость обусловлена обычно выходом из строя отдельных деталей или аварией агрегата. В этом случае осуществляет ремонт масляных трансформаторов.
В процессе технического обслуживания дополнительно проверяют следующие параметры:
- Наличие повышенных вибраций и посторонних шумов, что способствует неправильной работе аппаратуры, установленной на объекте;
- Соответствие количества переключений – данным на счетчиках.
Что касается осмотра составных элементов агрегата, то он выполняется согласно инструкциям по их эксплуатации. Частота проведения ТО устанавливается специальными правилами. Для подстанций, где дежурит персонал осмотр проводится один раз в сутки, для работающих в автономном режиме – 3 раза в течение месяца. Однако сроки могут изменяться в зависимости от местных условий.
Незапланированные осмотры проводятся в случае выявления неисправностей, вызванных резким изменением температуры окружающей среды. В такой ситуации может потребоваться ремонт силовых масляных трансформаторов.
Кроме того, они должны периодически подвергаться профилактическому контролю. При его проведении осуществляется проверка уровня масла, осуществляется замена изношенных уплотнителей, фильтров.
Как работают электрические трансформаторы?
Как работают электрические трансформаторы? — Объясни это Рекламное объявлениеКриса Вудфорда. Последнее изменение: 27 мая 2020 г.
Могучие линии электропередач, которые пересекаются наша сельская местность или незаметное шевеление под улицами города несет электричество при очень высоких напряжениях от источника питания растения в наши дома. Для линии электропередачи нет ничего необычного в рейтинге. от 400000 до 750000 вольт! Но бытовая техника в наших домах использует напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт.Если вы пытались включить тостер или телевизор от опоры электричества, это мгновенно взорваться! (Даже не думайте пытаться, потому что электричество в воздушных линиях почти наверняка вас убьет.) какой-то способ уменьшить высоковольтное электричество от электростанций до электричество более низкого напряжения, используемое фабриками, офисами и домами. Устройство, которое это делает, гудит от электромагнитных волн. энергия, как она идет, называется трансформатором. Давайте подробнее разберемся, как это работает!
Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси.Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.
Почему мы используем высокое напряжение?
Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает энергией небольшую английскую деревню, где я живу. Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.
Ваш первый вопрос, наверное, такой: если наши дома и офисы с помощью копировальных аппаратов, компьютеры стиральные машины и электробритвы рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать электричество при таком напряжении? Почему они используют такое высокое напряжение? К Объясните это, нам нужно немного узнать о том, как распространяется электричество.
Как электричество течет по металлу проволока, электроны, которые несут свою энергию покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о обычно тратит энергию, как непослушный школьники бегут по коридору. Вот почему провода нагреваются, когда через них течет электричество (что очень полезно в электрических тостерах и других приборы, использующие ТЭНы). Оказывается, что чем выше напряжение электричества, которое вы используете, и тем ниже ток, тем меньше энергии тратится таким образом.Итак, электричество, которое приходит от электростанций передается по проводам под очень высоким напряжением в экономия энергии.
Но есть и другая причина. Промышленные предприятия имеют огромные фабрики машины, которые намного больше и более энергоемкие, чем все, что вы есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна) к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать 10 000–30 000 вольт. Небольшим предприятиям и механическим цехам может потребоваться источники питания на 400 вольт или около того.Другими словами, разное электричество пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные электричество от электростанции, а затем преобразовать его в более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции по-прежнему очень неэффективны. Около двух третей энергии, поступающей на электростанцию, в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)
На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.
Рекламные ссылкиКак работает трансформатор?
Трансформатор основан на очень простом факте об электричестве: когда колеблющийся электрический ток течет по проводу, он создает магнитное поле (невидимый образец магнетизма) или «магнитный поток» все вокруг него. Сила магнетизма (которая имеет довольно техническое название плотности магнитного потока) непосредственно связанный с величина электрического тока.Так что чем больше ток, тем сильнее магнитное поле. Теперь есть еще один интересный факт о электричество тоже. Когда магнитное поле колеблется вокруг куска провод, он генерирует электрический ток в проводе. Итак, если мы поставим вторая катушка проволоки рядом с первой, и посылает колеблющийся электрический ток в первую катушку, мы создадим электрический ток во втором проводе. Ток в первой катушке обычно называется первичным током, а ток во втором проводе это (сюрприз, сюрприз) вторичный ток.Что мы сделали вот пропустить электрический ток через пустое пространство от одной катушки провод к другому. Это называется электромагнитным индукция, потому что ток в первой катушке вызывает (или «индуцирует») ток во второй катушке. Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):
Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или («повороты», как их любят называть физики).Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток в вторая катушка будет практически такого же размера, как и первая. катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов во второй катушке мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.
Важно отметить, что этот трюк работает, только если электрический ток каким-то образом колеблется. Другими словами, у вас есть использовать тип постоянно меняющегося электричества, называемый переменным ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же направление.
Понижающие трансформаторы
Если у первой катушки больше витков, чем у второй, вторичная напряжение меньше, чем первичное напряжение:
Это называется понижающей трансформатор. Если вторая катушка имеет половину столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше величина первичного напряжения; если во второй катушке на одну десятую меньше оказывается, он имеет одну десятую напряжения.Всего:
Вторичное напряжение ÷ Первичное напряжение = Число витков вторичной обмотки ÷ Число витков в начальной
Ток преобразуется в обратную сторону — увеличивается в размере — в понижающий трансформатор:
Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного
Так понижающий трансформатор со 100 витками в первичной обмотке и 10 катушки во вторичной обмотке снизят напряжение в 10 раз, но одновременно умножьте ток в 10 раз.Сила в электрический ток равен току, умноженному на напряжение (Вт = вольт x ампер — один из способов запомнить это), так что вы можете увидеть мощность в вторичная катушка теоретически такая же, как мощность в первичная обмотка. (На самом деле между первичный и вторичный, потому что часть «магнитного потока» просачивается наружу. сердечника часть энергии теряется из-за его нагрева и т. д.)
Повышающие трансформаторы
Изменяя ситуацию, мы можем сделать шаг вперед трансформатор, который увеличивает низкое напряжение в высокое:
На этот раз у нас больше витков на вторичной катушка, чем первичная.По-прежнему верно, что:
Вторичное напряжение ÷ Первичное напряжение = Количество витков в вторичный ÷ Количество витков первичной обмотки
и
Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного
В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в первичный, чтобы получить большее вторичное напряжение и меньшее вторичное Текущий.
Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило: катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков имеет самый высокий ток.
Трансформаторы в вашем доме
Фото: Типичные домашние трансформаторы. Против часовой стрелки слева вверху: модем-трансформер, белый трансформер в iPod. зарядное устройство и зарядное устройство для мобильного телефона.
Как мы уже видели, в городах много огромных трансформаторов. и города, где подведена высоковольтная электроэнергия от входящих линий электропередачи. преобразуется в более низкое напряжение. Но есть много трансформаторов в Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение. 110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12 вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы зарядить его аккумулятор.Таким образом, у таких электронных устройств есть небольшие встроенные в них трансформаторы (часто устанавливаются в конце силового свинца) для преобразования 110–240 вольт бытовой питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что они содержат трансформаторы!
Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.
Индукционные зарядные устройства
Многие домашние трансформаторы (например, те, что используются в iPod и сотовые телефоны) предназначены для зарядки аккумуляторных батарей. Вы можете точно увидеть, как они работают: течет электричество в трансформатор из розетки на стене, попадает преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет кабель питания? Он заряжается немного другим типом трансформатор, одна из катушек которого находится в основании щетки, и другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.
Трансформаторы на практике
Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больше ток, который он несет, и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашей верхней фотографии, ширина которого примерно равна ширине небольшого автомобиля, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности от одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (насколько интенсивно он используется), сезонный диапазон наружных (окружающих) температур и даже высота (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.
На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отходящего тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником, насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.
Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.
Что такое твердотельные трансформаторы?
Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими) компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии. Так, например, поменяли местами переключающее и усилительное реле. для транзисторов, в то время как магнитные жесткие диски все чаще заменяются флэш-памятью (в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).
В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы), поэтому будут основным приложением. Несмотря на огромный интерес, SST технологии по-прежнему используются относительно мало, но, вероятно, будут самая захватывающая область проектирования трансформаторов будущего.
Рекламные ссылкиУзнать больше
На этом сайте
На других сайтах
Книги
Для читателей постарше
- Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
- Справочник по проектированию трансформаторов и индукторов полковника Уильяма Т. Маклаймана. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
- «Электрические трансформаторы и силовое оборудование» Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к рассмотрению соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
- Трансформеры и моторы Джорджа Патрика Шульца. Newnes, 1997. Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
- Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009 г. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
Книги общего характера для младших читателей
- Д.К. Свидетель: Электричество Стива Паркера. Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
- Сила и энергия Криса Вудфорда. Факты в файле, 2004.В одной из моих собственных книг описывается, как люди использовали энергию (включая электричество) на протяжении всей истории.
Патенты
Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:
- Патент США 351,589: Система распределения электроэнергии Люсьена Голлара и Джона Гиббса, 26 октября 1886 г. Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современного электроснабжения. система во всем мире.
- Патент США 433702: Электрический трансформатор или индукционное устройство, автор Никола Тесла, 5 августа 1890 г. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
- Патент США 497113: Трансформаторный двигатель, автор Отто Титус Блати, 9 мая 1893 г. Комбинированный трансформатор и двигатель, произведенный одним из изобретателей трансформатора.
- Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения тока, подаваемого от него, Эдмунд Берри, 11 июля 1922 г.Трансформатор с циферблатом, позволяющим регулировать выходное напряжение.
Новостные статьи
Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты
статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.
Авторские права на текст © Крис Вудфорд 2007, 2020.Все права защищены. Полное уведомление об авторских правах и условиях использования.
Следуйте за нами
Сохранить или поделиться этой страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:
Цитируйте эту страницу
Вудфорд, Крис. (2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]
Подробнее на нашем сайте…
Как работают электрические трансформаторы?
Как работают электрические трансформаторы? — Объясни это Рекламное объявлениеКриса Вудфорда. Последнее изменение: 27 мая 2020 г.
Могучие линии электропередач, которые пересекаются наша сельская местность или незаметное шевеление под улицами города несет электричество при очень высоких напряжениях от источника питания растения в наши дома. Для линии электропередачи нет ничего необычного в рейтинге. от 400000 до 750000 вольт! Но бытовая техника в наших домах использует напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт.Если вы пытались включить тостер или телевизор от опоры электричества, это мгновенно взорваться! (Даже не думайте пытаться, потому что электричество в воздушных линиях почти наверняка вас убьет.) какой-то способ уменьшить высоковольтное электричество от электростанций до электричество более низкого напряжения, используемое фабриками, офисами и домами. Устройство, которое это делает, гудит от электромагнитных волн. энергия, как она идет, называется трансформатором. Давайте подробнее разберемся, как это работает!
Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси.Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.
Почему мы используем высокое напряжение?
Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает энергией небольшую английскую деревню, где я живу. Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.
Ваш первый вопрос, наверное, такой: если наши дома и офисы с помощью копировальных аппаратов, компьютеры стиральные машины и электробритвы рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать электричество при таком напряжении? Почему они используют такое высокое напряжение? К Объясните это, нам нужно немного узнать о том, как распространяется электричество.
Как электричество течет по металлу проволока, электроны, которые несут свою энергию покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о обычно тратит энергию, как непослушный школьники бегут по коридору. Вот почему провода нагреваются, когда через них течет электричество (что очень полезно в электрических тостерах и других приборы, использующие ТЭНы). Оказывается, что чем выше напряжение электричества, которое вы используете, и тем ниже ток, тем меньше энергии тратится таким образом.Итак, электричество, которое приходит от электростанций передается по проводам под очень высоким напряжением в экономия энергии.
Но есть и другая причина. Промышленные предприятия имеют огромные фабрики машины, которые намного больше и более энергоемкие, чем все, что вы есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна) к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать 10 000–30 000 вольт. Небольшим предприятиям и механическим цехам может потребоваться источники питания на 400 вольт или около того.Другими словами, разное электричество пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные электричество от электростанции, а затем преобразовать его в более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции по-прежнему очень неэффективны. Около двух третей энергии, поступающей на электростанцию, в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)
На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.
Рекламные ссылкиКак работает трансформатор?
Трансформатор основан на очень простом факте об электричестве: когда колеблющийся электрический ток течет по проводу, он создает магнитное поле (невидимый образец магнетизма) или «магнитный поток» все вокруг него. Сила магнетизма (которая имеет довольно техническое название плотности магнитного потока) непосредственно связанный с величина электрического тока.Так что чем больше ток, тем сильнее магнитное поле. Теперь есть еще один интересный факт о электричество тоже. Когда магнитное поле колеблется вокруг куска провод, он генерирует электрический ток в проводе. Итак, если мы поставим вторая катушка проволоки рядом с первой, и посылает колеблющийся электрический ток в первую катушку, мы создадим электрический ток во втором проводе. Ток в первой катушке обычно называется первичным током, а ток во втором проводе это (сюрприз, сюрприз) вторичный ток.Что мы сделали вот пропустить электрический ток через пустое пространство от одной катушки провод к другому. Это называется электромагнитным индукция, потому что ток в первой катушке вызывает (или «индуцирует») ток во второй катушке. Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):
Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или («повороты», как их любят называть физики).Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток в вторая катушка будет практически такого же размера, как и первая. катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов во второй катушке мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.
Важно отметить, что этот трюк работает, только если электрический ток каким-то образом колеблется. Другими словами, у вас есть использовать тип постоянно меняющегося электричества, называемый переменным ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же направление.
Понижающие трансформаторы
Если у первой катушки больше витков, чем у второй, вторичная напряжение меньше, чем первичное напряжение:
Это называется понижающей трансформатор. Если вторая катушка имеет половину столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше величина первичного напряжения; если во второй катушке на одну десятую меньше оказывается, он имеет одну десятую напряжения.Всего:
Вторичное напряжение ÷ Первичное напряжение = Число витков вторичной обмотки ÷ Число витков в начальной
Ток преобразуется в обратную сторону — увеличивается в размере — в понижающий трансформатор:
Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного
Так понижающий трансформатор со 100 витками в первичной обмотке и 10 катушки во вторичной обмотке снизят напряжение в 10 раз, но одновременно умножьте ток в 10 раз.Сила в электрический ток равен току, умноженному на напряжение (Вт = вольт x ампер — один из способов запомнить это), так что вы можете увидеть мощность в вторичная катушка теоретически такая же, как мощность в первичная обмотка. (На самом деле между первичный и вторичный, потому что часть «магнитного потока» просачивается наружу. сердечника часть энергии теряется из-за его нагрева и т. д.)
Повышающие трансформаторы
Изменяя ситуацию, мы можем сделать шаг вперед трансформатор, который увеличивает низкое напряжение в высокое:
На этот раз у нас больше витков на вторичной катушка, чем первичная.По-прежнему верно, что:
Вторичное напряжение ÷ Первичное напряжение = Количество витков в вторичный ÷ Количество витков первичной обмотки
и
Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичного
В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в первичный, чтобы получить большее вторичное напряжение и меньшее вторичное Текущий.
Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило: катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков имеет самый высокий ток.
Трансформаторы в вашем доме
Фото: Типичные домашние трансформаторы. Против часовой стрелки слева вверху: модем-трансформер, белый трансформер в iPod. зарядное устройство и зарядное устройство для мобильного телефона.
Как мы уже видели, в городах много огромных трансформаторов. и города, где подведена высоковольтная электроэнергия от входящих линий электропередачи. преобразуется в более низкое напряжение. Но есть много трансформаторов в Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение. 110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12 вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы зарядить его аккумулятор.Таким образом, у таких электронных устройств есть небольшие встроенные в них трансформаторы (часто устанавливаются в конце силового свинца) для преобразования 110–240 вольт бытовой питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что они содержат трансформаторы!
Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.
Индукционные зарядные устройства
Многие домашние трансформаторы (например, те, что используются в iPod и сотовые телефоны) предназначены для зарядки аккумуляторных батарей. Вы можете точно увидеть, как они работают: течет электричество в трансформатор из розетки на стене, попадает преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет кабель питания? Он заряжается немного другим типом трансформатор, одна из катушек которого находится в основании щетки, и другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.
Трансформаторы на практике
Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больше ток, который он несет, и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашей верхней фотографии, ширина которого примерно равна ширине небольшого автомобиля, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности от одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (насколько интенсивно он используется), сезонный диапазон наружных (окружающих) температур и даже высота (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.
На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отходящего тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником, насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.
Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.
Что такое твердотельные трансформаторы?
Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими) компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии. Так, например, поменяли местами переключающее и усилительное реле. для транзисторов, в то время как магнитные жесткие диски все чаще заменяются флэш-памятью (в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).
В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы), поэтому будут основным приложением. Несмотря на огромный интерес, SST технологии по-прежнему используются относительно мало, но, вероятно, будут самая захватывающая область проектирования трансформаторов будущего.
Рекламные ссылкиУзнать больше
На этом сайте
На других сайтах
Книги
Для читателей постарше
- Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
- Справочник по проектированию трансформаторов и индукторов полковника Уильяма Т. Маклаймана. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
- «Электрические трансформаторы и силовое оборудование» Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к рассмотрению соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
- Трансформеры и моторы Джорджа Патрика Шульца. Newnes, 1997. Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
- Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009 г. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
Книги общего характера для младших читателей
- Д.К. Свидетель: Электричество Стива Паркера. Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
- Сила и энергия Криса Вудфорда. Факты в файле, 2004.В одной из моих собственных книг описывается, как люди использовали энергию (включая электричество) на протяжении всей истории.
Патенты
Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:
- Патент США 351,589: Система распределения электроэнергии Люсьена Голлара и Джона Гиббса, 26 октября 1886 г. Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современного электроснабжения. система во всем мире.
- Патент США 433702: Электрический трансформатор или индукционное устройство, автор Никола Тесла, 5 августа 1890 г. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
- Патент США 497113: Трансформаторный двигатель, автор Отто Титус Блати, 9 мая 1893 г. Комбинированный трансформатор и двигатель, произведенный одним из изобретателей трансформатора.
- Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения тока, подаваемого от него, Эдмунд Берри, 11 июля 1922 г.Трансформатор с циферблатом, позволяющим регулировать выходное напряжение.
Новостные статьи
Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты
статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.
Авторские права на текст © Крис Вудфорд 2007, 2020.Все права защищены. Полное уведомление об авторских правах и условиях использования.
Следуйте за нами
Сохранить или поделиться этой страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:
Цитируйте эту страницу
Вудфорд, Крис. (2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]
Подробнее на нашем сайте…
Объясняя принцип работы трансформатора
Энергия, передаваемая при работе
Электричество и магнетизм
Объяснение того, как работает трансформатор
Руководство для преподавателей для 14-16
Когда электрический ток проходит через длинную полую катушку с проволокой, внутри катушки возникает сильное магнитное поле, а снаружи — более слабое.Линии рисунка магнитного поля проходят через катушку, расходятся от конца и огибают снаружи и внутрь на другом конце.
Это не настоящие линии, как те, которые вы рисуете карандашом. Это линии, которые мы представляем, как на рисунке, чтобы показать картину магнитного поля: направление, в котором образец железа будет намагничен полем. Там, где поле наиболее сильное, очереди наиболее тесно переполнены.
В полой катушке линии образуют сплошные кольца.Если в катушке есть железный сердечник, он намагничивается и, кажется, делает поле намного сильнее, пока есть ток.
Железный сердечник трансформатора обычно представляет собой законченное кольцо с двумя намотанными на него катушками. Одна подключена к источнику электроэнергии и называется первичной обмоткой
; другой подает питание на нагрузку и называется вторичной обмоткой
. Намагничивание из-за тока в первичной катушке проходит по всему кольцу.Первичная и вторичная катушки могут быть намотаны в любом месте кольца, потому что железо переносит изменения намагниченности от одной катушки к другой. Между двумя катушками нет электрического соединения. Однако они связаны магнитным полем в железном сердечнике.
Когда есть устойчивый ток в первичной обмотке, во вторичной обмотке нет эффекта, но есть эффект во вторичной обмотке, если ток в первичной обмотке изменяется. Изменяющийся ток в первичной обмотке вызывает e.м.ф. во вторичном. Если вторичная обмотка подключена к цепи, то есть ток.
Понижающий трансформатор на 1200 витков на первичной обмотке, подключенный к 240 В переменного тока. будет производить 2 В переменного тока. через 10-витковую вторичную обмотку (при минимальных потерях энергии) и зажгите лампу на 2 В.
Повышающий трансформатор на 1000 витков на первичной обмотке, питаемый от 200 В переменного тока. а вторичная обмотка на 10000 витков даст напряжение 2000 В переменного тока.
Железный сердечник сам по себе является грубой вторичной обмоткой (например, однооборотной катушкой), и изменения первичного тока вызывают небольшие круговые напряжения в сердечнике.Железо является проводником, и если бы железный сердечник был твердым, индуцированные напряжения вызывали бы в нем ненужные вторичные токи (называемые вихревыми токами ,
). Таким образом, сердечник сделан из очень тонких листов, скрепленных вместе, причем поверхность каждого листа покрыта, чтобы сделать его плохим проводником. Края листов можно увидеть, посмотрев на края сердечника трансформатора.
Как работают трансформаторы — инженерное мышление
Узнайте, как работают трансформаторы, как создать магнитное поле с помощью электричества, почему в трансформаторах можно использовать только переменный ток, как работает базовый трансформатор, повышающие и понижающие трансформаторы и, наконец, трехфазные трансформаторы.Эта статья является продолжением нашей серии по электротехнике, так что ознакомьтесь с другими статьями ЗДЕСЬ , если вы еще этого не сделали.
Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube.
Помните, что электричество опасно и может привести к летальному исходу, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ.
Основы работы с трансформатором
Есть два типа электричества; Переменный и постоянный ток, но трансформаторы могут работать только от переменного или переменного тока.Теперь, если вы не знаете разницы между этими двумя, то, пожалуйста, прежде всего, прочтите статьи по основам электричества. Проверьте эти ЗДЕСЬ. Когда мы подключаем генератор переменного тока к замкнутому контуру кабеля, через этот кабель может протекать ток, и направление тока будет чередоваться взад и вперед при вращении генератора.
Как это работает?
Чередование означает, что ток достигает максимальной и минимальной точки в течение цикла, что придает ему синусоидальную форму при подключении к осциллографу.Вы можете думать об этом как о приливе на море; по мере того, как он меняет направление и достигает своей максимальной и минимальной точки. Когда ток течет по кабелю, он допускает магнитное поле. Если мы пропустим через кабель постоянный ток, магнитное поле останется постоянным, но если мы пропустим через кабель переменный ток, то магнитное поле будет увеличиваться и уменьшаться по силе и меняет полярность по мере изменения направления тока.
Переменный токЕсли мы соединим несколько кабелей и пропустим через них ток, то магнитные поля объединятся, чтобы создать более сильное магнитное поле.Если затем свернуть кабель в катушку, магнитное поле станет еще сильнее. Если мы поместим вторую катушку в непосредственной близости от первой катушки, а затем пропустим переменный ток переменного тока через первую катушку, то создаваемое ею магнитное поле вызовет ток во вторую катушку, и эта магнитная сила будет толкать и тянуть свободные электроны. заставляя их двигаться.
Электродвижущая сила
Ключевым компонентом здесь является то, что магнитное поле меняет полярность, а также интенсивность.Это изменение интенсивности и направления магнитного поля постоянно мешает свободным электронам во вторичной катушке и заставляет их двигаться. Это движение известно как электродвижущая сила или ЭДС.
Изменение полярности магнитного поляЭлектродвижущая сила не возникает, когда мы пропускаем постоянный ток через первичную катушку, и это потому, что магнитное поле постоянно, поэтому электроны не вынуждены двигаться. Единственный раз, когда это вызовет ЭДС, — это очень короткое время, когда первичная цепь размыкается и замыкается, или когда напряжение увеличивается или уменьшается.И это потому, что эти действия приводят к изменению магнитного поля. Поэтому мы используем переменный ток, так как это изменение происходит постоянно.
Постоянный ток через первичную обмоткуПроблема с этой установкой состоит в том, что большая часть магнитного поля с первичной стороны тратится впустую, потому что оно находится вне диапазона вторичной обмотки.
Как это исправить?
Чтобы исправить это, место инженера, сердечник или ферромагнитный материал, такой как железо, в петле между первичной и вторичной обмотками.Теперь этот контур направляет магнитное поле по пути к вторичной катушке, так что они разделяют магнитное поле, и это делает трансформатор намного более эффективным.
Ферромагнитный материалВ настоящее время использование железного сердечника не является идеальным решением. Некоторая энергия будет потеряна из-за чего-то известного как вихревые токи, когда ток закручивается вокруг сердечника, и это нагревает трансформатор, что означает, что энергия теряется в виде тепла. Чтобы уменьшить это, инженеры используют ламинированные листы железа для формирования сердечника, что значительно снижает вихревые токи.
через GIPHY
Повышающие и понижающие трансформаторы
Трансформаторы производятся в качестве повышающих или понижающих трансформаторов, и они используются для увеличения или уменьшения напряжения, просто используя другое количество витков в катушке на вторичной стороне . В повышающем трансформаторе напряжение во вторичной обмотке увеличивается, и это будет означать, что ток будет уменьшаться, но не стоит сейчас особо беспокоиться о том, почему это происходит. Мы рассмотрим это в следующей статье по электротехнике.Для увеличения напряжения в повышающем трансформаторе; нам просто нужно добавить больше витков к катушке на вторичной стороне, чем на первичной стороне. В понижающем трансформаторе это напряжение снижается во вторичной обмотке, что означает, что ток увеличивается. Для этого мы просто используем меньше витков в катушке на вторичной стороне по сравнению с первичной стороной.
Например, электростанции необходимо транспортировать вырабатываемую ею электроэнергию в город на некотором расстоянии. Электростанция будет использовать повышающий трансформатор для увеличения напряжения и уменьшения тока, поскольку это снизит потери в длинных кабелях передачи.Затем, когда он достигнет города, его нужно будет уменьшить, чтобы сделать его безопасным и пригодным для использования в зданиях и домах, поэтому потребуется понижающий трансформатор. Трансформаторы для коммерческих зданий и электростанций обычно имеют трехфазную конфигурацию. Вы увидите, как они размещены вокруг ваших городов, и они будут выглядеть примерно так.
Пример трансформатораЭти трехфазные трансформаторы могут быть изготовлены либо из трех отдельных трансформаторов, которые соединены вместе, либо они могут быть встроены в один большой блок с общим железным сердечником.
В этой схеме катушки обычно располагаются концентрически одна в другой, причем катушка с более высоким напряжением находится снаружи, а катушка с более низким напряжением находится внутри. Теперь эти катушки изолированы друг от друга, так что между двумя катушками будет проходить только магнитное поле. Для соединения двух сторон существует множество различных конфигураций, но одна из наиболее часто используемых — это соединение катушек в конфигурации, известной как Delta Wye, иногда называемой Delta Star. Это относится к первичной стороне, подключенной по схеме треугольника, а к вторичной стороне — к широкой в конфигурации звезды.Центральная точка стороны звезды, где встречаются все три разъема, часто заземляется, что позволяет также подключить нейтральную линию.
Конфигурация «треугольник» и «звезда»Мы рассмотрим подключения трансформаторов и расчеты в других более сложных статьях, поскольку это может оказаться довольно сложным. Так что пока просто сосредоточьтесь на том, как они работают, чтобы сформировать ваши базовые знания.
Как работает трансформатор — Trans-Tronic
Трансформатор — это электрическое устройство, которое используется для преобразования мощности переменного тока с определенным уровнем напряжения в мощность переменного тока с другим напряжением без изменения частоты.
Трансформатор построен с использованием ферромагнитного сердечника, вокруг которого намотано несколько катушек или обмоток из медной проволоки. Обмотка, которая подключена к источнику электроэнергии или входу, называется «первичной» катушкой, а нагрузка или выходная обмотка — «вторичной».
Когда через медный провод пропускается переменный ток, вокруг него создается магнитное поле. Если второй провод помещается в это магнитное поле, во втором проводе создается соответствующий переменный ток.С технической точки зрения во втором проводе «индуцируется» ток.
Переменный ток в первичной катушке индуцирует переменный магнитный поток (f), который течет вокруг ферромагнитного сердечника, меняя направление во время каждого электрического цикла. Переменный поток в сердечнике, в свою очередь, индуцирует переменный ток в каждой из вторичных катушек. Напряжение, индуцированное в каждой из вторичных катушек, напрямую связано с первичным напряжением соотношением витков (N), количеством витков в первичной катушке, деленным на количество витков во вторичной катушке.Коэффициент преобразования напряжения (первичное напряжение во вторичное напряжение) и коэффициент преобразования тока (первичный ток во вторичный ток) зависят от коэффициента трансформации. Таким образом, напряжение можно легко изменить ниже или выше, выбрав правильное количество витков. Трансформатор может иметь несколько вторичных обмоток для питания нескольких электрических нагрузок.
Рисунок 1: Базовый трансформатор
Рисунок 2:
Сердечник трансформатора с магнитным потоком
НАША МИССИЯ
Trans-Tronic Limited стремится разрабатывать и производить продукты и компоненты в соответствии с определенными спецификациями с помощью эффективной системы качества.
Мы поддерживаем самые высокие этические стандарты, соблюдая при этом все применимые национальные стандарты и нормы.
Наша цель — поддерживать и постоянно улучшать производительность во всех областях, особенно в области КАЧЕСТВА, СТОИМОСТИ И ДОСТАВКИ, чтобы обеспечить полное удовлетворение потребностей клиентов.
Особое внимание уделяется планированию, чтобы обеспечить соблюдение философии «ВПЕРВЫЕ НАПРАВИЛЬНО» во всех сферах нашей деятельности. Мы стремимся быть лучшими и будем стремиться достичь и поддерживать этот уровень.
Для достижения наших целей Trans-Tronic Ltd полагается на ценных людей, которые составляют нашу многопрофильную и гибкую рабочую силу.Нам повезло, что у нас есть сотрудники, которые понимают, что КАЧЕСТВО — ЭТО ОТВЕТСТВЕННОСТЬ КАЖДОГО.
Почему выбирают нас?
- Устойчивое производство
- Экологичность
- Конкурентные цены
- Техническая поддержка
- До и после продажи
- Гарантированная доставка
- Превосходное обслуживание
- Качество британской продукции
Зарегистрироваться
Получайте все последние новости Trans-Tronic прямо на свой почтовый ящик
Примечание: для этого содержимого требуется JavaScript.Как работает трансформатор?
Как работает трансформатор?
На рисунке показан блок питания, установленный в школьных лабораториях. Он подключен к электросети, которая обеспечивает входное напряжение 240 В. С помощью переключателя напряжения вы можете выбрать выходное напряжение от 2 В до 12 В. Что изменяет входное напряжение с 240 В на более низкое выходное напряжение?
Основным компонентом блока питания является трансформатор. Трансформаторы могут уменьшать или увеличивать a.c. напряжение подавалось на него Ом.
Принцип действия трансформатора:
- Трансформатор работает по принципу электромагнитной индукции .
- Он состоит из двух катушек, намотанных на сердечник из мягкого железа, как показано на рисунке.
- Первичная катушка подключена к сети переменного тока. источник питания, в то время как вторичная катушка подключена к выходным клеммам.
- Когда ток в первичной цепи увеличивается, рост магнитного потока заставляет силовые линии магнитного поля перерезать вторичную катушку.Э.д.с. индуцируется во вторичной катушке.
- Когда ток в первичной цепи уменьшается, магнитный поток падает, и силовые линии снова разрезают вторичную катушку. Э.д.с. действие в противоположном направлении индуцируется во вторичной катушке.
- Переменный ток в первичной обмотке создает изменяющийся магнитный поток, который вызывает переменную ЭДС. той же частоты во вторичной катушке.
- На рисунке показана принципиальная схема трансформатора с переменным источником питания.
Люди тоже спрашивают
Какие бывают трансформаторы?Повышающие и понижающие трансформаторы:
- Есть два типа трансформаторов:
(a) Повышающий трансформатор
(b) Понижающий трансформатор - На рисунке показано сравнение двух типов трансформаторов.
Цель: Разобраться в повышающем и понижающем трансформаторах.
Материалы: 120-витковая медная катушка, 400-витковая медная катушка, соединительные провода
Аппарат: Два С-образных железных сердечника с зажимом, изолированные провода, низкое напряжение переменного тока. блок питания, две лампочки 2,5 В 0,3 А с держателями и две лампочки 6,2 В 0,3 А с держателями
Метод:
Повышающий трансформатор
- Устройство настроено, как показано на рисунке. Первичная катушка — это медная катушка с 120 витками, а вторичная обмотка — это медная катушка с 400 витками.
- Лампочки на 6,2 В, 0,3 А ввинчиваются в соответствующие держатели.
- Источник питания установлен на 2 В переменного тока.
- Электропитание включено. Сравнивается яркость лампочек в первичной и вторичной цепях.
Понижающий трансформатор
- Настройка устройства изменена так, что медная катушка с 400 витками становится первичной обмоткой, а обмотка с 120 витками — вторичной обмоткой.
- Лампы заменены на 2.5 В, лампочки 0,3 А.
- Электропитание включено. Сравнивается яркость лампочек в первичной и вторичной цепях.
Наблюдения:
Обсуждение:
- Яркость лампы пропорциональна напряжению на ней. Яркость лампочки в первичной цепи указывает на величину входного напряжения. Яркость лампочки во вторичной цепи указывает на величину выходного напряжения.
- Когда количество витков вторичной катушки больше, чем количество витков первичной катушки, выходное напряжение больше входного.
- Когда количество витков вторичной катушки меньше, чем количество витков первичной катушки, выходное напряжение меньше входного.
Заключение:
- Более высокое напряжение индуцируется во вторичной катушке, когда у вторичной катушки больше витков, чем у первичной катушки.
- Более низкое напряжение индуцируется во вторичной катушке, когда у вторичной катушки меньше витков, чем у первичной катушки.
Цель: Показать взаимосвязь V s / V p = N s / N p
Материалы: Медные катушки с 300, 600 и 900 витками соответственно, соединительные провода
Аппарат: Сердечники из мягкого железа, 0 — 12 В переменного тока блок питания, два переменного тока вольтметры (0-10 В)
Метод:
- Устройство настроено, как показано на рисунке, с медной катушкой на 300 витков в качестве первичной катушки и катушкой на 600 витков в качестве вторичной катушки.
- Напряжение блока питания установлено на 2 В.
- Включение питания и запись показаний вольтметров.
- Этапы 1 до 3 повторяются с медной катушкой на 300 витков в качестве первичной катушки и катушкой на 900 витков в качестве вторичной катушки.
- Настройка устройства изменена таким образом, что 900-витковая катушка является первичной обмоткой, а 600-витковая катушка — вторичной обмоткой.
- Напряжение блока питания установлено на 10 В.
- Включение питания и запись показаний вольтметров.
- Этапы 6 и 7 повторяются с 900-витковой катушкой в качестве первичной катушки и 300-витковой катушкой в качестве вторичной катушки.
Наблюдения:
Обсуждение:
- Соотношения N s / N p и V s / V p для каждой пары первичной и вторичной катушек приблизительно равны.
- Принимая во внимание экспериментальные ошибки и потерю мощности в трансформаторе, можно сделать вывод, что N s / N p = V s / V p .
Вывод:
Отношение вторичного выходного напряжения к первичному входному напряжению равно отношению количества витков вторичной катушки к количеству витков в первичной катушке.
- На рисунке показана лампочка на 12 В, подключенная к выходным клеммам трансформатора.
Какое значение будет N s , если лампа должна загореться с нормальной яркостью?
Решение:
Когда лампа загорается с нормальной яркостью, напряжение на ней составляет 12 В.
- Трансформатор передает электроэнергию из первичной цепи во вторичную.
- Первичная цепь трансформатора получает питание при определенном напряжении от a.c. источник питания. Трансформатор подает эту мощность с другим напряжением на электрическое устройство, подключенное к вторичной цепи, как показано на рисунке.
- В идеальном трансформаторе отсутствуют потери энергии в процессе преобразования напряжения и передачи мощности.
- Выходная мощность равна входной. Следовательно,
Выходная мощность = Входная мощность
То есть:
На рисунке показан трансформатор, используемый для питания нагревателя 6 В, 48 Вт от источника переменного тока 240 В переменного тока.c. поставлять.
Рассчитайте
(a) количество витков в первичной катушке, N p
(b) ток во вторичной катушке, I s
(c) ток в первичной катушке, I p
Решение:
Как работают электрические трансформаторы?
Цель этого поста — объяснить Как работают электрические трансформаторы?
К концу этой публикации вы будете лучше разбираться в следующих темах:
- Общий обзор трансформаторов
- Принцип действия
- Применение трансформатора
- Трансформаторы однофазные
- Трансформаторы трехфазные
- Расчет трансформатора
- Потери при передаче электроэнергии
- Трансформаторы сердечника и оболочки
- Трансформатор охлаждения
- Автотрансформаторы
Информация, не раскрытая в следующем сообщении, включает:
- Измерительные трансформаторы
Примеры электрических трансформаторов:
Трансформатор, Powerline Трансформатор, высокое напряжение Трансформатор, Охлаждение Трансформатор, Powerline Трансформатор, распределительное устройство Трансформатор, PowerlineКак работают электрические трансформаторы Видео № 1
Источник видео: Learn Engineering.Org
Основные моменты видео:
Предоставляет обзор функций трансформатора.
Описывает и иллюстрирует
- Принцип действия трансформатора «Электромагнитная индукция».
- Работа и строительство однофазных и трехфазных трансформаторов.
- Как выводится математическое уравнение для расчета напряжения повышающего и понижающего трансформатора.
- Конфигурация катушки трехфазного трансформатора и обмотки дискового типа.
- Как обмотки низкого напряжения, соединены по схеме треугольник. Обмотки высокого напряжения соединены по схеме звезды.
- Высоковольтные вводы с изоляцией для вывода электрической энергии трехфазного трансформатора.
- Сердечник трансформатора, описывающий конструкцию тонких изолированных стальных пластин, показывающий, как они сложены вместе, образуя трехфазные ветви. Затем опишите назначение тонких пластин.
- Возможные потери энергии при передаче энергии от первичной обмотки ко вторичной.
- Трансформатор погружается в охлаждающее масло для отвода тепла.
- Как масло отводит тепло от трансформатора за счет естественной конвекции с ребрами радиатора.
- Бак расширителя для учета изменений объема масла из-за изменений температуры.
Как работают электрические трансформаторы Видео № 2
Источник видео: Public Resource.Org
Основные моменты видео:
Предоставляет обзор функций трансформатора.
Описывает и иллюстрирует
- Повседневные устройства, в которых для правильной работы используются трансформаторы.
- Понижающие трансформаторы.
- Повышающие трансформаторы.
- Правило левой руки.
- Электромагнитная индукция.
- Передаточное число.
- Расчеты передачи энергии.
- Коэффициент сцепления (K).
Тип трансформаторов
- Силовые трансформаторы
- Аудио трансформаторы
- Радиочастотные трансформаторы
- Автотрансформаторы
Обзор обмоток трансформатора
Источник видео: Learn Engineering.Org
Основные моменты видео:
Описывает и иллюстрирует
- Принцип работы обмоток трансформатора.
В трансформаторах используются следующие типы обмоток.
- Винтовые обмотки
- Перекрестные обмотки
- Обмотки дискового типа
- Сэндвич-обмотки
Обзор типов сердечников трансформатора
Источник видео: Learn Engineering.Org
Основные моменты видео:
Описывает и иллюстрирует
- Принцип работы сердечников трансформатора.
- Устройство и эксплуатация однофазных и трехфазных трансформаторов с сердечником.
- Конструкция и эксплуатация трансформаторов с корпусом и сердечником.
- Объясняет преимущества и недостатки при сравнении трансформаторов с оболочкой и сердечником.
Как работает трансформатор Обзор расчетов напряжения
Формула, описание переменных формулы и практические расчеты, представленные ниже, помогут вам понять, как определять расчет первичного и вторичного напряжения с различными конфигурациями витков первичной и вторичной обмотки.
Формула
Поскольку напряжение в каждой обмотке пропорционально количеству витков в каждой обмотке, его можно математически выразить следующим образом:
Переменные формулы
Переменные, используемые в приведенных выше формулах, определены следующим образом:
Ep = первичное напряжение
Es = вторичное напряжение
Np = Количество витков первичной обмотки
Ns = Количество витков вторичной обмотки
Практический расчет напряжения трансформатора
Практические расчеты будут загружены в ближайшее время.
Как работает трансформатор Расчет напряжения трансформатора # 1
Как работает трансформатор Расчет напряжения трансформатора # 2
Сводка
Примечание: Это видео и расчеты, которые я рекомендую выполнить, чтобы лучше понять, как работают электрические трансформаторы.