Как замерить контур заземления: Как замерить сопротивление заземления мультиметром

Содержание

Как замерить сопротивление заземления мультиметром

То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.

Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур.

Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке.

А на эту шинку выводятся заземляющие проводники от всех розеток.

Перед использованием необходимо проверить контур на заземляющее сопротивление.

О том, что такое заземление – на следующем видео:

В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Проверка заземления розеток

Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?

Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку. У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.

Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:

  • В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
  • На приборе установите режим измерения напряжения.

  • Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
  • Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.

Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:

  • патрон;
  • лампочка;
  • провода;
  • концевики.

Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться. Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее.

Слабое свечение станет свидетельством плохого состояния контура.

Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.

Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.

В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.

Наглядно этот способ показан на видео:

О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:

  • бьётся током стиральная машина или водонагревательный бойлер;
  • слышится шум в колонках, когда работает музыкальный центр.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжениемДля источников с трёхфазным напряжениемВеличина сопротивления заземления
127 В220 В8 Ом
220 В380 В4 Ом
380 В660 В2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

Как замерить сопротивление контура заземления


Как замерить сопротивление заземления мультиметром

То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.

Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

Перед использованием необходимо проверить контур на заземляющее сопротивление.

О том, что такое заземление – на следующем видео:

В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Проверка заземления розеток

Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?

Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку. У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.

Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:

  • В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
  • На приборе установите режим измерения напряжения.

  • Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
  • Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.

Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:

  • патрон;
  • лампочка;
  • провода;
  • концевики.

Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться. Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее. Слабое свечение станет свидетельством плохого состояния контура.

Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.

Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.

В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.

Наглядно этот способ показан на видео:

О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:

  • бьётся током стиральная машина или водонагревательный бойлер;
  • слышится шум в колонках, когда работает музыкальный центр.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжениемДля источников с трёхфазным напряжениемВеличина сопротивления заземления
127 В220 В8 Ом
220 В380 В4 Ом
380 В660 В2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

4 Важные методы проверки сопротивления заземления

Трехточечный метод является наиболее тщательным и надежным методом проверки; используется для измерения сопротивления заземления установленного заземляющего электрода.

Возможность правильного измерения сопротивления заземления имеет важное значение для предотвращения дорогостоящих простоев из-за перебоев в работе, вызванных плохим заземлением.

Процедуры проверки сопротивления заземления указаны в стандарте IEEE № 81. Ниже описаны четыре наиболее распространенных метода проверки сопротивления заземления, используемых специалистами-испытателями:

2-точечный метод (мертвого заземления)

В областях, где установка заземляющих стержней может быть непрактичной, можно использовать метод двух точек.

С помощью этого метода сопротивление двух последовательно соединенных электродов измеряется путем подключения клемм P1 и C1 к тестируемому заземляющему электроду; P2 и C2 подключаются к отдельной цельнометаллической точке заземления (например, водопроводной трубе или строительной стали).

Метод мертвого заземления — это самый простой способ получить показания сопротивления заземления, но он не такой точный, как трехточечный метод, и его следует использовать только в крайнем случае, он наиболее эффективен для быстрого тестирования соединений и проводов между точками соединения. .

Примечание: Тестируемый заземляющий электрод должен располагаться достаточно далеко от точки вторичного заземления, чтобы находиться вне ее сферы влияния для получения точных показаний.

Двухточечный метод наиболее эффективен для быстрой проверки соединений и проводов между точками соединения. Фото: TestGuy.


Метод трех точек (падения потенциала)

Трехточечный метод — самый тщательный и надежный метод испытаний; используется для измерения сопротивления заземления установленного заземляющего электрода.

Стандарт, используемый в качестве эталона для испытаний на падение потенциала, — это стандарт IEEE 81: Руководство по измерению удельного сопротивления земли, сопротивления земли и потенциалов земной поверхности системы заземления.

В четырехконтактном тестере клеммы P1 и C1 на приборе соединяются перемычками и подключаются к тестируемому заземляющему электроду, в то время как эталонный стержень C2 вбивается в землю как можно дальше от тестируемого электрода. Опорный потенциал P2 затем вбивается в землю в заданном количестве точек примерно по прямой линии между C1 и C2.Показания сопротивления регистрируются для каждой точки P2.

Метод испытания на падение потенциала. Фото: Megger

Измерения нанесены на график зависимости сопротивления от расстояния. Правильное сопротивление заземления определяется по кривой для расстояния, которое составляет примерно 62% от общего расстояния между C1 и C2. Существует три основных типа метода падения потенциала:

  • Полное падение потенциала: Ряд тестов проводится с разными интервалами P, и строится полная кривая сопротивления.
  • Упрощенное падение потенциала: Три измерения выполняются на определенных расстояниях P, и математические вычисления используются для определения сопротивления.
  • 61,8 Правило: Одиночное измерение выполняется с P на расстоянии 61,8% (62%) расстояния между C1 и C2.

Примечание: Испытание на падение потенциала и его модификации — единственный метод наземных испытаний, соответствующий IEEE 81.


4-точечный метод

Этот метод наиболее часто используется для измерения удельного сопротивления грунта , что важно для проектирования систем электрического заземления.В этом методе четыре электрода небольшого размера врезаются в землю на одинаковой глубине и на одинаковом расстоянии друг от друга — по прямой — и проводится измерение.

Количество влаги и солесодержание почвы коренным образом влияет на ее удельное сопротивление. На измерения удельного сопротивления почвы также будут влиять существующие поблизости заземленные электроды. Закопанные в землю проводящие объекты, контактирующие с почвой, могут сделать показания недействительными, если они находятся достаточно близко, чтобы изменить схему протекания испытательного тока. Это особенно актуально для больших или длинных объектов.

Четырехштырьковый метод Веннера, показанный на рисунке выше, является наиболее часто используемым методом для измерения удельного сопротивления почвы. Фото: Викимедиа


Метод крепления

Метод клещей уникален тем, что он дает возможность измерять сопротивление без отключения системы заземления. Это быстро и легко, а также включает в себя измерение сопротивления заземления и общего сопротивления заземляющего соединения.

Метод зажима уникален тем, что он дает возможность измерять сопротивление без отключения системы заземления.Фото: AEMC

Измерения производятся путем «зажатия» тестера вокруг проверяемого заземляющего электрода, аналогично тому, как вы измеряете ток с помощью токоизмерительных клещей мультиметра.

Тестер подает известное напряжение без прямого электрического соединения через передающую катушку и измеряет ток через приемную катушку. Испытание проводится с высокой частотой, чтобы трансформаторы были как можно меньше и практичны.

Для того, чтобы метод фиксации был эффективным, должна быть установлена ​​полная цепь заземления.Тестер измеряет полный путь сопротивления (контур), по которому проходит сигнал. Все элементы петли измеряются последовательно. Оператору важно понимать ограничения метода тестирования, чтобы он / она не злоупотребляли прибором и не получали ошибочные или вводящие в заблуждение показания.

Некоторые ограничения метода фиксации включают:

  1. эффективен только в ситуациях с несколькими параллельными заземлениями.
  2. нельзя использовать на изолированном основании, не применимо для проверки установки или ввода в эксплуатацию новых объектов.
  3. Код
  4. нельзя использовать, если существует альтернативный возврат с более низким сопротивлением, не связанный с почвой, например, с вышками сотовой связи или подстанциями.
  5. результатов должны быть приняты по «вере».

Список литературы
Комментарии
Войдите или зарегистрируйтесь, чтобы комментировать. .

Как измерить сопротивление с помощью мультиметра »Электроника

Знать, как измерить сопротивление с помощью мультиметра, легко — здесь мы приводим некоторые инструкции по измерению сопротивления с помощью мультиметра, а также даем несколько советов и подсказок.

Учебное пособие по мультиметру Включает:
Основы работы с измерителем Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр DMM Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Тест диодов и транзисторов Диагностика транзисторных цепей


Одно из важных измерений, которое можно выполнить с помощью мультиметра, — это измерение сопротивления.Это можно сделать не только для проверки точности резистора или проверки его правильного функционирования, но измерения сопротивления могут потребоваться и во многих других сценариях.

Это может быть измерение сопротивления неизвестного проводника или проверка на короткое замыкание и разрыв цепи.

На самом деле, во многих случаях измерение сопротивления представляет большой интерес и важность. Во всех этих случаях мультиметр является идеальным тестовым оборудованием для измерения сопротивления

.

Основы измерения сопротивления

При измерении сопротивления все musltimeters используют один и тот же принцип, будь то аналоговые мультиметры или цифровые мультиметры.Фактически, другие виды испытательного оборудования, которое измеряет сопротивление, также используют тот же основной принцип.

Основная идея заключается в том, что мультиметр подает напряжение на два щупа, и это вызывает протекание тока в элементе, для которого измеряется сопротивление. Измеряя сопротивление, можно определить сопротивление между двумя щупами мультиметра или другого измерительного оборудования.

Как измерить сопротивление аналоговым мультиметром

Аналоговые мультиметры хороши при измерении сопротивления, хотя следует отметить несколько моментов в том, как это делается.

Первое, что следует отметить, это то, что сам счетчик реагирует на ток, протекающий через тестируемый компонент. Высокое сопротивление соответствует низкому току, и стрелка измерителя устанавливается на левой стороне шкалы, а низкое сопротивление соответствует более высокому току, и стрелка измерителя отклоняется сильнее, поэтому она появляется на правой стороне шкалы как показано ниже.

Также можно заметить, что калибровки становятся намного ближе друг к другу по мере увеличения сопротивления, т.е.е. на левой стороне циферблата.

Калибровка циферблата аналогового мультиметра

Другой аспект использования аналогового мультиметра для измерения сопротивления заключается в том, что перед измерением его необходимо обнулить. Это делается путем соединения двух щупов вместе так, чтобы возникло короткое замыкание, а затем с помощью «нулевого» регулятора, чтобы получить полное отклонение шкалы на измерителе, то есть нулевое сопротивление.

Каждый раз, когда изменяется диапазон, измеритель необходимо обнулять, поскольку положение может меняться от одного диапазона к другому.Измеритель необходимо обнулить, потому что отклонение полной шкалы будет меняться в зависимости от таких аспектов, как состояние батареи.

Для измерения сопротивления аналоговым мультиметром необходимо выполнить несколько простых шагов:

  1. Выберите элемент для измерения: это может быть что угодно, где необходимо измерить сопротивление, и оценить, какое сопротивление может быть.
  2. Вставьте щупы в требуемые гнезда. Часто мультиметр имеет несколько гнезд для контрольных щупов.Вставьте их или проверьте, что они уже установлены в правильные гнезда. Обычно они могут быть помечены как COM для общего, а другие, где виден знак ома. Обычно он совмещен с гнездом для измерения напряжения.
  3. Выберите требуемый диапазон Требуется включить аналоговый мультиметр и выбрать требуемый диапазон. Выбранный диапазон должен быть таким, чтобы можно было получить наилучшее показание. Обычно на переключателе функций мультиметра указывается максимальное значение сопротивления. Выберите тот, при котором расчетное значение сопротивления будет ниже, но близко к максимуму диапазона.Таким образом можно сделать наиболее точное измерение сопротивления.
  4. Обнулить счетчик: необходимо обнулить счетчик. Это делается путем плотного соединения двух щупов вместе, чтобы возникло короткое замыкание, а затем регулировкой нулевого уровня для получения показания нулевого сопротивления (отклонение полной шкалы). Этот процесс необходимо повторить при изменении диапазона.
  5. Проведите измерение Когда мультиметр будет готов к измерению, датчики могут быть применены к объекту, который необходимо измерить.При необходимости диапазон можно отрегулировать.
  6. Выключите мультиметр. После измерения сопротивления целесообразно повернуть функциональный переключатель в положение высокого напряжения. Таким образом, если мультиметр снова используется для другого типа считывания, то не будет причинен ущерб, если он будет использован случайно без выбора правильного диапазона и функции.

Аналоговые мультиметры — идеальное тестовое оборудование для измерения сопротивления. Они относительно дешевы и предлагают достаточно хороший уровень точности и общих характеристик.Обычно они обеспечивают уровень точности, более чем достаточный для большинства работ.

Как измерить сопротивление цифровым мультиметром, DMM

Измерение сопротивления с помощью цифрового мультиметра проще и быстрее, чем измерение сопротивления с помощью аналогового мультиметра, поскольку нет необходимости обнулять счетчик. Поскольку цифровой мультиметр дает прямое показание измерения сопротивления, аналогового мультиметра также нет эквивалента обратному показанию.

Для измерения сопротивления цифровым мультиметром необходимо выполнить несколько простых шагов:

  1. Выберите элемент для измерения: это может быть что угодно, где необходимо измерить сопротивление, и оценить, какое сопротивление может быть.
  2. Вставьте щупы в необходимые гнезда. Часто цифровой мультиметр имеет несколько гнезд для контрольных щупов. Вставьте их или проверьте, что они уже установлены в правильные гнезда. Обычно они могут быть помечены как COM для общего, а другие, где виден знак ома.Обычно он совмещен с гнездом для измерения напряжения.
  3. Включите мультиметр
  4. Выберите требуемый диапазон Необходимо включить цифровой мультиметр и выбрать требуемый диапазон. Выбранный диапазон должен быть таким, чтобы можно было получить наилучшее показание. Обычно на переключателе функций мультиметра указывается максимальное значение сопротивления. Выберите тот, при котором расчетное значение сопротивления будет ниже, но близко к максимуму диапазона. Таким образом можно сделать наиболее точное измерение сопротивления.
  5. Проведите измерение Когда мультиметр будет готов к измерению, датчики могут быть применены к объекту, который необходимо измерить. При необходимости диапазон можно отрегулировать.
  6. Выключение мультиметра После измерения сопротивления мультиметр можно выключить для сохранения батарей. Также целесообразно установить функциональный переключатель в диапазон высокого напряжения. Таким образом, если мультиметр снова используется для другого типа считывания, то не будет причинен ущерб, если он будет использован случайно без выбора правильного диапазона и функции.
Цифровые мультиметры

— идеальное испытательное оборудование для измерения сопротивления. Они относительно дешевы, отличаются высокой точностью и общими характеристиками.

Общие меры предосторожности при измерении сопротивления

Как и при любом другом измерении, при измерении сопротивления следует соблюдать некоторые меры предосторожности. Таким образом можно предотвратить повреждение мультиметра и сделать более точные измерения.

  • Измерьте сопротивление, когда компоненты не подключены в цепь: Всегда рекомендуется , а не измерять сопротивление элемента, находящегося в цепи.Всегда лучше проводить измерение компонента самостоятельно, вне схемы. Если измерение выполняется внутри схемы, все остальные компоненты вокруг него будут иметь значение. Любые другие пути, по которым будет проходить ток, будут влиять на показания, делая их в некоторой степени неточными.
  • Не забудьте убедиться, что на тестируемую цепь не подается питание. В некоторых случаях необходимо измерить значения сопротивления на самом деле. При этом очень важно убедиться, что не подключен к цепи питания .Любой ток, протекающий в цепи, не только приведет к недействительности любых показаний, но и при достаточно высоком напряжении возникший ток может повредить мультиметр.
  • Убедитесь, что конденсаторы в проверяемой цепи разряжены. Опять же, при измерении значений сопротивления в цепи необходимо убедиться, что все конденсаторы в цепи разряжены. Любой ток, протекающий в результате них, приведет к изменению показаний счетчика. Также любые разряженные конденсаторы в цепи могут заряжаться под действием тока мультиметра, и в результате может потребоваться некоторое время для стабилизации показаний.
  • Помните, что диоды в цепи будут давать разные показания в любом направлении. При измерении сопротивления в цепи, которая включает диоды, измеренное значение будет другим, если соединения поменять местами. Это потому, что диоды проводят только в одном направлении.
  • Путь утечки через пальцы в некоторых случаях может изменить показания. При выполнении некоторых измерений сопротивления необходимо удерживать резистор или компонент на щупах мультиметра.Если проводятся измерения высокого сопротивления, утечка через пальцы может стать заметной. При некоторых обстоятельствах путь сопротивления через пальцы может быть измерен всего на несколько МОм, и в результате это может стать значительным. К счастью, уровни напряжения, используемые в большинстве мультиметров при измерении сопротивления, низкие, но некоторые специализированные измерители могут использовать гораздо более высокие напряжения. Целесообразно проверить.

Измерить сопротивление мультиметром очень просто и удобно.При рассмотрении того, как измерить сопротивление, это довольно просто как для аналоговых, так и для цифровых мультиметров, и процесс практически одинаков в обоих случаях, хотя измерения могут быть не так просты, если сопротивление велико и измерения должны быть взяты там, где калибровки близки друг к другу. Тем не менее, какое бы испытательное оборудование ни использовалось, сопротивление легко измерить.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG
Вернуться в меню тестирования.. .

.

Омметр Использование | Основные концепции и испытательное оборудование

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться

0:00 / 0:00

  • Подкаст
  • Последний
  • Подписывайся
.

Наземные и другие контрольные точки

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
.

Измерение сопротивления заземления мегаомметром и мультиметром

«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.

Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).

Примечание

Для измерения R заземления мультиметр не очень подходит. Почему, поясняется ниже. В интернете встречаются рекомендации, что лучше пользоваться приборами аналоговыми М-416, Ф4103 (М1), ИСЗ-2016, МС-08 или цифровыми серии MRU (модели 105, 120 или 200). А в чем разница, непонятно. Схемы их подключения аналогичны.

Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.

Измерение мультиметром

Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.

Почему данный тип измерительного прибора применяется лишь в редких случаях?

  • Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
  • Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
  • Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.

Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:

Как подготовить мультиметр

Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:

  • подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
  • заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
  • произвести калибровку (если она предусмотрена для конкретной модели).

Как подготовить рабочее место

Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.

Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).

Где измерять сопротивление

Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.

Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.

Кроме того, агрессивные хим/соединения вступают с ним в прямой контакт, что вызывает появление на поверхности этого электрода окисной пленки. Как результат – снижение способности стержня отводить в землю эл/ток (наведенный, возникший вследствие пробоя изоляции или в ином аварийном случае). Следовательно, такое заземление уже не способно обеспечить безопасность пользователя (обслуживающего персонала).

  • Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
  • Величина R заземления должна быть < 0,05 Ом.
  • При таком способе измерения погрешность в пределах 15%.
  • Диагностику контура необходимо проводить при благоприятных погодных условиях.

Измерение мегаомметром

Принцип измерений тот же самый. Отличия лишь в некоторых моментах.

  1. Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
  1. Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
  • Переключатель – в «Контроль».
  • Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
  1. Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.

Следует напомнить, что перед началом измерений необходимо произвести визуальный осмотр контура заземления на целостность всех соединений, швов и так далее. И только если дефекты не выявлены, можно приступать к работе с прибором.

Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.

Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.

Успехов вам в измерениях!

Как выполняется измерение сопротивления заземления » сайт для электриков

Методики измерения

Рассмотрим, как измерить сопротивление контура заземления. Первоначальным этапом всех проверок электричества станут подготовительные работы. К ним отнесем следующие операции:

  • визуальный осмотр устройств заземления на целостность;
  • проверка сварочных швов;
  • измерение расстояние от здания;
  • осмотр крепежей;
  • подтверждение отсутствия утечек тока с шин.

Проверка заземления — последовательный и несложный процесс. Чтобы провести все вышеперечисленные операции самостоятельно в домашних условиях, применяют измеритель сопротивления заземления и зануления. Все данные, которые будут получены в процессе замеров параметров заземления, должны соответствовать правилам. Все данные по заземлению регулируют нормы ПУЭ.

Рассмотрим поэтапно измерение заземления:

Проверяем напряжение. В случае его отсутствия устанавливаем группу питательных элементов (батарейки, аккумуляторы). Необходимо, чтобы они были с габаритами 1,5х3 и с правильным соотношением полярности.
Прибор необходимо взять в руки и установить на ровную горизонтальную поверхность. Необходимо строго проследить, чтобы все углы аппарата были на одном уровне.
Затем последует процедура калибровки измерительного аппарата. Находим переключатель диапазона на панели инструментов устройства. Устанавливаем его в положение “контроль”. Нажав красную кнопку, воспользовавшись вращающейся ручкой, устанавливаем стрелку табло в положение ноля. В случае измерения заземления аппаратом М416 шкала на этом этапе покажет 5 (с отклонением в «+» или «-» 0,3). Если данные не соответствуют норме, прибор необходимо отдать в ремонт.
Выбираем более удобное расположение и определяемся со схемой, по которой следует работать аппарату.
Производим расчёт. Если необходимо получить укрупненные данные, соединяем первый и второй выводы с перемычкой. Аппарат М416 переключаем в схему трех зажимов.
В случае необходимости измерений по четырехзажимной схеме, ориентируемся на порядок действий, представленный на приборе.
Вбиваем в грунтовые массы стержень зонта и электрод, выполняющий вспомогательную функцию

Важно учитывать, что минимально допустимая глубина проникновения зонда и электрода — 0,5 м.
В процессе вбивания зонда в грунт производим только плавные удары, которые позволят снизить сопротивление заземляющего контура.
Провода, идущие к заземлению необходимо тщательно очистить от различных примесей, пыльного налета и красок. Лучше всего применять для этих целей напильник, к которому с другого конца прикрепляется кабель с сечением 2,5 мм.кв.
Когда все вышеперечисленные мероприятия предприняты, определена схема, откорректировано местоположение аппарата, можно приступать к расчету.
Фиксируем переключатель на отметке “х1”, производим вращение ручки и устанавливаем стрелку на нулевое значение.
Полученное значение умножается на соответствующее число

К примеру, если рычаг указывает на отметку “х10”, умножаем значение на 10.
Результаты измерения заносятся в акт проверки заземления (его еще называют протоколом проверки заземления).

Методики и способы измерения показателей

Существует несколько способов, как проверить заземление. Существуют специальные приборы для измерения параметров сопротивления заземления. Рассмотрим основные из методов замера при помощи электрооборудования:

  • токовые клещи;
  • амперметр-вольтметр;
  • специализированные приборы.

Возможно измерение сопротивления токовыми клещами. При их использовании нет надобности производить отключение самого устройства и применения дополнительных электродов. Процесс того как можно измерить заземление оперативный и достаточно точный. Принцип работы токовых клещей рассмотрим подробнее.

Через вторичную обмотку проходит переменный ток. Чтобы произвести расчет, нужно полученное значение ЭДС проводника разделить на численное определение тока. При измерении в домашних условиях используются клещи С.А 6412, С.А 6415, С.А 6410.

Рассмотрим, как проверить контур заземления при помощи амперметра-вольтметра. Понадобится собрать электроцепь. В ней ток будет двигаться сквозь проверяемый заземлитель и дополнительный электрод. Необходимо в цепь добавить потенциальный электрод. Предназначение его заключается в фиксации скачков напряжения. Расстояние от потенциального электрода до токового электрода и заземлителя одинаково, он находится в диапазоне безвредного потенциала и влияет на заземление. Для получения значения сопротивления нужно воспользоваться законом Ома произвести расчет по формуле R=U/I.

Для испытания  и проверки параметров сопротивления в домашних условиях многофункциональный мультиметр не будет удобным. В данном случае лучше использовать следующие измерители сопротивления:

  1. ИСЗ-2016;
  2. МС-08;
  3. Ф4103-М1;
  4. М-416.

Как измерить сопротивление заземления на примере прибора М-416 рассмотрим более подробно.

Проверка заземления в розетках

Самостоятельно определить заземление в розетке можно несколькими способами. Перед началом работ понадобится индикаторная отвертка – ей идентифицируются провода нуля и фазы. Если при контакте с клеммой загорелась лампочка – это фаза. Если индикатор не светится – это ноль.

Проверка мультиметром

Тестирование проводится даже при совпадении цветов по нормативам. Работать с мультиметром нужно так:

  1. Включить электропитание на дом в распредщитке.
  2. Измерить напряжение в розетках. Один щуп ставится на фазу, второй – на ноль.
  3. Переместить щуп датчика от нуля на проводник заземления – РЕ.
  4. Посмотреть, что показывает тестер. Если результат не изменился – с системой все в порядке. Если показатели нулевые – систему нужно заземлить заново.

Проверка контрольной лампочкой

Для изготовления контрольки понадобится лампочка с патроном и присоединенными к нему двумя медными проводами. Между всеми контактами самодельного устройства нужна изоляция. Проверка контролькой производится по принципу мультиметра:

  1. Первый щуп подключается на ноль, второй – на фазу.
  2. Щуп перемещается от нуля на подключение заземления.
  3. Об исправности контура свидетельствует загоревшаяся лампа.
  4. Слабый свет говорит о неправильной работе схемы и необходимости установки УЗО.

Когда в помещении проводка без цветовых индикаторов, узнать заземление можно так:

  1. Для определения нуля и фазы один концевик выводится на клемму земли, второй – по очереди к другим подключениям.
  2. Фаза находится в точке загорания светового индикатора.
  3. Если лампа не горит – РЕ не работает.

Косвенные доказательства отсутствия РЕ

Существует несколько моментов, по которым можно судить об отсутствии РЕ. Владельцев квартиры и дома должны насторожить:

  • стабильные удары током от бойлера, стиральной, посудомоечной машинки, холодильника;
  • шумы колонок при воспроизведении музыки;
  • наличие большого количества пыли около старых батарей.

Тестирование стрелочным (цифровым) вольтметром

Проверка величины напряжения и его наличия осуществляется при помощи вольтметров переменного тока. Стрелочные приборы работают без источника питания, а цифровые функционируют в любом положении, не повреждаются при механическом воздействии.

Правильный алгоритм использования вольтметра:

  1. Определяется максимально допустимая величина замеров для прибора по самому большому числу на шкале.
  2. Уточнение единиц измерения устройства – микровольты, вольты, милливольты.
  3. Подключение вольтметра параллельно участку электрической сети и контроль полярности проводом.
  4. Прикручивание проводов стрелочного устройства к гайкам и винтам. У моделей с постоянным напряжением есть обозначения «плюс» и «минус».

Коротко о проверках

Согласно ПТЭЭП, периодичность проверок контуров заземления (заземляющих устройств) должна составлять 1 раз в 6 лет. Визуальный осмотр видимых частей устройства должен проводиться 1 раз в полгода. Можно проводить проверки и чаще, особенно если есть подозрения на неисправность заземляющего оборудования.

Проверку сопротивления заземления обычно проводят в комплексе с другими испытаниями. Ее задача — оценить защитные свойства электрического оборудования.

Проводить проверку могут специальные организации, имеющие разрешения для таких работ, сертифицированные в Минэнерго, имеющие специальные лаборатории и приборы для проведения измерений. Сотрудники должны пройти соответствующее обучение, проверку на знания по охране труда, медицинский осмотр.

К сведению! Заземляющее устройство (контур заземления) необходим для защиты работников от поражения электрическим током из-за поломки электрооборудования. Если система работает, то ток по заземлителю будет идти в течение короткого промежутка времени. И опасная ситуация на предприятии не случится

Поэтому важно контролировать состояние заземляющих устройств

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

Перед использованием необходимо проверить контур на заземляющее сопротивление.

О том, что такое заземление – на следующем видео:

Методы определения наличия заземления

Известны профессиональные методики проверки устройств заземления, входящих в состав контура, охватывающего весь защищаемый объект. Однако стоимость аппаратуры, используемой при реализации этих способов, для рядового пользователя будет не подъемна. В связи с этим применяются более простые методики определения наличия местного контура или заземляющей PE жилы в конкретном доме или квартире.

Проверка мультиметром

Тестовая проверка заземления посредством мультиметра может быть проведена при соблюдении следующих условий:

  1. Перед тем как проверяется заземление в загородном доме или квартире в распределительном щитке обязательно отключается вводной автомат.
  2. Затем потребуется выбрать одну из расположенных в комнате розеток и полностью разобрать ее.
  3. После этого необходимо визуально определить, подсоединен или нет к заземляющей клемме провод соответствующей расцветки.

При его наличии следует убедиться, что шина заземления подключена к защитному контуру и что оно действительно эффективно. Для этого вооружившись тестером, необходимо проделать следующие операции:

  1. Подать питание в цепь, включив «вырубленный» ранее вводный автомат на электрическом щитке.
  2. Выставить центральный переключатель прибора на нужный предел измерения напряжения (до 750 Вольт).
  3. Измерить этот показатель между фазным и нулевым проводами и зафиксировать его.
  4. Провести аналогичные измерения, но уже между фазой и предполагаемой «землей».

В том случае если в последней операции на табло мультиметра появится показание, лишь на немного отличающееся от первого результата – это означает, что заземление в розетке действительно есть и что оно работоспособно.

Но возможен и другой вариант, когда показания во втором случае вообще не появляются. При таком исходе измерений контура заземления мультиметром можно смело утверждать, что он отсутствует или по какой-либо причине не работает как положено.

Проверка с помощью контрольной лампы

В том случае когда в хозяйстве не оказалось мультиметра – проверить заземление удается посредством контрольной лампочки, собранной из оказавшихся под рукой деталей. Сделать самостоятельно это приспособление совсем несложно; для этого достаточно найти патрон от старого светильника или люстры 1, два провода 2 и надежно изолированные с одной стороны контактные разъемы 3.

После сборки такого несложного прибора для проверки заземления можно проделать все уже описанные ранее операции с помощью цифрового мультиметра.

Это необходимо сделать по той причине, что некоторые недобросовестные электрики не обращают внимания на цвет изоляции и в спешке подсоединяют синий провод к фазе, а красный или коричневый – к нулю. Посредством индикаторной отвертки можно точно установить, на каком контакте действует фаза. При касании ее концом фазного провода неоновый индикатор загорается (если одновременно большой палец расположить на контактном пятачке отвертки). Для нулевого провода та же операция не приводит к загоранию неонки.

После этого следует взять контрольную лампу и одним концом провода коснуться выявленной фазной клеммы, а вторым соответственно – нуля. При наличии напряжения в сети исправная лампочка в любом случае загорится. Затем первый из концов следует оставить на месте, а вторым прикоснуться к контактному усику заземления.

При загорании лампочки можно сделать вывод, что контур работает. Эффект тусклого свечения нити накала говорит о плохом качестве заземления или его полном отсутствии.

Обратите внимание: В том случае, если в питающую линию наряду с автоматом включено УЗО – при проверке оно может сработать и отключить цепь. Это также свидетельствует о хорошем состоянии заземляющего контура (косвенно)

Это также свидетельствует о хорошем состоянии заземляющего контура (косвенно).

Для чего проверяется заземление

Проверка состояния заземления является важным мероприятием, направленным на защиту людей от действия электрического тока. Для решения задачи, как проверить заземление в частном доме используется специальное оборудование. Полученные результаты дают возможность установить, в каком состоянии находится заземление, соответствует ли установленным нормам и способно ли выполнять свои функции. Обычно такие измерения проводятся квалифицированными специалистами из организации, обслуживающей домашнюю сеть.

Периодические проверки заземления должны обязательно проводиться, несмотря на то что вся электрика в доме монтировалась профессиональными электротехниками. Нередки случаи, когда неправильное соединение контура вызывает его преждевременный износ. В связи с этим рекомендуется в установленные сроки делать измерение и проверять, в каком состоянии находится грунт и размещенные в нем электроды, а также заземляющие проводники, шины и элементы металлосвязей.

Данная процедура, определяющая, есть ли заземление, проводится в жилых домах не реже 1 раза в 3 года, а на объектах промышленного производства – ежегодно.

В процессе замеров тестером определяется сопротивление контура, значение которого должно соответствовать установленным нормам. Если показатели получились выше нормативных, их можно снизить. Для этого нужно просто увеличить площадь взаимодействия путем добавления электродов или поднимается величина общей проводимости грунта, с помощью увеличения концентрации солей, содержащихся в почве.

Следует учитывать, что устройство обычного заземления может лишь понизить напряжение, поступающее на корпус оборудования. Сделать защиту более надежной поможет устройство защитного отключения – УЗО, устанавливаемое в одной связке с заземлением. Любые защитные средства проектируются и выбираются индивидуально, в соответствии с условиями эксплуатации. Выбор осуществляется с учетом влажности, структуры грунта и других факторов.

Необходимо помнить и о том, что многие виды современных электрических устройств оборудованы встроенным УЗО, срабатывающим лишь при включении в розетку, имеющую заземление. Поэтому их нормальная работа полностью зависит от правильного подключения защиты и дальнейших проверок ее работоспособности.

Принцип проведения измерения

Измерение сопротивления заземляющих устройств проводят с периодичностью, установленной на предприятии, но не реже одного раза в 12 лет. Для более точного измерения создают искусственную электрическую сеть.

Рядом с испытуемым контуром в грунт встраивают вспомогательное устройство, которое называют токовым электродом, и его тоже подключают к сети. А также устанавливают электрод, по которому определяют падение напряжения в сети.

Чтобы измерить и получить более достоверные данные, в момент проведения процесса должны быть оптимальные погодные условия. То есть сопротивление почвы в этот момент должно быть максимальным. При этом должны быть выполнены следующие условия:

электрод, с которого будут снимать показания, располагают строго между заземляющей конструкцией и дополнительным электродом;
расстояние между элементами должно равняться пятикратной глубине закладки заземлителя;
при замере системы заземлителей во внимание принимается диагональ с наибольшей длиной.

Кроме того, дополнительно проводят замеры сопротивления изоляции.

Периодичность проверки сопротивления защитного заземления электрооборудования

  • Объекты, которые не отнесены к категории особо опасных – согласно пункту 3.6.2 ПТЭЭП сроки проведения измерений и испытаний устанавливаются руководителем Потребителя с учетом следующих факторов: условия эксплуатации и состояние электроустановки, рекомендации изготовителя, положения Приложения 3 ПТЭЭП.
  • Наружные установки и электрооборудование в особо опасных помещениях – не реже одного раза в течение трех лет.
  • Электроустановки образовательных и здравоохранительных учреждений, предприятий торговли, общественного питания, бытового обслуживания (химчистка и стирка) – не реже одного раза в течение года или полугода, если речь идет о особо опасных помещениях. Регламентируется ведомственной нормативной документацией.

Периодичность проверки сопротивления устройств молниезащиты зданий и сооружений

  • I-II категория – требуется ежегодный контроль состояния системы перед наступлением сезона гроз;
  • III категория – не реже одного раза в течение трех лет.

ОБРАТИТЕ ВНИМАНИЕ! Приемо-сдаточные испытания устройств молниезащиты с последующим вводом в системы в эксплуатацию выполняются до перехода строительства в стадию проведения работ по отделке здания или сооружения. Если речь идет о взрывоопасной зоне, то до начала осуществления комплекса мероприятий по опробованию технологического оборудования

Порядок проведения испытаний контура заземления

  • В ходе визуального осмотра заземляющего устройства производится контроль уровня защищенности от воздействия коррозии и целостности, доступных для обзора элементов.
  • Методом простукивания проверяется механическая прочность и целостность соединений заземлителей с заземляемыми элементами.
  • Руководствуясь методикой замеров сопротивления заземления, создается искусственная цепь протекания тока через испытываемый заземлитель. С помощью калиброванного прибора M-416 измеряется удельное сопротивление грунта и заземлителя. На основании данных, полученных в ходе проверки, делается заключение о качестве технического состояния заземляющего устройства.

Методика измерений, объемы и нормы испытаний определяются согласно методическим указаниям РД 153-34.0-20.525-00 и РД 34.45-51.300-97.

Как оформляются результаты проверки контура защитного заземления
  • После осуществления всего комплекса мероприятий по контролю состояния заземляющего устройства заказчик получает технический отчет, включающий в себя протокол визуального осмотра и измерения сопротивления заземления (составляются согласно требованиям ГОСТ Р ИСО/МЭК 17025-2006), описание примененной методики, копии разрешительной документации электролаборатории.
  • Сведения о дате выполнения замеров и их результатах заносятся в журнал учета проверок заземления электрооборудования.
  • В случае выявления несоответствий заказчику даются рекомендаций по их устранению.

Протокол проверки наличия цепи между заземленными установками и элементами заземленной установки

Преимущества мобильной электролаборатории «СК «ОЛИМП»
  • Перечень видов работ, к которым допущена наша электроизмерительная лаборатория, позволяет помимо измерений сопротивления заземления и проверки устройств молниезащиты проводить комплексную диагностику соответствия электрооборудования и электроустановок напряжением до 35 кВ требованиям ПУЭ, ПТЭЭП, инструкций РД и СО.
  • Выданные протоколы измерений принимаются всеми контролирующими органами.
  • Гарантия точности и достоверности замеров сопротивления защитного заземления – своевременность поверки измерительных приборов, точное следование методике, компетентность персонала (испытания проводят сотрудники с V группой допуска по электробезопасности).
  • Каждый заказчик вносится в базу постоянных клиентов и получает скидку при следующем обращении или заказе других услуг компании «СК «ОЛИМП».

Как правильно сделать измерение сопротивления заземляющего устройства?

Установка заземления—это очередной фактор, повышающий безопасность вашего дома или иного помещения. Обустройство данной конструкции принято проводить не только при помощи специальных организаций и опытных сотрудников, но еще и своими руками. Для собственноручной работы требуется лишь знание навыков в работе и обращении с электрическими сетями. После сооружения данного приспособления потребуется провести измерение сопротивления заземляющего устройства, зачастую здесь и возникают сложности.

Важно! Измерение сопротивления заземления требуется проводить исключительно после капитального ремонта, профилактических проверок либо первоначального строения.

Принцип проведения измерения

Чтобы не упустить важные моменты, стоит провести точное измерение. Для этого понадобится создать искусственную электрическую сеть, по которой будет протекать напряжение. После, неподалеку от контура заземления, который будет подвергаться эксперименту нужно расположить вспомогательное заземляющее устройство. Чаще его называют токовым электродом, он аналогично основному заземлению подключается к напряжению. Также в области нулевого потенциала, стоит расположить еще и потенциальный электрод, при помощи которого можно измерить падение напряжения сети.

Обратите внимание, получить высокоточные и достоверные результаты удастся лишь при оптимальных погодных условиях, а также на момент максимального удельного сопротивления почвы. Более эффективной оказывается методика замеров, основанная на нескольких полюсах.

Действуйте строго по следующим правилам:

  • располагайте потенциальный зонд между заземляющим приспособлением и вспомогательным электродом;
  • старайтесь учитывать глубину закладки заземлителя, так как расстояние от заземления, проходящего испытание до вспомогательного электрода должно до пяти раз превышать глубину;
  • если вам требуется провести измерение сопротивления системы заземлителей, в этих случаях отталкиваются от диагонали с наибольшей длиной.

Важно! Иногда необходимо проводить еще и дополнительные мероприятия, касающиеся измерений сопротивления заземлений. Такой вариант характерен для сложных подземных коммуникаций.

Схема защитного заземления


Помимо всех проведенных манипуляций рекомендуется проводить замеры сопротивления изоляции.

Способы и инструкция измерения сопротивления заземляющих устройств

Ответы на вопрос, как замерить сопротивление заземления, могут быть самыми неожиданными и многочисленными. Из нашей статьи вы узнаете не только точность проведения операции, но еще и некоторые важные рекомендации.

Изначально, как и во всех других проверках в сфере электричества проводятся подготовительные этапы. В них относят: визуальный осмотр целостности устройств, связанных с заземлением, прочность сварочных швов, если они на месте, расстояние от помещения, наличие всех крепежных деталей; а самое главное, подтверждают отсутствие утечек тока с шины.

Для проведения испытаний в домашних условиях обычно используют измеритель сопротивления заземления, данный этап мы будем рассматривать на примере прибора М416.

Внимание! Значения, полученные в процессе замеров, должны соответствовать нормам ПУЭ.

  • Делаем проверку напряжения, если оно отсутствует—можно установить комплект питательных элементов, например, аккумуляторов или батареек. Важно, чтобы они имели параметры 3х1,5, при этом, соблюдайте полярность.
  • Берем в руки прибор и ставим его на ровную горизонтальную плоскость. Обязательно, чтобы все углы и вершины аппаратуры находились на одном уровне.
  • Далее, следует процедура калибровки М416. На панели инструментов приспособления имеется переключатель диапазона. Ставим его в положение «контроля». Теперь зажимаем красную кнопку и при помощи вращающейся ручки приводим стрелку циферблата к нулевому значению. Шкала должна показать 5±0,3. В противном случае прибор подлежит ремонту.

    Измерение сопротивления заземления в домашних условиях

  • Располагаемся ближе к заземлению и выбираем нужную схему, в которой будет работать прибор.
  • Проводим вычисления. К примеру, вам необходимы грубые показания прибора с некоторой погрешностью, значит необходимо выводы 1 и 2 соединить с перемычкой. Приспособление М416 переключается в трехзажимную схему.
  • Если вам потребуется проводить замеры по четырехзажимной схеме, посмотрите, как это делается прямо на корпусе прибора.
  • Стержень зонда и вспомогательный электрод вбиваем в грунт с высокой плотностью, при этом придерживайтесь стандартных требований, не забывайте, что минимальная глубина должна составлять не менее 0,5м.

    Схема контура заземления для дома

Важно! Для дополнительного заземлителя и зонда можно использовать гладкие прутья диаметром от 5 мм.

В ходе забивания, применяйте только ровные удары, это позволит снизить сопротивление между основным и вспомогательным заземлителями. Продолжим нашу инструкцию.

  • Провода, примыкающие к заземлению, очищаются от всех примесей грязи, краски и пыли. Для этого используется напильник, на который с обратной стороны крепится кабель, имеющий сечение заземляющего проводника 2, 5 кв. мм.
  • После того, как все действия выполнены: выбрана схема и рабочее положение прибора, переходим к практическим действиям, то есть вычислениям.

    Схема измерения сопротивления прибором

  • Ставим переключатель на уровне отметки «х1», вращаем ручку и приводим стрелку к нулю.
  • На шкале окажется значение, которое стоит умножить на один. Объясняем, если рычаг переключения находится на другой отметке, например, «х5», «х10» и т.д., соответственно умножаем на 5 или 10.

Данный эксперимент показывает, что сопротивление заземляющего устройства составляет 1, 8, значит умножаем это число на один, и получаем сопротивление 1, 8 Ом. В итоге, обязательно нужно занести данные в специальный акт.

Внимание! Работая с прибором, обязательно нужна спец одежда и резиновые перчатки.

Как измерить сопротивление контура заземления мультиметром?

Сразу, хотелось бы заверить, что использование даже самого многофункционального мультиметра не предназначено для столь масштабных проверок, как измерение заземления.

Однако, для домашних работ и при использовании стандартных методов замеров, подтвержденных нормативными актами, прибор остается полезным.

Перед работой, как обычно, выполняется калибровка и выявление неисправностей. Сюда же относят ревизию заряда батареи. Важно учитывать, что слишком низкая емкость питания, приведет к увеличению погрешностей на шкале. Для изучения всех подробностей вычисления сопротивления заземляющего устройства прилагаем схему.

Цели проведения измерений

Схема вычислений сопротивления заземлителей прибором

Замер сопротивления заземляющего устройства принято проводить в первую очередь с целью безопасности. Известно много случаев, при которых даже с рабочим заземлением происходило поражение человека электрическим током.

Кроме того, значение исследований показывает возможность возникновения пожарной опасности, и, конечно же, проверка сопротивления доказывает, соответствует ли конструкция нормам и стандартам ПУЭ.

Важно! Измерение сопротивления защитного и рабочего заземления должно проводится, опираясь на факторы окружающей среды.

Рабочее и защитное заземление

Каждая разновидность грунта является отличным проводником электрического тока. Устройство заземления, которое принято монтировать на определенную глубину грунта спасает человека от неблагоприятного воздействия со стороны электрической системы домашнего обслуживания.

Данный тип измерений обязательно проводится сложным методом, поэтому для него одних навыков будет недостаточно, следовательно, требуется привлечение профессиональной рабочей силы. Рассмотрим, что представляют из себя оба вида заземлений.

Схема устройства заземляющего приспособления

  1. Рабочее заземление—устройство, которое при наступлении чрезвычайного происшествия в электрической сети, выполняет защитную роль. За счет этого, работа бытовых приборов и оборудования стабилизируется, следовательно, снижается риск выхода их из строя. Существует и постоянное рабочее заземляющее устройство, однако его приемлемо использовать в сетях промышленного масштаба. Для пользования бытовой техникой достаточно произвести установку заземлителей в розетку.
  2. Защитное заземление—это приспособление, которое способно предотвратить поражение человека электрическим током, кроме того напрямую защищает оборудование от возгорания. Неоднократно случаются пробои электрического тока на корпус аппаратуры, в этом случае защитный заземлитель предупредит поломку и даст знать о нарушении изоляции, спасет от сверхтоков и короткого замыкания.

    Мультиметр для измерения сопротивления в домашней электросети

Чем лучше вычислить сопротивление заземления? Технические характеристики прибора

Каждый уважающий себя хозяин беспокоится о безопасности в собственном доме, и чтобы обеспечить ее полностью, требуется еще и защитить все электрооборудование. Для этого, как мы знаем, сооружается заземлительное устройство, однако оно требует регулярных проверок, рассмотрим прибор, который хорошо справляется с этой задачей.

Fluke 1625-2 GEO—это измеритель нового поколения, предназначенный для использования в бытовых и отраслевых условиях. Преимуществом подобного прибора считается его возможность хранить данные и передавать их на компьютер. Также аппарат способен проводить вычисление сопротивления заземления, используя только зажимы. Плюсом является возможность работы без дополнительной установки электродов.

Приспособление будет работать безошибочно, если имеется полностью укомплектованная система заземления. Если в вашем доме имеется заземление, созданное из одного контура, беспроводной способ не подойдет в качестве замера.

Технические особенности

  • Внутренняя память устройства позволит сохранить данные в пределах до 15 тыс. единиц.
  • Обладает жидкокристаллическим дисплеем с улучшенными качествами графики.
  • Имеется поворотный механизм и клавиши управления функциями.
  • Работает при диапазоне температур от -10 до +50°С.
  • В функции безопасности включается возможность дополнительной изоляции.
  • В базовую комплектацию входят 6 батареек мощностью 1,5 В на основе щелочного состава.
  • Погрешность прибора в измерениях составляет ±5%.
  • Аппарат выполняет не менее четырех вычислений в секунду.
  • Внутреннее сопротивление составляет 1,5 Ом.
  • Автоматический выбор диапазонов для проведения вычислительных работ.

    Прибор для измерения сопротивления М416

Заключение и выводы

Вычисление приборами следует выполнять исключительно в условиях подходящих погодных условий. Целесообразно это делать в середине летнего периода и в середине зимы. Считается, что в эти моменты, грунт считается наиболее плотным, а значит и увеличивается его удельное сопротивление.

В домашних условиях следует проводить замеры с периодичностью один раз в полтора года. Для предприятий, мероприятия по вычислению выполняются строго по установленному графику и все результаты заносятся в техническую документацию, которая заверяется печатью и подписью руководства.

На данном видеоуроке Вы можете посмотреть процесс измерения контура заземления:

Вас могут заинтересовать:

Как правильно сделать контур заземления своими руками

  1. Контур заземления в частном доме. Требования.
  2. Как измерить контур заземления?
  3. Заземление в частном доме. Схема контура заземления.
  4. Как сделать контур заземления?
  5. Создание контура заземления своими руками.

При наличии большого числа электроприборов в доме необходимо задуматься об их безопасности и безопасности людей, пользующихся ими во время грозы. Чтобы обеспечить свою безопасность, в частном доме стоит делать заземление, которое позволит Вам чувствовать себя спокойно даже в сложных погодных условиях, ведь в случае поломки электрического прибора защита от тока гарантирована.

Многие не знают, как правильно сделать контур заземления в частном доме своими руками, поэтому сейчас мы постараемся ответить на наиболее распространенные вопросы по этой теме. Нормативы ПУЭ и ГОСТа для защитного устройства от удара молнии предписывают создание специального отвода, с помощью которого можно оградить себя от пагубных последствий грозы.

Контур заземления в частном доме. Требования

Чаще всего под напряжением оказывается корпус электрического прибора. И даже небольшое соприкосновение с ним может привести к определенному риску получить ожог или удар током.

Заземление предполагает соединение различных частей электротехнических устройств с контуром заземления. При скачке напряжения, оно будет перенаправлено в землю, благодаря чему человек защищен от опасности поражения током.

Требования к контуру заземления в частном доме довольно жесткие. Он не должен проходить на расстоянии ближе одного метра от жилого здания. Процедуру нужно согласовать с государственными службами. Это требуется ввиду того, что при установке заземляющего устройства есть риск наткнуться на коммуникации, проходящие под землей. Предварительное согласование избавит от риска повреждения существующих систем и избавит от бюрократических проблем в случае проверки.

Контур изготавливают из стали разной формы:

  1. Круглая сталь. Ее диаметр не должен быть менее 14 мм, в противном случае контур будет проблематично вогнать в землю.
  2. Стальной уголок. Размер прибора не меньше чем 40*40*5.
  3. Стальные штыри с заостренным концом. Наиболее оптимальный вариант, т.к. вход в землю в данном случае выполняется максимально быстро и удобно.

Сам контур включает в себя внутреннюю и наружную подсистемы. Их объединение происходит в распределительном щитке, который располагается непосредственно в помещении.

Ключевой параметр, который характеризует заземление – это сопротивление растекания. Именно от него зависит, насколько быстро и просто ток преодолеет дистанцию от электроприбора до земли. На этот процесс влияет глубина закладки стержней, специфика грунта (в частности, его влажность), используемый в конструкции металл. Штыри необходимо забивать на глубину от 60 до 100 см, чтобы в случае морозов они не вышли из строя.

Как измерить контур заземления?

Наиболее оптимальное место, где располагается контур – это северная сторона частного дома. Как правило, именно там чаще всего наблюдается наиболее высокая влажность, что способствует минимальному сопротивлению растекания. Правильно измерить контур заземления, как того хотят многие, довольно сложно, поэтому потребуется внимательность. Применяйте точные современные измерители, поскольку даже небольшие погрешности способны отразиться на общей безопасности здания.

Не следует выносить контур слишком далеко. Это не только помешает прокладке коммуникаций в будущем, но и увеличит площадь проводимых работ сейчас.

Предпочтительно, чтобы точный расчет проводился профессионалами. Сделать это неспециалисту весьма проблематично, ведь необходимо учитывать коэффициенты, получаемые с помощью предварительных расчетов, проведенных с учетом всех необходимых параметров. Лучше обратиться к опытным специалистам компании «Алеф-Эм», которые грамотно все рассчитают и обеспечат максимальную эффективность конструкции. Поэтому если вы не знаете, как измерить сопротивление контура заземления, то лучшим выходом будет обращение к грамотным специалистам, которые эффективно и быстро выполнят весь комплекс работ.

Заземление в частном доме. Схема контура заземления

Заземление в частном доме можно осуществить двумя способами – замкнутым и линейным. Оба варианта пользуются успехом, на окончательный выбор влияют площадь участка, финансовые возможности человека и время. Определять схему контура заземления лучше, предварительно проконсультировавшись с профессионалом.

Замкнутая цепь в виде треугольника. Это более простой вариант, который менее энергозатратен. Потребуется вырыть одну яму, где и разместиться такой вариант заземления.

Его преимуществом будут надежность и стабильная работа, в том числе и при больших нагрузках. Даже в случае повреждения металлической перемычки система все равно останется стабильной.

Второй вариант – линейная схема. При ней штыри располагаются в ряд, последовательно друг за другом. Однако есть один существенный недостаток: если повредится первое звено, то вся система полностью выйдет из строя. Несмотря на это, линейная схема пользуется не меньшей популярностью среди пользователей.

Подробнее об этом можно узнать в статье «Заземление зданий. Устройство контура заземления в доме».

Кроме того, можно попробовать создать специфический вариант оформления в виде овала или квадрата. Они также популярны среди пользователей, но при их обустройстве необходимо учитывать специфику участка. Например, если околодомовая площадь небольшая, такие варианты не подойдут, ведь Вы просто не сможете их вместить на территории маленького участка.

Расположение защиты по всему периметру обойдется гораздо дороже. Заземлять таким образом более эффективно, поскольку удается обеспечить безопасность всей площади возле дома. Если у вас недостаточно для этого средств, можно установить линейный контур и со временем наращивать его.

Как сделать контур заземления?

После того, как выбор схемы подключения и места установки завершен, следует приступать к монтажным работам. Следует рассматривать специфику почвы, а также погодные условия. На участке, который был выбран, не должны проходить другие коммуникации. Не знаете, какие инструменты собрать перед тем, как сделать контур заземления? Для этого понадобятся:

  1. Сварочный аппарат.
  2. Перфоратор.
  3. Болгарка.
  4. Гаечные ключи.
  5. Молоток или кувалда (последняя более желательна, т.к. штыри придется вбивать глубоко).

При замкнутом монтаже потребуется вырыть траншею в виде равностороннего треугольника. Не забудьте сделать и дорожку к дому от одной из вершин. Она должна быть на глубине не менее 50 см. В каждую из трех вершин забиваются штыри. К тем частям стержней, которые находятся на поверхности, начинают приварку металлосвязи. Полученный заземлитель соединяют с домом с помощью специальной полосы или проводника.

Все жилы и контуры тщательно зачищаются. Для того чтобы сделать конструкцию еще более эффективной, устанавливаются стальные полосы. Они дают лучшие результаты за счет того, что площадь соприкосновения с землей у них весьма значительна. Из-за этого повышается проводимость тока, т.е. скорость выполнения операций.

Сложность заключается в том, что стальная полоса труднее укладывается в грунт. Она монтируется отдельными кусками, которые впоследствии соединяются между собой. При этом возможна только сварка участков цепи, что делает конструкцию гораздо более надежной. Места сварки обрабатывают специальной краской. Даже через несколько лет активной эксплуатации на ней не будет видимых внешних повреждений и не потребуется замена. Подключение к заземленной шине осуществляется через особые зажимы, расположенные на корпусе.

Для создания качественной конструкции не рекомендуется использовать болты. Они очень быстро окисляются и контур заземления теряет свою эффективность.

Как сделать контур заземления в частном доме легко и без особых хлопот? Изначально проверьте, насколько почва восприимчива к материалу конструкции. Глубина расположения штырей также должна быть разумной, слишком глубоко размещать их не следует.

О пользе установки таких устройств больше читайте в статье: «Нужно ли заземление в частном доме».

Методика установки и расчета будет зависеть и от силы сопротивления. Контур заземления в частном доме своими руками легче правильно выполнить, если помнить, что напряжение бывает 220 В и 380 В. В первом случае сила сопротивления равняется 30 Ом, во втором – 10. Кроме того, необходимо учитывать и качество проводника. Сила напрямую коррелирует с удельным сопротивлением почвы.

Создание контура заземления своими руками

Сделать контур заземления своими руками гораздо проще, если проводка отвечает всем современным требованиям. Ее плохое качество станет преградой на пути выполнения работ. Замена отдельных участков будет эффективна ненадолго, для большей эффективности и надежности требуется комплексная прокладка новой проводки.

Если на данный момент нет возможности поменять ее полностью, то следует взять новые элементы:

  • выключатели;
  • розетки;
  • распределительные коробки.

Однако не следует изменять их расположение при осуществлении монтажных работ. Провода заземления обязаны располагаться в распределительных коробках, а проводник всегда должен быть под контролем.

На установке конструкции не следует экономить. Одного забитого штыря будет явно недостаточно, чтобы работа была стабильной и эффективной. Если жилищные условия и земля позволяют, то для большей надежности лучше закопать на территории участка сразу два треугольника.

Также не следует применять металл, имеющий специально упрочненную поверхность. Это одна из наиболее распространенных ошибок, когда выполняется контур заземления своими руками.

О том, почему важно измерять все показатели, читайте в статье «Сопротивление контура заземления – как и зачем его измерять».

Дача или частный дом – это те строения, где обеспечить свою безопасность должен каждый. От перепадов напряжения не застрахована ни одна система, но можно уберечь себя от опасных последствий. Компания «Алеф-Эм» уже давно находится на данном сегменте рынка и предлагает индивидуальный подход к каждой проблеме. Опытные специалисты выполняют все работы согласно инструкции и требованиям безопасности, для достижения долгосрочного результата используется новейшее сертифицированное оборудование. Все работы выполняются на должном уровне, а их качество проверяется с помощью мультиметра и омметра. Точное измерение позволит определить качество проделанных работ и в случае необходимости подкорректировать изменения.

Специалисты компании не только обеспечат вашу безопасность, но и дадут советы по эксплуатации конструкции, которые позволят продлить срок ее использования. Не знаете, как сделать контур заземления в частном доме? Обращайтесь к профессионалам, которые всегда готовы предложить нужный вариант.

Наши специалисты быстро и правильно измеряют все показатели в загородных домах, ведь в этом деле важна точность и достоверность. Измеряя и фиксируя данные о проводах и электродах, опытные сотрудники поэтапно выполнят весь комплекс процедур и смогут выбрать самый рациональный метод. Какие бы значения ни были у напряжения, пользователи всегда могут чувствовать себя спокойно. Специалисты не зря руководствуются правилом, что главное – это безопасность. Желание обустраивать собственный быт похвально, но если самостоятельно что-либо не получается, а инструкции не помогают, лучше заручиться помощью профессионалов. Вы можете заказать бесплатную консультацию у наших специалистов.

Заказать бесплатную консультацию по заземлению дома

устройство, нормы ПУЭ, как проверить и измерить сопротивление мультиметром

Урбанизация современного человека, появление в быту большого количества технических средств, использующих электричество, значительно повысили требования к электробезопасности, одним из основных компонентов которой является преднамеренное заземление открытых частей электрооборудования, в нормальном положении не находящихся под напряжением. Они распространяются и на частные дома, владельцы которых несут прямую ответственность за безопасность здания и его жильцов. Небольшие познания хозяина в электротехнике могут помочь ему сделать самостоятельно условия проживания комфортными и безопасными для жизни и здоровья окружающих.

Необходимость и условия заземления в частном доме

До появления значительного количества бытового электрооборудования в частном доме не было необходимости в заземлении электропроводки. Сейчас же, даже на даче, не говоря уже о собственном коттедже, устанавливают десятки электрических приборов, от соприкосновения с корпусом которых можно получить удар током.

Дело в том, что со временем из-за износа изоляции на проводах уменьшается их сопротивление, поэтому может возникнуть «пробой» тока на корпус. Он может оказаться под напряжением и стать смертельно опасным для пользователей.

Кроме того, при длительной эксплуатации электроагрегатов на их внешних частях накапливаются значительные заряды статического электричества, воздействие которого на человека тоже малоприятно. В завершение ко всему они излучают большое количество электромагнитных волн, которые не менее пагубно влияют на здоровье людей.

Правильная установка заземления практически полностью избавляет человека от этих опасных факторов, особенно детей, которые более чувствительны к их воздействию.

Есть еще одна естественная и самая рискованная причина, по которой необходимость установки заземления возрастает – это воздействие грозовой молнии. Причем, чем меньше расстояние между грозовым облаком и подстилающей поверхностью (то есть крышей дома), тем больше вероятность «пробоя». Поэтому в регионах с частыми и интенсивными летними грозами, да еще, если дом оказался выше относительно окружающих сооружений, устанавливать молниеотвод нужно в обязательном порядке.

Искусственное и естественное заземление

Прежде чем монтировать заземление, необходимо определиться с основными терминами и принципом его работы. В соответствии с Правилами устройства электроустановок (ПУЭ):

  • искусственное заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством;
  • заземляющее устройство (ЗУ) – конструкция, состоящая из заземлителя и заземляющих проводников;
  • заземлитель – проводник из металла, который непосредственно соединяется с землей;
  • заземляющие проводники – система металлических проводников, которые соединяют заземлитель с электрическим оборудованием.

К естественно заземленным относятся конструкции и строения, которые постоянно находятся в земле, а в качестве заземлителя служит, к примеру, железобетонный фундамент.

К естественным заземлителям также относятся металлические системы подземных трубопроводов (водопровод, канализация, скважины) или металлические конструкции зданий и сооружений, глубоко входящие в землю.

В соответствии с ПУЭ, трубопроводы, проложенные под землей, могут быть использованы в качестве естественного заземления лишь в том случае, если стыки труб были соединены сваркой. Использовать в данных целях нефте-, газо- и бензопроводы запрещается.

В качестве искусственных заземлителей используются металлические конструкции, состоящие из вертикальных и горизонтальных проводников (трубы, уголки, полосы) и соединенные в виде контура или гребенки.

Принцип же работы этой системы заключается в том, что при «утечке» электротока на открытые металлические поверхности оборудования заземляющее устройство позволяет мгновенно переправить часть его в почву, причем в зависимости от емкости ЗУ до значений, безопасных для здоровья человека или практически полностью. Это равноценно тому, как если бы каплю концентрированной кислоты разбавить в стакане или ведре воды – сама по себе она очень вредоносна для здоровья, а вот раствор, особенно в ведре, опасности уже не представляет.

В свою очередь объем емкости защитного сооружения зависит не только от размера конструкции, но и удельного сопротивления (проводимости) почвы, в который оно будет монтироваться.

Таблица 1

Из таблицы 1 видно, что лучшей проводимостью обладают торф, чернозем, садовая земля, глина и суглинок, поэтому именно эти грунты лучше всего подходят для заземления. Скальные породы, пески для этих целей использовать нельзя.

Требования ПУЭ по установке ЗУ

Контур заземления частного дома должен быть выполнен в соответствии с нормами Правил устройства электроустановок. Полное их соблюдение с разработкой проекта, составлением необходимых проверочных документов после установки, актированием работ, привлечением для этого специалистов – очень затратное мероприятие. На эти расходы идут обычно при строительстве нового жилья.

Что же касается зданий, уже находящихся в эксплуатации, то задача их владельцев при установке защитного сооружения заключается в обеспечении прежде всего своей электробезопасности, а для этой цели достаточно придерживаться лишь отдельных положений документа. Причем, используя б/у материалы, сделать это своими руками вполне бюджетно и реально.

Но для начала необходимо убедиться, можно ли это выполнить при старой проводке. Разводка должна быть выполнена трехжильными проводами (третья из которых, окрашенная в желто-зеленый цвет, как раз и будет использоваться для заземления). А вот если установлены двужильные, без «земли» – придется менять на новые, причем с тремя жилами – при использовании однофазного тока с напряжением в 220 В и с пятью – если имеется и трехфазный ток с 380 В.

Чтобы заземляющее устройство могло справиться со своей задачей, его емкость должна быть больше «вместимости» всего используемого в доме оборудования и электропроводки, в противном случае оно только усугубит опасность. Поэтому в качестве материала для его изготовления в соответствии с ПУЭ можно применять медные и стальные стержни, арматуру, уголки, трубы с поперечным сечением не менее, чем предусмотрено в таблице 1. 7. 4.

Для частного дома оптимальными по конструкции и размеру являются ЗУ в виде треугольного контура со сторонами 3 м, изготовленные из трех вертикально расположенных, стальных уголков с полкой 50 мм и длиной 2,5 м, соединенных между собой стальной полосой шириной 40 мм или круглым прутом диаметром не менее 10 мм. Устанавливаются они на расстоянии не менее 1 м и не более 10 м от здания, в затененных и наиболее увлажненных местах. Так как верхние слои грунта обладают большим сопротивлением, чем нижние, то монтаж сооружения начинают из траншеи, вырытой на глубину 0,7 м.

Кроме ЗУ для устранения последствий утечки тока в сеть дополнительно встраивают на фазовом проводе устройство защитного отключения (УЗО), которое в этом случае мгновенно срабатывает, отключая всю проводку.

Но даже его наличие не спасет здание от негативных результатов, если к этому заземлению присоединить еще и молниеотвод. Поскольку для поглощения мощнейшей энергии грозового заряда емкости его просто не хватит, и тогда ток хлынет в обратную сторону, расплавляя на своем пути все проводники из-за того, что у УЗО есть некоторая реакция, и оно не успевает своевременно отключиться. Поэтому для защиты от молнии необходимо сооружать свой контур на отдалении от первого.

Монтаж контура заземления

Монтаж следует начать с прокладки заземляющего медного кабеля сечением не менее 4 квадратов от силового электрощита до места будущего соединения с выходом от контура заземления. В щите он подсоединяется к главной заземляющей шине (ГЗШ). В нем же на разрыве фазового провода можно установить УЗО. Если в доме есть ввод сети напряжением 380 вольт, то от него должен прокладываться отдельный проводник сечением не менее 10 кв. мм.

Далее можно приступать к установке самого контура. Для этого на удалении не менее 1 м и не более 10 м от стены, из которой выведен заземляющий проводник от щитка, прокапывается траншея глубиной не менее полуметра в виде равностороннего треугольника с длиной сторон 3 м и направлением одного из углов в сторону дома. Затем от него следует докопать ее до фундамента.

В вершинах получившейся фигуры нужно раскопать ямы объема, который обеспечит комфортное выполнение последующих работ. В середину этих углублений вбиваются вертикальные заземлители (электроды) длиной 2-3 м (с оставлением концов до 10 см), в качестве которых используются стальные уголки с полкой 40-50 мм или круглые пруты диаметром не менее 12 мм. Для облегчения этой трудоемкой работы конец уголка можно заострить или, если есть возможность, пробурить ямы на всю длину стержней.

К оставленным участкам электросваркой, плотно, в «нахлестку» горизонтально привариваются стальные полосы шириной 30-40 мм или «кругляк» диаметром не менее 10 мм, замыкая их в единый контур. Такой же элемент основательно крепится на ближайший к стене угол с последующей выкладкой его к месту выхода медного кабеля и, чтобы их соединить между собой, к концу проводника ЗУ сваркой закрепляется болт М 8.

Соединения элементов конструкции, которые длительное время будут находиться в земле, должны быть только сварными и покрытыми токопроводящими материалами на основе битума (краску использовать нельзя, она диэлекритричная). Болтовые крепления не допускаются, так как со временем они корродируют, ухудшая качество заземления.

По завершении сборки контур заземления плотно засыпается землей.

Проверка готовности заземляющего устройства

Проверить, насколько качественно был проведен монтаж контура заземления, можно при помощи обычного бытового мультиметра, сверив напряжения между: заземляющий проводник – фаза и нулевой провод – фаза. При незначительной их разнице можно быть уверенным, что работы выполнены правильно. Если она значительная – какое-то соединение выполнено некачественно и его придется переделывать.

Такую проверку можно сделать и без приборов, при помощи «контрольки» – патрона с лампочкой и оголенными проводами, один из которых нужно приложить к потенциалу, а второй на «ноль». Лампа ярко засветит, после этого его следует подключить к желто-зеленому проводнику – яркость должна уменьшиться или остаться прежней. Это подтверждение того, что «земля» работает. Если же нить накала будет чуть тлеть или погаснет – с сооружением имеются проблемы.

Мультиметром можно замерить и сопротивление ЗУ, одного из основных его качественных показателей. А так как приборы этого класса имеют большую погрешность, их показания не признаются при составлении официальных документов, но для домашнего пользования они вполне достаточны. Нормативами ПУЭ (пункт 7. 1. 101 седьмой редакции издания 2016 г.) определено, что для жилых объектов, эксплуатирующих сети с напряжениями 220 или 380 вольт, оно не должно превышать 30 Ом.

Для выполнения этих замеров необходимо установить еще один заземлитель. В его качестве можно использовать любой стальной или медный штырь сечением не менее 5 мм, который нужно воткнуть на отдалении 5-10 метров от контура на глубину до 1,5 м. Так как мультиметры не комплектуются длинными проводами, то стоит найти еще и провод с хорошим сечением, чтобы дотянуться от этого электрода до нейтрального выхода, а клемма потенциала подключается к выходу ЗУ.

Ток, пущенный включением определенной кнопки на приборе, пройдет по замкнутой цепи «контур – земля –вспомогательный стержень – прибор» и определит общее удельное сопротивление сооружения и прилегающего к нему грунта. Оно прямо пропорционально напряжению между клеммами мультиметра и обратно пропорционально заряду, который смог по ней пройти. Чем больше его прошло, тем выше проводимость и заземляющие свойства контура.

Чтобы эти показания были правдивее, необходимо по возможности избавиться от окружающих помех: установить прибор горизонтально, убедиться, что рядом нет мощных электроизлучателей.

Такие замеры в последующем придется проводить регулярно, не реже одного раза в год, так как со временем стальные штыри, находящиеся длительное время в земле, начнут покрываться коррозией, являющейся крайне сильным изолятором, ухудшающим проводимость. Поэтому, если сопротивление контура окажется выше нормативного, его необходимо будет заменить или реконструировать. Идеальным вариантом могло бы стать использование в качестве заземлителей омедненных уголков или медных стержней, но это очень дорогостоящие материалы.

Более точные показания можно получить только при помощи специальных приборов для измерения заземления, мегомметров типа М416 или Ф4103-М1, в которых в отличие от мультиметров используются способы многопроводникового подключения дополнительных электродов. А если для этого привлечь еще и специалистов энергообеспечивающих сетей, которые в своих замерах используют всевозможные поправочные коэффициенты окружающей среды, цифры эти окажутся правдивее.

Схема подключения мегомметра М416 при измерении сопротивления контура заземления:

Особенности обустройства молниеотвода

Особенностью монтажа молниеотвода, состоящего из трех элементов (приемника, токоотвода и заземлителя), является то, что при установке компонентов, не соответствующих расчетным данным, «непрошеная гостья» с неба, несущая в себе непредсказуемо мощный заряд, который никакой контур заземления не в состоянии принять, обратным током просто расплавит всю конструкцию, вызвав пожар дома. Поэтому все ее составляющие должны обладать достаточной проводимостью и быть хорошо изолированы огнеупорными материалами от легковоспламеняющихся частей здания.

В продаже имеются готовые комплектующие для мачты, но они дорогие, а сложности в изготовлении этих сооружений нет, поэтому их легко сделать собственными руками из подручных материалов. Для молниеприемника используются медные или стальные стержни длиной 0,5-2 метра и сечением: медных – 35 кв. мм, стальных – 70 кв. мм.

При этом следует учитывать: одна вертикаль в состоянии покрыть площадь, радиус которой равен 1,5 ее величины. То есть если высота дома со штырем составляет 6 м, то он будет 9 м. Поэтому при необходимости их устанавливают несколько, подсоединив к одному токоотводу, в качестве которого используется медная или алюминиевая проволока толщиной 6 мм.

В частных домах, покрытых шифером, часто применяют горизонтальные приемники, в качестве которых используют стальной трос толщиной не менее 5 мм, натянутый над коньком крыши на деревянных столбиках.

Кровлю, изготовленную из профнастила, металлочерепицы и другого металлического покрытия, можно применять как молниеприемник. В этом случае материал должен быть не тоньше 0,4 мм, а под ним отсутствовать легковоспламеняющиеся предметы. К такой крыше достаточно присоединить токоотвод и вывести его на заземлитель.

Все соединения мачты должны быть болтовые или сварные, а компоненты проложены по кратчайшей линии до земли. Перед тем как подсоединить к контуру заземления, нужно мультиметром измерить сопротивление, подключив потенциал и нейтраль к ее концам – оно должно быть не более 10 Ом.

Что касается заземляющего устройства для молниеотвода, то его следует делать отдельно от сетевого и на значительном отдалении. Конечно, сейчас уже есть оборудование, которое позволяет свести все в одно ЗУ, но стоимость его настолько высока, что значительно превысит обустройство двух.

Общие сведения о контурах заземления — Рекомендации по применению


Контуры заземления могут быть настоящей помехой в системах сбора данных HVAC, поскольку их трудно обнаружить. В большинстве случаев они не причиняют вреда, но могут вызвать непредсказуемые проблемы спустя годы после установки!

Что такое контур заземления?

Контур заземления образуется, когда между клеммами «заземления» на двух или более единицах оборудования имеется более одного токопроводящего пути. Проводящая петля образует большую рамочную антенну, которая легко улавливает токи помех.Чем больше петля, тем больше помех; если вы используете стальной каркас здания в качестве основания, то петля может быть такой же большой, как и все здание. Сопротивление заземляющих проводов превращает токи помех в колебания напряжения в системе заземления. Земля больше не стабильна; поэтому сигналы, которые вы пытаетесь измерить, относящиеся к этой земле, также нестабильны и неточны.

Наземные символы
Наземная мифология

Универсальная концепция, которой преподают в технических школах и инженерных колледжах, заключается в том, что «земля» всегда имеет нулевое напряжение, может бесконечно поглощать электрический ток и мгновенно безвредно рассеивать ток.Однако идеальная почва — это лабораторная абстракция, которой не существует в реальном мире.

Настоящее заземление — это проводник, поэтому между всеми точками заземления существует определенное сопротивление электрическому току. Это сопротивление может изменяться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Сопротивление всегда может позволить электрическому напряжению существовать на нем. Большие токи, проходящие через землю, вызовут падение напряжения в проводниках заземления, и потребуется время, чтобы рассеяться.

Департамент сельскохозяйственной инженерии Университета штата Мичиган измерил сопротивление заземления на входах в электрические сети и обнаружил, что на территории здания может изменяться напряжение до 2 вольт. Фактически, Национальный электротехнический кодекс (NEC) допускает изменение заземления на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока (см. «Ссылки» ниже, чтобы получить дополнительную информацию об исследовании штата Мичиган в США и NEC. код).

Понимание того, что идеального заземления не существует в реальном мире, является первым шагом к устранению помех контура заземления, когда они возникают.Если вы помните, что каждое заземление в здании находится под разным и произвольным «нулевым» потенциалом, то вы можете спроектировать надлежащие системы заземления.

Если основания такие порочные, зачем вообще заземление?

Земля необходима по двум причинам: безопасность и безопасность.

Статья 250 NEC устанавливает, что изолированные вторичные обмотки понижающих распределительных трансформаторов должны быть заземлены на входе в здание. Земля представляет собой медный стержень, вбитый как минимум на 8 футов в землю.NEC требует, чтобы конструкционная стальная рама, водопроводные трубы и другие крупные металлические предметы были соединены с землей входа в здание. Если изоляция провода выходит из строя или провод непреднамеренно отсоединяется и соприкасается с металлическим предметом, большие токи короткого замыкания протекают от распределительного трансформатора к земле. Эти чрезмерные токи размыкают предохранители и автоматические выключатели, предотвращая нахождение оборудования под более высоким потенциалом, чем у ближайшей раковины или строительной конструкции. Если заземление в распределительном щитке по какой-либо причине отключается, то заземление на входе электропитания здания на трансформаторе обеспечивает протекание чрезмерного тока короткого замыкания, размыкая предохранители и автоматические выключатели.Защита здания от огня и находящихся в нем людей от поражения электрическим током является основной функцией системы заземления распределения электроэнергии.

Вторая проблема безопасности заключается в том, чтобы поддерживать оборудование в пределах его нормального рабочего диапазона напряжения. Большинство современных прямых цифровых контроллеров (DDC) будут работать правильно без заземления где-либо. Единственная загвоздка в том, что незаземленное оборудование может накапливать большие статические заряды из-за утечки изоляции. Первый человек, который подходит и касается оборудования, получает очень неприятный шок.Если статический заряд становится достаточно высоким, он разряжается до ближайшего проводника с более низким потенциалом. Мгновенные токи разряда могут достигать нескольких тысяч ампер и разрушать электронные компоненты системы. Заземление системы позволяет зарядам рассеиваться без повреждений.

Помехи сигналам от контуров заземления

Контуры заземления позволяют электрическим и магнитным помехам создавать источники напряжения шума. Эти источники напряжения добавляют к измеряемому сигналу и неотличимы от правильного сигнала.Контроллер, не зная, что он считывает неправильное значение, выполняет неправильное управляющее действие. Это может создать неудобные условия для пассажиров. Он также может приводить в движение механическое оборудование, вызывая преждевременный износ оборудования.

Помехи сигналам от магнитной индукции

Основными источниками этих шумовых проблем являются магнитная индукция и дисбаланс грунта.

Любая петля из проводящего материала образует однооборотный трансформатор, если присутствует магнитное поле, и магнитные поля возможны везде, где используется напряжение переменного тока.Магнитные поля создаются переменным напряжением, текущим по проводу, двигателями или люминесцентными лампами. В цепях очень низкого уровня оборванные провода, движущиеся в магнитном поле земли, могут даже вызвать проблемы. Магнитное поле заставляет ток течь в петле из проводящего материала, а сопротивление петли создает напряжение из этого тока.

Чем сильнее магнитное поле или чем выше частота магнитного поля, тем сильнее протекает ток. Закон Ома гласит, что ток, умноженный на сопротивление, равен напряжению.Таким образом, чем больше ток, тем больше источник шума напряжения.

На левом рисунке ниже показан контур заземления под действием магнитного поля. Магнитное поле заставляет электрический ток течь в контуре заземления. Сопротивление контура преобразует ток в источник напряжения между входом заземления контроллера и клеммой заземления датчика, как показано на правом рисунке ниже.

Контур заземления в магнитном поле (вверху слева) и напряжение датчика и напряжение контура заземления (вверху справа)

Помехи сигналам из-за дисбаланса грунта

Электрические нагрузки могут варьироваться в зависимости от здания, создавая различные токи в системе заземления.Если в системе заземления протекает большой ток и датчик помещен в цепь с заземлением, которая также имеет контур заземления, то к сигналу добавляется разница напряжений между двумя точками заземления.
На рисунке ниже слева показан источник тока повреждения, подающий ток в систему заземления. Если, как в исследовании штата Мичиган, напряжение в системе заземления составляет два вольта, то к сигналу датчика добавляется напряжение повреждения в два вольта, как показано на рисунке ниже справа.

Дисбаланс заземления (слева), напряжение датчика и напряжение контура заземления
Закрытие

Контуры заземления могут сделать лучшую систему управления неэффективной. Если вы считаете, что контуры заземления могут вызывать проблемы с вашей системой HVAC / R, позвоните своему представителю BAPI или загрузите примечание по применению BAPI: Избегайте контуров заземления с нашего веб-сайта по адресу www.bapihvac.com

Список литературы

ANSI / NFPA 70, Национальный электротехнический кодекс 2002 — Национальная ассоциация противопожарной защиты
Стратегии строительства для минимизации паразитного напряжения на молочных фермах, Университет штата Мичиган
Генри Отт, Методы снижения шума в электронных системах, 2-е издание, Wiley and Sons, Нью-Йорк, Нью-Йорк , 1988

Michigan State Univ.Исследование и код NEC

Департамент сельскохозяйственной инженерии Университета штата Мичиган измерил сопротивление заземления на входах в электрические сети и обнаружил:
«Если заземляющий стержень сервисной панели вбить на 8 футов во влажную землю, которая не является настоящим песком, сопротивление между заземляющим стержнем и землей может быть всего 20 Ом. Предположим, что когда в здании используется электроэнергия, одна десятая ампера нейтрального тока течет на землю через заземляющий стержень. Основной электрический закон, называемый законом Ома, гласит, что ток, умноженный на сопротивление, равен напряжению.Умножение тока заземляющего стержня (0,1 ампера) на сопротивление заземляющего стержня (20 Ом) дает 2 вольта. Если один щуп вольтметра касается заземляющего стержня, а другой щуп вольтметра вдавливается в землю так далеко от заземляющего стержня, насколько это возможно для проводов, измеритель будет показывать примерно 2 вольта ».

Код NEC

Национальный электротехнический кодекс (NEC) также не помогает решить эту проблему. Статья 250 NEC требует, чтобы параллельные цепи заземлялись до ближайшего местного заземления здания, где бы в здании ни находились панели ответвительных цепей.Цифры в статье 250 показывают заземление на строительную сталь. Как указано в статье штата Мичиган, «территория» здания может варьироваться в зависимости от их измерений на величину до 2 вольт. Статья 647.4 (D) NEC (статья 647 называется «Чувствительное электронное оборудование») позволяет заземлению изменяться на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока.


Версия этого документа в формате pdf для печати

Снижение шума и изоляция

ГЛАВА 10: Снижение шума и изоляция
Обратите внимание: в онлайн-отрывках цифры были опущены.

КОНТРОЛЬ ШУМА
Контроль шума в измерительных системах жизненно важен, потому что он может стать серьезной проблемой даже для лучших приборов и оборудования для сбора данных. Большинство лабораторий и промышленных предприятий содержат многочисленные источники электрического шума, включая линии электропередач переменного тока, тяжелую технику, радио- и телестанции, а также различное электронное оборудование. Радиостанции генерируют высокочастотный шум, а компьютеры и другое электронное оборудование генерируют шум во всех частотных диапазонах.Создание полностью бесшумной среды только для проведения тестов и измерений редко бывает практическим решением. К счастью, простые устройства и методы, такие как использование надлежащих методов заземления, экранированных и скрученных проводов, методов усреднения сигналов, фильтров и дифференциальных усилителей входного напряжения, могут контролировать шум в большинстве измерений. Некоторые методы предотвращают попадание шума в систему, а другие удаляют посторонний шум из сигнала.

КОНФЛИКТ ЗАЗЕМЛЕНИЯ
В нетехническом словаре термин «земля» определяется как место, соприкасающееся с землей, общий возврат в электрической цепи и произвольная точка нулевого потенциала напряжения.Заземление или соединение некоторой части электрической цепи с землей обеспечивает безопасность персонала и обычно улучшает работу цепи. К сожалению, безопасная среда и надежная система заземления часто не создаются одновременно. Это требует планирования, основанного на систематическом понимании того, как электричество ведет себя в различных типах цепей. Например, высокая избыточность — одна из ключевых особенностей, которая делает большинство электрических распределительных систем по всему миру безопасными и работающими должным образом.

Заземление в целях безопасности
Изолированные вторичные обмотки понижающих силовых распределительных трансформаторов обычно заземляются рядом с трансформатором и внутри первой коммутационной панели на проводном пути к возможной нагрузке (см. Рисунок 10.01). Земля — ​​это точка внутри панели, соединенная с ближайшим заземляющим стержнем. Как правило, к одной и той же точке подключается большая или значимая конструкция (каркас здания) или металлическая система (водопровод). Это сводит к минимуму разницу в напряжении, которая может возникнуть между водопроводной трубой и устройством, например, с трехжильным заземленным шнуром. Электрическое повреждение, такое как контакт незаземленного проводника с металлическим предметом, предназначено для размыкания предохранителя или размыкания прерывателя, а не для того, чтобы оставить электрически запитанный прибор под более высоким потенциалом, чем близлежащая водопроводная труба или кран для раковины.Если заземление на панели отключается по какой-либо причине, резервное заземление рядом с трансформатором обеспечит путь для токов короткого замыкания для размыкания предохранителей или размыкания выключателей. Предотвращение поражения электрическим током и электрических пожаров является наивысшим приоритетом для цепей заземления, но резервирование, встроенное во многие системы электрического заземления, иногда ограничивает определенные виды соединений для ввода в системы сбора данных.

Заземление для надежной аппаратуры
Несколько внутренних общих шин в приборе управления данными расположены так, чтобы регулировать потоки тока и соединять все пути в одной общей точке.Такой подход гарантирует, что ток, протекающий по любому пути, не вызовет падение напряжения в обратном пути для другой цепи и не проявится как (ошибочный) входной сигнал (см. Рисунок 10.02). Обычно эта общая точка подключается через низкое сопротивление к заземлению на шнуре питания переменного тока прибора. Это соединение предотвращает плавание внутренней системы при потенциале переменного тока между землей и входным потенциалом источника переменного тока.

КОНТУРЫ ЗАЗЕМЛЕНИЯ
Измерительные приборы, содержащие заземленное заземление, как описано выше, обычно создают контур заземления.Контур заземления может стать серьезной проблемой, даже если напряжение заземления в измеряемой точке равно напряжению заземления, поступающему в прибор через сетевой шнур. Напряжение, возникающее между двумя заземлениями, может быть переменным или постоянным напряжением любого значения и частоты, и по мере увеличения напряжения и частоты влияние контура заземления становится более серьезным.

Опасные и разрушительные контуры заземления
Переходный ток может вызвать значительное напряжение на заземленных проводниках.Во время электрического повреждения, когда, например, находящийся под напряжением проводник контактирует с защитным заземлением, часть напряжения питания может оказаться на защитном заземлении до того, как предохранитель или автоматический выключатель, питающий повреждение, сработает и снимет напряжение. Это происходит за несколько миллисекунд и обычно не представляет угрозы для безопасности. Но проблема может быть гораздо более серьезной, если молния ударяет в конструкцию защитного заземления и через систему заземления проходят тысячи ампер. Потенциальные различия даже на доли Ом могут легко превысить 1000 В переменного тока и повредить оборудование и поставить под угрозу жизнь.

Признаки контуров заземления
Иногда ошибку измерения ошибочно связывают с проблемой контура заземления, особенно если заземление не задействовано строго. Это явление относится к двум типам ситуаций; общий поток тока в цепи, который создает непреднамеренные напряжения, и непреднамеренные цепи, которые мешают правильной работе предполагаемых цепей.

Как создаются контуры заземления
Проблема контура заземления может быть проиллюстрирована следующим примером.Встроенный датчик с внутренним формированием сигнала состоит из трех проводов; положительный провод источника питания, провод выходного сигнала и отрицательный провод, который служит как обратным током, так и общим сигналом (см. рисунок 10.03). Внутренняя схема датчика потребляет около 30 мА, а выходной сигнал находится в диапазоне от 0 до 5 В постоянного тока.

Датчик стимулируется, и цифровой вольтметр считывает правильное выходное значение 2,50 В постоянного тока на испытательном стенде. Но когда три провода удлиняются на 500 футов с помощью провода 20 AWG (10.4 Вт / 1000 футов при 20 ° C) общий подводящий провод, по которому проходит ток источника питания 30 мА, падает примерно на 150 мВ. Это падение напряжения на сопротивлении выводов добавляет к выходному напряжению датчика и подает 2,65 В постоянного тока на цифровой вольтметр. Погрешность составляет около 6,6% и, что еще хуже, она сильно варьируется в зависимости от температуры провода. Конкретное приложение определяет, можно ли допустить ошибку.

Когда ток, потребляемый схемой датчика, не является значением установившегося состояния, то есть он состоит из уровня окружающей среды в сочетании с динамической составляющей, вносимая ошибка будет изменяться во времени.Это может быть относительно высокая частота, которая действует как шум на измеряемом выходе, или она может быть идеально синхронизирована с обнаруживаемым физическим явлением. Затем он влияет на величину изменяющегося во времени выходного сигнала. Оба типа ошибок часто возникают в системах сбора данных.

Как устранить контуры заземления
Надежный метод поиска неисправностей анализирует текущий поток и прогнозирует его результаты. Провода от предполагаемой точки измерения должны пропускать только ток, связанный с требованиями смещения аналогового входного канала (см. Рисунок 10.04). Эти токи обычно измеряются в микроамперах. При более низких уровнях напряжения их можно существенно изменить, если они будут вынуждены использовать вместе очень длинные провода, несущие только мА. Подробная электрическая схема и принципиальная электрическая схема могут дать представление и понимание, чтобы помочь предотвратить этот тип проблемы до того, как будут установлены сотни футов проводов.

Часто несколько проводов, проложенных между двумя точками, не могут использоваться совместно. Когда общий провод используется совместно, ток в одном канале влияет на показания напряжения в другом канале.В предыдущем числовом примере четвертый провод, подключенный к нижнему концу дифференциального измерительного канала, обеспечивает выходное напряжение, которое можно точно измерить с высокой степенью уверенности. Этот подход наиболее эффективен, когда система поддерживает три провода, и они используют общий источник питания. Дифференциальные входные соединения, используемые с общим аналоговым сигналом, который относится к клемме возврата источника питания, устраняют влияние контуров заземления, присущих этой схеме с несколькими датчиками.

ПЕРЕСЕЧЕНИЕ В СИСТЕМАХ СБОРА ДАННЫХ
Другой тип ошибки контура заземления — это перекрестные помехи между каналами. Это можно определить как взаимодействие между показаниями двух или более каналов, которое может быть статическим или динамическим. Когда используется несколько каналов и существуют контуры заземления, упрощенные ошибки, описанные ранее, скорее всего, будут усугубляться вкладом от других каналов. Перекрестные помехи могут быть очевидными, а могут и не быть.

Статические перекрестные помехи
Рассмотрим группу статических каналов с постоянными напряжениями, которые при индивидуальном измерении дают точные показания.Однако, когда каждый канал подключен к входу системы сбора данных и показания меняются, это изменение указывает на то, что перекрестные помехи генерируются установившимся контуром заземления. Аналогичным образом, когда показание канала изменяется при подключении другого канала, возникают перекрестные помехи, и проблема заключается в контуре заземления.

Динамические перекрестные помехи
Динамические перекрестные помехи — это название ситуации, когда известный динамический сигнал на конкретном канале появляется в физически несвязанном канале.Установившиеся токи, потребляемые преобразователями, описанными в предыдущем примере, идеализированы для простоты. Эти токи обычно меняются в зависимости от измеряемых физических величин вместе с ошибками.

Последовательное считывание сигналов различной амплитуды создает последовательные перекрестные помехи в мультиплексированных системах сбора данных. Емкостная или индуктивная связь между каналами создает перекрестные помехи в системах с неправильно или небрежно одетыми проводами. Однако, как правило, они не относятся к контурам заземления и встречаются реже.

ЭКРАНИРОВАННАЯ ПРОВОДКА
Преимущества

Металлические экраны, расположенные вокруг оборудования и измерительных проводов, эффективно предотвращают проникновение или выход шума из системы. Например, незакрепленные или оголенные провода становятся антеннами для приема радиочастотного сигнала и могут образовывать петли, излучающие шум.

Чтобы подчеркнуть необходимость контроля шума, на рисунке 10.05 показано несимметричное измерение напряжения на закороченном канале. К системе сбора данных было подключено около 6 футов провода, не скрученного и не экранированного.На рисунке 10.06 показан шум в несимметричном закороченном канале с использованием экранированного кабеля с очевидным улучшением.

Лучшие схемы подключения КИП состоят из тщательно сгруппированных линий, скрученных попарно, иногда покрытых вторым экраном и проложенных через специальный кабелепровод или кабелепровод. Экранированная витая пара довольно часто используется в канале для подключения сигнала от источника к входной клемме. Экраны минимизируют емкостную связь, а скрученные провода минимизируют индуктивную связь.

Близость к другим проводам, особенно к силовым проводам, по которым идет высокое напряжение и большой ток, может привести к возникновению шума в проводниках сигналов низкого уровня. Емкостная связь может существовать между любыми двумя металлическими частями в непосредственной близости, включая два проводника в полностью отдельных цепях. Аналогичным образом, трансформаторная муфта с воздушным сердечником может возникать между двумя замкнутыми контурами проводки в полностью отдельных цепях.

Правильная установка и использование экранов
Обычно экран заканчивается только на одном конце, если он не доходит до экрана в другом участке той же разводки каналов.Экран может заканчиваться либо на конце преобразователя, либо на конце входного канала, но не на обоих концах. Когда датчик или преобразователь находится в экранированном металлическом корпусе, который также подключен к заземлению, экран может быть подключен на конце датчика и оставаться открытым на клеммах входного канала. Когда датчик хорошо изолирован, экран может плавать и подключаться к общей аналоговой клемме входных клемм системы сбора данных. Иногда многожильные кабели, состоящие из пучка проводов и общего экрана, приемлемы для группы сигналов высокого уровня, постоянного или низкочастотного сигнала, но не рекомендуются для общего случая сбора данных.Компрометация хорошо спланированной системы электропроводки с использованием некачественного провода, общих проводников или экранов и параллельных нескрученных проводов приведет к неоптимальным результатам.

ИЗОЛЯЦИЯ И ПЛАВАЮЩИЕ СИСТЕМЫ СБОРА ДАННЫХ
Изоляция

Изоляция определяется как отделение одного сигнала от другого для предотвращения непреднамеренного взаимодействия между ними. Все системы сбора мультиплексированных данных содержат определенную степень межканальной изоляции; релейные системы имеют гальваническую развязку, а твердотельные — нет.Гальваническая развязка — это отсутствие какого-либо пути постоянного тока. Большинство методов изоляции исключают все пути постоянного тока мощностью менее 100 МВт. Три основных преимущества гальванической развязки — это защита цепи, снижение шума и подавление высокого синфазного напряжения, особенно тех, которые создаются контурами заземления.

Компьютерное оборудование для сбора данных делает возможным множество многоканальных измерений, ранее недоступных для многих приложений с экономической точки зрения. Это было достигнуто за счет принятия пользователем двух основных компромиссов: мультиплексирования и неизолированных входов.Мультиплексирование является успешным, когда частота дискретизации достаточно высока, а полное сопротивление источника достаточно низкое. Отсутствие изоляции накладывает совершенно другие ограничения на типы входных сигналов, которые могут быть подключены.

Защита цепи
Изоляция отделяет источник сигнала от измерительной схемы, которая может быть повреждена сигналом. Напряжение выше примерно 10 В может исказить данные или повредить компоненты, используемые в системе. Поэтому входные сигналы высокого напряжения или сигналы, содержащие выбросы высокого напряжения, должны быть изолированы.Защита также работает в противоположном направлении, чтобы защитить чувствительный формирователь сигнала от сбоя устройства в другом месте системы.

Компьютерное оборудование для сбора данных чаще всего подключается к главному компьютеру, который заземлен. Аналоговые входы сменных карт и наиболее экономичных внешних систем не изолированы электрически от земли или друг от друга. Многие приложения совместимы с этой ситуацией, но некоторые приложения сталкиваются с проблемой высокого синфазного напряжения.

Подавление высокого синфазного напряжения
Синфазное входное напряжение определяется как напряжение, приложенное между общей клеммой и двумя входными клеммами при условии, что два входных напряжения идентичны. Другими словами, две входные клеммы могут быть соединены вместе и синфазное напряжение приложено между закороченными входами и общей клеммой, как показано на рисунке 10.07. При практических испытаниях и измерениях синфазное напряжение может превышать номинальное значение на входе инструментального усилителя, которое обычно составляет менее 10 В.Для безопасных и точных измерений синфазные напряжения выше 10 В должны быть изолированы от инструментального усилителя, позволяя измеряемому сигналу проходить. В обычных типах развязывающих усилителей для передачи сигнала используются магнитные, оптические или емкостные средства.

Магнитная изоляция
В специальных инструментальных усилителях используются трансформаторы, которые с помощью магнитного поля соединяют аналоговые сигналы переменного тока от входной части к выходной части, эффективно поддерживая высокие синфазные напряжения.Трансформаторная связь также позволяет им подавать изолированное питание на входной каскад без использования отдельного преобразователя постоянного / постоянного тока. Конкретный инструментальный усилитель содержит входной операционный усилитель с CMRR около 130 дБ при коэффициенте усиления 100 и изоляцией синфазного напряжения 2000 В. Подобные инструментальные усилители доступны для питания изолированных мостов, компенсации холодного спая, линеаризации и других специальных требований к формированию сигналов (см. Рисунок 10.08).

Оптическая изоляция
В настоящее время оптическая изоляция является наиболее часто используемым методом соединения цифровых сигналов.Измеренный сигнал входного напряжения преобразуется в ток, который активирует светоизлучающий диод в оптическом соединителе. Светочувствительный транзистор, расположенный рядом с диодом, но на противоположной стороне барьера напряжения, преобразует световой сигнал обратно в ток, с которым может справиться инструментальный усилитель. Барьер напряжения обычно обеспечивает изоляцию на несколько тысяч вольт между входом и выходом.

Оптические устройства также обычно используются для изоляции выхода АЦП, который обычно представляет собой последовательную цепочку импульсов данных, проходящих через один оптический соединитель (см. Рисунок 10.09). Последовательная строка часто преобразуется из нескольких параллельных сигналов (например, от 8 до 24 выходных портов), чтобы минимизировать количество оптических устройств, необходимых в системе. Цепи преобразования из параллельного в последовательный дешевле, чем от 8 до 24 оптических устройств (по одному на каждый бит вывода параллельного АЦП). В этих случаях источник питания для АЦП и связанных входных цепей также изолирован, обычно с помощью трансформатора.

Емкостная развязка
Конденсатор — это пассивное устройство, которое передает переменное напряжение с одного каскада на другой, блокируя компонент постоянного тока.По этому определению это простой, но недорогой изолятор. Измеряемый сигнал, который необходимо изолировать, модулируется и передается через конденсатор на приемную сторону. На приемной стороне сигнал переменного тока демодулируется для восстановления исходного сигнала. Этот метод часто применяется к недорогим изолирующим усилителям, в которых разделительный конденсатор состоит из общего слоя между двумя изолированными секциями подложки ИС. Изоляция сигнала с использованием этих специализированных ИС рассчитана на напряжение 1500 В. Основными преимуществами этого подхода являются простота, низкая стоимость и полоса пропускания до 50 кГц.На рисунке 10.10 показан преобразователь постоянного / постоянного тока, часто используемый в качестве модулятора / демодулятора в развязывающем усилителе.

На рисунке 10.11 показан типичный многоканальный программируемый развязывающий усилитель в системе сбора данных, в которой используются все три типа изоляции: трансформаторы, оптические устройства и конденсаторы. Преобразователь постоянного / постоянного тока на основе трансформатора подает питание на изолированную сторону. Устройство с емкостной связью изолирует аналоговый сигнал, в то время как два оптических соединителя передают цифровые управляющие сигналы на плавающую схему.

Основные ошибки приложения
Опасности при измерениях могут легко возникнуть, если неизолированный аналоговый вход системы сбора данных ошибочно подключен к устройству, работающему при высоком синфазном напряжении по отношению к заземлению. Ошибка, которая часто предшествует этой проблеме, заключается в определении диапазона напряжения полезного сигнала с помощью портативного цифрового или аналогового мультиметра и пренебрежении отношением сигнала к заземлению.Если он соединен пунктирными линиями, как показано на рисунке 10.12, моторный привод может быть поврежден сразу после подачи питания. Это связано с тем, что схема управления во многих приводах двигателей переменного и постоянного тока обязательно связана с высоким напряжением по отношению к заземлению. Когда ток двигателя измеряется с помощью шунта или резистора низкого сопротивления, общая шина управления обычно имеет высокий синфазный потенциал по отношению к земле.

В некоторых приводах используются бесконтактные датчики тока, трансформаторы и оптические соединители для гальванической развязки схемы управления.Однако, если специально не известно, что привод имеет изолированный аналоговый интерфейс, предполагайте, что это не так.

Изолирующие трансформаторы
Не все устройства с питанием от сети переменного тока содержат внутренние изолирующие трансформаторы, которые понижают напряжение до более низких рабочих уровней, необходимых для электронных схем, и одновременно защищают пользователей от внешних замыканий на землю. Общая шина источника питания в бестрансформаторных устройствах часто подключается к одной стороне сетевого шнура переменного тока. Если система не защищена от перепутывания разъема сетевого шнура в розетке, общая линия устройства (и, следовательно, корпус) может быть повышена до уровня напряжения, который выше, чем общий вывод других устройств поблизости или других подключенных инструментов. к системе сбора данных.Замыкание на землю, возникающее в результате такого расположения, приводит к замыканию линии питания и может представлять опасность для операторов и разрушать оборудование.

Изолирующий трансформатор позволяет пользователю безопасно подключать входной канал системы сбора данных, заземленный через главный компьютер, к низковольтному сигналу в устройстве с переменным током. Предпочтительный изолирующий трансформатор для такого использования имеет заземленный электростатический экран между первичной и вторичной обмотками для минимизации емкостной связи и потенциалов относительно земли.Этот подход работает только тогда, когда нейтраль переменного тока в электрической системе заземлена. Изолирующие трансформаторы не могут прервать путь для защитного заземления, проходящего через заземляющий контакт стандартного 3-проводного шнура.

Портативный компьютер, работающий от внутренней батареи и не подключенный к другим периферийным устройствам, заземленным (например, к принтерам), может быть плавающим хостом, надежно подключенным к системе сбора данных. Но лучший общий подход — изолировать источник входного сигнала.

Изолирующий трансформатор обычно не обеспечивает всю изоляцию, предназначенную для системы сбора данных, потому что общий цифровой выход в большинстве компьютеров обеспечивает путь с низким импедансом к заземлению как часть схемы защиты от электростатического разряда (ESD). Но некоторые устройства сбора данных, которые связываются с главным компьютером через последовательные каналы передачи данных, такие как RS232 и RS485, используют изоляторы связи, специально разработанные для этого протокола. Для сравнения, большинство интерфейсов Ethernet изолированы трансформатором и имеют сети защиты от электростатических разрядов с обеих сторон изоляционного барьера, привязанного к шасси, а также заземление через главный компьютер.

Аналоговые изоляторы
Идеальным решением для измерения высоких синфазных сигналов является аналоговый изолятор. Изолятор надежно измеряет аналоговые входные сигналы низкого уровня, содержащие до 1500 В синфазного сигнала, через магнитные, оптические или емкостные устройства. Усилители обеспечивают как межканальную изоляцию, так и межканальную изоляцию. Напротив, большинство твердотельных мультиплексоров не имеют межканальной развязки за пределами стандартного диапазона сигнала ± 10 В.

Наиболее распространенные аналоговые изоляторы представляют собой съемные модули.Эти 3-портовые устройства требуют источника питания постоянного тока и обеспечивают рабочее напряжение для схем преобразования сигнала и модуляции на входной стороне. Они также обеспечивают напряжение для схем демодуляции и восстановления сигнала на выходной стороне. Большинство устройств также обеспечивают встроенную фильтрацию нижних частот и масштабирование до выходных уровней от 0 до 5 В. Широкий спектр доступных опций в этих модулях может упростить многие сложные требования к измерениям и по-прежнему предоставлять данные для всей выбранной системы сбора данных, поскольку все производители сбора данных имеют продукты, которые поддерживают эти модули.

Изолирующие модули относительно дороги и вряд ли будут использоваться в недорогих системах сбора данных. Недорогие системы обычно не содержат аналоговых изоляторов, но для многих приложений требуются изоляторы, по крайней мере, в нескольких каналах. С точки зрения системы, лучшее место для адресации канала высокого синфазного сигнала — это источник для безопасности и целостности сигнала.

Беспроводные методы
Не все системы сбора данных могут подключаться к датчикам на испытуемом образце с помощью проводов.Им требуется форма радиосвязи, называемая телеметрией. Радиопередатчики и датчики расположены на тестируемом устройстве, а приемники — в системе сбора данных. Например, вращающийся элемент большого двигателя или генератора можно контролировать дистанционно и безопасно. Система может отслеживать температуру, вибрацию, прогиб и скорость в об / мин без использования контактных колец, которые использовались в прошлом.

Относительно новый протокол, называемый Bluetooth, все чаще используется для удаленного измерения и управления.Это беспроводная система малого радиуса действия, которая позволяет устройствам распознавать, подключаться и передавать данные между собой. Устройства оснащены специальными микросхемами Bluetooth и обеспечивают передачу на небольшом расстоянии, обычно до 10 м. Они могут передавать данные со скоростью 720 кбит / с в диапазоне частот от 2,40 до 2,48 ГГц. Другая система — это беспроводная система на базе 802.11 Ethernet. Он часто обеспечивает физическую и электрическую изоляцию в заводских цехах, а также для высоковольтных линий электропередач и испытательных площадок для сноса. Он работает в том же частотном диапазоне, что и Bluetooth, и может обрабатывать более высокие скорости передачи данных от 1 до 11 Мбит / с.

СНИЖЕНИЕ ШУМА
Усреднение сигнала

Некоторые методы шумоподавления предотвращают проникновение шума в систему изначально, а другие удаляют посторонние шумы из сигнала. Другой метод усредняет несколько выборок сигнала с помощью программного обеспечения. В зависимости от природы шума и конкретного метода усреднения, шум можно уменьшить на квадратный корень из числа усредненных отсчетов (RMS). Но для получения приемлемого измерения может потребоваться большое количество образцов.На рисунке 10.13 показано напряжение на закороченном канале при усреднении только 16 выборок данных.

Хотя усреднение является эффективным методом, у него есть несколько недостатков. Шум, присутствующий в последовательности измерений, уменьшается как квадратный корень из числа измерений. Следовательно, в приведенном выше примере для уменьшения среднеквадратичного шума до одного счета путем усреднения потребуется 3500 выборок. Таким образом, усреднение подходит только для низкоскоростных приложений и устраняет только случайный шум.Это не обязательно устраняет многие другие типы раздражающего шума системы, такие как периодический шум от импульсных источников питания.

Аналоговая фильтрация
Фильтр — это элемент аналоговой схемы, который выборочно ослабляет определенную полосу частот входящего сигнала. Цепи фильтров могут быть пассивными или активными. В зависимости от того, является ли фильтр низкочастотным или высокочастотным, он определяет частоты, которые ослабляются выше или ниже частоты среза. Например, когда частота сигнала увеличивается за пределами точки отсечки однополюсного фильтра нижних частот, его затухание увеличивается медленно.Затухание многополюсного фильтра также медленно увеличивается. Многополюсные фильтры обеспечивают большее затухание за пределами частоты среза, но они могут вносить фазовые сдвиги, которые могут повлиять на некоторые приложения. Частота, при которой сигнал падает на 3 дБ, определяется уравнением, показанным на рисунке 10.14.

Пассивные фильтры по сравнению с активными
Пассивный фильтр — это схема или устройство, полностью состоящее из неусилительных компонентов, обычно катушек индуктивности и конденсаторов, которые пропускают одну полосу частот, подавляя другие.Активный фильтр, с другой стороны, представляет собой схему или устройство, состоящее из усилительных компонентов, таких как операционные усилители, и подходящих элементов настройки, обычно резисторов и конденсаторов, которые пропускают одну полосу частот, подавляя другие. На рисунке 10.15 сравнивается амплитуда однополюсного фильтра нижних частот с трехполюсным фильтром. Оба типа настроены на частоту среза 1 кГц. Трехполюсный фильтр имеет гораздо большее затухание для частот, превышающих порог среза. Улучшение качества сигнала, обеспечиваемое фильтрацией нижних частот, показано на рисунке 10.16, в котором сигнал, содержащий широкополосный шум, проходит через трехполюсный фильтр с частотой среза 1 кГц. Отклонение от среднего сигнала отображается в вольтах. Максимальное отклонение составляет 6 отсчетов, а среднеквадратичный шум — 2,1 отсчета.

Трехполюсный фильтр, показанный в примере, имеет активный вход с изменяемыми конфигурациями. Активный трехполюсный фильтр может быть фильтром Баттерворта, Бесселя или Чебышева с угловыми частотами до 50 Гц. Свойства фильтра зависят от номиналов резисторов и конденсаторов, которые пользователь может изменить.В фильтрах также используются переключаемые конденсаторы. Этот тип требует тактового сигнала для установки частоты среза. Основное преимущество этого фильтра — простота программирования частоты среза.

Измерение дифференциального напряжения
Дифференциальные входные усилители чаще всего используются в системах сбора данных, поскольку они обеспечивают высокий коэффициент усиления для алгебраической разницы между двумя входными сигналами или напряжениями, но низкий коэффициент усиления для напряжений, общих для обоих входов. Измерение дифференциального напряжения — еще один способ уменьшения шума в аналоговых входных сигналах.Этот метод эффективен, потому что часто большая часть шума на входном проводе высокого напряжения близко приближается к шуму на проводе низкого уровня. Это называется синфазным шумом. Измерение разницы напряжений между двумя выводами устраняет этот синфазный шум.

Улучшение, полученное при измерении дифференциального напряжения, показано на рисунке 10.17. На нем показан тот же сигнал, что и на рисунке 10.05, но с использованием дифференциального входа, а не несимметричного входа.

Загрузите бесплатную копию в формате PDF.

Контуры заземления — обзор

1.10 Контуры заземления и излучаемые помехи

Ранее указывалось, что контуры заземления могут вносить значительный вклад в излучаемые электромагнитные помехи. Это важно, потому что такой излучаемый шум может влиять на другие чувствительные схемы аналогового или цифрового характера. Рассмотрим, например, сценарий, изображенный на рисунке 1.33.

Рисунок 1.33. Иллюстрация контуров заземления между разъемами карты.

На этом рисунке два разъема (разъем 1 и разъем 2) используются для реализации двух конфигураций платы драйвера / приемника.В разъеме 1 обратный ток от драйвера 1 может возвращаться через ближайший контакт заземления; некоторые из них, особенно на высоких частотах, могут вернуться через гораздо более удаленный заземленный контакт, ближайший к драйверу n. Площадь контура 1 (0) (драйвер 1 и контакт заземления 0), образованная обратным током драйвера 1 через его ближайший заземляющий контакт, намного меньше, чем площадь контура 1 ( n, ) (драйвер 1 и контакт заземления n ), вызванный некоторым обратным током, использующим контакт n разъема 1 в качестве его возврата.Также возможны другие сценарии использования обратным током других заземляющих контактов в разъеме 1. Поскольку область петли 1 ( n )>> область петли 1 (0), излучаемое излучение от соединителя 1 может значительно увеличиться, особенно на высоких частотах, где значительная часть обратного тока может выбрать контакт n в качестве обратного. дорожка. Величина электрического поля от тока контура прямо пропорциональна не только самому току, но и площади контура, через которую проходит этот ток.

На рисунке мы также наблюдаем другой сценарий, очень распространенный на высоких частотах: емкостная связь между заземляющим контактом n в разъеме 1 и металлическим корпусом разъема ( C C3 , C C4 ). Дальнейшая связь приведет к емкостному соединению обоих разъемов 1 и 2. Часть тока заземления от разъема 1 будет течь в разъем 2 и его заземляющие штыри через емкостную связь. Общая площадь петли теперь становится суммой площадей петли, площадь петли 1 ( n ) + площадь петли 2 ( n ), что может создать еще большую проблему излучаемых выбросов.Количество излучаемых излучений, создаваемых областями контуров сигнальных / обратных токов, равно

(1,74) EV / м = 263 × 10−16F2HzAm2IampsRm,

, где F (Гц) — интересующая частота, A (м 2 ) — это площадь контура, образованная управляющим сигналом и обратным током, I (амперы) — величина тока, а R (м) — расстояние в метрах, на котором должно быть вычислено электрическое поле.

Предположим, например, сценарий на Рисунке 1.33, полное излучаемое электрическое поле можно приблизительно рассчитать для наихудшего сценария как

(1,75) | EtotalV / m | = | E10 | + | E1n | + | E2n |,

, где E 1 ( 0) , E 1 ( n ) и E 2 ( n ) — это электрические поля, создаваемые областями контура заземления через контакт 0, контакт n разъема 1 и штырь n разъема 2:

(1.76) E10V / m≅263 × 10−16f2Hzlooparea10Ig1ampsRm

(1.77) E1нВ / м≅263 × 10−16f2Hzlooparea1nIg2ampsRm

(1.78) E2nV / m≅263 × 10−16f2Hzlooparea2nIg4ampsRm.

При вычислении I gl , I g 2 , I g3 и I g 4 , мы знаем, что

(1.79) I1 = Ig1 + Ig2 = Ig1 + Ig3 + Ig4,

и максимальное значение I 1 можно приблизительно рассчитать, используя выражение

(1,80) I1 = 5VZ0ohms.

Ток в I gl равен

(1.81) Ig1 = 5,0VZ0ohmsLg10Lg1n,

, где L g1 (0) и L g1 ( n ) — это индуктивность контура заземления через контакт (0) в разъеме 1 (область контура 1 (0)) и L g1 ( n ) — индуктивность контура заземления через контакт n в разъеме 1 (площадь контура l ( n )) соответственно. Таким же образом

(1.82) Ig2 = Ig3 + Ig4 = 5.0VZ0ohmsLg1nLg0n.

Обозначения L g1 ( n ) и L g0 ( n ) получаются из индуктивности вывода, заданной как

(1.83) LpinnH = 10,16d⁢ln⁡Lr + L⁢ln⁡dr,

, где d — расстояние между сигналом и землей в дюймах. Обозначение d будет либо d 1 , либо d 2 , как показано на рисунке 1.33 для L g0 ( n ) и L g1 ( n ) расчеты соответственно. L — длина штифта в дюймах, а r — радиус штифта. Таким же образом, как только мы вычислили I g2 , мы можем вычислить I g3 и I g4 следующим образом:

(1.84) Ig3 = Ig2Lg3Lg4Ig4 = Ig2Lg4Lg3,

, где L g3 , L g4 можно рассчитать по уравнению (1.84) с использованием d 3 , d , показанного на рисунке 1.3.4 .

Один из самых тривиальных выводов предыдущего анализа состоит в том, что добавление большего количества контактов заземления к разъему приблизит заземление к каждому сигналу и снизит индуктивность всего обратного пути. Другие вещи, которые можно сделать, — это переместить разъемы ввода / вывода как можно ближе друг к другу, никогда не направлять сигналы заземления от одного и того же источника на отдельные разъемы и обеспечивать более медленное время нарастания для драйверов.

Проблема паразитной емкости не только влияет на обратный путь тока земли, но ее совокупное воздействие от многих разъемов может искажать передаваемые сигналы. Поэтому очень желательны проводники с минимальной паразитной емкостью. Влияние паразитной емкости на разъемы показано на рисунке 1.34.

Рисунок 1.34. Влияние паразитной емкости на разъемы.

При передаче сигнала общая паразитная емкость земли на каждом ответвлении шины будет обеспечивать некоторые паразитные искажения.Эта кумулятивная емкость, представленная на рисунке 1.34, может быть результатом (1) межконтактной емкости разъема на печатной плате, (2) емкости трассировки от разъема к локальным драйверам и приемникам или ( 3) входная емкость местного приемника плюс выходная емкость драйверов.

Емкость трассы определяется как

(1,85) CpF / дюйм = tdZ0,

, где t d — это распространение трассы в пс / дюйм, а Z 0 — полное сопротивление трассы в Ом.Один из примеров правильного расположения выводов сигнала и заземления в разъеме показан на рисунке 1.35.

Рисунок 1.35. Правильное расположение выводов сигнала и заземления (темные) в разъеме.

Шлейфы заземления и AV-оборудование

Электрические контуры заземления оказывают вредное воздействие на большинство AV-оборудования, начиная от ухудшения сигнала и заканчивая серьезным повреждением оборудования. Контур заземления создается, когда переменный или постоянный ток неожиданно протекает через заземляющий провод. Это может произойти из-за ошибки в электропроводке, неправильного заземления или плохого соединения между проводами заземления и землей.

На рисунке 1 ниже показано типичное соединение между компьютером и плазменным дисплеем. Если потенциал земли Vg1 на вводе питания 1 не равен потенциалу земли Vg2 на вводе питания 2, и они соединены вместе, существует вероятность возникновения контура заземления.

Рисунок 1 — Типичное соединение между компьютером и плазменным дисплеем

После подключения AV-кабеля между источником (портативный компьютер) и AV-дисплеем (плазма) ток заземления будет течь между обоими устройствами через экран коаксиального кабеля ( см. Рисунок 2 ниже ).Схема внутри AV-дисплея может быть не оборудована для обработки тока заземления, проходящего через кабель, и в результате могут быть повреждены электрические компоненты.

Рисунок 2

Как измерить контуры заземления

Перед подключением любого AV-оборудования к удаленному дисплею (на расстоянии более 25 футов) всегда измеряйте потенциал земли между экраном (или сигналом) видеокабеля и землей на источнике питания дисплея с помощью цифрового мультиметра.См. Рис. 3, где показаны рекомендуемые точки для измерения.

Рисунок 3

Измеренное напряжение должно быть менее 1-2 вольт. Измерьте как напряжение переменного, так и постоянного тока. Если какое-либо напряжение превышает 2 В, не подключайте аудио / видео оборудование вместе. Если вы не знакомы с мультиметром, обратитесь к квалифицированному электрику.

Чего НЕ делать, если есть контур заземления

Нецелесообразно поднимать или отключать заземление на каком-либо AV-оборудовании или иным образом изменять или отключать функцию заземления для решения проблем контура заземления.Поднятие заземляющего провода с шнуров питания, кабелей или любого электрического оборудования снимает функцию безопасности, предназначенную для защиты персонала, использующего это оборудование. Неправильно заземленное оборудование представляет серьезную опасность поражения электрическим током.

Обычный наземный подъемник, как показано на Рисунке 4, не следует использовать в любое время. Несмотря на то, что он поляризован, он все же представляет угрозу безопасности.

Первоначально целью этих типов вилок было подключение заземленной трехконтактной вилки к старой розетке, не имеющей заземления.Центральный язычок должен быть подключен к заземлению кабелепровода с помощью винта гнезда.

Как исправить проблемы контура заземления

Лучший способ решить любую проблему с контуром заземления — поговорить с лицензированным подрядчиком по электрике. Они являются экспертами в области электрических систем и предложат лучшее решение для улучшения заземления между AV-оборудованием.

Для аудиосигналов на пути прохождения сигнала может использоваться изолирующий трансформатор. Этот тип инструмента разорвет контур заземления и обеспечит чистый звук (как показано на рисунке 5).Изолирующий трансформатор может быть установлен на переднем конце или на конце усилителя мощности.

Рисунок 5

Для видеосигналов есть несколько вариантов, которые могут обеспечить благоприятные результаты. Устройства с изоляцией контура заземления (GLI) могут использоваться совместно с видеосигналами. Хотя они эффективны, в большинстве случаев они эффективны только до тех пор, пока контур заземления не превысит входные характеристики устройства GLI. В среднем устройства GLI выдерживают около 3-4 вольт.Все, что выше этого уровня, повредит входную схему.

Другой способ решить эту проблему — использовать оптоволоконный передатчик и приемник. Поскольку оптоволоконные кабели обеспечивают чистую гальваническую развязку между двумя устройствами, при их использовании отсутствует возможность образования контура заземления. Однако во многих случаях оптоволоконные решения могут быть непомерно дорогими.

Контуры заземления и передача видео / аудио по витой паре

Во всех видеопередатчиках и приемниках по витой паре используются дифференциальные драйверы и приемники, способные выдерживать минимальное напряжение контура заземления.Как правило, напряжение контура заземления выше 4 вольт повредит передатчик, приемник или и то, и другое на витой паре.

Всегда измеряйте напряжение контура заземления перед установкой любого видео / аудио оборудования на витой паре. Это измерение следует проводить от проводов витой пары до земли розетки со стороны дисплея. Если напряжение контура заземления превышает 4 В, не подключайте аудио / видео оборудование вместе.

Рисунок 6

Заключение

Ток и напряжение контура заземления могут повредить оборудование за доли секунды и обычно не покрываются гарантиями производителя.Обязательно измеряйте наличие контуров заземления перед соединением кабелей каждый раз, когда длина сигнального кабеля превышает 25 футов.

Решение проблем с контуром заземления контрольно-измерительной аппаратуры

Нежелательные контуры заземления могут вызвать неточные показания датчика, отрицательно влияя на сигналы контрольно-измерительной аппаратуры.

Сегодняшние современные технологические установки в значительной степени зависят от электрического оборудования для качества конечного продукта. Информация, предоставляемая термопарами, RTD и другими датчиками температуры, используется производителями контрольно-измерительных приборов не только для целей управления, но и для предотвращения неуправляемых реакций.

То же самое относится к другим производственным параметрам, таким как давление и расход. Таким образом, поддержание точных результатов измерений также имеет решающее значение для безопасности.

Заземление КИП

Любое оборудование, используемое для реализации стратегии контрольно-измерительной аппаратуры (см. Врезку на странице 96), использует общую сигнальную землю в качестве опорной для аналоговых сигналов. Любое дополнительное заземление, введенное в цепь управления, почти наверняка вызовет образование контуров заземления.

Чтобы свести к минимуму опасность введения этих петель в сложную сеть, следует использовать специальную шину заземления измерительной системы. Эта шина в конечном итоге получает заземление от общего сигнала, заземления шкафа и заземления источника переменного тока КИПиА. Автобус привязан к земле через строительную землю и сетку заземления растений. На рис. 1 показана типичная конфигурация соединения этих различных заземлений.

Еще больше усложняет картину тот факт, что на предприятии редко бывает только один контур инструментов; их могут быть сотни или даже тысячи.Многие из них упакованы вместе в шкафы контрольно-измерительной системы, поставляемые поставщиками. Как правило, эти шкафы содержат общую шину сигнала постоянного тока и общую шину источника питания; эти шины обычно связаны вместе в шкафах на главной шине заземления.

Заземление шкафа — это защитное заземление, которое защищает оборудование и персонал от опасности случайного поражения электрическим током, обеспечивая прямую линию отвода статических зарядов или электромагнитных помех (EMI), которые могут повлиять на шкафы. Это заземление шкафа остается отделенным от заземления сигнала постоянного тока до тех пор, пока оно не будет подключено к главной шине заземления.Кроме того, заземление шкафа должно соответствовать всем применимым требованиям NEC.

Заземление переменного тока — это одноточечное заземление системы питания переменного тока. Это заземление подключается к заземлению на главном изолирующем трансформаторе переменного тока. Он также заканчивается в единственной точке сети заземления предприятия (заземляющий электрод).

Контуры заземления

В контуре заземления возникает цепь, показанная на рис. 2, потому что каждое заземление обычно связано с разным потенциалом земли.Это условие позволяет току течь между заземлениями посредством технологического контура.

Контуры заземления вызывают проблемы, добавляя или вычитая ток или напряжение из технологического сигнала. Приемное устройство не может различать полезные и нежелательные сигналы и, следовательно, не может точно отражать фактические условия процесса.

Вероятность установления нескольких заземлений и контуров заземления особенно высока при установке новых программируемых логических контроллеров (ПЛК) или распределенных систем управления.

При таком большом количестве соединений внутри объекта, привязанных к земле, велика вероятность установления более одной точки. Таким образом, если кажется, что измерительная система работает странно или беспорядочно, и проблема, кажется, указывает на контуры заземления, рутинная работа по устранению всех непреднамеренных подключений заземления становится непосильной.

Конечные контуры заземления

Все аналоговые контуры управления заземлены в одной или нескольких точках. В то время как одно заземление не представляет проблем, несколько заземлений могут привести к образованию контура заземления.Это явление может нарушить правильное функционирование инструментов.

Имейте в виду, что устранение контуров заземления просто невозможно для некоторых приборов, таких как термопары и некоторые анализаторы, потому что им требуется заземление для получения точных измерений скорости. Кроме того, некоторые приборы необходимо заземлить для обеспечения безопасности персонала.

Когда контуры заземления не могут быть устранены, решение контуров заземления КИП заключается в использовании изоляторов сигналов, как показано на рис. 3. Эти устройства прерывают гальванический путь (непрерывность постоянного тока) между всеми землями, позволяя аналоговому сигналу проходить через продолжать всю петлю.Изолятор также может устранить электрические помехи непрерывности переменного тока (синфазное напряжение).

Изоляторы сигналов

используют любой из двух методов для достижения своей функции. Изоляция аналогового сигнала обычно достигается с помощью изолирующих трансформаторов. Для дискретных сигналов обычно используются оптоизоляторы. У обоих есть свои преимущества и недостатки. Выбор между ними зависит от требований схемы.

Независимо от используемого метода изоляции, изолятор должен обеспечивать изоляцию входа, выхода и питания.Если эта трехсторонняя изоляция не предусмотрена, может возникнуть дополнительный контур заземления между источником питания изолятора и входным и / или выходным сигналом процесса.

Изоляторы

, как и большинство других преобразователей, бывают двух- и четырехпроводными. 4-проводной тип требует отдельного источника питания и частично подходит для монтажа на задней панели. 2-проводный тип может получать питание от входных или выходных контуров. Тип входного контура позволяет изолировать сигнал процесса, когда линейное питание или мощность выходного контура недоступны.Тип выходного контура решает проблему сопряжения неизолированных полевых сигналов с системами, такими как компьютер, ПЛК или распределенная система управления, которые обеспечивают питание от контура для своих выходных устройств.

СВЯЗАННАЯ СТАТЬЯ: КАК РАБОТАЕТ ПЕТЛЯ ПРИБОРОВ

Типичный контур контрольно-измерительной аппаратуры показан ниже. По сути, это система постоянного тока, которая работает при определенном напряжении (24 В в этом примере) относительно основного заземления, называемого сигнальной землей. Сигналы приборов изменяются в диапазоне от 4 мА до 20 мА, в зависимости от значения переменной (температура, давление и т. Д.).) видно датчиком. Точно откалиброванные схемы принимают этот сигнал мА и преобразуют его в сигнал от 1 В до 5 В для самописца. При 4 мА напряжение, измеренное записывающим устройством, составляет 1 В (250 Ом x 0,004 А). При 20 мА измеренное напряжение составляет 5 В. Обычно шкала самописца откалибрована так, чтобы напряжение считывалось непосредственно в [градусах] F, фунтах на квадратный дюйм и т. Д.

Turtle Tough | Как бороться с заземляющими петлями | Поиск и устранение неисправностей


Были ли у вас проблемы с системой управления технологическим процессом и электрическими приборами?
Источником могут быть контуры заземления.Что это?

Потенциально вредная петля, образующаяся, когда две или более точек в электрической системе, обычно имеющих потенциал земли, соединены токопроводящей дорожкой, так что одна или обе точки не имеют одинакового потенциала земли ». Нежелательные контуры заземления могут вызвать неточные показания датчика, отрицательно влияя на сигналы приборов.

Контур заземления существует, когда цепь подключена к заземлению в двух или более точках. Поскольку потенциал земли меняется от точки к точке, два или более соединения с землей вызывают протекание токов.Если ток течет по сигнальному проводу, в результате получается зашумленный сигнал смещения.

Классическим признаком контура заземления является датчик, который правильно считывает данные в буферах, но дает показания с большой ошибкой при помещении в технологическую жидкость. При типичном технологическом измерении датчик pH подключается через технологическую жидкость и трубопровод к заземлению. Если схема в анализаторе pH подключается ко второму заземлению, ток будет течь через электрод сравнения.Напряжение, пропорциональное току и сопротивлению электрода, возникает на электроде сравнения. Поскольку напряжение идет последовательно с напряжениями других элементов, ток контура заземления приводит к тому, что показание pH существенно отличается от ожидаемого значения. Токи, создаваемые контурами заземления, часто нестабильны, поэтому показания pH, на которые влияют контуры заземления, часто бывают зашумленными.

Проверка контура заземления

Если система приборов начинает работать странно или беспорядочно, убедитесь, что вы устранили все непредусмотренные заземляющие соединения.Или если ваши показания колеблются, когда вы касаетесь кабеля или перемещаете датчик. Это может произойти, когда вы добавляете или меняете двигатель или мешалку. Любая электрическая деталь, с которой работают — может нарушить баланс и требует повторной проверки.

Используйте следующую процедуру для проверки контуров заземления:

  1. Извлеките датчик pH из технологической жидкости.
  2. Откалибруйте датчик в буферах. Убедитесь, что нет прямого электрического соединения между контейнером, содержащим буфер, и технологической жидкостью или трубопроводом.
  3. Зачистите концы толстого провода.
  4. Подсоедините один конец провода к технологическому трубопроводу или, лучше, поместите его в технологическую жидкость. Другой конец провода поместите в емкость с буфером и датчиком. Провод обеспечивает электрическое соединение между технологическим процессом и датчиком

Если показание pH изменилось или стало шумным после подключения, значит, существует контур заземления. Если никаких симптомов не наблюдается, петли заземления, вероятно, не существует.

Наличие контуров заземления — это не просто то, что искажает показания, но, скорее, то, что также поляризует и повреждает датчик. Поляризация датчика может привести к ошибочным показаниям даже после удаления из контура заземления. Поляризация может со временем рассеяться, чтобы вернуться к более нормальному отклику, хотя из-за этого может потребоваться повторная калибровка. Со временем наличие контура заземления, в котором установлен датчик, полностью нарушит отзывчивость датчика и приведет к преждевременному выходу из строя.Эта ситуация требует немедленных корректирующих действий.

Что дальше?

  • Намного легче избежать контуров заземления во время установки и планирования проекта, чем диагностировать и устранять их в полевых условиях после установки.

  • Часто не на одной и той же земле и часто разделены расстоянием

  • Не всегда только в контуре 4-20 мА

  • Рассмотрим неизолированный RS-485 сигнальных проводов

  • Учитывать неизолированное заземление питания / выходной мощности на входе

  • Потенциалы земли НЕ равны

  • RGND вызвано несколькими факторами, такими как:

Итак, если вы не можете устранить условия для контуров заземления, каков ваш следующий шаг? Вы можете использовать изоляторы сигналов.Эти устройства прерывают гальванический путь (непрерывность постоянного тока) между всеми землями, позволяя аналоговому сигналу продолжаться по контуру. Изолятор также может устранить электрические помехи при непрерывности переменного тока (синфазное напряжение). Есть несколько способов сделать это, но независимо от выбранного вами метода изоляции изолятор должен обеспечивать изоляцию входа, выхода и питания. Если у вас нет этой трехсторонней развязки, может возникнуть дополнительный контур заземления между источником питания изолятора и входным и / или выходным сигналом процесса.

Остановка контуров заземления в будущем

Чтобы свести к минимуму опасность введения этих контуров в сложную сеть, следует использовать специальную шину заземления контрольно-измерительной системы и подключить к ней заземление от общего сигнала, заземления шкафа и заземления источника переменного тока КИП. Автобус привязан к земле через строительную площадку и решетку растительного грунта. Но это может быть намного сложнее, чем кажется. Например, у вас редко бывает только один цикл инструментовки.Фактически, у вас могут быть сотни или даже тысячи. Многие из них упакованы вместе в шкафы контрольно-измерительной системы, поставляемые поставщиками. Как правило, они содержат общую шину сигнала постоянного тока и общую шину источника питания. Производитель обычно связывает эти шины вместе в шкафах на главной шине заземления. Заземление шкафа — это защитное заземление, которое защищает оборудование и персонал от случайного поражения электрическим током. Он также обеспечивает прямую линию отвода статических зарядов или электромагнитных помех (EMI), которые могут повлиять на шкафы.Это заземление шкафа остается отделенным от заземления сигнала постоянного тока до тех пор, пока оно не будет подключено к главной шине заземления.

Заземление переменного тока — это одноточечное заземление системы питания переменного тока. Это заземление подключается к заземлению на главном изолирующем трансформаторе переменного тока. Он также заканчивается в одной точке сети заземления предприятия (обычно это заземляющий электрод).

По всем вопросам, связанным с анализом экстремальных жидкостей, обращайтесь к нам по телефону

Скачать

Часто задаваемые вопросы о выборе термопары: заземление vs.Незаземленный

Набор часто задаваемых вопросов, в котором обсуждаются преимущества и проблемы использования заземленных и незаземленных термопар. Термопары обычно используются при высоких температурах (по сравнению с RTD), в приложениях с высоким уровнем вибрации и когда требуется быстрый отклик. Использование заземленной термопары имеет некоторые преимущества, но также сопряжено с некоторыми рисками.

Что означает «заземленный» или «незаземленный», когда речь идет о термопарах?

Термопары состоят из двух проволок из разных металлов, сваренных вместе в точке, называемой соединением.Это место, где измеряется фактическая температура. Датчики термопары состоят из нескольких элементов: металлической оболочки, проводов термопары и спая. Термопара заземляется, когда спай приваривается к оболочке на конце датчика. В незаземленной термопаре спай не касается оболочки.

Каковы основные различия между заземленной и незаземленной термопарой?

Заземленная термопара: Этот тип устройства измерения температуры имеет преимущество более эффективной теплопередачи.Когда спай приварен к металлической оболочке, заземленная термопара будет быстрее реагировать на изменения температуры, поскольку контакт металл-металл создает более короткий тепловой путь по сравнению с незаземленной термопарой. Однако такое заземление может вызвать нежелательный побочный эффект. Путем приваривания соединения к оболочке также выполняется электрическое соединение между проводами и оболочкой. Это может привести к возникновению «контура заземления», если датчик подключен к заземлению в точке измерения и если провода подключены к контроллеру, который заземлен в другом месте.Два заземления могут иметь разный потенциал напряжения, что создает нежелательную цепь, которая может повредить оборудование. Незаземленная термопара: Незаземленная термопара не приварена к металлической оболочке и обычно имеет непроводящий порошок, например оксид магния, окружающий спай на конце датчика. Этот материал замедляет теплопередачу от измеряемой среды к стыку термопары. Поскольку провод термопары электрически изолирован от металлической оболочки и корпуса, использование незаземленной термопары снижает риск образования контуров заземления.

Как узнать, есть ли у меня контур заземления?

Влияние контура заземления может быть разным. Измерительный прибор может стать более восприимчивым к погодным условиям и давать нестабильные показания. В некоторых случаях измерительный прибор может получить электрическое повреждение и перестать работать. В крайнем случае может быть задымление.

Как предотвратить замыкание на землю?

Хорошее правило — иметь только одно заземление в приборной петле. У вас есть два варианта: заземлить либо передатчик (соединительную головку), либо контроллер / записывающее устройство, но не то и другое вместе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *