Калькулятор расчета резистора для светодиодов: Онлайн-калькулятор расчета резисторов для светодиодов

Содержание

Онлайн калькулятор расчета резистора светодиода

 
 

 

Не смотря на то, что всевозможные светодиоды сегодня используются практически во всех сферах жизни человека, среднестатистический потребитель, как правило, не задумывается о том, как и по каким законам они работают. И если такой человек сталкивается, к примеру, с необходимостью организации светодиодного освещения,  у него возникает множество проблем и вопросов. И одним из наиболее распространенных вопросов является «что такое резисторы и зачем они нужны светодиоду?». Попробуем на этот вопрос ответить.

Резистор представляет собой элемент электрической сети, отличающийся пассивностью, который, в идеальном варианте, характеризуется исключительно своим сопротивлением электрическому току (то есть, в любой момент времени для него должен выполняться закон Ома). Основное назначение резистора – оказание активного сопротивления электрическому току, и сегодня такие элементы широко используются в организации искусственного освещения.

Теперь поговорим о том, зачем резистор необходим непосредственно светодиоду.

Многие из нас знают, что обыкновенная стандартная лампочка горит, если ее подключить напрямую к некоторому источнику питания. Она успешно функционирует и сгорает только в том случае, если из-за переизбытка напряжения происходит перегрев нити накала. Однако практически никто при этом не задумывается, что в данном случае лампочка сама выполняет роль резистора – ток через нее проходит с трудом, и тем легче ему преодолеть это препятствие, чем выше напряжение. И конечно, приравнивать такой сложный полупроводниковый прибор, как светодиод, к обыкновенной лампе накаливания никак невозможно.

Важно учитывать, что светодиод представляет собой токовый прибор, который, грубо говоря, в процессе работы выбирает для себя напряжение, а не силу тока. Таким образом, если светодиод, к примеру, выбирает напряжение 1,8V, а на него подается 1,9V, то он, скорее всего, сгорит (если, конечно, не сможет понизить напряжение источника до нужного ему значения).

И для того чтобы этого не произошло, нужен резистор. Он стабилизирует используемый источник питания, чтобы его напряжение не испортило светодиод.

В связи с этим чрезвычайно важно разобраться, какой именно резистор необходим для того или иного светодиода, и нужно ли для каждого светодиода использовать отдельный резистор. Здесь немаловажно учитывать схему соединения, а также количество используемых светодиодов. Если речь идет, к примеру, о последовательной цепочке светодиодов, в которой они расположены друг за другом, то поскольку электрический ток в каждой точке данной цепи протекает один и тот же, для этих светодиодов будет достаточно только одного резистора с правильно рассчитанным сопротивлением.

Но если мы говорим о параллельном включении светодиодов, здесь каждый из них должен обладать собственным резистором, поскольку в противном случае все напряжение потянет так называемый «лимитирующий» светодиод (тот, которому напряжение нужно наименьшее). Он быстро перегорит, и теперь напряжение перейдет к следующему светодиоду, который также выйдет из строя.

Это недопустимо, а значит, для параллельно подключенных светодиодов просто необходимо использовать достаточное количество правильно подобранных резисторов.

Теперь поговорим о том, как нужно осуществлять расчет сопротивления резистора, предназначенного для того или иного светодиода. Чаще всего осуществляется такой расчет с помощью специальных калькуляторов. И именно такой высокоэффективный онлайн калькулятор мы предлагаем нашим клиентам. Данный калькулятор позволяет рассчитать значение сопротивления и мощности резистора в цепи светодиодов. Для того чтобы рассчитать необходимое значение, вам следует ввести напряжение питания светодиода, номинальное напряжение светодиода, номинальный ток и выбрать схему соединения и количество светодиодов. Благодаря нашему калькулятору, вы сможете быстро получить достаточно точные сведения, способные оказать гарантированную помощь в организации искусственного освещения.

Кроме того, приступая к процессу расчета сопротивления резистора, необходимо учитывать несколько важных моментов. Во-первых, помните, что на светодиодах, как правило, пишут не напряжение питания, а напряжение падения (то есть то, которое они выбирают для себя), да и оно указывается приблизительно. Используется это число исключительно для определения минимального напряжения или для расчета резистора питания. То есть напряжение падения светодиода нужно отнимать от напряжения его питания, и мы получим напряжение на резисторе.

Ток же, протекающий через него, рассчитывается обычно делением оставшегося на резисторе напряжения на его сопротивление. Ну а для расчета сопротивления данного резистора, соответственно, оставшееся напряжение делится на ту величину тока, которая нам нужна. Человеку, далекому от электрики и физики, самостоятельно сделать расчеты практически невозможно. Поэтому вы еще раз можете оценить удобство и функциональность нашего онлайн калькулятора, который с легкостью выполнит подобную работу за вас.


Калькулятор светодиодов

Я уже прочитал статью, сразу перейти к калькулятору.

Для устойчивой работы светодиоду необходим источник постоянного напряжения и стабилизированный ток, который не будет превышать величины, допустимые спецификой конкретного светодиода. Если необходимо подключить светодиоды индикаторные, рабочий ток которых не превышает 50-100мА, можно ограничить ток посредством резисторов. Если речь идет о питании мощных светодиодов с рабочими токами от сотен миллиампер до единиц ампер, то не обойтись без специальных устройств – драйверов (подробнее об этих устройствах читайте в статье «Драйвера для светодиодов», готовые модели драйверов можно увидеть здесь.). Далее рассмотрим варианты, когда требуемый ток небольшой и обойтись резисторами все же можно.

Резисторы являются пассивными элементами – ток они просто ограничивают, но никак не стабилизируют. Сила тока будет меняться с изменением напряжения в соответствии с законом Ома. Ограничивается ток резистором банальным преобразованием «лишнего» электричества в тепло по формуле

P = I2R, где P — выделяемое тепло в ваттах, I — сила тока в цепи в амперах, R — сопротивление в омах.

Устройство при этом, естественно, греется. Способность резистора рассеивать тепло не безгранична и, при превышении допустимого тока, он сгорит. Допустимая рассеиваемая мощность определяется корпусом резистора. Это нужно учитывать при планировании подключения светодиодов и выбирать элементы с, как минимум, двойным запасом прочности.

Схема подключения одного светодиода

Если необходимо подключить один светодиод, то сопротивление резистора можно рассчитать, в соответствии с законом Ома, по простой формуле:

R = (U — UL) / I, где R — требуемое сопротивление в омах, U — напряжение источника питания, UL — падение напряжения на светодиоде в вольтах, I — нужный ток светодиода в амперах.

Очень часто нужно подключить не один, а несколько светодиодов. В этом случае возможно их последовательное или параллельное подключение.

Схема последовательного подключения светодиодов

Падение напряжения на последовательно соединенных светодиодах суммируется, через каждый из них протекает одинаковый ток.

Напряжение источника питание должно быть больше, чем суммарное падение напряжения.

Рассчитывается сопротивление резистора по такому же принципу, как и в случае одного светодиода, только учитывается падение напряжения не на одном светляке, а суммарно для всей цепочки.

Последовательное подключение удобно тем, что требует минимум дополнительных деталей, кроме того, от источника питания не требуется большой ток. Но при большом количестве светодиодов может потребоваться существенное напряжение. Кроме того, если один из последовательной цепочки сгорит, то цепь оборвется и светить перестанут все светодиоды. Также при таком варианте подключения важно использовать совершенно одинаковые светодиоды, иначе их разные параметры будут служить источником дисбаланса. В итоге они могут либо светить неравномерно, либо значительно быстрее выходить из строя.

Схема параллельного подключения светодиодов

Параллельное подключение равносильно одновременному подключению отдельных светодиодов, которым совсем «не обязательно знать» о наличии других светодиодов. При этом напряжение источника питания должно превышать падение напряжения на одном светодиоде. Сила тока каждого светодиода может регулироваться индивидуально, выбором сопротивления подсоединенного к нему резистора. Важно, чтобы источник питания «знал», сколько светодиодов к нему подключено, поскольку общая сила тока, которую потребуется от него предоставить, равна сумме токов, протекающих через все светодиоды. Если один из светодиодов выйдет из строя, со свечением остальных ничего не произойдет, поскольку работают они индивидуально. Учтите, что это не относится к параллельным светодиодам, которые питаются от токоограничивающего драйвера! Драйвер стабилизирует ток, выход из строя одной из веток приведет к общему снижению тока. Это снижение драйвер немедленно компенсирует, что приведет к повышению тока на оставшихся ветках. А они могут это и не пережить. По аналогичной причине следует избегать подключения нескольких параллельных светодиодов через один токоограничивающий резистор.

Схема правильного и неправильного параллельного подключения светодиодов

Сопротивление каждого резистора при параллельном подключении светодиодов рассчитывается, повторюсь, так же, как и при подключении одного светодиода.

Параллельное подключение светодиодов не требует высокого напряжения питания, но при его использовании необходимо обеспечить достаточную силу тока. Требуется большее количество деталей, но можно одновременно подключить светодиоды с разными параметрами. Также большее количество токоограничивающих резисторов, которые будут выделять тепло, даст более низкий общий КПД схемы по сравнению с последовательным подключением.

Быстро рассчитать сопротивление резистора при подключении одного или нескольких одинаковых светодиодов поможет предложенная ниже форма онлайн-калькулятора светодиодов.

Расчет резистора для светодиода

Тип подключения:

Выбрано: Один светодиод

Общая потребляемая мощность:

Общий ток источника питания:

На резисторах рассеивается:

На светодиодах рассеивается:

КПД схемы:

Требуемая мощность резисторов — очень большая!!

Выбирайте резисторы с номиналом не меньше рассчитанного!

Расчет ограничивающего ток резистора для светодиода, формулы и калькулятор

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Будем полагать что вы знаете что такое светодиод и какие они бывают.

Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный — 1,8…2В;
  • зеленый и желтый — 2…2,4В;
  • белые и синие — 3…3,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем — 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит — Uсвет = 5В — 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит — Uсвет = 5В — 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Расчет резистора для светодиодов: примеры, онлайн калькулятор

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор.  Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих драйверов. Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя.  Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы проверки led.

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит  — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где  — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

https://cxem.net/calc/ledcalc.php

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех светодиодов CREE XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления разработана Сергеем Войтевичем. Скачать программу можно по этой ссылке.

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Заключение

Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

Мощность рассеивания резистора для светодиода. Расчет сопротивления для светодиода

Светодиод — прибор, который при прохождении через него тока излучает свет.

В зависимости от типа используемого материала для изготовления прибора, светодиоды могут излучать свет различного цвета. Эти миниатюрные, надежные, экономичные приборы используются в технике, для освещения и в рекламных целях.

Светодиод обладает такой же вольтамперной характеристикой, как и обычный полупроводниковый диод. При этом при повышении прямого напряжения на светодиоде проходящий через него ток резко возрастает.

Например, для зеленого светодиода типа WP710A10LGD компании Kingbright при изменении приложенного прямого напряжения от 1,9 В до 2 В ток меняется в 5 раз и достигает 10 мА. Поэтому при прямом подключении светодиода к источнику напряжения при небольшом изменении напряжения ток светодиода может возрасти до очень большого значения, что приведет к сгоранию p-n перехода и светодиода.

осуществлена с применением букв и цифр, с помощью которых можно определить качественные характеристики устройств.

Поэтому при параллельном включении светодиодов обычно к каждому прибору последовательно подключают свой ограничивающий резистор. Расчет сопротивления и мощности такого резистора ничем не отличается от ранее рассмотренного случая.

При последовательном включении светодиодов необходимо включать приборы одного типа.

Кроме того, надо учитывать то, что напряжение источника должно быть не меньше суммарного рабочего напряжения всей группы светодиодов.

Расчет токоограничивающего резистора для светодиодов последовательного включения считаются также, как и раньше. Исключение состоит в том, что при вычислении вместо величины Uсв используется величина Uсв*N. В данном случае N — это количество включенных приборов.

Выводы:

  1. Светодиоды — широко распространенные приборы, используемые в технике, для освещения и рекламы.
  2. Во избежание выхода из строя светодиодов из-за их чувствительности к изменениям напряжения для них часто используют ограничивающие резисторы.
  3. Расчет значения сопротивления ограничивающего резистора делается на основе закона Ома.

Расчет резистора для подключения светодиодов на видео

(светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

  • V — напряжение источника питания
  • V LED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:


Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы () которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:


примечание: разделителем десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора = (U U F )/ I F

  • U – источник питания;
  • U F – прямое напряжение светодиода;
  • I F – ток светодиода (в миллиамперах).

Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем или соединения нескольких резисторов.

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство:

или его интерпретация

U= I*R+I*R LED .

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), R LED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение R LED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего R LED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: R=(U-U LED)/I, Ом

U LED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (U LED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания (рис.3).

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:

R=U/I max =5В/0,05А=100 Ом

Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

P=I 2 *R=(U R)2/R

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5В. Cree XM–L с бином T6 имеет такие параметры: типовое U LED =2,9В и максимальное U LED =3,5В при токе I LED =0,7А. Узнать больше о данном светодиоде можно здесь. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности.

R=(U-U LED)/I=(5-2,9)/0,7=3 Ом

Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

P=I 2 *R=0,72*3=1,47 Вт

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

η= P LED /P= U LED / U=2,9/5=0,58 или 58%

Led smd 5050

По аналогии с первым примером разберемся, какой нужен резистор для smd светодиода 5050.

Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов. Подробные данные о smd 5050 можно найти здесь.

Если LED smd 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого smd 5050 с параметрами: типовое U LED =3,3В при токе одного чипа I LED =0,02А.

R=(5-3,3)/(0,02*3)=28,3 Ом

Ближайшее стандартное значение – 30 Ом.

P=(0,02*3)2*30=0,1 Вт

η=3,3/5=0,66 или 66%

Принимаем к монтажу ограничительный резистор мощностью 0,25Вт и сопротивлением в 30 Ом±5%.

У RGB светодиода smd 5050 будет различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Светодиоды в наши дни нашли применение практически во всех областях деятельности человека. Но, несмотря на это, для большинства обычных потребителей совершенно неясно, благодаря чему и какие законы действуют при работе светодиодов. Если такой человек захочет устроить освещение посредством таких устройств, то множества вопросов и поиска решения проблем не избежать. И главным вопросом будет — «Что это за штука такая – резисторы, и для чего они требуются светодиодам?»

Резистор — это одна из составляющих электрической сети , характеризующаяся своей пассивностью и в лучшем случае, отличающаяся показателем сопротивления электротоку. То есть, в любое время для такого устройства должен быть справедлив закон Ома.

Главное предназначение устройств — способность энергично сопротивляться электрическому току. Благодаря этому качеству, резисторы нашли широкое применение при необходимости устройства искусственного освещения, в том числе и с использованием светодиодов.

Для чего необходимо использование резисторов в случае устройства светодиодного освещения?

Большинству потребителей известно, что обыкновенная лампочка накаливания даёт свет при её прямом подключении к какому-либо источнику питания. Лампочка может работать на протяжении длительного времени и перегорает лишь тогда, когда по причине подачи слишком высокого напряжения чрезмерно нагревается накаливающая нить. В таком случае лампочка, некоторым образом, реализует функцию резистора, потому как прохождение электротока через неё затруднительно, но чем выше подаваемое напряжение, тем легче току удаётся преодолеть сопротивление лампочки. Конечно же, ставить в один ряд такую сложную полупроводниковую деталь, как светодиод и обыкновенную лампочку накаливания нельзя.

Важно знать, что светодиод – это такой электрический прибор , для функционирования которого предпочтительнее не сама сила тока, а напряжение, имеющееся в сети. Например, если таким устройством выбрано напряжение 1,8 В, а к нему приходит 2 В, то, вероятнее всего, он перегорит – если вовремя не снизить напряжение до требующегося приспособлению уровня. Вот именно с этой целью и требуется резистор, посредством которого осуществляется стабилизация использующегося источника питания, чтобы подаваемое им напряжение не вывело устройство из строя.

В связи с этим крайне важно:

  • определиться, какого типа резистор требуется;
  • определить необходимость использования для конкретного прибора индивидуального резистора, для чего требуется расчёт;
  • учесть вид соединения источников света;
  • планируемое число светодиодов в осветительной системе.

Схемы соединения

При последовательной схеме расстановки светодиодов, когда они располагаются один за одним, обычно хватает одного резистора, если получится правильно рассчитать его сопротивление. Это объясняется тем, что в электрической цепи имеется один и тот же ток , в каждом месте установки электрических приборов.

Но в случае параллельного соединения, для каждого светодиода требуется свой резистор. Если пренебречь этим требованием, то все напряжение придётся тянуть одному, так называемому «ограничивающему» светодиоду, то есть тому, которому необходимо наименьшее напряжение. Он слишком быстро выйдет из строя , при этом напряжение будет подано на следующий в цепи прибор, который точно так же скоропостижно перегорит. Такой поворот событий недопустим, следовательно, в случае параллельного подключения какого-либо числа светодиодов требуется использование такого же количества резисторов, характеристики которых подбираются расчётом.

Расчёт резисторов для светодиодов

При правильном понимании физики процесса, расчёт сопротивления и мощности данных устройств нельзя назвать невыполнимой задачей, с которой не под силу справиться обычному человеку. Для расчёта требующегося сопротивления резисторов, нужно обязательно учесть следующие моменты:

Расчёт резисторов при помощи специального калькулятора

Обычно, расчёт сопротивления таких приспособлений, требующихся для какого-либо светодиода, производится посредством специально предназначенного для этих целей калькуляторов. Такие калькуляторы, удобные и высокоэффективные, не нужно откуда-то скачивать и устанавливать – рассчитать резистор вполне можно и в онлайн-режиме.

Калькулятор расчёта резисторов позволяет с высокой точностью определить требуемую мощность и показатель сопротивления резистора, устанавливающегося в светодиодную цепь.

Для расчёта требующегося сопротивления необходимо в соответствующие строки онлайн-калькулятора внести:

  • напряжение питания светодиода;
  • номинальное напряжение светодиода;
  • номинальный ток.

Далее, требуется выбрать использующуюся схему соединения, а также необходимое число светодиодов.

После нажатия соответствующей кнопки выполняется расчёт и на экран монитора выводятся полученные расчётные данные , при помощи которых можно в дальнейшем без особого труда организовать искусственное светодиодное освещение.

Также в онлайн-калькуляторах имеется некоторая база, содержащая данные о светодиодах и их параметрах. Представлена возможность расчёта:

  • номинала приспособления;
  • цветовой маркировки;
  • потребляемого цепью тока;
  • рассеиваемой мощности.

Человек, не сильно разбирающийся в электрике и физике, в большинстве случаев не сможет самостоятельно рассчитать устройства для светодиодов. По этой причине, проведение расчётов при помощи функционального и удобного онлайн-калькулятора – неоценимая помощь для обычных людей , не владеющих методикой расчётов с применением физических формул.

Большинство известных производителей светодиодов и созданных на их основе лент, на своих официальных сайтах выкладывают и собственный онлайн-калькулятор , с помощью которого можно не только подобрать требующиеся резисторы и светодиоды, но и вычислить параметры использующихся токовых приборов в различных режимах эксплуатации при переменных значениях тока, температуры, подаваемого напряжения и пр.

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)- полупроводниковый прибор, излучающий не когерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.


Светодиод будет «гореть» только при прямом включении , как показано на рисунке

При обратном включении светодиод «гореть» не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Не трудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется «рабочей» зоной, так как именно здесь обеспечивается работа светодиода.



1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Что бы правильно подключить светодиод в самом простом случае необходимо подключить его через токоограничивающий резистор.

Пример 1

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

Тоесть надо взять резистор сопротивлением 100 Ом

P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.

Пример 1.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчёт: 3 светодиода на 3 вольта = 9 вольт, то есть 15-вольтового источника достаточно для последовательного включения светодиодов


Расчёт аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода

Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пример 2.

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчёт: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчёт токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчёт токоограничительных резисторов для каждой ветви.


R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Пример 3.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем своё собственное сопротивление

Например имеются 5 разных светодиодов:
1ый красный напряжение 3 вольта 20 мА
2ой зелёный напряжение 2.5 вольта 20 мА
3ий синий напряжение 3 вольта 50 мА
4ый белый напряжение 2.7 вольта 50 мА
5ый жёлтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1ый и 2ой
2) 3ий и 4ый
3) 5ый


рассчитываем для каждой ветви резисторы

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

ВАЖНОЕ ЗАМЕЧАНИЕ!!!

При подсчёте токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.


Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определённый разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведённых выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

ВАЖНОЕ ЗАМЕЧАНИЕ!!!

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит пр и немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Расчет резисторов для светодиодов и его сопротивление

Светодиоды все чаще используются нами в различных сферах. Они представляют собой полупроводниковый прибор, превращающий электрический ток в световое излучение.

Для получения света с их помощью, не надо применять специальные дополнительные преобразователи. Достаточно подать на него электрический ток. В этом моменте часто проблемы. Они чувствительны к большим скачкам тока, которые наблюдаются при включении.

Для защиты от таких скачков, в цепь включают специально подобранные резисторы.

Резисторы по праву считаются самыми распространенными радиоэлементами. Главная их характеристика состоит в сопротивлении, в двух словах, они препятствуют протеканию электрического тока.

Резисторы считаются пассивными элементами электрической цепи. Они могут быть постоянными, т.е. такими сопротивлениями, у которых протекание тока остается неизменным. И переменными, где величину сопротивления можно регулировать от 0 до его максимального значения. Их используют как токоограничительные элементы, делители напряжения, шунты для измерительных приборов, и тому подобное.

Основной параметр резистора – это его сопротивление. Сопротивление – это его свойство препятствовать протеканию электрического тока. Измеряемой характеристикой величины сопротивления есть Ом.

Расчет сопротивления для светодиодов

Как произвести расчет:

Для провидения расчета понадобится знать точные параметры светодиода и источника напряжения. Их можно прочитать в паспортных данных, или найти в интернете. По источнику питания нам понадобятся данные выходного напряжения.

По светодиоду, его номинальное напряжение и рабочий ток.

Возьмем, к примеру, простейшую схему на рисунке выше. У нас источник питания Uи = 12В, напряжение на светодиоде Uvd= 2В, номинальный рабочий ток светодиода будет Ivd = 0,02А, в справочнике эта величина может быть показана как 2мА.

Найдем падения напряжения на резисторе.

Для этого, отнимем от напряжения источника питания, падения на светодиоде:

  • Ur= Uи – Uvd = 12 – 2 = 10В;

У нас выходит падение напряжения на резисторе 10 вольт.

Используя формулу закона Ома, найдем величину необходимого сопротивления цепи:

  • R=U/I = 10/0.02 = 500 Ом.

Подставив в формулу значение напряжения и тока, мы получили величину сопротивления. После этого, находим по справочным таблицам, ближайшее стандартное значение. Если нет точного значения, лучше взять с небольшим запасом в большую сторону.

Расчет онлайн

Для расчета на онлайн-калькуляторе понадобятся все те же данные, что и для расчетов в ручном режиме. Это: напряжение источника питания, номинальный прямой ток и напряжение, количество светодиодов, и их схема подключения.

Ниже приведены ссылки на несколько источников с онлайн-калькуляторами:

  1. http://forum220.ru/calc-res-led.php. На странице этого калькулятора вам подскажут, как можно найти номинальное прямое напряжение светодиода по цвету его света, если данные об этом отсутствуют.
  2. http://cxem.net/calc/ledcalc.php. Этот калькулятор не только рассчитает вам значения сопротивления, но и предложит схему подключения. Это будет удобно в случае большого количества светодиодов.
  3. http://h-t-f.ru/calk/online-calculator-for-resistor-leds. Калькулятор учитывает особенности соединения.

Принцип работы и область применения

Резисторы разной мощности

Принцип работы резистора построен на рассеивании мощности. Номинальной мощностью рассеивания является та мощность, которую резистор может рассеять не повреждаясь. Единица мощности – ватты.

Рассматривая роль резистора с точки зрения электротехники, мощность можно определить по формуле: Р=I ² * R, где P – мощность, I – значение силы тока, R – сопротивление резистора.

Резисторы являются важными элементами электрической цепи, главная их функция – это сопротивление протеканию электрического тока. Этим он способствует стабилизации и ограничении силы тока протекающей по цепи. Его часто используют в качестве балластного резистора, чтобы иметь возможность регулировать напряжение в цепи.

Резисторы, в том числе балластные, используются для поглощения некоторой части напряжения, выравнивают силы тока в различных участках цепи. Тем самым, они поддерживают стабильность напряжения.

Этот принцип используют в резисторах для светодиодов. Светодиоды чувствительны к большим скачкам тока, которые могут возникнуть при их включении, они могут привести их негодность. Включенный последовательно с ним токоограничивающий резистор, уменьшит ток до приемлемой величины.

Подключение и пайка

Светодиоды – это полупроводниковые приборы, при их подключении необходимо соблюдать полярность. При неправильном подключении они работать не будут, и довольно часто выходят со строя.

Анод имеет полярность +, катод соответственно -. Обычно, ножка катода немного меньше по длине. Часто, катод можно опознать по более толстой ножке внутри прибора. В любом случае, данные по контактам можно найти в справочной литературе.

Диоды также боятся перегрева во время пайки. Для пайки нельзя использовать мощные паяльники, лучше использовать приборы мощностью до 100 Вт.

Также, можно в качестве вспомогательных средств для охлаждения использовать пинцет. Он отведет часть тепла. Вместо пинцета, можно использовать и другие металлические инструменты.

Паяльник перед пайкой надо разогреть до его максимальной температуры. Было бы хорошо, чтобы его температура была в пределах 250-280 градусов Цельсия.

Сам процесс пайки одной ножки не должен превышать 4-5 секунд. При этом времени, прибор не успеет перегреться.

При монтаже светодиода на месте установки, старайтесь, чтобы контакты ближе к корпусу, оставались параллельны, как при выходе из производства. Изгибайте контакты небольшими радиусами, уступив подальше от корпуса. Собирайте их на твердом плоском материале. Предварительно, подготовьте отверстия для ножек светодиодов с помощью дрели.

Подбирая источник питания, следует помнить: чем больше разница рабочего напряжения светодиода и источника питания, тем меньше они будут подвержены влиянию скачков напряжения блока питания. Не забывайте устанавливать предохранители.

Если у вас безвыходные SMD светодиоды, у них вместо ножек для пайки контактные площадки. Эти площадки расположены на нижней части их корпуса. Паяют их маломощными паяльниками не более 15 ВТ.

Часто, для этой работы применяют специальное жало. Оно имеет разветвление на рабочем конце. Народные умельцы вместо специального жала наматывают тонкий медный провод на стандартное жало. Оптимальный диаметр такого провода 1 мм.

Легче всего проверить светодиоды с помощью тестера. Проверяется он как обычный диод. Его надо включить в прямом положении, чтобы между анодом и катодом пошло положительное напряжение. Многие современные цифровые приборы имеют встроенную возможность проверки диодов. Главное при проверке – соблюдать полярность.

Статья была полезна?

0,00 (оценок: 0)

Расчет резистора для светодиода + калькулятор онлайн

Светодиоды относятся к категории нелинейных полупроводниковых приборов. Поэтому правильная и надежная работа обеспечивается стабильным электрическим током. Часто из-за перегрузок светодиоды выходят из строя. Для таких случаев предусмотрено использование ограничительного резистора, последовательно включаемого в цепь. При подключении должна учитываться мощность и номинальное сопротивление. В связи с этим большую роль играет правильный расчет резистора для светодиода, основанный на общих принципах и проводимый по определенной методике.

Теоретический расчет резистора

Прикладываемое напряжение проходит между положительным и отрицательным контактом. Светодиод и резистор при последовательном соединении будут пропускать через себя одинаковый ток. В соответствии с законом Ома, сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональна сумме сопротивлений резистора и светодиода.

Формула выглядит следующим образом: 

Знак R обозначает сопротивление резистора, а RLED является дифференциальным сопротивлением светодиода. Следовательно, сопротивление резистора при установленном значении тока рассчитывается по формуле:

Светодиод обладает дифференциальным сопротивлением, зависимым от нелинейной вольт-амперной характеристики. Сопротивление светодиода постоянному току есть переменная величина, снижающаяся при росте напряжения. Таким образом, значение дифференциального сопротивления характерно для отдельной точки на графике вольт-амперной характеристики. Рассчитать резистор можно по формуле , где ULED есть прямое напряжение светодиода.

Подбор сопротивления еще выполняется графическим путем. Как пример рассматривается рабочий ток в 100 мА и напряжение в 5В. На графике отмечают точку тока в 100 мА и проводят через нее и точку напряжения 5В прямую от оси абсцисс до того, пока она не пересечется с осью ординат. В точке пересечения определится значение тока в 250 мА. По формуле закона Ома сопротивление резистора рассчитывается как R=U/Iкз или 5В/0,25А=20 Ом. Перед расчетами единицы измерения приводятся к единым значениям.

Расчеты сопротивления на практике

Для расчетов сопротивления резисторов разработаны специальные программы, в которые вводятся исходные данные. Результаты рассчитываются автоматически и дают точные показатели.

При отсутствии программы расчеты выполняются вручную с применением специальных таблиц. В качестве примера можно взять светодиод белого цвета для работы с номинальным током 350 мА и напряжением 12 вольт. По таблице определяется прямое падение напряжения при заданном токе. Типовым значением в таблице будет 3,2 В, а максимальным – 3,9 В. Между ними могут быть и другие промежуточные значения. Но более вероятен ток в 3,2 В, поэтому для расчетов применяется именно это значение.

Применяя формулу R = (12В – 3,2В) /0,35А = 25,1 Ом. Значение, указанное в таблице составляет 24 Ом, поэтому, при необходимости,  в цепь можно добавить один последовательно включенный резистор сопротивлением 1 Ом. Кроме использования таблицы, нужно измерять реальные значения токов и сопротивлений. Все это в совокупности дает точные результаты.

Когда проводится расчет резистора для светодиода, учитывается номинальная мощность рассеивания, с минимальным запасом 30%. Данный запас позволяет избежать перегрева. При затрудненном отводе тепла и низкой конвекции этот показатель должен быть еще выше.

Подобрать нужный резистор можно с помощью амперметра и магазина сопротивлений. Оба прибора включаются последовательно в цепь вместе со светодиодом и подключаются к источнику питания. Значение сопротивления устанавливается на максимум, после чего его нужно постепенно уменьшать. В течение этого периода яркость светодиода или сила тока приобретают нужные качества. На основании полученных данных выбирается необходимый номинал резистора.

Калькулятор резисторов для светодиодов

Калькулятор резисторов серии

LED

Калькулятор резисторов серии

LED

Для всех светодиодов требуется некоторая форма ограничения тока . Подключение светодиода напрямую к источнику питания сгорит в мгновение ока. Даже кратковременная перегрузка значительно сократит срок службы и светоотдачу.

К счастью, управление одним или цепочкой светодиодов с низким током (20-30 мА) является простой задачей — добавление небольшого резистора в серию — самый простой и дешевый способ ограничить ток.Однако имейте в виду, что светодиоды с большим током (более нескольких сотен мА) сложнее управлять, и, хотя они могут работать с последовательным резистором, для минимизации потерь мощности и обеспечения надежности рекомендуется использовать более дорогие переключатели Регулятор тока .

Наш калькулятор светодиодов поможет вам определить номинал токоограничивающего последовательного резистора при подключении одного или нескольких слаботочных светодиодов. Для начала введите необходимые значения и нажмите кнопку «Рассчитать».

Программа нарисует небольшую схему, отобразит рассчитанное сопротивление и сообщит вам значение и цветовой код ближайшего стандартного резистора более низкого и высокого уровня. Он рассчитает мощность, рассеиваемую резистором и светодиодами, рекомендуемую мощность резистора, общую мощность, потребляемую схемой, и эффективность конструкции (мощность, потребляемая светодиодами / общая потребляемая мощность схемы) x 100. ).

Поля ввода

Напряжение питания : Введите напряжение, превышающее падение напряжения светодиода для одной цепи светодиода и параллельного подключения, или сумму всех падений напряжения при последовательном подключении нескольких светодиодов.

Ток светодиода : Введите ток одного светодиода в миллиамперах. Обычные светодиоды 3 мм и 5 мм обычно работают в диапазоне 10-30 мА, но силовые светодиоды, используемые в осветительных и автомобильных приложениях, могут иметь ток более 200 мА. Ток 20 мА обычно является безопасным значением, если у вас нет доступа к техническому описанию компонента.

Цвет светодиода и Падение напряжения : Выберите цвет светодиода. Поле падения напряжения автоматически заполнится типичным значением для выбранного цвета (например,г. 2В для стандартного красного светодиода; 3,6 В для белого светодиода, используемого в освещении, стробоскопе и т. Д .; 1,7 В для инфракрасного светодиода, используемого в пультах дистанционного управления и т. Д.). Однако падение напряжения сильно различается между разными типами светодиодов, а также незначительно изменяется в зависимости от тока, поэтому, пожалуйста, измените его, если вы знаете правильное значение для вашего компонента.

Количество светодиодов : Выберите количество светодиодов, которое вы хотите использовать в своей цепи. Для нескольких светодиодов появится второе раскрывающееся меню, в котором вы можете выбрать соединение серии или параллельное соединение .

Примечание. Не следует подключать светодиоды параллельно с одним общим резистором. Идентичные светодиоды могут быть успешно подключены параллельно, но у каждого светодиода может быть немного разное падение напряжения, и яркость светодиодов будет отличаться. Если вы хотите подключить светодиоды параллельно, у каждого из них должен быть свой резистор. Рассчитайте значение для одного светодиода и подключите все пары светодиод-резистор параллельно.

Точность резистора : выберите желаемую стандартную точность резистора: 10% (E12), 5% (E24), 2% (E48) или 1% (E96).Воспользуйтесь нашим калькулятором цветового кода резистора, чтобы узнать цветовые полосы для различных (20%, 0,5% …) прецизионных резисторов.

Как интерпретировать результаты

Простая схема генерируется при каждой загрузке страницы. На схеме показано только ближайшее значение стандартного резистора, и показаны только два подключения светодиодов, независимо от того, сколько светодиодов в цепи (но я уверен, что вы легко можете заполнить недостающие биты).

Справа показаны два резистора .Это ближайшие (верхние и нижние) стандартные значения, наиболее близкие к исходному рассчитанному сопротивлению. Вы должны использовать только один в своей схеме — лучше выбрать тот, который ближе (тот, который отмечен * после значения).

Рекомендуемая мощность резистора Ваттность рассчитана с небольшим запасом прочности, так что рассеиваемая мощность остается в пределах 60% от номинального значения.

Эффективность [%] покажет вам, какая часть общей мощности, потребляемой схемой, фактически используется светодиодом (ами).

Как определить выводы светодиода

Светодиод имеет два вывода: положительный (анод) и отрицательный (катод). На схематических диаграммах его символ похож на простой диод, с двумя стрелками, направленными наружу. Анод (+) отмечен треугольником, а катод (-) — линией. Иногда встречаются дополнительные метки: A или + для анода и K или для катода.

Есть несколько способов определить выводы светодиода:

  1. Катод (отрицательный) обычно маркируется плоской кромкой в нижней части корпуса светодиода.
  2. Большинство светодиодов изготавливаются с одной длинной ножкой, указывающей на плюс (анод).
  3. Загляните внутрь самого светодиода — меньшая металлическая деталь внутри светодиода подключается к положительному электроду, а большая — к отрицательному.

R / C Расчеты

Этот калькулятор поможет вам выбрать подходящий резистор (резисторы), необходимый для безопасного подключения одного или нескольких светодиодов к источникам питания различных номиналов.

Введите расположение светодиодов, количество светодиодов, напряжение питания, значения Vf и If светодиодов. Значения Vf и If указаны на упаковке светодиода. Нажмите кнопку, и появится схема, показывающая, как расположить компоненты. Также будет рассчитано значение сопротивления.


Светодиодный калькулятор с использованием цепи постоянного тока

Этот калькулятор поможет вам выбрать подходящий резистор, необходимый для безопасного подключения одного или нескольких светодиодов к источникам питания различных номиналов.Несмотря на то, что эта версия немного сложнее, она обеспечивает лучший контроль над током независимо от уровня заряда источника питания.

Введите расположение светодиодов, количество светодиодов, напряжение питания, значения Vf и If светодиодов. Значения Vf и If указаны на упаковке светодиода. Нажмите кнопку, и появится схема, показывающая, как расположить компоненты. Также будет рассчитано значение сопротивления.


Другая полезная информация о светодиодах
  • Светодиодная проводка На рисунке ниже показаны схематический символ и физический светодиод.

    Положительный (+) анодный вывод длиннее отрицательного (-) катодного вывода. Также на корпусе объектива имеется плоское пятно с отрицательной стороны.

    Если вы все еще не можете определить, какой вывод отрицательный, вы можете временно подключить светодиод к батарее 9 В вместе с резистором 330 Ом.

    Не о чем беспокоиться, если вы случайно зацепите его задом наперед: это просто не сработает.

  • Светодиодные формулы Ниже приведены формулы, используемые на этой странице:

    светодиодов последовательно:
    Значение резистора = (В , питание — (В f X LED_count)) / I f
    Мощность резистора = I f 2 X resistor_value

    Светодиоды, подключенные параллельно общему резистору:
    Значение резистора = (V питание -V f ) / (I f X LED_count)
    Мощность резистора = (I f 2 X LED_count) x resistor_value

    Светодиодов, включенных параллельно с отдельными резисторами:
    Значение резистора = (В , питание -V f ) / I f
    Мощность резистора = I f 2 x резистор

    Где:
    resistor_value = сопротивление в Ом
    В питание = напряжение питания в вольтах
    В f = прямое напряжение светодиода в вольтах
    I f = прямой ток светодиода в амперах
    LED_count = количество используемых светодиодов

  • Использование линейного регулятора напряжения Формулы в первом калькуляторе выше предполагают постоянное напряжение, но на самом деле батарея будет иметь три состояния напряжения: полностью заряженное напряжение, номинальное напряжение и разряженное напряжение.Например, если вы используете липо-пакет 4s, эти напряжения будут составлять 16,8 В (4,2 В / элемент), 14,8 В (3,7 В / элемент) и 12 В (3,0 В / элемент) соответственно. Если резистор выбран на основе номинального значения, светодиод будет ярче при подключении к полностью заряженной батарее и тусклее, когда батарея почти разряжена.

    Это можно исправить с помощью линейного регулятора напряжения. Это позволит поддерживать постоянное выходное напряжение независимо от уровня заряда аккумулятора. Таким образом, если стабилизатор 5 В используется в 3-секундном липо-блоке, выходное напряжение останется постоянным 5 В, даже если батарея будет колебаться от 12.От 6В до 9В.

    RadioShack имеет две недорогие версии; LM7805 (5 В) и LM7812 (12 В). LM7805 будет использоваться, если напряжение батареи составляет от 2 до 4 с липо (6-12 никель-металлгидридных элементов). LM7812 может использоваться с 5s липо (15 NiMH ячеек) или выше. Идея состоит в том, чтобы выбрать стабилизатор, выход которого как минимум на 1,5 В выше минимального напряжения батареи.

    Ниже представлена ​​простая схема, показывающая, как подключить один из этих регуляторов:

    FYI: Любой из перечисленных выше регуляторов технически может использоваться с подключением к регулируемым выходам.Для «программирования» напряжения потребуются два дополнительных резистора. Однако это выходит за рамки данной страницы, и один из регуляторов серии LM78xx будет работать нормально в 99% случаев.

Калькулятор светодиодных резисторов

Токоограничивающий резистор, иногда называемый нагрузочным резистором или последовательным резистором, подключается последовательно со светоизлучающим диодом (LED), чтобы на нем было правильное прямое падение напряжения.

Если вам интересно, «Какой резистор мне использовать с моим светодиодом?», Или если вам интересно, какой резистор вы должны использовать с питанием 12 В или 5 В, тогда эта статья поможет.

На схеме выше вы можете увидеть распиновку светодиода. Катод — отрицательная клемма. Это на плоской стороне диода, а вывод короче. Анод положительный и имеет более длинный вывод. Если вам всегда интересно, что является отрицательным или положительным, то приведенная выше анимация поможет тренировать мозг. Вы только посмотрите на него, надеюсь, он утонет …


Калькулятор токоограничивающего резистора

— Серия

прямое напряжение

Прямое падение напряжения , обычно называемое просто прямое напряжение — это конкретное значение для каждого светодиода.Вы можете получить это из таблицы вашего компонента. Однако, если вы не можете найти спецификацию, вы всегда можете обратиться к таблице, приведенной ниже. Он показывает падение напряжения в прямом направлении для каждого обычно доступного светодиода по цвету.

Вы также можете измерить его с помощью цифрового измерителя. Практически любой дешевый счетчик имеет эту менее известную возможность.

Как измерить прямое напряжение Vf

Если у вас есть цифровой мультиметр, вы также можете измерить прямое падение напряжения.У вашего измерителя будет символ диода на переднем циферблате, поэтому просто переместите селекторный переключатель на него и измерьте его! Большинство инженеров не знают об этой функции, поэтому держите это в секрете!

Красный зонд измерителя подключается к аноду, а черный зонд подключается к катодному выводу, который является более коротким проводом. Ваш цифровой измеритель должен предоставлять вам хорошее точное значение, которое вы можете использовать.

Диаграмма по цвету

Цвет светодиода Прямое напряжение Vf Прямой ток, если
Белый 3.От 2 В до 3,8 В от 20 мА до 30 мА
Теплый белый от 3,2 В до 3,8 В от 20 мА до 30 мА
Синий от 3,2 В до 3,8 В от 20 мА до 30 мА
Красный от 1,8 В до 2,2 В от 20 мА до 30 мА
Зеленый от 3,2 В до 3,8 В от 20 мА до 30 мА
Желтый от 1,8 В до 2,2 В от 20 мА до 30 мА
Оранжевый 1.От 8 В до 2,2 В от 20 мА до 30 мА
Розовый от 3,2 В до 3,8 В от 20 мА до 30 мА
UV от 3,2 В до 3,8 В от 20 мА до 30 мА

Вот диаграмма, показывающая прямое напряжение по цвету для широко доступных светодиодов на eBay. Сейчас они очень дешевы, и вы можете получить сумку светодиодов высокой яркости практически за копейки. Все они доступны в размерах 3 мм, 5 мм и 10 мм. Катодный вывод обычно имеет длину 17 мм, а анод — 19 мм.

Из-за нелинейного характера кривой характеристики диода светодиод работает в очень узком диапазоне параметров прямого напряжения и прямого тока.

Например, красный светодиод имеет типичное прямое напряжение 1,8 В и максимальное прямое напряжение 2,2 В. Он имеет типичный прямой ток 20 мА и максимальный прямой ток 30 мА. Инженеры-электронщики обычно используют типичные рабочие параметры.

Самое замечательное в этих светодиодах то, что все они имеют типичный прямой ток около 20 мА, что означает, что вы можете применить закон Ома для определения номинала последовательного резистора.

Выбор резистора для использования со светодиодами

Напряжение питания Vs Vf = 1,8 В Vf = 3,2 В
3,3 В 75 Ом 532 532 Ом 160 Ом 90 Ом
9 В 360 Ом 290 Ом
12 В 510 Ом 440 Ом

Как видно из диаграммы выше обычно используются два прямых напряжения.Красные, желтые и оранжевые светодиоды относятся к категории 1,8 В, а белые, синие, зеленые, розовые, УФ-светодиоды — к категории 3,2 В.

Следовательно, я составил другую диаграмму, показывающую значения последовательного резистора, необходимые для этих двух категорий падения напряжения. На диаграмме показаны расчетные значения при напряжении питания 3,3 В, 5 В, 9 В и 12 В. Это типичные напряжения, используемые любителями в своих проектах. Просто воспользуйтесь таблицей значений стандартных резисторов, чтобы найти ближайшее из возможных значений.

Пример 1: Синий светодиод имеет типичное прямое падение напряжения 3,2 В, поэтому при использовании напряжения питания 3,3 В требуется резистор 5 Ом. Однако, если вы используете напряжение питания 5 В, то потребуется резистор на 90 Ом. Как видите, номинал резистора увеличивается с увеличением напряжения питания.

Пример 2: Если вы используете желтый светодиод, то он имеет типичное прямое напряжение 1,8 В. Следовательно, значения резистора 75 Ом, 160 Ом, 360 Ом и 510 Ом могут использоваться, когда напряжение питания равно 3. .3 В, 5 В, 9 В и 12 В соответственно.

Формула для расчета номиналов резисторов

Напряжение на шине Vs равно сумме напряжений на светодиоде и резисторе.

Учитывая прямое напряжение диода Vf, напряжение на резисторе равно Vs –Vf.

Учитывая прямой ток, мы знаем, что этот же ток течет и по цепи в резисторе. Следовательно, у нас есть вся информация, чтобы использовать закон Ома для расчета номинала последовательного резистора.

Схема с несколькими светодиодами

— Серия

Несколько светодиодов можно подключать последовательно, однако напряжение питания ограничивает количество светодиодов, которое вы можете установить. Как видите, полное прямое напряжение — это сумма всех прямых напряжений, представленных каждым светодиодом. Очевидно, что суммарное прямое напряжение должно быть меньше напряжения питания. Если вы используете источник питания 12 В, у вас может быть до семи светодиодов последовательно.


Цепь с несколькими светодиодами — параллельная

Правильный способ параллельного подключения нескольких светодиодов выглядит следующим образом.У каждого светодиода есть собственный резистор, ограничивающий ток.

В этой конфигурации у вас может быть много светодиодов; однако ограничивающим фактором является сила тока, которую может обеспечить источник питания. Полный ток — это сумма всех индивидуальных прямых токов каждого светодиода.

Светодиодный резистор

, калькулятор omline и формулы


Онлайн-калькулятор и формулы для расчета последовательного резистора светодиода

Рассчитать резистор серии светодиодов


Светодиоды обычно управляются через последовательный резистор.Последовательный резистор должен быть подобран таким образом, чтобы напряжение питания и максимально допустимый ток не превышались. Вы можете рассчитать размер резистора на этой странице.


Вычислитель резисторов серии LED


Legende

\ (\ displaystyle V_S \) Источник напряжения

\ (\ displaystyle V_D \) напряжение светодиода

\ (\ displaystyle I_D \) Максимальный ток светодиода

\ (\ Displaystyle R_V \) Последовательное сопротивление

\ (\ displaystyle P_V \) Номинальная мощность последовательного сопротивления


Формулы для последовательного резистора светодиода

Последовательное сопротивление \ (\ Displaystyle R_v = \ гидроразрыва {V_S — V_D} {I_D} \)
Номинальная мощность последовательного сопротивления \ (\ Displaystyle P_v = (V_S — V_D) · I_D \) \ (\ Displaystyle = I_D ^ 2 · R_v \)

Эта страница полезна? да Нет

Спасибо за ваш отзыв!

Прошу прощения за это

Как мы можем это улучшить?

послать

LED Resistor Calculator Plus — Бесплатная загрузка и обзоры программного обеспечения

Калькулятор сопротивления светодиодов используется для определения последовательного резистора, необходимого для подключения различных последовательных комбинаций светодиодов или «светодиодов».Калькулятор сопротивления светодиодов поможет вам выбрать резисторы для подключения любого количества светодиодов.

Каждый (светодиодный) светоизлучающий диод имеет ток, с которым они могут безопасно работать. Превышение максимального значения тока приведет к повреждению светодиода. Таким образом, ограничение тока через светодиод с помощью последовательного резистора является обычной практикой.

Калькулятор сопротивления светодиода

поможет вам определить номинал резистора, чтобы вы могли добавить его последовательно со светодиодом для ограничения тока. Просто введите указанные значения, и результат будет рассчитан автоматически.Результат включает значение резистора, рассеиваемую мощность резистора и рекомендуемую мощность резистора.

Формула: R = (Vs — Vf * Nled) / If

Где:

Vs — Напряжение питания

Vf — Падение напряжения светодиода. Падение напряжения на светодиоде зависит от цвета, который он излучает.

Если — ток светодиода. Обычный рабочий диапазон обычных светодиодов 3 мм и 5 мм составляет 10-30 мА.

Nled — Количество светодиодов в серии

Светодиод (LED) — это двухпроводный полупроводниковый источник света.Это диод с pn переходом, который при активации излучает свет. Когда к выводам подается соответствующий ток, электроны могут рекомбинировать с электронными дырками внутри устройства, высвобождая энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света (соответствующий энергии фотона) определяется шириной запрещенной зоны полупроводника. Светодиоды обычно имеют небольшие размеры (менее 1 мм2), и для формирования диаграммы направленности можно использовать интегрированные оптические компоненты.

Появившись в 1962 году как практические электронные компоненты, первые светодиоды излучали инфракрасный свет низкой интенсивности. Инфракрасные светодиоды по-прежнему часто используются в качестве передающих элементов в схемах дистанционного управления, например, в пультах дистанционного управления для широкого спектра бытовой электроники. Первые светодиоды видимого света были низкой интенсивности и ограничены красным светом. Современные светодиоды доступны в видимом, ультрафиолетовом и инфракрасном диапазонах длин волн с очень высокой яркостью.

* Этот метод не рекомендуется для сильноточных светодиодов, которым требуется более надежный стабилизатор тока переключения.

* Это универсальное приложение, которое работает как на iPhone, так и на iPad.

Спасибо за вашу поддержку. Посетите nitrio.com, чтобы найти другие приложения для ваших устройств iOS.

Калькулятор светодиодного резистора | Автолюминация

1 Клин Стоп и Интерьер Лампочки
Ссылки
Автомобильная замена Лампочки: Другой Освещение для автомобилей и мотоциклов: Светильники низкого напряжения И приспособления Освещение для грузовиков 4X4 RV и прицепов Бытовое, торговое и промышленное освещение Другие товары Ссылка:
1156 1157 1142 2357 7507 7225 Задний задний тормоз с байонетом, задний тормоз, задний сигнал поворота, Светодиодные светильники и стробоскопы Светодиодные Светильники и Стробоскопы Полуприцепы, грузовики и грузовики Светодиоды Светильники для дома, двора и Сад ВЕЛ Индикаторы поворота омывателя лобового стекла и зеркал Технические характеристики
3157 3156 3457 4157 3057 Клиновой задний тормоз-поворотник и лампы заднего хода Проволока Light Bright NEON Glow Светодиодные ленты, светодиодные гирлянды.Вел Бары Просвет и боковой маркер Фары Светодиодные ленты, светодиодные гирлянды. Вел Бары Светодиодные мигалки, протекторы, нагрузка Фиксатор сигнала поворота эквалайзера Перекрестная ссылка
7443 7440 Клиновидный задний тормоз, указатели поворота и резервные лампы ВЕЛ Нео-неоновая гибкая неоновая световая трубка Соединители для светодиодных лент, Адаптеры и монтажное оборудование Хвостовая остановка работы и указатель поворота Фары MR11, MR16 GU10 Лампы Электрические контакты, розетки, Разъемы и Предохранители Технические данные
194168 2825 W5W со стороны клина Номерной знак маркера и лампы освещения салона СКРЫТАЯ Противотуманные фары и системы обратного света Модули управления и блоки питания Контрольные лампы Светодиодные светильники для дома и RV Светодиодные контроллеры, мигающие Модули, модули торможения и диммеры Размеры лампы
37 74 Калибр и прибор Панельные и неоклиновые лампы Дневное время Комплекты ходовых огней (ДХО) и противотуманные фары Накладные расходы Освещение под шкафом _ Грузовики — Лодки и дома на колесах Накладные расходы Освещение кабины Трековые фонари Миниатюрные лампы для поездов и Запчасти Общая информация о лампах
3022 3122 561 578 6418 6411 Гирлянда с гирляндой Светодиодный индикатор винтового крепления и Акцентные светильники Светодиодные светильники для дома Лодка & RV Дневные ходовые огни (ДХО) Комплекты и противотуманные фары ВЕЛ Нео-неоновая гибкая неоновая световая трубка Универсальный программируемый пульт Контроллеры и переключатели для открывателей гаражных ворот Диаграммы приложений
Ba9s, E10, Ba7s, Малый Ba15s и байонетные лампы Bay15d Светодиодные и неоновые лампы Комплекты освещения днища и днища Светодиодный велосипед, Go Ped, Мотоцикл, Светильники для квадроциклов, лодок и домов на колесах Разъемы и втулки Электромагнитная индукционная лампа LVD Дискретный Необработанные светодиоды, резисторы и компоненты Основания и нити
ВЕЛ Индикаторы поворота омывателя лобового стекла и зеркал Светодиодный индикатор винтового крепления и Акцентные светильники Инверторы мощности — мощность Расходные материалы — Адаптеры питания Вел Расчет резисторов
Фары ДХО и противотуманные фары Накладные расходы Освещение кабины Светодиодные фонари Рабочие фонари и Лампочки Доставка
HID Systems Ангел Кольца-ореолы на глаза для фар Задние фонари и линзы Светодиодный велосипед, Go Ped, Мотоцикл, Светильники для квадроциклов, лодок и домов на колесах Заказы по почте
6 Вольт Antique — Винтажные лампы и 24 вольт ВЕЛ Мигающие модули затемнения и Wig-Wag Электрический провод и термоусадочные трубки Международная доставка
L1142 1076 1176 Лампочки для лодок и морских судов Инверторы мощности — мощность Расходные материалы — Адаптеры питания Бег на мотоциклах и жилых автофургонах Фары, указатели поворота и указатели поворота FAQ’S
Лампы Vision Dura Chrome Titanium Platinum Silver Двухцветные лампы с обратным переключением Повороты ходовые огни Воздушные рожки Политики
Ксеноновые плазменные сверхбелые лампы Виниловая защитная пленка для Тонировка фар, задних фонарей и линз Визуальный поиск лампочек
G4 T10 2-штырьковый, двухштырьковый Винил 3D Углеродное волокно Декоративная самоклеящаяся пленка Порядок поиска и отслеживание Число
Карта сайта
Canbus Безошибочные лампы BMW Mercedes Audi VW Volvo Dodge 5002S PY24W
Еженедельно Продажа предметов CarInfoTech

Основы: Подбор резисторов для светодиодов

Итак … вы просто хотите зажечь светодиод.Какой резистор использовать?

Может быть, вы знаете ответ, или, может быть, все уже считают, что вы должны знать, как добраться до ответа. В любом случае, это вопрос, который вызывает больше вопросов, прежде чем вы действительно сможете получить ответ: какой тип светодиода вы используете? Какой блок питания? Батарея? Плагин? Часть более крупной схемы? Ряд? Параллельно?

Предполагается, что играть со светодиодами — это весело, и выяснение ответов на эти вопросы на самом деле является частью удовольствия.Есть простая формула, которую вы используете для выяснения этого — закон Ома. Эта формула: В = I × R , где В, — напряжение, I — ток, а R — сопротивление. Но как узнать, какие числа использовать в этой формуле, чтобы получить правильное значение резистора?

Чтобы получить В в нашей формуле, нам нужно знать две вещи: напряжение нашего источника питания и напряжение наших светодиодов.

Начнем с конкретного примера.Предположим, что мы используем держатель батареек 2 × AA (например, этот из нашего магазина), который обеспечит нас питанием 3 В (с двумя последовательно соединенными элементами AA 1,5 В; мы складываем напряжения), и мы планирую подключить желтый светодиод (как один из этих).

Светодиоды

имеют характеристику, называемую «прямым напряжением», которая часто обозначается в технических данных как Vf. Это прямое напряжение представляет собой величину напряжения, «потерянного» в светодиоде при работе с определенным опорным током, обычно определяемым как около 20 миллиампер (мА), т.е.е., 0,020 ампер (А). Vf зависит в первую очередь от цвета светодиода, но на самом деле немного отличается от светодиода к светодиоду, иногда даже в пределах одного пакета светодиодов. Стандартные красные, оранжевые, желтые и желто-зеленые светодиоды имеют Vf около 1,8 В, в то время как чисто зеленые, синие, белые и УФ-светодиоды имеют Vf около 3,3 В. Таким образом, падение напряжения на нашем желтом светодиоде будет около 1,8 В.

В в нашей формуле находится путем вычитания прямого напряжения светодиода из напряжения источника питания.

3 В (источник питания) — 1.8 В (падение напряжения на светодиодах) = 1,2 В

В этом случае у нас осталось 1,2 В, которые мы подключим к нашей формуле V = I × R .

Следующее, что нам нужно знать, это I , ток, на котором мы хотим управлять светодиодом. Светодиоды имеют максимальный номинальный непрерывный ток (часто обозначается как If или Imax в таблицах данных). Часто это около 25 или 30 мА. На самом деле это означает, что типичное значение тока, к которому нужно стремиться со стандартным светодиодом, составляет от 20 мА до 25 мА, что немного ниже максимального тока.

Помимо: Всегда можно дать светодиоду меньше тока . Работа светодиода, близкая к номинальному максимальному току, дает вам максимальную яркость за счет рассеивания мощности (тепла) и времени автономной работы (если, конечно, у вас разряжаются аккумуляторы). Если вы хотите, чтобы ваши аккумуляторы прослужили в десять раз дольше, обычно вы можете просто выбрать ток, который составляет лишь одну десятую номинального максимального тока.

Итак, 25 мА — это «желаемый» ток — то, что мы надеемся получить, когда выбираем резистор, а также I , который мы подключим к нашей формуле V = I × R .

1,2 В = 25 мА × R

или перефразируя:

1,2 В / 25 мА = R

и когда мы решаем это, получаем:

1,2 В / 25 мА = 1,2 В / 0,025 А = 48 Ом

Где «48 Ом» — 48 Ом. (Единицы измерения таковы, что 1 В / 1 А = 1 Ом; один вольт, разделенный на один ампер, равен одному ому. Если вы имеете дело с током в мА, преобразуйте его в А, разделив на 1000.)

Наша версия формулы теперь выглядит так:

(напряжение источника питания — напряжение светодиода) / ток (в амперах) = требуемое значение резистора (в омах)

Получаем сопротивление резистора 48 Ом.И это хорошее значение пускового резистора для использования с желтым светодиодом и источником 3 В.

Давайте на мгновение посмотрим на номиналы резисторов. Резисторы обычно доступны с такими значениями, как 10 Ом, 12 Ом, 15 Ом, 18 Ом, 22 Ом, 27 Ом, 33 Ом, 39 Ом, 47 Ом, 51 Ом, 56 Ом, 68 Ом, 75 Ом и 82 Ом. (и их кратные 510 Ом, 5,1 кОм, 51 кОм и т. д.), и (если вы не укажете более высокую точность при совершении покупок) имеют значение допуска около ± 5%.

Если вы занимаетесь большим количеством проектов в области электроники, у вас, скорее всего, будет валяться куча резисторов.Если вы только начинаете, возможно, вам захочется приобрести ассортимент, чтобы было что-нибудь под рукой. Резисторы также рассчитаны на работу с различной мощностью — резисторы, рассчитанные на большую мощность (больше ватт), могут безопасно рассеивать больше тепла, выделяемого внутри резистора. Резисторы на 1/4 ватта, вероятно, являются наиболее распространенными и обычно подходят для простых светодиодных схем, подобных тем, которые мы здесь рассматриваем. (Мы обсуждали рассеяние мощности ранее — обратите внимание на это, когда вы начнете выходить за рамки этих основ.)

Итак, значение резистора, которое мы вычислили выше, было 48 Ом, что не является одним из наших обычных значений. Но это нормально, потому что мы будем использовать резистор с допуском ± 5%, так что в любом случае это значение не обязательно будет точно таким же. На всякий случай мы обычно выбираем следующее более высокое значение, которое у нас есть; 51 Ом в этом примере.

Давайте подключим:
батарейный блок на 3 В, резистор 51 Ом и желтый светодиод.

Итак, это симпатичная маленькая светодиодная схема, но как мы можем сделать это с помощью большего количества светодиодов? Можем ли мы просто добавить еще один резистор и еще один светодиод? Ну да, в точку.Каждому светодиоду потребуется 25 мА, поэтому нам нужно выяснить, какой ток могут отдавать наши батареи.

Помимо : Немного покопавшись, можно найти полезный технический справочник (pdf) по щелочным батареям от Energizer. Оказывается, чем сильнее вы их водите, тем быстрее вы их истощаете. Часть этого очевидна: если вы постоянно потребляете 1000 мА из батареи, вы ожидаете, что батарея прослужит 1/10 того времени, как если бы вы потребляли 100 мА. Но на самом деле есть второй эффект, заключающийся в том, что общая выходная энергия батареи (измеряемая в ватт-часах) уменьшается, когда вы приближаетесь к пределу того, какой ток может выдавать батарея.На практике, с щелочными батареями AA, если вы разрядите их при токе 1000 мА, они прослужат только около 1/20 того времени, как если бы вы разрядили их при 100 мА.

Для нашего одиночного светодиода 25 мА элементы AA прослужат чертовски долго. Если мы запустим четыре светодиода параллельно, потребляя 100 мА, у нас все равно должно получиться довольно приличное время автономной работы. Если ток превышает 500 мА, следует подумать о подключении к розетке. Итак, мы можем добавить несколько наших желтых светодиодов, каждый с собственным резистором 51 Ом, и успешно управлять ими с помощью держателя батареи 2xAA.

Хорошо, а как насчет батареи на 9 В? Давайте остановимся на желтых светодиодах. Если мы хотим отключить один светодиод от батареи 9 В, это означает, что мы должны потреблять колоссальные 7,2 В с нашим резистором, который должен быть 288 Ом (или ближайшее удобное значение: 330 Ом, в моей мастерской). .

9 В (питание) — 1,8 В (желтый светодиод) = 7,2 В

7,2 В / 25 мА = 288 Ом (округлить до 330 Ом)

Использование резистора для падения напряжения любого размера рассеивает эту энергию в виде тепла.Это означает, что мы просто тратим эту энергию на тепло, вместо того, чтобы получать больше света от нашей светодиодной схемы. Итак, можем ли мы использовать несколько светодиодов, соединенных вместе? Да! Давайте соединим четыре светодиода 1,8 В последовательно, в сумме получим 7,2 В. Когда мы вычтем это из напряжения питания 9 В, у нас останется 1,8 В, для чего потребуется только резистор 72 Ом (или ближайшее значение. : 75 Ом).

9 В — (1,8 В × 4) = 9 В — 7,2 В = 1,8 В

1,8 В / 25 мА = 72 Ом (затем округляем до 75 Ом)

Наша обобщенная версия формулы с несколькими последовательно включенными светодиодами:

[Напряжение источника питания — (напряжение светодиода × количество светодиодов)] / ток = номинал резистора

Мы даже можем подключить пару цепочек из четырех светодиодов плюс резистор параллельно, чтобы получить больше света, но чем больше мы добавляем, тем больше мы сокращаем срок службы батареи.

Но можем ли мы сделать пять последовательно с батареей 9 В? Ну, возможно. Значение 1,8 В, которое мы использовали, является всего лишь «типичным практическим правилом». Если вы уверены, что прямое напряжение равно 1,8 В, он будет работать. Но что, если это не совсем так? Если прямое напряжение ниже, вы можете перегрузить их до более высокого тока, что может сократить срок их службы (или полностью убить). Если прямое напряжение выше, светодиоды могут быть тусклыми или даже не гореть. В некоторых случаях вы можете последовательно подключить светодиоды без резистора, как в нашей схеме светодиодного обеденного стола, но в большинстве случаев предпочтительнее и безопаснее использовать резистор.

Давайте сделаем еще один пример, на этот раз с белым светодиодом (вы можете найти его здесь) и батарейным отсеком 3xAA (например, этот). Напряжение источника питания составляет 4,5 В, а напряжение светодиода — 3,3 В. Мы по-прежнему стремимся к току 25 мА.

4,5 В — 3,3 В = 1,2 В

1,2 В / 25 мА = 48 Ом (округлить до 51 Ом)

Итак, вот примеры, которые мы рассмотрели, и еще несколько примеров с некоторыми другими распространенными типами источников питания:

Напряжение источника питания Цвет светодиода Светодиод Vf светодиодов в серии Желаемый ток Резистор (расчетный) Резистор (округлый)
3 В Красный, желтый или желто-зеленый 1.8 1 25 мА 48 Ом 51 Ом
4,5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 36 Ом 39 Ом
4,5 В Синий, зеленый, белый или УФ 3,3 1 25 мА 48 Ом 51 Ом
5 В Синий, зеленый, белый или УФ 3,3 1 25 мА 68 Ом 68 Ом
5 В Красный, желтый или желто-зеленый 1.8 1 25 мА 128 Ом 150 Ом
5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 56 Ом 56 Ом
9 В Красный, желтый или желто-зеленый 1,8 4 25 мА 72 Ом 75 Ом
9 В Синий, зеленый, белый или УФ 3,3 2 25 мА 96 Ом 100 Ом

Все эти значения основаны на тех же предположениях о прямом напряжении и желаемом токе, которые мы использовали в первых примерах.Вы можете проработать их и проверить математику или просто использовать ее как удобную таблицу, если считаете, что наши предположения разумны. 😉

Так вот, в какой-то момент кто-то мог сказать вам: «Просто воспользуйтесь онлайн-калькулятором светодиодных резисторов». И действительно, такие вещи есть — даже у нас есть одна (ну, версия для печати из бумаги) — так зачем вообще работать над всем этим? Во-первых, гораздо лучше понять, что и почему этот калькулятор делает то, что он делает. Но также почти невозможно использовать эти калькуляторы, если вы не знаете, какие переменные вам нужно будет ввести.Надеюсь, теперь вы сможете вычислить значения, которые вам понадобятся (напряжение источника питания, напряжение светодиода и ток) для использования светодиодного калькулятора. Но что более важно (1) он вам на самом деле не нужен: вы можете сделать это самостоятельно и (2) если вы его используете, вы можете подвергнуть сомнению основные предположения, которые он может сделать от вашего имени.

Добавить комментарий

Ваш адрес email не будет опубликован.