Классы напряжения: Классы электрического напряжения

Содержание

Классификация электрических сетей.

Ультравысокое напряжение.

750 кВ и выше (1150 кВ, 1500 кВ). Линии монтируются на высоких, мощных арочных столбах, на каждой фазе используется три провода, расположенных треугольником. Количество изоляторов не менее 20, это нужно для снижения коронных разрядов и блокирования возможности возникновения электрической дуги.

Сверхвысокое напряжение.

750 кВ, 500 кВ, 330 кВ. Линии монтируются на высоких, мощных арочных столбах, на каждой фазе используется два провода. Количество изоляторов не менее 14, также с целью снижения коронных разрядов блокирования возможности возникновения электрической дуги.

Высокое напряжение (ВН).

220 кВ, 150 кВ, 110 кВ. В линиях передач исползуются столбы из материалов с повышенной прочностью на излом, между проводами инсталируется мощная изоляция, выполненная из 10-40 (2х20) изоляторов, закрепленных на траверсах. На напряжении 150 кВ используется 8 или 9 изоляторов, на напряжении 110 кВ - шесть. По всей длине ЛЭП подвешивают молниезащитные тросы.

Среднее первое напряжение (СН-1).

35 кВ. В таких линиях передач исползуются столбы из материалов с повышенной прочностью на излом, между проводами инсталируется мощная изоляция, выполненная из специальных изоляторов, закрепленных на траверсах. Молниезащитные стальные тросы подвешивают только на тех участках ЛЭП, где высока опасность грозы (например возвышенности).

Среднее второе напряжение (СН-2).

20 кВ, 10 кВ, 6 кВ, 1 кВ. Линии передачи электроэнергии для таких сетей размещают на одиночных столбах увеличенного (по сравнению с сетями до 20 кВ) размера. Также увеличивается размер изоляторов, и расстояние между кабелями.

Низкое напряжение (НН).

0,38 кВ, 0,22 кВ, 0,11 кВ и ниже. Конструктивно представляют из себя бытовую или промышленную проводку локального характера, либо линии электропередач на одиночных столбах, вкопанных в грунт. В таких линиях часто применяется неизолированный кабель для лэп, или даже кабель медный ввгнг, подвешенный на несущем тросе.

Класс напряжения Википедия

Высоковольтная линия электропередачи

Электрическая сеть — совокупность электроустановок, предназначенных для передачи и распределения электроэнергии от электростанции к потребителю.

Классификация электрических сетей[ | ]

  1. Назначение, область применения
    • Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
    • Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.). См. также: Бортовая сеть.
    • Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
    • Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
  2. Масштабные признаки, размеры сети
    • Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
    • Региональные сети: сети масштаба региона (в России — уровня субъектов Федерации). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
    • Районные сети, распределительные сети: имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольшие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
    • Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
    • Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и малыми потоками мощности (десятки и сотни киловатт).
  3. Род тока
    • Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называются «фазой». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
    • Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потр

Электрическая сеть — Википедия

Высоковольтная линия электропередачи

Электрическая сеть — совокупность электроустановок, предназначенных для передачи и распределения электроэнергии от электростанции к потребителю.

Классификация электрических сетей

  1. Назначение, область применения
    • Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
    • Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.)
    • Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
    • Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
  2. Масштабные признаки, размеры сети
    • Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
    • Региональные сети: сети масштаба региона (в России — уровня субъектов Федерации). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
    • Районные сети, распределительные сети: имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольшие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
    • Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
    • Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и малыми потоками мощности (десятки и сотни киловатт).
  3. Род тока
    • Переменный трёхфазный ток
      : большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называются «фазой». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
    • Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т.н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
    • Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого и ультравысокого напряжения, имеющих пока ограниченное распространение.

Принципы работы

Переменный ток

Большинство крупных источников электроэнергии — электростанции — построено с использованием генераторов переменного тока. Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи силовых трансформаторов, что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование

переменного трёхфазного тока. В России и европейских странах промышленная частота тока равна 50 герц, в США, Японии и ряде других стран — 60 герц.

Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется.

Классы напряжения

При передаче большой электрической мощности при низком напряжении возникают большие омические потери из-за больших значений протекающего тока. Формула δS = I²R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле полной электрической мощности

S = I×U, для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство высоковольтных сетей сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.

В связи с этим сети разбивают на участки с разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения[1]:

  • от 750 кВ и выше (1150 кВ, 1500 кВ) — Ультравысокий,
  • 750 кВ, 500 кВ, 400 кВ (европейский стандарт) — Сверхвысокий,
  • 330 кВ (Европа), 220 кВ, 150 кВ (юг Украины), 110 кВ (Европа) — ВН, Высокое напряжение,
  • 35 кВ, 33 кВ (Европа), 20 кВ (Европа, сельские сети) — СН-1, Среднее первое напряжение,
  • 10 кВ (Европа, городские сети), 6 кВ, 3 кВ — СН-2, Среднее второе напряжение,
  • 24 кВ, 22 кВ, 18 кВ, 15,75 кВ (наиболее распространённое), 13 кВ, (3 кВ) — напряжение на выводах генераторов
  • 0,69 кВ (европейский промышленный), 0,4 кВ (400/230В — основной стандарт), 0,23 кВ (220/127 В), 110 В (старый европейский, США бытовой) и ниже — НН, низкое напряжение.
  • для безопасной работы с электроинструментом, аппаратами и машинами существуют термины FELV, PELV и SELV[убрать шаблон]. Регламентируются стандартами DIN/VDE 0100-410, BS 7671, BS EN 60335, IEC 61140 Protection against electric shock и IEC 60364-4-41 Low-voltage electrical installations; правилами «AS/NZS 3000 Wiring Rules» и т. д.

Уровень напряжения (иногда «диапазон напряжения» или «тарифный уровень напряжения», или «тарифный уровень (диапазон, класс) напряжения», или «класс напряжения») – это понятие, также используемое:

  • в тарифном регулировании – при установлении тарифов на передачу электроэнергии
  • в применении тарифов на передачу электроэнергии в расчётах за услуги по передаче электроэнергии

По «уровням напряжения» тарифы дифференцируются, то есть различаются по величине. Чем выше «уровень напряжения», тем ниже величина тарифа. Поэтому потребители стремятся подтвердить наиболее высокий «уровень напряжения».

Преобразование напряжения

Преобразование напряжения

Как правило, генераторы источника и потребители работают с низким номинальным напряжением. Потери энергии в линиях обратно пропорциональны квадрату напряжения, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя его понижают при помощи силовых трансформаторов.

Структура сети

Электрическая сеть может иметь очень сложную структуру, обусловленную территориальным расположением потребителей, источников, требованиями надёжности и другими соображениями. В сети выделяют линии электропередачи, которые соединяют подстанции. Линии могут быть одинарными и двойными (двухцепными), иметь ответвления (отпайки). К подстанциям, как правило, подходит несколько линий. Внутри подстанции происходит преобразование напряжения и распределение потоков электроэнергии между подходящими линиями. Для соединения линий и оборудования внутри подстанций используются электрические коммутаторы различных типов.

Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема, представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.

Структура сети электроснабжения может динамически изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных участков сети, для временного отключения участков при ремонте. Структура сети также может быть изменена для оптимизации электрического режима сети.

Основные компоненты сети

Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей. Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока (провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).

Примечания

Ссылки

Классификация электрических сетей

Электрическая сеть – это совокупность различного напряжения линий и подстанций, задачей которых является передача и распределение электроэнергии.

Электрические сети делят по назначению, месту прокладки, величине напряжения, принципу построения, роду тока и некоторым другим признакам.

Классификация электрических сетей по роду тока

По роду тока электрические сети традиционно разделяют на два вида – сети переменного и постоянного тока.

Наиболее распространёнными являются сети переменного тока. Постоянный ток наиболее часто применяют для питания электрифицированного транспорта, под него и сооружают линии электроснабжения постоянным током. В некоторых отдельных случаях на промышленных предприятиях возникает необходимость в построении систем электропитания постоянным током, например, для электролиза растворов или электрометаллургии, а также при наличии электроприводов постоянного тока.

В последнее время все больший интерес проектировщиков вызывают высоковольтные линии электропередачи постоянного тока (HVDC), активно применяемы для передачи электроэнергии от электростанций альтернативной энергетики. Плюс таких систем в их большей экономичности, возможности параллельной работы с различными линиями постоянного тока (например, линии электропередач переменного тока с частотами 50 Гц и 60 Гц невозможно запустить на параллельную работу), а также в отсутствии необходимости синхронизации частот ЛЭП.

Классификация электрических сетей по величине напряжения

По напряжению электрические сети делят классически на два вида – до 1000 В и выше 1000 В. Для избегания путаниц и удобства эксплуатации серийных электротехнических изделий в установках переменного тока приняты следующие стандарты напряжений:

  • До 1000 В – 127 В, 220 В, 380 В, 660 В;
  • Выше 1000 В – 3 кВ, 6 кВ, 10 кВ, 20 кВ, 35 кВ, 110 кВ, 150 кВ, 220 кВ, 330 кВ, 500 кВ, 750 кВ;

По условиям нормальной эксплуатации электроприемники, в зависимости от назначения, допускают строго ограниченные отклонения напряжения от его номинального значения. Для поддержания напряжений на заданном уровне нужно компенсировать его потерю в трансформаторах. Именно для этой цели номинальные напряжения генераторов, а также вторичных обмоток трансформаторов имеют номиналы на 5% больше чем электроприемники.

Для сетей местного освещения могут применять малые напряжения, а именно 12 В, 24 В, 36 В.

Классификация электрических сетей по назначению

По назначению сети электрические делят на распределительные и питающие.

Питающая линия – это линия, осуществляющая питание подстанции (П) или распределительного пункта (РП) от центра питания (ЦП) без распределения электрической энергии по ее длине.

Распределительная линия – линия, осуществляющая питание ряда трансформаторных подстанций от РП или ЦП.

В сетях напряжением до 1000 В питающими линиями называют линии идущие от трансформаторных подстанций к распределительным щитам или пунктам, а распределительными называют линии, которые идут непосредственно от распределительных щитов или пунктов к электроприемникам.

Ниже показана схема распределения высокого напряжения с наличием питающей и распределительной сети (а)) и только распределительной (б)):

Схема построения электрической сети высокого напряжения

Сети высокого напряжения сооружают в случаях отдаленности на довольно большое расстояние источника напряжения или большого количества трансформаторных подстанций, которые значительно отдалены друг от друга, например, при электроснабжении крупных промышленных предприятий или городов.

Классификация электрических сетей по принципу построения

По принципу построения подразделяют электрические сети на замкнутые и разомкнутые.

Разомкнутая сеть – это совокупность разомкнутых линий получающих питание от одного общего источника питания ИП с одной стороны (рисунок ниже):

Разомкнутая система электроснабжения

Ее главным недостатком можно назвать прекращения питания всех электроприемников участка, на котором произошло отключение при обрыве линии.

В замкнутой системе все наоборот  — питание поступает от двух источников ИП и при обрыве магистрали в любом месте питание электроприемников не прекратится. Ниже показана простейшая схема замкнутой сети:

Простейшая схема замкнутой сети питания электроприемников

Например, в случае обрыва магистрали в точке К электроприемники 1,2,3,4 будут получать питание по верхней магистрали, а 5,6,7,8 по нижней. В зависимости от требований надежности электроснабжения замкнутые системы могут иметь один и более источников питания. Ниже показан пример схемы с двухсторонним питанием:

Замкнутая сеть с двухсторонним питанием

Классификация электрических сетей по месту прокладки

Различают наружные и внутренние сети.

Наружные сети могут выполнятся голыми проводами, подвешенными на опорах (воздушные линии), а также специальными кабелями проложенными в блоках (подземные линии), траншеях, коллекторах.

Внутренние сети прокладывают внутри зданий с помощью изолированных проводов (провод с изоляцией), кабелей, шин (токопроводов).

Класс напряжения Википедия

Высоковольтная линия электропередачи

Электрическая сеть — совокупность электроустановок, предназначенных для передачи и распределения электроэнергии от электростанции к потребителю.

Классификация электрических сетей

  1. Назначение, область применения
    • Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
    • Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.). См. также: Бортовая сеть.
    • Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
    • Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
  2. Масштабные признаки, размеры сети
    • Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
    • Региональные сети: сети масштаба региона (в России — уровня субъектов Федерации). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
    • Районные сети, распределительные сети: имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольшие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
    • Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
    • Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и малыми потоками мощности (десятки и сотни киловатт).
  3. Род тока
    • Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называются «фазой». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
    • Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т.н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
    • Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого и ультравысокого напряжения, имеющих пока ограниченное распространение.

Принципы работы

Переменный ток

Большинство крупных источников электроэнергии — электростанции — построено с использованием генераторов переменного тока. Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи силовых трансформаторов, что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование переменного трёхфазного тока. В России и европейских странах промышленная частота тока равна 50 герц, в США, Японии и ряде других стран — 60 герц.

Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется.

Классы напряжения

При передаче большой электрической мощности при низком напряжении возникают большие омические потери из-за больших значений протекающего тока. Формула δS = I²R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле полной электрической мощности S = I×U, для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство высоковольтных сетей сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.

В связи с этим сети разбивают на участки с разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения[1]:

  • от 750 кВ и выше (1150 кВ, 1500 кВ) — Ультравысокий,
  • 750 кВ, 500 кВ, 400 кВ (европейский стандарт) — Сверхвысокий,
  • 330 кВ (Европа), 220 кВ, 150 кВ (Мурманская область России, юг Украины), 110 кВ (Европа) — ВН, Высокое напряжение,
  • 35 кВ, 33 кВ (Европа), 20 кВ (Европа, сельские сети) — СН-1, Среднее первое напряжение,
  • 10 кВ (Европа, городские сети), 6 кВ, 3 кВ — СН-2, Среднее второе напряжение,
  • 24 кВ, 22 кВ, 18 кВ, 15,75 кВ (наиболее распространённое), 13 кВ, (3 кВ) — напряжение на выводах генераторов
  • 0,69 кВ (европейский промышленный), 0,4 кВ (400/230В — основной стандарт), 0,23 кВ (220/127 В), 110 В (старый европейский, США бытовой) и ниже — НН, низкое напряжение.
  • для безопасной работы с электроинструментом, аппаратами и машинами существуют термины FELV, PELV и SELV. Регламентируются стандартами DIN/VDE 0100-410, BS 7671, BS EN 60335, IEC 61140 Protection against electric shock и IEC 60364-4-41 Low-voltage electrical installations; правилами «AS/NZS 3000 Wiring Rules» и т. д.

Уровень напряжения (иногда «диапазон напряжения» или «тарифный уровень напряжения», или «тарифный уровень (диапазон, класс) напряжения», или «класс напряжения») – это понятие, также используемое:

  • в тарифном регулировании – при установлении тарифов на передачу электроэнергии
  • в применении тарифов на передачу электроэнергии в расчётах за услуги по передаче электроэнергии

По «уровням напряжения» тарифы дифференцируются, то есть различаются по величине. Чем выше «уровень напряжения», тем ниже величина тарифа. Поэтому потребители стремятся подтвердить наиболее высокий «уровень напряжения».

Преобразование напряжения

Преобразование напряжения

Как правило, генераторы источника и потребители работают с низким номинальным напряжением. Потери энергии в линиях обратно пропорциональны квадрату напряжения, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя его понижают при помощи силовых трансформаторов.

Структура сети

Электрическая сеть может иметь очень сложную структуру, обусловленную территориальным расположением потребителей, источников, требованиями надёжности и другими соображениями. В сети выделяют линии электропередачи, которые соединяют подстанции. Линии могут быть одинарными и двойными (двухцепными), иметь ответвления (отпайки). К подстанциям, как правило, подходит несколько линий. Внутри подстанции происходит преобразование напряжения и распределение потоков электроэнергии между подходящими линиями. Для соединения линий и оборудования внутри подстанций используются электрические коммутаторы различных типов.

Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема, представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.

Структура сети электроснабжения может динамически изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных участков сети, для временного отключения участков при ремонте. Структура сети также может быть изменена для оптимизации электрического режима сети.

Основные компоненты сети

Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей. Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока (провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).

Примечания

Ссылки

Класс напряжения электрооборудования - это... Что такое Класс напряжения электрооборудования?

Класс напряжения электрооборудования

3.1 Класс напряжения электрооборудования - по ГОСТ 1516.1.

3.1. Класс напряжения электрооборудования - номинальное междуфазное напряжение электрической сети, для работы в которой предназначено электрооборудование.

Примечания

1. Класс напряжения обмотки трансформатора (реактора) - по Термины и определения">ГОСТ 16110.

2. Класс напряжения трансформатора - по ГОСТ 16110.

3. Классом напряжения заземляющего дугогасящего реактора считается класс напряжения обмотки силового трансформатора или генератора, в нейтраль которой включен реактор.

1. Класс напряжения электрооборудования

Номинальное междуфазное напряжение электрической сети, для работы в которой предназначено электрооборудование.

Примечания: 1. Класс напряжения обмотки трансформатора (реактора) - по ГОСТ 16110.

2. Класс напряжения трансформатора - по ГОСТ 16110.

3. Классом напряжения заземляющего дугогасящего реактора считается класс напряжения обмотки силового трансформатора или генератора, в нейтраль которой включен реактор

1.3.1 Класс напряжения электрооборудования - номинальное междуфазное напряжение электрической сети, для работы в которой предназначено электрооборудование.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Класс молодняка крупного рогатого скота
  • класс оборудования

Смотреть что такое "Класс напряжения электрооборудования" в других словарях:

  • класс напряжения электрооборудования — Номинальное междуфазное напряжение электрической сети, для работы в которой предназначено электрооборудование. Примечания: 1. Класс напряжения обмотки трансформатора (реактора) по ГОСТ 16110. 2. Класс напряжения трансформатора по ГОСТ 16110. 3.… …   Справочник технического переводчика

  • Класс напряжения электрооборудования — номинальное междуфазное напряжение электрической сети, для работы в которой предназначено электрооборудование... Источник: ГОСТ 1516.3 96. Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности… …   Официальная терминология

  • Класс напряжения электрооборудования — – номинальное напряжение электрической системы, для работы в которой предназначено данное электрооборудование. ПУЭ, п. 1.8.12 …   Коммерческая электроэнергетика. Словарь-справочник

  • класс — 3.7 класс : Совокупность подобных предметов, построенная в соответствии с определенными правилами. Источник: ГОСТ Р 51079 2006: Технические средства реабилитации людей с ограничениями жизнедеятельности. Классификация …   Словарь-справочник терминов нормативно-технической документации

  • Класс защиты от поражения электрическим током — Клемма раздачи магистрального провода. Для большего удобства, клемма не имеет изоляционной оболочки, однако из за класса защиты 0 работы требуется выполнять только со снятым напряжением. Класс защиты от …   Википедия

  • ГОСТ 1516.3-96: Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции — Терминология ГОСТ 1516.3 96: Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции оригинал документа: 3.6. Внешняя изоляция по ГОСТ 1516.2. Определения термина из разных документов: Вне …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 1516.1-76: Электрооборудование переменного тока на напряжения от 3 до 500 кВ. Требования к электрической прочности изоляции — Терминология ГОСТ 1516.1 76: Электрооборудование переменного тока на напряжения от 3 до 500 кВ. Требования к электрической прочности изоляции оригинал документа: 6. Внешняя изоляция По ГОСТ 1516.2 Определения термина из разных документов: Внешня …   Словарь-справочник терминов нормативно-технической документации

  • СТО 56947007-29.240.02.001-2008: Методические указания по защите распределительных электрических сетей напряжением 0,4-10 кВ от грозовых перенапряжений — Терминология СТО 56947007 29.240.02.001 2008: Методические указания по защите распределительных электрических сетей напряжением 0,4 10 кВ от грозовых перенапряжений: 1.3.6 Грозовые перенапряжения перенапряжения, возникающие в результате… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 1516.2-97: Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции — Терминология ГОСТ 1516.2 97: Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции оригинал документа: 3.6 50 % е разрядное напряжение испытательное напряжение,… …   Словарь-справочник терминов нормативно-технической документации

  • Электрокомплекс — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Минусинский Электрокомплекс  первое в СССР предприятие по серийному вы …   Википедия

Класс напряжения электрооборудования - это... Что такое Класс напряжения электрооборудования?

Класс напряжения электрооборудования

"...Класс напряжения электрооборудования - номинальное междуфазное напряжение электрической сети, для работы в которой предназначено электрооборудование..."

Источник:

" ГОСТ 1516.3-96. Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции"

(введен в действие Постановлением Госстандарта РФ от 07.04.1998 N 110)

Официальная терминология. Академик.ру. 2012.

  • Класс конструктивной пожарной опасности зданий, сооружений
  • Класс объекта выставочной недвижимости

Смотреть что такое "Класс напряжения электрооборудования" в других словарях:

  • класс напряжения электрооборудования — Номинальное междуфазное напряжение электрической сети, для работы в которой предназначено электрооборудование. Примечания: 1. Класс напряжения обмотки трансформатора (реактора) по ГОСТ 16110. 2. Класс напряжения трансформатора по ГОСТ 16110. 3.… …   Справочник технического переводчика

  • Класс напряжения электрооборудования — 3.1 Класс напряжения электрооборудования по ГОСТ 1516.1. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Класс напряжения электрооборудования — – номинальное напряжение электрической системы, для работы в которой предназначено данное электрооборудование. ПУЭ, п. 1.8.12 …   Коммерческая электроэнергетика. Словарь-справочник

  • класс — 3.7 класс : Совокупность подобных предметов, построенная в соответствии с определенными правилами. Источник: ГОСТ Р 51079 2006: Технические средства реабилитации людей с ограничениями жизнедеятельности. Классификация …   Словарь-справочник терминов нормативно-технической документации

  • Класс защиты от поражения электрическим током — Клемма раздачи магистрального провода. Для большего удобства, клемма не имеет изоляционной оболочки, однако из за класса защиты 0 работы требуется выполнять только со снятым напряжением. Класс защиты от …   Википедия

  • ГОСТ 1516.3-96: Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции — Терминология ГОСТ 1516.3 96: Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции оригинал документа: 3.6. Внешняя изоляция по ГОСТ 1516.2. Определения термина из разных документов: Вне …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 1516.1-76: Электрооборудование переменного тока на напряжения от 3 до 500 кВ. Требования к электрической прочности изоляции — Терминология ГОСТ 1516.1 76: Электрооборудование переменного тока на напряжения от 3 до 500 кВ. Требования к электрической прочности изоляции оригинал документа: 6. Внешняя изоляция По ГОСТ 1516.2 Определения термина из разных документов: Внешня …   Словарь-справочник терминов нормативно-технической документации

  • СТО 56947007-29.240.02.001-2008: Методические указания по защите распределительных электрических сетей напряжением 0,4-10 кВ от грозовых перенапряжений — Терминология СТО 56947007 29.240.02.001 2008: Методические указания по защите распределительных электрических сетей напряжением 0,4 10 кВ от грозовых перенапряжений: 1.3.6 Грозовые перенапряжения перенапряжения, возникающие в результате… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 1516.2-97: Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции — Терминология ГОСТ 1516.2 97: Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции оригинал документа: 3.6 50 % е разрядное напряжение испытательное напряжение,… …   Словарь-справочник терминов нормативно-технической документации

  • Электрокомплекс — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Минусинский Электрокомплекс  первое в СССР предприятие по серийному вы …   Википедия

класс напряжения - определение - английский

Примеры предложений с «классом напряжения», память переводов

патент-wipo. Настоящее изобретение относится к кабелю для использования в предопределенном классе напряжения, причем указанный кабель содержит: проводник; изолирующий слой, окружающий упомянутый проводник, причем упомянутый изолирующий слой имеет толщину, выбранную для обеспечения заданного электрического напряжения, когда кабель работает при номинальном напряжении, входящем в упомянутый заранее определенный класс напряжения, и защитный элемент вокруг упомянутого проводника, имеющий выбранную толщину и механические свойства для обеспечения заданной ударопрочности, указанный защитный элемент содержит, по меньшей мере, один расширенный полимерный слой. патентная схема смещения wipoA для транзистора в усилителе класса C, схема смещения, содержащая средство генерирования напряжения смещения усилителя класса AB; резистор, соединенный со средством генерирования напряжения смещения усилителя класса AB; и средство ввода тока, подключенное между средством генерирования напряжения смещения усилителя класса AB и резистором; причем при использовании инжекция предварительно определенного тока из средства ввода тока в резистор вызывает вычитание напряжения из напряжения, генерируемого средством генерирования напряжения смещения усилителя класса AB, для достижения требуемого напряжения смещения усилителя класса C , - патенты, имеющие топологию, описанную выше, класс напряжения каждого силового полупроводника может поддерживаться на более низком уровне при неизменном количестве силовых полупроводников, а повторяющееся пиковое напряжение в выключенном состоянии каждого силового полупроводника уменьшается, тем самым снижая стоимость и повышение надежности. WikiMatrixВ результате этого были отменены 32 комплекта с пятью автомобилями, перераспределены 160 автомобилей; дополнительные 10 комплектов с четырьмя автомобилями были добавлены к заказу SWT, тогда как оставшиеся 120 автомобилей были заказаны как 30 комплектов с четырьмя автомобилями класса 350 с двумя напряжениями для Silverlink и Central Trains. EurLex-2 Корпус троллейбуса может использоваться в качестве проводника для защитного соединения цепей с двойной изоляцией от напряжения сети класса напряжения B. WikiMatrixElectricians может быть лицензирован только для определенных классов напряжения в некоторых юрисдикциях. UN-2Проводники внутри пассажирского салона класса напряжения B должны быть закрыты и выполнены из металла. WikiMatrix В 2007 году компания Southern заказала 12 четырехкомпонентных электростатических устройств класса 377/5 с двойным напряжением, чтобы заменить оставшиеся двенадцать классов 319 для передачи в First Capital Connect. UN-2 Корпус троллейбуса может использоваться для возврата тока заземления только для цепей низкого напряжения. Может использоваться в качестве проводника для защитного соединения цепей с двойной изоляцией от линейного напряжения класса напряжения B. EurLex-2Влияние токи динамического заряда, вызванные емкостными связями между оборудованием класса В напряжения и электрическим шасси, должны быть уменьшены за счет защитного сопротивления изоляционных материалов, используемых во входных зонах. Трехфазный двигатель WikiMatrixA является более компактным и менее дорогим, чем однофазный двигатель того же класса напряжения и номинальной мощности, а также однофазные двигатели переменного тока мощностью более 10 л. С. (7.5 кВт) встречаются редко. Оборудование EurLex-2Voltage класса B должно быть помечено символом молнии. UN-2Ссылка пункт 1.2. - Классификация классов напряжения обновлена ​​со ссылкой на EN50153 / IEC61991: Железнодорожные применения - Подвижной состав - Защитные меры, касающиеся опасности поражения электрическим током. UN-2 «Класс напряжения B» означает: UN-2 Классификация классов напряжения обновляется со ссылкой на EN50153 / IEC61991: Железнодорожные применения - Подвижной состав - Средства защиты от поражения электрическим током. Общий обход Сегодня семейство CIPOS включает в себя различные элементы, в том числе модули для трехфазных инверторов IGBT для классов напряжения 5 В или 3,3 В с обнаружением неисправностей и без них, для трехфазных инверторов IGBT с закрытым общим эмиттером и для двухфазных инверторов IGBT для коммутируемые магнитные приводы. WikiMatrixAutotransformers часто используются в приложениях питания для соединения систем, работающих при различных классах напряжения, например, от 132 кВ до 66 кВ для передачи. WikiMatrixДвойной класс 185 с двойным напряжением предназначался для международной эксплуатации и также получил название Европалок. UN-2Это также может использоваться в качестве обратного соединения для цепей напряжения класса А. " UN-2Проводники внутри пассажирского салона класса напряжения B должны быть замкнуты и выполнены из металла. UN-2" Низковольтные цепи «означает цепи, находящиеся под напряжением при номинальном напряжении 12 В, 24 В или 42 В». Класс напряжения B означает: UN-2. Этот символ также должен быть виден на корпусах и перегородках, которые после снятия обнажают токопроводящие части напряжения схемы класса B.

Показаны страницы 1. Найдено 333 предложения с фразой Voltage Class.Найдено за 10 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они приходят из многих источников и не проверяются. Имейте в виду.

класс напряжения - определение - английский

Примеры предложений с «классом напряжения», память переводов

патент-wipo. Настоящее изобретение относится к кабелю для использования в предопределенном классе напряжения, причем указанный кабель содержит: проводник; изолирующий слой, окружающий упомянутый проводник, причем упомянутый изолирующий слой имеет толщину, выбранную для обеспечения заданного электрического напряжения, когда кабель работает при номинальном напряжении, входящем в упомянутый заранее определенный класс напряжения, и защитный элемент вокруг упомянутого проводника, имеющий выбранную толщину и механические свойства для обеспечения заданной ударопрочности, указанный защитный элемент содержит, по меньшей мере, один расширенный полимерный слой. патентная схема смещения wipoA для транзистора в усилителе класса C, схема смещения, содержащая средство генерирования напряжения смещения усилителя класса AB; резистор, соединенный со средством генерирования напряжения смещения усилителя класса AB; и средство ввода тока, подключенное между средством генерирования напряжения смещения усилителя класса AB и резистором; причем при использовании инжекция предварительно определенного тока из средства ввода тока в резистор вызывает вычитание напряжения из напряжения, генерируемого средством генерирования напряжения смещения усилителя класса AB, для достижения требуемого напряжения смещения усилителя класса C , - патенты, имеющие топологию, описанную выше, класс напряжения каждого силового полупроводника может поддерживаться на более низком уровне при неизменном количестве силовых полупроводников, а повторяющееся пиковое напряжение в выключенном состоянии каждого силового полупроводника уменьшается, тем самым снижая стоимость и повышение надежности. WikiMatrixВ результате этого были отменены 32 комплекта с пятью автомобилями, перераспределены 160 автомобилей; дополнительные 10 комплектов с четырьмя автомобилями были добавлены к заказу SWT, тогда как оставшиеся 120 автомобилей были заказаны как 30 комплектов с четырьмя автомобилями класса 350 с двумя напряжениями для Silverlink и Central Trains. EurLex-2 Корпус троллейбуса может использоваться в качестве проводника для защитного соединения цепей с двойной изоляцией от напряжения сети класса напряжения B. WikiMatrixElectricians может быть лицензирован только для определенных классов напряжения в некоторых юрисдикциях. UN-2Проводники внутри пассажирского салона класса напряжения B должны быть закрыты и выполнены из металла. WikiMatrix В 2007 году компания Southern заказала 12 четырехкомпонентных электростатических устройств класса 377/5 с двойным напряжением, чтобы заменить оставшиеся двенадцать классов 319 для передачи в First Capital Connect. UN-2 Корпус троллейбуса может использоваться для возврата тока заземления только для цепей низкого напряжения. Может использоваться в качестве проводника для защитного соединения цепей с двойной изоляцией от линейного напряжения класса напряжения B. EurLex-2Влияние токи динамического заряда, вызванные емкостными связями между оборудованием класса В напряжения и электрическим шасси, должны быть уменьшены за счет защитного сопротивления изоляционных материалов, используемых во входных зонах. Трехфазный двигатель WikiMatrixA является более компактным и менее дорогим, чем однофазный двигатель того же класса напряжения и номинальной мощности, а также однофазные двигатели переменного тока мощностью более 10 л. С. (7.5 кВт) встречаются редко. Оборудование EurLex-2Voltage класса B должно быть помечено символом молнии. UN-2Ссылка пункт 1.2. - Классификация классов напряжения обновлена ​​со ссылкой на EN50153 / IEC61991: Железнодорожные применения - Подвижной состав - Защитные меры, касающиеся опасности поражения электрическим током. UN-2 «Класс напряжения B» означает: UN-2 Классификация классов напряжения обновляется со ссылкой на EN50153 / IEC61991: Железнодорожные применения - Подвижной состав - Средства защиты от поражения электрическим током. Общий обход Сегодня семейство CIPOS включает в себя различные элементы, в том числе модули для трехфазных инверторов IGBT для классов напряжения 5 В или 3,3 В с обнаружением неисправностей и без них, для трехфазных инверторов IGBT с закрытым общим эмиттером и для двухфазных инверторов IGBT для коммутируемые магнитные приводы. WikiMatrixAutotransformers часто используются в приложениях питания для соединения систем, работающих при различных классах напряжения, например, от 132 кВ до 66 кВ для передачи. WikiMatrixДвойной класс 185 с двойным напряжением предназначался для международной эксплуатации и также получил название Европалок. UN-2Это также может использоваться в качестве обратного соединения для цепей напряжения класса А. " UN-2Проводники внутри пассажирского салона класса напряжения B должны быть замкнуты и выполнены из металла. UN-2" Низковольтные цепи «означает цепи, находящиеся под напряжением при номинальном напряжении 12 В, 24 В или 42 В». Класс напряжения B означает: UN-2. Этот символ также должен быть виден на корпусах и перегородках, которые после снятия обнажают токопроводящие части напряжения схемы класса B.

Показаны страницы 1. Найдено 333 предложения с фразой Voltage Class.Найдено за 9 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они приходят из многих источников и не проверяются. Имейте в виду.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *