Когда проводятся внеочередные замеры сопротивления устройств молниезащиты: Измерение сопротивления заземляющих устройств зданий и сооружений

Содержание

Измерение сопротивления заземляющих устройств зданий и сооружений

Устанавливает совокупность операций и правил в соответствии с Правилами устройства электроустановок (ПУЭ) глава 1.8 п.1.8.36, Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП) приложение 3 раздел 26, разработана согласно ГОСТ Р 8.563-96.

Испытание заземлителей зданий и сооружений производится с целью оценки их состояния, пригодности к эксплуатации после монтажа, реконструкции, капитального (текущего) ремонта и в процессе эксплуатации для обеспечения безопасности людей, защиты оборудования от повреждений и обеспечения эксплуатационных режимов работы электрооборудования.

Эксплуатационные испытания проводятся:

  • — взрывоопасные помещения (зоны) — не реже 1 раза/ год.
  • — молниезащита 1, 2 категории — не реже 1 раза/ год перед грозовым сезоном.
  • — молниезащита 3 категории — не реже 1 раза/ 3 года перед грозовым сезоном.
  • — опоры воздушных линий электропередач до 1000В — после ремонта, не реже 1 раза/ 6 лет.
  • — опоры воздушных линий электропередач выше 1000В — после ремонта, не реже 1 раза/ 12 лет.
  • — помещения, особо опасные в отношении поражения людей электрическим током — не реже 1 раза/ год.
  • — открытые электроустановки — не реже 1 раза/ год.
  • — электроустановки, помещения (зоны), не входящих в перечисленное предыдущих пунктах — не реже 1 раза/ 3 года.
  • — после реконструкции, ремонта заземлителей.

Нормативная документация, регламентирующая нормы и правила проведения измерений сопротивления заземляющих устройств:

  • — ПУЭ глава 1.7; п. 2.3.71-2.3.75, 2.4.25, 2.4.26, 2.4.29, 2.4.43, 2.4.61, 2.4.63, 2.5.74-2.5.80, 2.5.122, 2.5.132, 2.5.167, 4.2.135-4.2.169, 5.4.56-5.4.58, 5.5.18, 6.1.37-6.1.49, 7.1.67-7.1.88, 7.2.58-7.2.60,7.3.132-7.3.143,7.6.25-7.6.27, 7.7.39-7.7.42; глава 1.8 п.1.8.39.
  • — ПТЭЭП глава 2.7, Приложение 3 п.26.1, 26.4, Приложение 3.1 таблица 36.
  • — ГОСТ Р 50571.16-99 (МЭК 60364-6-61-86) «Электроустановки зданий. Испытания. Приемо-сдаточные испытания».
  • — ГОСТ Р 50571.3-94 «Требования по обеспечению безопасности. Защита от поражения электрическим током».
  • — РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений».

Общие требования к заземляющим устройствам и защитным заземляющим проводникам согласно Правил устройства электроустановок:

  • — для заземления электроустановок возможно использование искусственных и естественных заземлителей. Если при использовании естественных заземлителей сопротивление заземляющих устройств или напряжение прикосновения имеет допустимое значение и обеспечиваются нормированные значения напряжения на заземляющем устройстве и допустимые плотности токов в естественных заземлителях, выполнение искусственных заземлителей в электроустановках до 1 кВ не обязательно.
  • — в электроустановках разных назначений и напряжений, территориально сближенных, следует, применять одно общее заземляющее устройство.
  • — устройства защитного заземления электроустановок зданий (сооружений), молниезащиты 2, 3 категорий этих зданий и сооружений, как правило, должны быть общими. Во время грозы приближаться к молниеотводам ближе 4 метров запрещается.
  • — для объединения заземлителей разных электроустановок в одно общее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.
  • — при применении системы TN рекомендуется выполнять повторное заземление РЕ- и PEN-проводников на вводе здания, других доступных местах. Для повторного заземления сначала следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется. Внутри больших и многоэтажных зданий аналогичную функцию выполняет уравнивание потенциалов посредством присоединения нулевого защитного проводника к главной заземляющей шине.
  • — проводящие части, входящие в здание извне, должны соединяться ближе к точке ввода в здание. Для соединения с основной системой уравнивания потенциалов все указанные части должны присоединяются к главной заземляющей шине при помощи проводников системы уравнивания потенциалов.
  • — не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих (взрывоопасных) газов, смесей, трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов.
  • — искусственные заземлители могут быть из черной, оцинкованной стали или медными.

Искусственные заземлители не должны иметь окраски. Прокладка в земле алюминиевых неизолированных проводников не допускается. Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле, указаны в таблице 1.

Таблица 1.

Для выполнения измерений в удобном месте должна быть предусмотрена возможность отсоединения заземляющего провода. В электроустановках напряжением до 1 кВ таким местом, как правило, является главная заземляющая шина. Отсоединение заземляющего провода должно быть возможно только при помощи инструмента.

Для правильной оценки качества заземлителей, измерение необходимо производить в периоды наименьшей проводимости грунта — зимой и летом в период наибольшего высыхания.

Сопротивление заземлителя не должно превышать нормируемого значения в любое время года. Для получения максимально возможного значения сопротивления заземлителя на протяжении года (при наибольшем высыхании земли летом и промерзании зимой) измеренные значения необходимо умножить на сезонный коэффициент увеличения сопротивления грунта (таблица 2). Для заземлителей, находящихся в промерзшем грунте или ниже глубины промерзания, введение повышающего коэффициента не требуется.

Таблица 2.

Максимально допустимые значения сопротивлений заземляющих устройств для различного оборудования указаны в таблице 3.

Таблица 3.

Условия выполнения измерений:

  1. Перед проведением испытаний Заказчик обязан предоставить Исполнителю испытаний заземления техническую документацию, касающуюся проведения измерений: акты скрытых работ, акты электромонтажных работ, принципиальные схемы электроустановок, результаты предыдущих измерений.
  2. Измерительные приборы устанавливаются на ровную горизонтальную поверхность вдали от источников электромагнитных излучений, магнитных полей, мощных силовых трансформаторов, сильных течений воздуха, вызывающих значительные колебания температуры внешней среды, прямых солнечных лучей, воздействия влаги, брызг воды, пыли.
  3. Во время грозы приближаться к молниеотводам ближе 4 метров запрещается. На опорах отдельно стоящих молниеотводов вывешиваются таблички с предупредительными надписями.
  4. Измерение производится в светлое время суток, при естественном или искусственном освещении.
  5. Измерение сопротивления заземляющих устройств зданий
     запрещается выполнять в дождь на открытых электроустановках, при повышенной влажности в помещениях электроустановки.

Обработку результатов измерений выполняют способами, указанными в паспортах, инструкциях по эксплуатации средств измерений.

Результаты испытаний оформляют записью в «Журнале учета проведения испытаний электрооборудования», вычисляют погрешность измерений, сравнивают с требованиями нормативной документации.

По результатам испытаний составляется протокол установленной формы, регистрируемый в «Журнале регистрации протоколов испытаний» по Рязанской области, с присвоением индивидуального порядкового номера.

Нормы сопротивления заземления молниезащиты

Нормы сопротивления заземления молниезащиты

Тема заземления молниезащиты не такая простая, как может показаться на первый взгляд. В нормативных документах встречаются лишь требования по сопротивлению заземлителя, но при этом нет требований по конфигурации заземлителей. Рассмотрим различные ТНПА по данной теме.

Не будем углубляться в проблемы заземления, пусть этим занимаются соответствующие специалисты.

Изначально я хотел посвятить тему только заземлению отдельно стоящего молниеприемника, но потом решил вспомнить все требования, предъявляемые к заземлителям молниезащиты. Ну… или почти все

ТНПА РБ:

ТКП 336-2011 (Молниезащита зданий и сооружений и инженерных коммуникаций).

7.2.3 При рассмотрении рассеивания высокочастотного тока молнии в земле и с целью минимизирования любых опасных перенапряжений, конфигурация и размеры системы заземления являются важными критериями. Как правило, рекомендуется низкое сопротивление заземления (не более 10 Ом, измеренное на низкой частоте).

ТКП 339-2011 (Вместо ПУЭ).

6.2.8.5 Защиту от прямых ударов молнии ОРУ следует, по возможности, выполнять отдельно стоящими молниеотводами, установленными по периметру подстанции. Молниеотводы необходимо предусматривать на максимальном удалении от зданий ОПУ, ГЩУ, РЩ. Отдельно стоящие молниеотводы должны иметь обособленные заземлители с сопротивлением не более 80 Ом при импульсном токе 60 кА.

ТКП 181-2009 (02230) (Правила технической эксплуатации электроустановок потребителей).

5.9.1 Электроустановки Потребителей должны иметь защиту от грозовых и внутренних перенапряжений, выполненную в соответствии с требованиями правил устройства электроустановок. Величина сопротивления заземлений молниеотводов, если вблизи них во время грозы могут находиться люди, не должна превышать 10 Ом.

Таблица Б.29.1 Наибольшие допустимые сопротивления заземляющих устройств:

Отдельно стоящий молниеотвод — 80 Ом.

ТНПА РФ:

ПУЭ 7 (Правила устройства электроустановок).

4.2.137. Защиту от прямых ударов молнии ОРУ, на конструкциях которых установка молниеотводов не допускается или нецелесообразна по конструктивным соображениям, следует выполнять отдельно стоящими молниеотводами, имеющими обособленные заземлители с сопротивлением не более 80 Ом при импульсном токе 60 кА.

РД 34.21.122-87 (Инструкция по устройству молниезащиты зданий и сооружений).

8 … До недавнего времени для заземлителей молниезащиты нормировалось импульсное сопротивление растеканию токов молнии: его максимально допустимое значение было принято равным 10 Ом для зданий и сооружений I и II категорий и 20 Ом для зданий и сооружений III категории. При этом допускалось увеличение импульсного сопротивления до 40 Ом в грунтах с удельным сопротивлением более 500 Ом×м при одновременном удалении молниеотводов от объектов I категории на расстояние, гарантирующее от пробоя по воздуху и в земле. Для наружных установок максимально допустимое импульсное сопротивление заземлителей было принято равным 50 Ом.

РД 34.45-51.300-97 (Объем и нормы испытаний электрооборудования).

Таблица 28.1 — Наибольшие допустимые сопротивления заземляющих устройств:

Отдельно стоящий молниеотвод — 80 Ом.

Вывод: в очередной раз можно убедиться, что нормативные документы в части проектирования электроустановок в РБ и РФ мало чем отличаются.

Сопротивление заземления молниезщиты

Принцип действия громоотвода — перехват молнии и перенаправление разряда в землю для нейтрализации. Но эффективность всей системы зависит от величины сопротивления заземления молниезащиты, то есть от способности грунта поглощать электрический ток. Параметр измеряется в Ом, должен стремиться к нулю, однако, структура почв не позволяет достичь идеального значения.

Нормы для сопротивления заземления молниезащиты

В Инструкции по устройству молниезащиты РД 34.21.122-87 регламентированы максимальные значения противодействия растеканию тока для различных категорий зданий и сооружений, с учетом удельного сопротивления грунта:

  • I и II категория — 10 Ом;
  • III категория — 20 Ом;
  • Если электропроводность превышает 500 Ом*м — 40 Ом;
  • Наружные установки — 50 Ом.

Сопротивление падает в 2-5 раз при увеличении силы тока молнии.

Качество заземления молниезащиты

Ключевой параметр — сопротивление заземления — зависит от конфигурации заземлителя и удельного сопротивления почвы. Для вычисления значения существует специальная формула. Но для готовых заземлителей задача значительно упрощается: производитель предоставляет заранее подсчитанный коэффициент, который достаточно умножить на удельное сопротивление грунта, чтобы получить искомое значение.

Удельное сопротивление для различных грунтов

Значение прежде всего зависит от влажности и состава почвы, плотности прилегания пластов, наличия кислот, солей и щелочей. Вычисляется путем проведения геологических изысканий. Это комплекс сложных мероприятий, поэтому при расчетах принято использовать справочные величины:

  • Песчаный грунт, увлажненный поземными водами — 10-60 Ом*м;
  • Песок сухой — 1500-4200 Ом*м;
  • Бетон — 40-1000 Ом*м;
  • Чернозем — 60 Ом*м;
  • Глина — 20-60 Ом*м;
  • Илистая почва — 30 Ом*м;
  • Садовая земля — 40 Ом*м;
  • Супесь — 150 Ом*м;
  • Суглинок полутвердый — 100 Ом*м;
  • Солончак — 20 Ом*м.

На практике сопротивление молниезащиты всегда будет ниже расчетного значения: при погружении электрода в землю значительно снижается удельное сопротивление из-за уплотнения и увлажнения почвы грунтовыми водами.

Требования к заземлителю

Согласно РД 34.21.122-87 для заземления необходимо не менее трех электродов вертикального типа. Расстояние между ними — как минимум в два раза больше, чем глубина погружения. Кроме того, СО 153-34.21.122-2003 требует, чтобы расстояние от стен здания до электродов было не менее 1 метра.

Уменьшение сопротивления заземления

Поскольку удельное сопротивление почвы — величина относительно постоянная, для увеличения электропроводности необходимо изменять конфигурацию заземлителя: увеличивать площадь соприкосновения электродов с грунтом. Можно удлинить проводник или создать контур заземления: несколько отдельно стоящих электродов соединяются в единую сеть. В расчет берется сумма площадей.

Современные заземлители — эффективны и просты в установке. Электроды заглубляются до 30 метров. Благодаря этому удается значительно уменьшить общую площадь, компактно разместить заземлитель молниезащиты в условиях ограниченного пространства. Для монтажа не нужны специальные инструменты, штыри стыкуются между собой муфтой с резьбовым соединением. Медное покрытие электродов обеспечивает защиту от коррозии, увеличивая срок службы до 100 лет!

Измерение сопротивления заземления и периодичность проверок

Производятся с помощью специальных приборов (измерительных комплексов) по заданной схеме измерений в нескольким точках смонтированного контура молниезащиты. Данные показаний заносятся в специальную форму — протокол проверки сопротивлений заземлителей и заземляющих устройств.

Замеры производят всегда по окончании монтажа системы молниезащиты и заземления, а также после выполнения ремонтных работ как на устройствах молниезащиты, так и на самих защищаемых объектах и вблизи них. Полученные данные заносят в акты (протоколы проверок), паспорта заземляющих устройств и журналы учета.

Примеры протоколов и паспортов можно посмотреть по этой ссылке.

Кроме внеочередных мероприятий существует регламент проведения измерения значений сопротивления, которые осуществляют для разных категорий зданий и сооружений с следующей периодичностью: для категории I II — 1 раз в год перед сезоном гроз, для III категории — не реже 1 раза в 3 года, для взрывоопасных объектов и производств — не реже 1 раза в год.

Важно использовать при этом приборы, поверенные должным образом, а также правильно выбрать точки измерений. Вот почему необходимо обращаться при этом в специализированные организации, которые имеют в своем распоряжении квалифицированный персонал и необходимые приборы, а также могут гарантировать вам качество работ на определенное время.

Компания «МЗК-Электро» предлагает квалифицированный монтаж заземления. Опытные специалисты проведут необходимые расчеты, подберут оптимальное по стоимости и эффективности решение для конкретного объекта. В работе используем сертифицированное оборудование от ведущих производителей. Доверьте проектирование громоотвода профессионалам — вы гарантированно получите надежную молниезащиту!

Как нормировать сопротивление заземления в молниезащите

Затрудняюсь дать обоснованный ответ на этот вопрос и не знаю специалиста, способного на такое. В начале статьи уже отмечалось, что изменение сопротивления заземления молниеотвода в сколько-нибудь разумных пределах даже на 2 порядка величины практически не сказывается на эффективности притяжения молний. Значит, ориентироваться надо на какой-то иной критерий, связанный, например. с электробезопасностью или с допустимым уровнем перенапряжений в электрических цепях объекта. Попытка формировать нормативные требования на такой основе не лишена смысла, но неизбежно будет связана с массой нерешенных проблем. Главная из них – предельно допустимый уровень напряжения прикосновения и шага для людей и животных в импульсном режиме. Существующее нормирование заканчивается здесь временем воздействия напряжения в 0,01 с, что примерно на 2 порядка больше, чем в грозовых условиях. Специалист по молниезащите плохо знаком с физиологией и не может предложить обоснованной методики пересчета опасного для человека уровня воздействующего напряжения в другой столь различный временной диапазон. Попытка сделать это по условию равного энерговклада (тогда вместо допустимых 600 В получилось бы 6 кВ), к сожалению, научно не обоснована.

Еще проблематичнее исходить из допустимого уровня грозовых перенапряжений. Во-первых, они далеко не всегда находятся в прямой зависимости от сопротивления заземления, а во-вторых, электрические цепи различного номинального напряжения по-разному реагируют на перенапряжения. К тому же эти цепи могут иметь защитные средства и нет однозначного решения вопроса о том, куда вкладывать материальные ресурсы, — в снижение сопротивления заземления или в средства ограничения возникающих перенапряжений.

Все выше перечисленное оставляет проектировщика один на один с проблемой. В отечественном нормативе по молниезащите СО-153-34.21.122-2003 о сопротивлении заземления молниеотводов нет ни единого слова. В инструкции по молниезащите РД 34.21.122-87 дело ограничивается только типовыми конструкциями заземляющих устройств молниеотводов, а их сопротивлениями заземления оставлены без внимания. Полезно разобраться хотя бы в этом, чтобы осознать методические подходы составителей норматива и оценить целесообразность рекомендованного.

Для отдельно стоящего молниеотвода в Инструкции РД 34.21.122-87 указываются 3 конструкции заземлителей, поддающихся конкретному расчету:

  • стойка опоры длиной не менее 5 м и диаметром не менее 0,25 м,
  • два вертикальных стержня длиной не менее 3 м, соединенных полосой длиной 5 м на глубине не менее 0,5 м (диаметр 10 – 20 мм),
  • три вертикальных стержня тех же размеров и с тем же шагом.

Компьютерный расчет в грунтах с различным удельным сопротивлением дает для этих конструкций соответственно следующие расчетные соотношения

Когда же молниеотводы монтируются на крыше здания, фундамент которого непригоден для использования в качестве заземлителя, контур заземления 16х16 м по внешнему периметру в РД 34.21.122-87 считается достаточным для грунта удельным сопротивлением ρ ≤ 500 Ом*м, а контур 30х30 м — вплоть до 1000 Ом*м. Сопротивление заземления этих контуров равны соответственно RЗ = 0,035ρ и RЗ = 0,02ρ Ом.

Представленное трудно назвать нормированием, поскольку в разных регионах России удельное сопротивление грунта вполне может меняться в пределах 2-х порядков величины (от 50 до 5000 Ом м, иногда еще выше), а сопротивление заземления отдельно стоящего молниеотвода с типовым заземлителем — от 5 Ом приблизительно до 700 Ом. И то, и другое норма? Хотелось бы знать, с каких позиций! Для здания с молниеотводами на крыше ситуация не многим лучше. Ну а об удельном сопротивлении свыше 1000 Ом м в РД 34.21.122-87 вообще не упоминается, хотя такие грунты в России не редкость.

Не знаю, что можно придумать для отдельно стоящих молниеотводов. Обычное же исполнение молниезащиты с молниеотводами или сеткой на крыше выручает предписание ПУЭ об объединении всех заземляющих устройств в единый технологический контур. Его сопротивление заземления наверняка окажется не выше 10 Ом. Для надежной работы молниеотводов такого безусловно достаточно. Иное дело защита от напряжений шага и прикосновения. Здесь ситуация представляется тяжелой даже при расположении объекта на участке с грунтом весьма высокой проводимости. Для демонстрации проблемы рассмотрим жилое здание типовых размеров 60х12 м, фундамент которого использован как заземляющее устройство (рис. 32). Опоры фундамента заглублены в грунт с удельным сопротивлением ρ = 150 Ом м на 5 м. Компьютерный расчет дает для такого фундамента сопротивление заземления RЗ = 1,9 Ом, что вполне удовлетворяет требованиям не только к сопротивлению заземления молниеотводов, но и к технологическому заземлению сети 380/220 В.

Картина распределения напряжений шага представлена на рис. 32 в отношении продольной и поперечной стен здания. Ближайшая к стенам здания точка определяет напряжение прикосновения. При токе молнии 100 кА (расчетный ток для III уровня молниезащиты по СО-153-34.21.122-2003) в разобранном примере оно близко к 25 кВ у поперечной стены здания и к 20 кВ у продольной. Обе цифры несопоставимо превышают значение 600 В, нормированное по соображениям электробезопасности. Значение 6 кВ, полученное для грозовых воздействий формальным пересчетом в этой статье, они также превосходят в 3 – 4 раза. Даже на расстоянии 10 м от стен напряжения шага все еще нельзя считать безопасными для человека и животных. К сожалению, тому находятся вполне убедительные и печальные подтверждения на практике.

В случае, когда ставится задача обеспечить действительно безопасное растекание тока молнии в местах скопления людей, проект заземляющего устройства должен разрабатываться специально. В этом отношении заслуживают внимания два различных по исполнению подхода. Первый из них сводится к нанесению на землю слоя влагостойкого диэлектрика, способного выдержать воздействующее напряжение шага и прикосновения. В РД 34.21.122-87 в качестве такового упоминается, например, асфальт. Второй путь связывается с поиском оптимальной конструкции заземлителя. В первую очередь речь может идти о глубинном заземлителе специальной конструкции. Стержневой электрод, предназначенный для этой цели, должен иметь изоляционное покрытие, способное выдержать практически полное напряжение на заземлителе. Изолированная часть стержня в растекании тока естественно не участвует. Она требуется для того, чтобы опустить голую часть металлического стержня на нужную глубину, начиная с которой ток будет попадать в землю. По сути изоляция определяет глубину, на которой размещен верхний активно работающий конец заземляющего электрода.

Конструкция оказывается достаточно эффективной. Расчетные данные на рис. 33 показывают, что, заглубив стержневой электрод на 10 м, можно снизить напряжения шага примерно в 25 раз. В итоге при удельном сопротивлении грунта 100 Ом*м максимальное напряжение шага не превысит 3 кВ даже при токе молнии 100 кА. Естественно, что использование глубинного заземлителя можно совместить с применением изоляционного покрытия на поверхности грунта в местах особо большого скопления людей.

Э. М. Базелян, д.т.н., профессор
Энергетический институт имени Г.М. Кржижановского, г. Москва

Испытание систем молниезащиты

Проверка состояния молниеприёмника, связи молниеприёмника с токоотводом и токоотвода с контуром заземления молниезащиты.

Все работы выполняются в сжатые сроки. Желательно проводить проверку молниезащиты с составлением «акта проверки молниезащиты» ежегодно, перед началом грозового периода.

Сервис от компании ТМ-Электро:

  • Гибкая ценовая политика
  • Гарантия качества выполнения работ
  • Помощь в решении нестандартных ситуаций
  • Постоянная обратная связь с клиентом
  • Оперативный выезд инженеров
  • Собственная курьерская служба

Проверка молниезащиты состоит из:

  • испытаний контура заземления
  • измерения переходного сопротивления молниеотводов

1.Общие положения

Испытания систем молниезащиты зданий и сооружений проводятся с целью проверки их соответствия проектным решениям и требованиям ПУЭ (гл. 4.2), ПТЭЭП (гл. 2.8), инструкции по устройству молниезащиты зданий и сооружений (РД 34.21.122-87).

2. Технические мероприятия

Перечень необходимых технических мероприятий определяет допускающий совместно с производителем работ в соответствии с требованиями СНиП 12-03-99.

При осмотре и проверке состояния молниеприемников и токоотводов на крышах зданий и сооружений необходимо использовать пояса монтерские предохранительные. При недостаточной длине стропа пояса необходимо пользоваться страховочным канатом, предварительно закрепленным за конструкцию здания. При этом одно из лиц, проводящих испытания медленно опускает или натягивает страховочный канат. При проверке сварных соединений наружных токопроводов, конструкции молниеприемников инструмент (молоток) необходимо привязывать во избежание падения. При приближении грозы все работы должны быть прекращены, бригада удалена с рабочего места.

3. Нормируемые величины

Защита от прямых ударов молний зданий и сооружений, относимых по устройству молниезащиты к I категории должна выполняться отдельно стоящими стержневыми или тросовыми молниеотводам

Защита от прямых ударов молний зданий и сооружений, относимых по устройству молниезащиты ко II и IIIкатегориям, с неметаллической кровлей должна быть выполннена отдельно стоящими или установленными на защищаемом объекте стержневыми или тросовыми молниеотводами.

При уклоне кровли не более 1:8 в качестве молниеотвода можно использовать молниеприемную сетку, выполненную из стальной проволоки диаметром не менее 6 мм с шагом ячеек для II категории защиты не более 6х6 м и 12х12 м для II Iпроложены к заземлителям не реже, чем через 25 м по периметру здания, располагать их следует не ближе 3 м от входов в здания и в местах недоступных прикосновению людей и животных. категории защиты. Токоотводы от металлической кровли или молниеприемной сетки должны быть

Во всех вышеизложенных случаях дополнительно в качестве естественных заземлителей систем молниезащиты следует использовать железобетонные фундаменты зданий.

Размеры молниеприемников, токоотводов и элементов заземлителей приведены в таблице

Сопротивление заземления.

Сопротивление заземления (сопротивление растеканию электрического тока) — величина «противодействия» растеканию электрического тока, поступающего в землю через заземлитель.

Величина измерения сопротивления заземления — Ом и оно должно быть минимально низким по значению. Идеальным случаем считается, если величина будет нулевая, это означает при пропускании «вредных» электротоков какое-либо сопротивление отсутствует, что гарантирует ПОЛНОЕ поглощение их землей. Так как достигнуть идеала практически невозможно, то вся электроника и электрооборудование создаются на основе некоторых нормированных величин сопротивления заземления равно 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

С подключением к электросетям имеющим 220 Вольт / 380 Вольт, заземление необходимо иметь для частных домов с рекомендованным сопротивлением не больше, чем 30 Ом.

Согласно ПУЭ 1.7.101, не должно превышать 4 Ом при подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора). Без проведения каких-либо дополнительных мероприятий выполняется данное условие, при правильном заземлении источника тока (генератора или трансформатора).

Выполняться должно стандартное требование для заземления дома при выполнении подключения к дому газопровода, но необходимо выполнять локальное заземление с сопротивлением не более 10 Ом, из-за использования опасного типа оборудования (для всех повторных заземлений ПУЭ 1.7.103).

Сопротивление заземления быть должно не больше чем 10 Ом (РД 34.21.122-87, п. 8) для заземления, которое используется при подключении молниеприемников.

Исходя из ПУЭ 1.7.101, требуется не более чем 2, 4 и 8 Ом сопротивление заземления для источника тока (генератора или трансформатора), соответственно при линейных напряжениях источника трехфазного тока: 660, 380 и 220 В или источника однофазного тока: 380, 220 и 127 В.

В устройствах защиты воздушных линий связи (например, радиочастотный кабель или локальная сеть на основе медного кабеля) сопротивление заземления к которому подключаются газовые разрядники должно быть не более 2 Ом, это необходимо для уверенного их срабатывания. Также встречаются экземпляры и с требованием значения в 4 Ом.

Заземление при выполнении подключения телекоммуникационного оборудования, иметь сопротивление должно не больше 2 или 4 Ом.

Сопротивление растеканию токов для подстанции не должно превышать 0,5 Ом (ПУЭ 1.7.90).

Но справедливы приведенные выше нормы сопротивления заземления только для нормальных грунтов, имеющих удельное электрическое сопротивление не превышающее 100 Ом*м (глина или суглинки).

Однако, если грунт обладает более высоким удельным электрическим сопротивлением, то очень часто (но не всегда) повышается минимальное значение сопротивление заземления на величину равную 0,01 от удельного сопротивления грунта.

Например, с удельным сопротивлением в 500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S при песчаных грунтах, повышается в 5 раз, вместо 30 Ом, оно становится 150 Ом.

Для произведения расчета сопротивления заземления были разработаны специальные методики и формулы, которые описывают зависимости от приведенных факторов.

Основным качественным показателем заземлителя является сопротивление заземления и зависит оно напрямую от следующих факторов:

1. Удельного сопротивления грунта

2. Конфигурации заземлителя, в частности от площади электрического контакта электродов заземлителя с грунтом

Удельное сопротивление грунта.

Определяет собой удельное сопротивление грунта уровень «электропроводности» земли как проводника равный тому, насколько хорошо в такой среде будет растекаться электрический ток, который поступает от заземлителя. Сопротивление заземления тем меньшее значение будет иметь, чем у этой величины будет меньший размер.

Удельное электрическое сопротивление грунта (Ом*м) — измеряемая величина, которая зависит от состава грунта, плотности и размеров прилегания его частиц друг к другу, а также температуры, влажности грунта и концентрации растворимых в нем химических веществ (щелочных и кислотных остатков, солей).

Так как точное измерение этого параметра возможно только в ходе проведения специальных геологических изыскательных работ, то применяется обычно таблица ориентировочных величин — «удельное сопротивление грунта».

Конфигурация заземлителя.

Зависит напрямую сопротивление заземления от площади электрического контакта электродов заземлителя с грунтом, которая необходима быть как можно большей, потому что чем площадь поверхности заземлителя больше, тем сопротивление заземления меньше.

В роли заземлителя, чаще всего, из-за простоты выполнения монтажа используется вертикальный электрод, который имеет вид стержня, уголка или трубы.

Чтобы максимально увеличить площадь контакта заземлителя с грунтом, необходимо провести следующие мероприятия:

  • Увеличить длину (глубину) электрода.
  • Использовать несколько коротких электродов соединенных вместе и размещенных на небольшом расстоянии друг от друга (контур заземления).

Площади единичных электродов в таком случае просто складываются вместе.

Обслуживание молниезащиты по докризисным ценам в Москве и области

Иногда вы слышите, что в здание попала молния, и есть жертвы. Вы точно знаете, что вас не коснется? Ваше здание, как и соседние дома, защищено громоотводом. Или нет? Откуда тогда берутся аварии, техногенные катастрофы, природные катаклизмы с десятками пострадавших? Верьте в удачу, но есть известная русская пословица: «На Бога надейся, но сам не плошай».

Мы уже всесторонне обсудили, зачем здания и офисы должны быть оснащены системой молниезащиты, виды заземления, конструктивные особенности. Сегодня пришла очередь рассмотрения будничных вопросов, например, как, зачем и когда проводится проверка состояния устройств молниезащиты.

Бывает поражение молнией двух типов. Первичное поражение – максимально опасное — характеризуется прямым попаданием электрического разряда в здание, при котором не исключены даже человеческие жертвы. Есть также вторичное поражение, когда электрический разряд не попадает в дом, а разряжается рядом. В электрических сетях происходит скачок напряжения, способный вывести из строя все подключенные электрические приборы. Первый и второй вид поражения несет человеку одни неприятности, но простейшая система молниезащиты способна полностью исключить опасность для человека и частной собственности.

Замеры контура заземления и периодичность проверок

Известны активная и пассивная форма молниезащиты, — исследование эффективности защитного заземления показало, что оба вида предотвращают моральные и материальные потери, если выполнены грамотно. Но даже, если соблюдены все требования и порядок, то в соответствие с ГОСТ Р МЭК 62305-1-2010 важно делать замеры контура заземления – периодичность зависит от категории молниезащиты объекта.

Согласно инструкции РД 34.21.122-87 здания и сооружения делятся на три категории молниезащиты. Первая категория – здания, в которых присутствуют взрывоопасные зоны. Вторая категория также предусматривает наличие взрывоопасных материалов или легковоспламеняемых смесей. Третья категория – самая безопасная, — здание расположено в климатической зоне, где суммарное количество грозового времени составляет от 20 часов в году.

В зависимости от категории уточняется периодичность проверки молниезащиты. Зданий первых двух категорий осматриваются и проверяются раз в год до начала сезона гроз. Третья категория зданий как самая безопасная требует проводить проверку реже – раз в 3 года.

Цель проверки:

  • Исправность и работоспособность узлов системы молниезащиты. Специалисты замеряют параметры электрических связей в токоведущих узлах системы заземления, — в болтовых креплениях, местах сварки. Осматривают металлические части на предмет целостности изоляции и наличия коррозии, выполняют профилактические мероприятия, при необходимости, рекомендуют меры для устранения нарушений.
  • Соответствие конструкции молниезащиты категории здания, сооружения или отдельной установки.
  • Наличие паспорта системы молниезащиты.
  • Соответствие элементов молниезащиты данным паспорта.

В процессе проверки в обязательном порядке проводятся замеры сопротивления заземлителей от всех установленных молниеотводов. Если параметр – сопротивление заземлителя, — превышает показания, записанные при приемке системы, в 5 раз, то требуется полная ревизия, на основании которой разрабатывается порядок проведения предупредительных ремонтов. Для южных районов страны ремонтные работы рекомендуется проводить в период до марта месяца, включительно. Для центральных районов грозовой период начинается с апреля, поэтому обслуживание молниезащиты необходимо провести до апреля. Мелкие ремонтные работы проводятся без привязки к грозовым сезонам.

Работоспособность молниезащиты проверяют в условиях максимального сопротивления грунта, — выбирают период времени без дождей, чтобы грунт был сухим или промерзшим. В другом случае в расчетах добавляются поправочные коэффициенты. Все замеры фиксируются документально – в протоколе проверки системы молниезащиты.

Визуальный осмотр контура заземления проводится каждые полгода. И каждые 12 лет проводится глубокий осмотр и замеры с вскрытием грунта. Этот требование ПУЭ.

Когда проводятся внеочередные замеры сопротивления молниезащиты?

Порядок проверки заземления вне плановых ремонтов предусматривает осмотр элементов системы:

  • в случае поражения здания разрядом молнии;
  • в случае реконструкции здания с внесением изменений в систему молниезащиты;
  • после окончания монтажа;
  • через время после монтажа до начала грозового сезона

В процессе осмотра специалисты исследуют токопроводящие пути на наличие ржавчины на металлических элементах молниезащиты, замеряют сопротивление контура заземления, контролируют исправность приборов защиты сети от скачков напряжения.

Кому доверить проверку молниезащиты здания?

Остерегайтесь обращаться в организации, которые обещают проверку молниезащиты зданий и сооружений, ссылаются на ПУЭ, но не имеют квалификации, оборудования и не знают о соблюдении техники безопасности. Вы не только заплатите деньги мошенникам, но и оставите ваш офис без защиты в случае чрезвычайной ситуации.

Получить предложение на обслуживание молниезащиты здания

Технические специалисты компании Алеф-ЭМ оперативно и профессионально выполнят проверку устройств молниезащиты (узнать, когда проводятся проверки, вы сможете по телефонам, указанным на сайте). В нашем распоряжении есть все необходимые устройства и оборудование – измерители сопротивления заземления. Пользуемся высокоточными индикаторами заземления типа М416 и измерителями параметров электрической безопасности электрических установок MPI511. Все используемые при проверке и ремонтных работах приборы имеют сертификаты, а по окончании работ мы в обязательном порядке оформляем протокол проверки целостности цепи заземления, что является основание для любых контролирующих организаций. Мы несем ответственность за сдачу Заказчику системы, соответствующей всем требованиям по технике безопасности.

Вашей жизни и вашему имуществу теперь не страшны природные катаклизмы.

Конструкция заземления и молниезащиты

  • Что мы делаем
    • Бизнес
      • морской
      • Энергия
      • Сертификация
      • Транспорт и Инфраструктура
      • Промышленность
    • Области фокусировки
      • Исследования и разработки
      • RINACube
      • Защита
      • Окружающая обстановка
      • Человеческий капитал
      • Промышленность 4.0
      • Возобновляемые источники энергии
  • О нас
    • С одного взгляда
    • Цель и способ
    • Соблюдение
    • История
    • Управление
    • Сообщения о нарушениях
    • CSR
  • СМИ
    • Новости
    • Мост Сан-Джорджо в Генуе: пресс-центр
    • События
    • пресс-релизы
    • Публикации
    • Тематические исследования
  • Карьера
  • Контакты
  • Выберите страну
  • Поиск

Поиск

ПОИСК

  • Глобальный
  • Бразилия
  • Китай
  • Германия
  • Италия
  • Румыния