Количество электроэнергии: кВт, кВт*ч и кВт/ч / Хабр

Содержание

кВт, кВт*ч и кВт/ч / Хабр


Увидел (опять/снова/в очередной раз) в одной из недавних статей выражение «5 МВт энергии» и решил, что пора кратко повторить чем отличается кВт от кВт*ч.

Энергия

С точки зрения банальной энергетики энергия — это материя, которая производится электростанцией, хранится в аккумуляторе и тратится лампочками.
Мощность

Мощность — скорость перемещения или преобразования энергии. Это количество энергии, перемещаемое или преобразуемое в единицу времени.

кВт
Единица мощности.

кВт*ч
Единица энергии — не системная, но основная в быту. Как видно из записи, получается умножением единицы мощности (кВт) на единицу времени (ч).

Пример 1.
У вас есть 2 обогревателя, мощностью 1 кВт каждый. Вы греетесь об них 1 час. Электричество по 4 рубля за кВт*ч.

2 * 1 кВт * 1 ч * 4 руб/[кВт*ч] = 2 [кВт*ч] * 4 руб/[кВт*ч] = 8 руб

Пример 2.
У вас есть 1 обогреватель мощностью 1 кВт.

Вы греетесь об него 2 часа. Электричество по 4 рубля за кВт*ч.

1 * 1 кВт * 2 ч * 4 руб/[кВт*ч] = 2 [кВт*ч] * 4 руб/[кВт*ч] = 8 руб

Обратите внимание на арифметику единиц измерения. Именно в ней кроется физический смысл вычислений.

кВт * ч = [кВт*ч]
[кВт*ч] / [кВт*ч] = 1
[кВт*ч] * руб / [кВт*ч] = руб * 1 = руб

[кВт*ч] + [кВт*ч] = [кВт*ч]

кВт/ч
кВт в час — единица скорости строительства электростанций. Основная характеристика электростанции — её установленная мощность (кВт). Суммарное количество электростанций построенное за некоторое время делённое на это время (ч) — скорость строительства (кВт/ч). На практике используется кратная ей — МВт/год.

Если Ваш текст не посвящён макроэкономическим показателям, то кВт/ч (как и кВт в час) в нём встречаться не должен.

Капитализация

Ещё раз посмотрим на единицу энергии: кВт*ч.

к — десятичная приставка «кило» (маленькая «к»). Десятичные приставки чувствительны к регистру и нажатие на SHIFT в неподходящий момент может привести к ошибке в миллиард раз и больше. К счастью, на данный момент не существует десятичной приставки «К» (если не считать двоичную K=1024).
Вт — сокращение от фамилии Ватт. Пишется с большой буквы, как и все имена.
ч — обычная единица. Пишется с маленькой буквы.

Тема, конечно, выглядит по-детски на фоне «Мифов современной популярной физики», но нужно иногда разбираться и с основами.

Сколько электроэнергии потребляют бытовые приборы? | ВиК

Наверняка, в какой-то период своей жизни кому-то из вас приходилось слышать от своих домашних, что возросшие платы за электроэнергию – целиком и полностью ваша вина. То вы много смотрите телевизор, то подолгу сидите за компьютером, то много гладите или часто стираете. Опять же, вопрос размера платы за электроэнергию может вдруг взволновать и вас самих. Давайте попробуем хотя бы примерно разобраться, сколько же электроэнергии могут потреблять бытовые электроприборы.

1. Компьютер.

По большому счету, если считать грубо и приблизительно, всё зависит от мощности блока питания и конкретной работы, которую компьютер в данный момент выполняет. При заявленной мощности блока от 350 до 550 Ватт, он вряд ли будет потреблять её всю даже в режиме полной загруженности. Сюда же можно добавить монитор – от 60 до 100 Ватт. Таким образом, среднестатистический блок питания 450 Ватт и монитор 100 Ватт потребляют 550 Ватт или 0,55 кВт электроэнергии в час. Опять же, эти цифра сильно завышена. Для приблизительного расчета можно взять практически максимальное значение – 0,5 кВт/ч – не ошибёмся. При пользовании компьютером 4 часа в день получаем 60 кВт/ч в месяц. Соответственно, при пользовании 8 часов в сутки – 120 кВт/ч, и так далее.

2. Холодильник.

Энергопотребление холодильников рассчитывается за 365 дней для сети 220В/50Гц. Рассчитанное на 100 л полезного объема в день, оно позволяет сравнивать различные по размеру холодильники. Опять же, количество потребляемой мощности зависит от объема холодильника и от количества хранящихся в нем продуктов. Также свой отпечаток накладывают и внешние условия, меняющиеся в зависимости от времени года. В техническом паспорте на холодильник указывается энергопотребление в год. В большинстве случаев эта цифра колеблется в пределах от 230 до 450 кВт/ч. Путём нехитрых расчетов, поделив эту цифру на 12 месяцев, получаем от 20 до 40 кВт/ч. Опять же, указанное число применимо лишь для идеальных условий. В реальности же вряд ли удастся достичь этого значения.

3.Телевизор.

Телевизоры бывают разные. Современный телевизор с электронно-лучевой трубкой потребляет от 60 до 100 Вт/ч. В среднем, для расчета, будем брать 100 Вт/ч. При просмотре телевизора 5 часов в день – 0,5 кВт/ч. В месяц – 15 кВт/ч. ЖК-телевизоры с достаточно большой диагональю потребляют около 200-250 Вт в час. Не последнюю роль в этом деле играет выставленная яркость. Соответственно, и число потраченных киловатт-часов в месяц можно смело умножать на 1,5. Получается от 20 до 35 кВт/ч. Небольшие ЖК-телевизоры потребляют примерно столько же, сколько и телевизоры с ЭЛТ, или чуть-чуть меньше: от 50 до 80 Вт/ч – 8-12 кВт/ч в месяц.

Плазменные телевизоры с большой диагональю потребляют от 300 до 500 Ватт в час. Если у вас несколько разных телевизоров – суммируйте значения.

4. Стиральная машина.

Мощность, потребляемая стиральной машиной – величина не постоянная, и зависит режима стирки, массы белья и типа материала. В среднем, заявленная мощность большинства стиральных машин – от 2 до 2,5 кВт/ч. Однако, редкие машинки потребляют такое количество энергии. Для расчетов можно взять от 1 до 1,5 кВт/ч. При стирке 3 раза в неделю по 2 часа, получаем от 24 до 36 кВт/ч в месяц.

5. Чайник и утюг.

Настоящие монстры потребления в квартире — чайник и утюг. Работая минимальное количество времени, они потребляют почти столько же электроэнергии, как некоторые работающие весь месяц приборы. При мощности чайника от 1,5 до 2,5 кВт/ч, пользуясь им 4 раза в день по 5 минут, получаем от 20 до 25 кВт/ч в месяц. С утюгом почти такая же история. Мощность у него примерно такая же, как и у чайника, и если гладить 3 раза в неделю по 1 часу, то получится 25 – 30 кВт/ч в месяц.

Это лишь наиболее известные потребители электроэнергии в вашей квартире. А ведь есть ещё и микроволновые печи, пылесосы, посудомоечные машины, зарядные устройства мобильных телефонов и ноутбуков. Не говоря уже о лампах накаливания, которые, в зависимости от их количества, мощности и времени горения, могут брать на себя от 50 до 100 кВт/ч электроэнергии, потребляемой в месяц.

В результате, путём простого сложения, получаем приблизительный расход от 200 до 300 кВт/ч в месяц. Опять же, без учета электроплиты. А сколько электроэнергии расходуете вы?

Нормативы по электроэнергии. Официальный портал Администрации города Омска

Нормативы потребления коммунальных услуг по электроснабжению населением при отсутствии приборов учета

Расход электрической энергии внутри жилых помещений с учетом дифференциации в зависимости от количества комнат и количества человек, проживающих в квартире

Нормативы потребления коммунальных услуг по электроснабжению (кВт. ч на 1 человека в месяц) для многоквартирных домов*:

  • без лифтового оборудования, с газовыми плитами:
Количество комнат в одной квартиреКоличество человек, проживающих в одной квартире
1 чел.2 чел.3 чел.4 чел.5 чел. и более
1 комната9562494236
2 комнаты12077625146
3 комнаты13587695751
4 комнаты и более14693736254
  • без лифтового оборудования, с электрическими плитами**:
Количество комнат в одной квартиреКоличество человек, проживающих в одной квартире
1 чел.2 чел.3 чел.4 чел.5 чел. и более
1 комната14894746254
2 комнаты173110877264
3 комнаты188119947769
4 комнаты и более199127998272
  • с лифтовым оборудованием и газовыми плитами:
Количество комнат в одной квартиреКоличество человек, проживающих в одной квартире
1 чел.2 чел.3 чел.4 чел.5 чел. и более
1 комната10269564943
2 комнаты12784695853
3 комнаты14294766458
4 комнаты и более153100806961
  • с лифтовым оборудованием и электрическими плитами:
Количество комнат в одной квартиреКоличество человек, проживающих в одной квартире
1 чел.2 чел.3 чел.4 чел.5 чел. и более
1 комната155101816961
2 комнаты180117947971
3 комнаты1951261018476
4 комнаты и более2061341068979

Нормативы потребления коммунальных услуг по электроснабжению (кВт.ч на 1 человека в месяц) для жилых домов, многоквартирных домов при отсутствии мест общего пользования и лифтового оборудования:

  • оборудованных газовыми плитами:
Количество комнат в одной квартиреКоличество человек, проживающих в одной квартире
1 чел.2 чел.3 чел.4 чел.5 чел. и более
1 комната8855423529
2 комнаты11370554439
3 комнаты12880625044
4 комнаты и более13986665547
  • оборудованных электрическими плитами:
Количество комнат в одной квартиреКоличество человек, проживающих в одной квартире
1 чел.2 чел.3 чел.4 чел.5 чел. и более
1 комната14187675547
2 комнаты166103806557
3 комнаты181112877062
4 комнаты и более192120927565

* — в норматив включен расход электрической энергии исходя из расчета расхода электрической энергии на 1 потребителя, необходимой для освещения жилых помещений, использования бытовых приборов, содержания общего имущества многоквартирного дома, а при наличии стационарных электрических плит — также для приготовления пищи.

Расход электрической энергии на работу электрообрудования, являющегося общей собственностью многоквартирного дома, определен, исходя из следующих величин:

  • в отношении приборов освещения мест общего пользования многоквартирного дома и придомовой территории, автоматических запирающих устройств, усилителей телеантенн коллективного пользования, систем противопожарной автоматики и дымоудаления, технологических потерь — 7 кВт.ч в месяц на 1 человека;
  • в отношении лифтового оборудования — 7 кВт.ч в месяц на 1 человека.

** — без учета величины расхода электрической энергии на работу лифтового оборудования.

Какое количество электроэнергии потребляет кондиционер

  Какое количество электроэнергии потребляет кондиционер

  Не секрет, что стоимость потребляемой электроэнергии растет день изо дня, поэтому многие пользователи, решая приобрести домой кондиционер, задаются вопросом, а сколько в среднем потребляет электричества эта климатическая техника.

  Чтобы не вводить пользователей в заблуждение, стоит сразу сказать, что, в среднем, кондиционер потребляет в 3-6 раз меньше электроэнергии, чем выдает. Например, сплит-система On/Off при потреблении 750 Вт электричества будет выдавать целых 2 кВт на охлаждение. А происходит это благодаря хладагенту, который выводит тепло из помещения наружу.

  Бытовые кондиционеры по заявленной мощности соотносят с несколькими типоразмерами. Например, прибор с мощностью на охлаждение, равной 2 кВт относят к типоразмеру «7». Такой кондиционер будет потреблять всего 750 Вт/ч. Типоразмер «9» при расходе 2,5 кВт будет потреблять порядка 780 Вт/ч. Кондиционер типоразмера «12», выдавая на охлаждение 3,5 кВт, потребляет всего 1000 Вт/ч. Типоразмер «18», расходуя около 5 кВт, потребляет 1500 Вт/ч. Чтобы понимать, о чем идет речь, можно привести следующие примеры:

·        Утюг потребляет в среднем около 1500-2500 Вт/ч

·        Электрический чайник потребляет порядка 2500-3000 Вт/ч

·        Компьютер потребляет приблизительно 400-500 Вт/ч

  Существуют общемировые стандарты энергоэффективности кондиционеров, которые выражаются аббревиатурами EER и COP.

·        EER – это коэффициент мощности холодопроизводительности к общему потреблению электроэнергии

·        COP – это коэффициент мощности теплопроизводительности к общему потреблению электроэнергии

  Чем большее значение будет у этих коэффициентов, тем выше класс энергоэффективности. Сегодня существует семь классов энергоэффективности кондиционеров, где класс А – наиболее энергоэффективен, а класс G имеет наименьшую энергоэффективность.

  Наиболее энергоэффективными считаются инверторные кондиционеры. Они потребляют на 30% меньше электричества по сравнению с обычными системами On/Off, что также сказывается и на длительности срока эксплуатации.

Сколько электроэнергии может сэкономить стирка в холодной воде :: РБК Тренды

Львиная доля потребления электричества стиральной машиной приходится на нагрев воды. Со снижением ее температуры экономия энергии растет в геометрической прогрессии, объясняют эксперты

Каждое наше действие влияет на планету — полет на самолете, поход в кинотеатр, запуск стиральной машины или открытый кран с водой для мытья посуды. При этом сжигается ископаемое топливо, выделяется CO2 и другие парниковые газы, которые «нагревают» Землю, негативно влияя на климат.

Задумываясь о том, как стать экологичнее и сократить углеродный след, мы формируем новые полезные привычки: сортируем отходы, смотрим на состав продуктов, которые мы покупаем, но иногда забываем об очевидных вещах.

Согласно исследованиям компании P&G, только 20% стирок в России осуществляется при температуре 30ºC, а большинство потребителей стирают на 40ºC и выше. При этом анализ жизненного цикла бытовой химии показывает, что основное воздействие на окружающую среду происходит именно на стадии использования средств для стирки и мытья посуды в быту.

Привычка стирать или мыть посуду при высокой температуре досталась нам по наследству, ведь за неимением других средств, наши бабушки и прабабушки стирали вещи при 90ºC или кипятили. При этом на нагрев воды уходит до 90% энергии, потреблялемой стиральной машиной во время работы.

Такой необходимости давно нет, поэтому можно задуматься о формировании еще одной полезной привычки.

Современные капсулы формата «Все в одном» для стиральных и посудомоечных машин, например, Ariel, Tide или Fairy, позволяют отмыть сложные загрязнения даже в холодной воде, без замачивания и дополнительного ополаскивания. А большинство современных стиральных и посудомоечных машин оснащены функциями, которые повышают качество очистки вещей без лишней траты времени, в том числе в энергосберегающем режиме на 30ºC или коротких циклах.

Поэтому стирка или мытье посуды на низких температурах может стать хорошей экопривычкой, позволит сэкономить воду, электроэнергию, сократить углеродный след и даже продлить жизнь вещам и посуде.

Тема близка и экологическим организациям. WWF России вместе с P&G во второй раз провели совместную акцию «Поворотный момент» в поддержку международной экологической акции «Час Земли», предложив потребителям переходить на энергосберегающую стирку и мытье посуды.

Акцию также поддерживала сеть «Магнит» специальными ценами на товары-участники.

Снижение температуры воды с 40ºC до 30°С позволяет сократить использование энергии на 57% и выбросы CO2 на 35% при стирке белья. При мытье посуды экономия энергии и CO2 составляет до 50%.

Если каждая семья в России будет стирать на 30°C вместо 40ºC, то сэкономленной энергии хватит, чтобы обеспечить электричеством на бытовые нужды жителей нескольких городов-миллионников. Стирка и мытье посуды в холодной воде тратит меньше электроэнергии — это выгоднее и экологичнее.

Сколько же электроэнергии могут потреблять бытовые электроприборы

Многие слышали, что возросшая плата за электроэнергию — целиком и полностью ваша вина. То вы много сидите за компьютером, то слишком долго смотрите телевизор, также слишком  часто гладите и стираете. Но давайте, попробуем разобраться,

Сколько же электроэнергии могут потреблять бытовые электроприборы.

 

1. Компьютер

Расчеты, которые будут показывать сколько тратит компьютер электроэнергии,  будут проводиться приблизительно, так как все зависит от мощности блока питания вашего компьютера  и конкретной работы, которую выполняет компьютер в данный момент.

Например, при мощности блока компьютера от 350 до 550 Ватт, он вряд ли будет потреблять всю мощность даже при режиме полной загруженности. Также необходимо учесть монитор — от 60 до 100 Ватт. В сумме, при среднестатистическом блоке питания компьютера 450 Ватт и монитора 100 Ватт, получится 550 Ватт или 0,55 кВт электроэнергии в час. Эта цифра сильно завышена. Для приблизительного расчета можно взять  максимальное значение — 0,5 квт/ч.Таким образом при использовании компьютера 4 часа в день получается 60 квт/ч в месяц. (0,5*4*30).  Теперь от этих цифр можно отталкиваться, например, при использовании компьютера  8 часов в день получаем 120 квт/ч. в месяц.

2. Холодильник

В техническом паспорте на холодильник указывается потребление электроэнергии в год. В основном эта цифра находится в пределах от 230 до 450 квт/ч. Поделив это значение на 12, получим от 20 до 38 квт/ч потребления электроэнергии в месяц. Данный показатель применим лишь для идеальных условий.  Количество потребляемой мощности зависит от объема холодильника и от количества находящихся  в нем продуктов. Также необходимо учесть и внешние условия, зависящие от времени года.

3. Телевизор

Телевизоры бывают разные. В среднем, для расчета, будем брать 100 вт/ч.  Например, при просмотре телевизора вы тратите 5 часов в день — 0,5 квт/ч. В месяц — около 15 кВт/ч. ЖК-телевизоры с большой диагональю экрана потребляют 200-50 Вт в час. Также важную роль играет яркость экрана. Соответственно, число потраченных киловатт- часов в месяц спокойно умножаем на 1,5. Получается около 23 квт/ч, но это среднее значение, не стоит про это забывать. Плазменные телевизоры с большой диагональю потребляют от 300 до 500 ватт в час. Если у вас в квартире стоит несколько разных телевизоров — суммируйте значения.

4. Стиральная машина

Чтобы, определить сколько электроэнергии потребляет стиральная машинка, необходимо знать режим стирки, массы белья и типа материала. В среднем, мощность будет колеблется от 2 до 2,5 квт/ч. Однако, редко когда машины потребляют такое количество электроэнергии. Для расчетов можно взять от 1 до 1,5 квт/ч. При стирке  2 раза в неделю по 2 часа, получаем от 16 до 24 квт/ч.

5. Чайник и утюг

Больше всего в квартире энергию потребляют — чайник и утюг. Работая минимальное количество времени, они потребляют такое же количество электроэнергии, как некоторые приборы в месяц. При мощности чайника от 1,5 до 2,5 квт/ч, пользуясь им  4 раза в день по 5 минут, получим от 20 до 25 квт/ч в месяц. С утюгом аналогичная история.  Мощность, у него примерно такая же, как  и у чайника, если гладить 3 раза в неделю по 1 часу, то получится от 25 до 30 квт/ч в месяц.

Здесь перечислены не все приборы потребляющие электроэнергию, к ним еще можно отнести микровольновые печи, пылесосы, зарядные устройства телефонов и ноутбуки. Также нужно учесть лампы накаливания, которые в зависимости от их количества, мощности и времени работы, могут потреблять от 50 до 100 квт/ч электроэнергии в месяц.

В итоге, путем таких вычислений, получаем приблизительный расход на электроэнергию будет колебаться  от 200 до 300 квт/ч в месяц.

Многие слышали, что возросшая плата за электроэнергию — целиком и полностью ваша вина. То вы много сидите за компьютером, то слишком долго смотрите телевизор, также слишком часто гладите и стираете. Но давайте, попробуем разобраться, сколько же электроэнергии могут потреблять бытовые электроприборы.

Потребление электричества стационарным компьютером

В условиях постоянного роста цен на электроэнергию, хорошо будет знать сколько электричества тратят на себя различные устройства. Данная информация поможет в дальнейшем существенно сэкономить денежные средства на оплате за свет. В предложенной статье рассмотрим сколько электроэнергии потребляет персональный компьютер, как правильно рассчитать его энергопотребление и что нужно учитывать при таком расчете.

Что учесть при расчете расхода электроэнергии ПК

Чтобы понять сколько электроэнергии потребляет домашний настольный компьютер не следует изучать блок питания в поисках необходимого значения. При расчете следует учесть, что электроэнергия расходуется всеми комплектующими компьютера и его периферийными устройствами. Помимо этого на расход электричества влияет также характер использования ПК.

Потребление системного блока

Узнать сколько энергии потребляет системный блок можно из технической документации, прилагаемой к компьютеру. Ведь по сути, его максимально возможным энергопотреблением является мощность блока питания, так как именно от него питаются все комплектующие из которых состоит системник и некоторые периферийные устройства. Мощность блока питания варьируется примерно от 300 Ватт в час на простеньких ПК и до 1600 Ватт в час и более – на мощных геймерских машинах. Но следует знать, что это значения, которые может выдавать блок питания, а не сколько по факту потребляет компьютер. На самом деле, чтобы выяснить сколько именно света расходует персональный компьютер, необходимо просуммировать энергопотребление всех его комплектующих. Самыми активными потребителями являются процессор и видеокарта.

Материнская плата

Потребление электричества материнской платой зависит непосредственно от заложенных в нее производителем возможностей. В среднем для ее питания необходимо от 20 до 35 Ватт, но если к ней подключены кулеры, графический процессор, звуковая карта и другие элементы, ее энергопотребление значительно возрастает.

Процессор

Производительность процессора – это параметр определяет сколько энергии он будет потреблять. Двухъядерные процессоры, работающие на низких частотах будут потреблять намного меньше восьмиядерных. Но при этом следует учитывать так же и то, что старые варианты всегда более энергозатратны. К примеру, четырехъядерный Intel Core i5 потребляет до 140 Ватт электроэнергии, в то время как Intel Quad Core при максимальной загрузке тратит более 200 Ватт в час. А вот двухъядерные AMD в среднем расходуют от 65 до 95 Ватт, в то время как более мощные варианты этого производителя потребляют примерно от 95 до 125 Ватт в час.

Видеокарта

В видеокарте, как и в процессоре, энергопотребление напрямую зависит от мощности. Высокопроизводительные устройства при больших нагрузках расходуют в среднем от 240 до 350 Ватт в час, а в режиме простоя их потребление варьируется в пределах от 35 до 55 Ватт. Но так как видеокарта не всегда используется на полную мощность, то расход электроэнергии на ее работу можно в среднем считать от 100 до 300 Ватт.

Жесткий диск или SSD

Энергопотребление обычного жесткого диска в среднем колеблется от 0,7 до 6 Ватт, в то время как более современные SSD расходуют меньше – от 0,6 до 3 Ватт в час.

Оптический привод

При нагрузке оптический привод расходует в среднем до 27 Ватт электроэнергии, в то время как в режиме простоя его потребление составляет не более 15 Ватт.

Вентиляторы

Система охлаждения компьютера тянет на себя примерно от 0,6 и до 6 Ватт электричества, при этом следует учесть, что вентиляторы работают постоянно, и как правило, любой стационарный компьютер включает в себя несколько кулеров.

Периферийные устройства

На вопрос сколько электроэнергии берет на себя периферия компьютера, могут ответить цифры, указанные в их технических характеристиках или на заводских наклейках, прикрепленных к ним сзади или снизу. При этом следует учесть, что монитор работает непосредственно от сети и потребляет, примерно от 18 ВТ и выше, в зависимости от модели. А энергопотребление остальных устройств, таких как веб-камера, колонки, наушники, клавиатура и мышь, происходит от интерфейсов системного блока, а потому их энергопотребление не превысит указанную максимальную мощность блока питания. Кстати, колонки также могут питаться от напрямую от сети 220 В.

Потребление электричества в зависимости от режима использования

Потребление электричества компьютером зависит не только от мощности его комплектующих, но также и от характера его использования. Ведь очевидно, что компьютер в режиме сна тратит намного меньше энергии, чем при запуске ресурсоемких игр и приложений.

В состоянии бездействия

Компьютер, работающий на «холостом ходу», то есть когда на нем не выполняется никаких действий пользователем, потребляет в среднем около 78 Вт электроэнергии. В таком состоянии устройства ПК все таки тянут на себя электроэнергию, но в малых объемах.

Спящий или энергосберегающий режим

В зависимости от производительности персонального компьютера, в спящем режиме он затратит на свою работу примерно от 20 до 40 Вт, а в энергосберегающем режиме – до 10 Вт в час. За месяц это может составить в среднем от 2 до 15 киловатт, в особенности если учесть, что системный блок, находясь в выключенном состоянии, потребляет ток: запитан блок питания, запитана материнская плата (но только на линию сигнализации своего состояния), питание памяти.

При максимальной производительности

На потребление электроэнергии существенно влияют ресурсоемкие программы и игры, которые запускаются на ПК, а также время, затраченное на их использование. В среднем это значение при максимальной производительности колеблется от 170 до 200 Вт в час.

Как рассчитать количество потребляемой энергии ПК

Существует несколько способов, которые позволяют рассчитать сколько электроэнергии потребляет персональный компьютер. Для этого можно использовать различные компьютерные программы или же сделать замеры с помощью специального измерительного оборудования.

Измерительное оборудование и утилиты

Точные замеры потребляемой электроэнергии можно получить, используя в этих целях обычный ваттметр, с помощью которого можно измерить мощность электрического тока, поступающего к ПК. Для этого следует воткнуть устройство в розетку, а к нему подключить вилку блока питания. После включения ПК, на экране ваттметра отобразится точное значение потребления электроэнергии компьютером.

Также замеры потребляемой электроэнергии можно произвести, воспользовавшись специальными онлайн-сервисами в интернете. Наиболее известными из них являются eXtreme Power Supply Calculator – удобный и простой калькулятор для расчета мощности ПК, и калькулятор источника питания от компании MSI.

Среднее потребление

На примере можно наглядно увидеть сколько электроэнергии тратит обычный стационарный компьютер. Возьмем среднестатистический случай, когда персональный компьютер работает около 5 часов. Как показывает практика, реальное потребление электричества средним системным блоком, независимо от значений на блоке питания (будь-то даже 1000 ватт), варьируется от 100 до 180 Вт*ч при обычном использовании (интернет-серфинг и другие процессы, незадействующие больших ресурсов компьютера), и до 350 Вт*ч при значительной нагрузке на машину (это работа в ресурсоемких программах, мощные игры). Следовательно, с учетом того, что на среднем ПК иногда могут поиграть в игры, среднестатистическое значение потребления электроэнергии будет равно (100 Вт*ч + 180 Вт*ч + 350 Вт*ч)/ 3 = 210 Вт*ч. Примерные затраты электричества монитором – до 40 Вт*ч. В итоге получается: 210 Вт*ч + 40 Вт*ч = 250 Вт*ч. Умножив полученное значение на 5 часов и добавив затраты на электричество компьютером в выключенном состоянии, оставшиеся 19 часов – примерно 4 Вт х 19 ч = 76 Вт, найдем требуемое количество потребляемой электроэнергии ПК в день – 5ч х 250 Вт*ч + 76 Вт = 1,326 кВт, что равно 39,780 кВт в месяц.

Как уменьшить потребление энергии

Для того, чтобы снизить потребление электроэнергии персональным компьютером, следует воспользоваться следующими советами:

  1. Отдать предпочтение энергоэффективным вариантам.
  2. Установить оптимальные параметры электропитания в настройках ПК.
  3. Выключать ПК в то время, когда он не используется.
  4. Не устанавливать максимальную яркость монитора, и по возможности отключать его при бездействии компьютера.
  5. Заменить старые комплектующие на новые, более эффективные.
  6. Использовать менее мощные ноутбуки, если нет острой необходимости в мощном стационарном компьютере.

Для того, чтобы сэкономить на электроэнергии и не тратить на работу за компьютером существенную часть бюджета, лучше всего подобрать либо готовый современный компьютер, либо комплектующие к нему, которые будут отличаться большей энергоэффективностью, благодаря чему значительно сэкономятся ваши денежные средства. А помочь подобрать модель абсолютно удовлетворяющую всем вашим требованиям помогут квалифицированные специалисты нашего интернет-магазина.

Использование электроэнергии — Управление энергетической информации США (EIA)

Потребление электроэнергии в США в 2020 году составило около 3,8 триллиона киловатт-часов (кВтч)

Электроэнергия — неотъемлемая часть современной жизни и важна для экономики США. Люди используют электричество для освещения, обогрева, охлаждения и охлаждения, а также для работы бытовой техники, компьютеров, электроники, машин и систем общественного транспорта. Общее потребление электроэнергии в США в 2020 году составило около 3.8 триллионов кВтч, что в 13 раз больше, чем потребление электроэнергии в 1950 году.

Общее потребление электроэнергии включает розничные продажи электроэнергии потребителям и прямое использование электроэнергии. Электроэнергия прямого использования производится потребителем и используется им. На промышленный сектор приходится большая часть электроэнергии прямого потребления. В 2020 году розничные продажи электроэнергии составили около 3,66 трлн кВтч, что составляет 96% от общего потребления электроэнергии. Прямое использование электроэнергии всеми секторами конечного потребления было около 0.14 трлн кВтч, или около 4% от общего потребления электроэнергии.

Общее годовое потребление электроэнергии в США увеличивалось за все, кроме 11 лет в период с 1950 по 2020 год, а 8 лет с ежегодным снижением приходились на период после 2007 года. Самый высокий уровень общего годового потребления электроэнергии пришелся на 2018 год и составил около 4 триллионов кВтч. когда относительно теплое лето и холодная зима в большинстве регионов страны способствовали рекордному потреблению электроэнергии в жилищах — почти 1,5 триллиона кВтч.

Общее потребление электроэнергии в США в 2020 году было примерно на 4% ниже, чем в 2019 году, с сокращением в коммерческом и промышленном секторах. Розничные продажи электроэнергии промышленному сектору в 2020 году были примерно на 14% ниже, чем в 2000 году, пиковом году розничных продаж США в промышленный сектор. Доля промышленного сектора в общих розничных продажах электроэнергии в США упала с 31% в 2000 году до 25% в 2020 году. В 2020 году объем розничных продаж жилой недвижимости увеличился примерно на 2%.

  • жилая1.46 трлн кВтч 48,9%
  • коммерческие 1,28 трлн кВтч 44,8%
  • промышленные 0,92 трлн кВтч 35,1%
  • транспорт (в основном в системы общественного транспорта) 0,01 трлн кВтч 0,2%

Электричество впервые было продано в США в 1879 году компанией California Electric Light Company в Сан-Франциско, которая произвела и продала электроэнергии, достаточной только для питания 21 электрического фонаря (дуговые лампы Brush).

Отопление и охлаждение — крупнейшие бытовые потребители электроэнергии

На отопление и охлаждение / кондиционирование приходится наибольшее годовое потребление электроэнергии в жилом секторе.Поскольку эти виды использования в основном связаны с погодой, объемы и их доли в общем годовом потреблении электроэнергии в жилищах меняются из года в год. Данные обследования энергопотребления в жилищном секторе (RECS) за 2015 год показывают, что отопление было самым большим потреблением электроэнергии в домах. Ежегодный энергетический прогноз (AEO) предоставляет оценки и прогнозы годового потребления электроэнергии в жилищном секторе по типам конечного использования. На приведенной ниже круговой диаграмме показано потребление электроэнергии в жилищном секторе по основным типам конечного использования в Базовом сценарии AEO2021 на 2020 год.

На компьютеры и оргтехнику приходится наибольшая доля потребления электроэнергии коммерческим сектором

Пять видов использования электроэнергии составляют наибольшую долю от общего годового потребления электроэнергии в коммерческом секторе: компьютеры и офисное оборудование (комбинированное), охлаждение, охлаждение, вентиляция и освещение.

Исторически сложилось так, что на использование электроэнергии для освещения обычно приходилась самая большая доля от общего годового потребления электроэнергии в коммерческом секторе, но ее доля со временем снизилась в основном из-за все более широкого использования высокоэффективного осветительного оборудования.И наоборот, количество и доля электроэнергии, используемой для компьютеров и оргтехники, со временем увеличивались. Требования к охлаждению помещений определяются погодой, климатом и конструкцией здания, а также теплом, выделяемым осветительным оборудованием, компьютерами, офисным оборудованием, прочими приборами и жильцами здания.

Обследование энергопотребления в коммерческих зданиях (CBECS) предоставляет подробные данные об использовании электроэнергии в коммерческих зданиях в отдельные годы. УЭО предоставляет оценки и прогнозы годового потребления электроэнергии коммерческим сектором.На круговой диаграмме слева внизу показано потребление электроэнергии коммерческим сектором по основным типам конечного использования в эталонном сценарии AEO2021 на 2020 год.

Машинные приводы являются самым крупным потребителем электроэнергии производителями в США

Промышленный сектор использует электричество для работы приводов машин (двигателей), освещения, компьютеров и оргтехники, а также оборудования для отопления, охлаждения и вентиляции помещений. В некоторых отраслях, например, в производстве алюминия и стали, электричество используется для технологического тепла, а в других, например, в пищевой промышленности, электричество используется для охлаждения, замораживания и охлаждения пищевых продуктов.Многие производители, такие как целлюлозно-бумажные и лесопильные заводы, вырабатывают собственную электроэнергию для прямого использования, в основном в системах комбинированного производства тепла и электроэнергии, а некоторые из них продаются. Это снижает количество их покупок электроэнергии и их чистое потребление электроэнергии.

Обследование энергопотребления в производстве (MECS) предоставляет подробные данные об использовании электроэнергии по типам производителей и по основным конечным потребителям в отдельные годы. На круговой диаграмме вверху справа показаны данные MECS 2018 по конечному потреблению электроэнергии по основным типам конечного использования всеми производителями.УЭО предоставляет оценки и прогнозы для годовых закупок электроэнергии промышленным сектором и по типу отрасли / производителя. Согласно эталонному сценарию AEO2021, в 2020 году на производителей будет приходиться около 77% от общего годового объема закупок электроэнергии промышленным сектором, за которыми следуют горнодобывающая промышленность (10%), сельское хозяйство (8%) и строительство (5%).

Прогнозируется медленный рост потребления электроэнергии в США

Хотя краткосрочный спрос на электроэнергию в США может колебаться в результате ежегодных изменений погоды, тенденции долгосрочного спроса, как правило, определяются экономическим ростом, компенсируемым повышением энергоэффективности.В эталонном случае AEO2021 прогнозируется ежегодный рост общего спроса на электроэнергию в США в среднем примерно на 1% с 2020 по 2050 год.

Мировое потребление электроэнергии может расти быстрее всего в странах, не входящих в ОЭСР

На страны-члены Организации экономического сотрудничества и развития (ОЭСР) приходилось около 43% от общего мирового потребления электроэнергии в 2018 году. Согласно прогнозу International Energy Outlook 2019 , потребление электроэнергии странами, не входящими в ОЭСР, вырастет примерно на 1.8% в год, в то время как потребление электроэнергии странами-членами ОЭСР, согласно прогнозам, будет расти примерно на 0,9% в год до 2050 года. Доля стран ОЭСР в мировом потреблении электроэнергии прогнозируется на уровне 32% в 2050 году. 2

Последнее обновление: 7 апреля 2021 г.

количество электроэнергии в предложении

Эти примеры взяты из корпусов и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или его лицензиаров.

Невозможно с какой-либо точностью спрогнозировать количество из электроэнергии , которое будет произведено атомной энергетикой в ​​2010 году.

Счет, основанный на весе меди (а позже цинка), и, следовательно, суммы из электроэнергии был отправлен в домохозяйство.

Это условная моральная истина, что прохождение данного количества из электричества через тело человека причиняет ему сильную боль.

Логически необходимо, что если прохождение определенного электрического тока через тела людей вызывает сильную боль, то плохо пропускать через тела людей, что составляет из электричества .

Он запросил лишь незначительную сумму из линий электричества , которые будут проложены под землей в районе, за который он отвечает.

Сумма из электроэнергии , доступная из гидроисточников в конкретный год, зависит от количества осадков в предыдущий период.

Это огромная сумма из электроэнергии и мощности.

Эта мощность будет генерировать примерно такое же количество из электроэнергии в год, которое может быть произведено из 1 миллиона тонн угля.

Из угля вы получаете газ, нефть и топливо, и из каждого из них можно произвести огромное количество из электроэнергии .

Часто занижается первоначальная оценка суммы из электроэнергии , которая будет использоваться.

Меньше капитала потребуется для производства данной суммы из электроэнергии , и доходность на установленный киловатт и на вложенный фунт будет увеличена.

Театр потребляет огромное количество из электроэнергии , поскольку он содержит много электрических устройств.

Это было странное замечание, потому что необходимое количество из электричества чрезвычайно трудно определить количественно.

Однако это относится к бесконечно малой сумме из электроэнергии по сравнению с общей суммой, которая передается через сеть каждый день.

Это связано с затратами по сравнению с традиционной станцией, производящей , количество из электроэнергии .

Суммы к оплате варьируются в зависимости от изменений средних ставок, взимаемых местными органами власти, и в сумме из электроэнергии , поставляемой потребителям.

Сумма из электроэнергии , поставляемой атомными электростанциями, останется довольно постоянной.

Он сказал, что гидросхемы не были плодотворными — он имел в виду, конечно, из произведенной электроэнергии.

Шестнадцать миллионов тонн, но этот современный завод заменит более старый завод, который в противном случае потреблял бы 21 миллион тонн для производства того же количества из электроэнергии .

Сумма из электроэнергии , используемая при строительстве дома, зависит от участка и метода строительства.

Эти примеры взяты из корпусов и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или его лицензиаров.

Количество электроэнергии — обзор

4.4 Заключительные замечания

В ходе обсуждения до этого момента была предпринята попытка оценить количество электроэнергии, которое может быть произведено путем выборочного размещения современных ветряных турбин в регионах, признанных подходящими для их использования. развертывание.Как указано, данные о ветре, использованные в этом анализе, были получены на основе ретроспективного анализа прошлых метеорологических условий. В этом смысле настоящий анализ можно интерпретировать как определение электричества, которое могло быть произведено турбинами, установленными в какой-то момент в прошлом, когда ветровые условия могли быть аналогичными и оставались аналогичными тем, которые указаны в принятой здесь базе данных. Прошлое, конечно, в лучшем случае несовершенный пролог к ​​будущему. Но при планировании будущего это может быть лучший вариант в нашем распоряжении.

Оговорки, которые следует отметить при рассмотрении платы, указанной в названии этой главы — для определения глобального потенциала ветроэнергетики — включают следующее. Размещение большого количества ветряных турбин в определенном месте может иметь потенциал для изменения местных и, возможно, даже региональных ветровых условий. Широкое развертывание ветряных электростанций может повлиять на баланс атмосферной кинетической энергии, что может привести к потенциально последующим изменениям в циркуляции глобальной атмосферы.А в ответ на увеличение концентрации парниковых газов климатические и ветровые условия в будущем могут значительно отличаться от условий, которые преобладали в прошлом. Поэтому количественные прогнозы будущего потенциала ветроэнергетики будут зависеть от уровня неизбежной неизбежной неопределенности.

Влияние ветряных электростанций на местные метеорологические условия изучалось в ряде недавних исследований. Чжоу и др. [30]. использовал спутниковые данные за период 2003–2011 годов для анализа реакции региональной приземной температуры на строительство ветряной электростанции в Техасе.Они обнаружили свидетельства значительного повышения температуры поверхности, на целых 0,72 ° C за десятилетие, особенно ночью и особенно в непосредственной близости от ветряных электростанций. Рой и Трайтер [31] обнаружили аналогичную закономерность в своем исследовании реакции температуры на развитие ветряной электростанции в Сан-Горгонио, Калифорния. Они сообщили о доказательствах статистически значимого повышения температуры примерно на 1 ° C на высоте 5 м с подветренной стороны от ветряной электростанции в ночное время.Увеличение продолжалось в течение раннего утра, после чего следовало умеренное похолодание в течение дня. Они предположили, что влияние ветряных электростанций на местную погоду можно свести к минимуму, изменив конструкцию роторных систем или разместив ветряные электростанции в регионах с высоким уровнем естественной турбулентности. Далее они определили регионы Среднего Запада и Великих равнин США как идеальные для размещения ветряных электростанций с низким уровнем воздействия.

Если бы весь спрос на электроэнергию в Соединенных Штатах был удовлетворен за счет ветра, сопутствующий сток кинетической энергии составлял бы примерно 6% стока, естественным образом вносимого поверхностным трением на всей прилегающей территории США, 11% для сток определен с областью, указанной выше как наиболее благоприятной для развития ветряной электростанции.Влияние на циркуляцию атмосферы потенциально серьезных обязательств по ветроэнергетике изучалось в ряде недавних исследований, в частности, Кирк-Давидофф и Кейт [32] и Кейт и др. [33]. Они пришли к выводу, что использование ветровых ресурсов на высоких уровнях проникновения может привести к значительным изменениям в циркуляции атмосферы даже в регионах, удаленных от расположения задействованных турбин. Они утверждали, что бюджет глобального инвентаря атмосферной кинетической энергии регулируется в первую очередь процессами на входной стороне реестра, а не приемником.Они утверждали, что в этом случае увеличение трения в результате работы большого количества энергетических турбин может быть компенсировано уменьшением диссипации количества движения за счет трения в другом месте. Они пришли к выводу, что средняя глобальная температура поверхности не изменится существенно перед лицом крупных инвестиций в ветроэнергетику. Температура на высоких широтах может снизиться до умеренной степени в ответ на ожидаемое снижение эффективности меридионального переноса тепла.В этом случае воздействие можно рассматривать как положительное, в некоторой степени компенсирующее усиленное потепление, которое, согласно прогнозам, возникнет в этой среде в ответ на антропогенное увеличение концентрации парниковых газов.

Влияние крупномасштабных инвестиций в ветряные электростанции на циркуляцию атмосферы исследовали также Miller et al. [34] и Marvel et al. [35]. Используя простой подход параметризации для моделирования влияния работы турбины как поглотителя атмосферного импульса, Miller et al.[34] пришли к выводу, что турбины, равномерно распределенные по поверхности Земли, могут устойчиво собирать кинетическую энергию со скоростью до 400 ТВт. Если бы турбины были развернуты на высоте 100 м, выработка могла бы составить 1800 ТВт. Используя альтернативный подход для параметризации стока для импульса, связанного с эксплуатацией ветровых ресурсов, Якобсон и Арчер [36] пришли к выводу, что по мере увеличения количества ветряных турбин в большом географическом регионе извлечение энергии должно сначала увеличиваться линейно, со временем сходясь к предел, оцениваемый как превышающий 250 ТВт для турбин, расположенных на высоте 100 м, возрастает до 380 ТВт для турбин, развернутых на высоте 10 км.

Существует заметное расхождение между этими различными оценками ветрового потенциала. Адамс и Кейт [37] обратились к этой проблеме с помощью мезомасштабной модели. Они пришли к выводу, что выработка энергии с помощью ветра должна быть ограничена в среднем примерно 1 Вт · м -2 для объектов, расположенных на территории примерно 100 км 2 . Далее они утверждали, что результаты, полученные с использованием мезомасштабной модели, должны предоставить полезное руководство к тому, чего можно ожидать от более полной глобальной модели.Однако это утверждение еще предстоит продемонстрировать.

Современные ветряные турбины рассчитаны на эффективную работу в течение жизненного цикла до 25 лет или даже дольше. Прогнозы ветроэнергетики на следующие 25 лет, включая необходимость предвидеть влияние внутренней изменчивости, станут проблемой для потенциальных инвесторов. В глобальных и региональных климатических моделях трудно учесть исторические тенденции ветровых режимов. Мало оснований полагать, что они будут более успешными в предсказании будущего.Прайор и др. [38], на основе существующих исследований, утверждали, что ожидаемые в будущем изменения средней скорости ветра и плотности энергии вряд ли превысят межгодовую изменчивость (± 15%), наблюдаемую в последнее время на большей части Европы и Северная Америка. За последние несколько десятилетий интенсивность приземных ветров снизилась в Китае, Нидерландах, Чехии, США и Австралии [39–42]. Точная причина этого снижения неизвестна. Vautard et al. [43] проанализировали масштабы и потенциальную причину изменений скорости приземного ветра, наблюдавшихся в средних широтах севера в период с 1979 по 2008 год, используя данные 822 приземных метеостанций.Они указали, что скорость приземного ветра снизилась на 5–15% почти на всех континентальных территориях в северных средних широтах, причем наибольшее снижение наблюдается при более высоких скоростях ветра. Напротив, атмосферные ветры, полученные на основе градиентов давления на уровне моря, и ветры, полученные на основе повторного анализа погоды, не демонстрируют такой тенденции. Было высказано предположение, что увеличение шероховатости поверхности в результате увеличения биомассы и связанных с этим изменений в почвенном покрове над Евразией может составлять до 25–65% уменьшения приземных ветров, наблюдаемых над этим регионом.

Хуанг и МакЭлрой [3], используя ассимилированные метеорологические данные за период с января 1979 года по декабрь 2010 года, исследовали происхождение энергии ветра как с механической, так и с термодинамической точки зрения. Их результаты указывают на тенденцию к росту производства кинетической энергии за последние 32 года, предполагая, что ресурсы энергии ветра могут увеличиться в условиях потепления климата. Они далее подчеркнули тот факт, что общий запас кинетической энергии атмосферы демонстрирует значительную межгодовую изменчивость, особенно в ответ на изменение фаз цикла Эль-Ниньо – Южное колебание (ЭНСО).Таким образом, можно ожидать, что потенциал ветра как источника электричества в любом конкретном месте будет изменяться не только в долгосрочной перспективе, но и в межгодовом периоде в ответ на естественные колебания циркуляции атмосферы.

Общий вывод из этой главы заключается в том, что ветровые ресурсы в глобальном масштабе могут удовлетворить значительную часть нынешнего и ожидаемого будущего спроса на электроэнергию. Можно ожидать, что концентрация объектов в определенных регионах будет способствовать изменению преобладающих местных метеорологических условий.Однако маловероятно, что это изменение будет достаточно разрушительным, чтобы компенсировать преимущества, которые могут быть реализованы в первую очередь за счет концентрации. Производство электричества путем улавливания кинетической энергии ветра можно рассматривать как дополнительный вклад в поверхностное трение, которое служит естественным компенсатором глобального производства кинетической энергии атмосферой. При высоких уровнях проникновения ветровые установки могут оказывать заметное влияние на бюджет этого важного количества: можно ожидать, что климат изменится соответствующим образом.Однако, учитывая обозримое расширение ветряных систем в ближайшем будущем, это вряд ли создаст серьезную проблему. Наиболее важное ограничение для будущего роста, скорее всего, будет связано с проблемой реагирования на внутреннюю изменчивость входящего ветра, усугубляемого тем фактом, что этот источник может не идеально соответствовать моделям спроса на электроэнергию.

Как измеряется электроэнергия

Вы когда-нибудь спрашивали себя, в чем измеряется энергия? Основной способ измерения потребления электроэнергии — это единица измерения «ватт-час».

Освещение и обычные бытовые приборы, такие как кондиционеры, компьютеры и тостеры, являются изделиями, для работы которых требуется электричество.

Ватт (Вт) — это мера этой электрической мощности, и каждый из этих бытовых товаров должен иметь маркировку в ваттах, отражающую их использование. Наиболее распространенные бытовые приборы, принадлежащие потребителям, имеют значок соответствия, который используется для обозначения количества электроэнергии, необходимой конкретному продукту для правильной работы.

Для сравнения: электрическая лампочка может иметь мощность 40 Вт, средний тостер — 600 Вт, а кондиционер — мощность 4000 Вт. Умножение ватта — или единицы необходимой энергии — на продолжительность его использования, дает общее количество потребляемой электроэнергии.

Стандартным показателем потребления электроэнергии является количество ватт, израсходованных за один час, которое также известно как ватт-час. Это означает, что если лампочка на 40 ватт включена на один час, она будет использовать 40 ватт-часов электроэнергии.

Когда люди получают счет за электроэнергию, в нем регистрируется количество киловатт-часов (кВтч), потребленных домохозяйством в течение этого периода. Киловатт-час составляет 1000 ватт-часов, что означает, что использование кондиционера мощностью 4000 Вт в течение одного часа потребляет 4 кВт-ч электроэнергии.

Это общее потребление используется для расчета стоимости счета за электроэнергию, который доставляется потребителям ежеквартально или каждые три месяца.


Как измеряется электричество

Киловатт-час (кВтч) — это количество электроэнергии, произведенной или потребленной за один час.

В Австралии типичное ежедневное потребление энергии в обычном домашнем хозяйстве составляет около 17 000 ватт-часов. Чтобы рассчитать это из ватт в киловатт-час, это будет примерно 17 киловатт-часов.

Вт (Вт)


= 1 Вт

40 Вт
Лампочка мощностью 40 Вт потребляет 40 Вт электроэнергии.

Киловатт (кВт)


= 1000 Вт

2 кВт
Типичная солнечная панель, используемая в доме в Австралии, может производить до 2 кВт электроэнергии.

Мегаватт (МВт)


= 1 миллион ватт

30 МВт
Ветряная электростанция Cullerin Range к северу от Канберры, недавно проданная Origin Energy, способна производить 30 МВт электроэнергии.

ГВт (ГВт)


= 1000 миллионов ватт

3 GW
Origin’s Eraring Power Station — крупнейшая электростанция Австралии, ее общая мощность составляет около 3 ГВт,


Чтобы сравнить потребление энергии в вашем доме с аналогичными домохозяйствами в вашем районе, посетите сайт Energy Made Easy.


Список литературы
  1. http://www.aer.gov.au/system/files/ Руководство по контрольным показателям потребления электроэнергии в счетах бытовых потребителей — декабрь 2014_0.PDF

Что в моем доме потребляет больше всего электроэнергии? — Крупнейшие электротехнические кабаны

Когда температура повышается, наши счета за электроэнергию могут быть самыми высокими. Чтобы предотвратить высокие счета за электроэнергию, мы должны сохранять в наших домах как можно более энергоэффективные условия. Поиск способов экономии энергии и снижения затрат может оказаться сложной задачей, так с чего же начать? С помощью energystar.gov и energy.gov мы изучаем энергию, потребляемую типичными домашними системами, приборами и электроникой, выясняем, что потребляет больше всего энергии, и делимся советами о том, как сделать ваш дом более энергоэффективным, чтобы снизить потребление электроэнергии. расходы.

Вот разбивка самых больших категорий энергопотребления в типичном доме:

  1. Кондиционирование и отопление : 46 процентов
  2. Водяное отопление : 14 процентов
  3. Приборы : 13 процентов
  4. Освещение : 9 процентов
  5. Телевизионное и мультимедийное оборудование : 4 процента

Потребление электроэнергии измеряется в киловатт-часах или кВтч. При расчете потребления энергии устройством или системой мы вычисляем ежедневные киловатт-часы, умножая количество часов, используемых в день, на его мощность, и получаем кВт-ч, умножая полученное значение на 0.001. Узнайте больше о расчетах использования ваших устройств и систем.

1. Кондиционирование и отопление

В качестве основного источника комфорта от экстремальных температур наружного воздуха ваша система отопления, вентиляции и кондиционирования воздуха потребляет больше энергии, чем любое отдельное устройство или система, что составляет 46 процентов от среднего энергопотребления дома в США. Средний центральный блок HVAC потребляет около 3500 Вт и работает два-три раза в час в течение 10-15 минут. В 24-часовой период ваша система отопления, вентиляции и кондиционирования воздуха будет использовать около 28-63 кВтч, что дает около 850-1950 кВтч в месяц, в зависимости от эффективности вашего агрегата.Попробуйте снизить нагрузку на вашу систему отопления, вентиляции и кондиционирования воздуха, следуя этим советам:

  • Используйте потолочные вентиляторы — против часовой стрелки летом и по часовой стрелке зимой
  • Поверните термостат до 78F летом и вниз до 65F зимой
  • Ежегодно настраивайте кондиционер и печь
  • Задерните шторы в солнечные летние дни, но откройте их зимой, чтобы получить бесплатное тепло
  • Замените воздушные фильтры
  • Не закрывайте внутренние вентиляционные отверстия или внешние блоки
  • Пыль и вакуум для предотвращения засоров
  • Одевайтесь легко летом и тепло зимой
  • Используйте одеяла и шарфы для дополнительного тепла зимой

Прочитайте больше советов: Недорогие советы по повышению энергоэффективности вашего HVAC | Как мне ухаживать за кондиционером летом? | На какую температуру установить термостат летом?

2.Водяное отопление

Как еще один часто используемый прибор, водонагреватель занимает второе место с 14 процентами энергопотребления вашего дома. В среднем водонагреватель работает около 3 часов в день и потребляет 4500 Вт, что в сумме дает 13,5 кВтч в день или 405 кВтч в месяц. Воспользуйтесь этими советами, чтобы снизить расходы на электроэнергию:

  • Установите температуру вашего водонагревателя на 120F или ниже
  • Оберните старый водонагреватель изоляционной рубашкой
  • Изолировать трубы горячего водоснабжения
  • Выключите водонагреватель на время отпуска
  • Установить водосберегающие насадки для душа и аэраторы для смесителей
  • Обновление до солнечного водонагревателя

3.Бытовая техника

На вашу бытовую технику приходится около 13 процентов типичного счета за электроэнергию. Ниже приведены несколько советов о том, как сэкономить на потреблении энергии основными приборами:

Холодильник

Средний холодильник потребляет 225 Вт, и если вы используете холодильник весь день, вы будете использовать 162 кВтч в месяц. Хотя мы не можем выключить наши холодильники или использовать их меньше, есть другие способы сэкономить:

  • Не перегружайте холодильник
  • Храните наиболее часто используемые продукты в доступных местах
  • Расположите содержимое для оптимальной эффективности
  • Установите в холодильнике рекомендованную производителем температуру
  • Регулярно очищайте холодильник сзади и под ним для поддержания потока воздуха
  • Замените старые холодильники на современные, энергоэффективные модели

Прочитайте больше советов: Как правильно обслуживать холодильник | Что мне пытается сказать мой холодильник? | Как организовать холодильник таким образом, чтобы он стал энергоэффективным

Стирально-сушильная машина

Стиральные и сушильные машины в совокупности потребляют около 5 процентов энергии вашего дома.Эти устройства в совокупности потребляют 3045 Вт. Если вы используете каждую из них в течение одного часа в день, ваши стиральные машины будут использовать около 91 кВтч в месяц. Помните эти советы при стирке:

  • Мойка при полной загрузке
  • Мыть холодной водой
  • Избегать переполнения машин
  • По возможности используйте сушилки
  • Чистый ворс после каждой загрузки

Прочитайте больше советов: Энергоэффективность в прачечной | Советы по экологически чистой стирке

Электрическая духовка и плита

При 2500 Вт для духовки и 1500 Вт для плиты на средне-сильном нагреве, использование их в течение одного часа в день дает 75 кВтч и 45 кВтч в месяц соответственно.Эти приборы, особенно ваша духовка, также могут согреть ваш дом и увеличить нагрузку на ваш кондиционер. Снизьте электрическую нагрузку от этих приборов с помощью этих советов:

  • Выберите тостер, микроволновую печь, мультиварку или другой прибор меньшего размера
  • Использовать духовку и плиту в более прохладные часы дня
  • Не разогревайте, если это необходимо для правильного приготовления блюда
  • Выключите конфорки за несколько минут до того, как блюдо будет готово, и позвольте остаточному теплу сделать остальное

Прочитайте больше советов по кухне: советы по экономии энергии на кухне

Посудомоечная машина

Средняя посудомоечная машина потребляет 330 Вт.Используется в течение одного часа каждый день, это почти 10 кВтч в месяц. Посудомоечная машина также может повлиять на работу кондиционера, поскольку она нагревает дом. Воспользуйтесь этими советами, чтобы снизить потребление первичной и остаточной энергии посудомоечной машиной:

  • Мойка при полной загрузке
  • Выключить сушку с подогревом
  • Стирать в более прохладное время дня
  • Предварительно ополосните сильно загрязненную посуду, чтобы избежать повторного цикла

Прочитайте больше советов: Что моя посудомоечная машина пытается мне сказать?

4.Освещение

На освещение приходится около 9 процентов энергопотребления в типичном доме. Энергопотребление лампочек может сильно различаться в зависимости от типа и использования лампы. Лампа накаливания мощностью 100 Вт, включенная на два часа в день, потребляет около 0,2 кВтч в день или 6 кВтч в месяц. Добавьте к этому около 50 лампочек в доме, и получится 300 кВт / ч в месяц. Снизьте потребление электроэнергии вашими фарами с помощью этих советов:

  • Выключать свет при выходе из комнаты
  • Используйте энергосберегающие светодиодные лампы
  • Используйте естественное освещение, особенно зимой, когда вы также получаете выгоду от тепла
  • Выберите светодиодные праздничные огни и включите таймеры, чтобы они не горели всю ночь
  • Установите датчики движения на наружные сигнальные огни, чтобы они включались только тогда, когда они вам нужны

Прочитайте больше советов: Каковы преимущества светодиодных лампочек? | Понимание различий между CFL и светодиодными лампами

5.Телевидение и медиаоборудование

На электронику приходится около 4 процентов нашего энергопотребления. В частности, наши электронные развлечения, включая телевизоры, телевизионные приставки и игровые приставки, могут использовать значительную часть энергии нашего дома. Если мы смотрим телевизор в среднем пять часов в день и играем в видеоигры 6,3 часа в неделю, эти устройства могут потреблять около 55 кВтч в месяц. Эти электронные устройства также являются виновниками использования резервного питания, даже когда они не используются. Следуйте этим советам:

  • Отключить режим ожидания и настройки быстрого запуска
  • Магазин электроники, сертифицированной ENERGY STAR
  • Уменьшение яркости экрана телевизоров и мониторов
  • Всегда выключайте электронику, когда она не используется
  • Выбирайте более энергоэффективные развлечения, такие как чтение и настольные игры

Прочитайте больше советов: Энергоэффективность в медиа-зале

Постоянный ток с прямой энергией

Когда вы подпишетесь на план энергопотребления от Direct Energy, вы получите советы и инструменты, которые позволят вам быть в курсе вашего энергопотребления и сэкономить на счете.

Статьи по теме

25 лучших быстрых и простых советов по энергосбережению

Энергоэффективность означает, что вы используете меньше энергии для выполнения той же работы, уменьшая потери энергии в вашем доме и экономя деньги.


3 способа повысить энергоэффективность дома

Снижение счета за электроэнергию может быть легко достигнуто за счет повышения энергоэффективности вашего дома.

Переход на светодиодные лампы, большая экономия энергии

Когда дело доходит до экономии энергии за счет модернизации дома, домовладельцы часто упускают из виду такие мелочи, как лампочки.

Общие сведения об электричестве | Reliant Energy

Глоссарий

Не отличите свой REP от своего TDSP? Никакого пота.Определенные ниже термины, связанные с энергетикой, часто встречаются в счетах за электроэнергию и контрактах. Понимание этих терминов поможет вам лучше рассчитывать свой счет и делать более разумный выбор энергии.

Чтобы найти определения терминов, более отвечающих вашим потребностям, прочтите наш целевой глоссарий для клиентов и отраслевой глоссарий.

Базовая плата
Фиксированная плата за электроэнергию, взимаемая каждый месяц независимо от количества использованных киловатт-часов (кВтч).

Базовая ставка
Фиксированная плата за потребленную электроэнергию в киловатт-часах, не зависящая от других сборов и / или корректировок.

Строительная оболочка
Конструктивные элементы (стены, крыша, пол, фундамент) здания, ограничивающего кондиционируемое пространство; оболочка здания.

Схема
Электроэнергия полного пути следует от источника через соединение с выходным устройством. Например: цепь может быть сделана от батареи (источника) через медный провод (соединение) к лампочке (выходному устройству) и обратно к батарее.

CFL (компактная люминесцентная лампа)
Люминесцентная лампа размером с обычную лампу накаливания разработана как энергоэффективная замена. По сравнению с лампами накаливания, которые излучают такое же количество видимого света, КЛЛ обычно служат как минимум в шесть раз дольше и используют не более четверти энергии эквивалентной лампы накаливания. Проводник Объект, который позволяет электрическому заряду легко течь. Примеры проводников — металл, соль, вода и шерсть.

Плата за подключение
Плата за подключение и запуск электроснабжения по определенному адресу.

Выбор клиента / выбор электроэнергии
На нерегулируемых розничных рынках электроэнергии, таких как Техас, выбор клиента означает, что вы можете выбрать поставщика электроэнергии (REP) и план электроснабжения в соответствии с вашими конкретными потребностями. В то время как только одна компания обслуживает опоры и провода, по которым подается электричество; многие компании конкурируют за продажу электроэнергии, проходящей через опоры и провода.В результате вы получаете конкурентные цены, лучшие варианты продуктов и более качественное обслуживание клиентов.

Стоимость доставки
Плата, взимаемая для покрытия затрат на доставку электричества в ваш дом.

Плата за отключение / повторное подключение
Плата, взимаемая поставщиком услуг передачи и распределения (TDSP) за отключение или повторное подключение электроэнергии.

Распределенная возобновляемая генерация (ДРГ)
Программа для клиентов, владеющих небольшими системами возобновляемой энергии, такими как солнечные батареи, и которые хотят продавать излишки электроэнергии обратно своей электроэнергетической компании.

Электрический ток
Мера количества переданного электрического заряда на единицу. Он представляет собой поток электронов через проводящий материал. Обычная единица измерения тока — ампер.

Электроэнергия
Способность электрического тока производить работу, тепло, свет или другие формы энергии. Измеряется в киловатт-часах.

Совет по надежности электроснабжения Техаса (ERCOT)
Крупнейшее государственное агентство по управлению электроэнергией, которое курирует электрическую сеть, которая получает электроэнергию от генераторов и распределяет ее по домам и предприятиям, использующим электрические сети.ERCOT обслуживает 23 миллиона клиентов из Техаса, что составляет 85 процентов электрической нагрузки штата и 75 процентов территории штата.

Идентификатор электросервиса (ESID)
Уникальный идентификатор, созданный для вашего счетчика вашим поставщиком услуг по передаче электроэнергии. Думайте об этом как об IP-адресе вашего счетчика.

Электроэнергетика
Электроэнергетическая компания, часто коммунальное предприятие, которая занимается производством, передачей и распределением электроэнергии.

Электросеть
Сеть линий электропередачи, подстанций и трансформаторов, доставляющая электроэнергию от поставщиков к потребителям.

Электричество
Подача электрического тока в дом или другое здание для отопления, освещения или питания приборов.

Спрос на электроэнергию
Количество электроэнергии, потребляемой в любой момент времени. Спрос растет и падает в течение дня в зависимости от времени суток и других факторов окружающей среды.

Отмена регулирования электроэнергетики
На дерегулированных розничных рынках электроэнергии, таких как Техас, дерегулирование электроэнергии означает, что вы можете выбрать поставщика электроэнергии и план электроснабжения, отвечающий вашим конкретным потребностям. В то время как только одна компания обслуживает опоры и провода, по которым подается электричество; многие компании конкурируют за продажу электроэнергии, проходящей через опоры и провода. В результате вы получаете конкурентные цены, лучшие варианты продуктов и более качественное обслуживание клиентов.

Табличка с фактическими данными об электроэнергии (EFL)
Документ в стандартизированном формате, требуемый Комиссией по коммунальным предприятиям Техаса, который предоставляет клиентам раскрывающую информацию о ценах, контрактах, источниках производства электроэнергии и выбросах розничных поставщиков электроэнергии.

Производство электроэнергии
Процесс производства электричества или количество электричества, произведенного путем преобразования других форм энергии, обычно выражаемое в киловатт-часах (кВтч) или мегаватт-часах (МВтч).

Потребление электроэнергии
В вашем счете за электроэнергию это количество электроэнергии, использованное в цикле выставления счетов, которое измеряется в киловатт-часах (кВтч).

Создание аварийного резервного копирования
Использование электрогенераторов только при перебоях в нормальном электроснабжении.

Энергоаудит
Обзор вашего дома или места работы, чтобы узнать, сколько энергии вы потребляете, и определить способы снижения энергопотребления.Аудит может быть проведен лично или путем изучения данных об использовании энергии в вашем доме или коммерческой собственности.

Энергетический заряд
Часть вашей общей платы за электроэнергию; общее количество киловатт-часов, потребленных в течение цикла выставления счетов, умноженное на цену, которую вы платите за киловатт-час.

Энергоэффективность
Использование меньшего количества энергии для обеспечения того же уровня производительности, комфорта и удобства. Целью энергоэффективности является снижение потребления энергии, что может привести к экономии затрат и меньшему воздействию на окружающую среду.

Этикетка EnergyGuide
Желтые и черные наклейки на бытовой технике, которые помогут вам сравнить энергопотребление аналогичных моделей во время совершения покупок. Правило маркировки бытовой техники Федеральной торговой комиссии требует, чтобы производители бытовой техники наносили следующие этикетки:

  • Холодильники, морозильники, посудомоечные машины, стиральные машины, телевизоры
  • Водонагреватели, топки, котлы
  • Центральные кондиционеры, комнатные кондиционеры, тепловые насосы
  • Обогреватели бассейна

Поставщик энергоуслуг
Энергетическая организация, предоставляющая услуги розничному или конечному потребителю.Также известен как Розничный поставщик электроэнергии .

Источник энергии
Основной источник питания. Энергия может быть преобразована в электричество химическими, механическими или другими способами. Общие источники энергии включают уголь, нефть, газ, воду, уран, ветер, солнечный свет, геотермальную энергию и т. Д.

ENERGY STAR ®
ENERGY STAR — это программа Агентства по охране окружающей среды США, которая помогает частным лицам и предприятиям экономить деньги и защищать окружающую среду за счет превосходной энергоэффективности.Продукты, отмеченные знаком ENERGY STAR, проходят независимую сертификацию на предмет энергосбережения без ущерба для функциональности.

ESI I.D. (идентификатор электросервиса)
Уникальный 17- или 22-значный номер на рынке ERCOT, присвоенный пункту поставки электроэнергии TDSP. Вы можете найти этот номер в своем счете за электроэнергию.

Фиксированная ставка
Вы платите определенную ставку за электроэнергию, обычно за киловатт-час (кВтч), за каждый расчетный цикл.В плане с фиксированной ставкой ставка останется неизменной на протяжении всего срока действия вашего контракта. Планы с переменным тарифом могут изменять тариф от одного платежного цикла к другому.

Ископаемое топливо
Природное топливо, образующееся в земле из остатков растений или животных, например нефть, уголь и природный газ.

Топливо
Любое вещество, которое можно использовать для производства энергии.

Поколение
Производство электроэнергии.В Техасе электричество производится несколькими способами, включая природный газ, уголь, атомную энергию, ветер, воду и солнечную энергию.

Генератор
Машина, преобразующая механическую энергию в электричество, чтобы служить источником энергии для других машин. В электрических генераторах электростанций используются водяные турбины, двигатели внутреннего сгорания, ветряные мельницы или другие источники механической энергии для вращения катушек с проволокой в ​​сильных магнитных полях, включая электрический потенциал в катушках.

Геотермальная энергия
Энергия, полученная за счет использования подземных резервуаров тепла, обычно вблизи вулканов или других горячих точек на поверхности Земли.

Галогенная лампа
Тип лампы накаливания, который служит намного дольше и более энергоэффективен, чем обычная лампа накаливания. В лампе используется газообразный галоген, обычно йод или бром, который вызывает повторное осаждение испаряющегося вольфрама на нити накала, тем самым продлевая срок ее службы.

Гидроэнергетика
Гидроэлектроэнергия или гидроэлектроэнергия — это электричество, получаемое путем использования энергии воды, текущей вниз с высокого уровня. Это вневременной и возобновляемый ресурс. Огромные генераторы преобразуют потенциальную энергию падающей или быстро движущейся воды в электрическую.

HVAC
Аббревиатура для системы отопления, вентиляции и кондиционирования воздуха, которая представляет собой систему или системы, которые кондиционируют воздух в здании.

Лампа накаливания
Стеклянный корпус, излучающий свет, когда вольфрамовая нить нагревается электрическим током, так что она светится. Большая часть энергии преобразуется в тепло; Следовательно, этот класс ламп является относительно неэффективным источником света. В эту категорию входят знакомые ввинчиваемые лампы накаливания, а также несколько более эффективные лампы, такие как вольфрамовые галогенные лампы, рефлекторные или r-лампы, лампы с параболическим алюминированным рефлектором (PAR) и лампы с эллипсоидальным рефлектором (ER).

Лампы накаливания
Лампа накаливания или лампа — это источник электрического света, производимый нитью накала, нагретой электрическим током. Правительства во всем мире постепенно отказываются от ламп накаливания в пользу более энергоэффективных альтернатив освещения, таких как компактные люминесцентные лампы (КЛЛ).

Киловатт (кВт)
Стандартная единица измерения электрической энергии (1000 Вт = 1 кВт).

Киловатт-час (кВтч)
Единица или мера подачи или потребления электроэнергии, равная 1 000 Вт, работающая в течение одного часа.Пример: 1 кВтч = десять лампочек мощностью 100 Вт, все горящие одновременно в течение одного часа; 10 лампочек x 100 Вт каждая x 1 час = 1 кВт · ч

Местная проводная компания
Компания, которая передает и доставляет электроэнергию в дом или офис клиента по электрическим столбам и проводам. Местная проводная компания отвечает за техническое обслуживание и ремонт этих столбов и проводов и также называется поставщиком услуг передачи и распределения (TDSP).

люмен
Единица измерения световой энергии.В частности, люмены измеряют количество света, излучаемого лампой во всех направлениях.

Метр
Устройство, измеряющее количество электроэнергии, потребляемой домом, бизнесом или устройством с электрическим приводом. Энергетические компании снимают показания счетчиков, чтобы определить, сколько электроэнергии потребил каждый потребитель. Типы счетчиков электроэнергии включают цифровые счетчики и интеллектуальные счетчики.

Атомная энергетика
Энергия, получаемая при расщеплении атомов в ядерном реакторе.

Вне нагрузки
Период относительно низкого системного спроса на электроэнергию. Эти периоды часто бывают ежедневными, еженедельными и сезонными. Использование технологии интеллектуальных счетчиков позволило электроэнергетическим компаниям предлагать новые продукты, которые используют преимущества непиковых периодов ценообразования

На пике
Периоды относительно высокого спроса системы на электроэнергию. Эти периоды часто бывают ежедневными, еженедельными и сезонными.

Переносной генератор
Переносные генераторы служат источником резервного питания во время отключения электроэнергии.Типы портативных генераторов включают работающие на природном газе, пропане и бензине.

Предоплаченные планы
Предоплаченные планы электроснабжения предоставляют электроэнергию с оплатой по факту использования. Эти планы предлагают клиентам свободу решать, сколько электроэнергии покупать, в отличие от традиционного плана, при котором счет выставляется в конце цикла выставления счетов. Клиенты могут выбрать регулярные платежи и не беспокоиться о сокращении остатков на счетах.

Комиссия по коммунальным предприятиям Техаса (PUC)
Государственное агентство, ответственное за регулирование и надзор за электричеством и местными телекоммуникационными услугами в Техасе. При выборе электроэнергии PUC регулирует подачу электроэнергии и обеспечивает защиту потребителей.

R-значение
Мера сопротивления изоляционного или строительного материала тепловому потоку, выражаемая как R-11, R-20 и т. Д. Чем выше значение R, тем выше сопротивление тепловому потоку и лучше изоляционные свойства.

Сияющий барьер
Тонкий светоотражающий лист фольги, отражающий лучистое тепло обратно к его источнику. Обычно устанавливаемые на чердаках или в качестве обертки дома, лучистые барьеры уменьшают приток тепла летом и потери тепла зимой, что приводит к снижению энергопотребления.

Оценить
Сумма, которую вы платите за электроэнергию, — это тариф, обычно это сумма за киловатт-час (кВтч).

Возобновляемая энергия
Электроэнергия производится из ресурсов, которые зависят от источников топлива, которые восстанавливаются за короткие периоды времени.Эти источники топлива включают солнце, ветер, движущуюся воду, органические растения и отходы (биомассу), а также тепло земли (геотермальные источники).

Розничный поставщик электроэнергии (REP)
В Техасе REP — это компания, которая продает электроэнергию потребителям и отвечает за отправку ежемесячных счетов за электроэнергию.

Солнечная энергия
Тепловое излучение солнца, которое преобразуется в электрическую энергию.

Умная энергия
Термин «умная энергия» происходит от философии использования наиболее экономичного подхода к удовлетворению ваших потребностей в электроэнергии при минимальном воздействии на окружающую среду.Решения Reliant Smart Energy — это инновационные и содержательные планы, продукты и услуги, которые позволяют нашим клиентам, имеющим интеллектуальные счетчики, контролировать потребление электроэнергии.

Умный дом
Дом, оборудованный осветительными, отопительными и электронными устройствами, которыми можно управлять дистанционно с телефона или компьютера. В умных домах используются различные инструменты, которые делают жизнь жителей проще и эффективнее, а также оказывают меньшее воздействие на окружающую среду.

Умный счетчик
Тип счетчика электроэнергии, который обеспечивает постоянную удаленную двустороннюю связь и хранение информации.Интеллектуальные счетчики записывают и сохраняют ваше потребление электроэнергии с 15-минутными интервалами и передают эту информацию об использовании в вашу местную компанию . В отличие от традиционных электросчетчиков, которые измеряют только общее потребление, умные счетчики показывают, когда была израсходована энергия.

Тепловой
Повышающийся воздушный поток, вызванный нагревом от подстилающей поверхности.

Трансформатор
Устройство, используемое для передачи электроэнергии из одной цепи в другую.

T поставщик услуг передачи и распределения (TDSP)
Местная проводная компания, ответственная за опоры и провода, по которым передается и доставляется электричество в ваш дом или офис. TDSP несут ответственность за техническое обслуживание и ремонт этих столбов и проводов.

Использование
Количество электроэнергии, которое вы использовали в течение указанного расчетного периода, в киловатт-часах (кВтч). Это указано в вашем счете за электроэнергию как использованное количество кВт / ч.

Переменная скорость
С тарифным планом на электроэнергию с переменной ставкой ставка, которую вы платите, может повышаться или понижаться в зависимости от ежемесячных изменений на рынке.

Вольт
Единица измерения силы, используемой для выработки электрического тока. Также толчок или сила, которая перемещает электрический ток через проводник.

Вт
Устройство, измеряющее электрическую мощность. 1 кВт = 1000 Вт. 1 мегаватт (МВт) = 1000000 ватт

Генераторы для всего дома
Генераторы для всего дома — это постоянное решение, позволяющее избежать угрозы отключения электроэнергии.Генераторы для всего дома (или резервные) требуют профессиональной установки.

Ветровая энергия
Форма преобразования энергии, при которой турбины преобразуют кинетическую энергию ветра в электрическую энергию, которая может использоваться для выработки электроэнергии.

Ветряная турбина
Устройство, которое преобразует кинетическую энергию ветра, также называемую энергией ветра, в механическую энергию в процессе, известном как энергия ветра.

Наверх ⌃

U.Потребление электроэнергии в США упадет до рекордного уровня в 2020 году из-за коронавируса

(Рейтер) — потребление электроэнергии в США упадет на рекордные 4,6% в 2020 году из-за закрытия предприятий из-за блокирования правительством для замедления распространения коронавируса, Управление энергетической информации США (EIA) сообщило в своем краткосрочном прогнозе на этой неделе.

EIA прогнозирует, что общий спрос на электроэнергию в США упадет до 3716 миллиардов киловатт-часов (кВтч) в 2020 году с 3896 миллиардов киловатт-часов в 2019 году, а затем вырастет до 3753 миллиардов киловатт-часов в 2021 году.

Это сопоставимо с рекордным показателем в 4,003 млрд кВтч в 2018 году, согласно федеральным данным, начиная с 1949 года.

Если потребление электроэнергии упадет, как ожидалось в 2020 году, это будет впервые с 2012 года, когда общий спрос снизится два года подряд.

EIA прогнозирует, что продажи электроэнергии коммерческому и промышленному секторам упадут на 6,5% в 2020 году с 2019 года, поскольку многие офисы закрываются, а фабрики закрываются или работают с пониженной производительностью.

Продажи электроэнергии жилому сектору, тем временем, снизятся только примерно на 1%.3% в 2020 году по сравнению с 2019 годом, прогнозируется EIA, поскольку сокращение использования отопления и кондиционирования воздуха из-за более мягкой погоды зимой и летом компенсируется увеличением потребления домашних хозяйств, когда многие люди остаются дома.

В то время как в 2018 году как жилой, так и коммерческий секторы потребили рекордные объемы электроэнергии — 1,469 млрд кВтч и 1382 млрд кВтч соответственно, промышленный сектор установил рекордный рекорд в 1064 млрд кВтч в 2000 году.

На еженедельной основе, Edison Electric Institute (EEI), отраслевая лоббистская группа, заявила У.Спрос на электроэнергию в Южной Африке упал до почти 17-летнего минимума в течение недели 18 апреля.

Ежедневно, по данным EIA, закрытие предприятий из-за пандемии привело к падению спроса на электроэнергию в будние дни в марте и апреле на 9% -13%. в центральном регионе США и 11% -14% в Нью-Йорке, наиболее пострадавшем штате с наибольшим количеством случаев коронавируса.

Из 1,364 миллиона случаев коронавируса в США 13 мая около четверти из них, или примерно 337000, были зарегистрированы в штате Нью-Йорк, согласно данным U.S. Центры по контролю и профилактике заболеваний.

Отчет Скотта ДиСавино; Редакция Дэвида Грегорио

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *