Коллекторные электродвигатели переменного тока устройство описание: Коллекторный двигатель переменного тока: схема подключения

Содержание

Коллекторный двигатель переменного тока: схема подключения

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

Особенности конструкции и принцип действия

По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали.

Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными, благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил.

Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора,
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя,
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления,
  • в результате ротор вращается равномерно при любых нагрузках,
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты,
  • увеличенный пусковой момент, «универсальность» работа на переменном и постоянном напряжении,
  • быстрота и независимость от частоты сети,
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

  • снижение долговечности механизма,
  • искрение между и коллектором и щетками,
  • повышенный уровень шумов,
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

Коллекторный электродвигатель — Википедия

Колле́кторный электродви́гатель — электрическая машина, в которой датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Разновидности

Коллекторный электродвигатель постоянного тока

Самые маленькие двигатели данного типа (единицы Ватт) содержат в корпусе:

  • трёхполюсной ротор на подшипниках скольжения;
  • коллекторный узел из двух щёток — медных пластин;
  • двухполюсной статор из постоянных магнитов.

Применяются, в основном, в детских игрушках (рабочее напряжение 3-9 вольт).

Более мощные двигатели (десятки Ватт), как правило, имеют

  • многополюсный ротор на подшипниках качения;
  • коллекторный узел из четырёх графитовых щёток;
  • четырёхполюсный статор из постоянных магнитов.

Именно такой конструкции большинство электродвигателей в современных автомобилях (рабочее напряжение 12 или 24 Вольт): привод вентиляторов систем охлаждения и вентиляции, «дворников», насосов омывателей.

Способы возбуждения коллекторных двигателей

Двигатели мощностью в сотни Ватт, в отличие от предыдущих, содержат четырёхполюсный статор из электромагнитов. Свойства электродвигателей во многом объясняется способом, которым обмотки статора могут подключаться относительно якоря:

  • последовательно с якорем (так называемое последовательное возбуждение),
  • параллельно с якорем (параллельное возбуждение)
  • отдельным источником питания (независимое возбуждение)
  • часть обмоток параллельно с якорем , часть последовательно (смешанное возбуждение)

Электродвигатель постоянного тока с независимым возбуждением

В этом электродвигателе обмотка якоря подключена к основному источнику постоянного тока (сети постоянного тока, генератору или выпрямителю), а обмотка возбуждения — к вспомогательному источнику. В цепь обмотки возбуждения включен регулировочный реостат, а в цепь обмотки якоря — пусковой реостат.

Регулировочный реостат служит для регулирования частоты вращения якоря двигателя, а пусковой — для ограничения тока в обмотке якоря при пуске. Характерной особенностью электродвигателя является то, что его ток возбуждения не зависит от тока в обмотке якоря (тока нагрузки). Поэтому можно приближенно считать, что и магнитный поток двигателя не зависит от нагрузки. Зависимости момента и частоты вращения от тока будут линейными: момент прямо пропорционален току нагрузки и линейно снижается с ростом частоты вращения. В цепь обмотки возбуждения никаких выключателей и предохранителей не устанавливают, так как при разрыве этой цепи резко уменьшается магнитный поток электродвигателя, и возникает аварийный режим. Если электродвигатель работает при холостом ходе или небольшой нагрузке на валу, то частота вращения резко возрастает (двигатель идет вразнос). При этом сильно увеличивается ток в обмотке якоря и может возникнуть круговой огонь. Во избежание этого защита должна отключить электродвигатель от источника питания.
Резкое увеличение частоты вращения при обрыве цепи обмотки возбуждения объясняется тем, что в этом случае резко уменьшаются магнитный поток, э. д. с., и возрастает ток. А так как приложенное напряжение остается неизменным, то частота вращения будет увеличиваться до тех пор, пока э. д. с. не достигнет значения, приблизительно равного напряжению питания, что необходимо для равновесного состояния электрической цепи якоря. При нагрузке на валу, близкой к номинальной, электродвигатель в случае разрыва цепи возбуждения остановится, так как электромагнитный момент, который может развить двигатель при значительном уменьшении магнитного потока, уменьшается и станет меньше нагрузочного момента на валу. В этом случае так же резко увеличивается ток, обмотка может выйти из строя из-за перегрева.

Электродвигатель постоянного тока с параллельным возбуждением

Здесь обмотки возбуждения и якоря питаются от одного и того же источника электрической энергии с напряжением. В цепь обмотки возбуждения включен регулировочный реостат, а в цепь обмотки якоря — пусковой реостат. В рассматриваемом электродвигателе имеет место, по существу, раздельное питание цепей обмоток якоря и возбуждения, вследствие чего ток возбуждения не зависит от тока обмотки якоря. Поэтому электродвигатель с параллельным возбуждением будет иметь такие же характеристики, как и двигатель с независимым возбуждением. Однако двигатель с параллельным возбуждением работает нормально только при питании от источника постоянного тока с неизменным напряжением.

Электродвигатель постоянного тока с последовательным возбуждением

Обмотка возбуждения включена последовательно с якорем. Для ограничения тока при пуске в цепь обмотки якоря может быть включен пусковой реостат, а для регулирования частоты вращения параллельно обмотке возбуждения может быть включен регулировочный реостат. Характерной особенностью этого электродвигателя является то, что его ток возбуждения равен или пропорционален (при включении реостата) току обмотки якоря, поэтому магнитный поток зависит от нагрузки двигателя. При токе обмотки якоря, меньшем 0,8—0,9 номинального тока, магнитная система машины не насыщена, и можно считать, что магнитный поток изменяется прямо пропорционально току. Поэтому скоростная характеристика электродвигателя будет мягкая — с увеличением тока частота вращения будет резко уменьшаться. Уменьшение частоты вращения, происходит из-за увеличения падения напряжения во внутреннем сопротивлении цепи обмотки якоря, а также из-за увеличения магнитного потока. Электромагнитный момент при увеличении тока будет резко возрастать, так как в этом случае увеличивается и магнитный поток, поэтому при токе, меньшем 0,8-0,9 номинального, скоростная характеристика имеет форму гиперболы, а моментная — параболы.

Если ток больше номинального, зависимости момента и скорости вращения от тока линейны, так как в этом режиме магнитная цепь будет насыщена и магнитный поток при изменении тока меняться не будет.

Механическая характеристика рассматриваемого двигателя мягкая и имеет гиперболический характер. При малых нагрузках магнитный поток сильно уменьшается, частота вращения резко возрастает и может превысить максимально допустимое значение (двигатель идет вразнос). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода и при небольшой нагрузке (различные станки, транспортеры и пр.).

Обычно минимально допустимая нагрузка для двигателей большой и средней мощности составляет 0,2 …. 0,25 номинальной. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой), применение ременной передачи или фрикционной муфты недопустимо, т.к. при обрыве ремня двигатель может выйти из строя.

Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют, особенно там, где имеют место изменения нагрузочного момента в широких пределах и тяжелые условия пуска: во всех тяговых приводах (электровозы, тепловозы, электропоезда, электрокары, электропогрузчики и пр. ), а также в приводах грузоподъемных механизмов (краны, лифты и пр.).

Объясняется это тем, что при мягкой характеристике увеличение нагрузочного момента приводит к меньшему возрастанию тока и потребляемой мощности, чем у двигателей с независимым и параллельным возбуждением, поэтому двигатели с последовательным возбуждением лучше переносят перегрузки. Кроме того, эти двигатели имеют больший пусковой момент, чем двигатели с параллельным и независимым возбуждением, так как при увеличении тока обмотки якоря при пуске соответственно увеличивается и магнитный поток.

Электродвигатель постоянного тока со смешанным возбуждением

В этом электродвигателе магнитный поток создается в результате совместного действия двух обмоток возбуждения — параллельной (или независимой) и последовательной.

Механическая характеристика электродвигателя со смешанным возбуждением располагается между характеристиками двигателей с параллельным и последовательным возбуждением. Достоинством двигателя постоянного тока со смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе. В этом режиме частота вращения его якоря определяется магнитным потоком параллельной обмотки и имеет ограниченное значение (двигатель не идет вразнос)[1].

Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.

К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы. Это утверждение не вполне верно, но обоснованно. Электрическая машина, построенная на низкую скорость, вообще имеет заниженный КПД и связанные с ним проблемы охлаждения. Скорее всего проблема такова, что изящных решений для неё нет.

Универсальный коллекторный электродвигатель

Схема одного из вариантов УКД. Допускается работа и от постоянного, и от переменного тока

Универсальный коллекторный электродвигатель (УКД) — разновидность коллекторной машины постоянного тока, которая может работать и на постоянном, и на переменном токе[2]. Получил большое распространение в ручном электроинструменте и в некоторых видах бытовой техники из-за малых размеров, малого веса, лёгкости регулирования оборотов, относительно низкой цены. Широко использовался на железных дорогах Европы и США как тяговый электродвигатель.

Особенности конструкции

Строго говоря, универсальный коллекторный электродвигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону. На самом деле там есть небольшой фазовый сдвиг, обуславливающий появление противонаправленного момента, но он невелик, симметрирование обмоток не только улучшает условия коммутации, но и уменьшает этот момент. (М. П. Костенко, «Электрические машины»). Для нужд железных дорог строились специальные подстанции переменного тока низкой частоты — 16 Гц в Европе, в США же частота 25 Гц была одной из стандартных (наряду с 60 Гц) до 50-х годов XX века. В 50-х годах XX века германо-французскому консорциуму производителей электрических машин удалось построить однофазную тяговую машину промышленной частоты (50 Гц). По данным М. П. Костенко «Электрические машины», электровоз с однофазными коллекторными машинами на 50 Гц испытывался в СССР, где получил восторженно-отрицательную оценку специалистов.[источник не указан 2122 дня].

Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин. Подмножеством коллекторных машин переменного тока (КМПТ) являются машины «пульсирующего тока», полученного путём выпрямления тока однофазной цепи без сглаживания пульсаций (железная дорога).

Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3-5 от номинального (против 5-10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Сложной проблемой является вопрос коммутации мощной коллекторной машины переменного тока. В момент коммутации (прохождение секцией нейтрали) сцепленное с секцией якоря (ротора) магнитное поле меняет своё направление на противоположное, что вызывает генерацию в секции так называемой реактивной ЭДС. Так обстоит дело в случае с постоянным током. В КМПТ реактивная ЭДС также имеет место. Но так как якорь (ротор) находится в пульсирующем во времени магнитном поле статора, в коммутируемой секции дополнительно имеет место ещё и трансформаторная ЭДС. Её амплитуда будет максимальна в момент пуска машины, пропорционально снижаться по мере приближения к скорости синхронизма (в точке синхронизма она обратится в нуль) и далее по мере разгона машины вновь будет пропорционально возрастать. Проблема коммутации КМПТ может быть решена следующим образом:

  • Стремление при проектировании к одновитковой секции (уменьшение потока сцепления).
  • Увеличение активного сопротивления секции. Наиболее перспективными по данным М. П. Костенко являются резисторы в «петушках» коллекторых пластин, где они хорошо охлаждаются.
  • Активная подшлифовка коллектора щётками максимальной твёрдости (высокий износ) подгорающего коллектора из-за тяжелых условий коммутации; и максимально возможного сопротивления как средство гашения реактивной и трансформаторной ЭДС коммутируемой секции.
  • Использование добавочных полюсов с последовательными обмотками для компенсации реактивной ЭДС и параллельной — для компенсации трансформаторной ЭДС. Но так как величина трансформаторной ЭДС представляет собой функцию от угловой скорости (якоря) ротора и тока намагничивания машины, то такие обмотки нуждаются в системе подчинённого регулирования, не разработанной по сегодняшний день.
  • Применение питающих цепей низкой частоты. Популярные частоты 16 и 25 Гц.

Реверсирование УКД осуществляется переключением полярности включения обмоток только статора или только ротора.

Достоинства и недостатки

Сравнение приведено для случая подключения к бытовой однофазной электрической сети 220 вольт 50 Гц. и одинаковой мощности двигателей. Разница в механических характеристиках двигателей («мягкость-жёсткость», максимальный момент) может быть как достоинством, так и недостатком в зависимости от требований к приводу.

Сравнение с коллекторным двигателем постоянного тока

Достоинства:

  • Прямое включение в сеть, без дополнительных компонентов (для двигателя постоянного тока требуется, как минимум, выпрямление).
  • Меньший пусковой (перегрузочный) ток (и момент), что предпочтительнее для бытовых устройств.
  • Проще управляющая схема (при её наличии) — тиристор (или симистор) и реостат. При выходе из строя электронного компонента двигатель (устройство) остаётся работоспособным, но включается сразу на полную мощность.

Недостатки:

  • Меньший общий КПД из-за потерь на индуктивность и перемагничивание статора.
  • Меньший максимальный момент (может быть недостатком).
Сравнение с асинхронным двигателем

Достоинства:

  • Быстроходность и отсутствие привязки к частоте сети.
  • Компактность (даже с учётом редуктора).
  • Больший пусковой момент.
  • Автоматическое пропорциональное снижение оборотов (практически до нуля) и увеличение момента при увеличении нагрузки (при неизменном напряжении питания) — «мягкая» характеристика.
  • Возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения.

Недостатки:

  • Нестабильность оборотов при изменении нагрузки (где это имеет значение).
  • Наличие щёточно-коллекторного узла и в связи с этим:
    • Относительно малая надёжность (срок службы: тяжёлые условия коммутации обуславливают использование максимально твердых щёток, что снижает ресурс).
    • Сильное искрение на коллекторе из-за коммутации переменного тока и связанные с этим радиопомехи.
    • Высокий уровень шума.
    • Относительно большое число деталей коллектора (и, соответственно, двигателя).

Следует отметить, что в современных бытовых устройствах ресурс электродвигателя (щёточно-коллекторного узла) сопоставим с ресурсом рабочих органов и механических передач.

Двигатели (УКД и асинхронный) одной и той же мощности, независимо от номинальной частоты асинхронного двигателя, имеют разную механическую характеристику:

  • УКД — «мягкая» характеристика, момент прямо, а обороты обратно пропорциональны нагрузке на валу (потребляемой мощности) — практически линейно — от режима холостого хода до режима полного торможения. Номинальный момент выбирается примерно в 3-5 раз меньшим максимального. Обороты холостого хода ограничиваются только потерями в двигателе и могут разрушить мощный двигатель при включении его без нагрузки.
  • Асинхронный двигатель — «вентиляторная» характеристика — двигатель поддерживает близкую к номинальной частоту вращения, резко (десятки процентов) увеличивая момент при незначительном повышении нагрузки на валу и снижении оборотов (единицы процентов). При значительном снижении оборотов (до точки критического момента) момент двигателя не только не растёт, а падает до нуля, что вызывает полную остановку. Обороты холостого хода постоянны и слегка превышают номинальные.
  • Однофазный асинхронный двигатель предлагает дополнительный «букет» проблем, связанных с запуском, так как в нормальных условиях пускового момента не развивает. Пульсирующее во времени магнитное поле однофазного статора математически разлагается на два противофазных поля, делающих невозможным пуск без различных ухищрений:
    • расщепление фазы
    • создающая искусственную фазу ёмкость
    • создающую искусственную фазу активное сопротивление

Вращающееся в противофазе поле теоретически снижает максимальный КПД однофазного асинхронного двигателя до 50-60 % из-за потерь в перенасыщенной магнитной системе и активных потерь в обмотках, которые нагружаются токами «противополя». Фактически, на одном валу «сидят» две электрические машины, одна из которых работает в двигательном режиме, а вторая — в режиме противовключения.

Механическая характеристика в первую очередь и обуславливает (разные) области применения данных типов двигателей.

Из-за малых оборотов, ограниченных частотой сети переменного тока, асинхронные двигатели той же мощности имеют значительно бо́льшие вес и размеры, чем УКД. Если асинхронный двигатель запитывается от преобразователя (инвертора) с высокой частотой, то вес и размеры обеих машин становятся соизмеримы. При этом остаётся жёсткость механической характеристики, добавляются потери на преобразование тока и, как следствие увеличения частоты, повышаются индуктивные и магнитные потери (снижается общий КПД).

Аналоги бесколлекторного узла

Ближайшим аналогом УКД по механической характеристике является бесколлекторный электродвигатель (вентильный электродвигатель, в котором электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР).

Электронным аналогом универсального коллекторного двигателя является система: выпрямитель (мост), синхронный электродвигатель с датчиком углового положения ротора (датчик угла) и инвертором (другими словами — вентильный электродвигатель с выпрямителем).

Однако из-за применения постоянных магнитов в роторе максимальный момент вентильного двигателя при тех же габаритах будет меньше.

См. также

Ссылки, примечания

Как работает коллекторный двигатель постоянного тока

Добавлено 4 июля 2019 в 15:29

Сохранить или поделиться

Узнайте все преимущества и недостатки коллекторного электродвигателя для вашего проекта.

Если вы работаете над проектом, в котором есть движущаяся часть, вы, вероятно, будете искать двигатель, чтобы сделать это движение возможным. В этой серии статей мы рассмотрим наиболее популярные типы двигателей, которые используют разработчики. Прежде всего, это коллекторный двигатель постоянного тока.

Чтобы узнать, для каких проектов лучше всего подходят коллекторные двигатели постоянного тока, ознакомьтесь с обзором:

Самый простой тип электродвигателя (и самый распространенный) – это коллекторный двигатель постоянного тока. Вы можете найти этот двигатель везде. В вашем телефоне, вероятно, тоже есть один, обеспечивающий функцию вибрации. Коллекторные двигатели постоянного тока используются практически в любой движущейся игрушке. Аккумуляторные дрели работают на коллекторных двигателях постоянного тока.

Коллекторные двигатели постоянного тока используются везде: в игрушках, в чем-либо с вибрирующим мотором, в таких обычных инструментах, как аккумуляторные дрели.

Как они работают?

Коллекторные двигатели постоянного тока представляют собой простые устройства, состоящие из нескольких частей.

Коллекторные двигатели постоянного тока состоят всего из нескольких основных частей.

Вокруг корпуса двигателя расположены магниты статора. Это постоянные магниты, положительные с одной стороны и отрицательные с другой. В середине двигателя, соединенного с валом двигателя, находятся, по меньшей мере, три проволочных обмотки, соединенных с металлическими пластинами, которые называются якорем.

На противоположной от вала двигателя стороне обмоток расположен коллектор (от которого в русскоязычном варианте этот тип двигателя получил свое название) – пара металлических пластин, прикрепленных к обмоткам. Наконец, щетки (в англоязычном варианте этот тип двигателя называется «brushed», «щеточный») также расположены на стороне двигателя, противоположной валу двигателя.

Щетки создают физический контакт с коллектором. Когда на щетки подается постоянное напряжение, это напряжение передается на коллектор, который, в свою очередь, питает обмотки. Это входное напряжение генерирует магнитное поле вокруг якоря.

Левая сторона якоря отталкивается от левого магнита статора в направлении магнита справа. А правая сторона якоря отталкивается от правого магнита влево.

При постоянном изменении полярности магнитного поля вокруг якоря вал будет постоянно вращаться.

Достоинства коллекторных двигателей постоянного тока

Недорогие

Коллекторные двигатели постоянного тока производятся большими сериями и широко используются, что делает их дешевле других типов электродвигателей.

Простота управления

Чтобы заставить двигатель вращаться, просто подайте постоянное напряжение. Более высокое напряжение (или более высокий коэффициент заполнения, или более низкая скважность, ШИМ сигнала) заставит двигатель работать быстрее. Изменение полярности напряжения изменит направление вращения. Коллекторные двигатели постоянного тока даже не нуждаются в использовании микроконтроллера, вы можете запустить их, просто подключив к аккумулятору.

Высокий начальный крутящий момент

Коллекторные двигатели постоянного тока выдают высокий крутящий момент на низких скоростях. Это важно, потому что этот высокий начальный крутящий момент позволяет электродвигателю быстро набирать скорость, даже если у двигателя есть нагрузка.

Оценка характеристик коллекторных двигателей постоянного тока.

Недостатки коллекторных двигателей постоянного тока

Быстрый износ

Поскольку щетки физически трутся об коллектор, они со временем изнашиваются. Следовательно, по сравнению с другими типами электродвигателей, коллекторные двигатели постоянного тока изнашиваются быстрее.

Много электрического шума

Внутри коллекторного двигателя постоянного тока между щетками и коллектором образуются электрические дуги. Это вызывает много электрического шума, что не очень хорошо для микроконтроллеров или датчиков, работающих в этой же системе.

Ограниченная максимальная скорость

Физический контакт между щетками и коммутатором во время работы означает, что между этими двумя частями есть трение. Там, где есть трение, есть тепло. Коллекторные двигатели постоянного тока имеют ограниченную максимальную скорость, потому что слишком высокая скорость может привести к нагреву, способному нанести повреждения.

Оригинал статьи:

Теги

ДвигательДвигатель постоянного токаКоллекторный двигатель постоянного токаЭлектродвигатель

Сохранить или поделиться

Коллекторный электродвигатель — Википедия. Что такое Коллекторный электродвигатель

Колле́кторный электродви́гатель — электрическая машина, в которой датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Разновидности

Коллекторный электродвигатель постоянного тока

Самые маленькие двигатели данного типа (единицы Ватт) содержат в корпусе:

  • трёхполюсной ротор на подшипниках скольжения;
  • коллекторный узел из двух щёток — медных пластин;
  • двухполюсной статор из постоянных магнитов.

Применяются, в основном, в детских игрушках (рабочее напряжение 3-9 вольт).

Более мощные двигатели (десятки Ватт), как правило, имеют

  • многополюсный ротор на подшипниках качения;
  • коллекторный узел из четырёх графитовых щёток;
  • четырёхполюсный статор из постоянных магнитов.

Именно такой конструкции большинство электродвигателей в современных автомобилях (рабочее напряжение 12 или 24 Вольт): привод вентиляторов систем охлаждения и вентиляции, «дворников», насосов омывателей.

Способы возбуждения коллекторных двигателей

Двигатели мощностью в сотни Ватт, в отличие от предыдущих, содержат четырёхполюсный статор из электромагнитов. Свойства электродвигателей во многом объясняется способом, которым обмотки статора могут подключаться относительно якоря:

  • последовательно с якорем (так называемое последовательное возбуждение),
  • параллельно с якорем (параллельное возбуждение)
  • отдельным источником питания (независимое возбуждение)
  • часть обмоток параллельно с якорем , часть последовательно (смешанное возбуждение)

Электродвигатель постоянного тока с независимым возбуждением

В этом электродвигателе обмотка якоря подключена к основному источнику постоянного тока (сети постоянного тока, генератору или выпрямителю), а обмотка возбуждения — к вспомогательному источнику. В цепь обмотки возбуждения включен регулировочный реостат, а в цепь обмотки якоря — пусковой реостат. Регулировочный реостат служит для регулирования частоты вращения якоря двигателя, а пусковой — для ограничения тока в обмотке якоря при пуске. Характерной особенностью электродвигателя является то, что его ток возбуждения не зависит от тока в обмотке якоря (тока нагрузки). Поэтому можно приближенно считать, что и магнитный поток двигателя не зависит от нагрузки. Зависимости момента и частоты вращения от тока будут линейными: момент прямо пропорционален току нагрузки и линейно снижается с ростом частоты вращения. В цепь обмотки возбуждения никаких выключателей и предохранителей не устанавливают, так как при разрыве этой цепи резко уменьшается магнитный поток электродвигателя, и возникает аварийный режим. Если электродвигатель работает при холостом ходе или небольшой нагрузке на валу, то частота вращения резко возрастает (двигатель идет вразнос). При этом сильно увеличивается ток в обмотке якоря и может возникнуть круговой огонь. Во избежание этого защита должна отключить электродвигатель от источника питания. Резкое увеличение частоты вращения при обрыве цепи обмотки возбуждения объясняется тем, что в этом случае резко уменьшаются магнитный поток, э. д. с., и возрастает ток. А так как приложенное напряжение остается неизменным, то частота вращения будет увеличиваться до тех пор, пока э. д. с. не достигнет значения, приблизительно равного напряжению питания, что необходимо для равновесного состояния электрической цепи якоря. При нагрузке на валу, близкой к номинальной, электродвигатель в случае разрыва цепи возбуждения остановится, так как электромагнитный момент, который может развить двигатель при значительном уменьшении магнитного потока, уменьшается и станет меньше нагрузочного момента на валу. В этом случае так же резко увеличивается ток, обмотка может выйти из строя из-за перегрева.

Электродвигатель постоянного тока с параллельным возбуждением

Здесь обмотки возбуждения и якоря питаются от одного и того же источника электрической энергии с напряжением. В цепь обмотки возбуждения включен регулировочный реостат, а в цепь обмотки якоря — пусковой реостат. В рассматриваемом электродвигателе имеет место, по существу, раздельное питание цепей обмоток якоря и возбуждения, вследствие чего ток возбуждения не зависит от тока обмотки якоря. Поэтому электродвигатель с параллельным возбуждением будет иметь такие же характеристики, как и двигатель с независимым возбуждением. Однако двигатель с параллельным возбуждением работает нормально только при питании от источника постоянного тока с неизменным напряжением.

Электродвигатель постоянного тока с последовательным возбуждением

Обмотка возбуждения включена последовательно с якорем. Для ограничения тока при пуске в цепь обмотки якоря может быть включен пусковой реостат, а для регулирования частоты вращения параллельно обмотке возбуждения может быть включен регулировочный реостат. Характерной особенностью этого электродвигателя является то, что его ток возбуждения равен или пропорционален (при включении реостата) току обмотки якоря, поэтому магнитный поток зависит от нагрузки двигателя. При токе обмотки якоря, меньшем 0,8—0,9 номинального тока, магнитная система машины не насыщена, и можно считать, что магнитный поток изменяется прямо пропорционально току. Поэтому скоростная характеристика электродвигателя будет мягкая — с увеличением тока частота вращения будет резко уменьшаться. Уменьшение частоты вращения, происходит из-за увеличения падения напряжения во внутреннем сопротивлении цепи обмотки якоря, а также из-за увеличения магнитного потока. Электромагнитный момент при увеличении тока будет резко возрастать, так как в этом случае увеличивается и магнитный поток, поэтому при токе, меньшем 0,8-0,9 номинального, скоростная характеристика имеет форму гиперболы, а моментная — параболы.

Если ток больше номинального, зависимости момента и скорости вращения от тока линейны, так как в этом режиме магнитная цепь будет насыщена и магнитный поток при изменении тока меняться не будет.

Механическая характеристика рассматриваемого двигателя мягкая и имеет гиперболический характер. При малых нагрузках магнитный поток сильно уменьшается, частота вращения резко возрастает и может превысить максимально допустимое значение (двигатель идет вразнос). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода и при небольшой нагрузке (различные станки, транспортеры и пр.).

Обычно минимально допустимая нагрузка для двигателей большой и средней мощности составляет 0,2 …. 0,25 номинальной. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой), применение ременной передачи или фрикционной муфты недопустимо, т.к. при обрыве ремня двигатель может выйти из строя.

Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют, особенно там, где имеют место изменения нагрузочного момента в широких пределах и тяжелые условия пуска: во всех тяговых приводах (электровозы, тепловозы, электропоезда, электрокары, электропогрузчики и пр.), а также в приводах грузоподъемных механизмов (краны, лифты и пр.).

Объясняется это тем, что при мягкой характеристике увеличение нагрузочного момента приводит к меньшему возрастанию тока и потребляемой мощности, чем у двигателей с независимым и параллельным возбуждением, поэтому двигатели с последовательным возбуждением лучше переносят перегрузки. Кроме того, эти двигатели имеют больший пусковой момент, чем двигатели с параллельным и независимым возбуждением, так как при увеличении тока обмотки якоря при пуске соответственно увеличивается и магнитный поток.

Электродвигатель постоянного тока со смешанным возбуждением

В этом электродвигателе магнитный поток создается в результате совместного действия двух обмоток возбуждения — параллельной (или независимой) и последовательной.

Механическая характеристика электродвигателя со смешанным возбуждением располагается между характеристиками двигателей с параллельным и последовательным возбуждением. Достоинством двигателя постоянного тока со смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе. В этом режиме частота вращения его якоря определяется магнитным потоком параллельной обмотки и имеет ограниченное значение (двигатель не идет вразнос)[1].

Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.

К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы. Это утверждение не вполне верно, но обоснованно. Электрическая машина, построенная на низкую скорость, вообще имеет заниженный КПД и связанные с ним проблемы охлаждения. Скорее всего проблема такова, что изящных решений для неё нет.

Универсальный коллекторный электродвигатель

Схема одного из вариантов УКД. Допускается работа и от постоянного, и от переменного тока

Универсальный коллекторный электродвигатель (УКД) — разновидность коллекторной машины постоянного тока, которая может работать и на постоянном, и на переменном токе[2]. Получил большое распространение в ручном электроинструменте и в некоторых видах бытовой техники из-за малых размеров, малого веса, лёгкости регулирования оборотов, относительно низкой цены. Широко использовался на железных дорогах Европы и США как тяговый электродвигатель.

Особенности конструкции

Строго говоря, универсальный коллекторный электродвигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону. На самом деле там есть небольшой фазовый сдвиг, обуславливающий появление противонаправленного момента, но он невелик, симметрирование обмоток не только улучшает условия коммутации, но и уменьшает этот момент. (М. П. Костенко, «Электрические машины»). Для нужд железных дорог строились специальные подстанции переменного тока низкой частоты — 16 Гц в Европе, в США же частота 25 Гц была одной из стандартных (наряду с 60 Гц) до 50-х годов XX века. В 50-х годах XX века германо-французскому консорциуму производителей электрических машин удалось построить однофазную тяговую машину промышленной частоты (50 Гц). По данным М. П. Костенко «Электрические машины», электровоз с однофазными коллекторными машинами на 50 Гц испытывался в СССР, где получил восторженно-отрицательную оценку специалистов.[источник не указан 2122 дня].

Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин. Подмножеством коллекторных машин переменного тока (КМПТ) являются машины «пульсирующего тока», полученного путём выпрямления тока однофазной цепи без сглаживания пульсаций (железная дорога).

Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3-5 от номинального (против 5-10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Сложной проблемой является вопрос коммутации мощной коллекторной машины переменного тока. В момент коммутации (прохождение секцией нейтрали) сцепленное с секцией якоря (ротора) магнитное поле меняет своё направление на противоположное, что вызывает генерацию в секции так называемой реактивной ЭДС. Так обстоит дело в случае с постоянным током. В КМПТ реактивная ЭДС также имеет место. Но так как якорь (ротор) находится в пульсирующем во времени магнитном поле статора, в коммутируемой секции дополнительно имеет место ещё и трансформаторная ЭДС. Её амплитуда будет максимальна в момент пуска машины, пропорционально снижаться по мере приближения к скорости синхронизма (в точке синхронизма она обратится в нуль) и далее по мере разгона машины вновь будет пропорционально возрастать. Проблема коммутации КМПТ может быть решена следующим образом:

  • Стремление при проектировании к одновитковой секции (уменьшение потока сцепления).
  • Увеличение активного сопротивления секции. Наиболее перспективными по данным М. П. Костенко являются резисторы в «петушках» коллекторых пластин, где они хорошо охлаждаются.
  • Активная подшлифовка коллектора щётками максимальной твёрдости (высокий износ) подгорающего коллектора из-за тяжелых условий коммутации; и максимально возможного сопротивления как средство гашения реактивной и трансформаторной ЭДС коммутируемой секции.
  • Использование добавочных полюсов с последовательными обмотками для компенсации реактивной ЭДС и параллельной — для компенсации трансформаторной ЭДС. Но так как величина трансформаторной ЭДС представляет собой функцию от угловой скорости (якоря) ротора и тока намагничивания машины, то такие обмотки нуждаются в системе подчинённого регулирования, не разработанной по сегодняшний день.
  • Применение питающих цепей низкой частоты. Популярные частоты 16 и 25 Гц.

Реверсирование УКД осуществляется переключением полярности включения обмоток только статора или только ротора.

Достоинства и недостатки

Сравнение приведено для случая подключения к бытовой однофазной электрической сети 220 вольт 50 Гц. и одинаковой мощности двигателей. Разница в механических характеристиках двигателей («мягкость-жёсткость», максимальный момент) может быть как достоинством, так и недостатком в зависимости от требований к приводу.

Сравнение с коллекторным двигателем постоянного тока

Достоинства:

  • Прямое включение в сеть, без дополнительных компонентов (для двигателя постоянного тока требуется, как минимум, выпрямление).
  • Меньший пусковой (перегрузочный) ток (и момент), что предпочтительнее для бытовых устройств.
  • Проще управляющая схема (при её наличии) — тиристор (или симистор) и реостат. При выходе из строя электронного компонента двигатель (устройство) остаётся работоспособным, но включается сразу на полную мощность.

Недостатки:

  • Меньший общий КПД из-за потерь на индуктивность и перемагничивание статора.
  • Меньший максимальный момент (может быть недостатком).
Сравнение с асинхронным двигателем

Достоинства:

  • Быстроходность и отсутствие привязки к частоте сети.
  • Компактность (даже с учётом редуктора).
  • Больший пусковой момент.
  • Автоматическое пропорциональное снижение оборотов (практически до нуля) и увеличение момента при увеличении нагрузки (при неизменном напряжении питания) — «мягкая» характеристика.
  • Возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения.

Недостатки:

  • Нестабильность оборотов при изменении нагрузки (где это имеет значение).
  • Наличие щёточно-коллекторного узла и в связи с этим:
    • Относительно малая надёжность (срок службы: тяжёлые условия коммутации обуславливают использование максимально твердых щёток, что снижает ресурс).
    • Сильное искрение на коллекторе из-за коммутации переменного тока и связанные с этим радиопомехи.
    • Высокий уровень шума.
    • Относительно большое число деталей коллектора (и, соответственно, двигателя).

Следует отметить, что в современных бытовых устройствах ресурс электродвигателя (щёточно-коллекторного узла) сопоставим с ресурсом рабочих органов и механических передач.

Двигатели (УКД и асинхронный) одной и той же мощности, независимо от номинальной частоты асинхронного двигателя, имеют разную механическую характеристику:

  • УКД — «мягкая» характеристика, момент прямо, а обороты обратно пропорциональны нагрузке на валу (потребляемой мощности) — практически линейно — от режима холостого хода до режима полного торможения. Номинальный момент выбирается примерно в 3-5 раз меньшим максимального. Обороты холостого хода ограничиваются только потерями в двигателе и могут разрушить мощный двигатель при включении его без нагрузки.
  • Асинхронный двигатель — «вентиляторная» характеристика — двигатель поддерживает близкую к номинальной частоту вращения, резко (десятки процентов) увеличивая момент при незначительном повышении нагрузки на валу и снижении оборотов (единицы процентов). При значительном снижении оборотов (до точки критического момента) момент двигателя не только не растёт, а падает до нуля, что вызывает полную остановку. Обороты холостого хода постоянны и слегка превышают номинальные.
  • Однофазный асинхронный двигатель предлагает дополнительный «букет» проблем, связанных с запуском, так как в нормальных условиях пускового момента не развивает. Пульсирующее во времени магнитное поле однофазного статора математически разлагается на два противофазных поля, делающих невозможным пуск без различных ухищрений:
    • расщепление фазы
    • создающая искусственную фазу ёмкость
    • создающую искусственную фазу активное сопротивление

Вращающееся в противофазе поле теоретически снижает максимальный КПД однофазного асинхронного двигателя до 50-60 % из-за потерь в перенасыщенной магнитной системе и активных потерь в обмотках, которые нагружаются токами «противополя». Фактически, на одном валу «сидят» две электрические машины, одна из которых работает в двигательном режиме, а вторая — в режиме противовключения.

Механическая характеристика в первую очередь и обуславливает (разные) области применения данных типов двигателей.

Из-за малых оборотов, ограниченных частотой сети переменного тока, асинхронные двигатели той же мощности имеют значительно бо́льшие вес и размеры, чем УКД. Если асинхронный двигатель запитывается от преобразователя (инвертора) с высокой частотой, то вес и размеры обеих машин становятся соизмеримы. При этом остаётся жёсткость механической характеристики, добавляются потери на преобразование тока и, как следствие увеличения частоты, повышаются индуктивные и магнитные потери (снижается общий КПД).

Аналоги бесколлекторного узла

Ближайшим аналогом УКД по механической характеристике является бесколлекторный электродвигатель (вентильный электродвигатель, в котором электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР).

Электронным аналогом универсального коллекторного двигателя является система: выпрямитель (мост), синхронный электродвигатель с датчиком углового положения ротора (датчик угла) и инвертором (другими словами — вентильный электродвигатель с выпрямителем).

Однако из-за применения постоянных магнитов в роторе максимальный момент вентильного двигателя при тех же габаритах будет меньше.

См. также

Ссылки, примечания

24VDC Двойные двигатели Устройство автоматического приема карт / Электрический TTL-коллектор карт для автоматической системы управления билетами | коллекторные карты | коллекторный двигатель

Упаковка:

  • Коллектор карт 1 * 615P
  • 1 * кабель (12 линий)
  • 1 * кабель 2 (3PIN)
  • 1 * рот для карты K2

Основные характеристики

  • С возможностью выхода из карт и карт обратного вызова, если сверхурочно из-за застревания
  • С возможностью выхода карт или карт обратного вызова, действующих при застревании
  • С возможностью бросить карты или не бросать карты в сверхурочное время
  • С вариантами времени выхода карт в сверхурочное время
  • С функцией предотвращения неправильного сбора и отслеживания карт.Если движения первой карты не завершены, вторые карты не собираются.
  • Может быть предложен сигнал включения монитора компьютера и открытия
  • Подтверждение или аннулирование карт может быть получено
  • Звуковая и световая сигнализация при неисправности

Технические параметры

  • Номинальное напряжение: 24 В постоянного тока + -10%
  • Потребление тока: пик-2,2 А
  • Статическое потребление: 0.1 ампер
  • Температура: от -40 до 85 градусов (промышленная)
  • Относительная влажность: 30% -90%
  • Расположение: в подходящем шкафу
  • Применимый размер карты: ширина: 54 + — 0,5 мм, длина: 85 + — 0,5 мм карта, толщина карты: 0,3 — 2,5 мм (регулируется) (Примечание: на заводе установлено значение 0,8 мм)
  • Время сбора карты:> 0,5 с
  • Интерфейс управления: уровень TTL (активный низкий), RS232 (протокол SDPP

Интерфейс управления

Интерфейс управления электрическим уровнем TTL обеспечивается сборщиком карт DCR-615, который выводится через CN1 электрической розетки в блоке управления.Штепсельные разъемы с зазором 2,54 мм используются как розетки.

Описание интерфейса

Описание вывода CN1

Код пин-кода

Название сигнала

Описание сигнала

1

GND (0 В)

мощность

2

+ 24 В (постоянный ток)

3

GND

0 В

4

Получать

Низкое напряжение эффективно (последний раз превышает 200 мс)

5

Отклонить

Низкое напряжение эффективно (последний раз превышает 200 мс)

6

NC

неиспользование

7

включить

Входное напряжение 10K, низкое напряжение эффективно

8

NC

Не использовать

9

Получил

Выходной открытый коллектор, эффективное низкое напряжение (около 500 мс)

10

GetCard

Выходной открытый коллектор, низкое напряжение эффективно

11

Отклонено

Выходной открытый коллектор Действует низкое напряжение

12

заклинило

Выходной открытый коллектор Действует низкое напряжение

Описание управляющего сигнала

Прием: сигнал приема вводится, когда вывод Getcard является эффективным сигналом (низкое напряжение).Карта собирается на склад (с высоким напряжением в процессе сбора). Сигнал может быть продан как входной сигнал сбора карты, действующей при заклинивании;

Отклонение: когда выход GetCard активен (низкое напряжение), поступает сигнал отказа, карта выходит (GetCard находится под высоким напряжением в процессе выхода). Сигнал может быть использован как входной сигнал выхода карты, действующий при блокировке;

Включить: коллектор карт может работать при низком напряжении.Коллектор карт запрещен под высоким напряжением. Сигнал включения может использоваться как вход детектора транспортных средств;

Принято: сигнал низкого напряжения будет вводиться шириной 200 мс. Он может вызвать открытие дорожного шлагбаума после того, как карта будет доставлена ​​в коробку;

GetCard: контакт будет вводить низкое напряжение при входе карты со входа коллектора карт. Низкое напряжение будет длиться до тех пор, пока компьютер монитора не отправит сигнал приема / выхода или карта не будет отключена как сверхурочная работа.

Выход из карты в сверхурочное время: карта будет отключена автоматически, и сигнал «отклонено» будет введен после того, как время ожидания превысит T1. Диапазон T1 определяется DIP1 и DIP2 переключателя S1:

DIP1 ВЫКЛ ВЫКЛ ВКЛ ВКЛ

DIP2 ВЫКЛ ВКЛ ВЫКЛ ВКЛ

Отклонение времени 3S 10S 30S

Отклонено: на вывод будет подаваться сигнал низкого напряжения (продолжительностью не менее 200 мс) до тех пор, пока карта не будет снята или возвращена после того, как карта вышла на вход;

Застрял: карта застряла или карта находится в месте считывания в ожидании сигнала приема / выхода;

Автоматический выход карты

  • DIP4 S1 = ON: запуск карты автоматически завершается, если карта застряла
  • DIP4 из S1 = ВЫКЛ: карта не будет выходить автоматически, если карта застряла.

AsyncIOMotorCollection — Двигатель 2.Документация 3.0

Создает индекс для этой коллекции.

Принимает либо одиночный ключ, либо список пар (ключ, направление). Ключ (и) должен быть экземпляром basestring ( str в python 3), а направление (а) должно быть одним из ( Восходящий , ПО убыванию , GEO2D , GEOHAYSTACK , ГЕОСФЕРА , HASHED , ТЕКСТ ).

Чтобы создать единый ключевой восходящий индекс для ключа 'mike' , мы просто используйте строковый аргумент:

 ждите my_collection.create_index («микрофон»)
 

Для составного индекса на 'mike' по убыванию и 'eliot' по возрастанию нам нужно использовать список кортежей:

 ожидание my_collection.create_index ([("майк", pymongo.DESCENDING),
                                  ("Элиот", пимонго. В восходящем направлении)])
 

Все необязательные параметры создания индекса должны передаваться как аргументы ключевого слова для этого метода. Например:

 ожидание my_collection.create_index ([("mike", pymongo.DESCENDING)],
                                 background = True)
 

Допустимые варианты включают, но не ограничиваются:

  • имя : настраиваемое имя для использования в этом индексе — если нет учитывая, имя будет сгенерировано.
  • unique : if True создает ограничение уникальности для индекса.
  • фон : если True , этот индекс должен быть создан в задний план.
  • sparse : если True , исключить из индекса любые документы, в которых нет индексируемое поле.
  • bucketSize : для использования с индексами geoHaystack. Количество документов, которые нужно сгруппировать в определенной близости на заданную долготу и широту.
  • мин. : минимальное значение для ключей в GEO2D индекс.
  • max : максимальное значение для ключей в GEO2D индекс.
  • expireAfterSeconds : Используется для создания истекающего (TTL) коллекция. MongoDB автоматически удалит документы из эта коллекция через секунд. Индексируемое поле должно быть датой и временем в формате UTC, иначе срок действия данных не истечет.
  • partialFilterExpression : документ, определяющий фильтр для частичный индекс.
  • сопоставление (необязательно): экземпляр Сопоставление . Этот вариант поддерживается только на MongoDB 3.4 и выше.

См. Полный список поддерживаемых опций в документации MongoDB. версия сервера.

Предупреждение

dropDups не поддерживается MongoDB 3.0 или новее. В опция автоматически игнорируется сервером и строит уникальный индекс использование этой опции приведет к ошибке, если будет обнаружено повторяющееся значение.

коллекторный двигатель — определение — английский

Пример предложений с «коллекторным двигателем», память переводов

патент-wipoА конструкция статора бесщеточного двигателя пылеуловителя.Патенты-wipoCollector, содержащий цилиндрический корпус. «экономические операторы» означают производителей, дистрибьюторов, сборщиков, компании по страхованию автотранспортных средств, демонтажников, измельчителей, восстановителей, переработчиков и других операторов по переработке отработанных транспортных средств, включая их компоненты и материалы; EurLex-210.«субъекты экономической деятельности» означают производителей, дистрибьюторов, сборщиков, страховые компании автотранспортных средств, демонтажников, измельчителей, восстановителей, переработчиков и других операторов по переработке отслуживших свой срок транспортных средств, включая их компоненты и материалы; EurLex-210. « экономические операторы » означает производителей, дистрибьюторов, сборщиков, страховые компании автотранспортных средств, демонтажников, измельчителей, восстановителей, переработчиков и других операторов по переработке отработанных транспортных средств, включая их компоненты и материалы; WikiMatrix С 1914 по 1918 год он преподавал в Петроградском политехническом институте. В институте читал курсы: «Коллекторные двигатели», «Генераторы радиотелеграфа» и руководил дипломным проектированием радиотелеграфных станций и высокочастотных машин.Патенты-wipo Коллекторный двигатель (1) по настоящему изобретению можно универсально использовать за счет интеграции электронного блока управления и питания по крайней мере для одного коллекторного двигателя в уже существующий корпус двигателя (3) без необходимости более значительных изменений конструкции. коллектор, устройство для питания упомянутого двигателя и электрический пылесос, оборудованный упомянутой сборкой. для автомобильного теплообменника с перегородкой, выполненной из пересекающихся плоских полос, известны патенты-wipo Бытовая техника с приводным электродвигателем коллектора (2), обмотка которого охлаждается вентилятором (5), приводимым в действие тем же приводным электродвигателем (2).Eurlex2019 Штампованный коллектор электромотора, имеющий внешний диаметр не более 16 мм. Найдено за 1 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *