АВТОМОБИЛЬНАЯ ЗАРЯДКА ДЛЯ АККУМУЛЯТОРА ИЗ ATX БЛОКА ПИТАНИЯ — Зарядные устройства (для авто) — Источники питания
Сейчас скопилось много ненужных старых ATX блоков питания для компьютера от 200 до 350Вт с одним выводом +12В. Сейчас такие блоки берут ради установки мощных видеокарт. Поэтому эти блоки питания не потянут, а если и заработают , то уменьшается срок службы материнской платы, видеокарты, а главное жесткого диска.
Решил приспособить компьютерный ATX блок питания для зарядки автомобильного аккумулятора.
Переделка не сложная заключается в изменении цепей обратной связи и опорного напряжения.
Нашёл схему Соколова Василия по переделке АТ компьютерного блока питания. Для ATX блока питания переделка в автомобильную зарядку для аккумулятора оказалась попроще. Главное найти блок постарее изготовленные с внедрением микросхемы содержащей в маркировке 494 либо 7500 либо их аналогов (TL494 , KA7500 , NE5561, DBL494, M5T494P, IR9494N , MB3759, ECG1729 , IR3M02 , IR9494 , ECG1729 , HA11794 )
Слева схема цепей БП, резистор обратной связи идущий к +5В (время от времени к тому же к +12В)
Отрезаем первую ножку и собирается легкая схема (справа). Резистор 2к4* лучше переменный подобрать так чтоб
при отключенном S1 на выходе без загрузки было +15В, соответственно
при включенном S1 обязано быть +14В.
Т.е. имеем два режима ускоренный и обычный. Можно организовать плавную регулировку, но тогда для контроля нужен вольтметр, в «бою» это неактуально.
Схема выравнивает напряжение, но до тока перегрузки 3,5-4А, дальше при увеличении тока в нагрузке напряжение понижается практически линейно и при 8А составляет приблизительно 8-10В. Черта ограничения тока изготовлена пологой для большей стабильности работы схемы. Т.е. в старенькой схеме замечались выпадения в защиту при подключении сильно разряженных АКБ.
Подключение предохранителя желательно, по другому при неверном подключении АКБ сгорят диоды и конденсаторы выпрямителя.
Транзисторы КТ3107(маркировка на фото) сгодятся КТ361 импортные аналоги 2SA601, 2SA611, 2SA555, BC250A, BC557Б, BC446
Что ещё нужно сделать ещё, чтоб все заработало:
1. Заменить все конденсаторы, которые на 16 вольт (те которые на +12В и -12В) на 25..35 вольт. Будьте аккуратны электролиты забавно так взрываются от превышения на их напряжения.
2. Выпрямительные диоды (которые на +12В) должны быть в корпусе ТО-220 и прикручены к радиатору без всяких прокладок, ежели диоды цилиндрические – ожидайте взрыва от перегрева, их необходимо заменить на описанные выше, на КД213А либо подобные и прикрутить к радиатору. Но я не стал париться , потому что они были прикручены к радиатору, во вторых я оставил вентилятор для охлаждения.
3. Вентилятор нужно прикрутить минусом к “-12В” (-15В будет) , а плюсом к “-5В”, чтоб он не вертелся при присоединенной АКБ и отсутствии сети 220В и не взвыл от +15 Вольт.
4. Замкнуть зелёный провод на корпус (черный провод), чтоб наш ATX блок питания включился.
5. Разобраться и ликвидировать цепи защиты. В моём БП всё подходит к 1 ножке KA7500B достаточно перерезать дорожку и припаиваем ножку к нашей схеме.
В других БП бывают различные и по различному реализованы. Основная – это защита от перенапряжения, задается или резисторами, или стабилитроном, схемы сопоставления бывают на транзисторах или на компараторах.
Т.е. верно собранная наша схема ЗУ будет выдавать 14В и БП может сходу при включении уйти в защиту. Вообще, чем качественней БП, тем лучше реализованы защиты.
Поиск начинать лучше с выходов БП +5В и +12, в качестве опорного напряжения для сопоставления почаще всего берется -5В стабилизированное микросхемой 7905. Ненадобные детальки удалять до получения подходящего результата.6. Обеспечить минимальную нагрузку БП – резистор 120-180 Ом 2 Вт на «+12В».Необязательно, обычно запаяно 250ом и 80 от на “+5В”
Схема стандартного ATX БП
Номинальный ток зарядки автомобильного аккумулятора должен быть примерно в 10 раз меньше его номинальной емкости , т. е. 5,5А и время зарядки получается 10 часов. У нас ток примерно 3,5 А время заряда (55А/3,5А)=15,7 часов
Как устроен блок питания, который работает в каждом системнике / Хабр
Блок питания извлечён из корпуса. Пучок проводов слева подключается к компьютеру. Большой компонент посередине типа трансформатора — это фильтрующий индуктор. Кликабельно, как и все фотографии в статье
Вы когда-нибудь задумывались, что находится внутри блока питания (БП) вашего компьютера? Задача БП — преобразовать питание из сети (120 или 240 В переменного тока, AC) в стабильное питание постоянного, то есть однонаправленного тока (DC), который нужен вашему компьютеру. БП должен быть компактным и дешёвым, при этом эффективно и безопасно преобразовывать ток. Для этих целей при изготовлении используются различные методы, а сами БП внутри устроены гораздо сложнее, чем вы думаете.
В этой статье мы разберём блок стандарта ATX и объясним, как он работает1.
Как и в большинстве современных БП, в нашем используется конструкция, известная как «импульсный блок питания» (ИБП). Это сейчас они очень дёшевы, но так было не всегда. В 1950-е годы сложные и дорогие ИБП использовались разве что в ракетах и космических спутниках с критическими требованиями к размеру и весу. Однако к началу 1970-х новые высоковольтные транзисторы и другие технологические усовершенствования значительно удешевили ИБП, так что их стали широко использовать в компьютерах. Сегодня вы можете за несколько долларов купить зарядное устройство для телефона с ИБП внутри.
Наш ИБП формата ATX упакован в металлический корпус размером с кирпич, из которого выходит множество разноцветных кабелей. Внутри корпуса мы видим плотно упакованные компоненты. Инженеры-конструкторы явно были озабочены проблемой компактности устройства. Многие компоненты накрыты радиаторами. Они охлаждают силовые полупроводники. То же самое для всего БП делает встроенный вентилятор. На КДПВ он справа.
Начнём с краткого обзора, как работает ИБП, а затем подробно опишем компоненты. Своеобразный «конвейер» на фотографии организован справа налево. Справа ИБП получает переменный ток. Входной переменный ток преобразуется в высоковольтный постоянный ток с помощью нескольких крупных фильтрующих компонентов. Этот постоянный ток включается и выключается тысячи раз в секунду для генерации импульсов, которые подаются в трансформатор. Тот преобразует высоковольтные импульсы в сильноточные низковольтные. Эти импульсы преобразуются в постоянный ток и фильтруются, чтобы обеспечить хорошее, чистое питание. Оно подаётся на материнскую плату, накопители и дисководы через кабели на фотографии слева.
Хотя процесс может показаться чрезмерно сложным, но большинство бытовой электроники от мобильника до телевизора на самом деле питаются через ИБП. Высокочастотный ток позволяет сделать маленький, лёгкий трансформатор. Кроме того, импульсные БП очень эффективны. Импульсы настраиваются таким образом, чтобы обеспечить только необходимую мощность, а не превращать избыточную мощность в отработанное тепло, как в линейном БП.
Первым делом входной переменный ток проходит через цепь входного фильтра, которая фильтрует электрический шум, то есть беспорядочные изменения электрического тока, ухудшающие качество сигнала.
Фильтр ниже состоит из индукторов (тороидальных катушек) и конденсаторов. Квадратные серые конденсаторы — специальные компоненты класса X для безопасного подключения к линиям переменного тока.
Компоненты входного фильтра
Переменный ток с частотой 60 герц в сети меняет своё направление 60 раз в секунду (AC), но компьютеру нужен постоянный ток в одном направлении (DC).
Полномостовой выпрямительна фотографии ниже преобразует переменный ток в постоянный. Выходы постоянного тока на выпрямителе отмечены знаками
?
и
+
, а переменный ток входит через два центральных контакта, которые
постоянно меняют свою полярность. Внутри выпрямителя — четыре диода. Диод позволяет току проходить в одном направлении и блокирует его в другом направлении, поэтому в результате переменный ток преобразуется в постоянный ток, протекающий в нужном направлении.
На мостовом выпрямителе видна маркировка GBU606. Цепь фильтра находится слева от выпрямителя. Большой чёрный конденсатор справа — один из удвоителей напряжения. Маленький жёлтый конденсатор — это специальный керамический Y-конденсатор, который защищает от всплесков напряжения
Ниже — две схемы, как работает мостовой выпрямитель. На первой схеме у верхнего входа переменного тока положительная полярность. Диоды пропускают поток на выход DC. На второй схеме входы переменного тока поменяли полярность, как это происходит постоянно в AC. Однако конфигурация диодов гарантирует, что выходной ток остаётся неизменным (плюс всегда сверху). Конденсаторы сглаживают выход.
На двух схемах показан поток тока при колебаниях входного сигнала AC. Четыре диода заставляют ток течь в направлении по стрелке
Современные БП принимают «универсальное» входное напряжение от 85 до 264 вольт переменного тока, поэтому могут использоваться в разных странах независимо от напряжения в местной сети. Однако схема этого старого БП не могла справиться с таким широким диапазоном. Поэтому предусмотрен переключатель для выбора 115 или 230 В.
Переключатель 115/230 В
Переключатель использует умную схему с удвоителем напряжения. Идея в том, что при закрытом переключателе (на 115 В) вход AC обходит два нижних диода в мостовом выпрямителе, а вместо этого подключается непосредственно к двум конденсаторам. Когда «плюс» на верхнем входе AC, полное напряжение получает верхний конденсатор. А когда «плюс» снизу, то нижний. Поскольку выход DC идёт с обоих конденсаторов, на выходе всегда получается двойное напряжение. Дело в том, что остальная часть БП получает одинаковое напряжение независимо от того, на входе 115 или 230 В, что упрощает его конструкцию. Недостаток удвоителя в том, что пользователь обязан установить переключатель в правильное положение, иначе рискует повредить БП, а для самого БП требуются два больших конденсатора. Поэтому в современных БП удвоитель напряжения вышел из моды.
Схема удвоителя напряжения. Каждый конденсатор получает полный вольтаж, поэтому на выходе DC двойное напряжение. Серые диоды не используются в работе удвоителя
В целях безопасности высоковольтные и низковольтные компоненты разделены механически и электрически, см. фотографию ниже. На основной стороне находятся все цепи, которые подключаются к сети AC. На вторичной стороне — низковольтные цепи. Две стороны разделены «пограничной изоляцией», которая отмечена зелёным пунктиром на фотографии. Через границу не проходит
никакихэлектрических соединений. Трансформаторы пропускают энергию через эту границу через магнитные поля без прямого электрического соединения. Сигналы обратной связи передаются на основную сторону с помощью оптоизоляторов, то есть световыми импульсами. Это разделение является ключевым фактором в безопасной конструкции: прямое электрическое соединение между линией AC и выходом БП создаёт опасность удара электрическим током.
Источник питания с маркировкой основных элементов. Радиаторы, конденсаторы, плата управления и выходные кабели удалены ради лучшего обзора (SB означает источник резервного питания, standby supply)
К этому моменту входной переменный ток преобразован в высоковольтный постоянный ток около 320 В
2. Постоянный ток нарезается на импульсы переключающим (импульсным) транзистором (
switching transistor
на схеме выше). Это силовой МОП-транзистор (MOSFET)
3. Поскольку во время использования он нагревается, то установлен на большом радиаторе. Импульсы подаются в главный трансформатор, который в некотором смысле является сердцем БП.
Трансформатор состоит из нескольких катушек проволоки, намотанных на намагничиваемый сердечник. Высоковольтные импульсы, поступающие в первичную обмотку трансформатора, создают магнитное поле. Сердечник направляет это магнитное поле на другие, вторичные обмотки, создавая в них напряжение. Так ИБП безопасно вырабатывает выходной ток: между двумя сторонами трансформатора нет электрического соединения, только соединение через магнитное поле. Другим важным аспектом является то, что в первичной обмотке много оборотов проволоки вокруг сердечника, а на вторичных контурах гораздо меньше. В результате получается понижающий трансформатор: выходное напряжение намного меньше входного, но при гораздо большем вольтаже.
Переключающий транзистор3 управляется интегральной схемой под названием «ШИМ-контроллер режима тока UC3842B». Этот чип можно считать мозгом БП. Он генерирует импульсы на высокой частоте 250 килогерц. Ширина каждого импульса регулируется для обеспечения необходимого выходного напряжения: если напряжение начинает падать, чип производит более широкие импульсы, чтобы пропускать больше энергии через трансформатор4.
Теперь можно посмотреть на вторую, низковольтную часть БП. Вторичная схема производит четыре выходных напряжения: 5, 12, ?12 и 3,3 вольта. Для каждого выходного напряжения отдельная обмотка трансформатора и отдельная схема для получения этого тока. Силовые диоды (ниже) преобразуют выходы трансформатора в постоянный ток. Затем индукторы и конденсаторы фильтруют выход от всплесков напряжения. БП должен регулировать выходное напряжение, чтобы поддерживать его на должном уровне даже при увеличении или уменьшении нагрузки. Интересно, что в БП используется несколько различных методов регулирования.
Крупным планом показаны выходные диоды. Слева вертикально установлены цилиндрические диоды. В центре — пары прямоугольных силовых диодов Шоттки, в каждом корпусе по два диода. Эти диоды прикреплены к радиатору для охлаждения. Справа обратите внимание на два медных провода в форме скоб. Они используются в качестве резисторов для измерения тока
Основными являются выходы 5 и 12 В. Они регулируются одной микросхемой контроллера на основной стороне. Если напряжение слишком низкое, микросхема увеличивает ширину импульсов, пропуская больше мощности через трансформатор и увеличивая напряжение на вторичной стороне БП. А если напряжение слишком высокое, чип уменьшает ширину импульса. Примечание: одна и та же схема обратной связи управляет выходами на 5 и 12 В, поэтому нагрузка на одном выходе может изменять напряжение на другом. В более качественных БП два выхода регулируются по отдельности5.
Нижняя сторона печатной платы. Обратите внимание на большое расстояние между цепями основной и вторичной сторон БП. Также обратите внимание, какие широкие металлические дорожки на основной стороне БП для тока высокого напряжения и какие тонкие дорожки для схем управления
Вы можете задать вопрос, как микросхема контроллера на основной стороне получает обратную связь об уровнях напряжения на вторичной стороне, поскольку между ними нет электрического соединения (на фотографии виден широкий зазор). Трюк в использовании хитроумной микросхемы под названием оптоизолятор. Внутри чипа на одной стороне чипа инфракрасный светодиод, на другой светочувствительный фототранзистор. Сигнал обратной связи подаётся на LED и детектируется фототранзистором на другой стороне. Таким образом оптоизолятор обеспечивает мост между вторичной и первичной сторонами, передавая информацию светом, а не электричеством6.
Источник питания также обеспечивает отрицательное выходное напряжение (?12 В). Это напряжение в основном устарело, но использовалось для питания последовательных портов и слотов PCI. Регулирование питания ?12 В кардинально отличается от регулирования +5 и +12 В. Выход ?12 В управляется стабилитроном (диодом Зенера) — это специальный тип диода, который блокирует обратный ток до определённого уровня напряжения, а затем начинает проводить его. Избыточное напряжение рассеивается в виде тепла через силовой резистор (розовый) под управлением транзистора и стабилитрона (поскольку этот подход расходует энергию впустую, современные высокоэффективные БП не используют такой метод регулирования).
Питание ?12 В регулируется крошечным стабилитроном ZD6 длиной около 3,6 мм на нижней стороне печатной платы. Соответствующий силовой резистор и транзистор A1015 находятся на верхней стороне платы
Пожалуй, наиболее интересной схемой регулирования является выход 3,3 В, который регулируется магнитным усилителем. Магнитный усилитель — это индуктор с особыми магнитными свойствами, которые заставляют его работать как ключ (переключатель). Когда ток подаётся в индуктор магнитного усилителя, то сначала он почти полностью блокирует ток, поскольку индуктор намагничивается и магнитное поле увеличивается. Когда индуктор достигает полной намагниченности (то есть насыщается), его поведение внезапно меняется — и индуктор позволяет частицам течь беспрепятственно. Магнитный усилитель в БП получает импульсы от трансформатора. Индуктор блокирует переменную часть импульса. Выход 3,3 В регулируется изменением ширины импульса7.
Магнитный усилитель представляет собой кольцо из ферритового материала с особыми магнитными свойствами. Вокруг кольца намотано несколько витков проволоки
В блоке питания есть небольшая плата, на которой размещена схема управления. Эта плата сравнивает напряжение с эталонным, чтобы генерировать сигналы обратной связи. Она отслеживает вольтаж также для того, чтобы генерировать сигнал «питание в норме» (power good). Схема установлена на отдельной перпендикулярной плате, поэтому не занимает много места в БП.
Основные компоненты установлены на верхней стороне платы со сквозными отверстиями, а нижняя сторона покрыта крошечными SMD-компонентами, которые нанесены путём поверхностного монтажа. Обратите внимание на резисторы с нулевым сопротивлением в качестве перемычек
В БП есть ещё вторая цепь — для резервного питания
9. Даже когда компьютер формально «выключен», пятивольтовый источник резервного питания обеспечивает ему мощность 10 Вт для функций, которые продолжают работать: часы реального времени, функция пробуждения по локальной сети и др. Цепь резервного питания является почти независимым БП: она использует отдельную управляющую микросхему, отдельный трансформатор и отдельные компоненты на вторичной стороне DC, но те же самые компоненты на основной стороне AC. Эта система гораздо меньшей мощности, поэтому в цепи трансформатор меньшего размера.
Чёрно-жёлтые трансформаторы: трансформатор для резервного питания находится слева, а основной трансформатор — справа. Перед ним установлена микросхема для управления резервным питанием. Большой цилиндрический конденсатор справа — компонент удвоителя напряжения. Белые капли — это силикон, который изолирует компоненты и удерживает их на месте
Блок питания ATX сложно устроен внутри, с множеством компонентов, от массивных индукторов и конденсаторов до крошечных компонентов поверхностного монтажа
10. Однако эта сложность позволяет выпускать эффективные, маленькие и безопасные БП. Для сравнения, я когда-то писал о
блоке питания 1940-х годов, который выдавал всего 85 ватт мощности, но был размером с чемодан, весил 50 кг и стоил сумасшедшие деньги. В наше время с продвинутыми полупроводниками делают гораздо более мощные БП дешевле 50 долларов, и такое устройство поместится у вас в руке.
Блок питания REC-30 для телетайпа Model 19 (ВМФ США) 1940-х годов
Я уже писал о БП, включая историю блоков питания в IEEE Spectrum. Вам также могут понравиться детальные разборы зарядного устройства Macbook и зарядного устройства iPhone.
1
Intel представила стандарт ATX для персональных компьютеров в 1995 году. Стандарт ATX (с некоторыми обновлениями) по-прежнему определяет конфигурацию материнской платы, корпуса и блока питания большинства настольных компьютеров. Здесь мы изучаем блок питания 2005 года, а современные БП более продвинутые и эффективные. Основные принципы те же, но есть некоторые изменения. Например, вместо магнитных усилителей почти везде используют преобразователи DC/DC.
Этикетка на блоке питания
На этикетке БП указано, что он изготовлен компанией Bestec для настольного компьютера Hewlett-Packard Dx5150. Этот БП слегка не соответствует формату ATX, он более вытянут в длину. [вернуться]
2 Вы можете задать вопрос, почему AC напряжением 230 В преобразуется в постоянный ток 320 В. Причина в том, что напряжение переменного тока обычно измеряется как среднеквадратичное, которое в каком-то смысле усредняет изменяющуюся форму волны. По факту в 230-вольтовом сигнале AC есть пики до 320 вольт. Конденсаторы БП заряжаются через диоды до пикового напряжения, поэтому постоянный ток составляет примерно 320 вольт (хотя немного провисает в течение цикла). [вернуться]
3 Силовой транзистор представляет собой силовой МОП-транзистор FQA9N90C. Он выдерживает 9 ампер и 900 вольт. [вернуться]
4 Интегральная схема питается от отдельной обмотки на трансформаторе, которая выдаёт 34 вольта для её работы. Налицо проблема курицы и яйца: управляющая микросхема создаёт импульсы для трансформатора, но трансформатор питает управляющую микросхему. Решение — специальная цепь запуска с резистором 100 kΩ между микросхемой и высоковольтным током. Она обеспечивает небольшой ток для запуска микросхемы. Как только чип начинает отправлять импульсы на трансформатор, то питается уже от него. [вернуться]
5 Метод использования одного контура регулирования для двух выходов называется перекрёстным регулированием. Если нагрузка на одном выходе намного выше другого, напряжения могут отклоняться от своих значений. Поэтому во многих БП есть минимальные требования к нагрузке на каждом выходе. Более продвинутые БП используют DC/DC преобразователи для всех выходов, чтобы контролировать точность напряжения. Дополнительные сведения о перекрёстном регулировании см. в этих двух презентациях. Один из обсуждаемых методов — многоуровневая укладка выходных обмоток, как в нашем БП. В частности, 12-вольтовый выход реализован в виде 7-вольтового выхода поверх 5-вольтового выхода, что даёт 12 вольт. При такой конфигурации ошибка 10% (например) в 12-вольтовой цепи будет составлять всего 0,7 В, а не 1,2 В. [вернуться]
6 Оптоизоляторы представляют собой компоненты PC817, которые обеспечивают 5000 вольт изоляции между сторонами БП (то есть между высокой и низкой сторонами). Обратите внимание на прорезь в печатной плате под оптоизоляторами. Это дополнительная мера безопасности: она гарантирует, что ток высокого напряжения не пройдёт между двумя сторонами оптоизолятора вдоль поверхности печатной платы, например, при наличии загрязнения или конденсата (в частности, прорезь увеличивает расстояние утечки). [вернуться]
7 Ширина импульса через магнитный усилитель устанавливается простой схемой управления. В обратной части каждого импульса индуктор частично размагничивается. Схема управления регулирует напряжение размагничивания. Более высокий вольтаж усиливает размагничивание. Тогда индуктору требуется больше времени для повторного намагничивания, и, таким образом, он дольше блокирует входной импульс. При более коротком импульсе в цепи выходное напряжение уменьшается. И наоборот, более низкое напряжение размагничивания приводит к меньшему размагничиванию, поэтому входной импульс блокируется не так долго. В итоге выходное напряжение регулируется изменением напряжения размагничивания. Обратите внимание, что ширина импульса в магнитном усилителе регулируется управляющей микросхемой. Магнитный усилитель сокращает эти импульсы по мере необходимости при регулировании выходного напряжения 3,3 В. [вернуться]
8 Плата управления содержит несколько микросхем, включая операционный усилитель LM358NA, чип супервизора/сброса TPS3510P, четырёхканальный дифференциальный компаратор LM339N и прецизионный эталон AZ431. Чип супервизора интересный — он специально разработан для БП и контролирует выходное напряжение, чтобы оно было не слишком высоким и не слишком низким. Прецизионный эталон AZ431 — это вариант эталонного чипа TL431, который часто используется в БП для обеспечения опорного (контрольного) напряжения. Я уже писал о TL431. [вернуться]
9 Источник резервного питания использует другую конфигурацию — обратноходовой трансформатор. Здесь установлена управляющая микросхема A6151 с переключающим транзистором, что упрощает конструкцию.
Схема БП с использованием A6151. Она взята из справочника, поэтому не идентична схеме нашего БП, хотя близка к ней
[вернуться]
10 Если хотите изучить подробные схемы различных БП формата ATX, рекомендую сайт Дэна Мельника. Удивительно, сколько существует реализаций БП: различные топологии (полумостовые или прямые), наличие или отсутствие преобразования коэффициента мощности (PFC), разнообразные системы управления, регулирования и мониторинга. Наш БП довольно похож на БП с прямой топологией без PFC, внизу той странички на сайте Дэна. [вернуться]
Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку. Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование. Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В. Часть 1. Так себе. Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения. +12 В — желтый +5 В — красный +3,3 В — оранжевый -5 В — белый -12 В — синий 0 — черный По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D. Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится. Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания. Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт. Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения. Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В. Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра. Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В. Замеряем все напряжения по шинам +12 В: +2,5 … +13,5 +5 В: +1,1 … +5,7 +3,3 В: +0,8 … 3,5 -12 В: -2,1 … -13 -5 В: -0,3 . .. -5,7 Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне. Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток. Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0. Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель. Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ. Часть 2. Более-менее. Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются. Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор. Измерение параметров дало следующие результаты:
Перепайку я начал с выпрямительных диодов. Диодов два и они достаточно слабые. Диоды я взял от старого блока. Диодные сборки S20C40C — Шоттки, рассчитанные на ток 20 А и напряжение 40 В, но ничего путного не получилось. Либо сборки такие были, но один сгорел и я просто впаял два более сильных диодов. Влепил разрезанные радиаторы и на них диоды. Диоды стали сильно греться и накрылись 🙂 , но даже с более сильными диодами напряжение на шине -12 В так и не пожелало опуститься до -15 В. После перепайки двух резисторов и двух диодов можно было скрутить блок питания и включить нагрузку. Вначале использовал нагрузку в виде лампочки, а измерял напряжение и ток по отдельности. Затем перестал париться, нашел переменный резистор из нихрома, мультиметр Ц4353 — измерял напряжение, а цифровым — ток. Получился неплохой тандем. По мере увеличения нагрузки напряжение незначительно падало, ток рос, но грузил я только до 6 А, а лампа по входу светилась в четверть накала. При достижении максимального напряжения лампа по входу засветилась на половинную мощность, а напряжение на нагрузке несколько просело. По большому счету переделка удалась. Правда, если включаться между шинами +12 В и -12 В, то защита не работает, но в остальном все четко. Всем удачных переделок. Однако и такая переделка долго не прожила. Часть 3. Удачная. Еще одной переделкой стал блок питания с микрухой 339. Я не приверженец выпаивать все, а затем стараться запустить блок, поэтому по шагам поступил так: -проверил блок на включение и срабатывание защиты от кз на шине +12 В; -вынул предохранитель по входу и заменил на патрон с лампой накаливания — так безопасно включать чтобы не сжечь ключи. Проверил блок на включение и кз; -удалил резистор на 39к между 1 ногой 494 и шиной +12 В, заменил на переменный резистор 45к. Включил блок — напряжение по шине +12 В регулируется в пределе +2,7. ..+12,4 В, проверил на кз; -удалил диод с шины -12 В, находится за резистором, если идти от провода. По шине -5 В слежения не было. Иногда стоит стабилитрон, суть его одна — ограничение выходного напряжения. Выпаивание микруху 7905 уводит блок в защиту. Проверил блок на включение и кз; -резистор 2,7к от 1 ножки 494 на массу заменил на 2к, там их несколько, но именно изменение 2,7к дает возможность изменить предел выходное напряжения. Например, при помощи резистора на 2к на шине +12 В стало возможным регулировать напряжение до 20 В, соответственно увеличив 2,7к до 4к максимальное напряжение стало +8 В. Проверил блок на включение и кз; -заменил выходные конденсаторы на шинах 12 В на максимальное 35 В, шинах 5 В на 16 В; -заменил спаренный диод шины +12 В, был tdl020-05f c напряжение до 20 В но током 5 А, поставил sbl3040pt на 40 А, выпаивать из шины +5 В не надо — нарушится обратная связь на 494. Проверил блок; -измерил ток через лампу накаливания по входу — при достижении потребления тока в нагрузке 3 А лампа по входу светилась ярко, но ток на нагрузке больше не рос, просаживало напряжение, ток через лампу был 0,5 А, что укладывалось в ток родного предохранителя. Убрал лампу и поставил обратно родной предохранитель на 2 А; -перевернул вентилятор обдува чтобы воздух вдувало внутрь блока и охлаждение радиатора было эффективнее. В результате замены двух резисторов, трех конденсаторов и диода получилось переделать компьютерный блок питания в регулируемый лабораторный с выходном током больше 10 А и напряжением 20 В. Минус в отсутствии регулирования тока, но зато осталась защита от кз. Лично мне регулировать так не надо — блок итак выдает больше 10 А. Переходим к практической реализации. Есть блок, правда TX. Но у него есть кнопка включения, тоже удобно для лабораторного. Блок способен выдать 200 Вт с заявленным током по 12 В — 8А и 5 В — 20 А. На блоке написано, что вскрывать нельзя и внутри нет ничего такого для любителей. Так что мы вроде как профессионалы. На блоке есть переключатель на 110/220 В. Переключатель конечно удалим за ненадобностью, а вот кнопку оставим — пусть работает. Внутренности более чем скромные — нет входного дроселя и заряд входных кондеров идет через резистор, а не через термистор, в результате идет потеря энергия, которая нагревает резистор. Выбрасываем провода на переключатель 110 В и все что мешает отделить плату от корпуса. Заменяем резистор на термистор и впаиваем дроссель. Убираем входной предохранитель и впаиваем вместо него лампочку накаливания. Проверяем работу схему — входная лампа светится на токе примерно 0,2 А. Нагрузкой является лампа 24 В 60 Вт. Светится лампа на 12 В. Все хорошо и проверка на короткое замыкание работает. Находим резистор от 1 ноги 494 к +12 В и поднимаем ногу. Подпаиваем переменный резистор вместо него. Теперь будет регулирование напряжения на нагрузке. Ищем резисторы от 1 ноги 494 к общему минусу. Здесь их три. Все достаточно высокоомные, я выпаял самый низкоомный резистор на 10к и запаял вместо него на 2к. Это увеличило предел регулирования до 20 В. Правда при тесте этого еще не видно, срабатывает защита от перенапряжения. Находим диод на шине -12 В, стоит после резистора и поднимаем его ногу. Это отключит защиту от перенапряжений. Теперь все должно быть. Теперь меняем выходной конденсатор на шине +12 В на предел 25 В. И плюс 8 А это с натяжкой для маленького выпрямительного диода, так что и этот элемент меняем на что-то более силовое. И конечно включаем и проверяем. Обязательно проверяем срабатывание защиты при коротком. И делается это при включенной лампе по входу. Ток и напряжение при наличии лампы по входу может сильно не расти если нагрузка подключена. Если нагрузку отключить, то напряжение регулируется до +20 В. Если все устраивает — меняем лампу на предохранитель. И даем блоку нагрузку. Для визуальной оценки напряжения и тока я использовал цифровой индикатор с алиэкспрес. Тут еще был такой момент — напряжение на шине +12В начинало с 2,5В и это было не очень приятно. А вот на шине +5В от 0,4В. Поэтому я объединил шины при помощи переключателя. Сам индикатор имеет 5 провод на подключение: 3 на измерение напряжения и 2 на ток. Индикатор питается напряжением от 4,5В. Дежурное питание как раз составляет 5В и им питается микруха tl494. Очень рад что удалось переделать компьютерный блок питания. Всем удачной переделки. |
Переделка atx под бп с регулируемым напряжением. Переделка компьютерного блока питания ATX в регулируемый блок питания
Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из , которые везде доступны и дешевы.
В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.
Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.
Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.
Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.
Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.
Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 10-20 вольт (обычно около 12-ти).
Мы будем использовать для питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
Если это выходное напряжение будет значительно выше 12-ти вольт, то вентилятор подключать к этому источнику нужно будет через дополнительный резистор, как будет далее в рассматриваемых схемах.
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.
Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.
Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.
После всех выполненных операций у нас должно получиться следующее.
Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.
Вид платы со стороны деталей.
Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;
В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio , участник форума DWD привёл такую цитату, приведу её полностью:
«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.
Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»
Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.
Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.
Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.
Можно конечно попробовать поступить и так, как написал выше DWD , то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.
Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.
Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.
Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.
Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.
Схема вновь установленных деталей.
Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.
Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.
Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!
Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.
Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 100 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Потом на место подстроечного резистора впаять постоянный.
Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (40-50 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.
Схема выпрямителя с диодным мостом.
С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;
Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.
Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.
Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.
В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.
Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.
Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.
Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.
Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.
Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.
В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).
Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.
Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.
Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.
Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;
Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.
Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их на форуме.
Удачи Вам в конструировании!
Мне нужен был легкий блок питания, для разных дел (экспедиций, питания разных КВ и УКВ трансиверов или для того чтобы переезжая на другую квартиру не таскать с собой трансформаторный БП) . Прочитав доступную информацию в сети, о переделке компьютерных БП — понял, что разбираться придется самому. Все что нашел, было описано както сумбурно и не совсем понятно (для меня) . Здесь я расскажу, по порядку, как переделывал несколько разных блоков. Различия будут описаны отдельно. Итак, я нашел несколько БП от старых PC386 мощностью 200W (во всяком случае, так было на крышке написано) . Обычно на корпусах таких БП пишут примерно следующее: +5V/20A , -5V/500mA , +12V/8A , -12V/500mA
Токи указанные по шинам +5 и +12В — импульсные. Постоянно нагружать такими токами БП нельзя, перегреются и треснут высоковольтные транзисторы. Отнимем от максимального импульсного тока 25% и получим ток который БП может держать постоянно, в данном случае это 10А и до 14-16А кратковременно (не более 20сек) . Вообще-то тут нужно уточнить, что 200W БП бывают разные, их тех что мне попадались не все могли держать 20А даже кратковременно! Многие тянули только 15А, а некоторые до 10А. Имейте это в виду!
Хочу заметить что конкретная модель БП роли не играет, так как все они сделаны практически по одной схеме с небольшими вариациями. Наиболее критичным моментом, является наличие микросхемы DBL494 или ее аналогов. Мне попадались БП с одной микросхемой 494 и с двумя микросхемами 7500 и 339. Всё остальное, не имеет большого значения. Если у вас есть возможность выбрать БП из нескольких, в первую очередь, обратите внимание на размер импульсного трансформатора (чем больше, тем лучше) и наличие сетевого фильтра. Хорошо, когда сетевой фильтр уже распаян, иначе его придётся самому распаять, чтобы помехи снизить. Это несложно, намотайте 10 витков на ферритовом кольце и поставьте два конденсатора, места для этих деталей уже предусмотрены на плате.
ПЕРВООЧЕРЕДНЫЕ МОДИФИКАЦИИ
Для начала, сделаем несколько простых вещей, после которых вы получите хорошо работающий блок питания с выходным напряжением 13.8В, постоянным током до 4 — 8А и кратковременным до 12А. Вы убедитесь что БП работает и определитесь, нужно ли продолжать модификации.
1. Разбираем блок питания и вытаскиваем плату из корпуса и тщательно чистим её, щеткой и пылесосом. Пыли быть не должно. После этого, выпаиваем все пучки проводов идущие к шинам +12, -12, +5 и -5В.
2.
Вам нужно найти (на плате) микросхему DBL494 (в других платах стоит 7500, это аналог) , переключить приоритет защиты c шины +5В на +12В и установить нужное нам напряжение (13 — 14В) .
От 1-ой ноги микросхемы DBL494 отходит два резистора (иногда больше, но это не принципиально) , один идёт на корпус, другой к шине +5В. Он нам и нужен, аккуратно отпаиваем одну из его ножек (разрываем соединение) .
3. Теперь, между шиной +12В и первой ножной микросхемы DBL494 припаиваем резистор 18 — 33ком. Можно поставить подстроечный, установить напряжение +14В и потом заменить его постоянным. Я рекомендую установить не 13.8В, а именно 14.0В, потому что большинство фирменной КВ-УКВ аппаратуры работает лучше при этом напряжении.
НАСТРОЙКА И РЕГУЛИРОВКА
1. Пора включить наш БП, чтобы проверить, всё ли мы сделали правильно. Вентилятор можно не подключать и саму плату в корпус не вставлять. Включаем БП, без нагрузки, к шине +12В подключаем вольтметр и смотрим какое там напряжение. Подстроечным резистором, который стоит между первой ногой микросхемы DBL494 и шиной +12В., устанавливаем напряжение от 13.9 до +14.0В.
2. Теперь проверьте напряжение между первой и седьмой ногами микросхемы DBL494, оно должно быть не меньше 2В и не больше 3В. Если это не так, подберите сопротивление резистора между первой ногой и корпусом и первой ногой и шиной +12В. Обратите особое внимание на этот пункт, это ключевой момент. При напряжении выше или ниже указанного, блок питания будет работать хуже, нестабильно, держать меньшую нагрузку.
3. Закоротите тонким проводом шину +12В на корпус, напряжение должно пропасть, чтобы оно восстановилось — выключите БП на пару минут (нужно чтобы ёмкости разрядились) и включите снова. Напряжение появилось? Хорошо! Как видим, защита работает. Что, не сработала?! Тогда выкидываем этот БП, нам он не подходит и берем другой…хи.
Итак, первый этап можно считать завершённым. Вставьте плату в корпус, выведите клеммы для подключения радиостанции. Блоком питания можно пользоваться! Подключите трансивер, но давать нагрузку более 12А пока нельзя! Автомобильная УКВ станция, будет работать на полной мощности (50Вт) , а в КВ трансивере придётся установить 40-60% мощности. Что будет если вы нагрузите БП большим током? Ничего страшного, обычно срабатывает защита и пропадает выходное напряжение. Если защита не сработает, перегреются и лопаются высоковольтные транзисторы. В этом случае напряжение просто пропадет и последствий для аппаратуры не будет. После их замены, БП снова работоспособен!
1. Переворачиваем вентилятор наоборот, дуть он должен внутрь корпуса. Под два винта вентилятора, подкладываем шайбы чтобы его немного развернуть, а то дует только на высоковольтные транзисторы, это неправильно, нужно чтобы поток воздуха был направлен и на диодные сборки и на ферритовое кольцо.
Перед этим, вентилятор желательно смазать. Если он сильно шумит поставьте последовательно с ним резистор 60 — 150ом 2Вт. или сделайте регулятор вращения в зависимости от нагрева радиаторов, но об этом чуть ниже.
2. Выведите две клеммы из БП для подключения трансивера. От шины 12В до клеммы проведите 5 проводов из того пучка который вы отпаяли вначале. Между клеммами поставьте неполярный конденсатор на 1мкф и светодиод с резистором. Минусовой провод, также подведите к клемме пятью проводами.
В некоторых БП, параллельно клеммам к которым подключается трансивер, поставьте резистор сопротивлением 300 — 560ом. Это нагрузка, для того чтобы не срабатывала защита. Выходная цепь должна выглядеть примерно так, как показано на схеме.
3. Умощняем шину +12В и избавляемся от лишнего хлама. Вместо диодной сборки или двух диодов (которые часто ставят вместо неё) , ставим сборку 40CPQ060, 30CPQ045 или 30CTQ060, любые другие варианты ухудшат КПД. Рядом, на этом радиаторе, стоит сборка 5В, выпаиваем её и выбрасываем.
Под нагрузкой, наиболее сильно нагреваются следующие детали: два радиатора, импульсный трансформатор, дроссель на ферритовом кольце, дроссель на ферритовом стержне. Теперь наша задача, уменьшить теплоотдачу и увеличить максимальный ток нагрузки. Как я говорил ранее, он может доходить до 16А (для БП мощностью 200Вт) .
4. Выпаяйте дроссель на ферритовом стержне из шины +5В и поставьте его на шину +12В, стоящий там ранее дроссель (он более высокий и намотан тонким проводом) выпаяйте и выбросите. Теперь дроссель греться практически не будет или будет, но не так сильно. На некоторых платах дросселей просто нет, можно обойтись и без него, но желательно чтобы он был для лучшей фильтрации возможных помех.
5. На большом ферритовом кольце намотан дроссель для фильтрации импульсных помех. Шина +12В на нем намотана более тонким проводом, а шина +5В самым толстым. Выпаяйте аккуратно это кольцо и поменяйте местами обмотки для шин +12В и +5В (или включите все обмотки параллельно) . Теперь шина +12В проходит через этот дроссель, самым толстым проводом. В результате, этот дроссель будет нагреваться значительно меньше.
6. В БП установлены два радиатора, один для мощных высоковольтных транзисторов, другой, для диодных сборок на +5 и +12В. Мне попадались несколько разновидностей радиаторов. Если, в вашем БП, размеры обоих радиаторов 55x53x2мм и в верхней части у них есть ребра (как на фотографии) — вы можете рассчитывать на 15А. Когда радиаторы имеют меньший размер — не рекомендуется нагружать БП током более 10А. Когда радиаторы более толстые и имеют в верхней части дополнительную площадку — вам повезло, это наилучший вариант, можно получить 20А в течении минуты. Если радиаторы маленькие, для улучшения теплоотдачи, можно закрепить на них небольшую пластину из дюраля или половинку от радиатора старого процессора. Обратите внимание, хорошо ли прикручены высоковольтные транзисторы к радиатору, иногда они болтаются.
7. Выпаиваем электролитические конденсаторы на шине +12В, на их место ставим 4700×25В. Конденсаторы на шине +5В желательно выпаять, просто для того, чтобы места свободного больше стало и воздух от вентилятора лучше детали обдувал.
8. На плате вы видите два высоковольтных электролита, обычно это 220×200В. Замените их на два 680×350В, в крайнем случае, соедините параллельно два по 220+220=440мКф. Это важно и дело тут не только в фильтрации, импульсные помехи будут ослаблены и возрастёт устойчивость к максимальным нагрузкам. Результат можно посмотреть осциллографом. Во общем, надо делать обязательно!
9. Желательно чтобы вентилятор менял скорость в зависимости от нагрева БП и не крутился когда нет нагрузки. Это продлит жизнь вентилятору и уменьшит шума. Предлагаю две простые и надежные схемы. Если у вас есть терморезистор, смотрите на схему посередине, подстроечным резистором устанавливаем температуру срабатывания терморезистора примерно +40С. Транзистор, нужно ставить именно KT503 с максимальным усилением по току (это важно), другие типы транзисторов работают хуже. Терморезистор любой типа NTC, это означает, что при нагреве его сопротивление должно уменьшаться. Можно использовать терморезистор с другим номиналом. Подстроечный резистор должен быть многооборотным, так легче и точнее настроить температуру срабатывания вентилятора. Плату со схемой прикручиваем к свободному ушку вентилятора. Терморезистор крепим к дросселю на ферритовом кольце, он нагревается быстрее и сильнее остальных деталей. Можно приклеить терморезистор к диодной сборке на 12В. Важно, чтобы ни один из выводов терморезистора не коротил на радиатор!!! В некоторых БП, стоят вентиляторы с большим током потребления, в этом случае после КТ503 нужно поставить КТ815.
Если терморезистора у вас нет, сделайте вторую схему, смотрите справа, в ней в качестве термоэлемента используются два диода Д9. Прозрачными колбами приклейте их к радиатору на котором установлена диодная сборка. В зависимости от применяемых транзисторов, иногда нужно подобрать резистор 75 ком. Когда БП работает без нагрузки, вентилятор не должен крутиться. Все просто и надежно!
ЗАКЛЮЧЕНИЕ
От компьютерного блока питания мощностью 200W, реально получить 10 — 12А (если в БП будут стоять большие трансформаторы и радиаторы) при постоянной нагрузке и 16 — 18А кратковременно при выходном напряжении 14.0В. Это значит, что вы можете спокойно работать в режимах SSB и CW на полной мощности (100Вт) трансивера. В режимах SSTV, RTTY, MT63, MFSK и PSK, придётся уменьшить мощность передатчика до 30-70Вт., в зависимости от продолжительности работы на передачу.
Вес переделанного БП, примерно 550гр. Его удобно брать с собой в радиоэкспедиции и различные выезды.
При написании этой статьи и во время экспериментов, было испорчено три БП (как известно, опыт приходит не сразу) и удачно переделано пять БП.
Большой плюс компьютерного БП, в том, что он стабильно работает при изменении сетевого напряжения от 180 до 250В. Некоторые экземпляры работают и при большем разбросе напряжений.
Смотрите фотографии удачно переделанных импульсных блоков питания:
Игорь Лаврушов
г.Кисловодск
За основу был взят БП CODEGEN — 300X (типа 300Вт, ну Вы поняли китайских 300). Мозгом БП служит ШИМ-контроллер КА7500 (TL494…). Только такие мне приходилось переделывать. Управлять ШИМкой будет PIC16F876A, он же и для контроля и установки выходного напряжения и тока, отображение информации на LCD Wh2602(…), регулировка осуществляется кнопками.
Программу помог сделать один хороший человек (IURY, сайт «Кот», который радио), за что ему большое спасибо!!! В архиве схема, плата, программа для контроллера.
Берем рабочий БП (если не рабочий, то надо восстановить до рабочего состояния).
Ориентировочно определяемся, где у нас что будет располагаться. Выбираем место под LCD, кнопки, клеммы (гнезда), индикатор включения…
Определились. Делаем разметку для «окна» ЛСД. Вырезаем (я резал маленькой болгаркой 115мм), может кто-то дремелем, кто-то рассверливанием отверстий, а потом подгонка напильником. В общем кому как удобнее и доступнее. Должно получиться что-то похоже на это.
Продумываем как будем крепить дисплей. Можно сделать несколькими способами:
а) соединить с платой управления разъёмами;
б) сделать через фальшпанель;
в) или…
Или… припаять непосредственно 4 (3) винтика М2,5 к корпусу. Почему М2,5, а н М3,0? В ЛСД отверстия 2,5мм в диаметре для крепления.
Я припаял 3 винтика, потому что при пайке четвертого, отпаивается перемычка (на фото видно). Потом припаиваешь перемычку — отпадает винтик. Просто сильно близкое расстояние. Не стал заморачиваться — оставил 3 шт.
Пайка выполнена ортофосфорной кислотой. После пайки всё необходимо хорошо промыть водой с мылом.
Примеряем дисплей.
Изучаем схему, а именно все относительно TL494 (KA7500). Все что касается ног 1, 2, 3, 4, 13, 14, 15, 16. Всю обвязку возле этих выводов удаляем (на основной плате БП), и устанавливаем детали, согласно схемы.
Удаляем на основной плате БП всё лишнее. Все детали касательно +5, -5, -12, PG, PS — ON. Оставляем только всё, что касается +12 V и дежурного питания +5V SB. Желательно найти схему по своему БП, чтобы не удалить чего лишнего. В цепи питания +12 вольт — удаляем родные электролиты и ставим вместо них, аналогичный по ёмкости, но на рабочее напряжение 35-50 вольт.
Должно получиться что-то похоже на это.
Для увеличения, жмите на схему
Посмотрев на характеристики имеющегося блока питания (наклейка на корпусе) — по 12В выходной ток должен быть 13А. Ого неплохо вроде!!! Смотрим на плату, что у нас образовывает 12В, 13А??? Ха два диода FR302 (по даташиту 3А!). Ну пусть максимальный ток 6А. Нет, такое нас не устраивает, надо заменить на что-нибудь по мощнее, да еще и с запасом, поэтому ставим 40CPQ100 — 40А, Uобр=100В.
На радиаторе были какие-то изолирующие прокладки, прорезиненная ткань (что-то похожее). Отодрал, отмыл. Поставил нашу отечественную слюду.
Винты, поставил подлиннее. Под один сзади зажал еще слюду. Блок решил дополнить индикатором перегрева теплоотвода на МП42. Германиевый транзистор здесь используется в качестве датчика температуры
Схема индикатора перегрева теплоотвода собрана на четырёх транзисторах. В качестве транзистора стабилизатора применён КТ815, КТ817, а в качестве индикатора — двухцветный светодиод.
Печатную плату не рисовал. Думаю, что особой сложности при сборке этого узла возникнуть не должно. Как узел собран, видно на фото ниже.
Делаем плату управления. ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!
Соединяем все согласно схеме. Устанавливаем плату в БП. Также надо изолировать основную плату от корпуса. Сделал я всё это через пластиковые шайбочки.
Наладка схемы.
1.Все наладки блока питания проводить только через лампу накаливания 60 — 150 Вт, включенную в разрыв сетевого кабеля.
2.Корпус БП изолировать от GND, а цепь, которая образовывалась через корпус, соединить проводками.
3.Iizm (U15) — выставляется выходной ток (правильность показаний индикатора) по образцовому А — метру.
Uizm (U14) — выставляется выходное напряжение (правильность показаний индикатора), по образцовому В — метру.
Uset_max (U16) — выставляется МАХ выходное напряжение
Максимальный выходной ток данного блока питания составляет 5 ампер (вернее 4,96А), ограничен прошивкой.
Максимальное выходное напряжение для данного блока питания, не желательно выставлять более 20-22 вольт, так как в этом случае увеличивается вероятность пробоя силовых транзисторов из-за нехватки предела ШИМ-регулирования микросхемой TL494.
Для увеличения выходного напряжения более 22 вольт, необходима перемотка вторичной обмотки трансформатора.
Пробный запуск прошёл успешно. Слева двухцветный индикатор перегрева теплоотвода (холодный радиатор — цвет LED зеленый, теплый — оранжевый, горячий — красный). Справа — индикатор включения БП.
Установил выключатель. Основа — стеклотекстолит, обклеен самоклейкой «оракл».
Финал. То, что получилось в домашних условиях.
Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.
Несколько вариантов схем рассмотрим ниже:
Параметры
От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.
Схема АТ блока питания на TL494
Несколько схем АТX блока питания на TL494
Переделка
Основная переделка заключается в следующем, все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты. Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.
Для регулируемого (4В – 25В) блока питания R1 должен быть 1к. Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).
Так же следует иметь ввиду, что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А, ее следует поменять на ту, которая стоит на 5 вольтовом выпрямителе, она расчитана до 10 А, 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.
Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.
Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус, используете на свой страх и риск.
Бывает при включении БП при большом токе может срабатывать защита, хотя у меня при 9А не срабатывает, если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.
Ещё один интересный вариант переделки компьютерного блока питания.
В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).
Для самодельного блока хорошо подойдут индикаторы напряжения и тока. Вы их можете купить на сайте «Мастерок».
Эта статья предназначена для людей, которые быстро могут отличить транзистор от диода, знают для чего нужен паяльник и за какую сторону его держать, ну и наконец дошли до понимания, что без лабораторного блока питания их жизнь больше не имеет смысла…
Данную схему нам прислал человек под ником: Loogin.
Все изображения уменьшены в размере, для просмотра в полном размере кликните левой клавишей мышки на изображение
Здесь я постараюсь максимально подробно — шаг за шагом рассказать как это сделать с минимальными затратами. Наверняка у каждого после апгрейдов домашнего железа валяется под ногами как минимум один БП. Конечно кое-что придётся докупить, но эти жертвы будут небольшими и скорее всего оправданы конечным результатом – это, как правило около 22В и 14А потолочных. Лично я вложился в $10. Конечно, если собирать всё с «нулевой» позиции, то надо быть готовым выложить ещё около $10-15 для покупки самого БП, проводов, потенциометров, ручек и прочей рассыпухи. Но, обычно – такого хлама у всех навалом. Есть ещё нюанс – немного придётся потрудиться руками, поэтому они должны быть «без смещения» J и нечто подобное может и у Вас получиться:
Для начала нужно любыми способами раздобыть ненужный но исправный БП АТХ мощностью >250W. Одна из наиболее популярных схем – это Power Master FA-5-2:
Подробную последовательность действий я опишу именно для этой схемы, но все они справедливы и для других вариантов.
Итак, на первом этапе нужно подготовить БП-донор:
- Удаляем диод D29 (можно просто одну ногу поднять)
- Удаляем перемычку J13, находим в схеме и на плате (можно кусачками)
- Перемычка PS ON на землю должна стоять.
- Включаем ПБ только на короткое время, так как напряжение на входах будет максимальное (примерно 20-24В) Собственно это и хотим увидеть…
Не забываем про выходные электролиты, рассчитанные на 16В. Возможно они немного нагреются. Учитывая, что они скорее всего «набухшие», их все равно придется отправить в болото, не жалко. Провода уберите, они мешают, а использоваться будут только GND и +12В их потом назад припаяете.
5. Удаляем 3.3х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21:
6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и «типа дроссель» L5
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29
8. Меняем плохие: заменить С11, С12 (желательно на большую ёмкость С11 — 1000uF, C12 — 470uF)
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом.
Смотрим на мою плату и повторяем:
10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1ю ногу), R52-54 (… 2ю ногу), С26, J11 (…3ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем то J рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му. Собственно R37 тоже можно перерубить.
12. отделяем 15ю и 16ю ноги микросхемы от «всех остальных»: для этого делаем 3 прореза существующих дорожек а к 14й ноге восстанавливаем связь чёрной перемычкой, как показано на моем фото.
13. Теперь подпаиваем шлейф для платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14й и 15й пришлось содрать лак и просверлить отверстия, на фото вверху.
14. Жила шлайфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10. Просверлить отверстие в дорожку, расчистить лак и туда! Сверлить лучше со стороны печати.
Это всё было, как говорится: «минимальная доработка», чтобы сэкономить время. Если время не критично, то можно просто привести схему в следующее состояние:
Ещё я посоветовал бы поменять кондёры высоковольтные на входе (С1, С2) Они маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Плюс неплохо дроссель групповой стабилизации L3 немного переделать, либо использовать 5ти вольтные обмотки, соединив их последовательно, либо вообще убрать всё и намотать около 30ти витков новым эмальпроводом общим сечением 3-4мм 2 .
Для питания вентилятора нужно «подготовить» ему 12В. Я выкрутился таким образом: Там где раньше стоял полевой транзистор для формирования 3,3В можно «поселить» 12ти вольтную КРЕН-ку (КРЕН8Б или 7812 импортный аналог). Конечно там без резки дорожек и добавки проводов не обойтись. В конечном итоге получилось в общем даже и «ничего»:
На фото видно, как всё гармонично ужилось в новом качестве, даже разъём вентилятора недурно уместился и перемотанный дроссель получился весьма неплох.
Теперь регулятор. Чтобы упростить задачу с разными там шунтами, поступаем так: покупаем готовые амперметр и вольтметр в Китае, либо на местном рынке (наверняка там их можно найти у перекупщиков). Можно купить совмещённый. Но, надо не забывать, что потолок по току у них 10A! Поэтому в схеме регулятора придется ограничивать предельный ток на этой отметке. Здесь я опишу вариант для отдельных приборов без регулировки тока с ограничением по максимуму 10A. Схема регулятора:
Чтобы сделать регулировку ограничения тока, надо вместо R7 и R8 поставить переменный резистор 10кОм, также как R9. Тогда можно будет использовать всемерялку. Также стоит обратить внимание на R5. В данном случае его сопротивление 5,6кОм, потому что у нашего амперметра шунт 50mΩ. Для других вариантов R5=280/R шунта. Поскольку мы взяли вольтметр один из самых дешевых, поэтому его немного надо доработать, чтобы он мог измерять напряжения от 0В, а не от 4,5В как это сделал производитель. Вся переделка заключается в разделении цепей питания и измерения посредствам удаления диода D1. Туда впаиваем провод – это и есть +V питания. Измеряемая часть осталась без изменений.
Плата регулятора с расположением элементов показана ниже. Изображение для лазерно-утюжного метода изготовления идёт отдельным файлом Regulator.bmp с разрешением 300dpi. Также в архиве есть и файлы для редактирования в EAGLE. Последнюю офф. версию можно скачать тут: www.cadsoftusa.com. В интернете имеется много информации о этом редакторе.
Потом прикручиваем готовую плату у потолку корпуса через изолирующие проставки, например нарезанные из отработанной палочки чупа-чупса высотой по 5-6 мм. Ну и не забыть проделать предварительно все необходимые вырезы для измерительных и прочих приборов.
Предварительно собираем и тестируем под нагрузкой:
Как раз и смотрим на соответствие показаний различных китайских девайсов. А ниже уже с «нормальной» нагрузкой. Это автомобильная лампа главного света. Как видно — без малого 75Вт имеется. При этом не забываем засунуть туда осциллограф, и увидеть пульсации около 50мВ. Если будет больше, то вспоминаем про «большие» электролиты по высокой стороне ёмкостью по 220uF и тут же забываем после замены на нормальные ёмкостью 680uF например.
В принципе на этом можно и остановиться, но чтобы придать более приятный вид прибору, ну чтобы он не выглядел самоделкой на 100%, мы делаем следующее: выходим из своей берлоги, поднимаемся на этаж выше и с первой попавшейся двери снимаем бесполезную табличку.
Как видим, до нас тут кто-то уже побывал
В общем по тихому делаем это грязное дело и начинаем работать напильниками разных фасонов и параллельно осваивать AutoCad.
Потом на наждаке затачиваем кусок трёхчетвертной трубы и из достаточно мягкой резины нужной толщины вырубываем и суперклеем лепим ножки.
В итоге получаем достаточно приличный прибор:
Следует отметить несколько моментов. Самое главное – это не забывать, что GND блока питания и выходной цепи не должны быть связаны , поэтому нужно исключить связь между корпусом и GND БП. Для удобства желательно вынести предохранитель, как на моём фото. Ну и постараться максимально восстановить недостающие элементы входного фильтра, их скорее всего нет вообще у исходника.
Вот ещё пара вариантов подобных приборов:
Слева 2х этажный корпус ATX с всемерялкой, а справа сильно переделанный старый AT корпус от компьютера.
5 Схема блока питания ПК для вас
Хорошая схема импульсного блока питания постоянного тока от старого компьютера, который не используется. Он мощный, прочный и отлично работает.
В настоящее время компьютер становится электроприбором, необходимым для каждого дома, потому что они очень полезны.
Но срок службы и очень быстро устаревают. Есть новая программа. Желаемая машина с высоким КПД. Всегда можно поменять на новое. (К современному).
-Где старые компы? Скорее всего, он будет отброшен как спам.Это может быть очень ценно для многих, в том числе и для меня. Многие соседи всегда давали мне старый компьютер для работы над проектами.
-Первое, что мне нравится использовать, это мощность, пусть даже старая, но мощная, долговечная и отлично работает. Но это всегда должно быть правильно заземлено. Для предотвращения утечки тока или поражения электрическим током. Нормальное напряжение составляет 3,3 В, 5 В, 12 В и многое другое.
5V 12V 15A max Цепь питания с коммутационным режимом
Это цепь питания с коммутационным режимом 5V 12V, макс 15A.Это старая схема блока питания ПК мощностью 200Вт . Эта схема подходит для ремонта. Я использую популярную микросхему TL494 в качестве основной. В схеме имеется сдвоенный выход на 2 части.
- 5V 15A и -5V 1A
- 12V 10A и -12V 1A
TL494, популярный IC PWM
Источник: я не знаю источника.
Я надеюсь, что эта схема может в рядах проверять медитацию на ремонте компьютера у друзей. Думаю, снова используйте номер интегральной схемы TL494.И по-прежнему использовать транзисторную мощность.
Ремонт компьютера Dell GX620 с собой
Я давно пользуюсь компьютером Dell GX620, потому что он хорош и долговечен. Я потерял его несколько дней назад. Мой друг, который занимается ремонтом компьютеров, сказал, что проблема с блоком питания. Он сказал мне купить его на amazon.com, они очень хорошие, у него невысокая стоимость, и его тоже можно доставить бесплатно.
Иногда замена цепей питания компьютера серии может оказаться нецелесообразной.Потому что покупать его не было или могло быть слишком дорого.
Отремонтировать блок питания ЭБУ до поиска неисправности. Это хорошее решение. Какие нормальные цепи таким образом питаются. Часто сначала разрабатывается как дешевое оборудование. Например, резисторы-предохранители. Маленькие транзисторы. Или конденсаторный тип, дружественный к электролизу, часто проблема, решение для выхода из строя, особенно на старых компьютерах около 10 лет.
Для простоты ремонта нам нужна схема. Я предлагаю следующие схемы…
-Иногда вам, возможно, придется использовать старый компьютер.Дети будут изучать основы или играть в простые игры. Цепь питания повреждена. Что делать?
— Основные моменты девятого автодрома — это старая технология, это самая простая часть. Но иногда бывает сложно найти схемы. Собираю старую, планирую руководство ремонтом или модификацией не ограничивается. Имеется 5 схем, как показано ниже. (см. ниже!)
200W PC блок питания переключения схемы 110V-220V
Это будет блок питания ПК для компьютера снова интересная схема.Может быть преимущество с друзьями по занятию может починить компьютер? Подумайте, как быть персонажем Импульсный источник питания 200 Вт, размер источника переменного напряжения 2, уровень 110 В и 220 В можно использовать не спеша. И все же используйте напряжение во многих группах + 5В, + 12В, -12В, которого достаточно для малогабаритного компьютера или источника питания AT. Когда вы увидите схему, вы подумаете, что использовать интегральную схему IC TL494, источник питания, будет опорным оборудованием. Сделайте так, чтобы схема была несложной или легко ремонтировалась. Детали другие, пожалуйста, посмотрите в схеме лучше.
Compaq блок питания для ПК 200 Вт
Сегодня в гости к нам приезжает друг, который занимается ремонтом компьютеров. Он думает, что я делаю итоги круга на сайте. Тогда дайте Compaq блок питания 200Watt Circuit и продолжайте анонсировать на сайте. Судя по тому, что он принес с другого сайта, уже не может вспомнить название. Как я вижу, не уверен, что да, схема Compaq Computer или нет. Но поблагодари своего друга. Мне хорошо часто давай всегда. По крайней мере, надеюсь, что эта трасса может быть полезна друзьям.
Старый компьютер Схема питания ПК на TL494
Мой старший брат занимается ремонтом компьютера. Однажды встретившись с проблемой переключения блока питания, компьютер потерял. Это старая схема. Затем я помогаю искать отдачу. Получите эту схему думаю можете не согласиться. Но достаточное использование может заменить. Если друзья встретят такую же проблему, попробуйте, пожалуйста. Он может выдавать выходное напряжение 5 В, + 12 В, -12 В. Используйте интегральную схему TL494 быть основным оборудованием легко найти хорошее.
При подаче напряжения 110В и 220В выбираем включенный виток SW1.Это еще одна деталь, которую друг видит в схеме.
Схема питания компьютера 230Вт 220В
Здесь схема питания компьютера 230Вт 220В.
он использует IC-TL494 и транзистор.
Out put 5V, 12V
250W china Схема блока питания компьютера
Мой друг спрашивает о схеме переключения блока питания. Которые производят от модели Китайской Народной Республики схема все. Быть китайцам сложно искать много схем. Затем я пытаюсь найти много схем.Познакомьтесь с этой схемой. Думаю, может да. Потому что здесь китайцы контролируют все детали оборудования. Но должен просить прощения, друзья. С этой моделью схема не ясна, но может ли хватить в рядах прибыли? Несколько то немного, когда видят хорошее, в результате видят положение оборудования понимает не очень сложно. Существует интегральная схема TL494 с выходным напряжением +12 В, -12 В и + 5 В.
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Обрыв блока питания ПК
Вы когда-нибудь задумывались, что внутри блока питания вашего компьютера? Задача блока питания ПК — преобразовать мощность от стены (120 или 240 вольт переменного тока) в стабильную мощность постоянного напряжения, которая требуется компьютеру. Источник питания должен быть компактным и недорогим, а также эффективно и безопасно преобразовывать мощность. Для достижения этих целей в источниках питания используются различные методы, и они более сложны внутри, чем вы могли ожидать. В этом сообщении в блоге я разбираю блок питания ПК и объясняю, как он работает.1
В исследуемом мной блоке питания, как и в большинстве современных блоков питания, используется конструкция, известная как «импульсный блок питания». Импульсные источники питания сейчас очень дешевы, но так было не всегда. В 1950-х импульсные источники питания были сложными и дорогими, они использовались в аэрокосмической и спутниковой сферах, где требовались небольшие и легкие источники питания. К началу 1970-х, однако, новые высоковольтные транзисторы и другие технологические усовершенствования сделали импульсные источники питания намного дешевле, и они стали широко использоваться в компьютерах.Теперь вы можете купить зарядное устройство для телефона за несколько долларов с импульсным блоком питания.
Блок питания ATX, который я исследовал, был упакован в металлическую коробку размером с кирпич, из которой выходило примечательное количество разноцветных кабелей. Снятие корпуса показывает расположенные ниже компоненты, плотно упакованные для сохранения компактности блока питания. Многие компоненты скрыты радиаторами, которые охлаждают силовые полупроводники вместе с вентилятором справа.
Блок питания, вынутый из корпуса.Большой пучок проводов слева подключен к компьютеру. Большой компонент посередине, похожий на трансформатор, представляет собой катушку индуктивности фильтра. Щелкните эту фотографию (или любую другую), чтобы увеличить ее.
Я начну с краткого обзора того, как работает импульсный источник питания, а затем подробно опишу компоненты. Начиная с правого, блок питания получает питание переменного тока. Входной переменный ток преобразуется в постоянный ток высокого напряжения с помощью некоторых крупных фильтрующих компонентов. Этот постоянный ток включается и выключается тысячи раз в секунду, чтобы произвести импульсы, которые подаются в трансформатор, который преобразует импульсы высокого напряжения. в низковольтные сильноточные импульсы.Эти импульсы преобразуются в постоянный ток и фильтруются, чтобы обеспечить приятный чистое питание, которое через жгут проводов слева подается на материнскую плату компьютера и дисководы.
Хотя этот процесс может показаться чрезмерно сложным, в большинстве бытовой электроники, от мобильного телефона до телевизора, используется импульсный источник питания. Высокие частоты позволяют использовать небольшой легкий трансформатор. Кроме того, импульсные источники питания очень эффективны; импульсы настраиваются на подачу только необходимой мощности, а не на избыточную мощность в отходящее тепло, как в «линейном» источнике питания.
Входная фильтрация
На первом этапе входной переменный ток проходит через цепь входного фильтра. который блокирует выход электрического шума из источника питания. Фильтр ниже состоит из катушек индуктивности (тороидальных катушек) и конденсаторов. Эти прямоугольные серые конденсаторы представляют собой специальные конденсаторы класса X, предназначенные для безопасного подключения к линиям переменного тока.
Компоненты входного фильтра
Выпрямление: преобразование переменного тока в постоянный
Переменный ток частотой 60 Гц от стены колеблется 60 раз в секунду, но для источника питания требуется постоянный постоянный ток (постоянный ток), который течет в одном направлении.Полномостовой выпрямитель ниже преобразует переменный ток в постоянный. Выпрямитель ниже отмечен «-» и «+» для выходов постоянного тока, а два центральных контакта — это вход переменного тока. Внутри выпрямителя четыре диода. Диод пропускает ток в одном направлении и блокирует его в другом. Таким образом, в результате переменный ток преобразуется в постоянный, текущий в желаемом направлении.
Мостовой выпрямитель имеет маркировку «GBU606». Схема фильтра находится слева от него.Справа большой черный цилиндр — это один из конденсаторов-удвоителей напряжения. Маленький желтый конденсатор — это специальный конденсатор типа Y, предназначенный для обеспечения безопасности.
На схеме ниже показано, как работает мостовой выпрямитель. На первой схеме вход переменного тока имеет положительную верхнюю часть. Диоды пропускают напряжение через выход постоянного тока. На второй схеме вход переменного тока изменил направление на обратное. Однако конфигурация диодов гарантирует, что выходное напряжение постоянного тока остается неизменным (положительный полюс вверху).Конденсаторы сглаживают выход.
Две схемы показывают протекание тока при колебаниях входа переменного тока. Диоды заставляют ток течь в направлении, указанном их стрелкой.
Современные блоки питания допускают «универсальное» входное напряжение от 85 до 264 вольт переменного тока, поэтому их можно использовать в разных странах независимо от напряжения в стране. Однако схема этого старого блока питания не могла работать с таким широким диапазоном входных сигналов. Вместо этого вам пришлось щелкнуть переключателем (ниже), чтобы выбрать между 115 В и 230 В.
Переключатель 115/230 В.
В переключателе выбора напряжения использована хитроумная схема — удвоитель напряжения. По идее, при замкнутом переключателе (на 115 вольт) вход переменного тока идет в обход двух нижних диодов в мостовом выпрямителе и вместо этого подключается непосредственно к двум конденсаторам. Когда верхний вход переменного тока положительный, верхний конденсатор заряжается полным напряжением. И когда вход переменного тока положительный внизу, нижний конденсатор заряжается полным напряжением.Поскольку выход постоянного тока проходит через оба конденсатора, выход постоянного тока имеет удвоенное напряжение. Дело в том, что остальная часть источника питания получает одинаковое напряжение, независимо от того, составляет ли вход 115 вольт или 230 вольт, что упрощает его конструкцию. Недостатки удвоителя напряжения заключаются в том, что пользователь должен установить переключатель в правильное положение (в противном случае существует риск выхода из строя источника питания), а для источника питания требуются два больших конденсатора. По этим причинам удвоитель напряжения вышел из моды в более поздних источниках питания.
Цепь удвоителя напряжения. Каждый конденсатор заряжается полным напряжением, поэтому выход постоянного тока имеет удвоенное напряжение. Серые диоды не используются, когда удвоитель активен.
Начальное и среднее
В целях безопасности компоненты высокого напряжения и компоненты низкого напряжения разделены механически и электрически. Первичная сторона ниже содержит все схемы, подключенные к линии переменного тока. Вторичная сторона содержит схему низкого напряжения.Первичная и вторичная обмотки разделены «изоляционной границей» (показано зеленым), без электрических соединений через границу. Трансформаторы пропускают мощность через эту границу через магнитные поля без прямого электрического соединения. Сигналы обратной связи передаются от вторичной обмотки к первичной через оптоизоляторы, которые передают сигналы оптически. Это разделение является ключевым фактором в безопасной конструкции источника питания: прямое электрическое соединение между линией переменного тока и выходом может создать высокую опасность. поражения электрическим током.
Блок питания с обозначенными основными характеристиками. Радиаторы, конденсаторы, плата управления и выходные провода были удалены для лучшего обзора. (SB указывает на резервный источник питания.)
Импульсы на трансформатор
На этом этапе входной переменный ток преобразован в высоковольтный постоянный ток, около 320 В. Постоянный ток прерывается на импульсы переключающим транзистором выше, силовым полевым МОП-транзистором. Поскольку этот транзистор нагревается во время использования, он был установлен на большом радиаторе.Эти импульсы подаются на главный трансформатор, расположенный выше, который в некотором смысле является сердцем источника питания.
Трансформатор состоит из нескольких витков проволоки, намотанной вокруг намагничиваемого сердечника. Импульсы высокого напряжения в первичной обмотке трансформатора создают магнитное поле. Сердечник направляет это магнитное поле на другие, вторичные обмотки, создавая в этих обмотках напряжение. Вот как источник питания безопасно выдает свои выходные напряжения: между двумя сторонами трансформатора нет электрического соединения, только соединение посредством магнитного поля.Другой важный аспект трансформатора заключается в том, что в первичной обмотке провод наматывается вокруг сердечника большое количество раз, в то время как вторичные обмотки наматываются гораздо меньшее количество раз. В результате получается понижающий трансформатор: выходное напряжение намного меньше входного, но при гораздо большем токе.
Коммутационный транзистор 3 управляется интегральной схемой «ШИМ-контроллер UC3842B в токовом режиме». Этот чип можно считать мозгом блока питания.Он генерирует импульсы с высокой частотой 250 килогерц. Ширина каждого импульса регулируется для обеспечения необходимого выходного напряжения: если напряжение начинает падать, микросхема выдает более широкие импульсы для пропускать больше мощности через трансформатор.4
Вторичная сторона
Теперь мы можем взглянуть на вторичную обмотку источника питания, которая принимает низковольтные выходы от трансформатора. Вторичная схема выдает четыре выходных напряжения: 5 В, 12 В, -12 В и 3.3 вольта. Каждое выходное напряжение имеет отдельную обмотку трансформатора и отдельную цепь для создания этого напряжения. Силовые диоды (ниже) преобразуют выходные сигналы трансформатора в постоянный ток, а затем катушки индуктивности и конденсаторы фильтруют выходной сигнал, чтобы он оставался плавным. Источник питания должен регулировать выходное напряжение, чтобы поддерживать его на нужном уровне даже при увеличении или уменьшении нагрузки. Интересно, что в источнике питания используется несколько различных методов регулирования.
Выходные диоды крупным планом.Слева вертикально закреплены цилиндрические диоды. Посередине — пары прямоугольных силовых диодов Шоттки; в каждой упаковке по два диода. Эти диоды были прикреплены к радиатору для охлаждения. Справа обратите внимание на два медных провода в форме скоб, используемых в качестве токоизмерительных резисторов.
Основными выходами являются выходы на 5 и 12 вольт. Они регулируются вместе микросхемой контроллера на первичной стороне. Если напряжение слишком низкое, микросхема контроллера увеличивает ширину импульсов, пропуская больше мощности через трансформатор и вызывая повышение напряжения на вторичной стороне.А если напряжение слишком высокое, микросхема уменьшает ширину импульса. (Одна и та же цепь обратной связи управляет выходом как 5 В, так и 12 В, поэтому нагрузка на одном выходе может влиять на напряжение на другом. Более качественные источники питания регулируют два выхода по отдельности. 5)
На нижней стороне блока питания видны следы от печатной платы. Обратите внимание, что большое расстояние между дорожками вторичной стороны слева и следы первичной стороны справа. Также обратите внимание на широкие металлические дорожки, используемые для сильноточного источника питания, и тонкие дорожки для схем управления.
Вы можете задаться вопросом, как микросхема контроллера на первичной стороне получает обратную связь об уровнях напряжения на вторичной стороне, если нет электрическое соединение между двумя сторонами. (На фото выше вы можете увидеть широкий зазор, разделяющий две стороны.) Хитрость заключается в умной микросхеме, называемой оптоизолятором. Внутри на одной стороне микросхемы находится инфракрасный светодиод. На другой стороне микросхемы находится светочувствительный фототранзистор. Сигнал обратной связи на вторичной стороне отправляется на светодиод, и сигнал обнаруживается фототранзистором на первичной стороне.Таким образом, оптоизолятор обеспечивает перемычку между вторичной и первичной сторонами, связываясь светом, а не электричеством.6
Блок питания также обеспечивает выходное отрицательное напряжение (-12 В). Это напряжение в основном устарело, но использовалось для питания последовательных портов и слотов PCI. Регулировка напряжения -12 В полностью отличается от регулирования на 5 и 12 вольт. Выход -12 В управляется стабилитроном, специальным типом диода, который блокирует обратное напряжение до тех пор, пока не будет достигнуто определенное напряжение, а затем начинает дирижировать.Избыточное напряжение рассеивается в виде тепла через силовой резистор (розовый), управляемый транзистором и стабилитроном. (Поскольку при таком подходе расходуется энергия, современные высокоэффективные источники питания не используют этот метод регулирования.)
Питание -12 В регулируется крошечным стабилитроном «ZD6» длиной около 3,6 мм на нижней стороне печатной платы. Соответствующий силовой резистор и транзистор «A1015» находятся на верхней стороне платы.
Пожалуй, самая интересная схема регулирования — для 3.Выход 3 вольта, который регулируется магнитным усилителем. Магнитный усилитель — это индуктор с особыми магнитными свойствами, благодаря которым он ведет себя как выключатель. Когда ток подается в индуктор магнитного усилителя, сначала он почти полностью блокирует ток, так как индуктор намагничивается, и магнитное поле увеличивается. Когда индуктор достигает своей полной намагниченности (то есть насыщается), поведение внезапно меняется, и индуктор позволяет току беспрепятственно протекать. В блоке питания магнитный усилитель принимает импульсы от трансформатора.Индуктор блокирует переменную часть импульса; изменением ширины импульса регулируется выходное напряжение 3,3 В. 7
Магнитный усилитель представляет собой кольцо, изготовленное из ферритового материала с особыми магнитными свойствами. На кольцо намотано несколько витков проволоки.
Плата управления
Блок питания имеет небольшую плату, на которой находится схема управления. Эта плата сравнивает напряжения с эталоном для генерации сигналов обратной связи. Это также контролирует напряжения, чтобы генерировать сигнал «power good».8 Эта схема установлена на отдельной перпендикулярной плате, поэтому она не занимает много места в блоке питания.
Плата управления имеет компоненты со сквозными отверстиями наверху, а нижняя сторона покрыта крошечными компонентами для поверхностного монтажа. Обратите внимание на резисторы с нулевым сопротивлением, помеченные цифрой 0, которые используются в качестве перемычек.
Резервный источник питания
Блок питания содержит вторую цепь для резервного питания. Даже когда компьютер предположительно выключен, резервный источник питания 5 В обеспечивает 10 Вт.Это питание используется для функций, которые должны быть включены, когда компьютер выключен, таких как часы реального времени, кнопка питания и включение. по сети («Wake on LAN»). Цепь резервного питания — это почти второй независимый источник питания: в нем используется отдельная управляющая ИС, отдельный трансформатор и компоненты на вторичной стороне, хотя на первичной стороне используется та же схема преобразования переменного тока в постоянный. Цепь резервного питания обеспечивает гораздо меньшую мощность, чем основная цепь, поэтому для нее можно использовать трансформатор меньшего размера.
Черный и желтый трансформаторы: трансформатор резервного питания находится слева, а главный трансформатор — справа. ИС управления резервным питанием находится перед трансформатором. Большой цилиндрический конденсатор справа является частью удвоителя напряжения. Белые капли — это силикон, который изолирует компоненты и удерживает их на месте.
Заключение
Блок питания ATX имеет сложную внутреннюю структуру и состоит из множества компонентов, от массивных катушек индуктивности и конденсаторов до крошечных устройств для поверхностного монтажа.10 Однако эта сложность приводит к тому, что блоки питания являются эффективными, легкими и безопасными. Для сравнения я писал про блок питания 1940-х годов. который производил всего 85 Вт постоянного тока, но был размером с чемодан и весил более 100 фунтов. Теперь, с передовыми полупроводниками, вы можете держать гораздо более мощный блок питания менее чем за 50 долларов, который можно держать в руке.
Я уже писал о блоках питания, включая историю блоков питания в IEEE Spectrum. Вам также может понравиться разборка зарядного устройства для Macbook и Разборка зарядного устройства iPhone.Я анонсирую свои последние сообщения в блоге в Twitter, так что подписывайтесь на меня на kenshirriff. Еще у меня есть RSS-канал.
Примечания и ссылки
Компьютерные комплектующие для ПКAT и ATX Схемы компьютерных комплектующих для ПК
AT и ATX Схема компьютерных комплектующих для ПК AT и ATX
На этой странице я собрал схемы коммутационных блоков для компьютеров (SMPS) ATX v 1.0, ATX v 2.0 и некоторых AT, которые я нашел в Интернете.Я не автор. Автор отмечается обычно прямо на схеме.
Схема питания полумоста ATX (AT) на TL494, KA7500
Микросхемы TL494 и KA7500 эквивалентны. Буквы 494 могут отличаться. В этих источниках используются биполярные переходные транзисторы (BJT) типа NPN.
Схема питания полумоста ATX PC с SG6105.
Схема коммутационных блоков ATX с SG6105.В этих источниках используются биполярные переходные транзисторы (BJT) типа NPN.
Схема блоков питания полумостовых ATX для ПК с KA3511
Поставляет ATX с интегральной схемой KA3511.
В этих источниках используются биполярные переходные транзисторы (BJT) типа NPN.
Схема блоков питания полумостовых ATX для ПК с DR B2003
SMPS для ПК ATX с DR B2003, помеченным как 2003.
В этих источниках используются биполярные переходные транзисторы (BJT) типа NPN.
Схемы комплектующих других полумостовых компьютеров.
Коммутационные блоки ATX с DR B2002 (с маркировкой 2002), AT2005 (2005) и их эквивалентами LPG899 и WT7520.
В этих источниках используются биполярные переходные транзисторы (BJT) типа NPN.
Схемы питания ATX прямой топологии с UC3842, 3843, 3844, 3845 и др.
Поставляет ATX с использованием прямой топологии с одним или двумя коммутаторами (полууправляемый мост).Транзисторы — это полевые МОП-транзисторы.
Управляющие ИС — это UC3842, 3843, 3844, 3845 или другие ИС, которые представляют собой комбинацию для источника питания и активного управления PFC.
как ML4824, FAN480X и ML4800.
DPS-260-2A, ML4824, акт. PFC | ATX — два переключателя вперед, PFC | два переключателя вперед + PFC, FAN480X | два переключателя вперед + PFC с ML4800 |
неполный IP-P350AJ2-0, UC3843, 350 Вт | UTIEK ATX12V-13 600T, UC3843 | ATX CWT PUh500W два коммутатора вперед, UC3845 | Sunny technologies co.ATX230, 230 Вт, одиночный переключатель, UC3843 |
ATX с PTP-2068, одиночный коммутатор , UC3843 | ATX 350T — 350 Вт, UC3842 | Солнечные технологии ATX-230 2SK2545, UC3843 | ATX с STW12NK90Z, UC3843 |
API3PCD2-Y01, два переключателя вперед, пропущенные значения |
дом
Как выбрать блок питания ПК
Один из наименее интересных, но наиболее важных компонентов ПК — это блок питания.Конечно, компьютеры работают на электричестве, и оно не подается напрямую от стены к каждому компоненту в корпусе ПК. Вместо этого электричество переходит от переменного тока (AC), поставляемого энергокомпанией, в постоянный ток (DC), используемый компонентами ПК, с требуемым напряжением.
Заманчиво купить любой блок питания для работы вашего ПК, но это не лучший выбор. Блок питания, который не обеспечивает надежное или чистое питание, может вызвать множество проблем, в том числе нестабильность, которую трудно определить.Фактически, отказ источника питания часто может вызывать другие проблемы, такие как случайные перезагрузки и зависания, которые в противном случае могут оставаться загадочными.
Таким образом, вы захотите уделить выбору источника питания столько же времени и внимания, сколько вашему ЦП, графическому процессору, оперативной памяти и вариантам хранения. Правильный выбор блока питания обеспечит максимальную производительность и поможет продлить срок службы.
Обсуждаемые цены и доступность продуктов действительны на момент публикации, но могут быть изменены.
Выходная мощность: сколько вам нужно?Несмотря на то, что при выборе источника питания необходимо учитывать несколько важных факторов — как и в случае с любым другим компонентом ПК, — определить один из наиболее важных факторов невероятно просто. Вам не нужно проводить тесты или читать обзоры, чтобы узнать, какая мощность вам нужна. Вместо этого вы можете использовать такой инструмент, как калькулятор блоков питания Newegg , чтобы точно определить, сколько мощности требуется для вывода вашего нового блока питания.
Чтобы использовать инструмент, вам необходимо выбрать компоненты из раскрывающихся списков для каждой категории. Приведенный выше инструмент обновлен с использованием новейших опций для центрального процессора (ЦП), материнской платы, графического процессора (ГП), оперативной памяти (ОЗУ) и т. Д. Хотя инструмент не детализирует детали каждого компонента, он делает это там, где это необходимо, и исключает догадки при принятии решения о том, сколько энергии вам нужно.
Например, если вы собираете (или покупаете) ПК с процессором серии Ryzen7, графическим процессором Nvidia GeForce RTX 2060, 16 гигабайтами (ГБ) ОЗУ, состоящими из двух накопителей по 8 ГБ, твердотельным накопителем емкостью 256 ГБ (SSD) ) и жесткий диск (HDD) емкостью 1 ТБ 7200 об / мин, тогда рекомендуется мощность 576 Вт.В целях безопасности вы можете выбрать блок питания на 600 Вт, а покупка подходящего варианта осуществляется одним нажатием кнопки.
Предвидеть обновления при покупке блока питания
Конечно, вы можете запустить несколько сценариев, чтобы убедиться, что вы справитесь со своими долгосрочными потребностями. Например, при обновлении до Nvidia GeForce RTX 2080 рекомендуемая мощность повышается до 631 Вт, в то время как удвоение ОЗУ увеличивает рекомендацию до 582 Вт. Если со временем вы сможете сделать и то, и другое, то вам понадобится как минимум 637 Вт.
Вы поняли. Не планируйте просто удовлетворить свои потребности сегодня, вместо этого немного загляните в будущее и подумайте, какие изменения вы, возможно, захотите внести позже. А если вы покупаете предварительно собранный ПК, вам нужно знать, какой блок питания он использует, чтобы убедиться, что он может справиться со всем, что вы можете добавить, или что его достаточно легко заменить в какой-то момент. .
Важное замечание относительно мощности: длительная мощность и пиковая мощность — это разные вещи. Как правило, показатель «максимальная мощность» блока питания относится к непрерывной (стабильной) мощности, которую блок питания будет постоянно выдавать, в то время как пиковая мощность относится к повышенной максимальной (импульсной) мощности, которую может выдавать блок питания, хотя и за очень короткое время. времени (напр.г., 15 секунд). При покупке блока питания убедитесь, что его постоянная мощность соответствует вашим потребностям, иначе у вас могут возникнуть проблемы, когда ваш компьютер будет работать с полной нагрузкой.
Наконец, не беспокойтесь о том, что покупка блока питания с более высоким номиналом означает, что вы обязательно будете использовать больше энергии. Блок питания будет потреблять только электроэнергию, требуемую компонентами вашего ПК, и поэтому, хотя покупка блока питания большего размера, чем вам нужно, может быть пустой тратой денег, вам не придется больше платить за работу с ПК из-за того, что Это.
Защита
Некоторые производители блоков питания встраивают средства защиты, чтобы защитить ваши компоненты от проблем, связанных с питанием. Эти средства защиты часто увеличивают стоимость источника питания, но они также могут обеспечить некоторое дополнительное спокойствие.
Первый — защита от перенапряжения, которая относится к схеме или механизму, отключающим блок питания, если выходное напряжение превышает указанный предел напряжения, который часто превышает номинальное выходное напряжение.Эта защита важна, поскольку высокое выходное напряжение может вызвать повреждение компонентов компьютера, подключенных к источнику питания.
Вторая — защита от перегрузки и сверхтока. Это цепи, которые защищают блок питания и компьютер путем отключения блока питания при обнаружении чрезмерного тока или силовой нагрузки, включая токи короткого замыкания.
Эффективность имеет значение с блоком питанияВаттность — это лишь мера производительности источника питания.Другой — его рейтинг эффективности, который является мерой того, сколько мощности постоянного тока он посылает на ПК и сколько теряется в основном на тепло. Эффективность важна, потому что она влияет на то, сколько вы потратите на поддержание вашего ПК в рабочем состоянии.
В качестве примера рассмотрим ПК, которому требуется мощность 300 Вт. Если вы используете блок питания с КПД 85%, ваш компьютер будет потреблять около 353 Вт входной мощности от вашей энергетической компании. С другой стороны, блок питания с КПД всего 70% потребляет от сети 428 Вт мощности.Выбор более эффективного источника питания сэкономит немного денег на ежемесячном счете за электроэнергию.
В то же время, блок питания с более высоким рейтингом эффективности позволит вашему ПК также работать с меньшим охлаждением. Каждый компонент ПК выделяет некоторое количество тепла, что снижает его производительность. Более эффективный источник питания будет рассеивать меньше тепла, что будет означать более тихую систему благодаря вентиляторам, которым не нужно работать так же быстро или долго, большей надежности и более длительному сроку службы.
Что такое сертификация 80 PLUS?
Когда вы будете искать блоки питания, вы увидите многие из них с наклейками сертификации 80 PLUS.80 Plus — это программа сертификации, которую производители могут использовать, чтобы гарантировать, что их блоки питания будут соответствовать определенным требованиям к эффективности. 80 PLUS имеет различные уровни, от базовой сертификации до Titanium, а источники питания оцениваются независимыми лабораториями, чтобы обеспечить следующие уровни эффективности для потребительских систем питания 115 В:
Когда вы покупаете блок питания в Newegg, вы можете выбрать фильтрацию по уровню сертификации 80 PLUS. Это упрощает достижение именно того уровня эффективности, которого вы хотите достичь на своем новом ПК.
Рельсы не только для поездов Однако мощность— не единственный показатель способности источника питания поддерживать все ваши компоненты. Питание компонентов осуществляется по шинам, и, хотя каждая шина напряжения требует внимания, наибольшее внимание следует уделять шине (-ам) +12 В, которые обеспечивают питание наиболее энергоемких компонентов, поскольку процессор и видеокарты PCIe получают питание. их сила от них.
Современный источник питания должен выдавать не менее 18 А (ампер) на шине (ах) +12 В для современного компьютера массового потребления, более 24 А для системы с одной видеокартой класса энтузиастов и не менее 34A, когда речь идет о высококачественной системе SLI / CrossFire.Значение выходной силы тока, о котором мы говорим, является совокупным значением для блоков питания с более чем одной шиной +12 В.
Конечно, вам следует искать это суммарное общее количество выходных сигналов, и вы не всегда можете сложить шины +12 В для расчета комбинированного выхода. Например, блок питания с маркировкой + 12V1 @ 18A и + 12V2 @ 16A может иметь суммарную выходную мощность только 30A вместо 34A. Ищите эту информацию в подробных технических характеристиках элемента или на информационной этикетке блока питания.
Если вы собираетесь использовать конфигурацию SLI / Crossfire, вы должны убедиться, что шина (и) +12 В обеспечивает не менее 34 А. Разные источники питания обозначены по-разному — некоторые показывают максимальную силу тока, обеспечиваемую каждой шиной, а некоторые обеспечивают максимальную суммарную максимальную мощность, например, 396 Вт, что равняется 396 Вт / 12 В = 33 А.
Еще одно важное соображение — это количество шин, по которым блок питания питает свои компоненты. Проще говоря, источник питания может обеспечивать только одну шину +12 В для обеспечения всего питания компонентов вашего ПК, или он может иметь несколько шин.Использование одной шины означает, что вся мощность доступна для всех подключенных к ней компонентов — это упрощает настройку, поскольку вам не нужно беспокоиться о согласовании компонентов с направляющими, но это также означает, что сбой источника питания, такой как скачок напряжения, повлияет на все компоненты. И наоборот, наличие нескольких направляющих дает некоторую защиту от катастрофического отказа, но требует большей осторожности при настройке.
Форм-фактор — Подойдет ли ваш блок питания?Следующее соображение простое — вам нужно выбрать форм-фактор, который, как вы уверены, физически впишется в ваш корпус.К счастью, в отношении блоков питания есть стандарты, как и в отношении корпусов и материнских плат.
Эта тема может оказаться довольно сложной, но важно помнить, что вам нужно подобрать источник питания в соответствии с корпусом и материнской платой. Ниже приводится общий обзор наиболее важных на сегодняшний день форм-факторов источников питания.
ATX
Несмотря на то, что блоки питания с форм-фактором AT все еще доступны для покупки, блоки питания с форм-фактором AT, несомненно, являются устаревшими продуктами, которые скоро исчезнут.Даже блоки питания более позднего форм-фактора ATX (ATX 2.03 и более ранние версии) теряют популярность. Основные различия между форм-факторами блоков питания ATX и AT:
Блоки питания- ATX обеспечивают дополнительную шину напряжения + 3,3 В. Блоки питания
- ATX используют один 20-контактный разъем в качестве основного разъема питания. Блоки питания
- ATX поддерживают функцию мягкого выключения, позволяющую программно отключать питание.
ATX12V
Форм-фактор ATX12V сейчас является наиболее распространенным выбором.Существует несколько различных версий форм-фактора ATX12V, и они могут сильно отличаться друг от друга. Спецификация ATX12V v1.0 добавила к оригинальному форм-фактору ATX 4-контактный разъем +12 В для подачи питания исключительно на процессор, а также 6-контактный вспомогательный разъем питания, обеспечивающий напряжение + 3,3 В и + 5 В. В следующей спецификации ATX12V v1.3, помимо всего прочего, был добавлен 15-контактный разъем питания SATA.
Существенное изменение произошло в спецификации ATX12V v2.0, которая изменила формат основного разъема питания с 20-контактного на 24-контактный, удалив 6-контактный вспомогательный разъем питания.Кроме того, спецификация ATX12V v2.0 также изолировала ограничение тока на 4-контактном разъеме питания процессора для шины 12 В 2 (ток + 12 В разделяется на шины 12 В 1 и 12 В 2). Позже спецификации ATX12V v2.1 и v2.2 также повысили требования к эффективности и потребовали различных других улучшений.
Все блоки питания ATX12V имеют такую же физическую форму и размер, что и форм-фактор ATX.
EPS12V, SFX12V и другие
В форм-факторе блока питания EPS12V используется 8-контактный разъем питания процессора в дополнение к 4-контактному разъему форм-фактора ATX12V (это не единственное различие между этими двумя форм-факторами, но для большинства пользователей настольных компьютеров, знающих этого должно быть достаточно).Форм-фактор EPS12V изначально был разработан для серверов начального уровня, но все больше и больше материнских плат для настольных ПК высокого класса теперь оснащены 8-контактным разъемом питания процессора EPS12V, который позволяет пользователям выбрать блок питания EPS12V.
Обозначение малого форм-фактора (SFF) используется для описания ряда меньших блоков питания, таких как SFX12V (SFX означает малый форм-фактор), CFX12V (CFX означает компактный форм-фактор), LFX12V (LFX означает низкопрофильный Форм-фактор) и TFX12V (TFX означает тонкий форм-фактор).Все они меньше стандартных блоков питания форм-фактора ATX12V с точки зрения физических размеров, и блоки питания малого форм-фактора необходимо устанавливать в соответствующие компьютерные корпуса малого форм-фактора.
РазъемыБлок питания бесполезен, если он не подключается к каждому компоненту вашего ПК и не питает его. Это означает, что он должен иметь все необходимые типы разъемов.
Первый разъем, который следует рассмотреть, — это главный разъем, питающий материнскую плату.Этот разъем бывает двух типов: 20-контактный и 24-контактный. Последний становится все более популярным, и вполне вероятно, что ваш блок питания предоставит оба варианта. Просто проверьте, чтобы убедиться.
Далее идет разъем питания процессора, который выпускается в 4-контактном и 8-контактном вариантах. Как и в случае с основным разъемом питания, многие современные материнские платы перешли на больший формат. Опять же, убедитесь, что ваш блок питания совместим.
Наиболее часто используемый разъем питания — это 4-контактный разъем Molex.Он используется для множества компонентов, включая старые жесткие диски, оптические приводы, вентиляторы и некоторые другие устройства. Более новые компоненты SATA имеют собственный разъем питания SATA, и вы также можете использовать адаптеры Molex для SATA, если они у вас закончились. И вы даже можете использовать кабели-разветвители, чтобы увеличить количество подключаемых компонентов, но помните о верхних пределах вашего источника питания.
Шум вентилятора и удобство кабеляТеперь, когда мы рассмотрели наиболее важные факторы, связанные с питанием, при выборе источника питания следует учитывать еще несколько моментов.Это не так важно, но они могут повлиять на то, насколько приятным будет источник питания в течение всего срока службы вашего ПК.
Шум вентилятора
Как мы уже говорили, источники питания вырабатывают тепло. Это означает, что они требуют, чтобы вентиляторы оставались прохладными и работали эффективно. Вам нужно подумать о том, насколько тихо вы хотите, чтобы ваш компьютер работал, что во многом будет зависеть от вашей среды. Если ваш компьютер работает в тихом месте, то более крупные вентиляторы, которые вращаются медленнее для перемещения того же количества воздуха, скорее всего, приведут к более тихому ПК.
Нет никаких реальных стандартов в отношении охлаждения блоков питания, поэтому вам нужно будет сравнить маркетинговые материалы для ваших вариантов блоков питания. Это одна из областей, где подробные обзоры будут особенно полезны, поскольку они, как правило, измеряют, насколько громким является источник питания на разных уровнях работы, и поэтому предлагают некоторые рекомендации относительно того, насколько громко вы можете рассчитывать на работу вашего ПК.
Кабельная проводка
Наконец, существует три основных типа кабелей питания. Независимо от того, выберете ли вы проводную, модульную или гибридную систему, будет зависеть, насколько чистым будет внутри вашего корпуса и сколько работы вам потребуется, чтобы ваш компьютер оставался незагроможденным и организованным.
Жесткая разводка кабелей означает, что каждый разъем напрямую подключен к источнику питания и поэтому будет присутствовать независимо от того, нужен он или нет. Преимущество проводных систем — и оно невелико при использовании современных источников питания — состоит в том, что они проще и не требуют дополнительного сопротивления с дополнительными разъемами.
Модульная кабельная разводка означает, что каждый разъем может быть добавлен по мере необходимости. Это упрощает поддержание вашего корпуса в чистоте и лаконичности, но также вносит некоторую дополнительную сложность — и цену — и некоторое дополнительное сопротивление благодаря дополнительным физическим соединениям.Однако для большинства пользователей это, скорее всего, неактуально.
В гибридных системахесть некоторые кабели, такие как подключение к основному источнику питания, которые физически подключены, а другие являются дополнительными. Гибридная система может представлять собой хороший компромисс, поскольку требуются определенные кабели, и даже если дополнительное сопротивление модульных соединений минимально, этого достаточно легко избежать.
Время включенияОчевидно, что нужно многое выбрать для выбора блока питания, и это важное решение при сборке нового ПК.Но если вы потратите немного времени на то, чтобы убедиться, что ваш блок питания обеспечивает компоненты вашего ПК надежным, стабильным и безопасным питанием, вы сэкономите огромное количество времени в долгосрочной перспективе и сделаете ваш компьютер лучше и эффективнее. машина.
Computer Products XL50-3602R / 4602R Печатная плата источника питания 110/120 В переменного тока: Электроника
Марка | Компьютерные продукты |
Размеры изделия ДхШхВ | 12.2 x 9,06 x 9,06 дюйма |
Вес предмета | 1 килограмм |
Характеристики данного продукта
Фирменное наименование | Компьютерные продукты |
---|---|
Вес изделия | 2.20 фунтов |
Кол-во позиций | 1 |
Номер детали | XL50-3602R / 4602R |
Код UNSPSC | 43210000 |
Как работают блоки питания | ОРЕЛ
Блоки питаниясоставляют основу всех наших электронных устройств и обеспечивают согласованную схему работы там, где это больше всего необходимо.В современной электронике, такой как компьютеры и другие чувствительные к данным устройства, питание должно работать безупречно, а единичный отказ может означать потерю работы и данных. Но, как разработчики электроники, мы обычно оставляем наши соображения по поводу источника питания на потом, часто беря заранее подготовленный блок схемы, который, как мы знаем, уже работает. В конце концов, нам просто нужен выход 5 В, верно? Оказывается, под капотом творится еще много всего.
Источники питания от 10000 футов
Большинство источников питания получают питание от сети переменного тока и преобразуют его в постоянный ток, пригодный для использования в электронных устройствах.Во время этого процесса источник питания выполняет несколько ролей, в том числе:
- Преобразование переменного тока из сети в устойчивый постоянный ток
- Предотвращение воздействия переменного тока на выход источника постоянного тока
- Поддержание выходного напряжения на постоянном уровне независимо от изменений входного напряжения
Чтобы осуществить все это преобразование, типичный источник питания будет использовать несколько общих компонентов, включая трансформатор, выпрямитель, фильтр и регулятор.
Процесс преобразования переменного тока в постоянный начинается с переменного тока, который возникает в розетке в виде синусоидальной волны.Этот сигнал переменного тока колеблется между отрицательным и положительным напряжением до шестидесяти раз в секунду.
Сигнал синусоидальной формы переменного тока. (Источник изображения)
Напряжение переменного тока сначала понижается трансформатором, чтобы удовлетворить требованиям напряжения источника питания. После понижения напряжения выпрямитель превратит синусоидальную форму волны переменного тока в набор положительных впадин и пиков.
Выпрямление удаляет отрицательную сторону сигнала переменного тока, оставляя только положительный выход.(Источник изображения)
На этом этапе все еще есть колебания в форме волны переменного тока, поэтому для сглаживания переменного напряжения в пригодный для использования источник постоянного тока используется фильтр.
Применение фильтра с емкостным конденсатором устраняет агрессивные пики и впадины в нашей форме волны. (Источник изображения)
Теперь, когда переменный ток преобразован в пригодный для использования постоянный ток, некоторые источники питания будут дополнительно устранять любые колебания в форме волны с помощью регулятора. Этот регулятор будет обеспечивать стабильный выход постоянного тока независимо от изменений входного переменного напряжения.
Это краткий обзор процесса. Независимо от того, какой блок питания вы смотрите, в нем всегда будет как минимум три основных компонента — трансформатор, выпрямитель и фильтр. Регуляторы могут использоваться или не использоваться в зависимости от того, является ли источник питания нерегулируемым или регулируемым (подробнее об этом позже).
Детали блока питания
Трансформатор
В качестве первой линии защиты трансформатор выполняет работу по понижению входящего переменного тока от сети до уровня напряжения, с которым может справиться нагрузка источника питания.Трансформаторы также могут повышать напряжение, но в этой статье мы сосредоточимся на тех, которые понижают напряжение для низковольтных электронных устройств постоянного тока.
Внутри трансформатора находятся две обмотки катушки, физически отделенные друг от друга. Первая обмотка принимает переменный ток от сети, а затем электромагнитно соединяется со второй обмоткой, чтобы провести необходимое переменное напряжение во вторичной обмотке. Сохраняя эти две обмотки физически разделенными, трансформатор может изолировать напряжение сети переменного тока от выхода цепи питания.
Две физически разделенные катушки в трансформаторе проводят через электромагнитную связь. (Источник изображения)
Выпрямитель
После того, как переменный ток понижается трансформатором, задача выпрямителя — преобразовать форму волны переменного тока в необработанный формат постоянного тока. Это достигается одним или несколькими диодами в полуволновой, полноволновой или мостовой конфигурации.
Полуволновое выпрямление
В этой конфигурации один выпрямительный диод используется для извлечения постоянного напряжения из половины цикла формы сигнала переменного тока.В результате у источника питания остается половина выходного напряжения, которое он мог бы получить от полной формы волны переменного тока при Vpk x 0,318. Half Wave — это самая дешевая конфигурация для проектирования, она идеальна для не требовательного использования энергии и обычно оставляет наибольшую пульсацию выходного напряжения.
Полуволновое выпрямление в цепи и форме выходного сигнала. (Источник изображения)
Полноволновое выпрямление
В этой конфигурации два выпрямительных диода используются для выделения двух полупериодов входящего сигнала переменного тока.Этот процесс обеспечит двойное выходное напряжение полуволнового выпрямления при Vpk x 0,637. Хотя эта конфигурация более дорогая в разработке, чем полуволновая, поскольку для нее требуется трансформатор с центральным отводом, она имеет дополнительное преимущество в виде улучшенного сглаживания пульсаций переменного тока.
Полноволновое выпрямление в цепи и форме выходного сигнала. (Источник изображения)
Мостовое выпрямление
В этой конфигурации используются четыре диода, расположенных в виде моста для достижения полноволнового выпрямления без использования трансформатора с центральным отводом.Это обеспечит то же выходное напряжение, что и Full Wave при Vpk x 0,637 с диодами, которым требуется только половина их обратного напряжения пробоя. В течение каждого полупериода два противоположных диода проводят ток, что обеспечивает полную форму волны переменного тока в конце полного цикла.
Мостовое выпрямление в цепи и форме выходного сигнала, как для полной волны. (Источник изображения)
Фильтр
Теперь, когда у нас преобразовано напряжение переменного тока, работа фильтра заключается в устранении любых пульсаций переменного тока в выходном напряжении, в результате чего напряжение постоянного тока остается плавным.Зачем устранять рябь? Если они попадут на выход источника питания, они могут повредить нагрузку и потенциально вывести из строя всю вашу схему. В фильтрах используются два основных компонента: накопительный конденсатор и фильтр нижних частот.
Резервуарный конденсатор
Электролитический конденсатор большой емкости используется для временного хранения выходного тока, подаваемого выпрямительным диодом. При зарядке этот конденсатор может обеспечивать выходной постоянный ток в промежутках времени, когда выпрямительный диод не проводит ток.Это позволяет источнику питания поддерживать стабильный выход постоянного тока на протяжении циклов включения / выключения источника питания.
Здесь вы можете увидеть разницу в выходном сигнале с крышкой резервуара и без нее. (Источник изображения)
Фильтр низких частот
Вы можете сделать схему источника питания только с емкостным конденсатором, но добавление фильтра нижних частот дополнительно устраняет пульсации переменного тока, которые проходят через емкостной конденсатор. В большинстве базовых источников питания вы не найдете фильтров нижних частот, поскольку для них требуются дорогие индукторы с ламинированным или тороидальным сердечником.Однако в современной электронике с импульсным источником питания вы обнаружите, что фильтры нижних частот используются для устранения пульсаций переменного тока на более высоких частотах.
При добавлении в схему источника питания емкостного конденсатора и фильтра нижних частот можно удалить более 95% пульсаций переменного тока. Это позволит вам поддерживать стабильное и чистое выходное напряжение, которое соответствует пику исходной входной волны переменного тока.
Регулятор
В регулируемых источниках питания будет добавлен регулятор для дальнейшего сглаживания постоянного напряжения и обеспечения стабильного выходного сигнала независимо от изменений входных уровней.Это улучшенное регулирование также увеличивает сложность и стоимость питания схемы. Вы найдете регуляторы в двух различных конфигурациях: в виде шунтирующего регулятора или последовательного регулятора.
Шунтирующий регулятор
В этой конфигурации регулятор подключен параллельно нагрузке, что обеспечивает постоянное протекание тока через регулятор до попадания в нагрузку. Если ток нагрузки увеличивается или уменьшается, шунтирующий регулятор будет либо уменьшать, либо увеличивать свой ток, чтобы поддерживать постоянное напряжение и ток питания.
Шунтовые регуляторы подключаются параллельно нагрузке. (Источник изображения)
Регулятор серииВ этой конфигурации последовательный регулятор подключен последовательно с нагрузкой, которая обеспечивает переменное сопротивление. Этот регулятор будет последовательно измерять входящее напряжение нагрузки, используя систему отрицательной обратной связи. Если образец напряжения повышается или понижается, то последовательный регулятор либо понижает, либо увеличивает свое сопротивление, позволяя большему или меньшему току проходить через нагрузку.
Регуляторы сериидобавляют переменное сопротивление к управляющему току. (Источник изображения)
Типы источников питания
В типичных источниках питания переменного и постоянного тока используются некоторые или все вышеперечисленные компоненты в своей схеме в качестве нерегулируемого или регулируемого источника питания. Тип источника питания, который вы используете в своем электронном проекте, зависит от уникальных требований вашего дизайна.
Нерегулируемые блоки питания
Эти блоки питания не имеют регулятора напряжения и выдают только заданное напряжение при максимальном выходном токе.Здесь выход постоянного напряжения связан с внутренним трансформатором напряжения, и выходное напряжение будет увеличиваться или уменьшаться в зависимости от токового выхода нагрузки. Эти блоки питания известны своей прочностью и недорого, но не обеспечивают достаточной точности для чувствительных к мощности электронных устройств.
Нерегулируемые блоки питаниясодержат все стандартные компоненты, кроме регулятора.
Регулируемые блоки питания
Регулируемые блоки питания включают в себя все основные компоненты нерегулируемого источника питания с добавлением регулятора напряжения.Следует отметить три конфигурации блока питания регулятора:
Линейный источник питания . В этой конфигурации используется полупроводниковый транзистор или полевой транзистор для управления выходными напряжениями в определенном диапазоне. Хотя эти блоки питания не самые эффективные и выделяют много тепла, они известны своей надежностью, минимальным электрическим шумом и широкой коммерческой доступностью.
Типовая схема линейного питания. (Источник изображения)
Импульсный источник питания .В этой конфигурации используется полупроводниковый транзистор или полевой транзистор, который включается / выключается для подачи напряжения на выходной накопительный конденсатор. Режимы переключения обычно меньше и легче, чем линейные источники питания, предлагают широкий диапазон выходных сигналов и более эффективны. Однако они требуют сложной схемы, генерируют больше шума и требуют подавления помех для своих высокочастотных операций.
Здесь мы видим добавленную сложность в схеме переключения режимов. (Источник изображения)
Батарейный блок питания .Эта конфигурация действует как накопитель энергии и обеспечивает постоянный поток постоянного тока к электронному устройству. По сравнению с линейными и импульсными источниками питания, батареи являются наименее эффективным методом питания устройств, и их также трудно сопоставить с правильным напряжением в нагрузке. Тем не менее, батареи имеют то преимущество, что они служат источником питания, когда сеть переменного тока недоступна, и не создают электрических помех.
При выборе источника питания для вашего следующего проекта электроники обратите внимание на следующие преимущества и недостатки нерегулируемых и регулируемых источников питания:
Нерегулируемый | Регулируемый |
Преимущества:
Недостатки
| Преимущества
Недостатки
|
При выборе между линейным, импульсным или аккумуляторным блоком питания учитывайте следующее:
Регулируемые блоки питания | ||
Линейный | Режим переключения | Аккумулятор |
Преимущества
Недостатки
| Преимущества
Недостатки
| Преимущества
Недостатки
|
Технические характеристики блока питания, которые необходимо знать о
Выбирая готовую схему источника питания вместо того, чтобы разрабатывать свою собственную, необходимо знать несколько спецификаций.К ним относятся:
- Выходной ток . Это максимальный ток, который блок питания может подавать на нагрузку.
- Регулятор нагрузки . Это определяет, насколько хорошо регулятор может поддерживать постоянный выходной сигнал при изменении тока нагрузки, обычно измеряемого в милливольтах (мВ) или максимальном выходном напряжении.
- Шум и пульсация . Они измеряют нежелательные электронные помехи и колебания напряжения при преобразовании переменного тока в постоянный, обычно измеряемые в размахе напряжения для импульсных источников питания.
- Защита от перегрузки . Это функция безопасности, которая отключит источник питания в случае короткого замыкания или перегрузки по току.
- Эффективность . Это соотношение мощности, преобразованной из сети переменного тока в постоянный. Высокоэффективные системы, такие как импульсные блоки питания, могут достичь 80% эффективности, снизить нагрев и сэкономить энергию.
Последовательное преобразование
Источники питанияобеспечивают стабильную основу питания всех наших электронных устройств, будь то ваш компьютер, смартфон или телевизор, этот список можно продолжать.Независимо от того, какой тип источника питания вы используете или разрабатываете, все они включают в себя несколько основных компонентов для преобразования сети переменного тока в постоянный постоянный ток (DC). Трансформатор сначала понижает напряжение, которое затем выпрямляется в необработанный формат постоянного тока. Затем он фильтруется и регулируется, чтобы обеспечить плавное постоянное напряжение для стабильного выходного сигнала. При разработке собственной схемы источника питания рассчитывайте использовать эти основные компоненты вместе с уникальными характеристиками мощности для вашей конструкции, чтобы обеспечить постоянный выход постоянного тока в любое время дня.
Нужен разъем питания для вашего будущего проекта по разработке электроники? У нас есть масса бесплатных библиотек! Попробуйте Autodesk EAGLE бесплатно сегодня!
Полвека назад улучшенные транзисторы и импульсные регуляторы произвели революцию в дизайне компьютерных блоков питания
Компьютерные блоки питания не вызывают особого уважения.
Как технический энтузиаст, вы, вероятно, знаете, какой микропроцессор в вашем компьютере и сколько в нем физической памяти, но, скорее всего, вы ничего не знаете о блоке питания.Не расстраивайтесь — даже производители думают о проектировании источника питания в последнюю очередь.
Это позор, потому что потребовались значительные усилия для создания источников питания, используемых в персональных компьютерах, которые представляют собой огромное улучшение по сравнению со схемами, питавшими другие виды бытовой электроники примерно до конца 1970-х годов. Этот прорыв стал результатом огромных успехов, достигнутых в полупроводниковой технологии полвека назад, в частности, усовершенствований в коммутирующих транзисторах и инноваций в ИС.И тем не менее, эта революция остается совершенно непризнанной широкой публикой и даже многими людьми, знакомыми с историей микрокомпьютеров.
Однако в источниках питания не обошлось и без ярых чемпионов, в том числе и один, который может вас удивить: Стив Джобс. По словам его авторизованного биографа Уолтера Айзексона, Джобс сильно переживал по поводу источника питания новаторского персонального компьютера Apple II и его дизайнера Рода Холта. Утверждение Джобса, как сообщает Исааксон, звучит так:
Вместо обычного линейного источника питания Холт построил тот, который используется в осциллографах.Он включал и выключал питание не шестьдесят раз в секунду, а тысячи раз; это позволило ему сохранять энергию в течение гораздо меньшего времени и, следовательно, отбрасывать меньше тепла. «Этот импульсный источник питания был столь же революционным, как и логическая плата Apple II, — позже сказал Джобс. — Род не получил за это большого признания в учебниках истории, но он должен. Каждый компьютер теперь использует импульсные источники питания, и все они копируют дизайн Рода Холта «.
Заявление Джобса является серьезным, и оно меня не устраивало, поэтому я провел небольшое расследование.Я обнаружил, что, хотя импульсные источники питания были революционными, революция произошла между концом 1960-х и серединой 1970-х годов, когда импульсные источники питания пришли на смену простым, но неэффективным линейным источникам питания. Apple II, представленный в 1977 году, выиграл от этой революции, но не спровоцировал ее.
Это исправление версии событий Джобса — гораздо больше, чем просто инженерная мелочь. Сегодня импульсные источники питания являются повсеместной опорой, которую мы используем ежедневно для зарядки наших смартфонов, планшетов, ноутбуков, фотоаппаратов и даже некоторых наших автомобилей.Они приводят в действие часы, радио, домашние усилители звука и другую мелкую бытовую технику. Инженеры, которые действительно спровоцировали эту революцию, заслуживают признания. И это тоже довольно хорошая история.
Блок питания в настольном компьютере, таком как Apple II, преобразует сетевое напряжение переменного тока в постоянный, обеспечивая стабильные напряжения для питания системы. Источники питания могут быть построены разными способами, но наиболее распространены линейная и переключающая конструкции.
В типичном линейном источнике питания используется громоздкий трансформатор для преобразования переменного тока относительно высокого напряжения из линий электропередач в переменный ток низкого напряжения, который затем преобразуется в постоянный ток низкого напряжения с помощью диодов, обычно четыре из которых подключены в классической мостовой конфигурации. Большие электролитические конденсаторы используются для сглаживания выхода диодного моста. В компьютерных источниках питания используется схема, называемая линейным регулятором, которая снижает напряжение постоянного тока до желаемого уровня и удерживает его на нем даже при изменении нагрузки.
Линейные блоки питания почти несложно спроектировать и построить.И они используют недорогие низковольтные полупроводники. Но у них есть два основных недостатка. Один из них — это большие конденсаторы и здоровенный трансформатор, которые невозможно упаковать во что-то столь же маленькое, легкое и удобное, как зарядные устройства, которые мы все сейчас используем со своими смартфонами и планшетами. Другой — линейный стабилизатор, схема на основе транзистора, которая превращает избыточное постоянное напряжение — все, что выше установленного выходного напряжения — в отходящее тепло. Таким образом, такие блоки питания обычно расходуют больше половины потребляемой энергии.И им часто требуются большие металлические радиаторы или вентиляторы, чтобы избавиться от всего этого тепла.
Импульсный источник питания работает по другому принципу: в типичном импульсном источнике питания вход переменного тока преобразуется в высоковольтный постоянный ток, который включается и выключается десятки тысяч раз в секунду. Используемые высокие частоты позволяют использовать гораздо меньшие и легкие трансформаторы и конденсаторы меньшего размера. Специальная схема точно рассчитывает время переключения для управления выходным напряжением.Поскольку им не нужны линейные регуляторы, такие источники питания тратят мало энергии: они обычно имеют КПД от 80 до 90 процентов и, следовательно, выделяют гораздо меньше тепла.
Однако импульсный источник питания значительно сложнее, чем линейный источник питания, и поэтому его труднее спроектировать. Кроме того, он предъявляет гораздо более высокие требования к компонентам, требуя высоковольтных силовых транзисторов, которые могут эффективно включаться и выключаться на высокой скорости.
В качестве примечания я должен упомянуть, что в некоторых компьютерах используются блоки питания, которые не являются ни линейными, ни переключаемыми.Один грубый, но эффективный метод заключался в том, чтобы отключить двигатель от сети и использовать этот двигатель для управления генератором, который создает желаемое выходное напряжение. Мотор-генераторы использовались на протяжении десятилетий, по крайней мере, еще с перфокарт IBM 1930-х годов и вплоть до 1970-х годов для таких вещей, как суперкомпьютеры Cray.
Другой вариант, популярный с 1950-х по 1980-е годы, заключался в использовании феррорезонансных трансформаторов — специального типа трансформатора, который обеспечивает постоянное выходное напряжение.Кроме того, насыщаемый реактор, управляемый индуктор, использовался для регулирования питания ламповых компьютеров в 1950-х годах. Он снова появился [PDF] как «магнитный усилитель» в некоторых современных источниках питания для ПК, обеспечивая дополнительное регулирование, но в конце концов эти странные подходы в значительной степени уступили место импульсным источникам питания.
Принципы, лежащие в основе импульсного источника питания , были известны инженерам-электрикам с 1930-х годов, но эта технология нашла ограниченное применение в эпоху электронных ламп.В некоторых источниках питания того времени использовались специальные ртутьсодержащие трубки, называемые тиратронами, которые можно было считать примитивными низкочастотными импульсными регуляторами. Примеры включают в себя источник питания телетайпа REC-30 1940-х годов и источник питания, используемый в компьютере IBM 704 с 1954 года. Однако с появлением силовых транзисторов в 1950-х годах импульсные источники питания быстро улучшились. Pioneer Magnetics начала производство импульсных источников питания в 1958 году. Компания General Electric опубликовала ранний проект транзисторного импульсного источника питания в 1959 году.
На протяжении 1960-х годов НАСА и аэрокосмическая промышленность обеспечивали основную движущую силу разработки импульсных источников питания, поскольку для аэрокосмических приложений преимущества небольшого размера и высокой эффективности перевешивали высокую стоимость. Например, в 1962 году спутник Telstar (первый спутник для передачи телевизионных изображений) и ракета Minuteman использовали импульсные источники питания. По прошествии десятилетия затраты снизились, и переключение источников питания превратилось в вещи, продаваемые населению.Например, в 1966 году компания Tektronix использовала импульсный источник питания в портативном осциллографе, позволяя ему работать от сети или батарей.
Эта тенденция усилилась, когда производители блоков питания начали продавать коммутационные блоки другим компаниям. В 1967 году RO Associates представила первый импульсный источник питания на 20 килогерц, который, по ее утверждению, был первым коммерчески успешным примером импульсного источника питания. Компания Nippon Electronic Memory Industry Co. начала разработку стандартизированных импульсных источников питания в Японии в 1970 году.К 1972 году большинство производителей блоков питания продавали коммутационные блоки или собирались их предложить.
Примерно в это же время компьютерная промышленность начала использовать импульсные блоки питания. Ранние примеры включают миникомпьютер Digital Equipment PDP-11/20 в 1969 году и миникомпьютер Hewlett-Packard 2100A в 1971 году. В отраслевой публикации 1971 года говорилось, что компании, использующие импульсные регуляторы, «читаются как« Кто есть кто »в компьютерной индустрии: IBM, Honeywell, Univac , DEC, Берроуз и RCA, и это лишь некоторые из них.«В 1974 году миникомпьютеры, использующие импульсные блоки питания, включали Nova 2/4 от Data General, 960B от Texas Instruments и системы от Interdata. В 1975 году импульсные блоки питания использовались в терминале дисплея HP2640A, подобном пишущей машинке IBM Selectric Composer и Портативный компьютер IBM 5100. К 1976 году компания Data General использовала коммутирующие блоки питания в половине своих систем, а HP использовала их для небольших систем, таких как настольный компьютер 9825A и калькулятор 9815A. к 1973 г.
Импульсные источники питания широко освещались в журналах по электронике той эпохи, как в рекламе, так и в статьях. Еще в 1964 году компания Electronic Design рекомендовала импульсные источники питания для повышения эффективности. На обложке журнала Electronics World от октября 1971 г. был представлен импульсный источник питания на 500 Вт и статья под названием «Источник питания импульсного регулятора». компьютеры, хотя в нем упоминалось, что некоторые компании все еще были настроены скептически.В 1976 году на обложке Electronic Design было объявлено: «Внезапно переключиться стало проще» с описанием новых микросхем импульсного контроллера питания. Electronics опубликовала длинную статью на эту тему; Powertec разместила двухстраничную рекламу преимуществ его импульсные источники питания с крылатой фразой: «Большой переход на переключатели»; и Byte анонсировали импульсные блоки питания для микрокомпьютеров от компании Boschert.
Роберт Бошерт, который уволился с работы и в 1970 году начал собирать блоки питания на своем кухонном столе, был ключевым разработчиком этой технологии.Он сосредоточился на упрощении этих конструкций, чтобы сделать их конкурентоспособными по стоимости с линейными источниками питания, и к 1974 году он начал массовое производство недорогих источников питания для принтеров, за которыми в 1976 году последовал недорогой импульсный источник питания мощностью 80 Вт. К 1977 году компания Boschert Inc. выросла до 650 человек. Она производила блоки питания для спутников и истребителей Grumman F-14, а позже производила блоки питания для компьютеров для таких компаний, как HP и Sun.
Внедрение высоковольтных, быстродействующих транзисторов по низкой цене в конце 1960-х — начале 1970-х годов такими компаниями, как Solid State Products Inc.(SSPI), Siemens Edison Swan (SES) и Motorola, среди прочих, помогли продвинуть импульсные блоки питания в массовое производство. Более быстрая скорость переключения транзисторов повышает эффективность, потому что тепло рассеивается в таком транзисторе в основном при переключении между включенным и выключенным состояниями, и чем быстрее устройство может совершить этот переход, тем меньше энергии оно будет тратить.
Скорость транзисторов в то время росла не по дням, а по часам. Действительно, технология транзисторов развивалась так быстро, что редакторы Electronics World заявили в 1971 году, что блок питания мощностью 500 Вт, изображенный на его крышке, не мог быть построен с транзисторами, доступными всего 18 месяцев назад.
Еще одно заметное достижение произошло в 1976 году, когда Роберт Маммано, соучредитель Silicon General Semiconductors, представил первую ИС для управления импульсным источником питания, разработанную для электронного телетайпа. Его микросхема контроллера SG1524 значительно упростила конструкцию этих расходных материалов и снизила затраты, что вызвало всплеск продаж.
К 1974 году, плюс-минус год или два, любому, кто хоть немного разбирался в электронной промышленности, стало ясно, что происходит настоящая революция в проектировании источников питания.
Лидеры и последователи: Стив Джобс демонстрирует персональный компьютер Apple II в 1981 году. Впервые представленный в 1977 году, Apple II извлек выгоду из повсеместного перехода от громоздких линейных источников питания к компактным и эффективным коммутационным схемам. Но Apple II не спровоцировал этот переход, как позже утверждал Джобс. Фото: Тед Тай / The LIFE Picture Collection / Getty Images
Персональный компьютер Apple II был представлен в 1977 году. Одной из его особенностей был компактный безвентиляторный импульсный источник питания [PDF], который обеспечивал мощность 38 Вт при 5, 12, –5 и –12 вольт.Он использовал простую конструкцию Холта, своего рода импульсный источник питания, известный как автономная топология обратноходового преобразователя. Джобс утверждал, что теперь каждый компьютер копирует революционный дизайн Холта. Но был ли этот дизайн действительно революционным в 1977 году? И копировал ли его любой другой производитель компьютеров?
Нет и нет. Подобные автономные обратноходовые преобразователи продавались в то время Boschert и другими компаниями. Холт получил патент на несколько особенностей своего источника питания, но эти особенности так и не получили широкого распространения.А создание схемы управления из дискретных компонентов, как это было сделано для Apple II, оказалось технологическим тупиком. Будущее импульсных источников питания принадлежало специализированным микросхемам контроллеров.
Если и есть один микрокомпьютер, который оказал длительное влияние на конструкцию источников питания, то это был персональный компьютер IBM, выпущенный в 1981 году. К тому времени, всего через четыре года после Apple II, технология источников питания сильно изменилась. Хотя оба этих первых персональных компьютера использовали автономные источники питания с обратным ходом и несколькими выходами, это почти все, что у них было общего.Их схемы привода, управления, обратной связи и регулирования были разными. Несмотря на то, что в блоке питания IBM PC использовался контроллер IC, он содержал примерно в два раза больше компонентов, чем блок питания Apple II. Эти дополнительные компоненты обеспечивали дополнительную регулировку на выходах и сигнал «power good», когда все четыре напряжения были правильными.
В 1984 году IBM выпустила значительно обновленную версию своего персонального компьютера под названием IBM Personal Computer AT. В его блоке питания использовалось множество новых схемотехнических решений, полностью отказавшихся от прежней обратноходовой топологии.Он быстро стал стандартом де-факто и оставался таковым до 1995 года, когда Intel представила спецификацию форм-фактора ATX, которая, среди прочего, определяла блок питания ATX, который до сих пор является стандартом.
Несмотря на появление стандарта ATX, компьютерные системы питания стали более сложными в 1995 году с появлением Pentium Pro, микропроцессора, который требовал более низкого напряжения при более высоком токе, чем источник питания ATX мог обеспечить напрямую. Для обеспечения этого питания Intel представила модуль регулятора напряжения (VRM) — импульсный стабилизатор постоянного тока, установленный рядом с процессором.Он снизил 5 В от источника питания до 3 В, используемых процессором. Графические карты, используемые во многих компьютерах, также содержат VRM для питания высокопроизводительных графических чипов, которые они содержат.
В наши дни быстрому процессору может потребоваться до 130 Вт от VRM — намного больше, чем полватта мощности, используемой процессором Apple II 6502. Действительно, один только современный процессорный чип может потреблять более чем в три раза мощность, потребляемую всем компьютером Apple II.
Растущее энергопотребление компьютеров стало причиной беспокойства об окружающей среде, что привело к появлению инициатив и нормативных актов, направленных на повышение эффективности источников питания.В Соединенных Штатах государственная сертификация Energy Star и отраслевые сертификаты 80 Plus подтолкнули производителей к производству более «зеленых» источников питания. Они смогли сделать это, используя различные методы: более эффективное резервное питание, более эффективный запуск схемы, резонансные схемы, которые уменьшают потери мощности в переключающих транзисторах, и схемы «активного зажима», которые заменяют переключающие диоды более эффективными транзисторными схемами. Усовершенствования в технологии силовых MOSFET-транзисторов и высоковольтных кремниевых выпрямителей за последнее десятилетие также привели к повышению эффективности.
Технология импульсных источников питания продолжает развиваться и в других направлениях. Сегодня вместо аналоговых схем во многих источниках питания используются цифровые микросхемы и программные алгоритмы для управления своими выходами. Проектирование контроллера источника питания становится вопросом программирования не меньше, чем проектирования аппаратного обеспечения. Цифровое управление питанием позволяет источникам питания обмениваться данными с остальной системой для повышения эффективности и ведения журнала. Хотя сейчас эти цифровые технологии в основном предназначены для серверов, они начинают влиять на дизайн настольных компьютеров.
Трудно увязать эту историю с утверждением Джобса, что Холт должен быть более известен или что «Род не заслуживает особой признательности за это в учебниках истории, но он должен». не стал известен за пределами крошечного сообщества. В 2009 году редакторы Electronic Design приветствовали Бошерта в своем Зале инженерной славы.