Линейное напряжение это напряжение между: что это такое и чем они отличаются

Содержание

формула, соотношение фазного и линейного напряжения

Электрические цепи характеризуются наличием различных типов напряжения. Линейное напряжение (ЛН) возникает между фазовыми проводами трёхфазной цепи. У всех частей (фаз) многофазной цепи характеристика тока идентична. Название цепей (шести-, трёх- или 2-фазные) обуславливаются числом фаз. Наибольшее распространение получили трёхфазные электроцепи, так как являются наиболее экономичными в сравнении с многофазными или 2-фазными. А также позволяют на одном агрегате получить ЛН и фазное напряжение (ФН).

Какое напряжение называется линейным, а какое фазным

Линейным называется напряженье между 2-мя фазами линии или когда определяется величина между 2-мя проводами различных фаз.

Напряжение между любой фазой и нулём — фазное. Оно меряется между начальной и конечной стадией фазы. Практически ФН от ЛН отличается на 58-60 процентов. То есть, величины ЛН в 1,73 раза больше величин ФН.

Трёхфазный ток

Трёхфазные цепи имеют 380В ЛН, что позволяет получить 220В фазного.

Отличия

Специфика ЛН — это показатель, по которому производится расчёт токов и остальных величин трёхфазной цепи. Подобная схема позволяет подключать одно- и трёхфазные контакты. Номинальное равно 380В и меняется при изменениях в ограниченной сети, к примеру, вследствие скачков.

Популярнейшей является цепь с нейтралью и заземлением. Подключение в такой системе производится по схеме:

  • к фазным проводам подсоединяются однофазные провода;
  • к 3-фазным — 3-фазные.
Типы соединений

Широта применения ЛН обуславливается его безопасностью и комфортностью разветвления цепи. Оборудование в таком случае подключается к фазному выводу, и лишь он не безопасен.

Расчёт системы несложен, при этом действуют стандартные физические формулы. Параметры ЛН сети замеряются мультиметром, а ФН — спецустройствами, например, вольтметром, датчиком тока, тестером.

Характеристики сети:

  1. Разводка подобной проводки не нуждается в применении профессионального оборудования. Достаточно отвёрток, которые имеют индикаторы.
  2. Вероятность удара током очень мала. Подобное объясняется присутствующей в цепи свободной нейтралью. Соединение проводников не требует подключения 0-вого вывода.
  3. Схема подходит для всех видов тока.

Важно! К 3-фазной цепи можно подключить 1-фазную. Наоборот сделать нельзя.

Включение в трёхфазную цепь приёмников электрической энергии
  1. Подобная схема подключения пригодна для многих устройств, которым необходима высокая мощность, чтобы работать. ЛН позволяет увеличить КПД двигателя на33%.

При переключении обмоток генератора к треугольнику со звезды обуславливает увеличение в 1,73 раза величины ЛН.

Соединения в трёхфазных цепях

Важно! Сложность обнаружения повреждений в линейном соединении является немаловажным недостатком цепи, так как вследствие этого может случиться пожар.

Отличие между ЛН и ФН состоит в различии соединяемых проводов обмоток. Чтобы проконтролировать параметры ЛН и ФН потребуется импульсный стабилизатор, по-другому — линейный стабилизатор. Этот прибор даёт возможность, сохраняя показатель на одном уровне, приводить в норму напряжение, если оно резко выросло. Прибор можно подключить к контактам электорооборудования, обычной розетке.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.

ФН и ЛН, отличие и соотношение

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит.

Чему равно линейное напряжение

В большей части стран мира стандартное ЛН составляет примерно 380В.

В трёхфазных цепях фазное и линейное напряжение находятся в соотношении 220В/380В соответственно.

В чем измеряется

Согласно ГОСТ 13109 норма напряжения в электрической сети варьирует в диапазоне от 198В до 242В (то есть 220В плюс или минус 10 процентов). При частой поломке бытовой техники, ламп или их мигании потребуется измерение напряжения в электрической проводке. Подобная проверка делается мультиметром или вольтметром. Ночью, когда электроприборы используются по минимуму, полученные значения будут максимальными.

Мультиметром измеряется напряжение в трёхфазной сети так:

  1. Между рабочим 0 и каждой из фаз: А-N, В-N, С-N.
  2. Линейные напряжения: А-В, А-С, В-С.

Всего должно получиться шесть измерений. Иногда делается ещё один замер — между заземляющим и нулевым рабочим проводником: N-PE.

Как измерить

Измерить подобную систему можно мультиметром или применив физические формулы.

Измерение подключения к сети

ЛН рассчитывается по формуле Кирхгофа: ∑ Ik = 0. Здесь сила тока равняется нулю во всех частях электроцепи, то есть к=1. Используется также закон Ома: I=U/R. Применив обе формулы можно высчитать параметры клейма или электросети.

В системе из несколько линий, потребуется найти напряжение между 0 и фазой IL = IF. Значения IL и IF непостоянные и меняются при разных вариациях подключения. Потому линейные параметры точно такие же, как и фазные.

Фазное

Для того чтобы получить показания подключения фазного вида, потребуется специальное оборудование, например, мультиметр, вольтметр. Для того чтобы измерить токи и напряжения в трёхфазных цепях обычно достаточно знать данные одного линейного тока и одного ЛН.

Перекос фаз

ФН измеряется при проседании (падении) линейного. Из линейных величин извлекается Квадратный корень из трёх. Полученный показатель и есть параметры ФН.

Линейное

Для расчёта соотношения линейного проводника и фазы применяется формула: Uл=Uф∙√3, Uф — фазовое, Uл — линейное.

Важно! Формула справедлива, только если IL = IF. Когда в цепь добавлены другие отводящие элементы, то для них потребуется сделать персональный расчёт фазового напряжения. Тогда Uф нужно заменить цифровыми величинами самостоятельного клейма.

Реактивная трёхфазная мощность рассчитывается по формуле: Q = Qа + Qb + Qс. Значение активной мощности можно найти, используя аналогичную формулу: P = Pа + Pb + Pс. Необходимость в подобных расчётах возникает, если к электрической сети подключается промышленная система.

Распространённость сетей с линейным током объясняется их относительной безопасностью и несложностью разведения электропроводки. Электрооборудование присоединено исключительно к одному фазному проводу (по нему проходит ток) и только он может быть опасен, второй — это заземление. ЛН возникает в трёхфазной цепи и даёт увеличение приблизительно на 73%.

Линейные и фазные напряжения

Под симметричной трехфазной системой принято понимать совокупность трех ЭДС синусоидальной формы равной частоты, амплитуды, сдвинутых по фазе на треть периода (угол 2/3) .

График изменения ЭДС во времени, векторная диаграмма имеют вид.

Источником системы 3-х-фазного напряжения обычно служит генератор, у которого в пазах статора уложены проводники – обмотки. Плоскости этих обмоток обычно сдвинуты на 120 гр в пространстве. Под фазой участка трехфазной цепи понимают расстояние с одинаковым по величине током.

Разность потенциалов между нулевым узлом схемы и началом любой из фаз именуют фазным напряжением, условно обозначая UA, Uв, Uс. Разность потенциалов от начала вектора принято называть линейным, обозначая UAB, UBC, UCA.

Соответственно, фазные напряжения согласно 2-му закону Кирхгофа в общем случае равны:

UAB =UА- UB.

На диаграмме векторов они изображается участком от концов векторов UA, UB. По аналогии, вычисляют и другие линейные величины — UBC, UCA. При симметричной системе фазных напряжений совокупность линейных также — симметрична.

Существуют 2 способа подключения обмоток генерирующих установок и приемников электроэнергии трехфазной сети:

— звезда;

— треугольник.

При соединении звездой величина линейного напряжения равна:

Uл = v3 Uф = 1,73Uф.

К примеру, если мы имеем фазное напряжение генераторной установки равное 220В, при этом линейное будет – 380В.

Другим способом соединения, использующий трехпроходное соединение, является треугольник.

В таком случае, конец каждой обмотки подключается к началу следующей, образуя треугольник, при этом линейные провода подключены к его вершинам.

При подключении треугольником линейное напряжение генераторной установки в общем случае равно фазному:

Uл = Uф .

Исходя из этого, делаем вывод: переключение обмоток генераторной установки со звезды к треугольнику приводит к увеличению линейного напряжения в 1,73р. Выполнять подключение обмоток, используя метод треугольника, рекомендуется лишь при симметричной нагрузке, поскольку в противном случае ток, может превышать номинальные величины.

Фазное и линейное напряжение

Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, трехфазные, шестифазные и т.д.

Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.

Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.

Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.

Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке – фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное – определяется как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин – 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные – на 220 вольт.

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом отсутствие заземления повышает риск поражения током, когда нарушена изоляция.

Отличие линейного напряжения от фазного

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.

Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.

Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.

Контроль и выравнивание данного параметра осуществляется с помощью линейного стабилизатора напряжения. Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.

Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.

Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.

Разбираемся в разнице между фазным и линейным напряжениями

Фазное напряжение и линейное, соединение звездой и треугольником. В разговорах профессиональных электриков можно нередко слышать эти слова. Но даже не всякий электрик знает точное их значение. Так что же означают эти термины? Попробуем разобраться.

На заре развития электротехники энергия электрических генераторов и батарей передавалась потребителям по сетям постоянного тока. В США главным апологетом этой идеи был знаменитый изобретатель Томас Эдисон и крупнейшие на то время энергетические компании, подчиняясь авторитету «гиганта инженерной мысли», беспрекословно внедряли её в жизнь.

Однако, когда встал вопрос о создании разветвлённой электрической сети потребителей, питающейся от расположенного на большом расстоянии генератора, что потребовало создания первой линии электропередачи, победил проект никому тогда неизвестного сербского эмигранта Николы Теслы.

Он кардинально изменил саму идею системы электроснабжения, применив в ней вместо постоянного, генератор и электрические линии переменного тока. что позволило значительно снизить потери энергии, расход материалов и повысить энергоэффективность.

В этой системе использовался созданный Теслой трёхфазный генератор переменного тока, а передача энергии осуществлялась с помощью трансформаторов напряжения, изобретённых русским учёным П. Н. Яблочковым.

Другой русский инженер М. О. Доливо‑Добровольский уже через год не только создал подобную систему электроснабжения в России, но и значительно усовершенствовал её.

У Теслы для генерации и передачи энергии использовались шесть проводов, Добровольский предложил путём видоизменения подключения генератора сократить это количество до четырех.

Экспериментируя над созданием генератора, он попутно изобрёл асинхронный электродвигатель с короткозамкнутым ротором, находящий и поныне самое широкое применение в промышленности.

Что такое фаза: определяемся в значении

Понятие фазы существует только в цепях синусоидального переменного тока. Математически такой ток можно представить и описать уравнениями вращающегося вектора, закреплённого одним концом в начале координат. Изменение величины напряжения цепи с течением времени будет представлять собой проекция этого вектора на ось координат.

Значение этой величины зависит от угла, под которым находится вектор к координатной оси. Строго говоря, угол вектора — это и есть фаза.

Значение напряжения измеряется относительно потенциала Земли, всегда равного нулю. Поэтому провод, в котором существует напряжение переменного тока, называют фазным, а другой, заземлённый, — нулевым.

Фазовый угол одиночного вектора не представляет большого практического значения — в электрических сетях он за 1/50 сек совершает полный оборот в 360°. Куда большее применение имеет относительный угол между двумя векторами.

В цепях с так называемыми реактивными элементами: катушками, конденсаторами, он образуется между векторами значений напряжения и тока. Такой угол называют фазовым сдвигом.

Если величины реактивных нагрузок не меняются во времени, то и фазовый сдвиг между током и напряжением будет постоянным. А уже с его помощью можно производить анализ и расчёт электрических цепей.

В XIX веке, когда ещё не было научной теории электричества, и все разработки нового оборудования осуществлялись опытным путем, экспериментаторы заметили, что виток провода, вращающийся в постоянном магнитном поле, создаёт на своих концах электрическое напряжение.

Затем выяснилось, что оно изменяется по синусоидальному закону. Если намотать катушку из многих витков, напряжение пропорционально увеличится. Так появились первые электрические генераторы, которые могли обеспечивать потребителей электрической энергией.

Тесла в генераторе, разрабатываемом для крупнейшей тогда в США Ниагарской гидроэлектростанции, для более эффективного использования магнитного поля, разместил в нем не одну катушку, а три.

За один оборот ротора магнитное поле статора пересекали сразу три катушки благодаря чему отдача генератора увеличилась в корень из трёх раз и от него можно было запитать одновременно трёх различных потребителей.

Экспериментируя с такими генераторами, первые инженеры‑электрики заметили, что напряжения в обмотках изменяются не одновременно. Когда, например, в одной из них оно достигает положительного максимума, в двух других оно будет равным половине отрицательного минимума и так периодически для каждой обмотки, а для математического описания такой системы уже нужна была система трёх вращающихся векторов с относительным углом между ними в 120°.

В дальнейшем оказалось, что если нагрузки в цепях обмоток сильно отличались друг от друга, это значительно ухудшало работу самого генератора. Выяснилось, что в больших разветвлённых сетях выгоднее не тащить к потребителям три различных линии электропередач, а подвести к ним одну трёхфазную и уже на конце её обеспечивать равномерное распределение нагрузок по каждой фазе.

Именно такую схему и предложил Доливо‑Добровольский, когда по одному выводу от каждой из трёх обмоток генератора соединяются вместе и заземляются, вследствие чего их потенциал становится одинаковым и равным нулю, а электрические напряжения снимаются с других трёх выводов обмоток.

Эта схема получила наименование «соединения звездой». Она и поныне является основной схемой организации трёхфазных электрических сетей.

Разберёмся что такое фазное напряжение

Для создания таких сетей требуется провести от генератора к потребителям линию электропередачи, состоящую из трёх проводов фазных и одного нулевого. Конечно, в реальных сетях для уменьшения потерь в проводах на обоих концах линий подключаются ещё и повышающие и понижающие трансформаторы, но реальной картины работы сети это не меняет.

Нулевой провод нужен, чтобы зафиксировать передать к потребителю потенциал общего вывода генератора, ведь именно по отношению к нему создаётся напряжение в каждом фазном проводе.

Таким образом, фазное напряжение образуется и измеряется относительно общей точки соединения обмоток — нулевого провода. В хорошо сбалансированной по нагрузкам трёхфазной сети через нулевой провод течет минимальный ток.

На выходе трёхфазной линии электропередачи имеются три фазных провода: L1, L2, L3 и один нулевой — N. По существующим евростандартам они должны иметь цветовые обозначения:

  • L1 — коричневый;
  • L2 — чёрный;
  • L3 — серый;
  • N — синий;
  • Жёлто‑зелёный для защитного заземления.

Такие линии подводятся к большим серьёзным потребителям: предприятиям, городским микрорайонам и т. п. Но маломощным конечным потребителям, как правило, не нужны три источника напряжения, поэтому они подключаются к однофазным сетям, где имеется только один фазный и один нулевой провод.

Равномерным распределением нагрузок в каждой из трёх однофазных линий обеспечивается баланс фаз в трёхфазной системе электроснабжения.

Таким образом, для организации однофазных сетей используется напряжение одного из фазных проводов относительно нулевого. Такое напряжение и называется фазным.
По принятому в большинстве стран стандарту для конечных потребителей оно должно составлять 220 В. На него рассчитывается и выпускается практически все бытовое электрооборудование. В США и некоторых странах Латинской Америки для однофазных сетей принято стандартное напряжение 127 В, а кое‑где и 110 В.

Что такое линейное напряжение сети

Преимущества однофазной сети в том, что один из проводов имеет потенциал, близкий к потенциалу Земли.

Это, во‑первых, помогает обеспечивать электробезопасность оборудования, когда риск поражения электротоком представляет только один, фазный провод.

Во‑вторых, такая схема удобна для разводки сетей, расчета и понимания их работы, проведения измерений. Так, для нахождения фазного провода не нужны специальные измерительные приборы, достаточно иметь индикаторную отвёртку.

Но от трёхфазных сетей можно получить и ещё одно напряжение, если подключить нагрузку между двумя фазными проводами. Оно будет по значению выше фазного напряжения, потому что будет представлять собой проекцию на координатную ось не одного вектора, а двух, расположенных под углом в 120° друг к другу.

Этот «довесок» и будет давать прирост примерно в 73%, или √3–1. По существующему стандарту линейное напряжение в трёхфазной сети должно быть равно 380 В.

Каково основное отличие этих напряжений

Если к такой сети подключить соответствующую нагрузку, например, трёхфазный электродвигатель, он будет давать механическую мощность, значительно большую, чем однофазный такого же размера и веса. Но подключить трёхфазную нагрузку можно двумя способами. Один, как уже было сказано — «звезда».

Если же начальные выводы всех трёх обмоток генератора или линейного трансформатора не соединять вместе, а подключить каждый из них к конечному выводу следующей, создав из обмоток последовательную цепочку, такое соединение называется «треугольником».

Особенность его в отсутствии нулевого провода, и для подключения к таким сетям нужно соответствующее трёхфазное оборудование, у которого нагрузки также соединены «треугольником».

При таком соединении в нагрузке действуют только линейные напряжения 380 В. Один пример: электродвигатель, включённый в трёхфазную сеть по схеме «звезда», при токе в обмотках 3,3 А будет развивать мощность 2190 Вт.

Тот же двигатель, включенный «треугольником», будет в корень из трёх раз мощнее — 5570 Вт за счёт увеличения тока до 10 А.

Получается, что, имея трёхфазную сеть и такой же электродвигатель, мы можем получить значительно больший выигрыш по мощности, чем при использовании однофазных, а просто изменив схему подключения, мы увеличим выходную мощность двигателя ещё втрое. Правда, его обмотки также должны быть рассчитаны на повышенный ток.

Таким образом, основное отличие между двумя видами напряжений в сетях переменного тока, как мы выяснили, — это величина линейного напряжения, которая в 3 раза больше фазного. За величину фазного напряжения принимается абсолютное значение разности потенциалов фазного провода и Земли. Линейное же напряжение — это относительная величина разности потенциалов между двумя фазными проводами.

Ну и в завершении статьи два видео о соединении звездой и треугольником, для тех кто хочет разобраться подробнее.

Трехфазные цепи (страница 1)

1. Линейное напряжение трехфазного генератора, соединенного звездой, равно 10500 В.
Определить напряжение между зажимами каждой фазы генератора. Какое напряжение было бы между зажимами генератора при соединении его обмоток треугольником?

Решение:
Фазное напряжение трехфазного генератора при схеме соединения звездой в раз меньше линейного напряжения:



В схеме соединения треугольником провода линии присоединяются к общим зажимам двух обмоток, и линейное напряжение между двумя проводами равно напряжению фазной обмотки:



2. Действующее значение э. д. с. в каждой обмотке симметричного трехфазного генератора равно 230 В.
Определить линейные напряжения при соединении обмоток неправильной звездой («веером») в режиме холостого хода.

Решение:
Неправильное присоединение одной из обмоток генератора к двум остальным при соединении звездой приводит к повороту вектора э. д. с. на 180° (рис. 35) по сравнению с нормальным расположением. Вместо симметричной трехлучевой звезды векторов получается так называемый веер векторов с углами по 60° между ними. Как видно из векторной диаграммы, напряжение

Следовательно, неправильное соединение обмоток звездой можно обнаружить путем измерения. При правильном соединении все линейные напряжения равны .

3. В каждой обмотке трехфазного генератора индуктируется э. д. с, равная 132 В.
Определить линейное напряжение генератора при холостом ходе в случае соединения обмоток треугольником.

Решение:
При правильном соединении обмоток трехфазного генератора треугольником результирующая э. д. с. в контуре обмоток равна нулю, так как сумма э. д. с. симметричной трехфазной системы равна нулю. Следовательно, при холостом ходе в контуре треугольника обмоток ток отсутствует и напряжение между концом и началом обмотки равно э. д. с. Это так называемое фазное напряжение. В схеме соединения генератора треугольником провода трехфазной линии присоединяют к точкам соединения обмоток. Каждый провод при этом присоединен к зажимам двух обмоток, а каждая пара проводов линии — к зажимам одной из трех обмоток. Поэтому линейное напряжение генератора, т. е. напряжение между двумя линейными проводами, оказывается равным при схеме соединения треугольником фазному напряжению, а при холостом ходе генератора — фазной э. д. с. генератора (132 В).

4. Фазная э, д. с. трехфазного генератора Е=247 В, частота сети f=50 Гц, активное сопротивление обмотки r=1,1 Ом, индуктивное сопротивление .
Определить величину тока в контуре треугольника при неправильном соединении обмоток генератора в режиме холостого хода.

Решение:
Переключение начала и конца обмотки трехфазного генератора поворачивает вектор э. д. с. этой обмотки на диаграмме на 180°. Дело в том, что после переключения положительное направление э. д. с. этой обмотки будет относительно зажимов остальных обмоток таким, каким было отрицательное направление э. д. с. в первоначальной схеме. Таким образом, при неправильном соединении, например, фазы В по отношению к остальным фазам получим векторную диаграмму, показанную на рис. 36.

Результирующая э. д. с. в контуре равна удвоенному значению фазной э. д. с, т. е. 494 В. Эта э. д. с. обусловливает ток в контуре, величина которого определяется по закону Ома:

где z — полное сопротивление фазной обмотки:

Следовательно,



Если оставить включенной схему неправильного соединения обмоток треугольником, то даже при холостом ходе генератора в контуре обмоток будет непроизводительно расходоваться энергия, переходящая в тепло. В рассматриваемой задаче потери мощности в контуре

Поэтому, прежде чем замыкать контур треугольника обмоток, следует проверить равнопотенциальность соединяемых точек при помощи вольтметра (рис. 37). При правильном соединении обмоток треугольником подвижная часть вольтметра не отклоняется.

5. К четырехпроводной трехфазной линии поочередно присоединяют три электрические лампы мощностью по 60 Вт каждая между линейным (соответственно А, В и С) и нейтральным проводами.
Определить изменение токов в проводах линии в каждом случае присоединения к ней ламп, если напряжение между каждым линейным проводом и нейтральным проводом 120 В.

Решение:
Пусть до присоединения к четырехпроводной трехфазной линии ламп в ее проводах не было токов. Тогда присоединение электрической лампы между линейным А и нейтральным N проводами вызовет ток в этих проводах, равный

Благодаря нейтральному проводу поддерживаются равными три фазных напряжения: и на векторной диаграмме узловой точке n цепи (рис. 38) соответствует точка того же наименования, расположенная в центре тяжести треугольника векторов линейных напряжений (рис. 39).
Электрическая лампа является однофазным приемником энергии, не вызывающим сдвига фаз тока относительно напряжения . Следовательно, вектор тока совпадает по фазе с вектором напряжения . Согласно первому закону Кирхгофа, примененному к точке n цепи (рис. 39), ток в нейтральном проводе изображается тем же вектором, что и ток в проводе А. Из этого рисунка видно, что при отсутствии нейтрального провода лампу нельзя было бы включить на фазное напряжение .
Представим себе, что в дополнение к уже включенной лампе (см. рис. 38) присоединена вторая такая же лампа между линейным В и нейтральным N проводами (рис. 40).

Ток в проводе А при этом не изменился, но появился ток в проводе В. В нейтральном проводе N стал проходить ток , равный геометрической сумме токов .
Ток в линейном проводе В

Он совпадает по фазе с напряжением и тем самым отстает по фазе от тока на 1/3 периода (120°) (см. рис. 40).

Так как , то при определении тока в нейтральном проводе путем сложения векторов этих линейных токов получим ромб с углом в 120°. Диагональ ромба делит этот угол пополам, поэтому длина диагонали ромба равна его стороне, т. е.

Таким образом, величина тока в нейтральном проводе осталась той же, что и при одной лампе в проводе А, только вектор этого тока на диаграмме повернулся на 60° по ходу часовой стрелки.
Наконец, допустим, что присоединена третья лампа (в дополнение к прежним двум) между линейным С и нейтральным N проводами (рис. 41). В этом случае ток

стал проходить в проводе С, причем ввиду отсутствия сдвига фаз этого тока относительно напряжения вектор тока на диаграмме начал совпадать по фазе с вектором напряжения .
Получилась симметричная трехлучевая звезда векторов токов. Геометрическое сложение этих векторов дает нуль: . Следовательно, при симметричном режиме нагрузки ток в нейтральном проводе равен нулю.
Таким образом, отсутствие тока в нейтральном проводе при однородной (например, активной) нагрузке свидетельствует о симметрии режима в трехфазной цепи.

6. Трехфазный асинхронный электродвигатель типа МАД-126/8 в схеме соединения обмоток статора звездой при номинальной нагрузке и номинальном напряжении 500 В имеет токи в обмотках статора по 220 А и развивает номинальную мощность на валу 130 кВт.
Определить и мощность на входе, если к. п. д. при номинальной нагрузке . Построить в масштабе векторную диаграмму.

Решение:
К. п. д. , откуда

Трехфазный электродвигатель — это симметричный приемник энергии, поэтому коэффициент мощности

Этому значению коэффициента мощности соответствует угол .
Строим векторную диаграмму в масштабе: (рис. 42). Так как трехфазный электродвигатель представляет собой симметричный приемник энергии, то геометрическая сумма его токов равна нулю и нейтральный провод становится Лишним. Поэтому при любой схеме соединения обмоток трехфазного двигателя к нему подводят только три провода.

7. Три одинаковые катушки включены звездой и присоединены к трехпроводной трехфазной цепи с линейным напряжением 220 В. Начало и конец одной из катушек (фаза А) замкнуты накоротко медной пластиной.
Определить токи при коротком замыкании в фазе А. Построить в масштабе векторную диаграмму.

Решение:
Замыкание накоротко точек A и n (рис. 43) делает потенциал точки n равным потенциалу точки А.
Катушки фаз В и С оказываются включенными на линейное напряжение. Токи в них равны по величине:

Они отстают по фазе соответственно от напряжений на угол, тангенс которого

Из таблиц тригонометрических величин . Ток в замкнутой накоротко фазе А определяют в этом случае по первому закону Кирхгофа:

Следовательно, вектор тока противоположен по направлению вектору, представляющему собой сумму векторов . Строим векторную диаграмму масштаба: .
Непосредственное измерение дает для величины тока замкнутой накоротко фазы А значение .
При нормальных условиях токи во всех линейных проводах были бы равны:

Поэтому в замкнутой накоротко фазе схемы «симметричная звезда» ток больше, чем при нормальной работе, в 3 раза, при этом в двух других фазах ток увеличивается в раз.
Ток замыкается через пластину, замкнувшую зажимы катушки. В этой катушке не может быть пробоя междувитковой изоляции, так как напряжение между зажимами катушки равно нулю. Опаснее для изоляции катушки внезапное прекращение тока, так как при этом в катушке индуктируется очень большая э. д. с. самоиндукции.

8. К трехпроводной трехфазной линии напряжением 122 В и частотой 50 Гц присоединены включенные звездой катушки . В проводе С линии расплавилась плавкая вставка предохранителя (рис. 44).
Определить токи. Построить в масштабе векторную диаграмму.

Решение:
Вследствие расплавления плавкой вставки предохранителя ток в линейном проводе С прекратился. Потенциалы точек и n стали равными.
В схеме под действием линейного напряжения продолжается прохождение тока в катушках фаз А и В, включенных теперь последовательно.
Так как катушки одинаковы, то напряжение делится между ними поровну.
Это означает, что точка n диаграммы находится посередине вектора линейного напряжения . Отрезок An означает напряжение , а отрезок Вn — напряжение .

Симметричная трехлучевая звезда векторов фазных напряжений, которая характеризовала симметричный режим при всех исправных предохранителях, искажается ввиду смещения точки n из центра тяжести треугольника линейных напряжений на середину стороны АВ (см. рис. 44). Токи равны по величине:

Они отстают по фазе соответственно от напряжений на угол, тангенс которого

Из таблиц тригонометрических величин .
Строим векторную диаграмму в масштабе: . Так как потенциал точки равен потенциалу точки n (в фазе С тока нет), то разность потенциалов между точками С и n такая же, как и между точками т.е. как между концами провода. Из векторной диаграммы следует, что это напряжение в 1,5 раза превышает номинальное фазное напряжение установки:

Если бы электромонтер стал сращивать концы провода (без отключения установки), он подвергся бы действию указанного напряжения.

9. Три активных сопротивления: — соединены звездой и присоединены к трехпроводной трехфазной линии с линейными напряжениями 120 В.
Определить напряжения на отдельных сопротивлениях и токи в них.

Решение:
Нагрузка фаз по условию задачи однородная (активная): . Однако симметричный режим в цепи невозможен, так как . В случае отсутствия нейтрального провода также невозможно обеспечить равенство напряжений на отдельных фазах при такой нагрузке.
Изменение фазных напряжений при изменении нагрузки в одной фазе можно связать со смещением точки n на векторной диаграмме. При симметричном режиме в цепи точка n находится в центре тяжести треугольника линейных напряжений.
Допустим, что в линейном проводе С произошел разрыв, прекративший ток в этой фазе . В других фазах проходит ток при действии линейного напряжения в неразветвленной цепи, состоящей из сопротивлений (рис. 45). Этот ток определяется по закону Ома:

При этом напряжение на сопротивлении



а напряжение на сопротивлении



Оба эти напряжения совпадают по фазе с током и, следовательно, с напряжением (так как ).

Напряжения являются частями напряжения , причем

Точка n, обозначенная в виде , в случае обрыва фазы С находится на стороне АВ треугольника векторов линейных напряжений и делит ее в отношении 1:2 (рис. 48). Этот треугольник построен в масштабе . Точку , нанесенную на стороне AB, соединяем отрезком прямой с вершиной С, в которой располагается точка n при коротком замыкании фазы С , когда потенциалы точек n и С равны.

Допустим, что разрыв произошел в линейном проводе В (рис. 47). В этом случае ток , а в фазах С и А проходит один и тот же ток, равный, по закону Ома,

Напряжения на участках неразветвленной цепи относятся, как сопротивления этих участков: ; кроме того, соблюдается равенство . Следовательно, сторону СА следует разбить на части, относящиеся друг к другу как 3:1 (точка на рис. 48).
Соединяем отрезком прямой точку с точкой В, в которой располагается точка n при коротком замыкании фазы В. Прямые, проведенные внутри треугольника АВС, пересекаются в точке n; она соответствует узловой точке n электрической схемы для случая всех трех исправных проводов, так как точка пересечения этих прямых удовлетворяет обоим условиям, положенным в основу проведения прямых, т. е.

Именно в таком соотношении находятся сопротивления фаз по условию задачи.
Теперь рассмотрим отрезки прямых, соединяющих точку n с точками А, В и С. На векторной диаграмме эти точки соответствуют потенциалам одноименных точек схемы, а отрезки прямых — напряжениям схемы. Отрезок An означает напряжение , отрезок Вn — соответственно напряжение , отрезок Сn — напряжение (в масштабе, принятом в начале построения ).
Путем измерения этих отрезков и применения масштаба устанавливаем, что .
Далее, зная сопротивления , определяем по закону Ома токи:

Эти токи совпадают по фазе соответственно с напряжениями , так как нагрузка активная.
Построим векторы токов в масштабе , направляя векторы токов вдоль векторов соответствующих напряжений. Сумма построенных векторов токов должна равняться нулю:

Несмотря на то что меньшее напряжение оказалось в фазе с меньшим сопротивлением (фаза А), ток в ней по сравнению с токами других фаз наибольший.

Фазное напряжение — Chip Stock

Линейное и фазное напряжения — Страница 8

Содержание материала

Страница 8 из 16

В трехфазной электрической сети различают линейное и фазное напряжения.

Линейное (его называют также междуфазным или межфазным) – это напряжение между двумя фазными проводами.

Фазное – между нулевым проводом и одним из фазных. Линейные напряжения при нормальных эксплуатационных условиях одинаковы и в 1,73 раза больше фазных, т. е. напряжение между нулевым и фазным проводом (фазное) составляет 58 % линейного напряжения. Напряжение трехфазной сети принято оценивать по линейному напряжению.

Для отходящих от ТП трехфазных линий установлено номинальное линейное напряжение 380 В, что соответствует фазному 220 В. В обозначении номинального напряжения трехфазных четырехпроводных сетей указывают обе величины, т. е. 380/220 В.

Обратите внимание

Этим подчеркивается, что к такой сети можно подключать не только трехфазные электроприемники на номинальное напряжение 380 В, но и однофазные на 220 В.

Трехфазная система 380/220 В с заземленной нейтралью получила наибольшее распространение, но в некоторых населенных пунктах и садовых кооперативах можно встретить иные системы распределения электроэнергии. Например, трехфазную с линейным напряжением 220 В и незаземленной (изолированной) нейтралью.

Однофазные электроприемники 220 В подключают на линейное напряжение между любой парой фазных проводов, а трехфазные – к трем фазным проводам. При этой системе нулевой провод не требуется, а незаземленная нейтраль снижает вероятность поражения электрическим током в случае нарушения изоляции.

Однако выявление нарушений изоляции в такой системе сложнее, чем при заземленной нейтрали.

Прохождение электрического тока по проводам сопровождается потерями и напряжение у потребителей оказывается несколько меньшим, чем в начале линии у ТП. Чтобы обеспечить приемлемые уровни напряжения вдоль всей линии, на ТП приходится поддерживать напряжение выше номинала, т. е.

не 380/220 В, а 400/230 В. В электрических сетях сельских районов у потребителей, согласно действующим нормам, допускаются отклонения напряжения на 7,5 % от номинального значения.

Значит, на трехфазном электроприемнике допускается напряжение в пределах 350–410 В, а на однофазном 200–240 В.

Отклонения напряжения. Однако бывают случаи, когда величина напряжения выходит за допустимые пределы.

Важно

При понижении напряжения заметно падает интенсивность электрического освещения от ламп накаливания, уменьшается производительность электронагревательных приборов, нарушается устойчивость работы телевизоров и других радиоэлектронных приборов с электропитанием от сети.

Повышение напряжения приводит к преждевременному выходу из строя электроламп и нагревательных приборов. Электродвигатели в меньшей степени чувствительны к отклонениям напряжения.

Источник: http://magak.ru/hanmade/elektrik/349-2012-07-25-01-23-17?start=7

Как проверить или измерить напряжение электрического тока?

Январь 24, 2014

24236 просмотров

Сразу расскажу для чего необходимо самостоятельно в своей квартире или доме измерять в Вольтах напряжение.

Во-первых, для того что бы убедится  в исправности электрической розетки, выключателя, светильника- Мы проверяем на их контактах наличие напряжения, которое должно соответствовать 220 Вольтам с допустимыми отклонениями для домашней электросети.

Во-вторых, если напряжение в  электропроводки будет значительно выше  допустимых пределов, то как показала практика- это является очень часто причиной поломки электроники, бытовой техники и перегорания ламп в светильниках. Причем не только превышение или перенапряжение в электросети опасно, но так же, но конечно в меньшей степени- опасно снижение  ниже допустимой величины напряжения, в таких условиях, как правило ломается компрессор холодильника.

Допустимые значения напряжения, причины скачков

Согласно требованиям ГОСТа 13109, значение напряжения в домашней электрической сети должно быть в пределах 220В ±10% ( от 198 Вольт до 242 Вольт).

Если в вашем доме или квартире стали тускло гореть, моргать лампочки или, вообще они часто перегорают,  не стабильно работает бытовая техника и электроника- рекомендую сразу по максимуму все выключить и проверить значение напряжения в электропроводке.

Если Вы зарегистрировали скачки напряжения, то чаще всего в периодическом снижении ниже допустимого уровня виноваты соседи по дому или улице. Так как к линии, идущей от подстанции не только Вы подключены, но и ваши соседи.

Это обычно характерно для частных или индивидуальных домов, в случаях, если другой человек, а тем более если несколько, на той же линии включат мощный потребитель, который периодически меняет уровень энергопотребления, например сварочный аппарат, станок и т. д.

Второй вариант касается всех, но чаще встречается в многоквартирных домах. Если в щите на 380 Вольт отгорит ноль, все квартиры начинают получать электроэнергию в аварийном режиме. Причем, в зависимости от нагрузки на каждую фазу, в одной квартире будет перенапряжение в другой наоборот- падение.

Почему это происходит? Потому что на этажный щиток приходит 3 фазы + ноль = заземляющий проводник. Каждая квартира подключается к одной фазе, нулю и заземлению (для 3 проводных линий).

Квартиры сидят на разных фазах, потому что необходимо обеспечить равномерную нагрузку на все 3 фазы для нормальной работы всей электросети до подстанции. Так вот напряжение между фазами 380 Вольт, а между фазой и нулем (заземлением)- 220 Вольт.

Получается что все нулевые проводники сведены в одну точку (смотрите справа схему), и при пропадании (обрыве) нулевого проводника- все квартиры начинают запитываться без него только фазами, которые оказываются подключенными в звезду.

Что такое линейное и фазное напряжение

Знание этих понятий очень важно для работы в электрощитах и с электротехническими устройствами, работающими на 380 Вольт. Если у Вас обычная квартира и Вы не собираетесь работать в электрощитах, то этот пункт можете пропустить т. к. у Вас в квартире только фазное напряжение 220 вольт.

В большинстве частных или индивидуальных домов так же на электрощит или счетчик приходит только 2 (фаза и ноль) или 3 (+заземление) провода, что означает  присутствие в вашей квартире или доме напряжения 220 Вольт. Но если  приходит 4 или 5 проводов то, это означает что Ваш дом (бывает и в гаражах, и особенно в офисах) подключен к сети 380 Вольт.

Напряжение между любыми двумя из  трех фазами линии электропитания называется линейным, а между любой фазой и нулем- фазным.

Совет

В нашей стране линейное напряжение у электропотребителей равно 380 Вольтам (измеряется между фазами), а фазное- 220 Вольт. Смотрите на рисунке слева.

Бывают и другие значения в электросистеме нашей страны, но фазное всегда меньше линейного на корень квадратный из трех.

Как проверить напряжение

Для измерения напряжения электрического тока  служат следующие измерительные приборы:

  1. Вольтметр, хорошо знакомый всем с уроков физики. В повседневной жизни он не используется.
  2. Мультиметр, обладающий многочисленными функциями, в том числе и измерения величины тока и напряжения. Рекомендую почитать нашу статью: «Как пользоваться мультиметром».
  3. Тестер— то же самое что и мультиметр, только механической стрелочной конструкции.

Внимание, при измерении источников постоянного тока (какие к ним относят) необходимо соблюдать полярность.

Как измерить  напряжение в розетке, в патроне лампы и т. п.:

  1.  Проверяем надежность изоляции измерительного прибора, особенно обращаем внимание на щупы, которые обязательно необходимо подключать только в соответствующие  проводимым операциям гнезда.
  2. Устанавливаем переключатель пределов измерений на приборе в положение измерения переменного напряжения до 250 Вольт (400- для измерений линейного напряжения).
  3. Вставляем  щупы  в розетку или подносим к контактам на лампе, светильнике или любом другом электроприборе.
  4. Снимаем показания.

Будьте осторожны- работа проводится под напряжением- не касайтесь руками не изолированных контактов и проводов, находящихся под напряжением.

Как измерить напряжение аккумулятора, батарейки и блока питания

Все источники постоянного тока необходимо измерять с соблюдением полярности- черный щуп ставим на минусовую клемму, а красный — на плюсовую клемму.

А так все аналогично проводятся как и при проведении вышеописанных измерений в розетке, но только тестер или мультиметр необходимо переключить в режим измерения постоянного тока с пределом выше указанного на АКБ, батарейке или блоке питания.

Источник: http://jelektro.ru/elektricheskie-terminy/kak_izmerit_naprjazhenie.html

Соотношение между фазными и линейными напряжениями. Номинальные напряжения

Напряжение фаз нагрузки отличны от значения ЭДС генератора из-за падения напряжения на линии от генератора к потребителю. Длина этих линий может составлять несколько метров, а может и пару сотен метров, также возможна длина и в тысячи километров.

Вопросы о падении напряжений на линиях электрических передач ЛЭП, снабжающих потребителей энергией электрической от электрических станций будут рассматриваться чуть позже, в последующих статьях.

Для упрощения расчетов указанным значением падений напряжений можно пренебречь.

Соединение звездой

При принятых допущениях для соединенных источников звездой:

применив второй закон Кирхгофа получим:

Из выражения (1) можно сделать вывод, что при симметричной системе ЭДС генератора его фазные напряжения также симметричны, и, соответственно, их векторная диаграмма:

не будет отличатся от векторной диаграммы ЭДС:

Исходя из уравнений, составленных по второму закону Кирхгофа для контуров (схема соединения в звезда указана выше):

Исходя из этих уравнений можно составить следующие уравнения, которые связывают линейные и фазные напряжения:

Использовав выражение (2) при наличии векторов фазных напряжений можно построить векторы линейных напряжений Uab, Ubc, Uca.

Исследовав векторную диаграмму при соединении звездой можно сделать вывод, что линейные напряжения будут равны и, как и фазные, сдвинуты друг относительно друга на угол 1200 или 2π/3. Векторы линейных напряжений чаще всего показывают как соединенные фазные направления:

Из этого следует:

Соответственно такие же соотношение и между остальными фазными и линейными значениями:

Соединение треугольником

Выражения (1) будут правильны и при соединении в треугольник источника. Из формул (2) следует равенство фазных и линейных напряжений при соединении треугольником, и это можно представить в таком виде:

Или можно записать как Uл = Uф.

Векторная диаграмма при соединении треугольником для линейных и фазных напряжений:

Номинальные напряжения

Из выше перечисленного можно сделать такие выводы как – трехфазная сеть имеет два напряжения, а именно фазные и линейные. При соединении звездой линейные напряжения больше фазных, а при соединении треугольником равны. Этот фактор необходимо учитывать при подключении нагрузки, чтоб не произошло аварийных ситуаций и выхода оборудования из строя.

Линейные напряжения тоже сдвинуты друг относительно друга на угол 1200 или 2π/3.

Номинальные напряжения – напряжения, на которые рассчитываются потребители электроэнергии, и которые соответствуют их нормальной работе.

Наиболее распространенными напряжениями в сетях до 1000 В являются 380В, 220В, 127В. 380 В и 220 В наиболее распространены в промышленности, а 220 В и 127 В в бытовых электросетях.

Обратите внимание

Также при четырехпроводной электросети (соединения звезда с нулевым проводом) существует возможность получения фазного напряжения, которые при линейном 380 В будут равны , а при линейном 220 В будут равны .

 Такое соединение дает плюс в виде возможности при наличии четырехпроводной сети производить подключение как трехфазных потребителей 380 В, так и однофазных с номиналом в 220 В.

Источник: http://elenergi.ru/sootnoshenie-mezhdu-faznymi-i-linejnymi-napryazheniyami-nominalnye-napryazheniya.html

Фазное и линейное напряжение

В том случае, если обмотки генератора трехфазного тока соединить между собой специальным образом («звездой» или треугольником), то у такого тока возникают свойства, которые удобны в применении.

Векторная диаграмма напряжений для соединения «звезда»

Схема соединения звездой (рис.1(а)) и соответствующая векторная диаграмма напряжений на обмотках (рис.1(в)) изображены на рис.1. Здесь имеется точка $О$, которая называется точкой одинакового потенциала. Напряжение на каждой обмотке называется фазным (его амплитуда $U_{mf}$). Проводник, который соединен с точкой одинакового потенциала называют нулевым проводом.

Проводники, которые соединены со свободными концами обмоток, называются фазными проводами. Получается, что фазные напряжения — это напряжения между нулевым и фазными проводами. Напряжения между фазными проводами называют линейным (его амплитуда $U_{ml}$). Линейное напряжение между проводами 1-2 могут обозначать как $U_{12}$, между проводами 1-3 — $U_{13}$ и так далее.

Рисунок 1.

Векторная диаграмма показывает, что амплитуды $U_{ml} $и $U_{mf}$находятся в соотношениях:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Ток, который течет через обмотки генератора называют фазным током ($I_f$), ток который течет в линиях называется током линии ($I_l$). В соединении звездой фазные токи равны токам в линии. Если сопротивления нагрузок не равны нулю, а $R_1=R_2=R_2=R$, то суммарная сила тока через нулевой провод равна нулю:

так как из векторной диаграммы видно, что $sumlimits_i{U_i=0.}$

Векторная диаграмма напряжений для соединения «треугольник»

Схема соединения обмоток генератора треугольник изображена на рис.2. В этом случае амплитуды напряжений фазного и линейного равны ($U_{mf}=U_{ml}$).

Рисунок 2.

Из векторной диаграммы токов (рис.2(в)) запишем амплитудных значений тока:

В соединении обмоток генератора треугольником ток замыкания в обмотках равен нулю. Однако это справедливо только для основной гармоники. Токи высших гармоник, появляющиеся из-за нелинейности колебаний, в обмотках есть.

Соединение нагрузок тоже может быть в виде звезды и в виде треугольника. На рис. 1 и рис.2 изображены соединения одного типа, как для генератора, так и для нагрузок. Но совсем не обязательно, что соединения обмоток генератора и нагрузок совпадают.

Важно

Так, можно реализовать четыре возможные комбинации соединения генератора и нагрузок: «звезда» — «звезда», треугольник — треугольник, «звезда» — треугольник, треугольник — «звезда». Каждое из перечисленных соединений имеет свои особенности.

Пример 1

Задание: В чем состоят особенности соединений «звезда» — «звезда» и «звезда» — треугольник?

Решение:

  1. При соединении «звезда» — «звезда» (рис.1) на всех нагрузках имеется разное напряжение. При одинаковых сопротивлениях ($R_1=R_2=R_3$) (или примерно равных) сила тока по нулевому проводу равна нулю (или очень мала).

    Теоретически нулевой провод можно убрать, но без него на каждую из пар нагрузок действует линейное напряжение, амплитудное значение которого равно:

[U_{ml}=sqrt{3}U_{mf}left(1.1
ight).]

Это напряжение распределяется между нагрузками в соответствии с величиной их сопротивлений.

Такая зависимость напряжений от нагрузок крайне не удобна, поэтому нулевой провод сохраняют.

  1. При соединении «звезда» — треугольник (рис.3). На каждое сопротивление действует линейное напряжение равное:
[U_{ml}=sqrt{3}U_{mf}left(1.2
ight).

]

Это линейное напряжение не зависит от величины сопротивления.

Рисунок 3.

Пример 2

Задание: Определите, чему равно фазное напряжение, если линейное $U_{ml}=220 В$. Чему будет равно линейное напряжение, если 220 В считать фазным напряжением? Считать, что соединение обмоток генератора — «звезда».

Решение:

В том случае, если обмотки генератора соединены звездой, и это соединение имеет нулевой провод, в линии существует две системы напряжений (линейное и фазное), что является достоинством такого соединения.

Для соединения «звезда» мы имеем соотношение:

[U_{ml}=sqrt{3}U_{mf}left(2.1
ight).]

Следовательно, для фазного напряжение имеем:

[U_{mf}=frac{U_{ml}}{sqrt{3}}=frac{220}{sqrt{3}}approx 127 left(В
ight).]

Если дано фазное напряжение, то:

[U_{ml}=sqrt{3}U_{mf}=sqrt{3}cdot 220approx 380 (В)left(2.2
ight).]

Ответ: 1. $U_{mf}=127 В.$ $U_{ml}=380 В.$

Источник: https://spravochnick.ru/fizika/peremennyy_sinusoidalnyy_tok/faznoe_i_lineynoe_napryazhenie/

Разбираемся в разнице между фазным и линейным напряжениями. Межфазное напряжение

ГлавнаяРазноеМежфазное напряжение

Самой популярной электрической цепью считается трехфазная линия, имеющая существенные преимущества перед другими видами подключения. По сравнению с многофазными цепями трехфазная линия более экономична в плане расхода материалов, а относительно однофазных линий – способна передавать большее напряжение.

Кроме этого, такое подключение применяется для включения в цепь электродвигателей: с его помощью легко образуется магнитное поле, что активно применяется для запуска электродвигателей и генераторов.

Еще одно преимущество трехфазной системы – возможность получать различное рабочее напряжение.

В зависимости от способа подключения нагрузки различают линейное и фазное напряжение, получаемое от питающей линии.

Основные определения

Прежде всего, давайте вспомним некоторые определения.

Трехфазная система

Трехфазной системой является совокупность трех электрических цепей, которые генерируются одним источником, но при этом относительно друг друга сдвинуты по фазе.

Фаза

При этом фазой называется каждая электрическая цепь многофазной системы. Началом фазы считается зажим или конец проводника, через который электроток поступает в данную цепь. При этом концы фаз можно соединить вместе. В этом случае, в электрической цепи начинает действовать суммарная ЭДС, а система называется связанной. Это получило широкое применение для запитывания электродвигателей.

Способы соединения

Трехфазное подключение широко применяется для включения обмоток электродвигателей и генераторов. При этом используется два варианта соединения обмоток с токоведущими жилами.

  • При соединении звездой с шести до четырех уменьшается число соединительных проводов, что положительно влияет на долговечность соединений. К началу обмотки подключаются питающие жилы, а концы при этом объединяются в узел, называемый точкой N или нейтралью генератора. Такой вариант подключения позволяет перейти на трехпроводное подключение, но только в том случае, если подключаемый приемник трехфазной нагрузки симметричен;
  • При перекрестном соединении обмоток треугольником, они создают замкнутый контур, который имеет относительно небольшое сопротивление. Такое соединение используется при подключении симметричной системы из трех ЭДС: в этом случае при отсутствии нагрузки в контуре не возникает ток.

Соединение звездой чаще используется для включения усилителей и различных стабилизаторов в сеть 220 вольт и мягкого старта электродвигателей при питании от 380В. Подключение треугольником позволяет двигателям набирать полную мощность, поэтому его чаще применяют в производственных целях, где требуется высокая производительность оборудования.

Фазные и линейные напряжения

В самом начале статьи мы отмечали, что трехфазное подключение позволяет получать два различных напряжения: линейное и фазное. Давайте разберемся более подробно, что это такое.

  • Фазное напряжение возникает при подключении к нулевой жиле и одной из трех фаз цепи;
  • Линейное напряжение образуется при подключении к любым двум фазам. Электрики его называют межфазным, что ближе по методу измерения.

Теперь давайте разберемся, в чем заключается отличие этих двух определений.

В нормальных условиях показатели линейного напряжения одинаковы между любыми фазами и при этом в 1,73 раза превышают показатели фазного.

Говоря по-простому, в соответствии с отечественными стандартами линейное напряжение равняется 380 вольт, а фазное – 220В.

Такие особенности трехфазных линий нашли свое применение в обеспечении бесперебойным электроснабжением как промышленных, так и бытовых потребителей.

Стоит отметить, что данные особенности имеет только трехфазная четырехпроводная цепь, номинальное напряжение которой маркируется как 380/220В. Из этого обозначения становится понятным, что к данной линии существует возможность подключить широкий спектр потребителей, рассчитанных на номинальный ток как 380В, так и 220 вольт.

Обратите внимание! Важно знать, что при проседании (падении) линейного напряжения, изменяется и фазное. Причем показатель фазного напряжения легко высчитывается, если известны линейные значения. Для этого из линейных показателей нужно извлечь квадратный корень из трех. Полученные данные будут равняться фазному напряжению.

Благодаря вышеописанным особенностям и разнообразию возможных подключений, именно четырехпроводниковая трехфазная цепь получила широкое распространение. Сфера применения такой схемы подачи электроэнергии универсальна. Поэтому применяется для питания больших объектов с мощными потребителями, жилых, офисных и административных зданий и других сооружений.

При этом совсем необязательно подключать оба вида потребителей на 380В и 220В. Например, в жилых домах чаще всего используются только бытовые приборы, рассчитанные на 220 вольт.

Совет

В этом случае, важно обеспечить равномерную нагрузку на все три фазы, правильно распределив мощность подключения каждой отдельной линии. В многоквартирных домах это обеспечивается шахматным порядком подключения квартир к фазным жилам.

В частном же доме (при наличии ввода на 380В) распределять нагрузку по выделенным линиям придется самостоятельно.

Теперь вы знаете, какие виды напряжений можно получить из трехфазной цепи, какие способы подключения к четырехжильному кабелю для этого используются. Эти знания будут полезны как электрикам, так и рядовым потребителям.

Загрузка…

5197

Источник: https://szemp.ru/raznoe/mezhfaznoe-napryazhenie.html

Что такое фазное и линейное напряжение?

Уровень напряжения является потенциальной характеристикой качества снабжения электрической энергией потребителей. Приборы длительно эксплуатируются при условии работы в допустимом диапазоне мощности сети.

Для определения параметров функционирования и подключения различают фазное и линейное напряжение в трехфазных цепях.

На выходе от производителя электричество изменяется для транспортировки, а после обратных преобразовательных этапов приобретает значения, применяемые потребителями.

Что такое фаза?

Фаза является значением тригонометрической функции, например определяющей вид или описывающей волновое или колебательное движение. Величина тождественна углу или аргументу периодической функции.

Зависимость целой фазы от координат и времени не всегда бывает линейной и гармонической. Конец проводника, по которому ток поступает в цепь, или зажим представляет собой начало фазы.

Изменение вольтажа цепи через временной промежуток является проекцией лучевого вектора на координатную ось.

Цепь представляет собой стандартные элементы – энергетический генератор, цепь передачи, приемник. Для понятия, что такое фазное, линейное напряжение, их взаимодействие требуется определение фазы. Положение фазы действует только для магистралей переменного тока. Понятие определятся в виде уравнения сектора векторного вращения с фиксацией одного конца в исходе координат.

Электрические линии отличаются числом фаз: одно-, двух-, трех- и многофазная.

В России популярна трехфазная сеть для питания потребителей, которые представлены бытовыми строениями или промышленными объектами. Подключение отличается преимуществами по сравнению с электроснабжающей однофазной цепью:

  • экономичность из-за выгодного применения материалов;
  • возможность транспортировки большого объема электричества;
  • включение в рабочую цепь электрогенераторов и двигателей высокой мощности;
  • создание разных показателей напряжения в зависимости от варианта включения потребляющей нагрузки в электрическую линию.

Работа в трехфазной цепи зависит от взаимного соотношения ее компонентов. Показатели напряжения зависят от фазы (угла наклона векторного луча к координатной плоскости оси). Вольтаж определяется по земельному потенциалу, который равен нулю.

Из-за этого кабель с присутствующим вольтажом именуют фазным, а заземляющий провод – нулевым. Угол фазы единичного вектора не имеет особой значимости, т. к. в линии он делает полный оборот на 360° за 1/50 часть секунды.

Во внимание берется междуфазный угол относительности 2 векторов.

В сети с применением реактивных деталей угол берется между векторными показателями электротока и вольтажа, он носит название сдвига фазы. Если значения подключенных нагрузок со временем не изменяются, то величина сдвига будет всегда постоянной. Неизменность показателя используется в расчете электрической линии и анализа работы.

Обратите внимание

При намотке на катушке множества оборотов провода номинальное напряжение увеличивается пропорционально числу витков. Явление привело к разработке генераторов, обеспечивающих потребителей электричеством.

Для эффекта от применения магнитного поля иногда устанавливают несколько бобин. Статорное магнитное поле за поворот ротора пересекают одновременно 3 катушки, что ведет к увеличению мощности генератора.

Это позволяет запитать сразу 3 пользователей.

Что такое фазное напряжение?

В трехфазных магистралях большинства государств размер напряжения равен 220 вольт. Фазный вольтаж измеряется в промежутке между фазами в начале и конце провода. Практически это величина посередине нулевого проводника и напряженного кабеля. При подсоединении по типу звезды значения линейных токов и фазного электричества не отличаются.

Симметричная система исключает присутствие нейтральной жилы, при несимметричном способе нулевой кабель поддерживает соразмерность с источником. Во втором варианте часто в цепь включаются приборы освещения, и требуется независимое функционирование 3 рабочих кабелей, тогда выводы приемника объединяются по типу треугольника.

Межфазное напряжение используется в многоквартирном секторе с магазинами или офисами на первых этажах. Так можно запитать торговые площадки силовыми кабелями в целях обеспечения 380 вольт.

В высотках подключение обеспечивает лифты, эскалаторы, промышленные холодильники.

Разводка выполняется относительно просто, учитывая, что в жилье идет ноль и жила под нагрузкой, а на общественные помещения ответвляются 3 рабочих кабеля и нейтральная жила.

Отличие трехфазного тока от однофазного состоит в том, что показатель сети – это линейная мощность, а параметры, имеющие отношение к нагрузке, представляют собой фазный вольтаж. От станции к потребителю проводится линия, включающая рабочие жилы и нулевой провод.

Для снижения утечек при прохождении по цепи в начале и конце сети ставятся преобразователи, но картина от этого не изменяется. Нейтральный провод фиксирует и транспортирует пользователю заявленный потенциал, полученный на выходе.

Мощность в проводе под нагрузкой создается, исходя из значения в нейтрали.

Величина напряжения фазы выявляется и возникает относительно центра подключения обмоток – нейтрального провода. В симметричной относительно нагрузок схеме трехфазной цепи через ноль передается ток с минимальными показателями. На выводе такой линии провода под нагрузкой окрашиваются в общепринятые стандартные цвета:

  • жила L1 – коричневый;
  • провод L2 – черный;
  • кабель L3 – серый;
  • нулевая оплетка N – синий;
  • желтый или зеленый – предусмотрен для заземления.

Такие мощные линии проводятся к крупным потребителям – целым микрорайонам, заводам. Для небольших приемников монтируется однофазная линия, включающая нагруженный провод и дополнительный ноль.

При равномерном распределении мощности в однофазных ответвлениях появляется равновесие в трехфазной конструкции.

Для прокладки составляющих ветвей принимается напряжение фазы одной жилы относительно нейтрали.

Источник: https://odinelectric.ru/elektrosnabzhenie/chto-takoe-faznoe-i-linejnoe-napryazhenie

⚡ Фазное и линейное напряжение: определения, отличия, расчёт соотношения

С трёхфазными линиями электропередач сталкивались многие. И если в многоквартирных домах в основном используется напряжение 220 В, то в частном секторе в большинстве своём владельцы подключают 380 В. Такие трёхфазные линии позволяют использовать электродвигатели для станков и иное оборудование, которое в квартире не установить. Подавляющее большинство не знает, чем отличается фазное напряжение от линейного, а значит необходимо исправить это упущение. Именно об этом и пойдёт речь в сегодняшней статье.

Содержание статьи

Что такое фазное и линейное напряжение

Для некоторых людей, далёких от электротехники, определяющим словом здесь является «напряжение», однако на самом деле всё не так. Рассмотрим основные определения этих терминов.

Фазным называется напряжение между любым из трёх токоведущих проводников и нулём. Оно равно 220 В.

ФОТО: prezentacii.infoФазное прикосновение – замыкание на нулевой и фазный провод

Линейным называют напряжение между двумя фазными проводниками. Оно равно 380 В, т.е. в 1.73 раза выше фазного. Что касается обозначений, то линейное напряжение можно определить по двум литерам (по наименованию фазы) после U (напряжение). Например UAB, UBC, или UCA, либо просто Uл.

ФОТО: prezentacii.infoЛинейное замыкание между двумя фазными проводниками

Использование трёхфазных линий в многоквартирных домах

Не все знают, что в многоквартирные дома также подведено 380 В. Именно это позволяет работать магазинам и различным мастерским на первых или цокольных этажах. В подъездных щитах трёхфазная цепь распределяется поквартирно, в результате чего на каждую из них приходится одна фаза и ноль. Именно они и обеспечивают фазное напряжение 220 В.

 

ФОТО: prezentacii.infoТак трёхфазная сеть разбивается на три однофазных

При необходимости подключения в квартире оборудования, требующего напряжения 380 В, владелец может обратиться с заявлением в управляющую компанию. Специалист определит возможность подобного подключения, после чего можно будет провести в квартиру трёхфазную линию, предварительно заменив прибор учёта электроэнергии на соответствующий.

ФОТО: vseinstrumenti.ruТрёхфазный прибор учёта электроэнергии значительно крупнее однофазного

Вычисление соотношения между фазным и линейным напряжением

Для расчёта соотношения следует знать линейные параметры. Все вычисления производятся по формуле: 1\2UAB=UA cos 30˚, либо UAB=2√3/2×UA=√3×UA. Таким образом, делаем вывод, что окончательная формула выглядит следующим образом – Uл=√3×UФ.

На первый взгляд может показаться, что формулы слишком сложны, однако это не так. С другой стороны, домашнему мастеру практически нет смысла заниматься подобными расчётами. Достаточно обычной проверки напряжения на каждой из фаз обычным мультиметром.

ФОТО: stanok.guruМультиметр незаменим при электромонтажных работах

Для чего требуется проверка напряжения фаз перед включением

При подключении оборудования, требующего напряжения 380 в (к примеру, асинхронного электродвигателя) следует проверить напряжение на каждой из трёх фаз и сравнить показатели. Особенно это касается частных секторов, где напряжение нестабильно или электромонтёры имеют недостаточную квалификацию. Дело в том, что в деревнях часто не обращают внимания на распределение нагрузки. В результате подобных действий одна из фаз может быть перегружена при минимальной нагрузке на остальные. Вкупе с устаревшими трансформаторами это приводит к перекосу фаз. Получается, что на одной из фаз напряжение значительно снижается. Это приводит к перегреву трёхфазных двигателей или иного оборудования и выходу его из строя.

ФОТО: piccy.infoТакой перекос явно не пойдёт на пользу оборудованию, работающему от трёх фаз

Схемы подключения трёхфазных двигателей

Существует два способа подключения к трёхфазной сети, причём это касается не только электродвигателей. Нагревательные элементы также можно подключить «звездой» или «треугольником». Попробуем понять, в чём заключается различие между ними.

ФОТО: siemens-com.ruЭлектродвигатель можно подключить двумя способами

«Звезда» и её особенности

Соединение «звезда» представляет собой следующее: к началу каждой обмотки подключается фазный провод, а все концы соединяются между собой. При этом в месте соединения образуется «технический ноль». Он крайне нестабилен, а потому не используется в электрической цепи.

Подобное соединение не позволяет двигателю выйти на полную мощность, однако это способствует увеличению срока службы оборудования. Также, в защиту подобного соединения можно сказать, что пуск двигателя будет очень плавным, оборудование сможет переносить кратковременные перегрузки и меньше нагреваться. Поэтому, если максимальная мощность электромотора не требуется, лучше всего выбрать именно способ подключения «звездой».

ФОТО: rusenergetics.ruСоединение «звезда» поможет увеличить срок службы электромотора

«Треугольник»: плюсы и минусы способа подключения

Здесь обмотки соединяются последовательно. Начало одной из них коммутируется с концом другой. Такой вариант имеет определённые недостатки, такие, как высокие пусковые токи и перегрев при длительной работе. Однако есть здесь и значительные преимущества перед соединением «звезда». Оборудование, при подобном подключении, выдаёт максимальную мощность, что зачастую становится решающим критерием при выборе способа монтажа. Электродвигатели, подключённые «треугольником» развивают максимальный крутящий момент. Чаще всего соединение «треугольник» используют для подключения агрегатов с большой мощностью, например, станков в промышленных цехах.

ФОТО: infourok.ruСоединение «треугольник» позволяет использовать максимальную мощность оборудования

Комбинированный вариант соединения

В некоторых случаях используется комбинированный вариант «звезда-треугольник». Электродвигатель мягко запускается на соединении «звезда», а после того, как набирает необходимые обороты, реле переключает его на «треугольник». Однако не все двигатели можно подключить подобным образом. К примеру, существуют электромоторы, имеющие всего 3 вывода в контактной группе. Они изначально изготовлены под соединение «звезда» и подключить их «треугольником» невозможно.

ФОТО: meganorm.ruКомбинированное соединение подойдёт не для всех типов двигателей

Если объединить распространённые типы включения в трёхфазную сеть, можно увидеть следующую картину.

ФОТО: birmaga.ruНаиболее распространённые типы включения в трёхфазную сеть

Подведём итог

Из всего изложенного можно сделать вывод, что фазное напряжение в сети 0.4 кВ всегда равно 220 В, в то время как линейное 380 В. Однако не стоит считать, что если значения фазного напряжения ниже, оно становится менее опасным. Редакция Homius со всей ответственностью заявляет, что поражение электрическим током может привести к летальному исходу независимо от того, линейное напряжение в цепи или фазное. Ведь поражение тканям и органам наносит не само напряжение, а сила тока. К примеру, 220 В трансформированные в 36 В становятся даже опаснее. Ведь человек практически не чувствует столь низкого напряжения, а в это время ток поражает органы. Поэтому при электромонтажных работах не следует забывать о технике безопасности.

ФОТО: metodist.siteПамятка начинающему электрику

Надеемся, что изложенная информация будет полезна начинающим электромонтажникам и домашним мастерам. При возникновении вопросов можете смело излагать их в обсуждениях ниже. Редакция Homius с удовольствием ответит на них как можно более развёрнуто и быстро. Там же Вы можете изложить своё мнение о статье, оставить комментарий или поделиться личным опытом в подключении трёхфазного оборудования. Если понравилась статья, не забываем её оценивать. А мы напоследок предлагаем Вашему вниманию короткий видеоролик, который позволит более полно раскрыть сегодняшнюю тему.

Предыдущая

ИнженерияКак выбрать правильную печь для гаража: изучаем современные виды обогревательного оборудования

Следующая

ИнженерияМойка для кухни: как выбрать раковину, на что обратить внимание

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Как рассчитать межфазное напряжение

Обновлено 28 декабря 2020 г.

Автор: S. Hussain Ather

Множество способов использования электроэнергии означает, что она может принимать различные формы. Вы можете задаться вопросом, чем электричество, подаваемое в ваш дом, отличается от электричества электростанций. Изучение свойств, лежащих в основе электрических сигналов, позволяет выяснить, как возникают такие функции, как линейное напряжение. Это может помочь вам лучше понять формы, которые принимает электричество во всем мире.

Трехфазное напряжение

Хотя однофазные источники питания гораздо более распространены во всем мире, источники электроэнергии, которые имеют форму трех фаз, можно найти в электрических генераторах. Это позволяет электростанциям производить в три раза больше электроэнергии, чем они могли бы в противном случае, поскольку они посылают электричество по трем проводам вместо двух.

Хотя вы не будете использовать его в домашних условиях, в промышленных целях используются двигатели и другие устройства, которые используют плавный характер трехфазного напряжения.

Формула расчета трехфазного напряжения показывает, как это напряжение определить количественно. Для трех проводов, a, b и c, линейные напряжения составляют v ab , v bc и v ca для представления изменений. по проводам от первого индекса до второго. Например, v ab — это разница между проводами a и b.

Линейное напряжение — это напряжение или потенциал между двумя проводами.Для двух значений напряжения, которые имеют общий провод, вы можете сравнить их как

v_ {ac} = v_ {ab} -v_ {cb}

или, сложив два напряжения как

v_ {ac} = v_ {ab } + v_ {bc}

Обозначение этих различий в напряжении позволяет рассчитать напряжение между фазой и землей. Это разница напряжений между определенной фазой трехфазного источника питания и землей. Если вам известно напряжение между одной фазой a и землей, а также между проводом b и проводом a, вы можете обозначить первое как v ae , а второе — как v ba. .Вы можете использовать это для вычисления разности фаз другого провода b и земли как

v_ {be} = v_ {ba} + v_ {ae}

Пример тиристорного выпрямителя

Тиристорный выпрямитель может имеют входное линейное напряжение

\ begin {align} & v_ {ab} = \ sin {(\ omega t)} \\ & v_ {bc} = \ sin {(\ omega t-120)} \\ & v_ { ca} = \ sin {(\ omega t-240)} \ end {align}

для угловой частоты «омега» ω = 2πf и частоты f во времени t. Частота измеряет, сколько форм сигналов входного источника электроэнергии проходит через заданную точку каждую секунду.Эти выпрямители используются при переключении между источниками питания больших электрических нагрузок.

На принципиальной схеме шести тиристорных устройств показано их расположение в два ряда по три для переключения между каждым из трех проводов в одном или другом направлении. Разница в 120 ° указывает на то, что каждый провод не в фазе с другими проводами на 120 ° в одном направлении и 120 ° в другом направлении.

Формула межфазного тока

Так же, как вы можете записать падение напряжения на различных частях устройств с трехфазным напряжением, используйте закон Ома В = IR для напряжения В , ток I и сопротивление R для перезаписи напряжений и токов.Однако в случае цепей с трехфазным напряжением вы измеряете импеданс, а не сопротивление. Это означает, что вы можете переписать определенное падение напряжения между двумя точками x и y как v xy . Таким образом, это равно I xy x Z xy для тока между двумя точками и их полного сопротивления.

Использование трехфазных источников напряжения означает, что вы должны знать и учитывать фазы напряжения для различных элементов электрической цепи.Вы можете использовать линейное напряжение, чтобы проиллюстрировать эти отношения.

Линейное напряжение и фазное напряжение в трехфазном электричестве

Линейное напряжение и фазное напряжение в трехфазном электричестве

Эта страница дает определение фазного и линейного напряжения в трех фазах. 2d \ theta}.{2 \ pi} {3 \ over2} d \ theta \ end {align} $$

поскольку тригонометрические члены в $ \ cos2 \ theta $ и $ \ sin2 \ theta $ исчезают по всему диапазону, давая

$$ V _ {\ rm AB \ rms} = V_0 \ sqrt {3 \ over2} $$

Таким образом, действующее значение линейного напряжения в $ \ sqrt3 $ умножается на действующее значение фазного напряжения.

Интернет-ссылки


Авторские права © Бен Баллок, 2009-2021. Все права защищены. С комментариями, вопросами и исправлениями обращайтесь по электронной почте. Бен Баллок ( [email protected] ) или воспользуйтесь группой обсуждения в группах Google.Новости о сайте. / Конфиденциальность / Отказ от ответственности

Line Voltage — обзор

Электроэнергия с линейным напряжением испытывает различные мешающие воздействия во время ее распределения. Это может быть вызвано источниками в сети питания или другими пользователями, или другими нагрузками в той же установке. Чистое бесперебойное снабжение не было бы рентабельным; Баланс между стоимостью поставки и ее качеством определяется национальными нормативными требованиями, подкрепленными опытом энергоснабжающих компаний.Типичные помехи:

1.

Колебания напряжения. Распределительная сеть имеет конечный импеданс источника, и переменная нагрузка влияет на напряжение на клеммах. Включая падения напряжения в помещениях заказчика, допуск ± 10% от номинального напряжения будет покрывать нормальные колебания в Великобритании; предлагаемые ограничения для всех стран CENELEC составляют +12%, -15%. В соответствии с режимом согласования напряжения CENELEC европейское напряжение питания в точке подключения к помещению потребителя составит 230 В +10 процентов, -6 процентов.

2.

Колебания напряжения. Кратковременные (субсекундные) флуктуации с довольно малой амплитудой раздражающе заметны при электрическом освещении, хотя электронные схемы питания их легко игнорируют. Генерация мерцания при переключении нагрузки высокой мощности подлежит нормативному контролю.

3.

Сбои напряжения. Неисправности в системах распределения электроэнергии вызывают почти 100-процентные падения напряжения, но устраняются быстро и автоматически с помощью защитных устройств, а во всей остальной распределительной системе напряжение немедленно восстанавливается.Поэтому большинство потребителей видят кратковременный провал напряжения. Частота появления таких провалов зависит от местоположения и сезонных факторов.

4.

Искажение формы волны. В источнике переменного тока линейное напряжение генерируется как чистая синусоида, но реактивное сопротивление распределительной сети вместе с гармоническими токами, потребляемыми нелинейными нагрузками, вызывает искажение напряжения. Преобразователи питания и электронные блоки питания вносят важный вклад в нелинейную нагрузку.Фактически, гармонические искажения могут быть хуже в точках, удаленных от нелинейной нагрузки, из-за резонансов в компонентах сети. Не только должны быть ограничены нелинейные гармонические токи, но и оборудование должно быть способно работать с до 10 процентов общих гармонических искажений в форме волны питания.

5.

Переходные процессы и скачки. Операции переключения генерируют переходные процессы в несколько сотен вольт в результате прерывания тока в индуктивной цепи.Эти переходные процессы обычно возникают всплесками и имеют время нарастания не более нескольких наносекунд, хотя конечная полоса пропускания распределительной сети быстро ослабит все, кроме локальных источников. Более редкие всплески большой амплитуды, превышающие 2 кВ, могут наблюдаться из-за условий неисправности. Еще более высокие скачки напряжения возникают из-за ударов молнии, чаще всего в открытых распределительных сетях воздушных линий в сельской местности.

Фазное напряжение — обзор

4.5.1 Анализ выпрямителя, когда выходной ток является чистым постоянным током со значением I¯o

Входные фазные напряжения и линейное напряжение выпрямителя рассчитываются соответственно следующим образом:

van = 2V˜isin (ωt), vbn = 2V˜isin (ωt − 2π3), vcn = 2V˜isin (ωt − 4π3), vab = van − vbn = 6V˜isin (ωt + π6)

Формы сигналов которые будут использоваться для анализа этого раздела, такие же, как показанные на рис.4.10 (г) — (з). Как видно из рис. 4.10 (d), среднее выходное напряжение выпрямителя определяется площадью A под одним импульсом выходного напряжения, деленной на длительность импульса, и определяется как:

Рисунок 4.11. Частотный спектр выходного напряжения трехфазного мостового диодного выпрямителя.

(4.94) V¯o = AreaADurationofonepulse = ∫ − π6π66V˜icos (ωt) d (ωt) π / 3 = 36V˜iπsinωt | −π6π6 = 36V˜iπ = 2.34V˜i

где V˜i = среднеквадратичное значение фазы входного напряжения .

Более того, как видно из рис. 4.10 (d), один импульс выходного напряжения является периодическим, демонстрирует четную симметрию и период, равный одной шестой периода входного напряжения, и, следовательно, его гармонические составляющие имеют порядок 6n.Амплитуды этих гармонических составляющих, а также ряд Фурье согласно формуле. (4.86) (с учетом того, что в полномостовой конфигурации линейное входное напряжение прикладывается к выходу) задаются следующими уравнениями:

(4.95) Vˆo, n = −2 · 66V˜iπ (n2−1) cosnπ6sinπ6 = −66V˜iπ (n2−1) cosnπ6

n = гармонический порядок = 6,12,18,…

(4.96) vo = 36V˜iπ + 66V˜iπ (135cos6ωt − 1143cos12ωt + ⋯)

Рис. 4.11 представлен частотный спектр выходного напряжения выпрямителя.

Как видно из рис.4.10 (h), форма волны входного тока i a , которая представляет собой квазипрямоугольный импульс шириной δ = 120 °, является нечетной функцией, обладающей четвертьволновой симметрией. Следовательно, согласно таблице 4.1 входной ток может быть представлен следующим рядом Фурье:

(4.97) ia = ∑n = 1,3,5∞bnsin (nωt)

, где

(4.98) bn = 8T∫ 0T / 4iasin (nωt) dt = 82π∫0π / 2iasin (nωt) d (ωt) = 4π∫π / 6π / 2I¯osin (nωt) d (ωt) = 4I¯onπ [−cos (nωt)] | π6π2 = 4I¯onπcos (nπ6)

Используя уравнения. (4.97) и (4.98) получается следующее уравнение:

(4.99) ia = ∑n = 1,5,7∞4I¯onπcos (nπ6) sin (nωt) = 23I¯oπ (sinωt − 15sin5ωt17sin7ωt + 111sin11ωt + 113sin13ωt − 117sin17ωt− ⋯)

где I¯o = значение чистый выходной ток постоянного тока; n = порядок гармоник = 1, 5, 7, 11, 13; ω = частота входного напряжения = 2πf.

На рис. 4.12 представлен частотный спектр входного тока выпрямителя, когда выходной ток является чистым постоянным током величины I¯o.

Рисунок 4.12. Входной ток i a частотный спектр трехфазного мостового диодного выпрямителя для чистого постоянного выходного тока со значением I¯o.

Из уравнения. (4.99), это приводит к тому, что действующее значение основной составляющей входного тока составляет:

(4.100) I˜a, 1 = 23I¯oπ2 = 6πI¯o

Кроме того, согласно Рис. 4.10 (h), входной ток среднеквадратичного значения:

(4.101) I˜a = [12π (30 ° 150 ° I¯o2d (ωt) + ∫210 ° 330 ° (−I¯o) 2d (ωt))] 1/2 = [12π (2I¯o22π3)] 1/2 = 23I¯o

Значения входной активной и реактивной мощности:

(4,102) Pi = 3Pphase = 3V˜iI˜a, 1cosφ1

(4,103) Qi = 3Qphase = 3V˜iI˜a, 1sinφ1

, где φ 1 = разность фаз между входным фазным напряжением и основными составляющими входного тока; V˜i = действующее значение входного фазного напряжения.

Как видно из рис. 4.10 (а) и (з), угол сдвига фаз φ 1 = 0 ° и, следовательно, уравнения. (4.102) и (4.103) можно переписать как:

(4.104) Pi = 3V˜iI˜a, 1cos0 ° = 3 (V¯oπ36) (6πI¯o) = V¯oI¯o = P¯o

(4.105) Qi = 3V˜iI˜a, 1sin0 ° = 0

Входная кажущаяся мощность и мощность искажения соответственно определяются по формуле:

(4.106) Si = 3V˜iI˜i = 3V˜i (23I¯o) = 6V˜iI¯o = 6 (V¯oπ36) I¯o = π3V¯oI¯o = 1.047P¯o

(4.107) Di = Si2 − Pi2 = (1.047V¯oI¯o) 2− (V ¯oI¯o) 2 = 0,310V¯oI¯o = 0.310P¯o

Коэффициент мощности и коэффициент нелинейных искажений соответственно определяются следующим образом:

(4,108) λ = PiSi = V¯oI¯o1,047V¯oI¯o = 0,955

(4,109) THDia% = I˜a2 −I˜a, 12I˜a, 1 × 100 = (23I¯o) 2− (6πI¯o) 26πI¯o × 100 = 31,1%

Следует отметить, что коэффициент мощности достаточно высок из-за того, что что коэффициент смещения равен единице (т. е. cosφ 1 = 1).

Кроме того, из форм сигналов на рис. 4.10 (d), (f) и (g) можно показать, что угол проводимости каждого диода составляет 120 ° и, следовательно, каждый диод обеспечивает 1/3 выходной ток.Следовательно, средний и действующий ток диода определяются следующими уравнениями:

(4.110) I¯D = I¯o3A

(4.111) I˜D = [12π∫30 ° 150 ° I¯o2d (ωt)] 1/2 = I¯o3A

, где I¯o = значение чистого постоянного выходного тока.

C: \ files \ курсы \ 3414 \ ece3414notes1a.wpd

% PDF-1.6 % 106 0 объект > эндобдж 165 0 объект > эндобдж 104 0 объект > поток Acrobat Distiller 5.0.5 (Windows) 2004-07-07T15: 23: 25Z2013-08-22T07: 29: 22-05: 002013-08-22T07: 29: 22-05: 00PScript5.dll, версия 5.2, приложение / pdf

  • donohoe
  • C: \ files \ курсы \ 3414 \ ece3414notes1a.wpd
  • uuid: 3786948f-c39e-456b-ad4f-ee67c605ecc1uuid: b71a17ff-4d5e-4cd1-bca5-025288013c01 конечный поток эндобдж 168 0 объект > / Кодировка >>>>> эндобдж 100 0 объект > эндобдж 99 0 объект > эндобдж 164 0 объект > эндобдж 101 0 объект > эндобдж 102 0 объект > эндобдж 58 0 объект > эндобдж 61 0 объект > эндобдж 64 0 объект > эндобдж 67 0 объект > эндобдж 70 0 объект > эндобдж 73 0 объект > эндобдж 76 0 объект > эндобдж 78 0 объект > поток Hl ;; + V7ssZ @ BfJDq` > _; q ֌ v / 7 _ ^;> _}? _ / ^ Z_ {K || k ~ F’0r77Z 銵 x> -ĺd80w =! 1Квкуп.PuexSWNlW27ErnmAFnaEr $ rcV5gqp 陾 = + _} f9Uqx1r35fwYd3La6gph ֍ Zq.] 0b (E (k l {_, x? lXF8Ų 뙬 ./. ‘ mTMAЯ ~ d {o & ̸’MF968g ۻ $% f [; {SIW aʖb45a39 x [7ǧK: bCn 3 빍 J * [8X9y4 {n $ _g1ƥVz8U ~ wpJA / v1CZ *, ⥢UvR6lV

    Вольт линия-линия в фазу-нейтраль — преобразование фаза-фаза в фазу-нейтраль

    Здесь вы узнаете, как преобразовать из Linea в Linea напряжение от Linea до Neutro напряжение автоматически, легко и бесплатно, для большей простоты в нашем случае слово Phase аналогично Linea.

    У нас также есть формула, которая используется при расчете линейного напряжения на фазу-нейтраль, шаги для перехода от линейного напряжения к линейно-нейтральному напряжению со многими иллюстрированными примерами и таблицей с основным линейным напряжением. преобразование в Line-Neutral.

    Формула напряжения фаза-фаза-фаза-нейтраль:

    • В LN = Вольт фаза-нейтраль.
    • В LL = Линейно-линейное напряжение.

    Как преобразовать фазовое напряжение в фазо-нейтральное всего за 1 шаг:

    Шаг 1:

    Это очень просто, вам нужно только разделить линию напряжения на линию (фаза -Phase) между корнем 3 (√3). Пример: один конденсаторный кондиционер имеет напряжение фаза-фаза 480 В, чтобы узнать напряжение фаза-нейтраль конденсатора, просто разделите 480 В на √3, получится следующее: 480 В / √3, в результате получится 277 В.

    Примеры преобразования напряжения фаза-фаза в напряжение фаза-нейтраль:

    Пример 1:

    Линейное напряжение на штамповочном станке составляет 240 Вольт, сколько вольт линейно-нейтраль имеет штамповочный станок? .

    Ответ: // Чтобы узнать напряжение линейной нейтрали пресса, линейное напряжение, разделенное на три, необходимо разделить следующим образом: V LN = 240 В / √3, что даст 138 вольт нейтрали. Линия.

    Пример 2:

    Промышленный высекальный пресс имеет фазо-фазное напряжение 600 В, какое будет напряжение между фазой и нейтралью, которое будет у этой машины?

    Ответ: // Решение простое, вам нужно только разделить 600 Вольт между корнем из 3 следующим образом: V LN = 600 В / √3 = 346 Вольт фаза-нейтраль.

    Пример 3:

    Кофейная мельница имеет линейное напряжение 13200 Вольт, какое линейное и нейтральное напряжение будет иметь мельница?

    Ответ: // Чтобы узнать ответ, вам нужно только разделить линейное напряжение между √3 по формуле V LN = 13200V / √3, получив в результате: 7621Voltios Linea-Neutro.

    Таблица преобразования напряжения фаза-фаза в напряжение фаза-нейтраль: 9066F3 Фаза 9050 Как подключить фазу к фазе

    калькулятор:

    Первое и единственное, что вы должны сделать, это вставить напряжение в линию, которую вы хотите преобразовать, затем нажмите на кнопку конвертировать и вперед.

    Однофазный трехпроводной:

    Также известен как система Эдисона, разделенная или нейтральная фаза с центральным впуском. Это наиболее распространенная услуга по проживанию в Северной Америке. Линия 1 к нейтрали и линия 2 к нейтрали используются для питания нагрузок на 120 вольт освещения и электрических розеток. Линия 1 — линия 2 используется для питания однофазных нагрузок 240 В, таких как водонагреватель или кондиционер. Глаза эти линии в данном случае не эквивалентны Фазам, это нити, а не Фазы или линии.

    Трехфазная звезда-звезда:

    Наиболее распространенная коммерческая строительная электрическая сеть в Северной Америке — это звезда 120/208 вольт, которая используется для питания 120-вольтовых розеток, освещения и небольших систем отопления, вентиляции и кондиционирования воздуха.

    В более крупных установках напряжение составляет 277/480 В и используется для подачи напряжения фаза-нейтраль 277 В для освещения и более высоких нагрузок HVAC. В западной Канаде чаще встречается напряжение 347/600 В.

    Трехфазный трехпроводной Delta:

    Он в основном используется на промышленных объектах для обеспечения питания нагрузок трехфазных двигателей и распределительных сетей.Номинальное рабочее напряжение составляет 240, 400, 480, 600 и выше.

    Calificar convertor de Voltaje Linea-Linea a Linea-Neutro: [kkstarratings]

    что такое фазное и линейное напряжение? в линейном напряжении как получается 415в?

    почему индийская частота 50 Гц и частота США 60 Гц

    3 ответа


    В чем преимущество блокировки с самосбросом? При неисправности выключатель получает отключение и неисправность больше не существует, затем происходит самовосстановление блокировки, как нам сообщить?

    0 ответов Bhad Engineers,


    каковы параметры линии передачи и линии передачи константы?

    1 ответов


    Успешна ли синхронизация dg на практике.

    2 ответа


    Как будет проводиться проверка полярности трансформатора Dy5?

    2 ответа BSL,



    сколько ампер уходит на один кВАр, и как добавить силовые конденсаторы к электрическим панелям, например, если один из MCC нарисован 800 ампер означает, сколько кВАр требуется

    1 ответов


    как определить номинальную мощность трансформатора 1500 кВА

    1 ответов


    как узнать настройку дифференциального реле ступени 06 мВА понижающий (треугольник-звезда) трансформатор?

    0 ответов IPCL,


    какие бывают типы основного заземления? И почему мы делаем что?

    3 ответа Бхарти,


    Почему в домашней электропроводке мы используем только один нейтральный провод и столько фазных проводов от основной платы, когда нагрузка общий для обоих проводов?

    3 ответа


    какое назначение бронетранспортера для питания или управления кабель? Как выбрать тип бронетранспортера?

    1 ответов Сименс,


    Какие два типа транзисторов и как они сделаны?

    2 ответа


    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Сколько межфазного напряжения составляет Эквивалентное напряжение фаза-нейтраль
    1909 Вольт Эквивалентно 110 В фазо-нейтраль
    208 В FF 120 В FN
    220 В FF 127 В FN
    230 В FF 1333 9037 Вольт FN 133 Вольт FN 9036 139 Вольт FN
    380 Вольт FF 219 Вольт FN
    400 Вольт FF 231 Вольт FN
    415 Вольт FF 2403 415 Вольт FF 2403 9036 FN 9036 Вольт 2403 9066 FN 9036 254 В FN
    460 Вольт FF 266 Вольт FN
    480 Вольт FF 277 Вольт FN 9036 9
    500 Вольт FF 289 Вольт FN
    600 Вольт FF 346 Вольт FN
    4160 Вольт FF 2402 Вольт FN
    114 Вольт
    13200 Вольт FF 7621 Вольт FN
    15000 Вольт FF 8660 Вольт FN
    34500 Вольт FF 19919 Вольт FN
    44000 Вольт
    44000 Вольт 57500 Вольт FF 33198 Вольт FN
    66000 Вольт FF 38105 Вольт FN
    115000 Вольт FF 66395 Вольт FN