Магнитный двигатель видео: Простой (вечный) кольцевой магнитный двигатель.(Видео) » Электродвигатели. Статьи по ремонту. Схемы включения

Содержание

Магнитный двигатель

 

 

 

 

 

 

Магнитный двигатель своими руками

Представляем Вашему вниманию магнитный двигатель, который по замыслу является так называемым «вечным двигателем».
  Здесь Вы увидите не только ВИЖЕО его работы, но и узнаете как проходит его изготовление и испытание.
  Смотрите видеосюжеты модели объёмом 670 кБ, демонстрирующий принцип работы двигателя.

 

 
Чёрная стрелка на диске указывает положение поршня. Видно, что при закрытой заслонке поршень устойчиво находится в верхнем положении, и заслонка оказывает полноценное экранирование магнитов, выполняя описанные мной функции.

Далее, при открытии заслонки поршень совершает возвратно-поступательное движение. Накопленная энергия маховика продолжает перемещать поршень в верхнее положение. Работы: перемещения заслонки = 0,444 Дж, перемещения поршня = 1,251 Дж. Измерения были сделаны на данной модели.
На модели нет некоторых ноу-хау, которые значительно снижают работу перемещения заслонки, не влияя на работу поршня. Данные изменения были проверены на этой модели.
То, что я делаю рукой, должен делать кулачковый механизм, указанный на схеме в патенте. Энергию он будет отбирать от вала двигателя, которой будет достаточно и для полезной работы

На данном видеосюжете показано, что сила пружины открывает ферромагнитный экран.
Поворотный рычаг, который перемещается пружиной в крайнее положение, соединён с заслонкой.

На видеосюжете показано, что работа отталкивания поршня больше всех вредных работ.
На демонстрируемой модели снят стопор фиксатора заслонки, который будет удерживать экран в закрытом состоянии, после того, как кулачок, закрывает его.
После того, как кулачок максимально поворачивает рычаг в крайнее закрытое положение , он выходит из зацепления с подшипником толкателя.И далее не испытывает на себе никакого сопротивления движению.

источник


Магнитный двигатель, своими руками, вечный двигатель, электрика,свободная энергия, альтернативная энергия,электрика.

 

Добавление комментариев временно отключено!

видео — Наука природы

Видео YouTube

Видео YouTube

 Шары Ньютона 


Видео YouTube

Генератор Стерла 

Видео YouTube

Видео YouTube

  Капанадзе 

Видео YouTube

Видео YouTube

Солнечный синтез  

Видео YouTube

Виктор Шауберг 

Видео YouTube

Магнитный двигатель   

Видео YouTube

Видео YouTube

Видео YouTube

Видео YouTube


Униполярный магнитный двигатель. Видео — опыты и выводы. Вращение «голого» магнита

Изучая диск Фарадея и т.н. «парадокс Фарадея», провел несколько простых опытов и сделал несколько интересных выводов. В первую очередь о том, на что следует обращать больше всего внимания для того, чтобы лучше понять процессы происходящие в этой (и подобных) униполярной машине.

Понимание принципа работы диска Фарадея помогает понять также то, как работают вообще все трансформаторы, катушки, генераторы, электродвигатели (в т. ч. униполярный генератор и униполярный двигатель) и т.п.

В заметке рисунки и подробное видео с разными опытами, иллюстрирующими все выводы без формул

и подсчетов, «на пальцах».

Все нижеизложенное — попытка осмысления без претензий на академическую достоверность.

Направление силовых линий магнитного поля

Главный вывод который я для себя сделал: первое, на что стоит всегда обращать внимание в подобных системах — это геометрия магнитного поля , направление и конфигурация силовых линий.

Только геометрия силовых линий магнитного поля, их направление и конфигурация могут внести определенную ясность в понимание процессов, происходящих в униполярном генераторе или униполярном двигателе, диске Фарадея, а также любом трансформаторе, катушке, электродвигателе, генераторе и т.п.

Я для себя распределил степень важности так — 10% физики, 90% геометрии (магнитного поля) для понимания происходящего в этих системах.

Более подробно все описано в видео (см. ниже).

Надо понимать что диск Фарадея и внешняя цепь со скользящими контактами так или иначе образуют хорошо известную со школьных времен

рамку — ее образует участок диска от его центра к месту соединения со скользящим контактом у его края, а также вся внешняя цепь (подходящие к контактам проводники).

Направление силы Лоренца, Ампера

Сила Ампера — частный случай силы Лоренца (см. Википедию).

Ниже на двух картинках показана сила Лоренца действующая на положительные заряды во всей цепи («рамке») в поле магнита типа «бублик» для случая когда внешняя цепь жестко соединена с медным диском (т.е. когда скользящие контакты отсутствуют, и внешняя цепь напрямую припаяна к диску).

1 рис . — для случая когда вся цепь вращается внешним механическим усилием («генератор»).
2 рис . — для случая, когда через цепь подается постоянный ток от внешнего источника («двигатель»).

Нажмите на один из рисунков, чтобы увеличить.

Сила Лоренца проявляется (генерируется ток) только в участках цепи, ДВИГАЮЩИХСЯ в магнитном поле

Униполярный генератор

Итак, поскольку сила Лоренца, действующая на заряженные частицы диска Фарадея или униполярного генератора, будет действовать противоположно на разных участках цепи и диска, то для получения тока из этой машины следует приводить в движение (вращать) только те участки цепи (по возможности), направление силы Лоренца в которых будет совпадать. Остальные участки должны быть либо неподвижны, либо исключены из цепи, либо вращаться в противоположную сторону .

Вращение магнита не изменяет однородность магнитного поля вокруг оси вращения (см. последний раздел), поэтому стоит магнит или вращается — не играет роли (хотя идеальных магнитов не бывает, и неоднородность поля вокруг оси намагниченности, вызванная недостаточным качеством магнита , тоже оказывает некоторое влияние на результат).

Здесь важную роль играет то, какая часть всей цепи (включая подводящие провода и контакты) вращается, а какая неподвижна (т.

к. только в движущейся части возникает сила Лоренца). А главное — в какой части магнитного поля находится вращающаяся часть, и из какого участка диска производится съем тока.

Например, если диск будет выступать далеко за пределы магнита, то в выступающей за край магнита части диска можно снять ток направления противоположного току который можно снять в части диска расположенной непосредственно над магнитом.

Униполярный двигатель

Все вышесказанное о генераторе справедливо и для режима «двигатель».

Подавать ток надо по возможности в те части диска, в которых сила Лоренца будет направлена в одну сторону. Именно эти участки надо освободить, предоставив возможность им свободно вращаться и «разорвать» цепь в соответствующих местах, поставив скользящие контакты (см. рисунки далее).

Остальные участки надо по возможности либо исключить, либо минимизировать их влияние.

Видео — опыты и выводы

Время разных этапов этого видео:

3 мин 34 сек — первые опыты

7 мин 08 сек — на что обращать главное внимание и продолжение опытов

16 мин 43 сек — ключевое объяснение

22 мин 53 сек — ГЛАВНЫЙ ОПЫТ

28 мин 51 сек — 2 часть, интересные наблюдения и еще опыты

37 мин 17 сек — ошибочный вывод одного из опытов

41 мин 01 сек — о парадоксе Фарадея

Что от чего отталкивается?

Мы с товарищем-электронщиком долго обсуждали эту тему и он высказал мысль построенную вокруг слова «отталкивается «.
Мысль, с которой я согласен — если что-то начинает движение, то оно от чего-то должно отталкиваться. Если что-то движется, то оно движется относительно чего-то.

Упрощенно говоря, можно сказать, что часть проводника (внешняя цепь или диск) отталкивается от магнита! Соответственно на магнит (через поле) действуют силы отталкивания. Иначе вся картина рушится и теряет логику. Про вращение магнита — см. раздел ниже.

На рисунках (можно кликнуть для увеличения) — варианты для режима «двигатель».
Для режима «генератор» работают те же принципы.

Здесь действие-противодействие происходит между двумя главными «участниками»:

  • магнит (магнитное поле)
  • разные участки проводника (заряженные частицы проводника)

Соответственно, когда диск вращается, а магнит неподвижен , то действие-противодействие происходит между магнитом и частью диска .

А когда магнит вращается вместе с диском, то действие-противодействие происходит между магнитом и внешней частью цепи (зафиксированными подводящими проводниками). Дело в том, что вращение магнита относительно внешнего участка цепи — это тоже самое, что вращение внешнего участка цепи относительно неподвижного магнита (но в противоположную сторону). В этом случае медный диск в процессе «отталкивания» почти не участвует.

Выходит так, что в отличие от заряженных частиц проводника (которые могут двигаться внутри него), магнитное поле жестко связано с магнитом. В т.ч. вдоль окружности вокруг оси намагниченности.
И еще один вывод: сила притягивающая два постоянных магнита — не какая-то загадочная сила перпендикулярная силе Лоренца, а это сила Лоренца и есть. Все дело во «вращении» электронов и той самой «геометрии «. Но это уже другая история…

Вращение «голого» магнита

В конце видео есть забавный опыт, и вывод о том, почему часть электрической цепи можно заставить вращаться, а заставить вращаться магнит «бублик» вокруг оси намагниченности — не получается (при неподвижной электрической цепи постоянного тока).

Проводник можно разорвать в местах противоположного направления силы Лоренца, а магнит разорвать нельзя

Дело в том что магнит и весь проводник (внешняя цепь и сам диск) образуют связанную пару — две взаимодействующие системы , каждая из которых замкнута внутри себя . В случае с проводником — замкнута электрическая цепь , в случае с магнитом — «замкнуты» силовые линии магнитного поля .

При этом, в электрической цепи проводник можно физически разорвать , не нарушая самой цепи (поставив диск и скользящие контакты ), в тех местах, где сила Лоренца «разворачивается» в обратном направлении, «отпустив» разные участки электрической цепи двигаться (вращаться) каждый в свою, противоположную друг другу сторону, а разорвать «цепь» силовых линий магнитного поля или магнита, так чтобы разные участки магнитного поля «не мешали» друг другу — видимо невозможно (?). Никаких подобий «скользящих контактов» для магнитного поля или магнита кажется еще не придумали.

Поэтому и возникает проблема с вращением магнита — его магнитное поле представляет собой цельную систему, которая всегда замкнута в себе и неразрывна в теле магнита. В ней противоположные силы на участках, где магнитное поле разнонаправленно, взаимно компенсируются, оставляя магнит неподвижным.

При этом, работа силы Лоренца, Ампера в неподвижно зафиксированном проводнике в поле магнита, уходит видимо не только на нагрев проводника, но и на искажение силовых линий магнитного поля магнита.

КСТАТИ! Интересно было бы провести опыт, в котором через неподвижный проводник, находящийся в поле магнита, пропустить огромный ток , и посмотреть — как будет реагировать магнит. Нагреется ли магнит, размагнитится ли, или может быть он просто разломается на куски (и тогда интересно — в каких местах?).

Все вышеизложенное — попытка осмысления без претензий на академическую достоверность.

Вопросы

Что осталось не до конца ясным и требует проверки:

1. Можно ли все-таки заставить вращаться магнит отдельно от диска?

Если дать возможность и диску, и магниту, свободно вращаться независимо друг от друга , и подать ток на диск через скользящие контакты, то будут ли и диск, и магнит вращаться? И если да, то в какую сторону будет вращаться магнит? Для эксперимента нужен большой неодимовый магнит — его у меня пока нет. С обычным магнитом не хватает силы магнитного поля.

2. Вращение разных частей диска в разные стороны

Если сделать свободно вращающимися независимо друг от друга и от неподвижного магнита — центральную часть диска (над «дыркой бублика» магнита), среднюю часть диска, а так же часть диска выступающую за край магнита, и подать ток через скользящие контакты (в т.ч. скользящие контакты между этими вращающимися частями диска) — будут ли центральная и крайняя часть диска вращаться в одну сторону, а средняя — в противоположную?

3. Сила Лоренца внутри магнита

Действует ли сила Лоренца на частицы внутри магнита, магнитное поле которого искажается внешними силами?

Использование: в качестве привода на электрическом транспорте, а также других маломощных устройств, стиральных машин, холодильников и т. д. Сущность изобретения: статор выполнен в виде тороидального соленоида 2, внутри которого расположены два ферромагнитных сердечника 3. По их окружности выполнены чередующиеся секторовидные области с сильно отличающимися значениями индукции. Радиальные проводники 5 ротора соединены последовательно. Две группы проводников, в которых ток течет в противоположных направлениях располагаются в области с сильно отличающимися значениями индукции. Сила, действующая на проводники 5, в областях с большей индукцией значительно больше и при этом возникает крутящий момент. При вращении проводники 5 с противоположным направлением тока в обмотке ротора входят в область статора с большим значением индукции. Чтобы вращение продолжалось, направление тока в обмотке ротора изменяется на противоположное с помощью коллектора. 1 з. п. ф-лы, 3 ил.

Изобретение относится к электротехнике, в частности к униполярным двигателям высокого напряжения. Известны униполярные двигатели (генераторы) Недостатком таких двигателей является то, что они работают при низких напряжениях (4 20 В)постоянного тока, вследствие чего для получения значительной мощности необходим большой ток. В связи с этим эти двигатели почти не используют. Наиболее близким к изобретению по технической сущности и достигаемому результату является униполярный двигатель высокого напряжения Особенностью этого двигателя является то, что ротор выполнен в виде диска, его обмотка в виде радиально расположенных, последовательно соединенных проводников, находящихся в секторовидных участках с сильным и слабым магнитным полем, направление тока в которых (от оси ротора или в ней) обеспечивается коллектором, расположенным вблизи оси ротора. Подвод постоянного тока к коллектору обеспечивается контактными щетками, число которых равно числу секторовидных участков с сильным магнитным полем. Главным недостатком этого двигателя-прототипа является сложность обмотки ротора, которая должна быть выполнена подобно тому, как она изготавливается в традиционных многополюсных машинах постоянного тока. В мощных двигателях эта обмотка очень трудоемка и нередко изготавливается вручную вследствие своей сложности. Предлагаемый в вариант изготовления обмотки ротора в виде печатной схемы при сохранении конструктивной сложности упрощает изготовление обмотки, однако, делает двигатель маломощным, что является дополнительным недостатком. Второй дополнительный недостаток двигателя-прототипа сложная конструкция коллектора, обусловленная сложностью обмотки ротора, изготавливаемого подобно коллекторам в традиционных многополюсных машинах постоянного тока. Третьим дополнительным недостатком двигателя-прототипа является сложная конфигурация магнитного сердечника обмотки возбуждения, формирующего секторовидные участки с сильным и слабым магнитным полем. Цель изобретения упрощение конструкции униполярного двигателя высокого напряжения (и устранение перечисленных недостатков) путем упрощения обмотки ротора, конструкции коллектора, конфигурации сердечника обмотки возбуждения и уменьшение числа контактных щеток до двух. Это обеспечивает создание униполярных двигателей высокого напряжения с упрощенной конструкцией, как большой так и малой мощности. Это достигается тем, что униполярный двигатель (генератор) высокого напряжения, содержащий систему возбуждения статора с одинаковыми секторовидными участками сильного и слабого магнитных полей, установленный на валу двигателя дисковый ротор с обмоткой из радиальных проводников, соединенных последовательно, начало и конец обмотки соединены с коллектором и токоподводящими к нему щетками, отличается тем, что обмотка ротора выполнена таким образом, что проводники с противоположным направлением тока расположены соответственно в сильном и слабом магнитных полях системы возбуждения статора, а коллектор выполнен в виде двух групп пластин, расположенных по кругу, причем, число пластин в каждой группе равно удвоенному числу участков с сильным магнитным полем, пластины в каждой группу электрически соединены друг с другом и с одним из концов обмотки ротора, а расстояние между пластинами на 5 10% больше поперечного размера каждой из двух токоподводящих щеток, что необходимо, чтобы избежать короткого замыкания через щетки в момент переключения на коллекторе. Униполярный двигатель (генератор) отличается тем, что система возбуждения статора выполнена в виде тороидальной обмотки и цилиндрических сердечников с секторовидными выступами, установленных с двух сторон ротора выступ к выступу. Сущность изобретения состоит в том, что радиально расположенные и последовательно соединенные проводники, образующие обмотку дискового ротора, находятся в неоднородном магнитном поле в виде секторовидных участков с сильным и слабым магнитными полями. При этом обмотка может быть выполнена из одинаковых секторовидных катушек, токоподвод к коллектору осуществляется с помощью всего двух контактных щеток, а неоднородное магнитное поле создается двумя ферромагнитными сердечниками с секторовидными выступами. Такой двигатель по конструкции проще двигателя-прототипа и по рабочим характеристикам близок к традиционным многополюсным машинам постоянного тока, но значительно проще их по конструкции. На фиг.1 изображена схема предлагаемого двигателя в продольном разрезе; на фиг. 2а принципиальная схема обмотки дискового ротора; на фиг. 2б схема конструкции коллектора; на фиг. 3 конструкция одного из двух ферромагнитных сердечников, создающих неоднородное магнитное поле в виде секторовидных областей с сильным и слабым полем. Предлагаемое устройство (фиг. 1 3) содержит статор 1, тороидальную обмотку 2 возбуждения статора, два ферромагнитных сердечника 3 с секторовидными выступами фиг.3), ротор 4, обмотку 5 ротора, секторовидные области 6 слабого магнитного поля (фиг. 2), секторовидные области 7 7 7 сильного магнитного поля, коллектор 8, пластины 9 коллектора, контактные графитовые щетки 10, ось 11 ротора (вал двигателя). Хорошо известно, что в соответствии с законом Ампера, сила, действующая на проводник с током в магнитном поле предлагаемого двигателя описывается уравнением (система СИ) f IBl, (1) где I сила тока; l длина проводника, магнитная индукция. Действие предлагаемого двигателя (генератора) основано на зависимости от . Конструкция статора двигателя представлена на фиг. 1. Статор имеет общепринятый для униполярных двигателей вид. Это соленоид 2 в виде тороидальной катушки, на оси которой расположена ось двигателя 11. Внутри соленоида расположены два ферромагнитных сердечника 3. Как указано выше, принципиальная особенность конструкции статора состоит в том, что обмотка возбуждения должна создавать неоднородное магнитное поле, состоящее из секторовидных участков, где магнитная индукция имеет большую величину, и подобных же участков, где она в несколько раз меньше. Форма и расположение этих областей показаны на фиг.2а. Области с малым значением заштрихованы. Конструкция ротора приведена на фиг. 1 и 2а. Радиально расположенные проводники с током 5 соединены последовательно, так как показано на фиг. 2а. Две группы проводников, в которых ток течет в противоположных направлениях (к оси ротора или от нее), располагаются в участках с сильно отличающимися значениями индукции . Сила, действующая на проводники, расположенные в участках с большим , окажется значительно больше и возникает крутящий момент. При вращении проводники второй группы с противоположным направлением тока начнут входить в участки с большим значением . Чтобы вращение двигателя продолжалось, необходимо направление тока в обмотке ротора изменить на противоположное, что достигается с помощью простого коллектора 6, устройство которого показано на фиг. 2б. Коллектор состоит из двух групп пластин, расположенных по кругу и соединенных друг с другом. Каждая из групп соединена с концом обмотки 5 ротора. Число пластин коллектора невелико и равно удвоенному числу n участков с высоким значением . Минимальное значение n= 2. Для работы коллектора достаточно двух щеток 12 (фиг. 1). Расстояние между пластинами на 5 -10% больше поперечного размера каждой из двух токопроводящих щеток 10. Расположение участков с большим и малым значением В (фиг. 2а) можно создать несколькими путями. Самый простой вариант можно реализовать при использовании тороидальной обмотки 2 возбуждения (фиг. 1), когда для создания значительного магнитного поля применяют ферромагнитные сердечники. Конструкция таких сердечников показана на фиг.3: по окружности расположены секторовидные выступы 13, 15, 17 и 19 и впадины 14, 16, 18 и 20. Ротор 4 (фиг. 1) находится между двумя сердечниками 3, расположенными выступ к выступу. Благодаря малому зазору между выступами магнитное поле в этих областях имеет высокое значение . Между впадинами значение значительно меньше. В качестве выступов на ферромагнитных сердечниках 3 можно также использовать постоянные магниты с секторовидными полюсами. При этом отпадает необходимость в тороидальной обмотке 2 возбуждения (фиг. 1). Вместо постоянных магнитов можно использовать также секторовидные соленоиды. Как видно из фиг. 2, при одновременном изменении направления тока в обмотке возбуждения (т.е. изменения направления магнитного поля на противоположное) и в роторе двигателя направление крутящего момента не изменится. Поэтому принципиально, предлагаемый двигатель может работать и на переменном токе. Если рабочее напряжение традиционного униполярного двигателя V o , то при той же скорости вращения и индукции магнитного поля напряжение будет V V o nN, (2) где n число областей с высоким значением , т. е. число участков с токами одного направления, N число проводников в одном таком участке. Число проводников в обмотке ротора (фиг. 2а) является минимально необходимым для работы двигателя элементарная обмотка. Это число может быть увеличено во много раз путем многократной укладки элементарных обмоток и их последовательного соединения. В частности, это можно осуществить путем последовательного соединения секторовидных катушек. При этом величина N окажется очень значительной. Так как N может быть значительным, рабочие напряжения двигателя (генератора) будут большими и, в частности, более высокими, чем в двигателе-прототипе В результате удельная мощность двигателя существенно повысится. При вращении ротора внешним двигателем предлагаемое устройство, как и другие двигатели постоянного тока, будет работать как генератор постоянного тока. Для повышения мощности несколько описанных двигателей можно соединить общим валом с таким расчетом, чтобы переключения на коллекторах двигателей происходили в разные моменты времени, что обеспечит более равномерное вращение. Предлагаемый двигатель имеет два основных преимущества по сравнению с ранее известными двигателями постоянного тока. По сравнению со всеми ранее известными униполярными двигателями предлагаемый двигатель может работать при значительно более высоких напряжениях, и при этом двигатель будет иметь больший коэффициент полезного действия вследствие меньших потерь мощности на щетках, вследствие их меньшего количества. Двиатель будет иметь также очень широкий диапазон скоростей вращения. Изменение скорости вращения осуществляется так же, как в традиционных двигателях постоянного тока, а именно изменением величины в области с сильным магнитным полем посредством вариации тока в обмотке 2 возбуждения (фиг. 1). За счет большого значения N двигатель может быть низкооборотным, что дает возможность использовать двигатель без механического редуктора. По сравнению с ранее известными коллекторными двигателями постоянного тока большим достоинством предлагаемого двигателя является простота обмоток возбуждения и ротора. Обмотка возбуждения состоит всего из одной тороидальной катушки. Обмотка ротора может состоять из 4 8 одинаковых секторовидных катушек. Проволока на эти катушки может наматываться на очень простых устройствах (например, на токарном станке), поэтому изготовление наиболее трудоемкой части двигателя постоянного тока (обмотки, которую часто делают вручную) значительно упрощается. Очень важным дополнительным достоинством предлагаемого двигателя является очень простая конструкция коллектора. Предлагаемый двигатель большой мощности может быть использован для привода на электрическом транспорте (трамваях, троллейбусах, электровозах, электромобилях, дизель-электроходах). Двигатель может быть применен для привода разнообразных маломощных устройств: магнитофонов, холодильников, стиральных машин и т. п. Экономический эффект от использования предлагаемого двигателя будет значительным, но количественного его в настоящее время оценить трудно.

В чем принципиальные различия между биполярным и униполярным шаговым двигателем, какой стоит выбрать?

В данной статье будут рассмотрены два типа двухфазных шаговых двигателя — униполярный и биполярный . Подобные названия появились благодаря тому, что в двухфазных шаговых двигателях встречаются два основных типа обмотки катушек, один — биполярный, другой — униполярный. Далее — рассмотрим оба типа подробнее, чтобы разобраться какой из них является более эффективным.

Униполярный шаговый двигатель

Униполярные шаговые двигатели, так же как и биполярные, имеют две обмотки, и каждая из них имеет центральный отвод. В зависимости от требуемого направления магнитного поля, в работу включается соответствующая половина обмотки, что достигается простым переключением ключей и существенно упрощает схему драйвера. Подобный механизм позволяет в качестве управляющей системы использовать простейший униполярный драйвер с четырьмя ключами.

Униполярный двухфазный шаговый двигатель имеет шесть выводов. Но так же бывает, что средние отводы катушек внутри соединены, что позволяет шаговому двигателю иметь только пять выводов. Благодаря простоте в эксплуатации, данные двигатели имеют широкую популярность среди как новичков любителей, так и во многих промышленных отраслях, поскольку униполярный шаговый двигатель является самым примитивным и дешевым способом получить высокоточные угловые движения.

Биполярные шаговые двигатели

С биполярными шаговыми двигателями дело обстоит немного иначе. Данные двигатели имеют только одну обмотку в одной фазе. Управляющая схема биполярного двигателя должна быть намного сложнее, чтобы менять направление магнитного поля с целью изменить направление тока в обмотке. Этого можно достигнуть с помощью схемы H-bridge. К тому же, для упрощения задачи можно приобрести несколько драйверных чипов, которые вам помогут. Биполярные шаговые двигатели, в отличие от униполярных имеют два вывода на одну фазу, ни один из которых не является общим. Иногда H-brigde сопровождают статические эффекты трения, что происходит с определенными приводными топологиями, однако это легко можно исправить, сгладив сигнал шагового двигателя на более высоких частотах.

Униполярные шаговые двигатели, в отличие от биполярных, имеют два вывода за фазу, ни одна из которых не является общей. Иногда H-brigde сопровождают статические эффекты трения, что происходит с определенными приводными топологиями, однако это легко можно исправить, сгладив сигнал шагового двигателя на более высоких частотах.

Выводы
Биполярные шаговые двигатели немного сложнее в управлении, но при схожих габаритах, биполярный двигатель способен обеспечить больший момент, в сравнении с униполярным. Однако униполярный двигатель, в противовес биполярному, проще в эксплуатации, и вполне сгодится для привода устройств с небольшой мощностью — бытовая техника (стиральная машина, холодильник), магнитофоны и т.д.


Власов В.Н.

Вариант униполярного магнитного двигателя.

На своём сайте я недавно разместил две интересные статьи примерно на одну тему. Это «Вечный двигатель первого рода», автор Головко Владимир Павлович. И «Роторный униполярный магнитный двигатель », автор Калашников Юрий Яковлевич. И это сделано неспроста.

Оба автора примерно с одинаковых позиций показывают, что довольно простым способом можно сконструировать магнитный двигатель, который способен работать практически вечно, настолько долго, насколько долго будет сохраняться намагниченность магнитов. Оба автора предлагают при необходимости вместо постоянных магнитов использовать электромагниты. В этом случае это уже не будет «выглядеть» как вечный двигатель, но при подборе параметров можно добиться, что энергетические расходы на поддержание необходимого магнитного поля в электромагнитах будут меньше работы, совершаемой двигателем.

Головко В.П. совершенно правильно формулирует техническое задание, но, к сожалению, до конца дело не доводит, согласившись с тем, что магнитов с требуемыми для его двигателя параметрами не существует и предлагает свой способ намагничивания постоянных магнитов. К сожалению, дальше теории дело не пошло. А жаль.

Калашников Ю.Я. предлагает более совершенную конструкцию, которая неплохо показала себя в виде простого макета. Для своего двигателя, у которого магнитные поля роторных магнитов должны быть подобны магнитным полям проводников, по которым протекает электрический ток. На плоскости это концентрические окружности, а объемно это будут концентрические цилиндры. Взаимодействие постоянного магнитного поля статора с цилиндрическим магнитным полем магнитов ротора приводит к тому, что вокруг каждого роторного магнита возникает перепад напряженности магнитного поля с одной точки зрения и перепад эфирного давления с другой. В итоге на каждый роторный магнит действует постоянная сила, направленная именно так, как предлагает в своей статье Головко В.П. Таким образом, Калашников Ю.Я. не только сформулировал техническое задание, но и предложил простое решение.

Мои предложения в некотором смысле можно считать усовершенствованием того, что предложил Калашников Ю.Я. Дело в том, что решение Калашникова Ю.Я. хоть и красивое, но для его реализации необходимо составлять своеобразный бутерброд из двух плоских, длинных и особым образом намагниченных магнитов. Такие магниты технически, наверное, проще собрать из нескольких более коротких магнитов, закрепив их в пазах ротора друг над другом.

Вторым недостатком можно считать то, что когда такие составные магниты будут расположены на роторе близко друг от друга, то в итоге мы рискуем получить вместо множества цилиндрических магнитных полей несколько иную магнитную конфигурацию, в которой магнитные поля составных роторных магнитов, замкнутся так, что силовые линии этого итогового поля будут располагаться перпендикулярно силовым линиям магнитного поля статора. А такое магнитное поле уже не сможет вращать ротор вокруг оси. Значит надо как-то из кругового магнитного поля соорудить полукруговое магнитное поле, сохранив за ротором способность вращаться в итоговом магнитном поле.

Униполярным двигателям и генераторам, как в прошлом, так и в настоящем, уделяется большое внимание. Хотя используются такие моторы и генераторы в специфических условиях. Например, когда надо получить постоянный электрический ток большой величины, но при малом напряжении. Или получить мотор, работающий от мощных аккумуляторов с небольшим напряжением, таких как магнето на автомобилях, тракторах и т.п.

Униполярный электродвигатель — разновидность электрических машин постоянного тока . Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2-ой токосъёмник у края диска.

Рис. 1. Простой униполярный двигатель.

Наглядная демонстрация работы униполярного электродвигателя. На головке шурупа находится постоянный магнит, сила которого удерживает шуруп притянутым к полюсу батарейки.

Первый униполярный двигатель, колесо Барлоу, создал Питер Барлоу , описав его в книге «Исследование магнитных притяжений», опубликованной в 1824 году . Колесо Барлоу представляло собой два медных зубчатых колеса, находящихся на одной оси. В результате взаимодействия тока, проходящего через колёса с магнитным полем постоянных магнитов колёса вращаются. Барлоу выяснил, что при перемене контактов или положения магнитных полюсов происходит смена направления вращения колёс на противоположное.

Униполярный генератор — разновидность электрической машины постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2-й токосъёмник у края диска.

Рис.2. Диск Фарадея, первый униполярный генератор

С позиций электродинамики принцип действия униполярного генератора простой. Есть смысл его привести. На электроны, находящиеся в диске, действует Сила Лоренца , являющаяся векторным произведением напряжённости магнитного поля и скорости перемещения электрона вместе с проводником в результате вращения диска. Сила эта направлена вдоль радиуса диска. В результате при вращении диска возникает ЭДС между его центром и краем.

В отличие от других электрических машин, такой генератор имеет чрезвычайно низкую ЭДС (от долей до единиц вольт) при низком внутреннем сопротивлении и большом токе; равномерность получаемого тока, отсутствие необходимости коммутировать его коллектором ротора, или выпрямлять полученный другими машинами переменный ток внешними коммутирующими или электронным приборами; большие собственные потери энергии из-за протекающих по диску обратных токов, его бесполезно нагревающих. Эта проблема частично решается в конструкциях двигателей и генераторов с жидким проводящим токосъёмником по всему периметру диска; Сочетание этих свойств обусловило очень узкие сферы применения этого типа генераторов.

Чтобы принцип работы униполярного мотора и генератора был более понятным, воспользуемся рис.3. Данный рисунок составлен из двух рисунков, взятых с одного форума в Интернете.


Рис.3. Объяснение работы униполярного мотора и генератора.


Рис.4. Еще одна схема для ознакомления с принципами работы униполярного двигателя и генератора.

В данных схемах предполагается, что магнит одновременно является как носителем магнитного поля, так и проводником электрического тока. Хотя с таким же успехом функции магнита можно разделить между диском из материала с высокой проводимостью и отдельным магнитом для создания магнитного поля. В этом случае необязательно, чтобы магнитное поле покрывало весь диск, достаточно, чтобы магнитное поле присутствовало пространственно только над тем сектором диска, где будет протекать электрический ток в случае, если мы имеем мотор, или над тем сектором, с которого мы будет этот ток получать в случае, если будем использовать конструкцию в качестве генератора. Это позволяет упрощать конструкцию, обеспечивая над нужными участками вращающего диска магнитное поле нужной напряженности, использую магниты (электромагниты) меньших габаритов при той же напряженности создаваемого магнитного поля.

С другой стороны можно эффективно использовать как всю площадь диска (дисков), так и площадь магнита (магнитов). Почему дисков и магнитов? А потому, что диски и магниты можно насадить на одну общую ось по схеме магнит-диск-магнит-диск-…-магнит-диск-магнит. Такую модификацию униполярного двигателя предложил Тесла, при этом он предложил диски разделить на спиральные сектора, а ток снимать фактически со всей окружности дисков. Многих мучает желание понять, зачем Тесла обратил свое внимание на униполярный двигатель и генератор, ибо это как-то, похоже, не связано с его основным изобретением – трансформатором Тесла. Но это только на первый взгляд.

Рис.5. Трансформатор Николы Тесла с электромагнитным гасителем искры.

На рис.5. показана схема знаменитого трансформатора Николы Тесла. До настоящего времени идут споры о механизмах, которые позволяют создавать ударные эфирные волны и шаровые молнии. В дополнении к тому, что я уже постарался показать в предыдущих статьях о Тесла, хотелось бы отметить, возможно, очень важное. Болотов Б.В., интересный во всех отношения ученый Украины, высказал интересную мысль о возможности использования волн на поверхности водоема, но не от брошенного камня, а от обода, который располагают на поверхности воды, а затем по определенному закону слегка опускается в воду и поднимается из неё, без отрыва обруча от воды. В этом случае при подборе параметров обода, а также частоты принудительных колебаний можно внутри обода создать стоячую волну, которая будет периодически создавать в центре поверхности водного круга всплески, достигающие большой амплитуды. А если повезет, от этой центральной волны периодически будет вверх отрываться определенный объем воды шаровидной или торовидной формы. Наблюдательные люди давно заметили, что нечто похожее возникает на месте падения капли воды на водную поверхность, но этот эффект крайне непродолжительный, так как зона падения капли на поверхность воды не ограничена обручем.

А теперь посмотрите с этих позиций на схему трансформатора Николы Тесла. Первичная обмотка А аналогична колеблещемуся на воде обручу, который формирует во вторичной обмотке С стоячую электромагнитную (эфирную) волну с одной стороны, а с другой стороны не дает этой волне покинуть вторичную обмотку. Форма, частота, напряжение и сила тока в первичной обмотке выбирается такой, чтобы её параметры согласовывались с параметрами (индуктивность, способ намотки, материал, емкость), чтобы затраты энергии на создание стоячей волны были минимальные. Поэтому Тесла и говорил в одном своем интервью, что его трансформатор практически не рассеивает энергию, а использует её на 98-99% для создания энергетических объектов – плазмоидов или, иначе, шаровых молний. Вторичная обмотка выполняла не только роль формирователя стоячей волны, но и своеобразного аккумулятора. И когда энергия, образно говоря, начинала переливаться через край, происходил выброс плазмоида на пике напряжения в центре вторичной обмотки путем отрыва шаровой молнии от эфирного всплеска в центре вторичной обмотки.

Но какая связь между униполярным динамо и трансформатором Тесла? Дело в том, что по виткам первичной обмотки протекал достаточно большой ток, поэтому Тесла делал её из проводника большого диаметрас малым омическим сопротивлением. А там, где в селеноиде протекает большой ток, возникает сильное магнитное поле. И пусть это поле было в виде импульса, но напряженность его было высоким. Этот всплеск магнитного поля в первичной обмотке вызывал мощный импульс тока во вторичной обмотке, который волной распространялся по двум спиралям этой бифилярной обмотки, формирую в итоге стоячую волну напряжения (эфирного давления) над ней.

Как известно вынужденные колебания в колебательной системе, как правило, происходят с частотой вынужденных колебаний или его гармоник. Примем, что импульс тока в первичной обмотке и всплеск магнитного поля внутри её задавался Тесла в форме положительного прямоугольного импульса. Значит и колебания эфира над вторичной обмоткой задавались основной частотой колебаний в первичной обмотке, но вот форма этих стоячих волн определялась уже параметрами вторичной обмотки, а значит, что на одних частотах колебания усиливались, а на других могли заметно ослабевать. Это в итоге вело к тому, что солитонопорождающие колебания эфира над вторичной обмоткой уже не были похожи на прямоугольные импульсы, а определялись в заметной степени самой вторичной обмоткой. Не зря Тесла так тчательно относился к процессу выбора проводника для вторичной катушки и способу намотки. Кроме того изучающие наследие Тесла обратили внимание, что из математических методов он использовал проктически только преобразования Фурье. Тот, кто знает, что это такое понимает, что любой прямоугольный импульс в первичной обмотке ТТ можно промоделировать в виде суммы гармонических колебаний. Так вот, набор этих колебаний во вторичной обмотке будет представлен тем же набором гармоник, но уже с другими коэффициентами, что вызовет изменение формы стоячей волны во вторичной обмотке. И она вместо прямоуголной формы будет похожа на своеобразный пакет гармонических колебаний, амплитуда которых увеличивается от края к центру вторичной обмотки.

Получается, что вторичная обмотка в трансформаторе Тесла работала как оптический лазер, периодически выстреливая шаровые молнии или строго направленные локально ограниченные ударные волны. У лазера тоже ведь есть катушка для энергетической накачки, которая излучает когерентное излучение, энергия которого накапливается в кристалле, например рубине, длину которого подбирают очень строго, чтобы на ней могло уложиться целое число периодов выбранной световой волны, например красного цвета, а затем, когда энергии накапливается в достатке, «болтаясь» в виде стоячей волны вдоль всего кристалла от одного торца к другому, по достижению критического порога энергии стоячей световой волны кристалл выстреливает своеобразный световой солитон (волновой пакет) через один из своих торцов, который специально делают полупрозрачным.

Вот поэтому Тесла назвал свою вторичную бифилярную катушку катушкой для электромагнита. Только не «постоянного», а импульсного, в виде первичной катушки его любимого трансформатора.

Но вернёмся к униполярному динамо или мотору. Как для униполярного мотора, так и для униполярного генератора важно, чтобы вращался электропроводный диск, который должен обладать небольшим внутренним сопротивлением (золото, серебро, медь). Магнит может не вращаться или он может вращаться как вместе с диском, так и сам по себе, но исключительно параллельно вращающемуся диску.

Данное открытие было сделано А. Родиным. Им обнаружено, что реакция на цилиндрическом магните-статоре при вращающемся диске-роторе в униполярном двигателе полностью отсутствует (рис.6). С другой стороны вращение постоянного магнита никак не влияло на вращение диска. Важен лишь факт наличия магнитного поля, его напряженность и направление силовых линий. Проще говоря, наличие струй эфира, «вентилятором» для которых является магнит, у южного полюса он эфир «засасывает», а из северного полюса «выдувает». Так как в области северного полюса магнита создается зона с повышенным эфирным давлением, а возле южного полюса – с пониженным давлением, то «выдуваемый» из северного полюса эфир возвращается к южному полюсу, но уже обтекая магнит снаружи. Так магнитом формируется торовидный эфирный вихрь.

Рис. 6. Схема опытаА.Родина.

В рамках известных представлений явление не имеет корректного объяснения, так как находится в противоречии с законами механики. В действительности к магниту приложены скомпенсированные продольные силы F ║ от вращающегося диска и неподвижного проводника токоподвода, в результате чего суммарный момент на магните равен нулю и он остается в состоянии покоя. Роль статора выполняет неподвижный проводник токоподвода, на который передается реакция от магнита — поперечная сила F ┴ , однако непосредственного действия на вращающийся диск-ротор магнитное поле токоподводящего проводника-статора не оказывает. Таким образом, от токоподводящего проводника-статора вращающийся момент передается на магнит, а от магнита, в свою очередь, вращающийся момент передается на диск-ротор, при этом магнит выполняет роль активного передаточного тела, оставаясь все время неподвижным. Суммарный вращающий момент на магните всегда остается равным нулю.

С позиций эфиродинамики механизм вращения диска в униполярном моторе очень простой. Когда ток проходит в диске, находящемся в постоянном магнитном поле, направление силовых линий которого параллельно оси вращения диска, то данный ток создает вокруг себя круговое магнитное поле, направление вращения которого можно определить по правилу правой руки, которое и взаимодействует с постоянным магнитным полем. В результате с одной стороны от этой токовой «дорожки» магнитное поле усиливается, а с другой ослабляется. Или, если исходить из эффекта Магнуса для эфирных потоков, то с одной стороны токовой «дорожки» эфирное давление падает, а с другой возрастает. Разность эфирный давлений воздействует не на сам ток, а на носитель тока, коим является проводящий диск и проворачивает его вокруг оси на некоторый угол. Но токовая «дорожка» пространственно остается там же, на старом месте, поэтому вместе с ней остаются на месте зоны повышенного и пониженного эфирного давления, которые опять проворачивают токопроводящий диск. И так оборот за оборотом. Вот почему важно, чтобы магнитное поле достаточной напряженности располагалось как раз над (под) токовой «дорожкой». В другом месте магнитное поле бесполезно.

Объяснить работу униполярного генератора также можно с позиций эфиродинамики. При вращении токопроводящего диска электроны, как наиболее подвижные эфирные вихревые образования создают в диске концентрические токи, вокруг которых создается цилиндрическое магнитное поле. Это цилиндрическое магнитное поле взаимодействует с постоянным магнитным полем внешнего магнита, и в зависимости от направления вращения токопроводящего диска электроны будут либо оттесняться к периферии диска, либо собираться в центре диска. Разность концентраций электронов в центре и на периферии диска будут порождать напряжение. Но тут есть одна тонкость, на которую в известных мне материалах никто не обращает внимание.Дело в том, что на электроны будет действовать и центробежная сила, которая равноценна разности давлений эфира и напряжению. Поэтому важно, чтобы диск, направление токовой «дорожки» в пространстве и расположение магнитных полюсов внешнего магнита было таким, чтобы электроны оттеснялись на периферию диска как под действием центробежной силы, так и под действием силы Лоренца (эффекта Магнуса), что позволит обеим силам усиливать эффект друг друга.

В итоге между центром и периферией диска возникает напряжение, а в случае замыкания электродов на нагрузку через неё протекает электрический ток. И как в случае с униполярным мотором достаточно, чтобы магнитное поле было расположено над (под) линией, соединяющие электроды, с которых снимается напряжение. Это позволит использовать мощные, но небольшие по габаритам магниты (электромагниты).

Таким образом, с позиций эфиродинамики легко объясняются особенности работы униполярного двигателя или униполярного генератора. И самое главное, становится понятно, почему вращение магнита при наличии отдельного проводящего диска необязательно. Важно, что все эти эффекты связаны с характером взаимодействия эфирных полей – магнитного поля постоянного магнита и цилиндрических магнитных полей, динамически возникающих или протекающих меду электродами токов во вращающемся диске. В гидродинамике и аэродинамике этот эффект имеет аналога в виде эффекта Магнуса. Например, аналогом униполярного двигателя может служить ветрогенератор с лопастями, выполненных в виде принудительно вращающихся цилиндров. Несколько таких ветрогенераторов установлены в Белоруссии.

Пытаясь упростить решение, предлагаемое Калашниковым Ю.Я., я обратил внимание на давно известный вариант постоянного магнита как подковообразный (рис.7)

Рис.7. Подковообразный магнит.

В таком магните, как он изображен на рисунке, магнитные линии тоже будут слева замыкаться между северным (синий) и южным (красный) магнитными полюсами «по воздуху», но остальные участки магнитных линий (в правой части магнита) будут проходить внутри магнита, и, таким образом, будут защищены от воздействия магнитного поля такого же магнита, когда, например, два или более таких магнитов будут выстроенны в цепочку (рис.8).

Рис.8. Цепочка подковообразных магнитов.

Если подковообразный магнит расположить между полюсами мощного постоянного магнита как это показано на рисунке рис.9. то в результате враимодействия магнитных полей на подковообразный магнит начнет действовать сила, которая будет стремиться переместить подковообразный магнит вправо.

Рис.9. Подковообразный магнит в магнитном поле мощного магнита.

Причины, по которым на подковообразной магнит в магнитном поле мощного постоянного магнита будет действовать сила, объясняются точно так же, как это было сделано в статье Калашникова Ю.Я. В самом деле, магнитные силовые линии от северного полюса подковообразного магнита к южному будут описывать если не окружность, то кривую, похожую на эллипс. Направление этих силовых линий будет совпадать с направлением силовых линий «статорного» мощного магнита. В результате слева от подковообразного магнита будет наблюдаться повышение плотности магнитного поля, тогда как справа от подковообразного магнита плотность магнитного поля будет снижаться. Исходя из эфирных представлений можно считать, что слева от подковоорбразного магнита давление эфира будет выше, чем справа. Все это указывает на то, что на подковообразный магнит будет действать горизонтальная сила F , как это указано на рис.9.

Теперь, думаю, понятно, почему я указал, что данный способ является некоторым усовершенствованием способа, предложенного Калашниковым Ю.Я. Говоря простым языком, я предлагаю замкнуть, например, правые полюса составного магнита по его схеме обычным магнитопроводом, тем самым защитив эти полюса от воздействия соседних составных роторных магнитов.

Остальное уже дело техники. В качестве роторных и статорных магнитов можно будет использовать электромагниты, но для моторов малой мощности в несколько киловатт можно будет использовать магниты. Думаю, что особое внимание придется уделить подковообразному магниту, которому, по идее, можно придать более удобную форму, как в целях упрощения технологии, так и в целях формирования между его полюсами магнитного поля, магнитные линии которого будут максимально приближены к полуокружностям.

Но это еще не все. Если два таких подковообразных магнита соединить противоположными полюсами, то магниты образуют кольцо, в котором магнитное поле обоих магнитов соединится в кольцевое (закольцованное) магнитное поле. Такой магнит перестанет притягивать железные предметы, так как за пределы этого магнита не выйдет ни одна силовая линия. Но это не значит, что такой магнит, а точнее его закольцованное магнитное поле, не будет взаимодействовать с другими магнитными полями. А так как магнитное поле такого магнита будет представлять собой вращающееся в одну сторону эфирное кольцо, то такое поле при взаимодействии с внешним магнитным полем постоянного магнита поведет себя также как и магнитное поле проводника с током, а может даже и лучше. Такой магнит, если его правильно расположить во внешнем магнитном поле будет перемещаться как проводник с током.

Подтверждением этому может служить опыт В.Черникова. На проводник с током в магнитном поле постоянного магнита действует сила Лоренца (рис.10).Однако если проводник закрыть цилиндрическим экраном из магнитомягкого материала, то действие на проводник магнитного поля практически исчезает, но зато сила оказывается приложенной теперь к обесточенному экрану.

Рис.10. Схема опыта В.Черникова.

Явление объяснимо только при учете взаимодействия токов проводника и индуцированных эквивалентных токов экрана с полями векторного потенциала во внутренней полости экрана. Этот опыт прекрасно объясняестя с эфиродинамических принципов. В цилиндре под действием магнитного поля проводника с током возникает цилиндрическое закольцованное магнитное поле, цилиндр с таким магнитным полем будет взаимодействовать с учетом эффекта Магнуса так же как и проводник с током. При выбранных на рисунке параметрах цилиндр будет выталкиваться из магнитного поля N — S . В итоге получаем схему униполярного мотора (рис.11).

Рис.11. Схема униполярного мотора Власова В.Н.

Но раз из двух подковообразных магнитов можно получить «закольцованный магнит» или магнит с закольцованным магнитным полем, то, скорее всего, такие магниты с закольцованным магнитным полем внутри можно сразу готовить из кольцевой заготовки, которые используются, например, для изготовления аксиальных или радиальных магнитов.

Тут главное принцип работы и способ создания кругового, закольцованного магнитного поля. Теперь остается подумать как наиболее рационально реализовать этот принцип на практике. И тут могут быть варианты. В первом же случае, который приходит на ум, вдоль ротора располагаем трубки из таких магнитов, эти трубки из магнитов не будут мешать таким же соседним трубкам, так как их магнитное поле надежно спрятано. Чтобы магниты не разрушались, их можно «насаживать» на цилиндр как на шампур из непроводящего электрический ток материала. Что-то похожее на такую конструкцию (рис.12). Единственно, что надо обеспечить, чтобы длина статора над трубками из кольцевых магнитов на роторе была чуток больше длины трубкок. Иначе часть магнитов будет вращаться без толку.


Рис. 12. Униполярная машина.

В случае использования в качестве таких цилиндров, на которые будут «нанизываться» кольцевые магниты, алюминиевых или медных цилиндров (проводников) будет одновременно создаваться на концах цилиндров ЭДС, которую вроде бы можно будет задаром снимать и направлять в нагрузку. Но анализ порождаемого при этом магнитного поля по правилу правой руки показывает, что магнитное поле порождаемого тока будет закручиваться по часовой стрелке, тогда как магнитное поле в закольцованном магните закручено против часовой стрелки. В итоге у нас не будет ни двигателя, ни генератора. Но ничто не мешает посадить униполярный двигатель и униполярный генератор на одну ось, продумав их конструкции, чтобы иметь источник электрической энергии.

Всем привет! Сегодня попробуем поразмышлять на тему генераторов, основанных на принципе униполярной индукции. Конечно мы будем исследовать работы именно Теслы, причём всегда будем держать в голове потаённый вопрос: «Как Тесла сделал свой само поддерживающийся генератор электроэнергии, — по сути, вечный двигатель?»(меня, например, этот вопрос не оставляет вообще никогда).
Для начала закройте этот документ и откройте и ознакомьтесь с другим, — в котором дан перевод патента US 406968, — т.е. конструкция униполярной машины Тесла.

Патент US 406968

Dragons’ Lord

Рассмотрим ещё один из ранних патентов великого Теслы, — его «динамо электрическую машину» или иначе
«генератор с самовозбуждением», в основе которого лежит принцип униполярной индукции. Именно
это изобретение пророчат на место «сверхединичного генератора», который, якобы, придумал Тесла.

Как ни странно, но эта «электрическая машина» действительно легко дорабатывается
до «вечного двигателя». И гениальный Тесла, не якобы, а действительно придумал, как сделать свой
генератор сверх единичным. Что конкретно нужно изменить в устройстве, — я рассказываю в отдельной
статье «Секреты униполярной индукции» (найдёте её в этом же разделе). Видится, что со времён,
когда Тесле не дали закончить его супер-антену для обеспечения планеты халявным электричеством,
— его стали активно «пасти», и затыкать рот в особо «опасных» случаях. Но тем не менее, Тесла
просто патентовал элементы одного устройства в разных патентах, указывая не ту цель, для которой,
действительно, он и изобретал тот или иной элемент. Плюс, добавим сюда отрывочные сведения, которые
Тесла «толкал» в своих статьях (конечно завуалировано). Осталось пораскинуть мозгами, маленько
подумать и сложить единое целое из разрозненных кусочков. Что мы и сделаем (в указанной статье).
А пока ознакомьтесь с самим патентом, являющимся базой для наших дальнейших рассуждений.
Извлечение
Да будет известно, что я, Nikola Тесла, из Smiljan, Lika, на границе Австро-Венгрии, подданый Императора Австрии, и резидент города Нью-Йорка, штата Нью-Йорк, изобрел некоторые новые и полезные усовершенствования в генераторе с самовозбуждением или для электрических машин «магнето», которые следуют из спецификации и сопровождающих рисунков.
Это изобретение касается класса электрических генераторов, известных как «униполярные», в которых диск или цилиндрический проводник установлены между магнитными полюсами, приспособленными, чтобы произвести приблизительно однородное поле. В вышеназванных устройствах или в машинах с дисковым якорем токи, наведенные во вращающемся проводнике, текут от центра к периферии, или наоборот, согласно направлению вращения или силовых линий в зависимости от знаков магнитных полюсов. Эти токи снижаются, проходя соединения или щетки, приложенные к диску в точках на его периферии и около его центра. В случае машины с цилиндрическим якорем токи, наведенные в цилиндре, снижаются щетками, приложенными к сторонам цилиндра на его концах. В порядке повышения эффективности ЭДС возможной для применения в практических целях, необходимо или вращать проводник с очень высокой скоростью или использовать диск большого диаметра или цилиндр большой длины; но в любом случае становится трудно гарантировать, и сохранять хороший электрический контакт между коллекторными щетками и якорем, вследствие высокой взаимной скорости.
Было предложено соединить два или больше дисков вместе последовательно с целью получения более высокой электродвижущей силы; но с соединениями, применяемыми прежде и использующими другие скорости и размеры диска, необходимого для обеспечения хороших результатов эта трудность — все еще чувствительна, чтобы быть серьезным препятствием к использованию этого вида генератора. Я попытался это преодолеть и для этой цели я сконструировал машину с двумя областями, каждая из которых имеет вращающийся проводник установленный между магнитными полюсами, но с применением того же принципа, описанного выше для обеих форм машины, и поскольку я предпочитаю использовать форму диска, я опишу здесь именно такую машину. Диски изготовлены с фланцами, на манер шкивов, и связаны вместе гибкими проводящими лентами или ремнями.
Я предпочитаю конструировать машину так, чтобы направление магнетизма или направления полюсов в одном силовом поле является противоположным другому, так, чтобы вращение дисков в том же самом направлении развивало ток в одной форме от центра к окружности и в другой от окружности к центру. Поэтому контакты, приложенные к валам, на которые установлены диски имеют вид клемм и электродвижущая сила на них является суммой электродвижущих сил двух дисков.
Я привлек бы внимание к очевидному факту, что, если направление магнетизма в обеих областях, то же самое то будет получен тот же самый результат как выше, при вращении дисков в противоположных направлениях и при пересечении соединительных лент или ремней. Этим способом избегают трудности обеспечения и поддержания хорошего контакта с перифериями дисков, и дешевая и долговечная машина сделана, она является полезной для многих целей — для возбуждения генераторов переменного тока, для двигателя, и для любой другой цели, для которой используются машины генераторы с самовозбуждением.
Специфику конструкции машины, которую я только что, в общем описал, я иллюстрировал в сопровождающих рисунках, в которых — Fig.1 является видом сбоку, частично в сечении, моей улучшенной машины. Fig.2 — вертикальное сечение того же самого перпендикулярно к валам.

Чтобы сделать корпус с двумя силовыми магнитными полями, я отливал основание с интегрированными двумя частями магнита — полюсами B и B’ . К корпусу я присоединял болтами E к отливке D, с двумя подобными и соответствующими частями магнита — полюсами C и C’. Части полюса B и B’ предназначены для производства силового поля определенной полярности, а части полюса C и C’ предназначены для производства силового поля противоположной полярности. Валы управления F и G пронзают полюсы и вращаются в изолированных подшипниках в отливке D, как показано.
H и K — диски или генерирующие проводники. Они изготовлены из меди, латуни, или железа и прикреплены к соответствующим валам. Они снабжаются широкой периферийной, отбортовкой J. Конечно, очевидно что диски могут быть изолированными от их валов, если нужно. Гибкий металлический пояс L проходит через фланцы двух дисков, и, если нужно, может использоваться, чтобы вращать один из дисков. Я предпочитаю, однако, использовать этот пояс просто как проводник, и для этой цели может использовать тонколистовую сталь, медь, или другой соответствующий металл. Каждый вал, снабжается шкивом управления М, через который передается мощность извне. N и N — клеммы. Ради четкости их показывают, как предусмотрено с пружинами P, которые касаются концов валов. Чтобы эта машина само возбуждалась, могут использоваться медные полосы вокруг ее полюсов, или проводники любого типа, показанные на рисунках.
Я не ограничиваю мое изобретение только показанной здесь конструкцией. Например, не обязательно, чтобы строго соблюдались указанные материалы и размеры. Кроме того, очевидно, что проводящая лента или ремень могут быть скомпонованы из нескольких меньших лент и что правило соединения описанное здесь может применяться на более чем два диска.
Я патентую следующее:
1. Электрический генератор, состоящий из комбинации, с двумя вращающимися проводниками смонтированных в униполярных полях, гибкого проводящего ремня или пояса, проходящего вокруг периферий вышеназванных проводников, как здесь сформулировано.
2. Комбинации, с двумя вращающимися проводящими дисками, имеющих отбортовку на периферии установленных в униполярных полях, гибкого проводящего ремня или пояса, проходящей вокруг фланцев обоих дисков, как сформулировано.
3. Комбинация независимых наборов возбуждающих магнитов, приспособленных, чтобы сохранить униполярные области, проводящих дисков, установленных, чтобы вращаться в указанных полях, независимого механизма передачи для каждого диска, и гибкого проводящего ремня или пояса, проходящего вокруг периферий дисков, как сформулировано.

Никола Тесла.

В патенте, действительно, не объяснено, как сделать генератор самоподдерживающимся. Тесла
попытался восполнить этот информационный вакуум через публикацию своей статьи «ПРИМЕЧАНИЯ
ОТНОСИТЕЛЬНО УНИПОЛЯРНОГО ДИНАМО» в газете «Инженер — электрик», Нью-Йорк, 2 сентября 1891.
Точный перевод этой статьи я привожу ниже. Огромное спасибо Sib’у, который любезно подготовил
перевод заметок Теслы. Итак:

* * *
Что характерно для фундаментальных открытий, для больших достижений интеллекта, так это то, — что они сохраняют большую власть над воображением мыслителя. Я имею в виду незабываемый эксперимент Фарадея с вращением диска между двумя полюсами магнита, который принес такой великолепный результат, который долго проверялся в каждодневных опытах; все же есть некоторые топологические элементы в этом зародыше существующих динамо и двигателей, которые даже сегодня обращают на себя внимание, и достойны самого осторожного изучения.
Рассмотрим, например, случай диска из железа или другого металла, вращающегося между двумя противоположными полюсами магнита, и полярными поверхностями, полностью покрывающих обе стороны диска, и примем, что электрический ток снимается и передается контактами равномерно от всех точек края диска. Возьмите сначала случай двигателя. Во всех обычных двигателях вращение ротора зависит от некоторого смещения или изменения общего магнитного притяжения, действующего на ротор, это достигается технологически или некоторым механическим приспособлением на двигателе или воздействием электрических токов надлежащей полярности. Мы можем объяснить вращение такого двигателя так же, как мы можем это сделать для водяного зубчатого колеса.
Но в вышеупомянутом примере диска, окруженного полностью полярными поверхностями, нет никакого смещения магнитного действия, никакого изменения вообще, насколько мы знаем, — и все же вращение происходит. Здесь не работают обычные доводы; мы не можем дать даже поверхностное объяснение, как в обычных двигателях, и принцип действия будет ясен нам только тогда, когда мы поймем саму природу задействованных сил, и постигнем тайну невидимого взаимодействия.
Рассмотренный как динамо машина, диск — довольно интересный объект изучения. В дополнение к его особенности порождения электрических токов одного направления без использования коммутирующих приборов, такая машина отличается от обычных динамо, в которых нет никакого взаимодействия между ротором и полем статора. Ток ротора вызывает намагничивание перпендикулярное направлению электрического тока, но так как электрический ток истекает равномерно из всех точек края, а так же если быть точным, внешняя схема может также разместиться совершенно симметрично к постоянному магниту, никакое взаимодействие просто не может произойти. Это, однако, истинно только для слабых магнитов, поскольку, когда магниты более мощные, оба намагничивания под прямым углом, по-видимому, взаимодействуют друг с другом.
По вышеупомянутой причине, логичен вывод, что для такой машины, для того же самого веса, отдача должна быть намного больше, чем для любой другой машины, в которой ток, протекающий в роторе имеет тенденцию размагничивать поле, создаваемое статором. Экстраординарный вывод Форбеса об униполярном динамо и опыт с устройством подтверждают это представление.
Итак, главный принцип, исходя из которого, такая машина может быть сделана само возбуждающей — поразителен, но это может быть естественным — поскольку налицо отсутствие взаимодействия ротора, и соответственно свободное от возмущений течение электрического тока и отсутствие самоиндукции.
(Dragons’ Lord: Здесь и далее под термином «самовозбуждение» Тесла имеет в
виду сам эффект появления электрического тока в устройстве, т.к. в устройстве его «униполярки»
нет постоянных магнитов, а есть электромагниты. Таким образом «самовозбуждение» не есть (!) аналог
появления СВЕРХЕДИНИЧНОЙ ЭНЕРГИИ, — здесь вообще об этом не упоминается).
Если полюса не закрывают (не охватывают) диск полностью с обеих сторон, то, конечно, если диск должным образом не разделен, механизм будет очень неэффективен. Опять же, в этом случае есть моменты, достойные внимания. Если диск вращается и полевой поток прерван (разорвана цепь, питающая электромагнит), поток через диск ротора продолжит течь и поле магнитов потеряет силу сравнительно медленно. Причина для этого сразу найдётся, когда мы рассмотрим направление токов в диске.
Взгляните на Рис.1, d представляет диск со скользящими контактами B и B’ на оси и периферии. N и S представляют два полюса магнита.


Если полюс N выше, как обозначено на рисунке, диск, предполагаем находящимся в плоскости бумаги, и вращающимся в направлении стрелки D. Ток, установившийся в диске будет течь от центра к периферии, как обозначено стрелкой A. Так как магнитное действие более или менее ограничено зазором между полюсами N и S, другие части диска можно счесть бездействующими. Установившийся ток не будет поэтому полностью проходить через внешний контур I’, но замкнется через диск непосредственно, и вообще, если расположение подобно показанному, безусловно, большая часть произведенного потока не будет проявляться вовне, поскольку контур F фактически короткозамкнут бездействующими частями диска.
Направление результирующих токов в диске может быть принято таким, чтобы быть, как обозначено пунктирами и стрелками m и n; и направление потока поля возбуждения, обозначаемого стрелками a, b, c, d, анализ фигуры показывает, что одно из этих двух ответвлений вихревого тока, то есть A-B’-m-R, будет иметь тенденцию размагничивать поле, в то время как другое ответвление, то есть A-B’-n-B, будет производить противоположный эффект. Поэтому, ответвление A-B’-m-B, то есть то, которое приближается к полю, оттолкнет линии, в то время как ответвление A-B’-n-B, то есть оставляющее поле, соберет силовые линии на себя.
Из-за этого имеется постоянная тенденция уменьшения течения тока в дорожке B’-m-B, в то время как с другой стороны такая оппозиция не будет существовать в дорожке, B’-n-B, и эффект ответвления или дорожки будет более или менее преобладающий над первым. Объединенный эффект обоих ответвлений потоков мог бы быть представлен одним единственным потоком того же самого направления как возбуждение поля. Другими словами, вихревые токи, циркулирующие в диске, будут дополнительно усиливать магнит. Этот результат весьма противоречит тому, что можно было бы предположить сначала, поскольку мы естественно ожидали, что результирующие роторные токи будут противодействовать току наведенному магнитами, поскольку так обычно происходит, когда первичный и вторичный проводник имеют индуктивное взаимодействие.
Но следует помнить, что это следствие специфического взаимного расположения, а именно, наличия двух путей, предоставляемых наведенному и противодействующему току, каждый из них выбирает тот путь, который предлагает наименьшее количество противодействия. От этого мы видим, что вихревой ток втекающий в диск частично возбуждает поле магнита, и по этой причине когда наведенный ток прерывающий токи в диске, продолжит течь, и полевой магнит будет терять свою силу сравнительно медленно и может даже сохранить некоторую силу, пока вращение диска продолжается.
Результат будет, конечно, в значительной степени зависеть от сопротивления и геометрических измерений пути вихревого тока и от скорости вращения; — и именно эти элементы определяют замедление этого тока и его позицию по отношению к полю. Для определенной скорости существует максимум, возбуждающего действия; тогда как при более высоких скоростях, оно постепенно уменьшилось бы, стремясь к нулю и наконец полностью изменило направление, то есть, эффект вихревого тока должен будет ослабить поле.
Реакцию можно лучше продемонстрировать экспериментально, располагая полюсы N и S, а также N’ и S’, на свободно подвижной оси, концентрической с осью диска. Если бы последний вращался как прежде в направлении стрелки D, поле действовало бы в том же самом направлении с моментом, который, до некоторого значения, будет расти со скоростью вращения, потом уменьшаться, и, проходя через нуль, наконец становится отрицательным; то есть магнит начал бы вращаться в противоположном направлении к диску.
В экспериментах с альтернативными электродвигателями, в которых поле изменяется токами разных фаз, наблюдался интересный результат. Для очень низких скоростей вращения поля двигатель показал момент 900 фунтов, или больше, замеренный на шкиве 12 дюймов в диаметре. Когда скорость вращения полюсов была увеличена, момент уменьшался и, наконец убывал до нуля, и становился отрицательным, а затем якорь начинал вращаться в противоположном руководстве направлении к полю.
Возвращаясь к основной идее, примите, что условия такие, что вихревые токи, произведенные вращением диска усиливают поле, и предполагают что последнее, постепенно увеличивается, в то время как диск остается, вращающимся по нарастающей (Dragons’ Lord: однако здесь проскакивает нужная мысль). Ток когда-то начался, и может быть достаточен, чтобы поддержать себя и даже увеличиться в силе, и затем мы имеем случай «аккумулятора тока сэра Вильяма Томсона».
Но из вышеупомянутых соображений, казалось бы, следует, что для успеха эксперимента сопротивление сплошного диска будет существенно, поскольку, если бы имелось радиальное разбиение, вихревые токи не могли бы формироваться, и их вредное воздействие прекратилось бы. Если бы использовался, такой звездообразный радиально составной диск было бы необходимо соединить спицы по краю проводником или любым другим образом, чтобы формировать симметричную систему замкнутых цепей.
Действие вихревых токов может использоваться, чтобы возбудить машину любой конструкции. Например, на Рис.2 и 3, показаны устройства, в которых машина с ротором-диском могла бы быть возбуждена вихревыми токами.


Здесь множество магнитов, N-S, N-S, помещено звездообразно радиально на каждой стороне металлического диска D и в продолжение его периферии набор изолированных катушек, C и C. Магниты формируют две отдельных области, внутреннюю и внешнюю. Имеется твердый диск, вращающийся на оси, и катушки в области удаленной от нее. Примем что магниты, немного возбуждены при запуске; они могли бы усилить действие вихревых токов в твердом диске, чтобы предоставить более сильную область для периферийных катушек. Хотя нет сомнения, что при таких условиях машина могла бы быть возбуждена этим или подобным образом, достаточно экспериментальных свидетельств, чтобы гарантированно утверждать, что такой режим возбуждения будет расточителен.
Но униполярный генератор с самовозбуждением или двигатель конструкции, показанной на Рис.1 могут быть возбуждены эффективно, просто посредством разделения диска или цилиндра, в котором наводятся токи, и удаления катушек возбуждения, которые обычно используются. Такая схема показана на Рис.4.

Диск или цилиндр D, как предполагается, будут вращаться между этими двумя полюсами N и S магнита, которые полностью охватывают диск с обеих сторон, контуры диска и полюсов, представляемых кругами d и d’ соответственно, верхний полюс, не показан для наглядности. Сердечники магнита, как предполагается, имеют отверстия в центре, вал C диска пронзает их. Если немаркированный полюс — ниже, и диск вращается, ток винтовой формы, будет, как прежде, течь от центра к периферии, и может быть снят соответствующими скользящими контактами, B и B ‘, на вале и периферии соответственно. В этом устройстве ток, текущий сквозь диск и внешняя цепь не будут иметь никакого заметного влияния на возбуждающий магнит.
Но позвольте теперь предположить, что диск разделен на сектора, по спирали, как обозначено сплошными или пунктирными линиями на Рис.4. Разность потенциала между точкой на вале и точкой на периферии останется неизменной, в знаке так же как в количестве. Единственная разница будет в том, что сопротивление диска будет увеличено и будет большее падение потенциала от точки на вале до точки на периферии, когда тот же самый ток протекает по внешней цепи. Но так как ток вынужден следовать по линиям разбиения, мы видим, что он будет или содействовать полю возбуждения или сопротивляться ему и это будет зависеть, при прочих равных условиях, от направления линии разбиения. Если разбиение реализовано как обозначено сплошными линиями в Рис.4, то очевидно, что, если ток имеет то же самое направление как прежде, то есть от центра до периферии, его эффект должен будет усилить возбуждающий магнит; тогда как, если разбиение реализовано как обозначено пунктирами, произведенный ток будет иметь тенденцию ослаблять магнит. В первом случае машина будет способна к возбуждению, когда диск вращается в направлении стрелки D; в последнем случае направление вращения должно быть обратным.
Два таких диска могут быть объединены, однако, как обозначено выше, эти два диска, могут, как вращаться в противоположные стороны, так и в одну. Подобное расположение может, конечно же, быть реализовано в машине, в которой, вместо этого диска, вращается цилиндр. В таких униполярных машинах, подобного типа, обычные катушки возбуждения и полюсы могут быть опущены, и машина может быть сделана, так чтобы состоять только из цилиндра или двух дисков, окруженных металлическим корпусом.
(Dragons’ Lord: что конкретно имеет в виду Тесла, — я расскажу ниже по тексту).
Вместо того, чтобы подразделять диск или цилиндр по спирали, как обозначено в Рис.4, более удобно вставить один или более витков между диском и контактным кольцом на периферии, как показано на Рис.5.

Генератор с самовозбуждением Форбеса может, например, быть возбужден вышеописанным образом. В опыте автора вместо снятия тока с двух таких дисков скользящими контактами, как обычно, использовался гибкий приводной проводящий ремень для повышения эффективности. Диски в таком случае, снабжаются большими фланцами, предоставляя большой контакт с поверхностью. Пояс должен быть сделан, так чтобы сцепляться с фланцами в натяг, чтобы компенсировать неплотность прилегания. Несколько машин с контактным поясом были построены автором два годы назад, и работали удовлетворительно; но из-за отсутствия времени работа в этом направлении была временно остановлена. Множество особенностей, указанных выше также было использовано автором в некоторых типах двигателей переменного тока.

* * *
Собственно, — вот и вся статья. Я вообще, долгое время не мог понять, как работает униполярка.
Но однажды я набрёл на сайт Евгения Арсентьева http://evg-ars.narod.ru . Есть у него там
малюсенький раздельчик, «Электродвигатель» называется. Описывается в нём — магнитогидродинамический
двигатель. Вот где я и «просёк фишку». Только там вращается вода, а в нашем случае металлический
диск, — но сила, заставляющая вращаться рабочее тело, — одна и та же 😉 .
В общем, умудрился я в один и тот же день сложить три разных ниточки в одну. И озарило меня, —
догадался, как Тесла сделал свой сверхединичный генератор, о котором так много слухов. Ниточка
первая, — это сайт Арсентьева. Вторая, — перевод «заметок» от Sib’а. И третья, — посетил я тогда
же ещё один сайт http://energy.org.ru , где раскопал интереснейшую статью. Оригинал статьи был
опубликован в журнале «Изобретатель и рационализатор», № 2, 1962 г. Называлась «Туман над
магнитным полем», — имеется в виду недоссказанность некоторых моментов в классической физике.
Чтобы Вам стало всё понятно, приведу её здесь:

* * *
— Я к вам по поводу статьи «Противозаконная статика». Моя фамилия Родин.
— Еще один.
Призыв калужских изобретателей объяснить, что происходит с двигателем, ротор которого вращается под действием электростатического поля (ИР, 6, 81), затронул умы необычайно. Звонят и пишут в редакцию беспрерывно. Предполагаем в будущем дать обзор наиболее интересных объяснений.
Собрался я было направить и Родина к авторам изобретения, как он вдруг: «у меня самого есть кое-что не менее интересное. Поехали?»
Приятная, со вкусом обставленная квартира Александра Леонтьевича — не типично изобретательское жилье. Но он ведет меня в какой-то безоконный закуток, явно бывший стенной шкаф. «Мой кабинет». Тут верстак, выпрямитель, приборы, инструменты. На верстаке некая конструкция. На одной оси сидят два кольцевых постоянных магнита, между ними медный диск. К диску подсоединены щетки, провода которых выведены на микроамперметр.
— Такую же модельку я собрал несколько лет назад, когда по работе понадобился униполярный двигатель — это вращающийся между магнитами диск или цилиндр, ток с которого снимают щетками. Вот так. — Родин закрепил магниты и начал ручкой вращать ось, а вместе с ней и диск. Стрелка амперметра поползла вправо — есть ток.
— Вы меня пригласили для демонстрации опыта Фарадея? Я, знаете, еще в школе…
— А что будет, если мы станем вращать магниты, а диск будет неподвижен? — как бы не замечая моего раздражения, спросил Родин.
— То же и будет. Какая разница? Извините, но у меня, к сожалению, время… — я осекся. Хозяин квартиры с солидной скоростью вращал магниты около неподвижного диска, а стрелка стояла на нуле.
— Вот и я тогда так же рот раскрыл, — рассмеялся Родин. — Стал искать, проверять контакты — все в порядке. Да убедитесь сами, шевельните слегка диск. По сравнению с бешено вращающимися магнитами движение диска было ничтожным, но стрелка тут же шелохнулась.
— Ну а теперь, если вращать магниты и диск вместе, соединив их в единый ротор?
— Да вроде бы не должно быть тока, — уже неуверенно сказал я. — Ведь они относительно неподвижны…
Однако вращающиеся вместе диск и магниты ток дали.
А затем Родин продемонстрировал мне двигатель без статора, подсоединив один из проводов, идущих от выпрямителя, к оси, на которой сидят диск и магниты, а другой поднес прямо к диску — вся система закрутилась.


— Понимаете, почему меня заинтересовал ротор калужан? Но у них другое. А для моих опытов у меня есть вот какое объяснение.
Я предполагаю, что традиционное представление о магнитном поле, как непременной принадлежности магнита неверно. В этом случае действительно не играло бы роли, что относительно чего мы перемещаем. Как ни странно, никто не двигал «бесконечный» магнит вдоль проводника, по крайней мере, в литературе я этого не встречал. Куда проще двигать проводник по скользящим контактам, чем магниты, сохраняя при этом их плоскопараллельное перемещение. Я же не только двигал магниты параллельно столу, на котором лежал проводник, но и вращал их в разные стороны и в направлении обратном перемещению диска — результат тот же самый: величина и направление тока в цепи зависят только от скорости и направления вращения диска. Значит, поле неподвижно? Я делаю вывод: оно, не пугайтесь, магниту не принадлежит, а как бы разлито по вселенной. Магнит лишь возбуждает его, как корабль возбуждает волны, не увлекая их за собой. И как у корабельного винта они наиболее велики, так и наибольшее возбуждение возникает вблизи магнита. Теперь понятно, почему, вращаясь вместе с магнитами, проводник пересекает неподвижное магнитное поле.
Что же касается движения ротора без статора, то единственное здесь объяснение — работа сил Лоренца, действующих на заряженные частицы, движущиеся в магнитном поле. Электроны под их влиянием приобретают тангенциальное направление движения и увлекают за собой диск вместе с магнитами. Кстати, реактивного момента на магнитах не возникает: я устанавливал магнит между дисками, подводил к нему ток — не шевельнулся.
Пока другого объяснения этому эффекту я не нахожу, хотя искал очень долго, обращаясь за помощью в весьма высокие научные инстанции. Высказывались, например, предположения, что при одновременном вращении магнитов и проводника ток наводится в щетках и их проводах, идущих к амперметру. Это, разумеется, не так, в противном случае он наводился бы и при неподвижном диске. Или изменялся бы при перемещении самих проводников, Но я на всякий случай собрал схему без щеток и проводов — эффект тот же.
Полагали, что возможно влияние магнитного поля Земли. Малоправдоподобно, но попробуем. Перемещал систему так и эдак в пространстве, вращал один диск без магнитов — никакого тока, естественно. Так что если найдутся более правдоподобные объяснения — только спасибо скажу.
Итак, еще одна задача читателям: попробуйте найти другое объяснение результатов опытов Родина, кстати, легко воспроизводимых…
И второе: как их практически использовать? Подобные без роторные и вообще униполярные двигатели и генераторы пока маломощны и имеют невысокий КПД. Но уже сегодня просматриваются области их применения, например, в приборостроении. Особенно привлекает то, что двигатель не имеет статора и реактивного момента. А кроме того, если эти двигатели и генераторы действительно изменят наше представление о магнитном поле, практическая ценность их может оказаться огромной.

* * *
Ну как? — Самое реальное знание из последнего текста, это то, что мы можем магниты
непосредственно на диск прилепить. Таким образом получим ЦЕЛЬНОЕ устройство, без
взаимодействующих частей. Так я подумал сразу же, мечтая, как я «напрягу» спонсоров
на тонкие (а значит и лёгкие), но очень мощные кольцевые магниты из редкоземельных металлов.
Мощные магниты нам нужны, т.к. общий КПД униполярного генератора довольно мал. Естественно, что
радиус и магнитов и диска нужно сделать побольше, чтобы увеличить полезную площадь, а значит и
уровень получаемого напряжения.
Но это всё детский лепет. Моя мысль, конечно, поползла дальше. Оказалось важным само знание о том,
что нам наплевать «вращается» магнитное поле или нет и, соответственно, вращаются катушки
электромагнитов (а у Теслы, обратите внимание, — именно электромагниты) или стоят на месте.
Я обращаю Ваше внимание на описание технологии, показанной на Рис.5 самим Теслой. Он предложил
вообще отказаться от внешних возбуждающих магнитов (на что я указывал по тексту «заметок») и
получать магнитное поле в диске, посредством прохождения генерируемого тока по внешнему
контуру. — Он называет этот контур «одним или более витком», но я Вам скажу больше, — этот контур,
в усовершенствованном варианте, сам Тесла запатентовал отдельно, спустя четыре года
исследований, — в ДРУГОМ патенте! Это его
бифилярная катушка «ДЛЯ ЭЛЕКТРОМАГНИТОВ» !!! Это и было моё озарение. Теперь становится понятным,
почему же Тесла запатентовал этот «странный» патент именно в тот период своей творческой
деятельности (как и замечал в своей знаменитой статье Oliver Nichelson). И становится понятно
само предназначение, сформулированное в названии патента бифилярки.
Просто так догадаться, что можно обойтись без внешних магнитов весьма сложно, т.к. эта мысль
описана самим Теслой очень туманно. Тут же становится понятным, как применить супер свойства
бифилярки. Ведь почему Тесла говорит о «одном или более» витке, а не о полноценной
катушке? Потому, что у обычной плоской катушки велико сопротивление току, что заметно снижено
в конструкции бифилярки, посредством увеличения разности потенциалов в соседних витках (о чём тоже,
практически, не возможно догадаться, не прочитав сам патент в русском варианте). Здесь стоит
заметить, что катушка работает НЕ В РЕЗОНАНСЕ, т.к. ток не переменный, а постоянный. Но тем не
менее, её свойства на порядок эффективнее, чем у обычной плоской катушки, намотанной в один провод.
А значит и магнитное поле, создаваемое такой бифилярной катушкой будет гораздо сильнее!
Но, постойте, — скажут читатели. О какой «целостности» устройства может идти речь, если известно,
что диск нужно вращать, а значит нужно иметь соединение с мотором, а значит и от подшипников для
оси устройства не уйти, не говоря уже о «передаточных» механизмах внутри самого электродвигателя?
— Самая ценность униполярной индукции в том, что если подать напряжение на такой диск, то диск
начинает вращаться. И как мы видим из последней статьи, катушка, создающая магнитное поле для этого
диска, тоже может вращаться с самим диском и быть на нём закрепленной, т.е. составлять с ним одно
целое.
Маленько прервусь и замечу следующее. В своём патенте к униполярному генератору, принимая
во внимание трение о боковую поверхность диска внешнего съёмного контакта (а значит и огромный
момент торможения, — и чем больше радиус, тем он больше), гениальный Тесла предлагает
использовать устройство, состоящее из ДВУХ дисков. Через гибкий проводящий ремень ток
передаётся от внешней поверхности одного к внешней поверхности другого, а снимающие напряжение
контакты он предлагает упирать в центра осей каждого диска, чем обеспечивает минимальное
трение, какое только возможно. Единственное неудобство, как мы видим, заключено в самом
гибком ремне. Рискну заглянуть дальше, чем позволил себе сам Тесла (он просто ещё не знал
в то время, что магниты можно вращать вместе с диском). — Очевидным
усовершенствованием является такой путь: насадить оба диска НА ОДНУ ОСЬ! Понятно, что обе
полуоси (для двух дисков) изолированы друг от друга не проводящим соединителем. Получаем
генератор, где не нужен гибкий ремень, т.к. электричество от одного диска на другой (внешние
контуры) передаём через обычный провод. Ясно, что оба диска, хоть и вращаются вместе с
осью, но друг относительно друга неподвижны (провод тоже). Дальше по описанию патента.
Ладно, вернёмся к размышлению о нашем «вечном движке». Я уже сказал, что униполярный эффект,
возникающий в диске можно использовать и наоборот, т.е. в качестве мотора. Ни что не мешает
нам посадить и диск, генерирующий ток, и диск, служащий мотором, — на единую ось. Оба диска
относительно друг друга — неподвижны. Итак избавились ещё от одного соединения (между
двигателем и генератором). Остаётся проблема токосъёмных контактов, идущих как от генератора,
так и к электродвигателю. Выход из проблемной ситуации лежит на поверхности. — Не нужны нам
контакты вообще! Передаём полученное напряжение с генератора на двигатель НАПРЯМУЮ!!! — Через
пару проводов. Нет, даже через один провод, т.к. вторым проводником служит общая, в
данном случае, для двух дисков ось 😉 .
Оставшийся единственный контакт самого устройства (ЦЕЛЬНОГО) с внешним миром, — это подшипники на
концах оси. Всё просто. — делаем «магнитный завес» всего устройства (как это сделать я потом,
как ни будь, расскажу), в результате чего ВЕСЬ наш генератор получается
висящим в воздухе!!! И никакие провода к нему не подходят и не отходят! Это уже круто…
Главная изюминка такого спаривания в том, что по свойствам самого процесса униполярной индукции,
— нет противодействия действию, т.е. нет самоиндукции (полностью отсутствует). Более того,
как нас научил Тесла, — мы не то, чтобы ослабляем действие противодействием, а даже наоборот,
— прибавляем наше противодействие к действию, чем его всё время наращиваем! С обычными
двигателем и генератором такое бы не получилось. Итак, имеем устройство, которое будет бесконечно
наращивать свою скорость (трение равно нулю, — наш магнитный завес), делая самого себя всё сильнее
и сильнее!!! Вот ведь сатанизм какой 😉 .
Очень внимательный читатель заметит, что осталась не решённой одна маленькая деталька. Как
сделать устройство полезным. То есть, как снимать напряжение в нагрузку. — Очень просто, —
нагрузка должна быть тоже помещена на само устройство генератора (например, лампочка), и
составлять с ним единое целое 😉 .
С нагрузкой, кстати, как указал Oliver Nichelson в своей статье (редакция от 91-го года мне
нравится даже больше, чем от 93-го), тоже имеем великий прикол. Добавление в цепь генератора
внешней нагрузки не только не ослабляет его, а даже усиливает и заставляет, работая интенсивнее,
вырабатывать больше тока!!! Это вообще отпад.
Хе-хе, если действительно сделать такую штуковину, то её просто разорвёт от мегасуперскорости,
которую она достигнет, поэтому предлагаю не делать магнитный завес, а использовать обычные
подшипники. Более того, давайте снимать напряжение с обоих торцов (центра осей), как я и
предложил в своём усовершенствовании униполярного генератора Теслы, т.е. теперь мы можем
использовать получаемое напряжение в своих целях (произвольная внешняя нагрузка). Таким
образом скорость вращения нашего генератора не будет стремиться к бесконечности, а сила тока
к тому, чтобы спалить провод катушек 😉 . При достижении определённых оборотов генератор, наконец,
успокоится, и не будет набирать более быстрые обороты (из за трения качения в подшипниках и
контактах). Ну вот, — вроде, уговорили генератор не обгонять наш дремучий век слишком на много.
Общую мощность нашего генератора мы можем увеличить посредством установки на общую ось
дополнительных дисков с катушками. Ведь скользящих контактов не станет больше (соединяем
проводами непосредственно). Что ещё хорошо, так это очень низкая себестоимость такого
генератора. Всё, что нам нужно, так это несколько металлических (можно медных) дисков и
немного толстого провода (диаметр провода должен равняться толщине диска).
Позже, как предполагают, Тесла «забил» на механический сверх единичный генератор (так поступают
все изобретатели, когда добиваются полной реализации идеи) и, по видимому, придумал полностью
электростатический генератор, в котором ничего не крутится вообще. Если такое устройство
существовало, то со временем, я обязательно приду к подобной идее и изобрету повторно,
после Теслы, эту штуковину 😉 . До встречи.

* * *
Спустя 5 лет могу сделать уточнения по данным этой статьи. Не буду изобретать велосипед, а просто зацитирую правильные данные:
«Униполярный генератор (кольцевой однородный по окружности магнит и проводящий диск, ЭДС снимается с оси и края диска) имеет особенности:

— магнит вращается, диск стоит — ЭДС=0,

— диск вращается, магнит стоит — ЭДС=Е1,

— диск и магнит вместе вращаются — ЭДС=Е1,

— диск вращается, магнит вращается в любом направлении с любой скоростью — ЭДС=Е1.
Униполярный мотор той же конструкции (напряжение подается на ось и край диска):

— диск закреплен, магнит имеет возможность вращаться — при подаче напряжения на диск магнит стоит,

— магнит закреплен, диск может вращаться — при подаче напряжения на диск он (диск) вращается,

— диск закреплен на магните — при подаче напряжения на диск магнит с закрепленном на нем диске вращается (в своем поле!).
Два однородных магнита имеют возможность независимо вращаться вокруг одной оси. Начинаем вращать один магнит, другой стоит (магнитный подшипник). На любой магнит, помещенный рядом с вращающимся однородным магнитом ОКРУЖНЫЕ СИЛЫ НЕ ДЕЙСТВУЮТ!
Таким образом, перемещение (вращение) носителя ОДНОРОДНОГО магнитного поля не проявляется никак НИ В КАКОЙ СИСТЕМЕ КООРДИНАТ и не может быть обнаружено никакими приборами! Носитель движется — поле стоит!
Магнитное поле НЕ ПРИНАДЛЕЖИТ НОСИТЕЛЮ, не является «особой формой материи», а является искажением некой среды (эфира?). Получается, что для наведения ЭДС проводник должен двигаться относительно этой среды, а не относительно носителя поля. Эти эффекты должны проявляться в окрытом космосе, где среда не за экранирована. Такой эффект и был обнаружен в эксперименте на шаттле в программе «Electrodynamic tether» когда наведенные в 20-и километровом кабеле силы и ЭДС разорвали в клочья кабель и шаттл получил сильнейший разряд на корпус.
А большому сожалению физические основы электрического и магнитного поля неизвестны. Моделирование магнитного поля вихревым потоком идеальной жидкости (общепринятое в современной физике) — возмутительное и безграмотное (простительное, впрочем для 19-го века)! Соответственно, «житейские воззрения» по поводу электромагнетизма больших теоретиков и профессоров — Тамма и Ландау — описанные в их учебниках не стоят и сушеной мухи.»
Отмечу лишь самое важное: токоснимающий провод ОБЯЗАН быть подвижным относительно токогенерирующего диска, иначе работать не будет.
В виду этого необходимо дать коррекцию на описанные выше теоретические усовершенствования, то есть в обязательном порядке ток пропускать
через неподвижные проводники, закреплённые на корпусе устройства.

Мои модели стирлингов

 

В этой рубрике я буду рассказывать и показывать всё о Стирлингах, которые мне удалось собрать своими руками. Надо отметить, что ранее к этому творчеству я относился как к хобби, уделяя лишь малую часть свободного от работы и других важных дел времени, т.е. примерно несколько часов в неделю. Что крайне мало, потому что собрать приличную модель с первого раза, не имея подобного опыта очень тяжело.

Например, я свой первый Стирлинг в таком темпе ваял почти год, начал в начале 2007года , а закончил зимой 2008, и только к лету, того же года, полностью довел его до идеала. И это не шутка, просто это оказался настолько непредсказуемый, творческий процесс, что заранее, даже с полным знанием теории не знаешь заработает оно или нет. Я переделывал и менял конструкцию, наверное раз двадцать, прежде чем пришел к нормальному рабочему варианту. Так что то, что Вы увидите ниже всего лишь вершина айсберга, так сказать — венец.

Фоток поэтапной сборки тоже нет, так как тогда я еще не думал что буду делать сайт по этой теме, но дальше они будут начиная с четвертой модели. И еще, не судите строго — это же мой первый Стирлинг.

Ну вот собственно и он.

Собирался практически из подручных материалов, потратиться пришлось только на алюминиевые пластины для корпуса и красивые болтики.

Конкретно этот движок работает от одной свечки — таблетки, ниже будет ссылка на видео, все будет понятно.

Признаюсь сборка несколько грубовата, но для первой модели сойдет.

После ряда мелких доработок этот старичок начал работать на порядок шустрее, смотрим следующее видео.

Идём дальше. Научить работатьСтирлинг от свечки лишь первый этап и самый простой, как оказалось. Эта одна свечка, способна создать разницу температур, между нагреваемой и охлаждаемой сторонами двигателя, более сотни градусов, а это может заставить работать даже очень плохо собранный Стирлинг. Другое дело научить этот движок высасывать энергию из практически дармовых источников, работать на перепаде температур буквально в несколько градусов.

И вот, мой второй Стирлинг, работал уже от солнца. Как видно на фото, схема двигателя всё таже, с той лишь разницей, что теперь у нас нагреваемая сторона расположена сверху, лицом к солнцу так сказать, и выполнена из оргстекла. Благодаря этому световая энергия передаётся выкрашенной в черный цвет, верхней стороне поршня вытеснителя, это главная изюминка этого проекта. Ведь можно было просто сделать верхнюю часть из того же альминия, выкрасить его в черный цвет и двигатель тоже бы работал (в более мене теплую погоду), но в схеме с оргстеклом используется тепличный эффект т.е. такой движок будет работать даже зимой (естественно при наличие солнца).

ниже будет видео, все будет понятно.

Опять используем всё те же подручные материалы, в чём я вижу особую прелесть подобных моделек. Главное проявить фонтазию и все у вас получится.

 

 

Свой третий Стирлинг я решил собрать по хитрой магнитной схеме, и заставить его работать от избыточного тепла, окружающих нас в повседневной жизни предметов, ну например чашки с горячим чаем или кофе.

А вот и собственно схемка и видео два в одном, изучайте.

Все казалось бы просто, два куска алюминия, гильза, поршень , пара магнитов, диск, болтики, резиночка но попробуй всё это сложить так, что бы оно заработало, да…

Низкотемпературный стирлинг, с магнитной связью между рабочим поршнем и вытеснителем, работает от тепла горячей воды, настольный вариант для кухни. Ставим на чашку горячего кофе или чая и получаем удовольствие от трансформации тепловой энергии в механическую.

 

……

……

…….

Вот они три первых красавца

Смотрим дальше

 

Магнитный двигатель V-Gate Полезные заметки по конструкции.

Уже как насколько лет и в русскоязычном интернете обсуждается незатейливый на первый взгляд, самовращающийся магнитный двигатель под названием V-Gate. Как всегда мнения разделились, многие не пытаются его собирать, так как считают это устройство “фейком”, многие же верят в его работоспособность, но считают, что для сборки нужно больше информации. Мы надеемся, что данная статья будет полезна хотя бы второй категории людей.

Появлению этой статьи мы «обязаны» сообщению на нашем форуме, в котором указывалась ссылка на новый, «мега-крутой» и «мега-полезный» зарубежный СЕ ресурс. Мы начали его просматривать и первым делом заметили очень любимый нами V-gate магнитный двигатель. С новыми деталями, фотографиями и даже видео! Тут же начали переводить эту статью, чтобы не терять времени. Когда поняли, что нас мягко говоря «развели» и «кинули» как всегда на самом интересном месте, не показав результатов эксперимента, было уже поздно, так как большая часть статьи была уже переведена! Так что публикуем, что есть, возможно кто-то найдет для себя тут интересные нюансы и детали.

В данной статье кратко будет описана репликация самовращающегося магнитного двигателя V-Gate. Данный двигатель был разработан Робертом Кэллоуэй ( Robert Calloways). веб-сайте

Мы решили сделать большую по сравнению с оригиналом версию данного магнитного двигателя. Так как масса является очень важным моментом, мы полагаем, что на большой конструкции, соблюдая процентные соотношения будет намного легче контролировать мелкие детали. Один маленький винтик будет влиять на поведение конструкции куда больше, чем тот же винтик в большой конструкции. Для начала мы сделали контрольный список частей мотора, которые нам потребуются для его сборки.

 

 

Воспользовавшись поиском в интернет мы выяснили, что распил ферритовых стержней является очень сложной, почти невыполнимой задачей. Но мы нашли очень простой способ, с помощью которого можно качественно распиливать феррит. Для этого необходимо ферритовый стержень зажать в патрон токарного станка, а в качестве инструмента зажать в заранее приготовленное приспособление ручной фрезер. При одновременном вращении стержня с оборотами около 1200 оборотов в минуту и ручного фрезера с оборотами 8000 оборотов в минуту, мы получили очень качественный разрез.

Крепежные патроны для отрезков феррита, были напечатаны мною на моем 3D-принтере из пластика. Они очень плотно облегают ферритовые стрежни и крепятся винтами к ободу диска.

 

 

Как отмечает Роберт Кэллоуэй:. Сейчас проводится тестирование установки для того, чтобы найти лучший вариант и подобрать расстояние между магнитами.

 

 

 

После сего, автор вышеприведенных экспериментов удалился по-англиски… Вот уже как год с небольшим от него ничего нет! Или может быть просто мы не нашли?…

Пользуясь случаем, хотим лишь добавить о том, как это все начиналось. Первое видео с рабочей моделью магнитного двигателя V-Gate, появилось на ютюбе и оверюнити в 2010-м году и вызвало очень большой ажиотаж! Почти через полгода на том же оверюнити, якобы от автора этого видео, появился пост о том, что он пошутил и сожалеет об этом… Написал ли это сам автор и если да, то, что его заставило это сделать? Ответы на эти и многие другие вопросы касательно данного двигателя нам пока не известны.

А вот не дешевый, но качественный сервис, где Вы сможете перевести аудио в текст, причем перевод аудио в текст делается на только на русском языке.

 

IT техническая сторона яхтинга / Хабр

В статье про Испанию я упомянул про электронно-навигационное оснащение яхты для морского перехода. Один из читателей сказал: «очень интересно как это всё делается по серьёзному, для хождения по морю».

Вторая часть данной статьи: Использование OpenCPN для автоматизации производства
Третья часть: Все «тайны» настройки софта для модулей и периферии OpenCPN

Попробую рассказать какое электрооборудование было на моей яхте и как оно подключалось. Основная идея яхты, на мой взгляд, это максимум современных технологий которые необходимы для выживания в стихии природы. Такой стихией является шторм, сильный ветер, дождь, холод, влажность либо все это вместе взятое. Поэтому яхта снаружи должна быть достаточно грубая и крепкая, чтоб устоять перед стихией, а внутри комфортная для нахождения человека и управления и принятия правильных решений во время испытаний природой.

На этом фото виден топ мачты. До того как мачту устанавливают на яхту, которая, как правило уже спущена на воду, на земле на мачту и внутрь мачты устанавливают все необходимое.

Внутри мачты обычно проходят кабели питания ходовых огней на топе мачты и якорного сигнала, в случае установки VHF антены — антенный кабель, кабель от метеостанции. На моей мачте были только сигнальный и ходовой огонь, а антенны VHF и GPS были расположены на релингах на корме яхты. Так же на мачты устанавливают активные радарные отражатели и сами радарные антенны с соответствующими кабелями внутри мачты.


Электрическая система питания

Над спрей-худом (минитентом над входом в рубку) или на кормовой надстройке чаще всего располагают солнечные панели.

В рундуках на корме под сидениями в кокпите находятся аккумуляторы. В последнее время среди яхтсменов популярны авиационные Литий-железо-фосфатные аккумуляторы (LiFePO4, LFP). Они очень емкие и лёгкие. Соответственно есть контроллер солнечных панелей и контроллер зарядки батарей. Так же есть инвертор с 12 вольт бортовой сети питания до 19 вольт для подключения лаптопа и разъёмы прикуривателей как в автомобиле.

Имеется встроенная система берегового питания на 220 вольт. Состоит из термо-предохранителей, обычных розеток, и удлинителей с универсальными вилками двух типов, которые наиболее популярны на колонках подключения яхты к сети питания в марине (на стоянке). Имеется обычное электрическое зарядное устройство аккумуляторов от сети берегового питания.

На стационарном дизельном двигателе, как правило, установлен электрогенератор. На старых моделях двигателя он совмещен конструктивно с электро-стартером двигателя.

Иногда на яхтах устанавливают ветрогенераторы на случай облачности (солнечные панели в такую погоду неэффективны) или отсутствия, либо поломки дизель-генератора.


Инструменты помогающие навигации

Наиболее важный инструмент для шкипера это эхолот. Это прибор в режиме реального времени показывает на жидкокристаллическом экране реальное расстояние от фальшкиля яхты до дна.

Доплеровский гидроакустический лаг или эхолот переднего обзора может выводить на экран не только абсолютную скорость лодки относительно грунта, но и особенности рельефа перед носом яхты. Этот прибор есть далеко не на всех яхтах. В частности он может показывать рыб, дельфинов и китов непосредственно под яхтой на экране монитора.

На старых яхтах обычно стоит электромеханический лаг. Фактически просто крыльчатка, обороты которой считают с помощью электромагнитного сенсора.

Имеется магнитный компас с электрической подсветкой.

Погодная станция, включающая в себя, помимо прочего оборудования, анемометр для измерения скорости ветра. Станция позволяет записывать и направления ветра в данный момент, давление воздуха.

Есть еще инструмент аварийной навигации по звёздам — секстан. Но им сейчас умеют пользоваться малое количество яхстменов. Так как этот прибор с успехом заменил GPS приёмник. И вместо аварийного секстана берут запасной ручной GPS на батарейках. Для лаптопа потребуется USB GPS. GPS на яхте много не бывает 🙂

Радар — прибор показывающий препятствия в радиусе несколько тысяч метров, но во время непогоды с дождем его видимость оставляет желать лучшего. Так же он не видит встречных судов за скалой или мысом.

Всё чаще на море люди используют AIS. Автоматическая идентификационная система, это цифровой прибор, который по радиоканалу осуществляет обмен координатами и курсами судов оказавшихся в радиусе 3-4 миль, в зависимости от мощности передатчиков. Этот прибор лишён недостатков радара, но только в случае если все встречные лодки оборудованы аналогичным прибором. Что бывает далеко не всегда. Так же капитан может обесточить этот прибор.

Espot и EPIRB (Emergency Position Indicating Radio Beacon) как и спутниковый телефон позволяют передавать через спутники вдали от берега информацию о положении яхты в центр спасения либо просто в интернет сервис местоположения яхты.

И наконец очень эффективное средство получения координат и прогноза погоды в океане — VHF радиостанция. Надо дождаться появления в области видимости проходящего судна и запросить через рацию необходимую информацию. Обычно это прогноз погоды на ближайшее время и текущая координата.


Об экстремальных ситуациях

В случае отсутствия и поломки судового хронометра можно запросить по рации ещё и точное время.

Но при наличии заряженного современного мобильного телефона Samsung Galaxy A10.5 за 150 долларов в водонепроницаемом чехле с установленной программой для навигации, такой потребности уже почти ни у кого не осталось.

Пару слов о судовом хронометре. Обычно это часы механические или кварцевые с точным ходом помещенные в водонепроницаемый контейнер из стекла и меди. Все это рассчитано на случай временного нахождения прибора в воде, если, не дай бог, яхта перевернется полностью вокруг своей продольной оси (оверкиль).

Во время оверкиля с нагруженной парусами мачтой современные яхты имеют риск потерять мачту. Так как в момент поворота мачта с парусами ложится на воду. Мачтой вниз опрокинуть килевую яхту может только большая волна, например в сценарии «ветром положило, потом волной перевернуло». И вот когда мачта двигается с парусами в толще воды, получается что вода «дует» в паруса, и силы при этом, конечно, очень большие, даже если это маленький штормовой парус. Далее паруса оказывают сопротивление прохождению мачты под воду и в этот неудачный момент вся сумма сил от веса яхты и волн может быть приложена в одной точке где то по середине мачты. В результате пустотелая облегченная мачта может переломиться.

Когда яхта встанет на ровный киль. Сломанная мачта является угрозой (в случае биения мачты во время шторма о корпус) для хрупкого в тонких местах композитного корпуса современной яхты.

Поэтому в такой ситуации лучше перерубить все ванты, которые держат остаток мачты большим болторезом и если получиться, принайтовать (привязать концами) обломок мачты вдоль борта на палубе яхты.

Но если погодные условия не позволяют, то лучше лишиться мачты, чем подвергать риску травмы экипаж. Например во время шторма гонщик яхтсмен из Индии в одной известной регате одиночников получил травму спины, пытаясь проделать манипуляции с мачтой в одиночку. Лучше полагаться в такой ситуации на лебедки и тали а не на крепость вашего мышечного корсета вокруг позвоночника (это большой риск остаться инвалидом на всю жизнь), или принять решение о затоплении обломка мачты.

Гик или бум (перпендикулярная часть рангоута на мачте) обычно не повреждается и его можно использовать как временную мачту в последствии.

Наиболее легкая ситуация с потерей остойчивости яхты это брочинг. Когда казалось бы яхта под воздействием волн и ветра совсем положила мачту на воду, но все таки за счет балласта и баланса сил встаёт на ровный киль.


Навигационные устройства и картплоттеры

Мне нравится все в картплотерах за 2000 евро, кроме цены. Если не брать во внимание дорогие устройства, то есть примерно пара вариантов как оснастить лодку аналогично, но дешевле.

Вариант первый — купить подержаный водонепроницаемый и защищенный Panasonic Toughpad FZ-M1 или подобный планшет (Hugerock T-70S). Видеообзор. И поставить на этот планшет яхтенную навигационную OSS программу OpenCPN и немного старые электронные морские карты. Либо, что предпочтительнее, купить легально новые карты того региона, где вы совершаете переход. Впрочем карты всего мира но 10 ти летнего возраста так же полезно иметь под рукой. Основная информация там по прежнему осталась актуальной для навигации.

Есть еще более недорогой вариант. Новый Райсбери Пай 4 с OpenCPN в водо- и пыле непроницаемом корпусе (или этом подороже но радиатор, аккумулятор и промокашку для адсорбции конденсата всё равно придеться добавить.) — 100 евро (или Олимекс, он имеет гнездо для подключения аккумулятора или Orange — очень дешёвый).

Вот пример такого проекта: https://mathiasfuchs.de/b7.html

Ссылка на компоненты этого проекта.

Такой же защищенный (IP65 / NEMA4) монитор 200 евро (Можно собрать монитор с тачем, который работает при наличии воды на поверхности экрана за 145 евро + держали и герметик водонепроницаемый). Кабели и разъемы защищенные от воды из Китая — 30 евро.

Вот более подробная статья про это устройство Использование OpenCPN для автоматизации производства.

Плагин в OpenCPN для погоды частично допилили, но стоит упомянуть программу ZyGrib (или её форк с дальнейшим развитием XyGrib). В XyGrib добавили ещё слоёв, включая волны разного типа, добавили несколько прогностических моделей. OpenCPN это показывать не умеет. Да и со скачиванием погоды у него похуже будет. Поэтому, качать и исследовать удобней в Z(X)yGrib, а потом кидать в OpenCPN, в котором, кстати, есть плагин для просчёта оптимальной траектории движения согласно прогнозу из GRIB и полярам яхты.

Прогноз актуальной погоды на 3 дня вперед OpenCPN, при наличии установленного плагина и подключения к Интеренету через WiFi может скачать с сервера погоды. Важно это делать до выхода и только исходя из прогноза погоды и других факторов (готовность судна и экипажа) принимать решения о выходе яхты в море. От этого решения с учётом всех факторов зависит безопасность яхты в океане.

Так же можно построить недорогой AIS приемник, на основе модуля приёма цифрового телевидения за 20 евро (называемые «донглами», «свистками» habr.com/post/149702 habr.com/post/373465 ), но чувствительность такого устройства и надёжность будет сомнительными. Лучше приобрести специализированное устройство.


Подключение инструментов к нашему навигационному устройству

Это типичная схема подключения эхолота Гармин (или любого «медленного» инструмента) к системе навигации. Понятно что вместо DB-9 используют USB cp2102 адаптер. Обращаю ваше внимание что все кабели и разъёмы должны быть водонепроницаемые.


Простой электрический автопилот

Это устройство можно подключить напрямую к OpenCPN, как любой другой яхтенный инструмент. И оно будет держать курс строго по вашей прокладке. Но необходимо будет следить за изменением ветра.

В случае смены ветра, вас предупредит погодная станция как будильник и надо будет перенастроить паруса на другой галс.

От одной современной аккумуляторной батареи заряженной в течении солнечного дня от 2 солнечных панелей это устройство будет работать примерно 8 часов. Что даст вам шанс выспаться. В шторм устройство такого класса к сожалению не достаточно сильное для контроля яхты. Поэтому вам потребуется напарник, либо надо ставить более мощное гидравлическое устройство. Как вариант поставить механическое ветро-подруливающее устройство.


Микроволновка

Это очень полезное на яхте устройство. Дело в том, что во время грозы можно спрятать в микроволновку всю чувствительную электронику (планшет, мобильные телефоны, лаптоп). Что гарантирует сохранность ваших навигационных устройств на случай прямого попадания молнии в мачту и разряда электрического тока через корпус яхты.

Кроме того в марине, на стоянке, подключив СВЧ печь к сети 220 вольт, можно готовить еду и быстро размораживать продукты.

Для изоляции камеры СВЧ печи используется дроссельное соединение, которое работает только на частоте 2.45 ГГц. Даже ближайшие снизу и сверху диапазоны сотовой связи 2.1 ГГц (3G) и 2.6 ГГц (LTE) уже почти не ослабляются.

С точки зрения экранировки обычная неэмалированная кастрюля из нержавейки с такой же крышкой (сплошной металлической) будет гораздо эффективнее микроволновки. Лучше замотать устройства в фольгу или положить в неэмалированную кастрюлю для максимальной защиты.


А что будет с человеком внутри, если в мачту ударит молния?

Как правило, от места крепления мачты сквозного монтажа (которая проходит через палубу и крепится в районе киля), либо через вант-путенсы, вдоль бортов, для мачт, устанавливающихся на палубу, проведены толстые кабели к килю (зачастую металлическому), который действует как заземление для молнии. Более того — в некоторых случаях (на композитных яхтах, в основном) ниже ватерлинии на корпусе яхты или на киле устанавливается специальная пластина, к которой подводятся эти проводники, и которая и служит для безопасного выведения заряда. Такие пластины иногда даже красят специальным токопроводящим гелем, хотя заряд молнии пробивает и обычную краску.

Таким образом молния проходит через мачту, специальные проводники и заземляется в воду, не представляя рисков для людей, находящихся на борту или в яхте. Но за металлические части я бы, в любом случае, держаться не рекомендовал.

Человек не сильно зависит от перепадов электромагнитного поля и во время грозы не держится голыми руками или любыми другими частями тела за мачту или кабели питания и массы.

Мачта внутри яхты, у которой степс находится в районе киля, обычно обмотана канатом (изолятором). Поэтому можно касаться изолятора на мачте. Пайолы на полу это так же изоляторы (я в это верю :-). На моей яхте степс маты был на рубке и мачта вообще не проходила через салон.


Интерфейс NMEA-0183 в RS485

Я использую интерфейс с открытым исходным дизайном железа MOD-RS485-ISO и водостойкие кабели.

Программное обеспечение для протокола NMEA под микроконтроллер PIC16F18324 можно скачать тут. Если нужна будет более детальная реализация протокола части кода можно позаимствовать на GitHub.

Я не проверял работоспособность. Микроконтроллер, который я использую 8-ми битный и поэтому, скорее всего придётся разбивать пакеты от GPS при получении.

Можно сделать то же самое на RPi, но мне нравятся более экономичные и независимые решения на PIC.


Общая схема подключения VHF-рации, автопилота и навигатора

На схеме синим цветом обозначены кабели NMEA-0183, а красным RS232. У меня на яхте на рации был выход NMEA — датаграммы от рации получать можно и для остального железа.

Посмотрите шпаргалку, которая нужна на яхте.
Или инструкцию про то как сделать свой навигатор и заработать при этом денег на путешествие на яхте Использование OpenCPN для автоматизации производства.
Тонкости подготовки имиджа и самого кода для навигатора и периферии: Все «тайны» настройки софта для модулей и периферии OpenCPN

Передний или задний привод на эллипсе

Каталог статей

Расположение маховика в эллиптическом тренажере является одной из главных характеристик, от которой, в свою очередь, зависят уже многие другие параметры. Большинство эллипсов делятся на переднеприводные и заднеприводные. Какой же лучше выбрать?

Эллиптические тренажеры с задним приводом

Такие модели условно считаются классическими, ведь они появились первыми. Маховик у них расположен позади пользователя.

Плюсы

  • Сразу стоит выделить стоимость: заднеприводные модели обычно доступнее по цене, и приобрести их можно даже имея небольшой бюджет.
  • Однозначно — это компактность. За счет своей конструкции тренажеру с задним приводом требуются небольшое пространство для установки.
  • Незначительный износ деталей и низкий уровень шума во время работы благодаря уменьшенному числу подвижных частей и соединений.

В плюсах можно увидеть и минусы

  • Из-за небольшой длины шага неудобны высоким людям, а так же мало подходят для интенсивных занятий.
  • Круговая траектория движения ног: практически треть движения приходится на продавливание педали собственным весом, а не усилием мышц. Также большая высота шага — неоптимальный вариант для размеренных тренировок. Колено поднимается высоко, как при спринте.
  • Большой Q-фактор: расстояние между педалями составляет около 20 см и увеличивает нагрузку на колени и голеностоп. 

Эллиптические тренажеры с передним приводом

Соответственно, маховик у таких моделей расположен прямо перед тренирующимся.

Плюсы

  • Подходят людям любого роста, благодаря большей длине шага (в среднем, это 500-510 мм). Но особенно удачным выбором станут для высоких пользователей.
  • Годятся для тренировок в среднем и низком темпе за счет меньшей высоты траектории (но встречаются модели и с большой высотой).
  • Некоторые модели оснащены системой складывания, что важно для хранения в условиях небольших городских квартир.
  • Маленький или средний Q-фактор: маленькое расстояние между педалями бережет суставы во время движения.

Минусы

  • Обладают значительно большими габаритами, чем модели с задним приводом.
  • Несколько более шумные за счет трения роликов о направляющие.
  • Цена: стоимость на переднеприводные модели обычно существенно выше, чем на заднеприводные.

В целом, стоит признать, что тренажер с передним расположением маховика гораздо лучше (почти все домашние эллипсы в высокой ценовой категории именно такие). Но, если у вас есть сомнения, то посетите наш выставочный зал и протестируйте оба варианта сами!

Технология внутреннего постоянного магнита (IPM)

Подразделение Brother International Corporation, Brother Gearmotors предлагает полную линейку мотор-редукторов и принадлежностей для удовлетворения практически любых производственных потребностей в производстве электроэнергии. Портфолио компании включает внутренние двигатели с постоянными магнитами (IPM), бесщеточные двигатели постоянного и переменного тока, а также другие высококачественные мотор-редукторы и редукторы для таких отраслей, как пищевая промышленность, упаковка и транспортировка материалов. На всю продукцию Brother Gearmotors предоставляется лучшая в отрасли пятилетняя ограниченная гарантия.Brother Gearmotors — один из крупнейших в мире производителей зубчатых передач с мелким шагом. В США клиентов обслуживают на современном производственном и торговом предприятии в Бартлетте, штат Теннесси. В настоящее время в Brother и его дочерних компаниях работает более 1000 человек в Северной и Южной Америке

.

Контент подан под:

Отрасль:
Производство добавок и аэрокосмическая промышленность Производство добавок , Аэрокосмическая промышленность , Сельское хозяйство , Автомобильная промышленность , Строительные товары / материалы , Химическое производство , Потребительские товары / техника , Тара (стекло, пластик, металл) , Образование , Производство электроэнергии , Электроника / электрические компоненты , Энергия / Солнечная / Ветровая энергия , Готовые металлы , Автоматизация производства , Еда и напитки , Мебель , Лабораторное оборудование и автоматизация , Станки , Морской , Медицинское оборудование , Металлы , Военные / Оборона , Добыча полезных ископаемых , Мобильность , Производство компонентов управления движением , Внедорожная / Тяжелая техника , Офисная техника , Нефти и газа , Упаковка , Бумага , Фармацевтика , Почтовая служба , Полиграфия и издательское дело , Железнодорожный транспорт , Робототехника , Резина , Полупроводник , Текстиль / одежда , Управление отходами , и изделия из дерева / пиломатериалы

Заявление:
N / A

Узнать больше

Подделок магнитных двигателей на YouTube

С более чем 6 миллионами просмотров одного видеоролика о магнитном двигателе, фальшивые магнитные двигатели на YouTube достигли масштабов эпидемии.

Я подумал, что перечислю некоторые из самых популярных. Имейте в виду, что все это подделка, некоторые очень очевидны. В частности, у первого из них так много красных флажков, что его можно было подделать разными способами. Я оставлю это нашим читателям, чтобы посмотреть, смогут ли они понять, как их подделали. Подделки магнитных двигателей будут существовать еще долгие годы.

Главное, на что обратить внимание:

1. Даже небольшое движение руки будет входной мощностью.

2. Батареи на виду или спрятаны

3.Движение магнитов статора или ротора при пуске (с помощью)

Это хороший бизнес, и 6 миллионов просмотров — большие деньги на YouTube. Скорее всего в несколько десятков тысяч.

Видео 1: Вентилятор с магнитным двигателем свободной энергии, используемый в качестве генератора свободной энергии Лампочка «свободной энергии»

Заявление: Опубликовано 2 января 2014 г.

Эта система вращения вентилятора свободной энергии магнитного двигателя используется в качестве генератора свободной энергии для зажигания лампочки.В конструкции использовались центральный вентилятор, тонкие магниты и светодиодная лампочка. Пошагово объяснили, как нарастить бесплатную энергию.
Это видео вращения вентилятора двигателя с магнитом свободной энергии двигателя с магнитом свободной энергии, используемого в качестве генератора свободной энергии благодаря неодимовому магниту.
Вентилятор Вращение основано только на силе магнитного поля без потребности в электричестве. Это простая конструкция, использующая магнитное отклонение, генерирующее бесплатное электричество.

[youtube jiAhiu6UqXQ]

Видео 2: Магнитный двигатель свободной энергии (двигатель)

Заявление: опубликовано 29 мая 2012 г.

[youtube 7PDeK6rprA4]

Видео 3: Магнитный двигатель Перендева

Заявление: загружено 10 июня 2006 г.

«Магнитный двигатель Perendev приносит миру новую форму энергии. Для работы двигателя не используется ископаемое топливо, двигатель работает на магнитной / электрической энергии, создаваемой отталкиванием магнитных полей.”

Следует отметить, что Майк Брэди провел несколько лет в немецкой тюрьме, так как он так и не смог обосновать свои утверждения, но забрал большие деньги инвесторов.

[youtube PFGiWiXMHn0]

Видео 4: Удивительный магнитный двигатель / Gen Rep. Это не подделка, а

Заявление: опубликовано 8 апреля 2012 г.

Но самозапускающиеся устройства — подделка, они НЕ МОГУТ работать.
Мой двигатель / генератор — монопольное устройство с меньшим притяжением (закороченные катушки).Бежать практически невозможно. Я потратил много времени, чтобы отрегулировать это. Подшипники должны работать очень легко. Разгоняется до 300 об / мин.
Не тратьте зря время на копию этого двигателя / генератора.
Подробнее в следующем видео. Часть 2.1 http://www.youtube.com/watch?v=01s25k…

[youtube jKFTAobM-l0]

Видео 5: Двигатель с постоянным магнитом из Аргентины. Автономный генератор свободной энергии!

Заявление: загружено 28 июня 2011 г.

http: // www.youtube.com/watch?v=Dxz-0M…
Новое дополнение из Египта к многочисленным постоянным магнитным двигателям, строящимся в наши дни
Постоянные магнитные двигатели из Аргентины!
Это видео-война, воспроизведенная Робертом Оти, автором:
Free Energy and Free Thinking
http://www.feandft.com/

[youtube lBB8puMtwJM]

Видео 6: НЕТ мошенничества (это НАСТОЯЩАЯ СДЕЛКА) Демонстрация Муаммера Йылдыза Magnet Motor в Делфтском университете

Заявление: опубликовано 7 августа 2012 г.

Турецкий полицейский в отставке, он потратил все свои пенсионные деньги и за 2 года смог усовершенствовать этот двигатель с магнитным приводом.В конце ролика он берет деталь двигателя и показывает все пластиковые детали, заполненные магнитами. Никаких скрытых проводов, батарейки нет. Он использует движущую силу тыловых земных мощных магнитов.
После того, как он получил мировой патент, он открыто продемонстрировал свой магнитный двигатель в различных университетах Европы.
Муаммер Йылдиз Презентация магнитного двигателя в Делфтском университете в Нидерландах
См. Его мировой патент здесь: http://www.rexresearch.com/yildiz/yil…
Также см. На странице Рекса его неизвестный двигатель меньшего размера с постоянным магнитом, который приводил генератор переменного тока для небольшого автомобиля, который он продемонстрировал, пока ждал своего мирового патента.

[youtube mHW6b1aFPfU]

Видео 7: Обучающее видео Mylow DIY 5b — Магнитный двигатель Mylow V2.0 — работает с шестью магнитами

Заявление: Загружено 13 мая 2009 г.

Mylow снял это видео (-_KQ8tldXnY) со своим братом-близнецом Тони, который работает инженером, 13 мая 2009 г. проталкивая магниты ротора мимо начальной шестерни, они показывают, что ротор проходит мимо магнитов статора с достаточной силой, чтобы вращаться и проталкиваться снова, затем снова, набирая скорость с каждым оборотом, прежде чем достичь равновесной скорости.
Однояйцевые близнецы вместе предстают перед работающим двигателем.
Полную серию статей для самостоятельной сборки см. На http://peswiki.com/index.php/OS:MYLOW…
Сокращенный URL-адрес этого проекта с открытым исходным кодом: http://MylowPlans.com

Этот зацепил Стерлинга и многие тысячи других, пока не было показано, как он подделал его. Многие люди были распяты на разных форумах за то, что предположили, что это подделка. (ничего не изменилось)

[youtube OsURAlg9pPY]

Есть еще сотни, и я уверен, что наши читатели опубликуют некоторые из своих любимых.

Perendev разрабатывает оборудование для массового производства магнитных двигателей в Европе

ЙОХАННЕСБУРГ, ЮЖНАЯ АФРИКА (PRWEB) 2 июля 2004 г.

На протяжении веков изобретатели утверждали, что создали конструкции магнитных двигателей, в которых в качестве движущей силы используется не что иное, как мощность постоянных магнитов; и в течение того же времени основная наука ответила, что это невозможно.«Математически доказано, что никакая комбинация постоянных магнитов в любом устройстве не будет генерировать энергию».

История говорит нам, что то, что было доказано во дворах и гаражах многих людей, не всегда совпадает с математикой.

Отказываясь устрашиться тем, что он считает мелкими догмами академической науки, изобретатель Майкл Дж. Брэди из Йоханнесбурга не только утверждает, что создал такое устройство, но и сообщает, что его компания Perendev Power Developments Pty (Ltd) теперь находится в процесс массового производства для рынков Европы, России и Австралии.

Новый веб-сайт

Perendev был недавно опубликован на Perendev-Power.com с утверждением, что они достигли важной вехи в создании «первого в мире бестопливного магнитного двигателя».

Другие изобретатели, утверждающие, что построили работающие полностью магнитные двигатели, будут возражать против утверждения Перендева о том, что они были первыми, как указано на сайте. Брэди упомянул, что он заметил некоторые неточности в формулировках на сайте и что он исправит их.

То, что еще никому не удалось достичь, — это устройство, готовое к выпуску на рынок.Если Perendev продолжит идти по пути, заявленному на его сайте, он сможет добиться этого отличия и подтолкнуть до сих пор упирающееся сообщество ученых к разработке теорий, объясняющих, почему это работает.

На сайте представлены видеозаписи работы более раннего прототипа, а также компьютерное моделирование новых разработок. Видео прототипа не является доказательством скептицизма, так как в нем не происходит обхода во время разгона. Брэди обещал еще одно видео, в котором будет прогулка до, во время и после включения двигателя и ускорения с последующим отключением и замедлением.

На странице о двигателе сказано, что двигатель работает «за счет фокусировки магнитного поля, углов магнитов и особого метода экранирования». Кроме того, «двигатель не требует внешнего питания для запуска». Брэди сообщает, что проведенные испытания не показали уменьшения силы магнита за период работы двигателя, который в одном случае составил два месяца.

Когда статоры входят в зацепление, три ротора со смещенным магнитом начинают вращаться. Скорость регулируется регулятором.Без контроля скорости устройство разгонится до разрушения.

Брэди также заявляет, что установка мощностью 4 мегаватта возможна с этим дизайном и была представлена ​​в виде концептуального чертежа.

Немецкая компания имеет лицензии на производство и сбыт для всей Европы и России, за исключением Великобритании, и находится в процессе подготовки инструментов для начала массового производства. Две другие группы ведут переговоры об условиях лицензирования с Perendev. Один находится в U.K., за права на производство и продажу в Великобритании, а другой находится в Австралии, за права ниже.

Brady привез немцам прототип в середине марта и сказал, что с тех пор они тестируют его. Прототип тестируется немецким агентством по контролю качества TÃœV.

Название немецкой компании будет раскрыто, когда они закончат оснастку и будут готовы начать производство, которое, по оценке Брэди, состоится через месяц или два.Он сказал, что эти устройства будут готовы к использованию в домашних условиях до получения одобрения от TUFF. Брэди также планирует разрешить съемочным группам немецкого телевидения документировать устройство для публичного просмотра.

Двадцати киловатт достаточно, чтобы выдержать пиковую нагрузку в большинстве домов. При непрерывной работе с такой скоростью излишек, произведенный при среднем использовании, который составляет пять процентов от максимального использования, может быть продан в сеть для быстрой окупаемости инвестиций. По словам Брэди, он будет выдавать чуть больше двадцати киловатт.«Это то, что он рассчитан на непрерывное производство».

В мае он сообщил, что испытал агрегат с генератором большего размера мощностью 60 кВт «с очень небольшим ухудшением характеристик двигателя».

Брэди воплощал эту идею в жизнь на протяжении тридцати лет и активно развивал ее примерно последние пять.

«Мы прошли через ад — денег ниоткуда не поступало — но мы пережили». Гражданин Германии, работающий в Южной Африке над голливудским проектом, подошел, поговорил с ними и сказал им: «Давайте оставим это позади и будем двигаться вперед.«

———

Вышеупомянутая статья Стерлинга Д. Аллана из Pure Energy Systems опубликована по адресу

.

http://pesn.com/2004/06/30/6

9PerendevPowerMintageMotor/

RSS — лента новостей XML Syndication

http://pureenergysystems.com/news/rss/

ИСТОЧНИКОВ

  • 29 июня 2004 г. Интервью по телефону с Майком Брэди.
  • Визит автора в Йоханнесбург для встречи с Брэди в декабре 2002 г.
  • Три года регулярных контактов с изобретателем.

Официальный сайт Perendev Power

http://www.perendev-power.com

Список претензий различных изобретателей к магнитным двигателям

http://FreeEnergy.GreaterThings.com/Directory/MintageMotors/

TÃœV Rheinland Group документирует безопасность и качество новых и существующих продуктов, систем и услуг

http://www.tuv.com/

Поделиться статьей в социальных сетях или по электронной почте:

Классификация эпилептических моторных проявлений с использованием инерциальных и магнитных датчиков

DOI: 10.1016 / j.compbiomed.2010.11.005. Epub 2010 26 ноября.

Принадлежности Расширять

Принадлежность

  • 1 Grenoble Institut des Neurosciences, Inserm U 836-UJF-CEA-CHU, Университетский госпитальный центр Гренобля, BP 217, 38043 Grenoble cedex 9, Франция[email protected]

Элемент в буфере обмена

Гийом Бек и др. Comput Biol Med. 2011 Янв.

Показать детали Показать варианты

Показать варианты

Формат АннотацияPubMedPMID

DOI: 10.1016 / j.compbiomed.2010.11.005. Epub 2010 26 ноября.

Принадлежность

  • 1 Grenoble Institut des Neurosciences, Inserm U 836-UJF-CEA-CHU, Университетский госпитальный центр Гренобля, BP 217, 38043 Grenoble cedex 9, Франция[email protected]

Элемент в буфере обмена

Полнотекстовые ссылки Опции CiteDisplay

Показать варианты

Формат АннотацияPubMedPMID

Абстрактный

Для того чтобы объективно охарактеризовать последовательность движений, наблюдаемых во время двигательных припадков, пациентам с эпилепсией устанавливались инерционные и магнитные датчики.Видеозаписи, синхронизированные с записями движения, анализировали визуально во время припадков и разделяли для каждой конечности на события, соответствующие различным классам моторных проявлений. Для каждого классифицированного события были извлечены признаки, а выбор подмножества был автоматизирован с использованием искусственных нейронных сетей. Лучшая искусственная нейронная сеть была смоделирована на всех записях для создания стереотипной эволюции моторных проявлений, которую мы назвали моторограммами. Показано, что моторограммы могут указывать на судорожные движения и подчеркивать эпилептические паттерны.

Copyright © 2010 Elsevier Ltd. Все права защищены.

Похожие статьи

  • Компьютерный анализ движений записанных на видео неонатальных припадков эпилептического происхождения.

    Караяннис Н.Б., Тао Дж., Сюн Й., Сами А., Варугезе Б., Фрост Д. Д. мл., Мудрый М.С., Мизрахи Э.М.Караяннис Н.Б. и др. Эпилепсия. 2005 июн; 46 (6): 901-17. DOI: 10.1111 / j.1528-1167.2005.56504.x. Эпилепсия. 2005 г. PMID: 15946330

  • Автоматизированное обнаружение припадков эпилептического происхождения на видеозаписи у новорожденных.

    Караяннис Н.Б., Сюн Й., Тао Дж., Фрост Д.Д. младший, Мудрый М.С., Граховы Р.А., Мизрахи Э.М. Караяннис Н.Б. и др. Эпилепсия. 2006 июнь; 47 (6): 966-80.DOI: 10.1111 / j.1528-1167.2006.00571.x. Эпилепсия. 2006 г. PMID: 16822243

  • Автоматическое извлечение сигналов временной двигательной активности из видеозаписей неонатальных припадков на основе адаптивного сопоставления блоков.

    Караяннис Н.Б., Сами А., Фрост Дж. Д. мл., Мудрый М.С., Мизрахи Е.М. Караяннис Н.Б. и др. IEEE Trans Biomed Eng. 2005 Апрель; 52 (4): 676-86. DOI: 10.1109 / TBME.2005.845154. IEEE Trans Biomed Eng. 2005 г. PMID: 15825869

  • Видеоэлектроэнцефалография у детей с пароксизмальными явлениями.

    Яврек М., Кубик А., Сковронек-Бала Б. Jaworek M, et al. Przegl Lek. 2006; 63 (11): 1224-9. Przegl Lek. 2006 г. PMID: 17348422 Рассмотрение. Польский.

  • Технологии регистрации приступов для лечения эпилепсии: обзор потребностей в клинической информации и поддерживающих технологий.

    Бидвелл Дж., Хуватсамрит Т., Аскью Б., Эренберг Дж. А., Хелмерс С. Бидвелл Дж. И др. Захват. 2015 ноя; 32: 109-17. DOI: 10.1016 / j.seizure.2015.09.006. Epub 2015 18 сентября. Захват. 2015 г. PMID: 26552573 Рассмотрение.

Процитировано

7 статей
  • [Мобильный мониторинг приступов у больных эпилепсией].

    Schulze-Bonhage A, Böttcher S, Glasstetter M, Epitashvili N, Bruno E, Richardson M, V Laerhoven K, Dümpelmann M. Schulze-Bonhage A, et al. Nervenarzt. 2019 декабрь; 90 (12): 1221-1231. DOI: 10.1007 / s00115-019-00822-х. Nervenarzt. 2019. PMID: 31673723 Рассмотрение. Немецкий.

  • Обнаружение изъятия: работают ли текущие устройства? И когда они могут быть полезны?

    Чжао X, Лхату SD.Чжао X и др. Curr Neurol Neurosci Rep.2018 23 мая; 18 (7): 40. DOI: 10.1007 / s11910-018-0849-z. Curr Neurol Neurosci Rep.2018. PMID: 29796939 Рассмотрение.

  • Спектральный анализ данных об ускорении для выявления генерализованных тонико-клонических приступов.

    Джу Х.С., Хан Ш., Ли Дж., Чан ДП, Кан Дж. К., У Дж. Джу Х.С. и др. Датчики (Базель). 2017 28 февраля; 17 (3): 481.DOI: 10,3390 / s17030481. Датчики (Базель). 2017 г. PMID: 28264522 Бесплатная статья PMC.

  • Монитор движения на основе магнито-инерционных датчиков для неамбулаторных пациентов с мышечной дистрофией Дюшенна: пилотное исследование в контролируемой среде.

    Le Moing AG, Seferian AM, Moraux A, Annoussamy M, Dorveaux E, Gasnier E, Hogrel JY, Voit T., Vissière D, Servais L. Le Moing AG и др.PLoS One. 2016 7 июня; 11 (6): e0156696. DOI: 10.1371 / journal.pone.0156696. eCollection 2016. PLoS One. 2016 г. PMID: 27271157 Бесплатная статья PMC.

  • Методы выбора признаков для обнаружения судорог у детей на основе акселерометрии.

    Милошевич М., Ван де Вел А, Куппенс К., Бонрой Б., Сеулеманс Б., Лагае Л., Ванрумсте Б., Ван Хаффель С. Милошевич М. и др. Med Biol Eng Comput.2017 Янв; 55 (1): 151-165. DOI: 10.1007 / s11517-016-1506-9. Epub 2016 22 апреля. Med Biol Eng Comput. 2017 г. PMID: 27106758

Типы публикаций

  • Поддержка исследований, за пределами США. Правительство

Условия MeSH

  • Эпилепсия / физиопатология *
  • Мониторинг, физиология / методы *
  • Нейронные сети, Компьютер
  • Изъятия / классификация
  • Судороги / физиопатология *
  • Обработка сигналов с помощью компьютера *
  • Видеозапись / методы *

LinkOut — дополнительные ресурсы

  • Источники полных текстов

  • Другие источники литературы

  • Медицинские

[Икс]

цитировать

Копировать

Формат: AMA APA ГНД NLM

Пошаговое создание лучшего магнитного генератора Видео

Следующие видеоролики показывают шаг за шагом, как построить проект магнитного генератора:

Видео № 1 — Подготовка пластины магнитного ротора

Генератор магнитной энергии основан на два металлических магнитных диска ротора из стали.
На этом диске уже просверлены четыре отверстия + 1 в центре.
Эти отверстия необходимы для крепления ротора к ступице.
Нарисуйте две линии, соединяющие два противоположных отверстия, а затем добавьте еще две линии, проходящие через центральное отверстие.
Таким образом вы разделите диск на восемь равных частей.
Затем вам нужно будет нарисовать на диске внутренний круг.
Затем просверлите в диске восемь отверстий, каждое на одинаковом расстоянии друг от друга.
Наконец, на этом этапе вам нужно использовать метчик, чтобы врезаться в отверстия.


Видео № 2 — Подготовка бумаги для лицевой панели

Возьмите лист бумаги и поместите на него диск.
Затем разрежьте бумагу по внешней линии диска.
Затем поместите бумагу на диск.
Поместите на бумагу восемь магнитов на одинаковом расстоянии.
Затем снова разрежьте бумагу по внешней линии магнитов.
Затем вы делаете на бумаге отметки для отверстий для дисков и надрезаете их стамеской.
Затем вы поместите кольцо на бумагу и обрежете ее по внешней линии.Бумага готова.


Видео № 3 — Конструирование диска магнитного ротора

Возьмите диск и поместите на него бумагу.
Поместите на них внешнюю форму.
Вставьте винты во внешнюю форму и в отверстия для дисков.
Поместите кольцо на диск и закрепите его клеем.
Затем поместите восемь магнитов на диск на равном расстоянии.
Заполнить зазор смолой.
Поместите бумагу между лицевой панелью и стопкой.
Поместите катушку по внешним линиям магнитов.
Подождите, пока смола высохнет, затем очистите пластину, снимите кольцо и винты с внешней формы.


Видео № 4 — Сборка всего этого в качестве магнитного двигателя

Поместите два магнитных диска ротора рядом.
Вставьте ступицу подшипника между двумя дисками.
Двигатель с постоянными магнитами теперь готов к работе.

Поскольку магниты толкают и притягивают друг друга в зависимости от их положения на север и юг друг к другу, диски будут вращаться и ускоряться постоянно.


В заключение




Новый безмагнитный электродвигатель не требует обслуживания

Немецкий производитель автомобильных запчастей MAHLE разработал новый высокоэффективный безмагнитный асинхронный электродвигатель, который более экологичен в производстве и дешевле в производстве, чем аналогичные двигатели и не требуют технического обслуживания, говорится в заявлении для прессы фирмы из Штутгарта.

Компания заявляет, что объединила сильные стороны различных концепций электродвигателей в одном продукте, что позволило достичь КПД «выше 95 процентов почти во всех рабочих точках» — уровень, достигнутый до сих пор только в гоночных автомобилях Формулы E.

Компания MAHLE поясняет, что ее «новый тип безмагнитного электродвигателя не требует редкоземельных элементов». Это делает производство более экологически чистым, а также дает «преимущества с точки зрения затрат и безопасности ресурсов», — говорится в сообщении компании.

Износостойкий и высокоэффективный на высоких скоростях

В новом двигателе используется усовершенствованная конструкция для создания крутящего момента за счет бесконтактной передачи мощности, что делает его неизнашиваемым и высокоэффективным на высоких скоростях.

При использовании беспроводной передатчик посылает переменный электрический ток в ротор.Это индуцирует ток в приемном электроде, который, в свою очередь, заряжает намотанные медные магнитные катушки, создавая электромагнитное поле, которое раскручивает катушки и создает крутящий момент.

Эти магнитные катушки заменяют постоянные магниты, обычно сделанные из неодима-бор-железа, самария-кобальта или феррита, в традиционных электродвигателях электромобилей. Там, где они обычно устанавливаются в электромотор, асинхронные двигатели MAHLE и других разработчиков оставляют воздушный зазор для предотвращения износа. MAHLE также подчеркивает тот факт, что их конструкция легко масштабируется и может использоваться в любых автомобилях, от малолитражных до коммерческих.

«С нашим новым электродвигателем мы выполняем взятые на себя обязательства как экологически рациональная компания», — говорит Майкл Фрик, председатель правления MAHLE (временно исполняющий обязанности) и финансовый директор. «Отказ от магнитов и, следовательно, использование редкоземельных элементов предлагает большой потенциал не только с геополитической точки зрения, но и с точки зрения ответственного использования природы и ресурсов».

Компания MAHLE заявила, что для разработки своей конструкции использовала современный процесс моделирования, который позволил ей постепенно настраивать и комбинировать параметры различных конструкций двигателей, чтобы найти оптимальное решение.Компания заявляет, что этот новый метод позволяет «быстро создать необходимые технические условия для устойчивого развития электронной мобильности во всем мире».

Хотя новая конструкция двигателя была задумана с использованием самых последних процессов моделирования, появление асинхронных двигателей восходит к 19 веку, когда они были изобретены Николой Тесла. Разработка нового электромобиля, дороги для зарядки электромобилей, аналогичным образом основывается на ранних работах изобретателя по переменному току.

Снижение зависимости индустрии электромобилей от постоянных магнитов

Недавний бум в использовании электромобилей привел к тому, что автопроизводители за пределами Китая усердно работают над разработкой электродвигателей, в которых не используются постоянные магниты.Это связано с тем, что для этих магнитов требуются редкоземельные металлы, добыча которых обычно вредна для окружающей среды.

Более того, материалы в основном добываются и обрабатываются в Китае, что дает китайским автопроизводителям электромобилей преимущество, когда дело доходит до традиционных электромоторов — более 90 процентов редкоземельных элементов в мире в настоящее время поступает из Китая.

Bentley, например, также недавно представила конструкцию электродвигателя, в которой не используются редкоземельные магниты. Компания представила двигатель в прошлом году, пытаясь возглавить рынок экологически чистой роскошной мобильности.MAHLE придерживается более утилитарного подхода, что делает его еще более устойчивым, а значит, для них еще больше возможностей.

Промышленный эксперт по двигателям Tesla: «У них есть волшебство!»

Заявление об отказе от ответственности: я колебался, писать ли эту статью уже несколько месяцев. Я не инженер. Я защитник окружающей среды и заядлый сторонник чистых технологий. Я действительно надеялся, что инженер расскажет об этой истории, но я не видел статьи, посвященной этому аспекту технологии Tesla.(Я мог бы это пропустить.)

Основным источником для этой статьи является видеоинтервью на Autoline с инженером / экспертом по автомобильной промышленности Сэнди Манро. ( CleanTechnica из Пол Фоссе недавно дал отличную детализацию нового интервью Сэнди Манро. См.: «Эксперт автомобильной промышленности по экономичному дизайну, Сэнди Манро, в новом видео обходит Tesla».)

Манро владеет консалтинговой фирмой, которая помогает автопроизводителям улучшать свои автомобили, методы производства, понимание новых технологий и т. Д.Ссылка на это видео содержится в нескольких статьях о CleanTechnica . Рядом с отметкой 10:40 на видео ниже, Манро начинает объяснять, почему двигатели Tesla «волшебны!»

После полной разборки Model 3 Сэнди Манро перешла от критики зазоры в панели Tesla к тому, что ее технология просто потрясла. Он и его команда написали очень дорогой отраслевой отчет о разборке Model 3, и он путешествовал по миру, проводя презентации технологий Tesla перед толпой людей.К сожалению, его прекрасные объяснения не были восприняты СМИ на должном уровне.

В прошлом году его комментарии по поводу плохих зазоров в панелях Tesla были широко освещены. Однако его последующие комментарии о передовых технологиях Tesla не получили должного внимания. После просмотра многочисленных интервью Манро становится очевидным, что произвести на него впечатление нужно очень много, и Tesla делает именно это. Говоря об инновациях Теслы, он счастлив, как ребенок в кондитерской.Как и все, Манро хочет зарабатывать деньги, но, как и многие инженеры, он по своей сути одержим своей работой, и вы можете сказать, что он действительно любит эту технологию.

Новые двигатели с постоянными магнитами

Tesla превосходят своих конкурентов по ряду причин. В этой статье рассматривается только одна из этих причин.

Итак, почему моторы Tesla волшебные?

Большая часть этой магии заключена в магнитах!

Tesla смогла воспользоваться преимуществами того, что называется массивом Хальбаха.Новые двигатели с постоянными магнитами Tesla — это улучшенная конструкция, которая впервые появилась в Model 3. Только недавно Model S и Model X были модернизированы для использования этой новой технологии.

Магниты в этих двигателях спроектированы для создания более оптимального магнитного поля. Четыре тщательно разработанных небольших магнита, которые противостоят друг другу, на самом деле склеены вместе, чтобы создать более сильное — или, скорее, более оптимизированное — магнитное поле, которое делает двигатель с постоянными магнитами более мощным и эффективным.Внутри двигателя есть несколько таких магнитов.

Этот важнейший аспект двигателя — одна из основных причин, по которым автомобили Tesla имеют больший запас хода, чем конкурирующие автомобили с аккумуляторными батареями того же размера.

Я попытаюсь дать очень краткое объяснение CliffsNotes массива Хальбаха. Согласно Википедии, «массив Halbach представляет собой особую конструкцию постоянных магнитов, которые увеличивают магнитное поле на одной стороне массива, уменьшая поле почти до нуля на другой стороне.”

Для начала давайте посмотрим на диаграмму справа от этого единственного магнита и его магнитного поля. Обратите внимание на симметричность магнитного поля. То же самое с обеих сторон магнита.

Массив Хальбаха представляет собой ряд противоположных магнитов, сформированных (склеенных) вместе, чтобы усилить магнитную силу с одной стороны.

Измененное магнитное поле, изображенное выше, является одной из ключевых причин, почему двигатели Tesla легче и дешевле, но при этом более мощные и эффективные, чем другие двигатели.В видео выше Манро объясняет, что это намного сложнее, чем склеить четыре магнита вместе. Каждый магнит спроектирован таким образом, что Манро еще не знает, как их перепроектировать (интервью было опубликовано на YouTube 3 января 2019 года, так что, возможно, он и его команда находятся на пути к выяснению этого)

В интервью Autoline Манро также рассказал об инновационной Superbottle от Tesla, о которой также почти не говорили. Superbottle является частью блестящей и эффективной системы управления тепловыми батареями и HVAC от Tesla.Если вы нашли эту тему обсуждения интересной, следите за будущим обсуждением Superbottle Tesla. Это можно было бы назвать старыми новостями, но это новости, которые вообще не получили широкого освещения.

В заключение, ниже представлено отличное видео, демонстрирующее массив Хальбаха. Помните, что магниты Теслы сложнее, чем эта демонстрация. Тем не менее, видео представляет собой поучительное введение в массив Хальбаха.

Цените оригинальность CleanTechnica? Подумайте о том, чтобы стать участником, сторонником, техническим специалистом или представителем CleanTechnica — или покровителем Patreon.


Реклама
У вас есть совет для CleanTechnica, вы хотите разместить рекламу или предложить гостя для нашего подкаста CleanTech Talk? Свяжитесь с нами здесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *