Мощность и ток в трехфазной сети: Как рассчитать мощность трехфазной сети: формулы для расчета показателей

Содержание

Мощность трехфазной сети и ее измерение

В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.

С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или  А, В, С.

Схема соединения звезда:

Документ1Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

1В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Документ2Фазное напряжение в цепи

Линейное – между фазами:

Линейное напряжениеЛинейное напряжение

Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:

2Но поскольку линейное и фазное напряжение отличаются между собой в 5, но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:

Мощность трехфазной сети при соединении в звезду и расчет при линейном напряжении

Или:

Мощность трехфазной сети при соединении в звезду и расчет при фазном напряженииСоответственно  для активной:

6

7Для реактивной:

8

9

Схема соединения в треугольник

Схема соединения обмоток в треугольникСхема соединения обмоток в треугольник

Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:

Мощность трехфазной сети при соединении в треугольник

И соответственно:

11

13

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметрЦифровой ваттметр Аналоговый ваттметрАналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Документ5Схема включения ваттметра при симметричной нагрузке

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Документ6Схема включения ваттметра при несимметричной нагрузке

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Документ7Схема включения ваттметра при отсутствии нулевого провода

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

DLВекторная диаграмма включения двух ваттметров при различных видах нагрузки

Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.

Из диаграммы следует, что мы можем определить показание приборов аналитически:

12

14

Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (φ=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L) 15 показания W1 меньше чем W2 (W1<W2), при φ>600 показания W1 вообще отрицательные (W1<0).

При активной и емкостной(R-C) 16 и W1>W2, а при φ<-600 показания W2 <0.

При современном развитии техники появились цифровые ваттметры. Они в отличии от аналоговых меньше в размерах, гораздо легче и менее габаритны. Более того цифровые ваттметры могут фиксировать ток, напряжение, измерять cosφ в сети и другое. Они позволяют в режиме реального времени отслеживать различные величины и выдавать предупреждения при их отклонении. Это очень удобно и не требуется проводить измерения тока, напряжения, а потом математически это все высчитывать. Цифровой ваттметр заключен в корпус и подключается (для бытовых потребителей) самым обычным способом – как и обычный потребитель — втыканием вилки в розетку.

формула, онлайн расчет, выбор автомата

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

I = P/(U*cos φ),

а для трехфазной сети: I = P/(1,73*U*cos φ),

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) - 60 А;
  • электроплита (10 кВт) - 50 А;
  • варочная панель (8 кВт) - 40 А;
  • электроводонагреватель проточный (6 кВт) - 30 А;
  • посудомоечная машина (2,5 кВт) - 12,5 А;
  • стиральная машина (2,5 кВт) - 12,5 А;
  • джакузи (2,5 кВт) - 12,5 А;
  • кондиционер (2,4 кВт) - 12 А;
  • СВЧ-печь (2,2 кВт) - 11 А;
  • электроводонагреватель накопительный (2 кВт) - 10 А;
  • электрочайник (1,8 кВт) - 9 А;
  • утюг (1,6 кВт) - 8 А;
  • солярий (1,5 кВт) - 7,5 А;
  • пылесос (1,4 кВт) - 7 А;
  • мясорубка (1,1 кВт) - 5,5 А;
  • тостер (1 кВт) - 5 А;
  • кофеварка (1 кВт) - 5 А;
  • фен (1 кВт) - 5 А;
  • настольный компьютер (0,5 кВт) - 2,5 А;
  • холодильник (0,4 кВт) - 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Онлайн расчет мощности тока для однофазной и трехфазной сети

Расчёт мощности трёхфазной сети | Сайт электрика

Расчёт мощности трёхфазной сетиПривет читатели моего сайта. Сегодня мы с вами на реальном примере рассмотрим формулу, с помощью которой, можно рассчитать мощность (нагрузку) трёхфазной сети.

Но для начала нужно определиться какая у вас мощность, так как она бывает двух видов:

1. равномерная (симметричная)

2. неравномерная (несимметричной)

Пример равномерной нагрузки – это когда у вас работает электродвигатель. То есть ток по всем фазам протекает одинаковый. Не большими разбежностями, тут можно пренебречь. А в нулевом проводе ток равняется нулю. В таком случае формула имеет вот такой вид:

P = √3*Uф*I* cos (φ) = 1,73Uл*I* cos (φ)

Где Uф – это фазное напряжение

Uл – это линейное напряжение

I – ток, который протекает в проводнике. Его можно измерять токоизмерительными клещами.

cos (φ) – коэффициент мощности. Обычно берут 0.76

Неравномерная нагрузка – это когда ток во всех фазах разный. К примеру, от трёхфазной сети питается освещение какого-то помещения. Один ряд светильников включили, и там горят все светильники. Во втором ряду не горит 7 светильник, а в третьем 12. В таком случае нужно взять клещи, и измерить ток во всех фазах. А формула будет выглядеть вот так:

Pобщ = Ua*Ia* cos (φ1) + Ub*Ib* cos (φ2) + Uc*Ic* cos (φ3)

On-uchitsya-na-elektrika

Давайте решим задачу.

Нужно найти мощность, которую потребляет загородный домик с трёхфазной сетью. Ток по фазам – A — 5.4, B – 7, C – 3 Ампер. cos (φ3) – для упрощения возьмём 1.

Решение.

Если cos (φ3) у нас равняется 1, то это число можно сократить, а все токовые показатели сложить и умножить на напряжение 220 В.

Робщ = (5,4 + 7+3)*220 = 15,4*220 = 3388 Вт ≈ 3,4 кВт

На этом у меня все. В статье я привел реальный пример, как можно рассчитать мощность трёхфазной сети. Конечно, если углубится в эту тему, то можно ещё найти активную и реактивную мощность. Но об этом я напишу в следующих статьях, так что подписывайтесь на обновления. Если статья была вам полезна, то поделитесь нею со своими друзьями в социальных сетях. Пока.

Кстати, советую вам посмотреть статью Расчет тока электродвигателя.

С уважением Александр!

Читайте также статьи:

Мощность электрического тока трехфазной сети

§ 64. МОЩНОСТЬ ТРЕХФАЗНОГО ТОКА

Мощность, потребляемая нагрузкой от сети трехфазного тока, равна сумме мощностей, потребляемых отдельными фазами, т. е.

При равномерной нагрузке мощность, потребляемая каждой фазой,

где Uф — фазное напряжение,

cos j — коэффициент мощности нагрузки.

Мощность, потребляемая всеми тремя фазами,

При соединении приемников энергии звездой соотношение меж­ду линейными и фазными значениями напряжений и токов:

Следовательно, мощность, потребляемая нагрузкой от трехфазной

При соединении приемников энергии треугольником соотношение между линейными и фазными значениями напряжений и токов:

Следовательно, мощность, потребляемая нагрузкой,

Таким образом, при равномерной нагрузке мощность, потребляе­мая от трехфазной сети, независимо от схемы включения нагрузки, выражается следующей формулой:

Пример. Линейное напряжение трехфазной осветительной установки равно 220 в, а линейный ток 9,9 а. Определить, сколько ламп включено параллельно в каждую фазу нагрузки при соединении этих фаз треугольником и какова мощность всей установки, если каждая лампа потребляет ток 0,52 a .

Решение. Фазное напряжение равно линейному, т. е

Число ламп, включенных параллельно в каждой фазе,

,

т. е. всего включено ламп

Мощность всей установки, имея в виду, что при осветительной нагрузке cos j=1, находим по следующей формуле:

При неравномерной нагрузке мощности в фазах различный (PAPB PC) и суммарная мощность, потребляемая нагрузкой, равна:

Для измерения мощности применяют специальные измерительные приборы, называемые ваттметрами. При симметричной нагрузке мощность, потребляемая от трехфазной системы, может быть определена одним однофазным ваттметром. В четырехпроводной системе (с нулевым проводом) токовая обмотка ваттметра включается последовательно в один из линейных проводов, а обмотка напряжения — между тем же линейным и нулевым проводами. При таком включении показание ваттметра определит мощность в одной фазе Рф, а так как при равномерной нагрузке мощности всех фаз одинаковы, то суммарная мощность трехфазной системы Р = 3 Рф.

В трехпроводной системе обмотка напряжения ваттметра включена на линейное напряжение сети, а по токовой его обмотке протекает линейный ток. Поэтому мощность трехфазной системы в раз больше показания ваттметра Pω, т. е. Р=Рω.

При несимметричной нагрузке одного ваттметра для определений мощности трехфазной системы недостаточно.

В четырехпроводной системе при несимметричной нагрузке необходимо включение трех ваттметров, обмотки напряжений которых включаются между нулевым и соответствующим линейным проводом. Каждый ваттметр измеряет мощность одной фазы и суммар­ная мощность трехфазной системы равна сумме показаний трех ваттметров, т. е. Р = Р1 + Р2 + Р3.

В трехпроводной системе при несимметричной нагрузке наиболее часто используют схему двух ваттметров, которая не может быть использована в четырехпроводной системе. В схеме двух ваттметров обмотки напряжений каждого ваттметра соединены с входным зажимом обмотки тока и линейным проводом, оставшимся свободным. Полная мощность трехфазной системы равна сумме показа­ний ваттметров, т. е. Р=Р12

В лабораторной практике для этой схемы измерения мощности применяют один ваттметр и специальный переключатель, который без разрыва цепи тока дает возможность включать этот ваттметр как в один, так и в другой линейный провод.

При больших углах сдвига фаз между напряжением и током по­казания одного из ваттметров могут оказаться отрицательными и для измерения мощности необходимо изменить направление тока в обмотке тока, переключив ее. В этом случае суммарная мощность равна разности показаний ваттметров, т. е. Р = Р1 — Р2.

Энергия в трехфазной системе измеряется как однофазными, так и трехфазными счетчиками электрической энергии. Включение одно­фазных счетчиков в трехфазную сеть подобно включению ваттмет­ров, описанному выше.

Трехфазные счетчики составляются из двух или трех однофаз­ных, размещенных в одном корпусе и имеющих общий счетный ме­ханизм, и называются соответственно двухэлементными и трехэле­ментными. В трехпроводной системе (без нулевого провода) при­меняют двухэлементные, а в четыре проводной системе (с нулевым проводом) —трехэлементные счетчики. Схема включения счетчика электрической энергии указывается на съемной крышке, которой закрывается панель зажимов.

Расчет мощности трехфазной сети

Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)

Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Расчет величины переменного электрического тока при однофазной нагрузке.

Предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 220 вольт.

В доме имеются электроприборы:

Для освещения дома установлены 5 электролампочек по 100 ватт каждая и 8 электролампочек мощностью 60 ватт каждая. 2. Электродуховка, мощностью 2 киловатта или 2000 ватт. 3. Телевизор, мощностью 0,1 киловатт или 100 ватт. 4. Холодильник, мощностью 0,3 киловатта или 300 ватт. 5. Стиральная машина мощностью 0,6 киловатт или 600 ватт. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?

Расчет: 1, Определяем суммарную мощность всех приборов: 500 + 480 + 2000 + 100 + 300 + 600 = 3980 ватт 2. Ток, протекающий в проводе при такой мощности определяется по формуле:

где: I – ток в амперах (А) Р – мощность в ваттах (Вт) U – напряжение в вольтах (В) cos φ – коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: І = 3980 /220 * 0,95 = 19,04 А Вывод: Счетчик выдержит, так как ток в цепи меньше 20 А. Для удобства пользователей ниже приведена форма расчета тока.

Вам следует ввести в соответствующие поля формы суммарное значения мощности в ваттах всех ваших электроприборов, напряжение в вольтах, обычно 220 и коэффициента мощности, 0,95 для бытовой нагрузки, нажать кнопку "Вычислить" и в поле "Ток" появится величина тока в амперах. Если у вас нагрузка в киловаттах, следует перевести ее в ватты, для чего умножить на 1000. Для очистки введенного значения мощности следует нажать кнопку "Очистить". Очистку введенных по умолчанию значений напряжения и косинуса следует произвести клавишей delete переместив курсор в соответствующую ячейку (при необходимости).

Форма расчета для определения тока при однофазной нагрузке.

Расчет величины переменного электрического тока при трехфазной нагрузке.

Теперь предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 380/220 вольт. Почему указываются два напряжения – 380 В и 220 В? Дело в том, что при подключении к трехфазной сети в ваш дом заходят 4 провода – 3 фазы и нейтраль (по старому – ноль).

Так вот, напряжение между фазными проводами или иначе – линейное напряжение будет 380 В, а между любой из фаз и нейтралью или иначе фазное напряжение будет 220 В. Каждая из трех фаз имеет свое обозначение латинскими литерами А, В, С. Нейтраль обозначается латинской N.

Таким образом, между фазами А и В, А и С, В и С – будет напряжение 380 В. Между А и N, В и N, С и N будет 220 В и к этим проводам можно подключать электроприборы напряжением 220 В, а значит в доме может быть как трехфазная, так и однофазная нагрузка.

Вообще-то трехфазные нагрузки принято считать в киловаттах, поэтому, если они записаны в ваттах, их следует разделить на 1000. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?

Расчет: Определяем суммарную мощность всех приборов: 3 кВт + 15 кВт = 18 кВт 2. Ток, протекающий в фазном проводе при такой мощности определяется по формуле:

где: I – ток в амперах (А) Р – мощность в киловаттах (кВт) U – линейное напряжение, В cos φ – коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: = 28,79 А

Определить

Линейные и фазные токи

Пример расчета:.

К источнику трехфазной сети с линейным напряжением Uл=380В и частотой f=50 Гц подключена равномерная нагрузка, соединенная по схеме «звезда», с полным сопротивлением в фазе Z=90 Ом и индуктивностью L= 180 мГн, Определить актив­ную, реактивную и полную мощности, коэффициент мощности,

Решение.

1 Фазное напряжение:

U ф = U л / √ 3=380 / √ 3 = 220 В.

Фазный ток

Линейный ток

4 Реактивное сопротивление в фазе:

5 Активное сопротивление в фазе:

6 Коэффициент мощности катушки:

sinφ=XL/z= 56,5/90=0,628

7 Мощности, потребляемые нагрузкой:

а) активная:

Или

б) реактивная:


в) Полная:

Расчет мощности трехфазной сети

Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)

Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Папиллярные узоры пальцев рук – маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ – конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P.

Мощность трехфазного тока равна тройной мощности одной фазы.

При соединении в звезду PY=3·Uф·Iф· cos фи =3·Uф·I· cosфи .

При соединении в треугольник P=3·Uф·Iф· cos фи =3·U·Iф· cosфи .

На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/1,73, а во второе Iф=I/1,73, получим общую формулу P= 1 ,73·U·I· cosфи .

1. Какую мощность P1 берет из сети трехфазный асинхронный двигатель, показанный на рис. 1 и 2, при соединении в звезду и треугольник, если линейное напряжение U=380 В, а линейный ток I=20 А при cosфи =0,7·

Вольтметр и амперметр показывают линейные значения, действующие значения.

Мощность двигателя по общей формуле будет:

P1=1 ,73·U·I· cosфи =1,73 · 380·20·0,7=9203 Вт=9,2 кВт.

Если подсчитать мощность через фазные значения тока и напряжения, то при соединении в звезду фазный ток равен Iф=I=20 А, а фазное напряжение Uф=U/1,73=380/1,73,

P1=3·Uф·Iф · cosфи =3·U/1,73·I· cosфи =31,7380/1,73·20·0,7;

P1=3 · 380/1,73·20·0,7=9225 Вт = 9,2 кВт.

При соединении в треугольник фазное напряжение Uф=U, а фазный ток Iф=I/ 1 ,73=20/ 1 ,73; таким образом,

P1=3·Uф·Iф · cosфи =3·U·I/ 1 ,73· cosфи ;

P1=3 · 380·20/1,73·0,7=9225 Вт = 9,2 кВт.

2. В четырехпроводную сеть трехфазного тока между линейными и нулевым проводами включены лампы, а к трем линейным проводам подключается двигатель Д, как показано на рис. 3.

На каждую фазу включены 100 ламп по 40 Вт каждая и 10 двигателей мощностью по 5 кВт. Какие активную и полную мощности должен отдавать генератор Г при sinфи=0,8 Каковы токи фазный, линейный и в нулевом проводе генератора при линейном напряжении U=380 В·

Общая мощность ламп Pл=3·100·40 Вт =12000 Вт = 12 кВт.

Лампы находятся под фазным напряжением Uф=U/ 1 ,73=380/1,73=220 В.

Общая мощность трехфазных двигателей Pд=10·5 кВт = 50 кВт.

Активная мощность, отдаваемая генератором, PГ и получаемая потребителем P1 равны, если пренебречь потерей мощности в проводах электропередачи:

P1= PГ=Pл+Pд=12+50=62 кВт.

Полная мощность генератора S=PГ/ cosфи =62/0,8=77,5 кВА.

В этом примере все фазы одинаково нагружены, а потому в нулевом проводе в каждое мгновение ток равен нулю.

Фазный ток обмотки статора генератора равен линейному току линии (Iф=I), а его значение можно получить, воспользовавшись формулой для мощности трехфазного тока:

I=P/( 1,73 ·U · cosфи )=62000/(1,73·380·0,8)=117,8 А.

3. На рис. 4 показано, что к фазе B и нулевому проводу подключена плитка мощностью 500 Вт, а к фазе C и нулевому проводу – лампа 60 Вт. К трем фазам ABC подключены двигатель мощностью 2 кВт при cosфи =0,7 и электрическая плита мощностью 3 кВт.

Чему равны общая активная и полная мощности потребителей· Какие токи проходят в отдельных фазах при линейном напряжении сети U=380 В

Активная мощность потребителей P=500+60+2000+3000=5560 Вт=5,56 кВт.

Полная мощность двигателя S=P/ cosфи =2000/0,7=2857 ВА.

Общая полная мощность потребителей будет: Sобщ=500+60+2857+3000=6417 ВА = 6,417 кВА.

Ток электрической плитки Iп=Pп/Uф =Pп/(U· 1 ,73)=500/220=2,27 А.

Ток лампы Iл=Pл/Uл =60/220=0,27 А.

Ток электрической плиты определим по формуле мощности для трехфазного тока при cosфи =1 (активное сопротивление):

P= 1 ,73·U·I· cosфи = 1 ,73·U·I;

I=P/( 1 ,73·U)=3000/( 1 ,73 · 380)=4,56 А.

Ток двигателя IД=P/( 1,73 ·U· cosфи )=2000/( 1,73 ·380·0,7)=4,34 А.

В проводе фазы A течет ток двигателя и электрической плиты:

В фазе B течет ток двигателя, плитки и электрической плиты:

В фазе C течет ток двигателя, лампы и электрической плиты:

Везде даны действующие значения токов.

На рис. 4 показано защитное заземление З электрической установки. Нулевой провод заземляется наглухо у питающей подстанции и потребителя. Все части установок, к которым возможно прикосновение человека, присоединяются к нулевому проводу и тем самым заземляются.

При случайном заземлении одной из фаз, например C, возникает однофазное короткое замыкание и предохранитель или автомат этой фазы отключает ее от источника питания. Если человек, стоящий на земле, коснется неизолированного провода фаз A и B, то он окажется только под фазным напряжением. При незаземленной нейтрали фаза C не была бы отключена и человек оказался бы под линейным напряжением по отношениям к фазам A и B.

4. Какую подводимую к двигателю мощность покажет трехфазный ваттметр, включенный в трехфазную сеть с линейным напряжением U=380 В при линейном токе I=10 А и cosфи =0,7· К. п. д. двигателя =0,8 Чему равна мощность двигателя на валу (рис. 5)·

Ваттметр покажет подводимую к двигателю мощность P1 т. е. мощность полезную P2 плюс потери мощности в двигателе:

P1= 1,73 U·I· cosфи =1,73 · 380·10·0,7=4,6 кВт.

Полезная мощность, за вычетом потерь в обмотках и стали, а также механических в подшипниках

5. Трехфазный генератор отдает ток I=50 А при напряжении U=400 В и cosфи =0,7. Какая механическая мощность в лошадиных силах необходима для вращения генератора при к. п. д. генератора равна 0,8 (рис. 6)·

Активная электрическая мощность генератора, отдаваемая электродвигателю, PГ2=·(3·) U·I· cosфи =1,73·400·50·0,7=24220 Вт =24,22 кВт.

Механическая мощность, подводимая к генератору, PГ1 покрывает активную мощность PГ2 и потери в нем: PГ1=PГ2/Г =24,22/0,8 · 30,3 кВт.

Эта механическая мощность, выраженная в лошадиных силах, равна:

PГ1=30,3·1,36·41,2 л. с.

На рис. 6 показано, что к генератору подводится механическая мощность PГ1. Генератор преобразует ее в электрическую, которая равна

Эта мощность, активная и равна PГ2=1,73·U·I· cosфи , передается по проводам электродвигателю, в котором она преобразуется в механическую мощность. Кроме того, генератор посылает электродвигателю реактивную мощность Q, которая намагничивает двигатель, но в нем не расходуется, а возвращается в генератор.

Она равна Q=1,73·U·I·sinфи и не превращается ни в тепло, ни в механическую мощность. Полная мощность S=P· cosфи , как мы видели раньше, определяет только степень использования материалов, затраченных на изготовление машины. ]

6. Трехфазный генератор работает при напряжении U=5000 В и токе I=200 А при cosфи =0,8. Чему равен его к. п. д., если мощность, отдаваемая двигателем, вращающим генератор, равна 2000 л. с.

Мощность двигателя, поданная на вал генератора (если нет промежуточных передач),

Мощность, развиваемая трехфазным генератором,

PГ2=(3·)U·I· cosфи =1,73·5000·200·0,8=1384000 Вт =1384 кВт.

К. п. д. генератора PГ2/PГ1 =1384/1472=0,94=94%.

7. Какой ток проходит в обмотке трехфазного трансформатора при мощности 100 кВА и напряжении U=22000 В при cosфи =1

Полная мощность трансформатора S=1,73·U·I=1,73·22000·I.

Отсюда ток I=S/(1,73·U)=(100·1000)/(1,73·22000)=2,63 А. ;

8. Какой ток потребляет трехфазный асинхронный двигатель при мощности на валу 40 л. с. при напряжении 380 В, если его cosфи =0,8, а к. п. д.= 0,9

Мощность двигателя на валу, т. е. полезная, P2=40·736=29440 Вт.

Подводимая к двигателю мощность, т. е. мощность, получаемая из сети,

Ток двигателя I=P1/(1,73·U·I· cosфи )=32711/(1,73 · 380·0,8)=62 А.

9. Трехфазный асинхронный двигатель имеет на щитке следующие данные: P=15 л. с.; U=380/220 В; cosфи =0,8 соединение – звезда. Величины, обозначенные на щитке, называются номинальными.

Чему равны активная, полная и реактивная мощности двигателя? Каковы величины токов: полного, активного и реактивного (рис. 7)?

Механическая мощность двигателя (полезная) равна:

Подводимая к двигателю мощность P1 больше полезной на величину потерь в двигателе:

Полная мощность S=P1/ cosфи =13/0,8=16,25 кВА;

Q=S·sinфи=16,25·0,6=9,75 кВАр (см. треугольник мощностей).

Ток в соединительных проводах, т. е. линейный, равен: I=P1/(1,73·U· cosфи )=S/(1,73·U)=16250/(1,731,7380)=24,7 А.

Активный ток Iа=I· cosфи =24,7·0,8=19,76 А.

Реактивный (намагничивающий) ток Iр=I·sinфи=24,7·0,6=14,82 А.

10. Определить ток в обмотке трехфазного электродвигателя, если она соединена в треугольник и полезная мощность двигателя P2=5,8 л. с. при к. п. д. =90%, коэффциенте мощности cosфи =0,8 и линейном напряжении сети 380 В.

Полезная мощность двигателя P2=5,8 л. с., или 4,26 кВт. Поданная к двигателю мощность

P1=4,26/0,9=4,74 кВт. I=P1/(1,73·U· cosфи )=(4,74·1000)/(1,73 · 380·0,8)=9,02 А.

При соединении в треугольник ток в обмотке фазы двигателя будет меньше, чем ток подводящих проводов: Iф=I/1,73=9,02/1,73=5,2 А.

11. Генератор постоянного тока для электролизной установки, рассчитанный на напряжение U=6 В и ток I=3000 А, в соединении с трехфазным асинхронным двигателем образует двигатель-генератор. К. п. д. генератора Г=70%, к. п. д. двигателя Д=90%, а его коэфициент мощности cosфи =0,8. Определить мощность двигателя на валу и подводимую к нему мощность (рис. 8 и 6).

Полезная мощность генератора PГ2=UГ·IГ=61,73000=18000 Вт.

Подводимая к генератору мощность равна мощности на валу P2 приводного асинхронного двигателя, которая равна сумме PГ2 и потерь мощности в генераторе, т. е. PГ1=18000/0,7=25714 Вт.

Активная мощность двигателя, подаваемая к нему из сети переменного тока,

P1 =25714/0,9=28571 Вт = 28,67 кВт.

12. Паровая турбина с к. п. д. ·Т=30% вращает генератор с к. п. д. = 92% и cosфи = 0,9. Какую подводимую мощность (л. с. и ккал/сек) должна иметь турбина, чтобы генератор обеспечивал ток 2000 А при напряжении U=6000 В (Перед началом расчета см. рис. 6 и 9.)

Мощность генератора переменного тока, отдаваемая потребителю,

PГ2=1,73 · U·I· cosфи =1,73·6000·2000·0,9=18684 кВт.

Подводимая к генератору мощность равна мощности P2 на валу турбины:

Подводимая к турбине при помощи пара мощность

или P1=67693·1,36=92062 л. с.

Подводимую мощность к турбине в ккал/сек определим по формуле Q=0,24·P·t;

13. Определить сечение провода длиной 22 м, по которому идет ток к трехфазному двигателю мощностью 5 л. с. напряжением 220 В при соединении обмотки статора в треугольник. cosфи =0,8; ·=0,85. Допустимое падение напряжения в проводах U=5%.

Подводимая к двигателю мощность при полезной мощности P2

По соединительным проводам протекает ток I=P1/(U·1,73· cosфи ) = 4430/(220·1,73·0,8)=14,57 А.

В трехфазной линии токи складываются геометрически, поэтому падение напряжения в проводе следует брать U : 1,73 , а не U : 2, как при однофазном токе. Тогда сопротивление провода:

где U – в вольтах.

Сечение проводов в трехфазной цепи получается меньшим, чем в однофазной.

14. Определить и сравнить сечения проводов для постоянного переменного однофазного и трехфазного токов. К сети подсоединены 210 ламп по 60 Вт каждая на напряжение 220 В, находящиеся на расстоянии 200 м, от источника тока. Допустимое падение напряжения 2%.

а) При постоянном и однофазном переменном токах, т. е. когда имеются два провода, сечения будут одинаковыми, так как при осветительной нагрузке cosфи =1 и передаваемая мощность

а ток I=P/U=12600/220=57,3 А.

Допустимое падение напряжения U=220·2/100=4,4 В.

Сопротивление двух проводов r=U/I·4,4/57,3=0,0768 Ом.

Для передачи мощности необходимо общее сечение проводов 2·S1=2·91,4=182,8 мм2 при длине провода 200 м.

б) При трехфазном токе лампы можно соединить в треугольник, по 70 ламп на сторону.

При cosфи =1 передаваемая по проводам мощность P=1,73·Uл·I.

Допустимое падение напряжения в одном проводе трехфазной сети не U·2 (как в однофазной сети), a U·1,73. Сопротивление одного провода в трехфазной сети будет:

Общее сечение проводов для передачи мощности 12,6 кВт в трехфазной сети при соединении в треугольник меньше, чем в однофазной: 3·S3ф=137,1 мм2.

в) При соединении в звезду необходимо линейное напряжение U=380 В, чтобы фазное напряжение на лампах было 220 В, т. е. чтобы лампы включались между нулевым проводом и каждым линейным.

Ток в проводах будет: I=P/(U:1,73)=12600/(380:1,73)=19,15 А.

Сопротивление провода r=(U:1,73)/I=(4,4:1,73)/19,15=0,1325 Ом;

Общее сечение при соединении в звезду – самое маленькое, что достигается увеличением напряжения тока для передачи данной мощности: 3·S3зв=3·25,15=75,45 мм2.

Расчет однофазного и трехфазного тока

   Добрый день!
   Из этой статьи вы узнаете по каким формулам рассчитывается однофазный и трехфазный ток, какие параметры нужно знать чтобы выполнить расчет и где их найти. Ну и конечно же я приведу пример по расчету однофазного и трехфазного токов.

Формула для расчета однофазного тока выглядит следующим образом:


где P - мощность электроприемника, Вт

      U - напряжение питающей сети, В

      cosφ - коэффициент мощности

       

Формула для расчета трехфазного тока выглядит следующим образом: 

где P - мощность электроприемника, Вт

      U - напряжение питающей сети, В

      cosφ - коэффициент мощности

Для электродвигателей имеет смысл учитывать коэффициент полезного действия (КПД), поэтому формулы приобретают следующий вид:

где P - мощность электроприемника, Вт

      U - напряжение питающей сети, В

      cosφ - коэффициент мощности

      ɳ - КПД

   Можно заметить, что формулы для расчета однофазного и трехфазного токов не сложные, осталось только разобраться где брать составляющие для их расчета. 

   Мощность электроприемника (P, Вт) можно узнать из паспорта, который к нему прилагается или по табличке на корпусе устройства. Если же такой информации нет, то в интернете вы без труда найдете мощность нужного электроприемника, но для этого нужно знать точное название.

    Напряжение питающей сети (U,B) при расчетах однофазных электроприемников принимается 220В, а при расчете трехфазных электроприемников 380В. На практике эти значения обычно отличаются, так как напряжение на вводе немного завышено с целью предотвращения потерь напряжения. Бывают так же случаи когда напряжение на вводе ниже номинального из за большой удаленности потребителя и т.д.

   Коэффициент мощности cosφ (отношение активной и полной мощности) при расчетах берется из паспорта к электроприемнику, а если такая информация там отсутствует то берется из справочников. В подавляющем большинстве случаев значение cosφ неизвестно, но известны средние значения для того или иного типа потребителей, подставив которые можно выполнить расчет. Идеальный случай - это когда cosφ=1, но таким значением могут похвастаться лишь ТЭНы, обогреватели, лампы накаливания  (0,99-1). У электродвигателей значения коэффициентов мощности варьируются в пределах 0,7-0,9, у люминесцентных и светодиодных светильников  коэффициент мощности варьируется в пределах (0,85-0,96), у компьютеров 0,6-0,8.

   Все вышеприведенные параметры можно замерить опытным путем, тем самым проверить правильность расчетов.

   КПД указывается в паспорте к электродвигателю.

   

   Ну а теперь я приведу несколько примеров по расчету токов.

   Пример 1. Возьмем электрический чайник, мощностью 2кВт. Мы знаем, что он подключается к электросети 220В, а так же знаем коэффициент мощности (0,99-1), которым в данном случае мы можем пренебречь. Далее берем формулу для однофазного тока, и получаем:

   Пример 2. Возьмем трехфазный электродвигатель АИР56B2 мощностью 0,25кВт. Коэффициент мощности данного электродвигателя составляет 0,78. Для расчета тока электродвигателей стоит учитывать КПД (ɳ), который для данного двигателя равен 66%. Далее берем формулу для расчета трехфазного электрического тока, и получаем:

   Подводя итог, отмечу что правильный подсчет токов очень важен в проектировании, либо просто в быту. Правильно посчитав токи можно с уверенностью выбирать защитный, коммутационный аппарат, либо подбирать сечение проводника. 4

     Если же Вам необходим совет по расчету тока, либо выбору кабеля, обращайтесь в форму обратной связи. Помогу чем смогу!

Мощность трехфазной сети: расчет полной мощности формулой

В подавляющем большинстве случаев в домах и квартирах используется трехфазная сеть. Однако часто применяются приборы, которым необходимо однофазное питание. Чтобы лучше разбираться в особенностях использования трехфазной сети, нужно понимать, как она работает. В статье подробно рассмотрено, как правильно определить ее мощность и каким образом это можно использовать.

Что такое трехфазная сеть в электричестве

Многофазная электрическая сеть переменного тока была создана благодаря американскому ученому Н. Тесле. В России ученый М. Доливо-Добровольский разработал и содействовал повсеместному внедрению трехфазной электросети.

 Соединение источника и потребителей

Подаются три фазы переменного тока, которые равны по амплитуде и сдвинуты друг относительно друга на 120°. Фазы могут быть соединены между собой несколькими способами. Самыми распространенными из них являются «звезда» и «треугольник».

В первом случае у них имеется один общий провод. При таком варианте использования появляется возможность подавать линейное или фазовое напряжение. В квартире первое равно 380 В, второе — 220 В. Общий провод обычно соединен с землей, хотя существуют схемы подключения, в которых это не так.

К сведению! При подключении «треугольником» каждый выход фазы соединен с одним выходом другой фазы.

 Трехфазная линия передачи

Свойства трехфазной сети

Использование трехфазного электропитания завоевало широкую популярность по следующим причинам:

  • таким способом минимизируются потери при передаче электроэнергии на большие расстояния;
  • трехфазные схемы требуют для реализации меньшего количества деталей и материалов по сравнению с однофазными;
  • есть возможность обеспечить в сети питание 380 В или 220 В.

Обратите внимание! Трехфазное напряжение часто используется для питания асинхронных двигателей, некоторых теплонагревательных приборов, для работы мощных устройств.

 Четыре провода питания

Какая сила тока трехфазной сети

На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.

Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя.

 Трехфазная система с нейтралью

Для определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).

Здесь можно использовать известные данные:

  • P — мощность электроприбора, известная из его инструкции по эксплуатации;
  • U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).

Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.

Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.

 Прибор для измерения мощности — ваттметр

Какая стандартная потребляемая ее мощность

Чтобы рассчитать электрическую мощность, потребляемую квартирой или частным домом, нужно учесть потребление энергии всеми используемыми электроприборами. Это удобно делать в два этапа:

  1. Рассмотреть все те приборы, которым необходимо питание, использующее три фазы.
  2. Просуммировать потребляемую мощность однофазных устройств.

Искомые значения можно взять либо из техпаспорта электроприбора, либо из технического справочника. При необходимости эту величину можно рассчитывать на основе сделанных измерений. В реальной жизни устройства практически никогда не включаются одновременно.

Обратите внимание! Знание предельной величины потребляемой энергии позволит правильно организовать электроснабжение дома или квартиры.

На основе полученных данных можно, используя формулы мощности, вычислить, какова предельно допустимая сила тока в трехфазной сети, которую должна выдерживать электропроводка. Это позволит правильно подобрать предохранители и используемые во внутренней электросети провода.

 Принцип действия трехфазного генератора

Как правильно рассчитать мощность трехфазной сети

Если трехфазная сеть использует соединение «треугольник», то потребители могут получать однофазное напряжение фазное или линейное. При этом оно будет иметь разную величину: первое будет меньше второго примерно в 1,71 раза (точное значение равно квадратному корню из 3). Силу тока в первом и втором случаях легко рассчитать — будет одинаковой.

К сведению! Если используется вариант соединения «треугольником», то линейное и фазовое напряжения будут равны. Однако фазовый ток будет меньше линейного в 1,71 раза.

 Характеристики трехфазных цепей

Далее рассказано, как рассчитать мощность трехфазной сети. Для этого необходимо просуммировать мощности всех трех фаз. В качестве примера соединение «треугольником». В этом случае для каждой фазы эта характеристика определяется по следующей формуле: P1 = U(f) * I(f) * cos(«фи«).

В формуле расчета мощности трехфазной сети использованы такие обозначения:

  • P1 — мощность каждой из трех фаз;
  • U (f) — фазовое напряжение;
  • I (f) — фазовая сила тока;
  • «фи» — угол, определяемый соотношением активной и реактивной мощности.

Мощность, выделяющаяся на нагрузке, включает в себя активную и реактивную компоненты. Между ними существует сдвиг фаз «фи». Его смысл состоит в том, что при помощи указанного коэффициента определяется доля реактивной мощности в ее суммарной величине.

Чтобы определить мощность трехфазной сети, нужно просуммировать мощность всех трех фаз. Формула выглядит следующим образом: P = 3 * (U (f) * I(f) * cos(«фи»)). P означает искомую величину. Эту величину при расчете можно определить с помощью линейных величин силы тока и напряжения. Поскольку U(f) = U(l) / кв. корень(3), а I(f) = I(l), то мощность можно будет вычислять таким образом.

P = 3 * (U(f) * I(f) * cos(«фи»)) = 3 * (U(l) * I(l) * cos(«фи») / кв. корень(3)) = кв. корень(3) * U(l) * I(l) * cos(«фи«).

При подключении с помощью схемы «треугольник» вычисления выполняются аналогичным образом. При расчете активной мощности в трехфазной сети нужно учитывать, что фазовое и линейное напряжения будут равны, но фазовая сила тока будет в кв. корень (3) меньше линейной.

Обратите внимание! После выполнения преобразований формула мощности трехфазного тока будет такой же, как и для соединения «звездой».

 Счетчик электроэнергии

Использование трехфазных сетей имеет свои важные преимущества и является широко распространенным. Чтобы грамотно их эксплуатировать, необходимо знать характеристики и формулы для расчета напряжения.

некоторые формулы для вычисления и методы измерения мощности

Как измерять мощность трёхфазного токаПеременный и постоянный ток отличаются один от другого многими параметрами, а особенно наличием фаз у первого вида. С этими отличиями связаны более сложные формулы и методы вычислений численных значений величин, характеризующих переменный ток, в том числе и мощность трёхфазного тока.

Характеристики трёхфазных цепей

Электрические системы, использующие в качестве источника питания трёхфазный ток, имеют два основных вида подключения: «звезда» и «треугольник». На схемах, изображающих подключение трёхфазного питания, принято обозначать фазы с помощью набора латинских букв:

  • А, В, С;
  • или же U, V, W.

А так называемая нейтраль обозначается буквой N.

Характеристики трёхфазных цепей

На практике довольно часто приходится сталкиваться с необходимостью расчёта мощности электрического тока. В случае постоянного тока эта задача решается предельно просто - путём умножения напряжения и силы тока. Эти параметры не подвержены изменениям во времени, поэтому и значение мощности будет неизменным, так как система уравновешена и постоянно находится в таком состоянии.

Совершенно иная ситуация возникает при необходимости расчётов мощности изменяющегося во времени по величине и направлению течения электрического тока. Выполнение таких вычислений требует специальных знаний о природе переменного тока и его особенностях.

Мощность трёхфазного тока вычисляется как сумма отдельных величин на каждой фазе и выражается формулой: Формула 1

При условии равномерной загрузки сети, мощность, потребляемую каждой из них, определяют следующим образом: Формула 2. То есть эту величину на отдельной фазе находят с помощью произведения соответствующих напряжений и токов на косинус угла сдвига фаз.

А так как нагрузка распределяется одинаково на каждую фазу, то и мощностные характеристики по отдельности будут равны между собой. В результате мощность трехфазной сети в этой ситуации можно найти, умножив на 3 эту величину, вычисленную для отдельной фазы: Формула 3.

Соединение звезда

Использование такой схемы при соединении фаз даёт возможность уравновесить систему и получить суммарное напряжение в точке их пересечения N равное нулю. В случае соединения по схеме «звезда» трёхфазный ток характеризуется двумя типами напряжений: фазным и линейным. Фазное напряжение измеряется между одной из фаз (А, В или С) и нулевой точкой N, а линейное показывает значение разности потенциалов между двумя фазами (А-В, В-С или А-С).

Соотношения между линейными и фазными напряжениями и токами при такой схеме соединения выглядит следующим образом: Формула 4 и Формула 5.

А, следовательно, общая мощностная характеристика находится по формуле: Формула 6.

Соединение звезда

Соединительная схема треугольник

При подключении нагрузок в трёхфазной цепи по принципу «треугольника» одинаковыми будут значения линейного и фазного напряжения, а величины силы тока (линейная и фазная) будут связаны соотношением: Формула 7.

Результирующая формула для мощности 3-фазного тока при равномерной нагрузке на каждую фазу в этом соединении будет выглядеть как Формула 8.

Соединительная схема треугольник

Измерение мощности

Измерять мощность трёхфазных цепей позволяют ваттметры, специальные приборы, предназначенные для этой цели. Их количество и способы подключения зависят от конкретной электрической цепи: её характеристик и схемы подключения нагрузок. Трёхфазные сети различают по количеству подводящих проводов и распределением нагрузки по фазам, а именно:

  • трёхпроводная система;
  • четырёхпроводная система;
  • равномерная нагрузка;
  • асимметричная нагрузка.

В зависимости от варианта комбинации системы и нагрузки определяется методика измерения мощности в электрической сети.

Симметричная нагрузка

Если система состоит из четырёх проводов (3 фазы и «ноль»), а нагрузка равномерно распределена между фазами, то для того, чтобы узнать суммарную величину мощности, достаточно иметь один прибор для измерения. Токовую обмотку ваттметра последовательно подключают в один из линейных проводов, а между линейным и нулевым проводами включается обмотка напряжения измерительного устройства. Этот вид подключения даёт возможность узнать количество ватт на одной фазе. А поскольку нагрузка в системе распределяется равномерно, то результирующую мощность трёхфазной сети находят умножением полученных показаний на количество фаз, то есть на 3.

Мощность трехфазной цепи при симметричной нагрузке

В случае трёхпроводной системы обмотка напряжения измерительного прибора включается на линейное напряжение сети, а его токовая обмотка пропускает через себя линейный электропоток. Поэтому общая мощность сети будет больше показаний ваттметра в Формула 10 раз.

Неравномерное распределение потребителей

Цепи с несимметричной нагрузкой на фазах требуют использования нескольких ваттметров для определения мощностной характеристики. В системе, состоящей из четырёх проводов, нужно подключить три прибора таким образом, чтобы обмотки напряжений каждого были включены между нулевым проводом и одной из фаз. Общий результат находится путём суммирования отдельных показаний каждого ваттметра.

Трёхпроводная система потребует минимум двух ваттметров для определения мощности всей цепи. С входным токовым зажимом и оставшимся свободным линейным проводом соединяются обмотки напряжений каждого отдельного ваттметра. Полученные показания складывают и получают значение этой величины для трёхфазной цепи. Эта схема подключения измерительных приборов основана на первом законе Кирхгофа.

Подобные нюансы очень важны при проектировании трёхфазной сети для частного сектора. А также их стоит учитывать при правильном обслуживании уже действующих систем электропитания.

Расчет трехфазной реальной и реактивной мощности

Блок измерения мощности (трехфазный) измеряет действительную и реактивная мощность элемента в трехфазной сети. Блок выводит мощность величины для каждого частотного компонента, указанного в выбранном симметричном последовательность.

Используйте этот блок для измерения мощности как для синусоидального, так и для несинусоидального периодического сигналы. Для измерения однофазной мощности рассмотрите возможность использования мощности Блок измерений.

Установите для параметра Sample time значение 0 для работа в непрерывном режиме или явно для работы в дискретном времени.

Укажите вектор всех частотных компонентов для включения в выходную мощность, используя Гармонические числа параметр:

Уравнения

Для каждой указанной гармоники k блок вычисляет действительное мощность P k и реактивная мощность Q K для указанной последовательности из уравнение вектора:

Pk + jQk = 32 (VkejθVk) (IkejθIk¯),

, где:

  • VkejθVk - это вектор, представляющий к -компонентное напряжение выбранной последовательности.

  • IkejθIk¯ является комплексным сопряжением IkejθIk, вектором, представляющим к -компонентный ток выбранной последовательности.

Выберите симметричную последовательность, используемую при расчете мощности, используя Параметр последовательности :

  • Положительный :

    VkejθVk = Vk + ejθVk +, IkejθIk = Ik + ejθIk +

  • Отрицательный :

    VkejθVk = Vk − ejθVk−, IkejθIk = Ik − ejθIk−

  • Ноль :

    VkejθVk = Vk0ejθVk0, IkejθIk = Ik0ejθIk0

Блок вычисляет симметричный набор + -0 векторов напряжения из набора ABC векторов напряжения с использованием симметричного компоненты преобразования S :

[Vk + ejθVk + Vk − ejθVk − Vk0ejθVk0] = S [VkaejθVkaVkbejθVkbVkcejθVkc].

Для получения дополнительной информации об этом преобразовании см. Симметричный Компоненты трансформируются.

Блок получает этот набор abc векторов напряжения из входное трехфазное напряжение В (т) как:

[VkaejθVkaVkbejθVkbVkcejθVkc] = 2T∫t − TtV (t) sin (2πkFt) dt + j2T∫t − TtV (t) cos (2πkFt) dt,

, где T - период входного сигнала, или эквивалентно обратной его базовой частоте F .

Блок вычисляет симметричный набор текущих векторов так же, как он делает напряжение.

Если входные сигналы имеют конечное число гармоник n , то полная реальная мощность P и общая реактивная мощность Q Для указанной последовательности можно рассчитать их составляющие:

Сумма для Q не включает DC компонент ( k = 0 ), потому что этот компонент только способствует Реальная власть.

Наихудший тип трехфазных неисправностей (и почему это происходит)

При трехфазных неисправностях…

В трехфазной системе электропитания типы неисправностей, которые могут возникнуть, классифицируются по комбинации проводников или шин, которые неисправны вместе. Кроме того, неисправности могут быть классифицированы как неисправности с болтовым соединением или неисправности, которые возникают через некоторое сопротивление , такое как дуга. Каждый из основных типов неисправностей будет описан и показан на рис. 1.

What Would Be The Worst Type Of Three Phase Faults (And Why It Happens) Что является наихудшим типом трехфазных неисправностей и почему это происходит (фоторепортаж: everreadyelectric.ком)

Следует отметить, что в большинстве случаев для расчета токов короткого замыкания и выдерживания тока, необходимого для выбора возможностей оборудования по сопротивлению и сопротивлению току, является трехфазное замыкание на болтах с нулевым сопротивлением .

Рассмотрим каждую из четырех трехфазных неисправностей //

  1. Трехфазные болтовые неисправности
  2. межплоскостных болтовых соединений
  3. Отказы между линиями к земле
  4. Сбои в линии заземления
Designation of short-circuit categories Designation of short-circuit categories Рисунок 1 - Обозначение категорий короткого замыкания

1.Трехфазные болтовые неисправности

Трехфазная болтовая неисправность описывает состояние, при котором три провода физически удерживаются вместе с нулевым сопротивлением между ними, как если бы они были соединены болтами. Для симметричной симметричной системы величина тока повреждения сбалансирована в равной степени в пределах трех фаз.

Несмотря на то, что этот тип неисправности встречается не часто, его результаты используются для выбора защитного устройства, поскольку этот тип неисправности обычно дает максимальные значения тока короткого замыкания .

На рисунке 1 (а) представлено графическое представление трехфазной неисправности с болтовым соединением .

Three-phase short circuit Three-phase short circuit Рисунок 1a - Трехфазное короткое замыкание

Вернитесь к трехфазным неисправностям ↑


2. Неисправности между линиями болтовых соединений

Межфазные замыкания на болтах, рис. 1 (b), более распространены, чем трехфазные неисправности, и имеют токи неисправности, которые составляют приблизительно на 87% от трехфазного тока замыкания на болтах.

Этот тип повреждения не сбалансирован в трех фазах, и его ток повреждения редко рассчитывается для номинальных характеристик оборудования, поскольку он не обеспечивает максимальную величину тока повреждения.Ток между линиями можно рассчитать путем умножения трехфазного значения на 0,866 , когда полное сопротивление Z1 = Z2 .

Для этого условия не требуются специальные методы вычисления симметричных компонентов .

Bolted line-to-line faults Bolted line-to-line faults Рисунок 1b - Болтовые соединения между линиями

Вернитесь к трехфазным неисправностям ↑


3. Неисправности между линиями и землей

Отказы между линиями и землей, рис. 1 (c), как правило, представляют собой отказы от линии к земле, которые обострились и включают в себя проводник второй фазы.Это несбалансированная ошибка. Величины двойных токов замыкания на землю, как правило, больше, чем при линейных замыканиях, , но меньше, чем при трехфазных замыканиях .

Расчет токов двойного замыкания на линию требует заземления с использованием анализа симметричных компонентов . Полное сопротивление пути заземления повлияет на результат и должно быть получено, если это возможно.

Line-to-line-to-ground faults Line-to-line-to-ground faults Рисунок 1c - Отказы от линии к земле

Вернитесь к трехфазным неисправностям ↑


4.Сбои в линии заземления

Отказы линии-заземления, рис. 1 (d), являются наиболее распространенным типом неисправностей и, как правило, являются наименьшими нарушениями для системы. Ток в поврежденной фазе может находиться в диапазоне от нуля до значения, немного превышающего трехфазный ток повреждения с болтовым соединением.

Величина тока замыкания на линию-земля определяется методом заземления системы и полным сопротивлением пути возврата заземления по току замыкания.

Расчет точных значений тока короткого замыкания между линиями и землей требует специальных методов расчета симметричных составляющих .

Line-to-ground faults Line-to-ground faults Рисунок 1d - Отказы линии от земли

Тем не менее, можно получить близкие приближения, зная используемый метод заземления системы. В незаземленных распределительных системах токи короткого замыкания линия-земля близки к нулю.

Величины тока короткого замыкания между линиями и землей в распределительных системах с заземленными нейтралями системы могут быть оценены как путем деления системного напряжения линии на нейтраль на общее значение сопротивления системы от земли до нейтрали .

Величины тока короткого замыкания на землю в распределительных системах с заземленной системой будут приблизительно равны амплитудам трехфазного тока короткого замыкания. Определение токов замыкания на линию на землю на длинных кабельных трассах или линиях электропередачи потребует подробных данных об импедансе пути заземления и подробных методов расчета.

Вернитесь к трехфазным неисправностям ↑

Справочник // Рекомендуемая практика IEEE для расчета токов короткого замыкания в промышленных и коммерческих энергосистемах

,
трехфазных цепей переменного тока с пояснительными ответами

трехфазных цепей переменного тока (MCQ с пояснительными ответами)

трехфазных цепей переменного тока с пояснениями. Для получения пояснительного ответа нажмите на кнопку-переключатель, помеченную как «проверить пояснительный ответ».

Q1. Мощность в трехфазной цепи = _________.

  1. P = 3 В Ph I Ph CosФ
  2. P = √3 В L I L CosФ
  3. Оба 1 и 2.
  4. Ничего из вышеперечисленного

Показать пояснительный ответ

Ответ: (3)… Обе 1 и 2.

Объяснительный ответ:
Общая мощность в трехфазной цепи,
P = 3 x Мощность на Фаза,
P = 3 x В Ph I Ph CosF
P = 3 В Ph I Ph CosF ………… (1)

[Для соединения треугольником]

[V Ph = V L и I Ph = I L / √3.]

, затем помещая значения в уравнение… .. (1)
P = 3 x V L x (I L / √3) x CosФ
P = √3 x√3 x V L x (I L / √3) x CosФ… {3 = √3x√3}
P = √3 x V L x I L x CosФ… .Ans.

Также
[для подключения типа «звезда»]

[V Ph = V L / √3 и I Ph = I L ] Снова введя значения в уравнение ……. (1)
P = 3 x (V L / √3) x IL x CosФ
P = √3 x√3 x (V L / √3) x I L x CosФ… {3 = √3x√3}
P = √3 x V L x I L x CosФ….Отв.

Q2. Многофазная система генерируется ______?

  1. Наличие двух или более обмоток генератора, разделенных одинаковым электрическим углом.
  2. Наличие обмоток генератора на равных расстояниях
  3. Ни один из вышеперечисленных
  4. A и C

Показать пояснительный ответ

Ответ: 1. Наличие двух или более обмоток генератора, разделенных одинаковым электрическим углом.

Пояснительный ответ:

Генератор с двумя или более электрическими обмотками, которые разделены равным электрическим углом, генерирует многофазную электрическую систему.Электрический угол или смещение зависит от количества обмоток или фаз. Например, в трехфазной электрической системе генерируемые напряжения отделены друг от друга на 120 ° градусов.

Q3. В трехфазной цепи переменного тока сумма всех трех генерируемых напряжений составляет _______?

  1. Бесконечно (∞)
  2. Ноль (0)
  3. Один (1)
  4. Ничего из вышеперечисленного

Показать пояснительный ответ

Ответ: 2. Ноль (0)

Объяснительный ответ:

Трехфазные напряжения генерируются при наличии генератора с тремя обмотками якоря, так что каждая обмотка смещена от другой на 120 градусов.Когда эти обмотки помещаются во вращающееся магнитное поле или вращаются в стационарном магнитном поле, электродвижущая сила генерируется в каждой катушке одинаковой величины и направления. Рассмотрим приведенную ниже диаграмму

In a three phase AC circuit, the sum of all three generated voltages is In a three phase AC circuit, the sum of all three generated voltages is 3 phase ac circuits the phase sinewaves mcqs 3 phase ac circuits the phase sinewaves mcqs

Рисунок: 3-фазные сигналы переменного тока

Как видно, ЭДС, генерируемая в катушке R-R1, представляет собой e R , которая является эталонной в данном случае. ЭДС, генерируемая в катушке Y-Y1, равна e Y , что на 120 ° градусов впереди e R , а ЭДС, генерируемая в катушке B-B1, составляет e B , что на 240 ° градусов выше e R .

Следовательно, уравнения напряжения приведены ниже;

e Y = E m sin⁡ (вес - 120 °)

e B = E m sin⁡ (вес - 240) = E m sin ⁡ (вес + 120 °)

Сложив все три уравнения, получим

e R + e Y + e B = E m (sin ⁡wt + sin⁡ (wt - 120 °) + sin ⁡ (вес + 120 °))

= E m (sin ⁡wt + sin⁡ wt cos⁡ 120 ° - cost wt sin⁡ 120 ° + sin⁡ wt cos ⁡120 ° + cos ⁡wt sin⁡ 120 °) = 0

i.e, e R + e Y + e B = 0

Следовательно, сумма всех трех напряжений равна нулю.

Q4. Для трехфазной сети переменного тока, подключенной к звезде -

  1. Фазное напряжение равно линейному напряжению, а фазовый ток в три раза больше линейного тока
  2. Фазное напряжение равно квадратному корню в три раза линейному напряжению, а фазовый ток равен линейному току
  3. Фазное напряжение равно линейному напряжению, а сетевой ток равен фазному току
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Ответ: 2.Фазное напряжение равно квадратному корню, в три раза больше линейного напряжения, а фазовый ток равен линейному току

Пояснительный ответ:

Цепь переменного тока, соединенная звездой, достигается путем подключения каждого конца обмотки к общей точке, известной как нейтральная точка и оставляя другой конец каждой обмотки свободным. В то время как напряжение на каждой катушке является фазным напряжением, разность потенциалов между каждым свободным концом является линейным напряжением.

Рассмотрим схему ниже;

three phase mcqs three phase mcqs

Теперь, как указано выше, фазные напряжения равны

Следовательно, V NR = V NY = V NB = V ph

electrical mcqs electrical mcqs

Следовательно, линейное напряжение ,

В RY = √3 В PH

Поскольку линейный проводник включен последовательно с фазовой обмоткой, через линейный проводник будет проходить тот же ток, что и через фазовые обмотки, поэтому фазовый ток равен фазный ток.

Q5. В трехфазном соединении треугольник ——-

  1. линейный ток равен фазному току
  2. Сетевое напряжение равно фазному напряжению
  3. Ни одно из вышеперечисленных
  4. Сетевое напряжение и ток линии равны нулю

Показать пояснения Ответ

Ответ: 2. Напряжение в сети равно фазному напряжению

Пояснительный ответ:

Цепь переменного тока, соединенная треугольником, достигается путем подключения начального конца обмотки к конечному концу другой обмотки таким образом, чтобы все три обмотки образуют сетку.Поскольку каждый конец обмоток образует линейное соединение, напряжение на каждой обмотке равно разности потенциалов между соответствующими линиями, взятыми из этой обмотки. Следовательно, фазовое напряжение равно линейному напряжению.

Q6. Для сети со звездообразным соединением, потребляющей мощность 1,8 кВт и коэффициент мощности 0,5, индуктивность и сопротивление каждой катушки при напряжении питания 230 В, 60 Гц, составляет ______?

  1. 0,1H, 8 Ом
  2. 0,5H, 10 Ом
  3. 0.3H, 7,4 Ом
  4. 1H, 7 Ом

Показать пояснительный ответ

Ответ: 3. 03H, 7,4 Ом

Объяснительный ответ:

Заданные значения:

Напряжение в сети, В L = 230 В

Частота сети, f = 60 Гц

Коэффициент мощности, cosφ = 0,5

Потребляемая мощность = P = 1800 Вт = √3 В л x I л x cosφ

Следовательно, линейный ток, I L = 9 ампер

Поскольку это соединение типа «звезда», то фазовый ток = линейный ток = 9 ампер

фазное напряжение, В ph = V L / √3 = 132.8 Вольт

Фазовое сопротивление, Z ф. = В ф. / I ф. = 14,7 Ом.

Теперь, коэффициент мощности = сопротивление / импеданс.

reactance of coil reactance of coil

Подставляя значения, получаем Реактивное сопротивление катушки = 12,7 Ом

Таким образом, индуктивность катушки, L = 0,03H

Q7. Для трехфазной треугольной нагрузки, питаемой от сети, соединенной звездой, мощность, передаваемая нагрузке, составляет _____? Star to Delta & Delta to Star MCQs Star to Delta & Delta to Star MCQs

  1. 3 кВт
  2. 4.7 кВт
  3. 5 кВт
  4. 7 кВт

Показать пояснительный ответ

Ответ: 2. 4. 7 кВт

Объяснительный ответ:

Заданные значения:

Звездное фазное напряжение, В PH = 230 Вольт

Сопротивление фазовой нагрузки, R PHLd = 20 Ом

Реактивное сопротивление фазовой нагрузки, X PHLd = 40 Ом

Следовательно, полное сопротивление фазовой нагрузки, ee mcqs ee mcqs

Напряжение на линии, подключенной к звезде, V L = V PHs = 398.37 Вольт

Для нагрузки, соединенной треугольником, фазное напряжение, В PHLd = V L = 398,37 Вольт

Следовательно, ток через каждую фазу нагрузки, I PHLd = V PHLd / Z PHLd = 8,9 Ампер

Линейный ток для треугольной нагрузки, I L = √3 I PHLd = 15,41 Ампер

Коэффициент мощности, p фс = R phLd / Z PHLd = 0,44

Таким образом тогда мощность, подаваемая на нагрузку, P L = V L I L p фс = 4.7 кВт

Q8. В трехфазной цепи переменного тока мощность измеряется с помощью ваттметра.

  1. True
  2. False

Показать пояснительный ответ

Ответ: 1. True

Объяснительный ответ:

Мощность измеряется с помощью ваттметра, который состоит из двух катушек - токовой катушки, соединенных последовательно с нагрузкой, несущей ток нагрузки и катушкой напряжения, подключенной параллельно нагрузке.

Q9. Для многофазной системы количество ваттметров, необходимое для измерения мощности, равно ——

  1. Количество проводов
  2. На один меньше количества проводов
  3. Количество фаз
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Ответ: 2. Число проводов меньше, чем

Пояснительный ответ:

Количество ваттметров, необходимое для измерения мощности в многофазной системе, определяется по теореме Блонделла.В соответствии с этим, необходимое количество ваттметров на единицу меньше количества проводов в цепи. Например, в трехфазной четырехпроводной системе (звездная сеть) требуемое количество ваттметров равно трем.

Q10. Для сети с равным сопротивлением, соединенной звездой ниже, если показание ваттметра составляет 5 кВт, а показание амперметра - 25 ампер, коэффициент мощности, сопротивление и индуктивность равны __________ соответственно. wattmeter star delta mcqs 5kw resistor inductor capacitance wattmeter star delta mcqs 5kw resistor inductor capacitance

  1. 1,5 Ом, 0.1H
  2. 0,866, 8 Ом, 0,02H
  3. 5,10 Ом, 0,01H
  4. 4. Ом, 0,02H

Показать пояснительный ответ

Ответ: 0,866, 8 Ом, 0,02H

Пояснительный Ответ:

с учетом

линейного напряжения, В L = 400 Вольт

частоты, f = 60 Гц

линейного тока, I L = 25 ампер

Мощность на фазу, P ph = 5 кВт

Фазное напряжение, В ph = V L /3 ^ 1/2 = 230.9 Вольт

Фазный ток, I ph = 25 Ампер

Следовательно, коэффициент мощности, cosφ = P ph / V ph I ph = 0,866

Импеданс, Z ph = V ph / I ph = 9.236 Ом

Сопротивление, R = Z ph cosφ = 8 Ом

Подстановка значений в уравнение ниже, Реактивное сопротивление, X = 3 Phase MCQS 3 Phase MCQS Следовательно, индуктивность, L = 0,02H

Q11. Для трехфазной трехпроводной системы два ваттметра считывают 4000 Вт и 2000 Вт соответственно.Коэффициент мощности, когда оба счетчика дают прямое считывание, составляет _______?

  1. 1
  2. 0,5
  3. 0,866
  4. 0,6

Показать пояснительный ответ

Ответ: 3. 0,866

Объяснительный ответ:

Чтение ваттметра 1, Вт 1 = 4000 Ватт

Показание ваттметра 2, Вт 2 = 2000 Вт

Фазовый угол; three phase power mcqs three phase power mcqs

Коэффициент мощности, = 0,866

Q12. Для сбалансированной трехфазной трехпроводной системы с входной мощностью 10 кВт при коэффициенте мощности 0,9 показания на обоих ваттметрах соответственно равны

  1. 7 кВт, 3 кВт
  2. 6350 Вт, 3650 Вт
  3. 5000 Вт, 5000 Вт
  4. 7600 Вт, 1200 Вт

Показать пояснительный ответ

Ответ: 2. 6350 Вт, 3650 Вт

Объяснительный ответ:

Пусть показание одного ваттметра = W 1

Чтение второго ваттметра = W 2

Входная мощность, P = W 1 + W 2 = V L I L cosφ = 10 кВт ……………… (1)

Коэффициент мощности, cos φ = 0 ,9

Фазовый угол, φ = 25,8 градуса …… (т. Е. Cos -1 = 09 = 25,8 °)

Следовательно,

W 1 = V L I L cos (30 - φ ) = 0,99 В L I L = 6350 Вт

Вт 2 = V L I L cos (30 + φ) = 0,56 В L I L = 3650 Вт

Q13. Многофазная система генерируется:

  1. с двумя или более обмотками генератора, разделенными равным электрическим углом.
  2. Наличие обмоток генератора на равных расстояниях
  3. Ни один из вышеперечисленных
  4. A и C

Показать пояснительный ответ

Ответ: (1)

Пояснительный ответ:

Генератор с двумя или более электрическими обмотки, которые разделены равным электрическим углом, образуют многофазную электрическую систему.Электрический угол или смещение зависит от количества обмоток или фаз. Например, в трехфазной электрической системе генерируемые напряжения отделены друг от друга на 120 градусов.

Q14. В трехфазной цепи переменного тока сумма всех трех генерируемых напряжений равна ————

  1. Бесконечный
  2. Ноль
  3. Один
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Ответ: (2)

Пояснительный ответ:

Трехфазное напряжение создается при наличии генератора с тремя обмотками якоря, так что каждая обмотка смещена от другой на 120 градусов.Когда эти обмотки помещаются во вращающееся магнитное поле или вращаются в стационарном магнитном поле, электродвижущая сила генерируется в каждой катушке одинаковой величины и направления. Рассмотрим схему ниже.

Phase AC Waveforms Phase AC Waveforms

Рис. 1: 3-фазные сигналы переменного тока

Как видно, ЭДС, генерируемая в катушке R-R1, представляет собой e R , которая является эталонной в данном случае. ЭДС, генерируемая в катушке Y-Y1, равна e Y , что на 120 градусов впереди e R , а ЭДС, генерируемая в катушке B-B1, составляет e B , что на 240 градусов выше e R .

Следовательно, уравнения напряжения приведены ниже.

Phase AC Waveforms Phase AC Waveforms

При сложении всех трех уравнений получаем

Three Phase AC Circuits MCQs Three Phase AC Circuits MCQs

Следовательно, сумма всех трех напряжений равна нулю.

Q15. Для трехфазной сети переменного тока, подключенной к звезде -

  1. Фазное напряжение равно линейному напряжению, а фазовый ток в три раза больше линейного тока
  2. Фазное напряжение равно квадратному корню в три раза линейному напряжению, а фазовый ток равен линейному току
  3. Фазное напряжение равно линейному напряжению, а сетевой ток равен фазному току
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Ответ: (2)

Объяснительный ответ:

Звезда подключена Цепь переменного тока достигается путем подключения каждого конца обмотки к общей точке, известной как нейтральная точка, и оставляя другой конец каждой обмотки свободным.Хотя напряжение на каждой катушке является фазным напряжением, разность потенциалов между каждым свободным концом равна напряжению линии.

Рассмотрим следующую схему Three Phase AC Circuits MCQsThree Phase AC Circuits MCQs Three Phase AC Circuits MCQsThree Phase AC Circuits MCQs

Three Phase AC Circuits MCQs Three Phase AC Circuits MCQs

Теперь, как сказано выше, фазные напряжения равны

Следовательно, V NR = V NY = V NB = V ph

Теперь,

Three Phase AC Circuits MCQsThree Phase AC Circuits MCQs Three Phase AC Circuits MCQsThree Phase AC Circuits MCQs

Следовательно, линейное напряжение, В Ry = В ph √3

Поскольку линейный проводник включен последовательно с фазовой обмоткой, через проводник линии будет проходить тот же ток, что и через линейный проводник. фазовые обмотки, следовательно, фазовый ток равен фазному току.

Q16. В трехфазном соединении треугольник ——-

  1. линейный ток равен фазному току
  2. Сетевое напряжение равно фазному напряжению
  3. Ни одно из вышеперечисленных
  4. Сетевое напряжение и линейный ток равны нулю

Показать пояснения Ответ

Ответ: (2)

Пояснительный ответ:

Схема переменного тока, соединенная треугольником, достигается путем соединения начального конца обмотки с конечным концом другой обмотки, так что все три обмотки образуют сетку.Поскольку каждый конец обмоток образует линейное соединение, напряжение на каждой обмотке равно разности потенциалов между соответствующими линиями, взятыми из этой обмотки. Следовательно, фазовое напряжение равно линейному напряжению.

Q17. Для сети со звездообразным соединением, потребляющей мощность 1,8 кВт и коэффициент мощности 0,5, индуктивность и сопротивление каждой катушки при напряжении питания 230 В, 60 Гц составляет -

  1. 0,01H, 8 Ом
  2. 0,05H 10 Ом
  3. 0.03H, 7,4 Ом
  4. 1H, 7 Ом

Показать пояснительный ответ

Ответ: (3)

Объяснительный ответ:

Приведенные значения:

Напряжение в сети, В L = 230 В

Частота линии, f = 60 Гц

Коэффициент мощности, cosφ = 0,5

Потребляемая мощность = P = 1800 Ватт = √3 В L I L cosφ

Следовательно, линейный ток, I L = 9 Ампер

Поскольку это соединение типа «звезда», фазовый ток = линейный ток = 9 Ампер

Фазное напряжение, В ph = V L /3 ^ 1/2 = 132.8 Вольт

Фазовое сопротивление, Z ph = V ph / I ph = 14,7 Ом

Теперь, Коэффициент мощности = Сопротивление / Импеданс

Следовательно, сопротивление катушки = Импеданс X Коэффициент мощности = 7,4 Ом

Reactance of Coil, Three Phase AC Circuits MCQs Three Phase AC Circuits MCQs

Подставляя значения, получаем Reactance

e of coil = 12.7 Ом

Таким образом, индуктивность катушки L = 0.03H

Q18. Для трехфазной треугольной нагрузки, питаемой от сети, соединенной звездой, мощность, передаваемая на нагрузку, составляет:

phase delta connected load fed from star connected network phase delta connected load fed from star connected network

  1. 3 кВт
  2. 7 кВт
  3. 5 кВт
  4. 7 кВт

Показать пояснительный ответ

Ответ: (2)

Пояснительный ответ:

Приведенные значения:

Напряжение фазного соединения со звездой, В phs = 230 Вольт

Сопротивление фазовой нагрузки, R phLd = 20 Ом

Реактивное сопротивление фазовой нагрузки, X phLd = 40 Ом

Следовательно, полное сопротивление фазовой нагрузки, = phase load impedance phase load impedance

Напряжение на линии, подключенной к звезде, V L = √3 В фс = 398.37 Вольт

Для нагрузки, соединенной треугольником, фазное напряжение, В phLd = V L = 398,37 Вольт

Следовательно, ток через каждую фазу нагрузки, I phLd = V phLd / Z phLd = 8,9 Ампер

Линейный ток для треугольной нагрузки, I L = √3I phLd = 15,41 Ампер

Коэффициент мощности, p фс = R phLd / Z phLd = 0,44

Таким образом, мощность, подаваемая на нагрузку, P L = √3 В L I L p фс = 4.7 кВт

Q19. В трехфазной цепи переменного тока мощность измеряется с помощью ваттметра.

  1. True
  2. False

Показать пояснительный ответ

Ответ: (1)

Объяснительный ответ:

Мощность измеряется с помощью ваттметра, который состоит из двух катушек - катушки тока, соединенных последовательно с нагрузка, несущая ток нагрузки и напряжение катушки, подключена параллельно нагрузке.

Q20. Для многофазной системы количество ваттметров, необходимое для измерения мощности, равно ——

  1. Количество проводов
  2. На один меньше количества проводов
  3. Количество фаз
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Пояснительный ответ:

Количество ваттметров, необходимое для измерения мощности в многофазной системе, определяется с помощью теоремы Блонделла. В соответствии с этим, количество требуемых ваттметров на единицу меньше количества проводов в цепи.Например, в трехфазной четырехпроводной системе (звездная сеть) требуемое количество ваттметров равно трем.

Q21. Для сети с равным сопротивлением, соединенной звездой ниже, если показание ваттметра составляет 5 кВт, а показание амперметра - 25 ампер, коэффициент мощности, сопротивление и индуктивность - соответственно,

star connected network of equal resistances star connected network of equal resistances

  1. 1,5 Ом, 0,1H
  2. 0,866, 8 Ом, 0,02H
  3. 0,5, 10 Ом, 0,01H
  4. 0,4, 8 Ом, 0,02H

Показать пояснительный ответ

Объяснительный ответ:

Данные

Линейное напряжение, В L = 400 Вольт

Частота, f = 60 Гц

Линейный ток, I L = 25 Ампер

Мощность на фазу, P ph = 5 кВт

Фазное напряжение, В ph = V L /3 ^ 1/2 = 230.9 Вольт

Фазный ток, I ph = 25 Ампер

Следовательно, коэффициент мощности, cosφ = P ph / V ph I ph = 0,866

Импеданс, Z ph = V ph / I ph = 9.236 Ом

Сопротивление, R = Z ph cosφ = 8 Ом

Реактивное сопротивление, Three Phase AC Circuits MCQs Three Phase AC Circuits MCQs

Следовательно, индуктивность, L = 0.02H

Q22. Для трехфазной трехпроводной системы два ваттметра считывают 4000 Вт и 2000 Вт соответственно.Коэффициент мощности, когда оба измерителя дают прямое считывание, составляет ———–

  1. 1
  2. 0,5
  3. 0,866
  4. 0,61818

Показать пояснительный ответ

Ответ: (3)

Объяснительный ответ:

Показания ваттметра 1, W1 = 4000 Вт

Показания ваттметра 2, W2 = 2000 Вт

.

Измерение мощности в трехфазной системе

Ваттметр

Электрическая мощность измеряется ваттметром . Ваттметр состоит из токовой катушки , соединенной последовательно с нагрузкой, а другая потенциальная катушка соединена параллельно с нагрузкой. В зависимости от силы каждого движения магнитного поля, указатель влияет. Истинная или реальная мощность отображается непосредственно в ваттметре. В трехфазных системах мощность можно измерять несколькими способами.

Power Measurement In a Three-Phase System Power Measurement In a Three-Phase System Измерение мощности в трехфазной системе (на фото: традиционный измеритель мощности)

Для временных измерений может использоваться один ваттметр. Однако для постоянных измерений используется трехфазный ваттметр , имеющий два элемента, который показывает как сбалансированные, так и несбалансированные нагрузки.

Для несбалансированной нагрузки необходимо использовать два ваттметра, как показано на рисунке .

Общая мощность рассчитывается путем сложения показаний измерений, данных двумя ваттметрами .С помощью этого метода коэффициент мощности также может быть получен.

При использовании метода с двумя ваттметрами важно отметить, что показание одного ваттметра следует изменить на обратное, если коэффициент мощности системы на меньше 0,5 . В таком случае выводы одного ваттметра, возможно, придется поменять местами, чтобы получить положительные показания. В случае коэффициента мощности менее 0,5 показания должны быть вычтены, а не добавлены.

Коэффициент мощности трехфазной системы с использованием двухваттметрического метода (W1 и W2) можно рассчитать следующим образом:

Power factor of the three-phase system Power factor of the three-phase system

Поскольку сумма и вычитание показаний сделаны для расчета полной истинной мощности трехфазной системы, показанные методы практически не используются в промышленности.

Используются скорее трехфазные анализаторы мощности, которые более удобны для пользователя.


Измеритель коэффициента мощности

В принципе, это похоже на ваттметр, только две катушки якоря имеют крепления на одном валу. Они находятся на 90 ° друг от друга.

Обе катушки якоря вращаются в соответствии с их магнитной силой. Одна катушка движется пропорционально резистивной составляющей мощности, а другая катушка движется пропорционально индуктивной составляющей мощности.

Methods of measuring the power in three-phase systems Methods of measuring the power in three-phase systems Рисунок 1 - Методы измерения мощности в трехфазных системах: а) метод с одним ваттметром для сбалансированной нагрузки; (б) Метод двух ваттметров для сбалансированных / несбалансированных нагрузок

Показывает количество энергии (электрической энергии), использованной за определенный период. В ваттметре имеется двух комплектов обмоток .

Одна - это обмотка напряжения, а другая - обмотка тока. Поле, развиваемое в обмотках напряжения, вызывает индукцию тока в алюминиевом диске.Произведенный крутящий момент пропорционален напряжению и току в системе.

Диск, в свою очередь, подключен к цифровым регистрам, которые показывают электрическую энергию , используемую в киловатт-часах .

Что общего для пивной кружки и коэффициента мощности? Учиться.

Ссылка: Практическое устранение неисправностей электрооборудования и цепей управления - М. Браун

,

Отправить ответ

avatar
  Подписаться  
Уведомление о