Мощность по напряжению и силе тока: Расчет мощности по току и напряжению

Что такое мощность тока

Мощность тока это количество электрической энергии, потребляемой за секунду. Для того, чтобы определить мощность, умножаем величину напряжения, при котором работает потребитель на силу тока, проходящего через него. Чем большее количество электроэнергии потребляется за промежуток времени, равный секунде, тем большее количество работы выполняется тем или иным потребителем. Самой главной характеристикой любой установки, предназначенной для выполнения какой либо работы, называют мощность.

Расчет мощности

Всем известно, что подведенное к потребителю напряжение, означает количество работы, совершаемой электрическим полем, при перемещении через потребителя одного кулона электричества. Количество кулонов, прошедших за одну секунду, выражается силой тока, измеряемой в амперах. При умножении работы, совершенной всеми зарядами, на кол-во этих зарядов, которые прошли за одну секунду, мы получим в итоге всю работу электрического поля за этот промежуток времени. Фактически, это и будет потребленная мощность того или иного прибора. Измерение осуществляется в ваттах и киловаттах.

Единица измерения мощности названа в честь английского механика – изобретателя Джеймса Ватта (Уатта) (1736 – 1819), создателя универсальной паровой машины.

Один ватт – это мощность, выделяемая в проводнике, когда напряжение электрического поля на концах проводника составляет один вольт, а сила тока в проводнике – один ампер. Мощность тока в 1000 ватт называется 1 киловатт (Квт).

Существует два основных вида мощности

  • Активная электрическая – преобразуется безвозвратно в другие виды энергии (световую, тепловую, механическую и др.). Измеряется в ваттах, киловаттах, мегаваттах;
  • Реактивная электрическая – величина, характеризующаяся такой электрической нагрузкой, создаваемой потребителями колебаниями энергии электромагнитного поля. Характерна для двигателей. Единица измерения – вольт – ампер реактивный (ВАр).

Существует такое понятие, как допустимая суммарная мощность. Она определяет количество потребителей, которые могут быть одновременно подключены к сети и зависит от технических характеристик сети. Недопустимо одновременное подключение суммарной мощностью, превышающей нормативную. Это может привести к увеличению силы тока, перегрузке проводки, короткому замыканию.

Как определить мощность тока

В бытовых условиях израсходованную электроэнергию измеряют при помощи электрического счетчика. Во время прохождения тока через счетчик, внутри происходит вращение облегченного алюминиевого диска. Вращение диска происходит со скоростью, пропорциональной напряжению и силе. Число сделанных оборотов за определенное количество времени, показывает работу тока, совершенную за это время. Измерение работы тока производится в киловатт часах (кВт/ч).

Работа и мощность тока | Физика

Какую работу совершает электрический ток, проходя по тому или иному участку цепи? Чтобы определить это, вспомним, что такое напряжение. Согласно формуле (11.1) U = A/q. Отсюда следует, что

A = qU,     (18.1)

где A — работа тока; q — электрический заряд, прошедший за данное время через рассматриваемый участок цепи. Подставляя в последнее равенство выражение q = It, получаем

A = IUt.     (18.2)

Итак, чтобы найти работу тока на участке цепи, надо напряжение на концах этого участка U умножить на силу тока I и на время t, в течение которого совершалась работа.

Действие тока характеризуют не только работой A, но и мощностью P. Мощность тока показывает, какую работу совершает ток за единицу времени. Если за время t была совершена работа A, то мощность тока P = A/t. Подставляя в это равенство выражение (18.2), получаем

P = IU.      (18.3)

Итак, чтобы найти мощность электрического тока P, надо силу тока I умножить на напряжение U.

В Международной системе единиц (СИ) работу выражают в джоулях (Дж), мощность — в ваттах (Вт), а время — в секундах (с). При этом

1 Вт = 1 Дж/с, 1 Дж = 1 Вт · с.

Мощности некоторых электроустройств, выраженные в киловаттах (1 кВт = 1000 Вт), приведены в таблице 5.

Рассчитаем наибольшую допустимую мощность потребителей электроэнергии, которые могут одновременно работать в квартире. Так как в жилых зданиях сила тока в проводке не должна превышать I = 10 А, то при напряжении U = 220 В соответствующая электрическая мощность оказывается равной:

P = 10 A · 220 В = 2200 Вт = 2,2 кВт.

Одновременное включение в сеть приборов с большей суммарной мощностью приведет к увеличению силы тока и потому недопустимо.

В быту работу тока (или израсходованную на совершение этой работы электроэнергию) измеряют с помощью специального прибора, называемого электрическим счетчиком (счетчиком электроэнергии). При прохождении тока через этот счетчик внутри его начинает вращаться легкий алюминиевый диск. Скорость его вращения оказывается пропорциональной силе тока и напряжению. Поэтому по числу оборотов, сделанных им за данное время, можно судить о работе, совершенной током за это время. Работа тока при этом выражается обычно в киловатт-часах (кВт·ч).

1 кВт·ч — это работа, совершаемая электрическим током мощностью 1 кВт в течение 1 ч. Так как 1 кВт = 1000 Вт, а 1 ч = 3600 с, то

1 кВт·ч = 1000 Вт · 3600 с = 3 600 000 Дж.

??? 1. Как находится работа электрического тока? 2. По какой формуле находится мощность тока? 3. С помощью какого прибора измеряют работу тока? Какая единица работы при этом используется? 4. Сложите мощности всех имеющихся у вас дома электрических устройств. Допустимо ли их одновременное включение в сеть? Почему?

Экспериментальное задание. Рассмотрите у себя дома счетчик электроэнергии. Выясните, как снимаются с него показания. Измерьте с его помощью электроэнергию, израсходованную задень. В течение следующего дня старайтесь экономить энергию — не оставляйте включенным свет, если это не нужно; выключайте электроприборы, которыми в данный момент не пользуетесь; не смотрите все подряд по телевизору. После этого определите с помощью счетчика, сколько электроэнергии вам удалось сэкономить. Вычислите стоимость этой энергии. Сколько денег вам удастся сберечь при подобной экономии энергии за месяц?

Напряжение, ток, мощность и энергия — электроника…

Опубликовано

Если вы впервые начинаете изучать основные схемы или базовую электронику, лучше всего потратить несколько минут, чтобы понять основы электричества и некоторые фундаментальные термины. Мы создали несколько руководств, в которых рассказывается об основных физических принципах их работы, но на самом деле это не обязательно для начала работы со схемами. Конечно, если у вас есть время, мы рекомендуем вам просмотреть и эти руководства, чтобы дать вам лучшее интуитивное понимание.

Но прежде всего нам нужно понять, что такое напряжение и ток. На всех курсах по схемам, которые вы проходите, большая часть ваших усилий будет сосредоточена на определении напряжения, тока или того и другого в цепях. Иногда вас также попросят найти силу, и мы коснемся энергии, просто чтобы прояснить ее роль. Давайте разберем их на высоком уровне:

Краткое изложение терминов

  • Напряжение — электрический потенциал между одним местом и другим. Сколько электричества хочет переместиться из одной точки в другую. Измеряется в вольтах.
  • Ток — ток течет из одной точки в другую, буквально исходя из того, сколько электронов движется в секунду. Измеряется в амперах
  • Мощность — работа, совершаемая в секунду. В схемах это обычно означает количество тепла, отдаваемое цепью. Измеряется в ваттах или джоулях в секунду.
  • Энергия — общий объем выполненной работы. Для этого нет временной составляющей, которая является разницей между мощностью и энергией. Измеряется в джоулях. Они разъясняются позже в этом руководстве.

Напряжение и сила тока

На протяжении десятилетий наиболее распространенными примерами, иллюстрирующими, как работает электричество и разница между напряжением и силой тока, является использование воды в качестве примера. Это потому, что, хотя он и не идеален, он удивительно похож и довольно эффективен.

Представьте, что напряжение похоже на воду в озере на вершине холма. Он хочет течь вниз по склону, и если у него есть такая возможность, он это сделает. Это желание воды течь вниз подобно напряжению, оно не представляет движения и само по себе статично. Если вода начинает течь, то этот поток воды и есть течение. А размер канала, который ведет от вершины холма к подножию холма, является сопротивлением. Все эти три элемента напрямую связаны, и понимание того, что взаимосвязь является фундаментальной частью анализа схемы, а также темой нашего следующего урока.

Чтобы расширить эту аналогию, вы заметите, что с напряжением не имеет значения, насколько высок этот холм — если нет отверстия для стока воды, она просто останется там. Если холм представляет собой гору высотой три мили, там есть большой потенциал, но все равно нет потока, если нет тропы или трубы. При этом озеро высотой три мили с трубой будет проталкивать через эту трубу намного больше воды, чем озеро высотой 3 фута с трубой того же размера. Вот как напряжение (потенциал) влияет на ток (поток). Сохраняя сопротивление (размер трубы) одинаковым, можно увеличить ток за счет увеличения напряжения.

Точно так же, если вы увеличите размер трубы (уменьшите сопротивление), не меняя высоту потенциала, вы все равно получите больше потока. И наоборот, если вы уменьшите размер трубы (увеличите сопротивление), вы получите меньший поток. Вот как сопротивление (размер трубы) влияет на ток (расход). Как правило, в цепи вы можете контролировать напряжение и сопротивление, а также высоту потенциала и размер трубы, чтобы получить желаемый поток.

И последнее, что касается напряжения — обратите внимание, что разница между одним потенциалом и другим является относительной. Например, вершина холма явно выше основания холма. А что, если мы вырыли яму у подножия холма и сделали дно еще ниже? Или что, если бы рядом с холмом была гора? Холм ниже горы, поэтому существует потенциал между горой и холмом, так же как у подножия холма потенциал выше, чем у ямы, вырытой на дне. То же самое и с напряжением — когда мы говорим о напряжении, мы говорим об электрическом потенциале между двумя точками по отношению друг к другу. Обычно мы предполагаем, что самая нижняя точка — это «0» или то, что мы называем «землей» в качестве эталона. Но иногда вы получаете отрицательные напряжения, что просто означает, что электрический потенциал в этой точке ниже того, что мы установили как наш потенциал «земли». Иногда это может показаться странным, но как только вы приобретете некоторый опыт работы с цепями и электричеством, отрицательные напряжения приобретут большой смысл. Это становится еще более логичным, когда вы понимаете, что, поскольку все относительно, вы можете перевернуть свою перспективу и инвертировать знак напряжения. Это может быть 10 вольт сверху вниз, но это также -10 вольт снизу вверх, поэтому v аб = -v ба . Это пригодится при случае.

Мощность против энергии

Давайте снова сосредоточимся на мощности и энергии. Утверждение, что связь между мощностью и энергией зависит только от временной составляющей, неудовлетворительно и не очень ясно. Давайте сделаем быстрый пример, который может сделать вещи проще. Представьте, что вам нужно поднять коробку на 10 футов. Вы можете подбросить его прямо вверх за 1 секунду или медленно поднять в течение 10 секунд. Количество энергии, необходимое для перемещения ящика с 0 до 10 футов, такое же, но первый вариант, бросок прямо вверх, требует в 10 раз больше энергии, чем медленный подъем. В подавляющем большинстве схемных приложений и проблем мы заботимся только о мощности и игнорируем энергию, но при обсуждении источников энергии, таких как батареи и конденсаторы, это различие становится критическим.

«Энергоемкость аккумуляторов выше, чем у конденсаторов, но у конденсаторов выше энергоемкость, чем у аккумуляторов.

Расширяя пример с коробкой и используя некоторые произвольно выбранные числа, это означает, что конденсатор может поднять коробку на 100 футов в воздух за одну секунду, в то время как батарея того же физического размера может поднять коробку в воздух только на 10 футов за одну секунду. одна секунда. Но при равных физических размерах батарея может поднять коробку в общей сложности на 5000 футов, прежде чем закончится энергия, а конденсатор может поднять коробку в общей сложности на 300 футов, прежде чем закончится энергия».

Электрическая мощность математически представляет собой произведение тока на напряжение, то есть является фактором как потока, так и потенциала. Возвращаясь к аналогии с водой, небольшой поток с большой высоты может производить много энергии. Или вы можете иметь очень большой поток с относительно небольшой высоты, создавая большую мощность. Но если у вас слишком мало того или другого, силы не так много. Подобно тому, как падающая капля дождя не создаст полезного количества энергии, огромное напряжение без тока не произведет много энергии.

Или вода, вытекающая из чашки на стол, может течь, но за ней нет никакого потенциала для выполнения какой-либо работы. Это комбинация, которая создает силу.


Это должно заложить основу для понимания основных терминов, необходимых для начала решения схем. Далее давайте узнаем о взаимосвязи между напряжением, током и сопротивлением с помощью закона Ома.

Автор:
Джош Бишоп

Интересуясь встраиваемыми системами, туризмом, кулинарией и чтением, Джош получил степень бакалавра электротехники в Университете штата Бойсе. Проработав несколько лет офицером CEC (Seabee) в ВМС США, Джош уволился и в конце концов начал работать над CircuitBread с кучей замечательных людей. В настоящее время Джош живет на юге Айдахо с женой и четырьмя детьми.

Часто задаваемые вопросы по EE

Получите новейшие инструменты и учебные пособия, только что из тостера.

Вольт, Ампер, Ватт, Ватт-час и стоимость

Мы живем в мире электроэнергии. Он управляет нашим освещением, отоплением, охлаждением, компьютерами и оборудованием. Рассмотрим центр обработки данных или любое крупное энергоемкое предприятие — им нужно питание для работы, и они должны обеспечить постоянную доступность достаточного количества энергии. Но власть не бесплатна. Менеджеры центров обработки данных внимательно следят за мощностью, поскольку стоимость энергии, используемой сервером в течение срока службы, обычно превышает его покупную цену. И большинство центров обработки данных тратят вдвое больше на охлаждение серверов и отвод тепла от объекта.

Вот краткий обзор основ электричества: вольты, амперы, ватты и ватт-часы. Добавление информации о стоимости внизу превращает этот обзор основ в необходимую часть работы любого ответственного управляющего объектами.

Электричество

Электричество — это общее название электрической энергии. Электричество технически представляет собой поток электронов через проводник, обычно медный провод. Всякий раз, когда электричество поступает к устройству, такое же количество должно вернуться. Это система «замкнутого цикла». Электроны в проводе на самом деле движутся довольно медленно, не со скоростью света. Сигналы распространяются со скоростью (близкой к) скорости света.


Аналогия с водопроводной трубой для понимания электричества

Представьте себе 100-футовую трубу, наполненную водой: когда вы открываете клапан на одном конце, вода почти сразу же вытекает с другого конца, даже если ни одна капля воды не прошла. полные 100 футов. Однако волна давления прошла 100 футов.

Напряжение

Измеряется в вольтах (В) по Алессандро Вольта. Это «давление» электричества. Центры обработки данных обычно получают электроэнергию из коммунальной сети с высоким напряжением, обычно 480 В, которое затем должно быть преобразовано в более низкое напряжение для использования ИТ-оборудованием. В Северной Америке большинство ИТ-систем в центрах обработки данных используют напряжение 110 В, 208 В или 220 В. В большей части остального мира более распространены сети от 220 до 240 В. Напряжения в пределах примерно 10% используются взаимозаменяемо, поэтому вы можете услышать, что одна и та же установка описывается как 110 В, 115 В или 120 В.

Электрическое напряжение, как и давление воды, на самом деле не говорит вам, сколько «работы» (мощности) может выполнить система. Представьте крошечную трубку: она может подавать воду под огромным давлением, но вы не можете использовать ее для привода водяного колеса.

Ток

Измеряется в амперах или амперах (А) по Луиджи Амперу. Это «скорость потока» электричества (сколько электронов в секунду проходит через данный проводник). Ток описывает объем, но не давление, поэтому сам по себе он не дает полной картины мощности.

Представьте себе большую водопроводную трубу: по ней может течь много воды, но энергия, которую она несет, зависит от ее давления. Более высокие токи требуют более толстых и дорогих кабелей. Основной источник питания для крупного промышленного объекта может составлять тысячи ампер. В центре обработки данных он распределяется, поэтому к тому времени, когда он достигает стойки с серверами, он составляет от 20 до 63 А.

Мощность

Измеряется в ваттах (Вт) по Джеймсу Ватту. Это полезная работа, совершаемая электричеством. Ватты отражают работу, выполняемую в данный момент, а НЕ энергию, потребляемую с течением времени. Мощность в ваттах рассчитывается путем умножения напряжения в вольтах на силу тока в амперах: 10 ампер тока при 240 вольт генерирует мощность 2400 ватт. Это означает, что один и тот же ток может обеспечить вдвое большую мощность, если удвоить напряжение. Растет спрос на линии электропередачи более высокого напряжения отчасти потому, что они делают возобновляемые источники энергии, такие как солнечная энергия и ветер, более жизнеспособными. Центры обработки данных также переходят на конфигурации с более высоким напряжением. Мощность также можно измерить как «реальную» и «кажущуюся» с «коэффициентом мощности», который преобразует одно в другое. Узнайте о коэффициенте мощности здесь.

Потребляемая мощность (т.е. энергия)

Измеряется в ватт-часах (Втч). Ватт-час — это количество выполненной работы (т. е. высвобожденной энергии) при подаче мощности 1 Вт в течение 1 часа. Лампа мощностью 100 Вт, оставленная включенной на 10 часов, потребляет 1000 Втч (или 1 кВтч) энергии.

Стоимость

Обычно вы платите за электроэнергию в киловатт-часах (кВтч) или 1000 Втч. Стоимость в США колеблется от 0,09 до 0,20 долларов и выше за кВтч и намного выше во многих других частях мира. Вы можете сделать математику о том, что ваше учреждение тратит. Вот несколько примеров.

Во-первых, компьютерный сервер, потребляющий 500 Вт при работе в течение года, будет потреблять 500 Вт x 8 760 часов = 4 380 000 Втч = 4 380 кВтч. Если вы платите 0,10 доллара США за кВтч, стоимость запуска сервера составит 4380 x 0,10 доллара США/кВтч = 438 долларов США в год. Сюда не входят затраты на охлаждение сервера, которые могут удвоить или даже утроить общие годовые затраты.

Во-вторых, рассмотрим предприятие по выращиванию каннабиса. По оценкам организации по торговле электроэнергией в штате Вашингтон, для питания освещения и производства одного фунта продукции требуется от 2000 до 3000 кВтч. Плата 0,10 доллара за кВтч составляет от 200 до 300 долларов в год за фунт.

Наконец, давайте рассмотрим майнинг криптовалюты. Для добычи каждого биткойна требуется все больше энергии. По состоянию на август 2021 года, согласно одной оценке, потребление электроэнергии составляет 143 000 кВтч. При ставке 0,10 доллара за кВтч это составляет 14 300 долларов в год за каждый биткойн. Это число зависит от типа машины, выполняющей вычисления для майнинга биткойнов.

В конце нет теста для проверки ваших знаний. Но внимание к основам поможет избежать неприятных сюрпризов. Packet Power упрощает и делает более доступным для руководителей критически важных объектов отслеживание и анализ энергопотребления. Отправьте нам электронное письмо, чтобы узнать, как мы можем помочь вам с вашими потребностями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *