Онлайн калькулятор расчета параметров 555 таймера
Для реализации логических цепей, участвующих в работе сигнализаций, датчиков, преобразователей, усилители применяются специальные таймеры. Данное устройство позволяет генерировать на выходе импульсы прямоугольной формы с определенными параметрами. За счет чего такое приспособление выступает и в роли таймера, и в роли генератора импульсов. Для того чтобы рассчитать периоды положительного и отрицательного импульса, необходимо оперировать величиной сопротивлений и емкостью конденсатора.
Схема 555 таймераПосмотрите на рисунок, здесь приведена принципиальная схема работы 555 таймера (аналог микросхема КР1006ВИ1 )
Выводы:
1 — Земля.
2 — Запуск.
3 — Выход.
4 — Сброс.
5 — Контроль.
6 — Останов.
7 — Разряд.
8 — Плюс питания.
Как видите, конструктивно он состоит из резисторов R1, R2 и конденсатора C.
Поэтому, чтобы рассчитать длительность высокого и низкого уровня, необходимо воспользоваться такими расчетными формулами:
Длительность высокого уровня импульса на выходе работы схемы вычисляется по формуле:
T1 = 0,7 * (R1+R2) * C, где
R1 и R2 – величина сопротивления соответствующих резисторов, указанных на схеме;
C – емкость конденсатора.
Для вычисления низкого уровня импульса на выходе работы схемы используется формула:
T2 = 0,7 * R1 * C
Для определения величины полного периода применяется формула:
T = 0,7 * C * (2*R1+R2)
Для расчета частоты смены импульсов на выходе таймера 555 используется формула:
F = 1.45 / ((R1+2*R2)*C)
Подбирая параметры сопротивлений и емкости в цепи, вы сможете собрать 555 таймер с требуемыми величинами высокого и низкого сигнала на выходе. Чтобы не считать параметры по формулам выше, вы можете воспользоваться нашим онлайн-калькулятором.
Заполните одно из значений ниже, и нажмите кнопку «Рассчитать» и калькулятор определит вам целый ряд возможных вариантов для сопротивлений резисторов R1, R2 и значение емкости конденсатора C1. Для ввода дробного значения используйте символ точка. Например 0.5 секунды.
Назначение выводов:
Вывод №1 — Земля(GND).
Вывод подключается к минусу питания или к общему проводу схемы.
Вывод №2 — Запуск(TRIG).
Этот вывод является одним из входов компаратора №2. При подаче на этот вход импульса низкого уровня, который должно быть не более 1/3 напряжения питания, происходит запуск таймера и на выводе №3 появляется напряжение высокого уровня на время, которое задается внешним сопротивлением Ra+Rb и конденсатором С. Данный режим работы называется — режим моностабильного мультивибратора. Импульс, подаваемый на вывод №2, может быть как прямоугольным, так и синусоидным и по длительности он должен быть меньше чем время заряда конденсатора С.
Вывод №3 — Выход(OUT).
Высокий уровень равен напряжению питания минус 1,7 Вольта. Низкий уровень равен примерно 0,25 вольта. Время переключения с одного уровня на другой происходит примерно за 100 нс.
Вывод №4 — Сброс(RST).
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) произойдет сброс таймера и на выходе его установится напряжение низкого уровня. Если в схеме нет необходимости в режиме сброса, то данный вывод необходимо подключить к плюсу питания.
Вывод №5 — Управление(CVOLT).
Обычно, этот вывод не используется. Однако его применение может значительно расширить функциональность таймера. При подаче напряжения на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от RC времязадающей цепочки. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в и до напряжения питания. Соответственно на выходе получится FM модулированный сигнал.
Если этот вывод не используется, то его лучше подключить через конденсатор 0,01мкФ к общему проводу.
Вывод №6 — Стоп(THR).
Этот вывод является одним из входов компаратора №1. При подаче на этот вывод импульса высокого уровня (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается напряжение низкого уровня. Как и на вывод №2, на этот вывод можно подавать импульсы как прямоугольные, так и синусоидные.
Вывод №7 — Разряд(DISC).
Этот вывод соединен с коллектором транзистора Т1, эмиттер которого соединен с общим проводом. При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор закрыт, когда на выходе таймера высокий уровень и открыт, когда на выходе низкий уровень.
Вывод №8 — Питание(VCC).
Напряжение питания таймера составляет от 4,5 до16 вольт.
Расчёт параметров таймера NE555
- Подробности
- Категория: Разное
Таймер NE555 может работать как моностабильный мультивибратор, а также как генератор прямоугольных импульсов c выходным током 200 мА(max).
I потребления = I вых + 3 мА(maх).
Напряжение питания от 4,5B(min) до 16B(max).
Точность параметров таймера — не более 1% от расчетного значения и не зависит от напряжения питания.
Блок схема таймера NE555.
1 Земля. |
Подключается к минусу питания схемы. |
8 Питание. |
Напряжение питания таймера NE 555 постоянное и может быть в интервале от 4,5B(min) до 16B(max). |
2 Запуск. |
При подаче на этот вход импульса лог. «0», происходит запуск таймера и на выводе №3 появляется напряжение лог. «1» на время, которое задается внешним сопротивлением R1+R2 и конденсатором С. Данный режим работы называется моностабильным. |
7 Разряд. |
Вывод соединен с коллектором транзистора эмиттер которого соединен с общим проводом. При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер. Транзистор закрыт, когда на выходе таймера лог. «1» и открыт, когда на выходе лог. «0». |
3 Выход. |
Логическая 1 равена Uпит — 1,7В. Логический ноль равен 0,25В. Время переключения 100 нс. |
6 Стоп. |
При подаче на этот вывод импульса лог. «1» (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается напряжение лог. «0». |
4 Сброс. |
При подаче на этот вывод напряжения лог. «0» (не более 0,7в) произойдет сброс таймера и на выходе его установится напряжение лог. «0». Если в схеме нет необходимости в режиме сброса, то вывод «сброс» необходимо подключить к плюсу питания. |
5 Контроль. |
Применение вывода расширяет функциональность таймера. Изменением напряжения от 45% до 90% на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от RC времязадающей цепочки. |
Введите значения R1, R2 и С и нажмите «Расчет»
Теория и практика применения таймера 555. Часть первая.
Наверное нет такого радиолюбителя (Мяу, и его кота! — Здесь и далее прим. Кота), который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.
Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (
На тот момент это была единственная «таймерная» микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.
Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.
А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:
Производитель |
Название микросхемы |
ECG Philips |
ECG955M |
Exar |
XR-555 |
Fairchild |
NE555 |
Harris |
HA555 |
Intersil |
SE555/NE555 |
Lithic Systems |
LC555 |
Maxim |
ICM7555 |
Motorola |
MC1455/MC1555 |
National |
LM1455/LM555C |
NTE Silvania |
NTE955M |
Raytheon |
RM555/RC555 |
RCA |
CA555/CA555C |
Sanyo |
LC7555 |
Texas Instruments |
SN52555/SN72555 |
В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы — гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.
Начнем с корпуса и выводов.
Микросхема выпускается в двух типах корпусов — пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась — сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем — 556 и 558. 556 — это сдвоенная версия таймера, 558 — счетверенная.
Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя.
Выходной ток может достигать 200 мА, потребляемый — на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф — 0,005%/С.
Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги — какой вывод для чего нужен и что все это значит.
Итак, выводы (Мяу! Это он про ноги…):
1. Земля. Особо комментировать тут нечего — вывод, который подключается к минусу питания и к общему проводу схемы.
2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.
3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.
4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.
5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.
6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (Мяу! Тихой паники?!) низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.
7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.
8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.
Впитали? Едем дальше.
Большинство таймеров нуждаются во времязадающей цепочке, обычно состоящей из резистора и конденсатора. Таймер 555 не исключение. Давайте посмотрим на диаграмму работы микросхемы.
Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе — низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ — мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?
Первый же импульс низкого уровня переключает выход таймера в состояние высокого уровня. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резистор R. Все то время пока конденсатор заряжается, выход таймера остается во включенном состоянии — на нем сохраняется высокий уровень напряжения. Как только конденсатор зарядится до 2/3 напряжения питания, выход микросхемы выключается и на нем появляется низкий уровень. Транзистор T6 открывается и конденсатор С разряжается.
Однако есть два нюанса, которые показаны на графике пунктирными линиями.
Первый — если после окончания заряда конденсатора на входе сохраняется низкий уровень напряжения — в таком случае выход остается активным — на нем сохраняется высокий уровень до тех пор, пока на входе не появится высокий уровень. Второй — если мы активируем вход Сброс напряжением низкого уровня. В этом случае выход сразу же выключится, не смотря на то, что конденсатор все еще заряжается.
Так, лирическую часть закончили — перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени?
Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой.
Вот она:
t = R*C, где R — сопротивление резистора в МегаОм-ах, С — емкость конденсатора в микроФарад-ах. Время получается в секундах.
К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам — работает ваш экземпляр таймера или нет.
Если после включения питания мигают оба светодиода — значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот — горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания — 9 вольт. Например, от батареи «Крона».
Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый — моностабильный мультивибратор. Моностабильный — потому что стабильное состояние у такого мультивибратора одно — выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот — для формирования паузы на заданное время.
Второй режим — это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой. (Мяу! Хочу цепочку. На хвост. Ну или браслетик. Антистатический.)
Все-таки Кот у нас — зануда.
Начнем сначала, то есть с первого режима.
Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 — Останов. Это вход компаратора №1. Сюда же подключен вывод 7 — Разряд. Входной импульс подается на вывод 2 — Запуск. Это вход компаратора №2. Совершенно простецкая схема — один резистор и один конденсатор — куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень — около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время.
При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера — это очень важно.
Так, что там у нас происходит то? А, да — заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.
Время, на которое таймер, так сказать «выходит из себя», может быть от одной миллисекунды до сотен секунд.
Считается оно так:
T=1.1*R*C
Теоретически, пределов по длительности импульсов нет — как по минимальной длительности, так и по максимальной. Однако, есть некоторые практические ограничения, которые обойти можно, но сначала стоит задуматься — нужно ли это делать и не проще ли выбрать другое схемное решение.
Так, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно ли меньше? В принципе — да. Но при этом, если еще уменьшить сопротивление резистора — схема начнет трескать слишком много электричества. Если уменьшить емкость С, то всякие паразитные емкости и помехи могут существенно повлиять на работу схемы.
С другой стороны, максимальное значение резистора примерно равно 15Мом. Здесь ограничение накладывает ток, потребляемый входом Останов (около 120нА) и ток утечки конденсатора С. Таким образом, при слишком большом значении резистора таймер просто никогда не выключится, если сумма токов утечки конденсатора и тока входа превысит 120 нА.
Ну а что касается максимальной емкости конденсатора, то дело не столько в самой емкости, сколько в токе утечки. Понятно, что чем больше емкость, тем больше ток утечки и тем хуже будет точность таймера. Поэтому, если таймер будет использоваться для больших временных интервалов, то лучше пользоваться конденсаторами с малыми токами утечки — например, танталовыми.
Перейдем ко второму режиму.
В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.
Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.
Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер — напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться… фууу, чет у меня голова закружилась уже.
Короче говоря, в результате всего этого шаманства, на выходе мы получаем последовательность прямоугольных импульсов.
Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2.
Определяется она по формуле:
Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;
Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.
Если у вас еще остались вопросы — их можно задать тут.
Как вам эта статья? | Заработало ли это устройство у вас? |
Эти статьи вам тоже могут пригодиться:
Эта статья посвящена микросхеме, сохраняющей популярность уже более 30 лет и имеющей множество клонов. Встречайте — таймер NE555 (он же — LM555, LC555, SE555, HA555, а также
множество других, есть даже советский аналог — КР1006ВИ1). Такую популярность этой микросхеме обеспечили простота, дешивизна, широкий диапазон напряжений питания (4,5-18В), высокая точность и стабильность (температурный дрейф 0,005% / oС, дрейф от напряжения питания — менее 0,1% / Вольт), ну и конечно же, самое главное, — широчайшие возможности применения.
Но, обо всём по порядку. Начнём мы с того, как эта микросхема устроена.
Итак, функциональная схема таймера показана на рисунке 1.
Ноги:
1. GND — земля/общий провод.
2. Trigger — инвертирующий вход компаратора, ответственного за установку триггера. Когда напряжение на этой ноге становится меньше 1/3 Vcc (то есть меньше, чем напряжение на неинвертирующем входе компаратора) — на вход SET триггера поступает логическая 1. Если при этом отсутствуют сигналы сброса на входах Reset, то триггер установится (на его выходе появится логический 0, так как выход инвертированный).
3. Output — выход таймера. На этом выводе присутствует инвертированный сигнал с выхода триггера, то есть когда триггер взведён (на его выходе ноль) — на выводе Output высокий уровень, когда триггер сброшен — на этом выводе низкий уровень.
4. Reset — сброс. Если этот вход подтянуть к низкому уровню, триггер сбрасывается (на его выходе устанавливается 1, а на выходе таймера низкий уровень).
5. Control — контроль/управление. Этот вывод позволяет изменять порог срабатывания компаратора, управляющего сбросом триггера. Если вывод 5 не задействован, то этот порог определяется внутренним делителем напряжения на резисторах и равен 2/3 Vcc. Вывод Control можно использовать, например, для организации обратной связи по току или напряжению (об этом я позднее расскажу).
6. Threshold — порог. Когда напряжение на этом выводе становится выше порогового (которое при незадействованном выводе 5, как вы помните, равно 2/3 Vcc) — происходит сброс триггера и на выходе таймера устанавливается низкий уровень.
7. Discharge — разряд. На этом выходе 555-й таймер имеет транзистор с открытым коллектором. Когда триггер сброшен — этот транзистор открыт и на выходе 7 присутствует низкий уровень, когда триггер установлен — транзистор закрыт и вывод 7 находится в Z-состоянии. (Почему эта нога называется «разряд» вы скоро поймёте.)
8. Vcc — напряжение питания.
Далее, давайте рассмотрим, в чём же основная идея использования этого таймера. Для этого добавим к нашей схеме пару элементов внешней обвязки (смотрим рисунок 2). 4-ю и 5-ю ноги мы пока не будем использовать, поэтому будем считать, что 4-я нога у нас гвоздём прибита к напряжению питания, а 5-я просто болтается в воздухе (с ней и так ничего не будет).
Итак, пусть изначально у нас на второй ноге присутствует высокий уровень. После включения наш триггер сброшен, на выходе триггера высокий уровень, на выходе таймера низкий уровень, на 7-й ноге тоже низкий уровень (транзистор внутри микрухи открыт).
Чтобы произошло переключение триггера — необходимо подать на вторую ногу уровень ниже 1/3 Vcc (тогда переключится компаратор и сформирует высокий уровень на входе Set нашего триггера). Пока уровень на 2-й ноге остаётся выше 1/3 Vcc — наш таймер находится в стабильном состоянии и никаких переключений не происходит.
Ну что ж, — давайте кратковременно подадим на 2-ю ногу низкий уровень (на землю её коротнём, да и всё) и посмотрим что будет происходить.
Как только уровень на 2-й ноге упадёт ниже 1/3 Vcc — у нас сработает компаратор, подключенный к устанавливающему входу триггера (S), что, соответственно, вызовет установку триггера.
На выходе триггера появится ноль (поскольку выход триггера инвертирован), при этом на выходе таймера (3-я нога) установится высокий уровень. Кроме этого транзистор на 7-й ноге закроется и 7-я нога перейдёт в Z-состояние.
При этом через резистор Rt начнёт заряжаться конденсатор Ct (поскольку он больше не замкнут на землю через 7-ю ногу микрухи).
Как только уровень на 6-й ноге поднимется выше 2/3 Vcc — сработает компаратор, подключенный ко входу R2 нашего триггера, что приведёт к сбросу триггера и возврату схемы в первоначальное состояние.
Вот мы и рассмотрели работу схемы, называемой одновибратором или моностабильным мультивибратором, короче говоря, устройства, формирующего единичный импульс.
Как нам теперь узнать длительность этого импульса? Очень просто, — для этого достаточно посчитать, за какое время конденсатор Ct зарядится от 0 до 2/3 Vcc через резистор Rt от постоянного напряжения Vcc.
Сначала решим эту задачку в общем виде. Пусть у нас конденсатор заряжается через резистор R напряжением Vп от начального уровня U0.
Вспоминаем, как связаны ток и напряжение на конденсаторе: i=C*dU/dt. Ток через резистор: i=(Vп-U)/R. Поскольку это один и тот же ток, который течёт через резистор и заряжает конденсатор, то мы можем составить простое дифференциальное уравнение, описывающее процесс заряда нашего конденсатора: C*dU/dt=(Vп-U)/R.
Преобразуем наше уравнение к виду: RC*dU/dt + U = Vп
Это дифференциальное уравнение имеет решение, вида: U=U0+(Vп-U0)*(1-e-t/RC) ( формула 1 )
Теперь вернёмся к нашей схеме. Зная, что U0=0, напряжение питания равно Vcc, а конечное напряжение равно 2/3 Vcc, найдём время заряда:
2/3 Vcc = Vcc*(1-e-t/RC)
2/3 = 1-e-t/RC
1-2/3 = e-t/RC
ln(1/3) = -t/RC
Отсюда получаем длительность импульса нашего одновибратора:
t = RC*(-ln(1/3)) ≈ 1,1*RC
А теперь мы нашу схему немного изменим. Добавим в неё ещё один резистор, и чуть изменим подключение ног (смотрим рисунок 3).
Так, что у нас получилось? На старте конденсатор Ct разряжен (напряжение на нём меньше 1/3 Vcc), значит сработает компаратор запуска и сформирует высокий уровень на входе S нашего триггера. Напряжение на 6-й ноге меньше 2/3 Vcc, значит компаратор, формирующий сигнал на входе R2, — выключен (на его выходе низкий уровень, то есть сигнала Reset нет).
Следовательно сразу после включения наш триггер установится, на его выходе появится логический 0, на выходе таймера установится высокий уровень, транзистор на 7-й ноге закроется и конденсатор Ct начнёт заряжаться через резисторы R1, R2. При этом напруга на 2-й и 6-й ногах начнёт расти.
Когда эта напруга вырастет до 1/3 Vcc — пропадёт сигнал Set (отключится компаратор установки триггера), но триггеру пофиг, на то он и триггер, — если уж он установился, то сбросить его можно только сигналом Reset.
Сигнал Reset сформируется верхним на нашем рисунке компаратором, когда напряжение на конденсаторе, а вместе с ним на 2-й и 6-й ногах, достигнет значения 2/3 Vcc (то есть как только напряжение на конденсаторе станет чуть больше — сразу сформируется Reset).
Этот сигнал (Reset) сбросит наш триггер и на его выходе установится высокий уровень. При этом на выходе таймера установится низкий уровень, транзистор на 7-й ноге откроется и конденсатор Ct начнёт разряжаться через резистор R2. Напряжение на 2-й и 6-й ногах начнёт падать. Как только оно станет чуть меньше 2/3 Vcc — верхний компаратор снова переключится и сигнал Reset пропадёт, но установить триггер теперь можно только сигналом Set, поэтому он так и останется в сброшенном состоянии.
Как только напряжение на Ct снизится до 1/3 Vcc (станет чуть ниже) — снова сработает нижний компаратор, формирующий сигнал Set, и триггер снова установится, на его выходе снова появится ноль, на выходе таймера — единица, транзистор на 7-й ноге закроется и снова начнётся заряд конденсатора.
Далее этот процесс так и будет продолжаться до бесконечности — заряд конденсатора через R1,R2 от 1/3 Vcc до 2/3 Vcc (на выходе таймера высокий уровень), потом разряд конденсатора от 2/3 Vcc до 1/3 Vcc через резистор R2 (на выходе таймера низкий уровень).
Таким образом наша схема теперь работает как генератор прямоугольных импульсов, то есть мультивибратор в автоколебательном режиме (когда импульсы сами возникают, без каких-либо внешних воздействий).
Осталось только посчитать длительности импульсов и пауз. Для этого снова воспользуемся формулой 1, которую мы вывели выше.
При заряде конденсатора напряжением Vcc через R1,R2 от 1/3 Vcc до 2/3 Vcc, имеем:
2/3 Vcc = 1/3 Vcc + (Vcc-1/3 Vcc)*(1-e-t/(R1+R2)C)
1/3 = 2/3*(1-e-t/(R1+R2)C)
1/2 = 1-e-t/(R1+R2)C
e-t/(R1+R2)C = 1/2
t/(R1+R2)C = -ln(1/2)
Отсюда получаем длительность импульса нашего мультивибратора:
tи = -ln(1/2)*(R1+R2)*C ≈ 0,693*(R1+R2)C
Аналогично находим длительность паузы, только теперь у нас начальный уровень 2/3 Vcc, конденсатор мы не заряжаем от Vcc, а разряжаем на землю (т.е. вместо Vп в формулу нужно подставить ноль, а не Vcc) и разряд идёт только через резистор R2:
1/3 Vcc = 2/3 Vcc + (0-2/3 Vcc)*(1-e-t/R2*C)
2/3*(1-e-t/R2*C) = 1/3
1-e-t/R2*C = 1/2
e-t/R2*C = 1/2
t/R2*C = -ln(1/2)
Отсюда получаем длительность паузы мультивибратора:
tп = -ln(1/2)*R2*C ≈ 0,693*R2*C
Ну и дальше уже несложно посчитать для нашего мультивибратора период импульса и частоту:
T = tи + tп = -ln(1/2)*(R1+2*R2)*C ≈ 0,693*(R1+2*R2)*C
f = 1/T
Продолжение: Генератор прямоугольных импульсов с регулируемой скважностью, на 555-м таймере.
Калькулятор онлайн
Этот удобный калькулятор производит элементарные арифметичиеские операции (сложение, вычитание, умножение, деление) с положительными и отрицательными целыми числами и дробями. Доступны действия с процентами, возведение в степень, вычисление корня из числа, а также логарифм.
Для всех возможных действий приведены примеры. Если вам нужны дополнительные функции, то откройте инженерный калькулятор.
Арифметические операции
Сложение
Сложение объединяет два числа (слагаемые) в одно (сумму чисел).
2 + 3 =
Вычитание
Вычитание является обратной операцией к сложению. Вычитание находит разность между двумя числами (уменьшаемое число минус вычитаемое).
3 − 2 =
Умножение
Умножение объединяет два числа в одно число – произведение чисел. Два исходных числа называются множимым и множителем.
2 × 3 =
Деление
Деление является обратной операцией к умножению. Деление находит частное от двух чисел (делимого, поделенного на делитель). Деление любого числа на 0 не определено.
4 ÷ 2 =
Действия с дробями
Дробь представляет собой часть целого или, в более общем смысле, любое количество равных частей. Обычная (простая) дробь состоит из числителя, отображаемого над чертой (или перед косой чертой), и ненулевого знаменателя, отображаемого ниже (или после) черты. Действия с дробями производятся так же, как и с целыми числами.
1 ÷ 2 + 1 ÷ 4 =
Десятичные дроби
Десятичная дробь — это дробь, знаменатель которой не указан явно, но понимается как целое число, равное десяти в степени один (10), два (100), три (1000) и так далее.
. 2 + . 0 3 =
Нахождение обратного числа
Обратное число к x, обозначаемое 1/x или x-1, представляет собой число, которое при умножении на x дает единицу.
2 1/x =
Действия с процентами
Процент — сотая часть (обозначается знаком %), используется для обозначения доли чего-либо по отношению к целому.
Нахождение процента от числа
40 × 5 % =
Увеличение (уменьшение) числа на процент
40 + 5 % =
Возведение в степень
Возведение в степень — математическая операция, записанная как xy, включающая два числа: основание x и показатель степени (или степень) y. Когда y — положительное целое число, возведение в степень соответствует многократному умножению основания на себя: то есть, xy — произведение умножения y оснований.
2 xy 4 =
Возведение числа в квадрат
Выражение x2 называется «квадратом x» или «x в квадрате», потому что площадь квадрата с длиной стороны x равна x×x или x2.
2 x2 =
Возведение числа в куб
Выражение x3 называется «кубом x» или «x в кубе», потому что объем куба с длиной стороны x равен x×x×x или x3.
2 x3 =
Возведение в степень числа 10
Возведение в степень с основанием 10 используется для обозначения больших или малых чисел. Например, 299792458 м/с (скорость света в вакууме в метрах в секунду) можно записать как 2,99792458 × 108 м/с, а затем округлить до 2,998 × 108 м/с.
4 10x =
Мнимая единица
Мнимая единица i определяется только тем свойством, что её квадрат равен −1.
i x2 =
Корень из числа
В математике y-ый корень числа x, где y обычно является положительным целым числом, представляет собой число z, которое при возведении в степень y дает x, где y — степень корня.
16 y√x 4 =
Квадратный корень
Квадратный корень числа x — это число z, которое в квадрате становится x.
9 √x =
Кубический корень
Кубический корень числа x — это число z, куб которого является x.
8 3√x =
Вычисление логарифма
Логарифм заданного числа x является показателем степени, в которую должно быть возведено другое фиксированное число (основание) y, чтобы получить это число x.
log 8 , 2 =
Десятичный логарифм
Десятичным логарифмом является логарифм с основанием 10.
log 100 =
Натуральный логарифм
Натуральный логарифм числа — это его логарифм по основанию число е.
log 3 , e =
555 Калькулятор нестабильной цепи таймера
В этом калькуляторе таймера 555 введите значения синхронизирующего конденсатора C и синхронизирующих резисторов R1 & R2, чтобы вычислить частоту, период и коэффициент заполнения. Здесь период времени — это общее время, необходимое для завершения одного цикла включения / выключения (T 1 + T 2), , в то время как рабочий цикл — это процент от общего времени, для которого выходной сигнал ВЫСОКИЙ.
555 Таймер Нестабильный Калькулятор Описание
Когда таймер 555 работает в нестабильном режиме , мы получаем импульс на выходном выводе, чьим временем ВКЛ (высокое время) и временем выключения (низкое время) можно управлять.Это управление может быть выполнено путем выбора соответствующих значений для резистора R1, R2 и конденсатора C1. Принципиальная электрическая схема для работы 555 IC в нестабильном режиме показана на
Приведенная выше схема может использоваться для создания прямоугольной волны, в которой можно рассчитать высокое время (T1) и низкое время (T2). Этот метод может использоваться для генерации тактовых импульсов для микроконтроллеров / цифровых микросхем или для мигания светодиода или любых других приложений, где требуются определенные интервалы времени.Выходная волна, полученная на контакте 3, показана с отметками ниже
Ось времени T измеряется в секундах, а ось напряжения — в вольтах. Как было сказано ранее, как долго импульс остается высоким, как долго импульс остается низким, и частота импульса может быть рассчитана с использованием значений компонентов R1, R2 и C1, показанных на принципиальной схеме выше.
Вышеупомянутый таймер 555 Astable Calculator может использоваться для вычисления этих значений, но чтобы понять его работу, нам нужно знать следующие формулы, на основе которых работает калькулятор.
Параметр | Формулы | Единица |
Время Высоко (T1) | 0,693 × (R1 + R2) × C1 | секунд |
Time Low (T2) | 0,693 × R2 × C1 | секунд |
Период времени (T) | 0.693 × (R1 + 2 × R2) × C1 | секунд |
Частота (F) | 1,44 / (R1 + 2 × R2) × С1 | Гц (Гц) |
Рабочий цикл | (T1 / T) × 100 | Процент (%) |
Примечание. Эти единицы измерения применимы только в том случае, если R1 и R2 в омах, а конденсатор в фарадах
.Может быть непросто попробовать разные значения резистора и конденсатора, чтобы получить желаемый интервал времени и частоту.Таким образом, всегда держите эти советы ниже при выборе ваших значений
СОВЕТЫ:
- Период (T) и частота (F) обратно пропорциональны
- Увеличение C1 приведет к снижению частоты (F)
- Увеличение R1 увеличит High Time (T1), но не изменит Low Time (T2)
- Увеличение R2 увеличит High Time (T1), а также увеличит Low Time (T2)
- Итак, всегда сначала устанавливайте T2, а затем T1
- Увеличение R2 уменьшит рабочий цикл
Как только мы получим все эти детали, мы сможем узнать полные свойства выходной волны.Чтобы привыкнуть к формулам, давайте вычислим значение для параметров, используя эти формулы для приведенной выше принципиальной схемы.
Расчет модели
На нашей принципиальной схеме значение резисторов R1 и R2 равно 1 кОм и 100 кОм соответственно, значение конденсатора С1 равно 10 мкФ.
Итак, R1 = 1К; R2 = 100K и 10 мкФ
Или может быть записано как R1 = 1000 Ом; R2 = 100000 Ом, C1 = 0,00001 Фарад
Максимальное время (T1) — это время, в течение которого импульс остается высоким (5 В) в выходной волне.Это можно рассчитать как
Максимум времени (T1) = 0,693 × (R1 + R2) × C1
= 0,693 × (1000 + 100000) × 0,00001
= 0,699 секунды
T1 = 699 миллисекунд
Время низкого уровня (T2) — это время, в течение которого импульс остается низким (0 В) в выходной волне. Можно рассчитать как
Время низкого (T2) = 0,693 × R2 × C1
= 0.693 × 100000 × 0,00001
= 0,693 секунды
T2 = 693 миллисекунды
Период времени (T) представляет собой сумму минимума времени и максимума времени. Изменение времени высоковата или минимума времени повлияет на общий период времени T
Период времени (T) = 0,693 × (R1 + 2 × R2) × C1 или (T1 + T2)
= 0,693 × (1000 + 2 × 100000) × 0,00001 или (0,699 + 0,693)
T = 1.393 секунды
Как мы все знаем, частота — это обратное время. Есть определенные приложения, такие как управление серводвигателем, где импульс должен быть на определенной частоте, чтобы схема управления реагировала. Частота может быть рассчитана как
Частота(F) = 1,44 / (R1 + 2 × R2) × C1 или (1 / T)
= 1,44 / (1000 + 2 × 100000) × 0,00001 или (1 / 1,339)
F = 0.718 Герц
Рабочий циклвсегда задается в процентах, если высокое время равно низкому времени, то импульс имеет рабочий цикл 50%, а если время выключения равно нулю, то имеет рабочий цикл 100%. Мы можем рассчитать рабочий цикл как.
Рабочий цикл= (T1 / T) × 100
= (0,966 / 1,393) × 100
DC = 50,249%
Аналогичным образом мы можем рассчитать эти параметры для любого значения резистора и конденсатора.Использование калькулятора таймера 555 действительно пригодится при разработке новой схемы для вашего проекта.
,555 таймерный моностабильный калькулятор
Этот 555 таймерный моностабильный калькулятор может использоваться для получения ширины выходного импульса (время задержки) для 555 таймерной моностабильной цепи. В моностабильном режиме 555 таймера IC при подаче питания выход остается низким в течение времени задержки , а затем становится высоким и остается высоким или наоборот.
Временная задержка в моностабильном режиме рассчитывается по следующим формулам:
Ширина выходного импульса (с) = 1.1 х R1 х С1
Введите любые два известных значения и вычислите оставшееся:
Концепция 555 таймера с моностабильной схемой Калькулятор
555 Таймерные ИС являются наиболее часто используемыми интегральными схемами для приложений синхронизации и генерации импульсов. Они могут адаптироваться к различным приложениям благодаря различным режимам работы. Три основных режима работы таймера 555: нестабильный режим, моностабильный режим и двухсторонний режим.Каждый режим имеет свои собственные свойства и приложения, так как каждый режим предоставляет различные типы волновых форм.
В моностабильном режиме , как следует из названия, будет иметь одно (моно) стабильное высокое состояние импульса в течение предварительно определенного времени. Это предварительно определенное время можно установить, выбрав правильные значения резистора (R1) и конденсатора (C1), показанные в схеме ниже.
Это простая схема, чтобы заставить таймер 555 работать в стабильном режиме Mont.Всякий раз, когда нажимается кнопка, подключенная к контакту триггера (контакт 2), ИС 555 обнаруживает импульс запуска, поэтому он активирует выходной импульс на своем выходном контакте (контакт 3), как показано на графике ниже.
Этот выходной импульс будет оставаться высоким в зависимости от ширины импульса. Эта длительность выходного импульса устанавливает предварительно определенное время, и, как было сказано ранее, его можно установить, выбрав правильные значения резистора (R1) и конденсатора (C1) с помощью приведенных ниже формул.
Ширина выходного импульса (сек) = 1.1 х R1 х С1
Для вышеупомянутой схемы значение R1 = 100k и значение C1 = 10uF, давайте использовать формулы для вычисления времени в секундах.
R1 = 100 кОм = 100000 кОм
C1 = 10 мкФ = 0,00001 Фарад
Итак, Т = 1,1 * 100000 * 0,00001
T = 1,1 секунды
Чтобы избежать всех этих хлопот по преобразованию и вычислению данных, вы можете использовать моностабильный калькулятор с таймером , указанный выше, для вычисления значения времени, или вы можете даже рассчитать R1 или C1 для любой конкретной временной продолжительности.Просто введите любые два параметра, оставив третий пустым, и нажмите «Рассчитать», чтобы получить результаты.
.555 Таймер Калькулятор с формулами и уравнениями
Формулы и уравнения для 555 Таймер IC Калькулятор
Частота ( f ) = 1 ln (2) x C x (R 1 + 2R 2 )]
Частота ( f ) = 1,44 / C x (R 1 + 2R 2 )…. Где… 1 / ln (2) = 1,44
T P = ln (2) x C x (R 1 x R 2 )
T P = 0.693 x C x (R 1 x R 2 )…. Где… ln (2) = 0,693
T N = ln (2) x C x R 2 )
T N = 0,693 x R 2 x C…. Где… ln (2) = 0,693
где;
- C = значение конденсатора в Фарадах
- R 1 и 2R 2 = значение входного сопротивления
- f = частота в кГц
- T P = Положительное или Высокое время от каждого импульса
- T N = Отрицательное или Низкое время от каждого импульса
Введите значения и нажмите для расчета.Результат будет отображать рассчитанные количества.
Вы также можете прочитать:
.Это программное обеспечение помогает для расчета значений компонентов 555 цепей таймера.
Особенности
- 3 нестабильных режима
- моностабильный (однократный) режим
- индикатор рабочего цикла
- может настроить значения R & C
Нестабильный — Рабочий цикл> 50%
Нестабильный — Рабочий цикл = 50%
Нестабильный — Рабочий цикл <50%
Моностабильный (однократный)
С помощью этой программы вы можете настроить частоту, рабочий цикл и R1, C1.
Загрузить
Присылайте ваши идеи, которые очень важны для нашего успеха…
Теги: Программное обеспечение калькулятора, Схемы таймера,