Неполярные электролитические конденсаторы: Все о неполярных электролитических конденсаторах

Содержание

Неполярный электролитический конденсатор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Неполярный электролитический конденсатор

Cтраница 1

Неполярные электролитические конденсаторы могут находить себе применение в аппаратуре, рассчитанной на питание от сети постоянного тока, где легко может иметь место перемена полярности при включении штепсельной вилки.  [1]

Сухие неполярные электролитические конденсаторы имеют две анодные фольги, заформованные в одном электролите при одинаковом напряжении. Технология изготовления таких конденсаторов ничем не отличается от изготовления полярных конденсаторов. Некоторое изменение в технологии имеет место при намотке секций, так как вместо катодной фольги закладывается вторая анодная пластина.  [2]

Изготовляются также неполярные электролитические конденсаторы, в которых обе обкладки имеют оксидный слой.

 [4]

Конденсаторы, собранные как неполярные электролитические конденсаторы, могут применяться и для включения в цепь переменного тока.  [5]

Наряду с полярными имеются сухие неполярные электролитические конденсаторы.  [6]

Промышленностью выпускается также несколько типов неполярных электролитических конденсаторов, у которых оксидный слой нанесен на обоих электродах.  [7]

Измерения емкости и тангенса угла потерь неполярных электролитических конденсаторов и электролитических конденсаторов переменного тока выполняются теми же методами, что и измерения полярных электролитических конденсаторов. При этих измерениях наложение на конденсаторы поляризующего напряжения постоянного тока не является обязательным.  [8]

Как было показано в четвертой главе, емкость неполярного электролитического конденсатора при одинаковой площади обкладок в два раза меньше емкости обычного полярного электролитического конденсатора.  [9]

Наряду с обычными, полярными, конденсаторами могут также изготовляться неполярные электролитические конденсаторы, у которых вместо катода используется второй анод.  [10]

Полярность сигналов высокого уровня должна быть однозначной, или должны применяться неполярные электролитические конденсаторы.  [11]

Конденсаторы с такими обкладками не требуют соблюдения полярности при включении в электрическую цепь; соответственно этому они получили название

неполярных электролитических конденсаторов.  [12]

Как будет показано ниже, возможно изготовление и н е п о-л я р н ы х электролитических конденсаторов, при включении которых в цепь постоянного тока соблюдение полярности не требуется. Изготовлению неполярного электролитического конденсатора, рассчитанного на длительную работу при переменном напряжении, препятствует большой tg 8, свойственный конденсаторам этого типа.  [13]

Таким образом, во внешнюю цепь может уходить только половина всего того заряда, который был связан на границах оксидного слоя, когда напряжение на конденсаторе имело максимальное значение. Это обстоятельство приводит к тому, что емкость неполярного электролитического конденсатора

в два раза меньше, чем емкость полярного конденсатора, имеющего такую же поверхность анода, какую имеет каждая обкладка неполярного конденсатора.  [15]

Страницы:      1    2

Каталог продукции — Пассивные элементы — Конденсаторы — Конденсаторы электролитические — Конденсаторы неполярные электролитические

Каталог продукции

Обновлен: 29.07.2021 в 12:30

  • Aвтоматика, Робототехника, Микрокомпьютеры
  • Акустические компоненты
  • Блоки питания, батарейки, аккумуляторы
  • Датчики
  • Двигатели, вентиляторы
  • Измерительные приборы и модули
  • Инструмент, оборудование, оснастка
    • Аксессуары для пайки
    • Антистатические принадлежности
    • Бокорезы, ножницы, резаки
    • Дрели, фрезеры, бормашины
    • Жала для паяльников и станций
    • Инструмент для зачистки изоляции
    • Инструмент для обжима
    • Лупы, микроскопы
    • Нагреватели инфракрасные
    • Ножи, скальпели
    • Отвёртки
    • Отсосы для припоя
    • Паяльники газовые и горелки
    • Паяльники электрические
    • Паяльные станции и ванны, сварочные автоматы
    • Пинцеты, зажимы
    • Плоскогубцы, круглогубцы
    • Подставки для паяльников и штативы
    • Принадлежности для паяльников и станций
    • Прочий инструмент и оснастка
    • Сверла, фрезы, боры
    • Термоклеевые пистолеты
    • Тиски, станины
    • Штангенциркули, линейки
  • Источники света, индикаторы
  • Кабель, провод, шнуры
  • Коммутация, реле
  • Конструктивные элементы, корпуса, крепеж
  • Материалы и расходники
  • Пассивные элементы
  • Полупроводниковые приборы, микросхемы, радиолампы
  • Разъёмы, клеммы, соединители, наконечники
  • Текстолит, платы
  • Товары бытового назначения
  • Трансформаторы, сердечники, магниты
Информация обновлена 29. 07.2021 в 12:30

Вид:

Сортировка:

По наличиюпо алфавитупо цене

Кол-во на странице: 244860120

Конденсатор электролитический неполярный 1000 мкФ 25V 85°C d13 h35 (10шт)

Описание товара Конденсатор электролитический неполярный 1000 мкФ 25V 85°C d13 h35 (10шт)

Конденсатор электролитический неполярный 1000µF 25V 85°C d13 h35 обладает емкостью — 1000µF, что позволяет его разместить на печатной плате при максимальном уровне напряжения до 16 Вольт и при этом положительно отличается возможностью подключения без учета полярности.

Технические характеристики 1000µF 25V 85°C d13 h35
  • Емкость: 1000µF
  • Максимальное напряжение: 25V
  • Допустимая температура: до 85°C
  • Размеры:
    • диаметр: d13
    • длина: h35
  • Материал диэлектрика: фольга;
  • Количество слоев диэлектрика: 2;
  • Допускает подключение без учета полярности: да;
  • Форма корпуса: цилиндрическая.
Отличительные особенности и преимущества Конденсатора электролитического неполярного 1000µF 25V 85°C d13 h35

Рассматриваемый электролитический неполярный конденсатор в форме небольшого цилиндра органично впишется даже в ограниченное пространство на печатной плате.

Как и большинство электролитических конденсаторов (кроме аксиальных), конденсатор электролитический неполярный 1000µF 25V 85°C устанавливается в вертикальном положении, поэтому при проектировании корпуса для печатной платы, учитывайте его высоту (с небольшим запасом).

Неполярный электролитический конденсатор используется в цепях постоянного и пульсирующего тока. Может устанавливаться на выходе диодного выпрямителя в блоке питания для эффективной фильтрации переменной составляющей.

Преимуществом неполярного конденсатора является возможность соединить довольно большую емкость электролитического конденсатора с возможностью не обращать внимание на полярность при пайке конденсатора.

Но ценой этого являются несколько большие размеры неполярного электролитического конденсатора. Кроме того, неполярные конденсаторы выпускаются с меньшим диапазоном емкостей, чем полярные электролитические конденсаторы.

Недостатки и причины выхода из строя электролитического неполярного конденсатора

Преимущество неполярного электролитического конденсатора в нечувствительности к полярности включения оборачивается увеличенными размерами.

Фактически в одном корпусе неполярного конденсатора находится два электролитических полярных конденсатора.

Яркий пример этого — сравнить два конденсатора (полярный и неполярный) одинаковой емкости и на одно и то же рабочее напряжение.

У неполярного конденсатора диаметр корпуса в среднем больше в 1,3 раза, а длина ориентировочно – в 1,5 раза.

Если на печатной плате критически мало места, возможно есть смысл устанавливать полярный конденсатор, как более компактный, при соблюдении полярности.

Как и для всех электролитических конденсаторов, неполярные конденсаторы традиционно подвержены эффекту высыхания электролита.

Дополнительно негативно на срок службы неполярного конденсатора влияет:

  • работа при предельных режимах напряжения и температуры;
  • повреждения корпуса.

Однозначно проверить емкость неполярного конденсатора можно мультиметром с функцией измерения емкости.

Чем заменить электролитический неполярный конденсатор при наличии двух полярных

Конденсатор электролитический неполярный 1000µF 25V 85°C можно заменить двумя полярными электролитическими конденсаторами, включив их встречно-последовательно.

При этом емкость каждого из конденсаторов должна быть приблизительно в два раза больше емкости заменяемого, а рабочее напряжение не ниже исходного.

Купить электролитический неполярный конденсатор 1000µF 25V 85°C Вы можете в Киеве, в Интернет-магазине Electronoff.

Автор на +google

отличия от полярных > Флэтора

Содержание

Неполярный конденсатор является распространенным элементом многих радиоэлектронных схем. Специалист, работающий в этой области, должен знать основные конструктивные и эксплуатационные особенности этих устройств, уметь их правильно монтировать и тестировать.

Внешний вид неполярных конденсаторов

Определение неполярных конденсаторов

Данные устройства представляют собой пассивные элементы, способные накапливать и хранить электрический заряд. Их отличительной особенностью является сохранение корректной работы при любом порядке подключения выводов в цепь. Это объясняется отсутствием серьезных различий в характеристиках сред, образующихся с двух сторон границы обкладок и диэлектрика.

В чем отличие полярного и неполярного конденсатора

Полярные конденсаторы имеют пару электродов: плюсовой и минусовой. Чтобы устройство могло функционировать, при его подсоединении в электроцепь необходимо соблюдение полярности. В противном случае элемент быстро придет в негодность или даже взорвется. Электролитические накопители этого типа имеют также черты полупроводникового элемента.
От неполярных эти устройства отличаются наличием существенной разницы физико-химических свойств между средами с двух сторон раздела, которые и создают полярность. В изготовлении обоих видов устройств применяются такие токопроводящие материалы, как алюминий и тантал.

Алюминиевые электролиты

Конденсатор — для чего нужен, устройство и принцип работы

Неполярный электролитический конденсатор с алюминиевыми обкладками отличается от других изделий довольно высоким показателем индуктивности. Она образуется вследствие скручивания обкладочных заготовок для более удобной установки в корпус-цилиндр. Несмотря на нецелесообразность индуктивных явлений в ряде случаев, изделия из алюминия пользуются популярностью, благодаря невысокой цене и доступности. Изготавливаются они в smd форме для монтажа на поверхность печатной плиты.

Главная сфера их применения – нивелирование пульсаций в цепях, где выпрямляется переменный ток. Также с помощью этих устройств пульсирующий электроток разделяется на постоянную и переменную компоненты (это применяется в устройствах, проигрывающих звукозаписи).

Важно! При выборе конденсатора желательно брать образец с меньшим значением ESR (эквивалентного последовательного сопротивления). Особенно это критично для систем, требующих фильтрации пульсаций с высокими частотами (например, блок питания ЭВМ).

Конденсаторы с электролитом из алюминия

Электролиты на основе тантала

Этот материал дает возможность создания высокоемких изделий, сохраняющих это свойство при значительных показателях рабочего напряжения. В отличие от предыдущего типа, они почти не имеют индуктивности, что обеспечивает им большую широту сферы применения. Изделия малогабаритны, работают стабильно, служат долго. Выпускаются в двух вариантах исполнения корпуса, заточенных под разные типы монтажа. Smd-варианты предназначены для размещения на поверхности платы. Они обладают высокой емкостью при миниатюрных размерах. Монтаж таких элементов осуществляется роботами. Есть изделия, снабженные длинными выводами, продеваемыми в дырочки на платах.

Изделия из полимеров

В таких устройствах вместо металлических обкладок применяются полимерные материалы, проводящие ток. В остальном по особенностям строения они идентичны ранее описанным категориям.

Особенности конструкции и включения НЭК

Конденсатор электролитический

Отличительная особенность таких изделий – отсутствие постоянного смещения масс электронов на обкладочных элементах. Это достигается благодаря тому, что детали из алюминия подвергаются окислению с двух сторон диэлектрика.

Конструкция

Из-за особенностей строения рассматриваемые устройства можно сравнить с парой встречно соединенных полярных электролитических элементов, не имеющих заряда на обкладочных поверхностях. Поэтому, когда такой конденсатор подсоединяется в цепь, потребности в жесткой привязке к потенциалам не возникает. Таким образом, эти изделия способны функционировать на разных участках электроцепи и поддерживать нужные емкостные показатели.

Особенности включения

Если при подключении полярного устройства перепутать местами плюсовой и минусовой выводы, оно не сможет заряжаться и разряжаться. Поэтому нормально работать такой элемент не будет. Неполярные электролитические устройства способны работать при подключении в разные схемы без внимания к полярности. Это связано с их строением – у них отсутствуют анод и катод (пластинки с отрицательным и положительным зарядами).

Помимо электролитических, есть другая разновидность неполярных устройств. Их конструкция включает в себя пару обкладочных поверхностей (без поляризации) с вмонтированным промеж них диэлектриком. В электроцепях такие детали ставятся в роли малоемких элементов с функциями разделения тока на компоненты, блокировки и задания времени.

Как сделать неполярный конденсатор из полярного

Как подобрать конденсатор

Порой случаются ситуации, когда для усилителя или иного прибора нужно применить неполярный конденсаторный элемент, но под рукой присутствуют исключительно полярные. Заменить неполяризованный конденсатор можно парой изделий с полюсами с емкостью, вдвое превышающей ту, которая требуется в схеме. Они соединяются друг с другом встречно-последовательно: идентичные (положительные или отрицательные) выводы соединяются между собой, другие два запаиваются в схему.

Схожий принцип имеет строение НЭК с окисями на обеих обкладках. За счет этого такие продукты имеют более крупные габариты, чем полярные изделия с тем же параметром электролитической емкости. Базируясь на этом же механизме, производят НЭК с опцией пуска, заточенные под эксплуатацию в цепях переменного тока.

Соединение неполярных устройств с целью получения полярного

Как проверить неполярный конденсатор мультиметром

Чтобы провести процедуру тестирования, аппарат потребуется установить в режим омметра. Его основное назначение – измерить параметр сопротивления. При работе с данной группой элементов проверяется сопротивление утечки. Рабочие щупы подсоединяются к выводам конденсатора, подвергающегося проверке. Теперь нужно смотреть на показания прибора. Если на экране отображается единица, значение сопротивления превышает 2 мегаом. Это считается нормальным показателем. Если сопротивление ниже, имеет место значительная утечка.

Важно! Нужно избегать держания обеими руками выводов тестируемого устройства и щупов измерительного прибора. Это приведет к получению некорректных результатов измерений.

Проверка с помощью мультиметра

Маркировка

Обозначение емкости на таких изделиях состоит из трех цифр. Последняя из них показывает число нулей, другие две – значение параметра в пикофарадах. Например, если на устройстве имеются цифры 123, емкость можно посчитать так: 12 пФ и 3 нуля – 12 000 пФ, то есть 0,012 мкФ. Маркировка малоемких элементов (меньше 10 пФ) отличается использованием латинской литеры R в качестве символа, разделяющего целую и дробную части числа.

Неполярные керамические изделия для smd-монтажа маркировкой не снабжаются вовсе. Емкость таких компонентов может находиться в диапазоне от 1 пФ до 10 мкФ. Танталовые и алюминиевые элементы имеют цифровую или цифробуквенную кодировку. Они различаются формой корпуса: у первых она прямоугольная, у вторых – цилиндрическая.

Будучи менее требовательными к условиям подключения, чем поляризованные изделия, неполярные элементы широко используются при монтаже электросхем. Они способны правильно работать в любом месте электроцепи и давать нужное значение емкости.

Видео

Неполярный электролитический конденсатор маркировка — Морской флот

1. Маркировка тремя цифрами.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0. 033 нФ
47047 пФ0.047 нФ
68068 пФ0.068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6. 8 нФ
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ0.033 мкФ
473 47000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0. 47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировказначениемаркировказначениемаркировказначениемаркировказначение
A1.0J2.2S4.7a2. 5
B1.1K2.4T5.1b3.5
C1.2L2.7U5.6d4.0
D1.3M3.0V6.2e4.5
E1.5N3.3W6.8f5.0
F1.6P3.6X7.5m6.0
G1.8Q3.9Y8.2n7.0
H2.0R4.3Z9. 1t8.0

5. Планарные электролитические конденсаторы.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

букваeGJACDEVH (T для танталовых)
напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

КодЕмкость [мкФ]
R10,1
R470,47
11,0
4R74,7
1010
100100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

КодЕмкость
p100,1 пФ
Ip51,5 пФ
332p332 пФ
1НО или 1nО1,0 нФ
15Н или 15n15 нФ
33h3 или 33n233,2 нФ
590H или 590n590 нФ
m150,15мкФ
1m51,5 мкФ
33m233,2 мкФ
330m330 мкФ
1mO1 мФ или 1000 мкФ
10m10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Количество источников, использованных в этой статье: 23. Вы найдете их список внизу страницы.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Маркировка конденсаторов обладает большим разнообразием по сравнению с маркировкой резисторов. Довольно сложно увидеть маркировку маленьких конденсаторов, потому что площадь поверхности их корпусов очень незначительная. В этой статье рассказывается, как читать маркировку практически всех типов современных конденсаторов, произведенных за рубежом. Возможно, на вашем конденсаторе маркировка будет нанесена в другом порядке (по сравнению с описываемым в этой статье). Более того, на некоторых конденсаторах отсутствуют значения напряжения и допуска – для создания низковольтной цепи вам понадобится только значение емкости.

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Полярный конденсатор в цепи переменного тока, неполярные электролиты

Полярные и неполярные конденсаторы — в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) — просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Смотрите также: Конденсаторы в электронных схемах

Андрей Повный

Конденсаторы электролитические неполярные

Конденсаторы электролитические неполярные
Диапазон емкостей1 — 220 мкФ
Диапазон напряжений16 — 160 В
Допустимое отклонение емкости±20%
Ток утечки 4 мкА
Тангенс угла потерь, tgδ0,12 — 0,24
Выработка2000 ч
Рабочая температура-40°C – +85°C
СерияЦенаСерияЦена
1мкФ 50В 85°C $0,02 + –22мкФ 16В 85°Cпо запросу + –
1мкФ 100В 85°C $0,02 + –22мкФ 25В 85°Cпо запросу + –
2,2мкФ 50В 85°C $0,02 + –22мкФ 100В 85°C $0,12 + –
3,3мкФ 50В 85°C $0,02 + –33мкФ 16В 85°C $0,03 + –
4,7мкФ 35В 85°C $0,02 + –100мкФ 25В 85°C $0,05 + –
4,7мкФ 50В 85°C $0,03 + –100мкФ 35В 85°C $0,08 + –
10мкФ 16В 85°C $0,02 + –100мкФ 50В 105°C $0,09 + –
10мкФ 35В 85°C $0,03 + –220мкФ 16В 85°C $0,08 + –
10мкФ 50В 105°C $0,02 + –220мкФ 25В 85°C $0,08 + –
10мкФ 160В 85°C $0,12 + –

Маркировка конденсаторов электролитических радиальных:

220мкФ Номинальная емкость.
25В Номинальное напряжение.
85°C Рабочая температура.

Габаритные и установочные размеры конденсаторов электролитических радиальных:

ЕмкостьРазмеры DxL, мм
16В25В35В50В63В100В160В
1мкФ5×115×11
2,2мкФ5×115×116,3×11
3,3мкФ6,3×116,3×118×11,510×16
4,7мкФ5×115×116,3×116,3×118×11,510×16
10мкФ5×116,3×116,3×118×11,58×11,510×1613×20
22мкФ6,3×118×11,58×11,510×12,510×1612,5×2013×25
33мкФ8×11,58×11,510×12,510×1610×2012,5×2516×25
47мкФ8×11,510×12,510×1610×2012,5×2016×2516×35
100мкФ10×1610×2012,5×2012,5×2516×2516×31,519×35
220мкФ10×2012,5×2012,5×2516×31,516×31,516×35,5
Подробные характеристики неполярных электролитических конденсаторов
Номинальное напряжение16В25В35В50В63В100В160В
Импульсное напряжение20В32В44В63В79В125В200В
Тангенс угла потерь0,170,150,120,120,120,120,15
Коэффициент импеданса
-25°С / +20°С
2222224
Коэффициент импеданса
-40°С / +20°С
654433

Устройство электролитических конденсаторов:

В цилиндрическом алюминиевом корпусе расположены две электродные фольги – электроды, между которыми находится бумага, пропитанная электролитом, диэлетрик (тонкая оксидная пленка) и бумажный разделитель. В неполярных конденсаторах диэлетрик (тонкая оксидная пленка) нанесена на оба электрода для симметрии их электрических параметров.

В нижней части конденсатора размещен резиновый уплотнитель и вывода. Алюминиевый корпус конденсатора покрыт изолирующей оболочкой.

На верхней торцевой части корпуса расположен предохранительный клапан или защитные надсечки (крестообразные, в форме буквы К или Т), которые обеспечивают взрывобезопасность конденсатора при его выходе из строя вследствие перегрева, пробоя или переполюсовки. Суть защитного устройства базируется на возможности выброса накопленного внутри корпуса излишнего давления паров газа электролита. Возрастание внутреннего давления сопровождается выбросом пробки клапана или разрушением корпуса по надсечкам, но без взрыва, разбрасывания обкладок и сепаратора, предотвращая таким образом повреждения соседних элементов схемы.

Емкость электролитического конденсатора обратно пропорциональна минусовой температуре: с понижением температуры вязкость электролита увеличивается, тем самым снижая его проводимость. Повышение температурного режима приводит к уменьшению срока службы конденсатора, поэтому при их установке следует избегать близкого расположения тепловыделяющих компонентов.

Неполярный конденсатор из полярных:

Получить неполярный электролитический конденсатор можно путем последовательного соединения двух одинаковых полярных электролитов полюсами друг к другу — плюс к плюсу или минус к минусу. В этом случае его емкость будет равна половине емкости одного полярного конденсатора, а номинальное напряжение останется неизменным.

Изменение емкости электролитических конденсаторов от температуры и частоты:


  • Типовая зависимость емкости электролитического конденсатора от температуры


  • Типовая зависимость емкости электролитического конденсатора от


    частоты

Монтаж электролитических конденсаторов на плату:

  • Монтаж электролитических конденсаторов осуществляется на печатную плату методом групповой пайки или с помощью паяльника.

    При установке конденсатора нужно обязательно соблюдать классификационные параметры (ёмкость, номинальное напряжение).

    Пространство вокруг конденсатора в радиусе до 3 мм следует оставить свободным для возможного срабатывания защитного клапана, а зазор между конденсатором и печатной платой должен быть минимальным (приблизительно 1 мм).

Рекомендации по монтажу и эксплуатации:

  • Располагайте конденсаторы так, чтобы другие компоненты и проводники находились на расстоянии от вентиляционного отверстия конденсатора.
  • Конденсаторы с жесткими выводами «snap-in» должны плотно, без люфта и зазора устанавливаться на печатную плату.
  • Конденсаторы под винт «screw terminal» монтируются в вертикальном положении выводами вниз или горизонтально с положительным выводом сверху относительно отрицательного.
  • После хранения конденсаторы рекомендуется «тренировать» подачей постоянного напряжения через токоограничивающий резистор сопротивлением примерно 1кОм.
  • Перед установкой конденсаторы следует разрядить, замыкая выводы через резистор сопротивлением 1кОм.

Допустимое расстояние между корпусом конденсатора и стенкой корпуса оборудования:

Диаметр конденсатораЗазор
6,3 – 16 мм> 2 мм
18 – 35 мм> 3 мм
более 40 мм> 5 мм

Пайка электролитических конденсаторов:

Режимы пайки (длительности и температуры на каждой операции) должны соответствовать указаниям в спецификации к конденсатору.

Есть два способа пайки электролитических конденсаторов:

  • Пайка волной – выполняется при температуре до 260°С и не более 10 секунд.
  • Групповая пайка оплавлением пасты в печи с конвекционным или инфракрасным нагревом.

  • Параметры режима групповой пайки оплавлением пасты

  • Параметры режима групповой пайки оплавлением пасты бессвинцовыми припоями

Меры предосторожности:

  • При появлении «дыма» с предохранительного клапана электролитического конденсатора следует немедленно обесточить электрическую цепь.
  • Не приближайте лицо к предохранительному клапану электролитического конденсатора. Газы, выбрасываемые из конденсатора, могут достигать температуры свыше 100°C.
  • Не препятствуйте работе вентиляционных систем, соблюдайте необходимый зазор между корпусом конденсатора и стенкой корпуса оборудования.
  • Не используйте конденсаторы в системах с частыми внезапными зарядами и разрядами, т.к. конденсаторы могут быть повреждены.
  • Подаваемое на конденсатор напряжение не должно превышать значения номинального напряжения.
  • Используйте конденсатор при допустимом значении тока пульсации, т.к. превышение допустимого тока пульсации может вызвать перегрев, уменьшение емкости или повреждение конденсатора.
  • Используйте конденсаторы при допустимом диапазоне рабочих температур.
  • Не применяйте чрезмерную силу воздействия на терминалы и выводы конденсаторов, чтобы исключить повреждение и нарушение внутренних элементов.
  • Длительное хранение конденсаторов допускается только в сухих прохладных помещениях.

Полярные и неполярные конденсаторы — в чем отличие. Маркировка конденсаторов

Электрические конденсаторы являются средством накопления электроэнергии в электрическом поле. Типичными областями применения электрических конденсаторов являются сглаживающие фильтры в источниках электропитания, цепи межкаскадной связи в усилителях переменных сигналов, фильтрация помех, возникающих на шинах электропитания электронной аппаратуры и т д.

Электрические характеристики конденсатора определяются его конструкцией и свойствами используемых материалов.

При выборе конденсатора для конкретного устройства нужно учитывать следующие обстоятельства:

а) требуемое значение емкости конденсатора (мкФ, нФ, пФ),

б) рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров),

в) требуемую точность (возможный разброс значений емкости конденсатора),

г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),

д) стабильность конденсатора,

е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.)

В табл. 1 — 3 приведены основные характеристики конденсаторов различных типов.

Таблица 1. Характеристики керамических, электролитических конденсаторов и конденсаторов на основе металлизированной пленки

Параметр конденсатораТип конденсатора
КерамическийЭлектролитическийНа основе металлизированной пленки
От 2,2 пФ до 10 нФОт 100 нФ до 68 мкФ1 мкФ до 16 мкФ
± 10 и ± 20-10 и +50± 20
50 — 2506,3 — 400250 — 600
Стабильность конденсатораДостаточнаяПлохаяДостаточная
От -85 до +85От -40 до +85От -25 до +85

Таблица 2. Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена

Параметр конденсатораТип конденсатора
СлюдянойНа основе полиэстераНа основе полипропилена
Диапазон изменения емкости конденсаторовОт 2,2 пФ до 10 нФОт 10 нФ до 2,2 мкФОт 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), %± 1± 20± 20
Рабочее напряжение конденсаторов, В3502501000
Стабильность конденсатораОтличнаяХорошаяХорошая
Диапазон изменения температуры окружающей среды, о СОт -40 до +85От -40 до +100От -55 до +100

Таблица 3. Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторовОт 10 нФ до 10 мкФОт 10 пФ до 10 нФОт 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), %± 20± 2,5± 20
Рабочее напряжение конденсаторов, В63 — 6301606,3 — 35
Стабильность конденсатораОтличнаяХорошаяДостаточная
Диапазон изменения температуры окружающей среды, о СОт -55 до +100От -40 до +70От -55 до +85

Керамические конденсаторы применяются в разделительных цепях, электролитические конденсаторы используются также в разделительных цепях и сглаживающих фильтрах, а конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Слюдяные конденсаторы используются в звуковоспроизводящих устройствах, фильтрах и осцилляторах. Конденсаторы на основе полиэстера — это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Конденсаторы на основе поликарбоната используются в фильтрах, осцилляторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются также во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.

Небольшие замечания и советы по работе с конденсаторами

Всегда нужно помнить, что рабочие напряжения конденсаторов следует уменьшать при возрастании температуры окружающей среды, а для обеспечения высокой надежности необходимо создавать большой запас по напряжению .

Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому конденсаторы всегда работают с определенным запасом надежности. Тем не менее нужно обеспечивать их реальное рабочее напряжение на уровне 0,5-0,6 разрешенного значения.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.

Конденсаторы большой емкости с малыми токами утечки способны довольно долго сохранять накопленный заряд после выключения аппаратуры. Для обеспечения большей безопасности следует в цепь разряда подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

В высоковольтных цепях часто используется последовательное включение конденсаторов. Для выравнивания напряжений на них нужно параллельно каждому конденсатору подключить резистор сопротивлением от 220к0м до 1 МОм.

Рис. 1 Использование резисторов для выравнивания напряжений на конденсаторах

Керамические проходные конденсаторы могут работать на очень высоких частотах (свыше 30 МГц) . Их устанавливают непосредственно на корпусе прибора или на металлическом экране.

Неполярные электролитические конденсаторы имеют емкость от 1 до 100 мкФ и рассчитаны на 50 В. Кроме того, они дороже обычных (полярных) электролитических конденсаторов.

При выборе конденсатора фильтра источника электропитания следует обращать внимание на амплитуду импульса зарядного тока, который может значительно превосходить допустимое значение . Например, для конденсатора емкостью 10 000 мкФ эта амплитуда не превышает 5 А.

При использовании электролитического конденсатора в качестве разделительного необходимо правильно определить полярность его включения . Ток утечки этого конденсатора может влиять на режим усилительного каскада.

В большинстве случаев применения электролитические конденсаторы взаимозаменяемы . Следует лишь обращать внимание на значение их рабочего напряжения.

Вывод от внешнего слоя фольги полистиреновых конденсаторов часто помечается цветным штрихом. Его нужно присоединять к общей точке схемы.

Рис. 2 Эквивалентная схема электрического конденсатора на высокой частоте

Цветовая маркировка конденсаторов

На корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка.

Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М — 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.

Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах.

(288 кб)

Пример. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора — 10 000 пФ.

Пример. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов . Конденсаторы можно соединять последовательно и параллельно. При последовательном

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /C эк = 1 /C 1 + 1 /C 2 + 1 /C 3

эквивалентное емкостное сопротивление

X C эк = X C 1 + X C 2 + X C 3

результирующее емкостное сопротивление

C эк = C 1 + C 2 + C 3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /X C эк = 1 /X C 1 + 1 /X C 2 + 1 /X C 3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения u c При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток I нач =U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе u с и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными , и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т 1 и T 2 , соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т 3 и разряда Т р, т. е. сопротивлениями резисторов, включенных в эти цепи.

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Конденсатор – устройство, способное накапливать электрический заряд. В зависимости от назначения и конструкции конденсаторы делятся на ряд видов.В статье рассмотрим основные электрические параметры конденсаторов.

Электрические параметры конденсаторов

Основные характеристики и единицы их измерения приведены в таблице

Фарада – физическая величина, названная в честь английского физика Майкла Фарадея. Она слишком велика для использования в электротехнике. На практике емкость измеряют в микрофарадах (1мкФ = 10 -6 Ф), нанофарадах (1нФ = 10 -9 Ф) или пикофарадах (1пФ=10 -12 Ф)

При нанесении величины емкости на корпус конденсатора для обозначения «нФ» дополнительно используют символы «nF», «пФ» — «рФ», а микрофараду обозначают сокращением «мкФ» или «μФ».


Емкость конденсаторов не может принимать произвольные значения. Они унифицированы и выбираются из стандартных рядов емкостей.

Допустимое отклонение емкости указывает, с какой точностью изготовлен конденсатор. Она указывает, в каком допустимом диапазоне может находиться величина емкости в процентах от номинала. Для измерительных устройств этот параметр выбирается как можно меньшим.

Номинальное напряжение – это напряжение, которое выдерживают обкладки конденсатора длительное время. При превышении этого параметра конденсатор выйдет из строя. Для переменного тока руководствуются не действующим, а амплитудным значением напряжения. Например, при выборе конденсатора для пуска электродвигателя на номинальное напряжение 380 В нужно использовать конденсатор на рабочее напряжение U>380∙√2=537, то есть, на 600 В.


Температурная стабильность характеризует диапазон, в котором изменяется емкость при изменении температуры окружающей среды. Для устройств, сохраняющих работоспособность в широком диапазоне температур, значение этого параметра выбирается более низким.

Конструктивные исполнения конденсаторов

Конденсаторы, емкость которых не может изменяться, называются конденсаторами постоянной емкости .

Но в некоторых цепях для обеспечения возможности регулировки работы схемы и установки точных параметров ее работы применяются подстроечные конденсаторы . Емкость их изменяется при помощи отвертки.

В отличие от них конденсаторы переменной емкости применяются для выполнения пользовательских регулировок, например, для настройки радиоприемника на нужную волну.


Существуют конденсаторы специального назначения. Например, конденсаторы для защиты от радиопомех и сглаживающих фильтров, располагающихся парами в одном корпусе.


Отдельно выделяются конденсаторы для поверхностного монтажа или . Они технологичны для монтажа на автоматических конвейерных линиях, а размеры позволяют минимизировать габаритные размеры устройств.

Классификация конденсаторов по виду диэлектрика

Воздух в качестве диэлектрика использовался только для конденсаторов переменной емкости старого образца. Чем меньше материал между обкладками конденсатора проводит электрический ток, тем меньших размеров может быть изготовлен этот элемент на то же рабочее напряжение. При использовании определенных материалов можно получить конденсаторы с необходимыми свойствами.

В зависимости от материала диэлектрика между обкладками выпускаются конденсаторы:

Из всего этого перечня самыми распространенными в электротехнике являются бумажные и металлобумажные конденсаторы, использующиеся для схем запуска однофазных двигателей и для компенсации реактивной мощности. Всем известны электролитические конденсаторы, используемые в выпрямителях для сглаживающих фильтров. Их главная особенность – невозможность работы на переменном токе.


При ошибках в полярности подключения электролитических конденсаторов они выходят из строя, иногда – со взрывом. То же произойдет при превышении номинального напряжения электролитического и металлобумажного конденсатора, так как они выпускаются в герметичных корпусах.

Условные обозначения конденсаторов

Подстроечный конденсатор
Электролитический конденсатор
Два конденсатора в общей обкладкой в одном корпусе

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

Можно ли сделать неполярный электролитический конденсатор из двух обычных электролитических конденсаторов?

Резюме:

  • Да «поляризованные» алюминиевые конденсаторы с «мокрым электролитом» могут быть законно подключены «спина к спине» (т. Е. Последовательно с противоположной полярностью), образуя неполярный конденсатор.

  • C1 + C2 всегда равны по емкости и номинальному напряжению
    Ceffective = = C1 / 2 = C2 / 2

  • Veffective = скорость C1 и C2.

  • См. «Механизм» в конце, чтобы узнать, как это (возможно) работает.


При этом принято считать, что два конденсатора имеют одинаковую емкость.
Результирующий конденсатор с половиной емкости каждого отдельного конденсатора.
, например, если два конденсатора по 10 мкФ соединить последовательно, результирующая емкость будет 5 мкФ.

Я прихожу к выводу, что полученный конденсатор будет иметь такое же номинальное напряжение, как и отдельные конденсаторы.(Я могу ошибаться).

Я видел, как этот метод использовался много раз на протяжении многих лет и, что более важно, видел метод, описанный в примечаниях по применению от ряда производителей конденсаторов. См. В конце одну из таких ссылок.

Понимание того, как отдельные конденсаторы заряжаются правильно, требует либо веры в заявления производителей конденсаторов («действовать так, как если бы они были шунтированы диодами»), либо дополнительных сложностей, НО легче понять, как устройство работает после включения.
Представьте себе две заглушки, расположенные вплотную друг к другу, с полностью заряженным Cl и полностью разряженным Cr.
Если теперь через последовательную схему проходит ток, так что Cl затем разряжается до нулевого заряда, то обратная полярность Cr заставит его заряжаться до полного напряжения. Попытки подать дополнительный ток и дополнительно разрядить Cl, принимая неправильную полярность, приведут к тому, что Cr будет заряжаться выше его номинального напряжения. то есть это может быть предпринято, НО будет вне спецификации для обоих устройств.

Учитывая вышеизложенное, можно ответить на конкретные вопросы:

Какие причины для последовательного подключения конденсаторов?

Может создать биполярный колпачок из двух полярных колпачков.
OR может удвоить номинальное напряжение, если соблюдается баланс распределения напряжения. Иногда для достижения баланса используются параллельные резисторы.

«оказывается, что то, что может выглядеть как два обычных электролита, на самом деле не является двумя обычными электролитиками».

Это можно сделать с помощью обычных электролитов.

«Нет, не делайте этого. Он также будет действовать как конденсатор, но как только вы пропустите несколько вольт, он выйдет из строя.«

Работает нормально, если рейтинги не превышены.

‘Что-то вроде «БЮТ из двух диодов не сделаешь»‘

Причина для сравнения указана, но не действительна. Каждый полуконденсатор подчиняется тем же правилам и требованиям, что и отдельный.

«Это процесс, который не может выполнить мастер»

Тинкерер может — вполне законно.

Так является ли неполярный (NP) электролитический колпачок электрически идентичным двум электролитическим колпачкам в обратной последовательности или нет?

Это может быть катушка, но производители обычно вносят изменения в производство, так что есть две анодные фольги, НО результат тот же.

Разве он не выдерживает такие же напряжения?

Номинальное напряжение — это напряжение одиночной крышки.

Что происходит с конденсатором с обратным смещением, когда на комбинацию подается большое напряжение?

При нормальной работе крышки с обратным смещением НЕТ. Каждая крышка обрабатывает полный цикл переменного тока в целом, фактически видя половину цикла. Смотрите мое объяснение выше.

Существуют ли практические ограничения, кроме физического размера?

Я не могу придумать очевидных ограничений.

Имеет ли значение какая полярность снаружи?

Нет. Нарисуйте изображение того, что видит каждая крышка в изоляции без привязки к тому, что находится «за ее пределами. Теперь измените их порядок в цепи. То, что они видят, идентично.

Я не вижу, в чем разница, но многие люди думают, что она есть.

Вы правы. Функционально с точки зрения «черного ящика» они одинаковы.


ПРИМЕР ПРОИЗВОДИТЕЛЯ:

В этом документе Руководство по применению, Алюминиевые электролитические конденсаторы от Корнелла Дубильера, компетентного и уважаемого производителя конденсаторов, говорится (возраст 2.183 и 2.184)

  • Если два алюминиевых электролитических конденсатора одинакового номинала соединены последовательно, спина к спине с положительным клеммы или подключенные отрицательные клеммы, в результате одиночный конденсатор представляет собой неполярный конденсатор с половина емкости.

    Два конденсатора выпрямляют приложенного напряжения и действуют так, как если бы они были обойдены диодами.

    При подаче напряжения конденсатор правильной полярности получает полное напряжение.

    В неполярных алюминиевых электролитических конденсаторах и алюминиевых электролитических конденсаторах для запуска двигателя вторая анодная фольга заменяет катодную фольгу, чтобы в одном случае был неполярный конденсатор.

Этот комментарий со страницы 2.183 имеет отношение к пониманию всего действия.

  • Хотя может показаться, что емкость между две фольги, на самом деле емкость находится между анодная фольга и электролит.

    Положительная пластина — это анодная фольга;

    диэлектрик изоляционный алюминий оксид на анодной фольге;

    настоящая отрицательная пластина — это проводящий жидкий электролит и катодная фольга просто подключается к электролиту.

    Эта конструкция обеспечивает колоссальную емкость. потому что травление фольги может увеличить площадь поверхности более чем в 100 раз, а толщина диэлектрика из оксида алюминия составляет менее микрометра. Таким образом, в результате конденсатор имеет очень большую площадь пластин, и пластины ужасно близко друг к другу.


ДОБАВЛЕНО:

Я интуитивно чувствую, как и Олин, что необходимо обеспечить средства для поддержания правильной полярности. На практике кажется, что конденсаторы хорошо справляются с «граничным условием» запуска.Корнелл Дабиллерс «действует как диод» требует лучшего понимания.


МЕХАНИЗМ:

Думаю, следующее описывает, как работает система.

Как я описал выше, когда один конденсатор полностью заряжен на одном конце формы волны переменного тока, а другой полностью разряжен, система будет работать правильно, при этом заряд будет проходить на внешнюю «пластину» одной крышки напротив внутренней пластины этот колпачок к другому колпачку и «другой конец».т.е. масса заряда передается между двумя конденсаторами и позволяет заряду течь к и от двойного конденсатора. Пока проблем нет.

Правильно смещенный конденсатор имеет очень низкую утечку.
Конденсатор с обратным смещением имеет большую утечку и, возможно, намного больше.
При запуске одна крышка смещается в обратном направлении на каждом полупериоде, и течет ток утечки.
Поток заряда таков, чтобы привести конденсаторы к правильно сбалансированному состоянию.
Это упоминаемое «действие диода» — не формальное выпрямление как таковое, а утечка при неправильном рабочем смещении.
После нескольких циклов баланс будет достигнут. Чем «негерметичнее» крышка в обратном направлении, тем быстрее будет достигнут баланс.
Этот саморегулирующийся механизм компенсирует любые недостатки или неравенства. Очень аккуратный.

audio — Когда не подходит неполяризованный электролитический конденсатор?

Нет! Не переходите с электролитического конденсатора на неполяризованный. Это не улучшит дизайн, но будет стоить дороже. Это может даже добавить нестабильности.ESR E-Cap также гасит колебания! Вы даже можете воссоздать это в LTspice. Просто попробуйте построить SMPS в симуляции. К идеальному выходному конденсатору просто добавьте последовательно к конденсатору резистор и катушку индуктивности. Индуктивность создаст резонанс с емкостью. Вот почему многие разные конденсаторы часто объединяются для высокоскоростной развязки в современной электронике.

Просто следуйте правилам:

    Конденсатор типа
  • Y / X для безопасности при соединении изолированного блока питания с землей или входом (абсолютно необходимо для использования конденсатора сверхвысокого качества — в противном случае вы можете подать напряжение на USB-зарядное устройство, если крышка выйдет из строя — что определенно произойдет иногда — даже с конденсаторами типа Y такое может случиться — но гораздо менее вероятно.
  • Электролитики для больших мощностей и низких частот
  • Неполярные заглушки параллельно E-Cap для повышения резонансной стабильности и разделения высоких частот
  • Для аудио это обычно не имеет значения — помните только: E-Cap только для аудио, при развязке сигнала постоянного тока на переменный или наоборот. Отрицательное напряжение мгновенно повреждает конденсатор. Это дело миллисекунд, пока не начнется этот эффект. Это медленно ухудшит вашу изоляционную поверхность на алюминиевой фольге и снизит номинальное напряжение — а, возможно, и того хуже.Чем дольше инвертируется напряжение, тем серьезнее повреждение
  • Для высокоскоростной развязки объедините конденсаторы 1 мкФ и 120 нФ. Большая емкость стабилизирует «нижние» частоты, однако на сотни мегагерц эта граница не среагирует. 120nF, вероятно, делает. Для еще более высоких частот используйте конденсаторы еще меньшего размера (да, размер сборки также влияет на частотную характеристику.

Итак, чему следует научиться для вашего случая: просто замените конденсаторы конденсаторами приемлемого качества того же номинала.Более высокое напряжение или более низкое значение ESR приветствуются, но не требуются. Скорее всего, они вам вообще не помогут. Если вам нужно абсолютное качество для ваших конденсаторов из алюминиевой фольги: посмотрите подборку WIMA. Он дороже, но у него очень и очень качественные конденсаторы.

Стоит ли использовать Mouser? Ну совсем нет! Mouser подходит для заказов большого объема с более высокой надежностью. Однако часто даже Mouser или Digikey ошибаются и случайно продают либо поддельные, либо неправильные детали (для высокопроизводительных ИС это может быть огромной проблемой для ).

Зайдите на Ebay или Aliexpress. Доставка занимает некоторое время, но вы не потеряете 100 долларов только на некоторые детали. Однажды я сделал эту ошибку. Просто помните: покупая E-Caps, обратите внимание на такие известные бренды, как Nippon Chemicon. Также попробуйте взвесить их, если они весят столько же, сколько указано в паспорте. Там были огромные E-Caps, наполненные воздухом, и крошечные E-Cap на всех рынках. Конечно, в вашем продукте это не сработает. Поэтому убедитесь, что он весит правильное количество. Например, батареи 18650: если они весят вдвое меньше, чем, например, Samsung 25 индийских рупий.ячейка как раз самого низкого сорта, за деньги можно купить. (А также огромная пожарная опасность)

Короче: покупайте штуку подешевле на 1-2 конденсатора. Mouser довольно дорогой и зачастую вообще не требуется. Просто используйте тот же конденсатор, что и раньше. Ничто не вечно, даже если вы потратите на компонент в 100 раз больше денег.

P.S .: Вы можете сделать биполярный колпачок своими руками, просто соединив 2 E-Caps последовательно с одним и тем же полюсом вместе

вот так: + C1 — C2 + или около того: — C1 ++ C2 — Помните: удвоить СОЭ, вдвое меньше емкости.Но это действительно работает.

Что такое неполяризованный конденсатор

Ⅰ I ntroduction

Неполяризованный конденсатор является одним из многих конденсаторов. По полярности конденсатора конденсатор можно разделить на неполяризованный конденсатор и поляризованный конденсатор. И эта статья подробно расскажет: что такое неполяризованный конденсатор? Для чего это используется? Как выбрать неполяризованные конденсаторы? В чем разница между поляризованными конденсаторами и неполяризованными конденсаторами? Давайте посмотрим.

Поляризованный конденсатор против неполяризованного конденсатора

Как проверить неполяризованный конденсатор?

C atalog

Ⅱ Conception

Неполяризованные конденсаторы — это конденсаторы без положительной или отрицательной полярности. Два электрода неполяризованных конденсаторов могут быть произвольно вставлены в цепь и не будут протекать. В основном они используются в цепях связи, развязки, обратной связи, компенсации и колебания.На рисунке ниже показана справочная схема неполяризованного конденсатора.

Рисунок 1. Конденсатор неполяризованный

Идеальный конденсатор не имеет полярности. Однако на практике для получения большой емкости используются некоторые специальные материалы и конструкции, что приводит к тому, что сами конденсаторы несколько поляризованы. Общие поляризованные конденсаторы включают алюминиевые электролитические конденсаторы и танталовые электролитические конденсаторы. Электролитические конденсаторы обычно имеют относительно большую емкость.Сделать неполяризованный конденсатор большой емкости не так-то просто, потому что объем станет очень большим. Вот почему в реальной цепи так много поляризованных конденсаторов. Поскольку его размер невелик, а напряжение в этой цепи имеет только одно направление, могут пригодиться поляризованные конденсаторы.

Мы используем поляризованные конденсаторы, чтобы избежать их недостатков и использовать их преимущества. Мы можем понять это так: Поляризованный конденсатор на самом деле является конденсатором, который может использоваться только в одном направлении напряжения.Для неполяризованных конденсаторов можно использовать оба направления напряжения. Следовательно, с точки зрения направления напряжения неполяризованные конденсаторы лучше, чем поляризованные. Совершенно возможно заменить поляризованные конденсаторы неполяризованными конденсаторами, если емкость, рабочее напряжение, объем и т. Д. Могут соответствовать требованиям.


Ⅲ Функция

Неполяризованные конденсаторы применяются в цепях чистого переменного тока, и из-за их небольшой емкости они также могут применяться для фильтрации высоких частот.Вот пример, иллюстрирующий применение конденсатора:

В этом случае в основном используется RC-искрогаситель. Когда антенна принимает радио- и телепрограмму и в то же время включается люминесцентная лампа и мигает люминесцентная лампа, вы услышите нерегулярный звук радио или динамика телевизора. Многие сильные яркие линии и яркие точки на экране телевизора — это высокочастотные помехи, вызванные электрическими искрами.

При отключении цепей с индуктивностью между контактами возникает искра. Как показано в схеме слева на рисунке 2, переключатель S внезапно выключается, и ток быстро исчезает, то есть изменение тока велико, поэтому на обоих концах цепи возникает большая самоиндукция. катушка. Эта электродвижущая сила может препятствовать изменению тока, и ее направление согласуется с направлением приложенного напряжения. Когда они накладываются друг на друга, напряжение U 1 на переключателе будет очень высоким, а когда напряжение выше определенного значения, это «резкое» напряжение разрушит воздух и образует электрическую искру.

Искра может вызвать абляцию и окисление контактов, что в конечном итоге приведет к неисправности. Поэтому важно исключить искру между контактами. При отключении цепи, пока ток управляющей катушки не падает, напряжение на двух концах катушки не будет слишком большим, поэтому искры не будет. Как показано на схеме справа внизу, RC-искрогаситель подключен к обоим концам индуктора. Когда переключатель внезапно выключается, i 1 заряжает конденсатор.Часть энергии магнитного поля в катушке индуктивности рассеивается на R и r, а часть преобразуется в энергию электрического поля в конденсаторе C, что вызывает повторный разряд конденсатора C, тем самым устраняя искру.

Рисунок 2. Цепь с индуктивностью и цепью поглощения искры


Ⅳ Как выбрать неполяризованные конденсаторы?

Неполяризованные конденсаторы очень удобны в выборе и использовании.Вы можете напрямую выбрать конденсаторы той же модели и тех же технических характеристик. Если ни одно из вышеперечисленных условий не выполняется, вы можете обратиться к следующим методам:

1. Выберите конденсатор разумной точности. В большинстве случаев требования к емкости не очень высоки, и допустимо иметь емкость, примерно равную эталонной емкости. В колебательных схемах, схемах фильтрации, схемах задержки и схемах тонального сигнала абсолютное значение ошибки должно быть в пределах 0.3% -0,5%.

2. Выберите конденсатор в соответствии с требованиями схемы. Бумажный конденсатор обычно используется для низкочастотной цепи байпаса переменного тока. Слюдяной конденсатор или керамический конденсатор обычно используются в цепях с высокой частотой или высоким напряжением.

3. Конденсаторы могут быть выбраны с номинальным напряжением выше или равным фактическим потребностям.

4. Высокочастотные конденсаторы нельзя заменить низкочастотными.

5. Учитывайте рабочую температуру, рабочий диапазон, температурный коэффициент конденсатора в зависимости от случая применения.

6. Последовательный или параллельный метод может использоваться, когда номинальная емкость не может быть достигнута, но добавляемое к конденсатору напряжение должно быть меньше выдерживаемого напряжения конденсатора.


Ⅴ Разница между неполяризованными конденсаторами и поляризованными конденсаторами

Как поляризованные, так и неполяризованные конденсаторы работают по одним и тем же принципам, то есть накапливают и высвобождают заряды; напряжение на пластине (здесь электродвижущая сила накопления заряда называется напряжением) не может внезапно измениться.

Различные носители, разная производительность, разная емкость и разная структура приводят к разным условиям использования и использованию. И наоборот, с развитием науки и технологий и открытием новых материалов появятся более совершенные и разнообразные конденсаторы.

Рисунок 3. Различные типы конденсаторов

5.1 Другой диэлектрик

Что такое диэлектрик? Другими словами, это вещество между двумя обкладками конденсатора.В большинстве полярных конденсаторов в качестве диэлектрика и используются электролиты, благодаря чему полярный конденсатор имеет большую емкость, чем другие конденсаторы того же объема. Кроме того, поляризованные конденсаторы, произведенные из различных материалов и процессов электролита, будут иметь разную емкость.

Между тем, выдерживаемое напряжение в основном связано с материалом диэлектрика. И есть также много неполяризованных материалов , включая наиболее широко используемые пленки оксида металла и полиэстер, использование поляризованных и неполяризованных конденсаторов определяется тем, является ли природа диэлектрика обратимой.

Рисунок 4. Неполяризованный конденсатор и поляризованный конденсатор

5.2 Различная производительность

Требованием использования являются производительность и максимизация спроса. Если в блоке питания телевизора используется металлооксидный пленочный конденсатор в качестве фильтра, и если для соответствия фильтру требуется емкость и выдерживаемое напряжение, я боюсь, что внутри корпуса можно установить только блок питания.

Следовательно, в фильтре можно использовать только поляризованный конденсатор, а полярность емкости необратима.Как правило, электролитический конденсатор имеет более 1 МФ, который участвует в связи, развязке, фильтрации источника питания и т. Д. Неполяризованный конденсатор в основном имеет менее 1 MF, что участвует в резонансе, связи, выборе частоты, ограничении тока и т. Д. Конечно, существуют также неполяризованные конденсаторы большой емкости и высокого напряжения, которые в основном используются для компенсации реактивной мощности, фазового сдвига двигателя, фазового сдвига мощности с преобразованием частоты и других целей. Есть много видов неполяризованных конденсаторов.

Рисунок 5. Конденсаторы

5.3 Различная емкость

Как упоминалось ранее, конденсаторы одного объема имеют разную емкость при разном диэлектрике.

5.4 Другая конструкция

В принципе, можно использовать конденсатор любой формы в окружающей среде без учета точечного разряда. Чаще всего используются электролитические конденсаторы круглой формы, а квадратные — редко. Конденсаторы имеют различную форму: трубчатые, деформированные прямоугольные, листовые, квадратные, круглые, комбинированные квадратные или круглые и т. Д., В зависимости от того, где они используются.Конечно, есть и невидимые конденсаторы, называемые распределенными конденсаторами, которые нельзя игнорировать в устройствах высокой и промежуточной частоты.

5.5 Различные условия использования и условия использования

Из-за внутреннего материала и конструкции емкость полярных конденсаторов (таких как электролизный алюминий) может быть очень большой. Однако их высокочастотные характеристики не очень хороши, поэтому он хорошо подходит для силовых фильтров и других случаев. Есть также поляризованные конденсаторы с хорошими высокочастотными характеристиками — танталовые электролизеры, цена которых относительно высока.

Включая керамические конденсаторы, монолитные конденсаторы, полиэтиленовые (CBB) конденсаторы и т. Д., Эти неполяризованные конденсаторы имеют небольшой размер, низкую цену и хорошие высокочастотные характеристики, но они не подходят для большой емкости. Керамические конденсаторы обычно используются в высокочастотной фильтрации и колебательном контуре.

Рисунок 6. Конденсаторы разные

Магнитные диэлектрические конденсаторы используют керамический материал в качестве мезона и слой серебра на поверхности в качестве электрода.Обладая стабильной производительностью и малой утечкой, магнитные диэлектрические конденсаторы подходят для высокочастотных и высоковольтных цепей.

Вообще говоря, в зависимости от изоляционного материала между двумя полюсами конденсатора. Материал с большой диэлектрической проницаемостью (например, сегнетоэлектрическая керамика, электролиты) подходит для конденсаторов большой емкости и небольшого объема, потери которых также велики. Материал с небольшой диэлектрической проницаемостью (например, керамика) имеет низкие потери и подходит для высокочастотных применений.

Ⅵ FAQ

1. Можно ли использовать неполяризованный конденсатор вместо поляризованного?

Практически всегда можно заменить электролитический (полярный) конденсатор на электростатический (неполярный) того же номинала с необходимым номинальным напряжением. Однако обратное невозможно.

2. В чем основное отличие полярного конденсатора от неполярного (кроме наличия или отсутствия полюсов)? Где мы их используем?

Главное отличие в том, из чего они сделаны.Кстати, это также определяет, насколько они должны быть большими для данной емкости и сколько они стоят.

Полярные конденсаторы также известны как электролитические конденсаторы, поскольку в качестве диэлектрика они используют электролит. Он обеспечивает чрезвычайно высокую емкость с небольшим током утечки в небольшом корпусе. Керамический конденсатор с эквивалентной емкостью должен быть очень и очень большим.

Существует множество различных типов неполярных конденсаторов.Два самых распространенных из них, которые я видел, — это керамика и слюда. Керамика дешевая, слюда дороже, но я считаю, что слюдяные конденсаторы выдерживают более высокое напряжение. В целом они предлагают меньший ток утечки, чем электролитические, но также меньшую емкость в зависимости от размера. Основным преимуществом является то, что они сохраняют свою емкость при смещении в обоих направлениях.

Электролитические конденсаторы полезны в местах, где напряжение никогда не изменит полярность на них при правильных условиях использования.Их высокая емкость означает, что их можно более эффективно использовать для фильтрации источника питания, уменьшения пульсаций в выпрямителе и смягчения включения / выключения.

Но для развязки компонентов они не так хороши, потому что без очень хорошего смещения они получат обратное напряжение, а при обратном напряжении они ломаются, теряют свою емкость и утекают как сумасшедшие.

Они также испускают «волшебный дым» при слишком высоком обратном смещении.Неполярные конденсаторы этого не делают.

3. Что такое полярные и неполярные конденсаторы?

Все электростатические конденсаторы могут быть подключены к цепям переменного или постоянного тока без ссылки на какие-либо соединения, маркированные для положительной или отрицательной полярности. Каким бы способом они ни были соединены, они обладают одинаковыми свойствами. Это неполярные конденсаторы.

Электролитические конденсаторы имеют диэлектрик, сформированный в виде оксидного слоя на одном электроде за счет химического воздействия под действием тока в одном направлении.Пропускание тока в обратном направлении приведет к повреждению конденсатора.

Поэтому клеммы электролитических конденсаторов имеют специальную маркировку с положительной и отрицательной полярностью (в большинстве случаев маркирована отрицательная клемма). Конденсаторы обязательно должны быть подключены в цепи с одинаковой соответствующей полярностью. Это полярные конденсаторы.

4. Как узнать, что конденсатор неполяризован?

В случае неполяризованного конденсатора подключите его в любом случае, поскольку они не имеют полярности.Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать хорошим конденсатором.

5. Почему предпочтительны неполяризованные конденсаторы?

Электролитические конденсаторы имеют более высокую емкость, но для большинства целей предпочтительнее неполяризованный конденсатор. Они дешевле, могут устанавливаться в любом направлении и служат дольше.

6.Могу ли я заменить поляризованный конденсатор на неполяризованный?

Неполяризованные конденсаторы — это надмножества поляризованных конденсаторов. … В общем, вы можете заменить поляризованный конденсатор поляризованным или неполяризованным конденсатором той же емкости и номинальным напряжением оригинала или выше.

7. Можно ли подключить неполяризованный конденсатор к цепи постоянного тока?

Неполяризованные конденсаторы можно подключать к цепям постоянного или переменного тока…. Ток может течь только во время зарядки или разрядки конденсатора.

8. В чем разница между фиксированными и поляризованными конденсаторами?

Электростатические конденсаторы неполярны, то есть их можно подключать с любой полярностью, и нет никакой разницы. Электролитические конденсаторы полярны по своей природе. Их можно подключать только с фиксированной полярностью клемм. Обозначены положительные и отрицательные клеммы.

9.Какая польза от неполяризованного конденсатора?

Неполяризованные конденсаторы — это конденсаторы без положительной или отрицательной полярности. Два электрода неполяризованных конденсаторов могут быть произвольно вставлены в цепь и не будут протекать, в основном используются в цепях связи, развязки, обратной связи, компенсации и колебаний.

10. Все ли электролитические конденсаторы поляризованы?

Почти все электролитические конденсаторы поляризованы, а это означает, что напряжение на положительной клемме всегда должно быть больше, чем напряжение на отрицательной клемме…. Они имеют типичную емкость от 1 мкФ до 47 мФ и рабочее напряжение до нескольких сотен вольт постоянного тока.


Вам может понравиться:

Как выбрать конденсатор

Что такое коррекция коэффициента мощности (компенсация)

Что такое технология распознавания лиц?

Типы неполяризованных конденсаторов

Конденсаторы — это электронные устройства, которые имеют две проводящие поверхности (пластины), разделенные изолятором (диэлектриком).Они могут временно накапливать электрический заряд. Единственный тип конденсатора, который поляризован (работает по-разному в зависимости от того, в каком направлении течет ток) — это электролитический конденсатор. Электролитические конденсаторы имеют более высокую емкость, но для большинства целей предпочтительнее неполяризованный конденсатор. Они дешевле, могут устанавливаться в любом направлении и служат дольше.

Керамические конденсаторы

Керамические конденсаторы являются наиболее распространенным типом неполяризованных конденсаторов. Это проверенная технология и самый дешевый конденсатор.Самый старый стиль (относящийся к 1930-м годам) имеет форму диска, но более новые стили имеют форму блока. Они хорошо работают в радиочастотных цепях, а более новые модели работают в микроволновом диапазоне. Они доступны в диапазоне от 10 пикофарад до 1 микрофарада. Они имеют некоторую утечку (через диэлектрик), а их характеристики и температурная стабильность варьируются в зависимости от производителя.

Серебряные слюдяные конденсаторы

Серебряные слюдяные конденсаторы встречаются нечасто — в основном потому, что они относительно дороги.Они очень стабильны и устойчивы к температуре. Они работают в диапазоне от 1 пикофарада до 3000 пикофарад и имеют очень небольшую утечку. Они используются в схемах генераторов и фильтров, а также там, где важна стабильность.

Полиэфирные конденсаторы

Полиэфирные конденсаторы также известны как майларовые конденсаторы. Они недорогие, точные (имеют точный номинал, который на них указан) и имеют небольшую утечку. Они работают в диапазоне от 0,001 до 50 микрофарад и используются, когда точность и стабильность не так важны.

Конденсаторы из полистирола

Конденсаторы из полистирола очень точны, имеют небольшую утечку и используются в фильтрах и других местах, где важны стабильность и точность. Они относительно дороги и работают в диапазоне от 10 пикофарад до 1 микрофарада. Ходят слухи, что они уходят с рынка, поэтому они все реже и реже появляются в схемотехнике.

Конденсаторы из поликарбоната

Конденсаторы из поликарбоната дорогие и очень качественные, с высокой точностью и очень низкой утечкой.К сожалению, они были сняты с производства, и сейчас их трудно найти. Они хорошо преформируются в суровых условиях и при высоких температурах в диапазоне от 100 пикофарад до 20 микрофарад.

Полипропиленовые конденсаторы

Полипропиленовые конденсаторы — дорогие и высокоэффективные конденсаторы в диапазоне от 100 пикофарад до 50 мкФ. Они очень стабильны во времени, очень точны и имеют чрезвычайно низкую утечку.

Тефлоновые конденсаторы

Это самые стабильные конденсаторы на рынке.Они очень точны и почти не имеют протечек. Они широко считаются лучшими из имеющихся конденсаторов. Особо следует отметить то, как они ведут себя одинаково в широком диапазоне частотных колебаний. Они работают в диапазоне от 100 пикофарад до 1 микрофарада.

Стеклянные конденсаторы

Стеклянные конденсаторы очень прочные, и их лучше всего использовать в суровых условиях. Они стабильны и работают в диапазоне от 10 до 1000 пикофарад. К сожалению, они также являются самыми дорогими конденсаторами.

% PDF-1.3 % 25 0 объект > эндобдж xref 25 74 0000000016 00000 н. 0000002260 00000 н. 0000002359 00000 н. 0000002932 00000 н. 0000003076 00000 н. 0000003349 00000 п. 0000003931 00000 н. 0000004015 00000 н. 0000004606 00000 н. 0000005166 00000 н. 0000005684 00000 п. 0000006155 00000 н. 0000006691 00000 н. 0000006875 00000 н. 0000006988 00000 н. 0000007099 00000 н. 0000007952 00000 н. 0000008552 00000 н. 0000008664 00000 н. 0000008911 00000 н. 0000009483 00000 н. 0000010188 00000 п. 0000010317 00000 п. 0000010918 00000 п. 0000011171 00000 п. 0000011731 00000 п. 0000012157 00000 п. 0000012523 00000 п. 0000013289 00000 п. 0000013440 00000 п. 0000014290 00000 п. 0000014979 00000 п. 0000015652 00000 п. 0000016372 00000 п. 0000017070 00000 п. 0000021193 00000 п. 0000048916 00000 н. 0000077622 00000 п. 0000109041 00000 н. 0000113030 00000 н. 0000113468 00000 н. 0000113977 00000 н. 0000114435 00000 н. 0000114860 00000 н. 0000115407 00000 н. 0000115518 00000 н. 0000115631 00000 н. 0000115700 00000 н. 0000115791 00000 н. 0000129129 00000 н. 0000129415 00000 н. 0000129651 00000 н. 0000129676 00000 н. 0000130030 00000 н. 0000130099 00000 н. 0000130194 00000 н. 0000147403 00000 н. 0000147663 00000 н. 0000147942 00000 н. 0000147967 00000 н. 0000148367 00000 н. 0000148454 00000 н. 0000148784 00000 н. 0000149044 00000 н. 0000176511 00000 н. 0000176778 00000 н. 0000177238 00000 н. 00001

00000 н. 00001 00000 н. 0000191183 00000 н. 0000192200 00000 н. 0000192237 00000 н. 0000194664 00000 н. 0000001776 00000 н. трейлер ] / Назад 381707 >> startxref 0 %% EOF 98 0 объект > поток h | QO (q ~ 3; f «! \ v9, M˶splJ! b [B (.n # = KusPFI ~ HW

Отличие полярных конденсаторов от неполярных!

Отличие полярных конденсаторов от неполярных!

1. Разные носители

Полярный конденсатор: Среда — это вещество между двумя пластинами конденсатора. В большинстве полярных конденсаторов в качестве диэлектрического материала используется электролит, обычно такой же объем конденсатора имеет большую емкость. Кроме того, емкость поляризованного конденсатора одного и того же объема, изготовленного из различных материалов и процессов электролита, будет различной.Кроме того, сопротивление давлению также тесно связано с использованием диэлектрических материалов.

Неполярный конденсатор: существует множество диэлектрических материалов для неполярных конденсаторов, в большинстве из которых используется металлооксидная пленка и полиэстер. Поскольку обратимые или необратимые характеристики среды определяют среду использования полярных и неполярных конденсаторов. Кому

2. Различная производительность

Полярный конденсатор: производительность — это требование использования, а максимальная потребность — это требование использования.Если металлооксидный пленочный конденсатор используется для фильтрации в блоке питания телевизора, необходимо обеспечить емкость конденсатора и выдерживаемое напряжение, необходимые для фильтрации. Боюсь, что в корпус можно установить только один блок питания. Поэтому в качестве фильтров можно использовать только полярные конденсаторы, а полярные конденсаторы необратимы.

То есть положительный полюс должен быть подключен к концу с высоким потенциалом, а отрицательный полюс должен быть подключен к концу с низким потенциалом. Обычно электролитический конденсатор имеет емкость более 1 мкФ для связи, развязки, фильтрации мощности и т. Д.

Неполярные конденсаторы: большинство неполярных конденсаторов меньше 1 мкФ и участвуют в резонансе, связи, выборе частоты, ограничении тока и т. Д. Конечно, есть также конденсаторы большой емкости и высокого выдерживаемого напряжения, которые в основном используются для реактивного компенсация мощности электроэнергии, сдвиг фазы двигателей и сдвиг мощности переменной частоты.

Учебный курс Фрэнка

Конденсаторы

Конденсатор — это пассивный электронный компонент, который в основном состоит из двух параллельных металлических слоев, разделенных изолятор.Типы конденсаторов названы в честь этого диэлектрика. Мы используем конденсаторы с диэлектриками из керамика, слюда, полиэстер, тантал и др.
Конденсаторы используются для блокировки или хранения напряжений и фильтрации сигналов.
Конденсаторы всегда имеют два контакта. Некоторые биполярные, другие монополярные.
Монополярные конденсаторы имеют два разных ведет, один положительный и один отрицательный.

Конденсаторы разных форм и размеров.

Монополярные конденсаторы обычно цилиндрические, а биполярные. имеют дисковую или прямоугольную форму.

Единицы, значения и символы
Буква в формуле конденсаторов C.
. Обозначения конденсаторов на принципиальных схемах показаны ниже. Специально для электролитических конденсаторов несколько существуют разные символы.

Неполярный конденсатор (слева) и три монополярных конденсатора.

Конденсатор характеризуется емкостью, которая измеряется в фарадах (Ф).
На практике это Ф, нФ, пФ.

1000 пФ = 1 нФ
1000 нФ = 1 Ф

Неполяризованные конденсаторы
Конденсаторы этого типа не имеют положительной и отрицательной клемм и могут устанавливаться в электронном блоке обоими способами. доска.
Обычные неполяризованные конденсаторы изготавливаются из керамики, слюды или полипропилена. Керамические конденсаторы маленькие, дешевые и используются для высокочастотных приложений.
Основная характеристика неполяризованных конденсаторов заключается в том, что они блокируют постоянный ток и пропускают переменный ток.Они также могут хранить напряжения на короткое время.
Конденсаторы в электронике в основном используются в приложениях переменного тока, таких как фильтры сигналов и схемы синхронизации.
В отличие от диэлектрика в поляризованных конденсаторах, диэлектрик в неполяризованных конденсаторах представляет собой твердый материал. что делает устройство прочным и надежным. Отказы такого типа случаются редко.

Конденсаторы неполярные разные. Маленькие диски представляют собой керамические конденсаторы.

Помимо конденсаторов постоянной емкости, существуют также конденсаторы переменной емкости.Но в больничном оборудовании они есть необычно.
Поляризованные конденсаторы
Некоторые конденсаторы, такие как электролитические и танталовые, поляризованы. У них есть два разных вывода, плюс (+) и минус (-). Это означает, что они должны быть правильно подключены. Отведения всегда четко обозначены.
Поляризованные конденсаторы — это в основном электролитические конденсаторы. Конструкция цилиндрическая с присоединительным кабелем. оба конца (осевые) для горизонтального монтажа или только с одной стороны (радиальные) для стоячего монтажного положения.
Для меньших напряжений и емкостей часто используются поляризованные конденсаторы из тантала. Они меньше и Выглядит иначе. Они имеют каплевидную форму.

Электролитические конденсаторы обладают очень высокой емкостью. Значение электролитических конденсаторов всегда составляет F.
Электролитические конденсаторы всегда имеют маркировку с указанием их максимального рабочего напряжения. Напряжение на выводах никогда не должен превышать это значение.

В отличие от неполяризованных конденсаторов электролит представляет собой жидкость. На практике этот факт является источником многих проблем.


Всегда упоминается поляризация. Часто отмечается отрицательный (-) вывод. Конденсаторы

доступны для вертикального и горизонтального монтажа.
Вертикальный (или стоячий) монтаж еще называют радиальным.
Горизонтальный (или прокладочный) монтаж еще называют осевым.

Стандартные значения
Как и в случае резисторов, доступные номиналы конденсаторов стандартизированы в серии E.Самая распространенная серия is E-12:

10 12 15 18 22 27 33 39 47 56 68 82

Пример: доступные конденсаторы: 33 пФ, 220 нФ, 0,68 Ф

Электролитические конденсаторы имеют более высокий допуск. Они доступны только в градации E-6 или даже E-3.

Пример: 10 F, 220 F, 4.700 F

Напряжение
Вторая важная характеристика конденсатора — это испытательное напряжение. Это максимальное напряжение конденсатора. может быть использован. Особенно это касается электролитических конденсаторов.

Биполярные конденсаторы для электронных целей (низкое напряжение) часто не показывают испытательного напряжения, потому что напряжения для электронных плат намного меньше испытательного напряжения конденсаторов. Только для сетевого применения (например, 230 В) необходимо учитывать контрольное напряжение.


Конденсатор сетевой. Здесь очень важно испытательное напряжение (275 В переменного тока).
Допуск
В дополнение к емкости и испытательному напряжению допустимое значение указано на корпусе прибора. конденсатор.Допуск обозначается одной буквой:

Дж 5% K 10% M 20%

Пример: конденсатор, на котором имеется следующий текст. корпус: 105 K 330 V
имеет следующие характеристики:
1 F (объяснение в следующей главе), допуск 10%, максимум напряжение 330 В.

Обычно допуск электролитических конденсаторов выше, чем допуск неполярных конденсаторов. Допуски электролитических конденсаторов не важны, поэтому они не упоминаются на конденсаторах.Обычно допускаются 20% и более.

Чтение конденсатора
Если вам повезет, на конденсаторе четко обозначены емкость и максимальное рабочее напряжение.

47 означает 0,47 F или 470 нФ
J означает допуск 5%
63 — максимальное рабочее напряжение в В

Часто чтение значений не очень четкое. Слишком много цифр и букв может сбить вас с толку. Всегда ищите числа из стандартных значений.

Только цифра 10n наверху конденсатора указывает емкость: 10 нФ
K означает допуск 10%, а 100, вероятно, означает испытательное напряжение.
1829 или 93 или 30 не являются числами стандартных значений. Они могут означать все, но не ценность.

Считывание значения часто бывает непростым, потому что блоки, специально предназначенные для биполярных конденсаторов, не работают. часто отсутствует. В принципе, тогда значение означает F.

Значение 0,33 означает 0,33 Ф или 330 нФ

Различаются только керамические (дисковые) конденсаторы. Поскольку их значение всегда очень мало, теперь это значение означает пФ.

Керамический конденсатор без блока. 27 в данном случае означает 27 пФ.

Чтобы сделать его более запутанным, иногда значение выражается в виде трехзначного цифрового кода, особенно на керамических изделиях. конденсаторы.Первые две цифры являются основанием значения, а третье число указывает множитель или проще говоря, количество нулей.

Еще один керамический конденсатор без блока. Опять же, единица измерения должна быть пФ.
47 выражает часть стоимости (серия E) а 3 — количество нулей значения.
Этот конденсатор имеет емкость 47 000 пФ или 47 нФ.


683 K означает
68 (3x 0) = 68 -000- пФ или 68 нФ
с допуском 10%

Пример: 102 = 10 00 = 1000 пФ или 1 нФ
224 = 22 0000 = 220 000 пФ или 220 нФ или 0.22 F
471 = 47 0 = 470 пФ

Упражнение: Каковы следующие характеристики конденсаторы имеются ввиду?
(Чтобы увидеть ответ, просто пространство за значениями)

104 K 50V 0,1F, 10%, 50 В
473 M 100 В 47 нФ, 20%, 100 В
68 К 50 В 68pF, 10%, 50V

Для электролитических конденсаторов четче. Значение всегда F, и это также всегда упоминается.
Поляризация также всегда четко указана.


Емкость и напряжение четко указаны на электролитических конденсаторах.

1000 F
25 V
(-) штифт опущен

Комбинации
Подобно резисторам, несколько конденсаторов могут быть подключены параллельно или последовательно. Но в отличие от резисторов мощность последовательно уменьшается, а мощность параллельна больше.

Последовательные конденсаторы.Емкость становится меньше, но испытательное напряжение становится больше.

Наиболее распространенная комбинация: конденсаторы, включенные параллельно. Емкость можно просто добавить. Емкость получает больше. Контрольное напряжение остается прежним.

На практике иногда бывает полезна параллельная комбинация: необходимого вам конденсатора нет, кроме двух меньшая емкость. Емкости просто складываются.Испытательное напряжение каждого конденсатора должно быть таким же высоким (или выше), как оригинал.

Пример: требуется конденсатор 1000 Ф / 25 В, но его нет в наличии. Но есть два конденсатора по
470 Ф / 50В. Параллельно значение будет 940 F, что примерно на 6% на
меньше оригинала. Поскольку допуски 20% обычно можно использовать эту комбинацию
. Это решение даже лучше чем оригинал, из-за более высокого испытательного напряжения
.

Приложения
Две основные характеристики конденсаторов — это хранение напряжений и фильтрация.
DC-Applications: хранилище
Хранение напряжения — типичное применение постоянного тока. В конденсаторе некоторое время сохраняется постоянное напряжение. Время Хранение зависит от емкости и может составлять миллисекунды или несколько секунд. Типичное применение — источники питания. где конденсаторы буферизируют напряжение постоянного тока, чтобы поддерживать его стабильность, и схемы таймера, где конденсаторы определяют переключение время.

Для накопителей напряжения конденсатор заземлен (всегда вертикально). После при выключении постоянное напряжение медленно падает.

Время хранения зависит от емкости. Чем больше емкость, тем дольше время. Для хранения или буферизации используются поляризованные электролитические конденсаторы большой емкости.

После выключения светодиод медленно гаснет.Чем больше емкость, тем медленнее время.

В источниках питания для буферизации и сглаживания напряжения используются электролиты с высокой емкостью. Конденсаторы очищают постоянное напряжение от колебаний и неровностей.

Это часть источника питания пульсоксиметра.
Устройство в центре представляет собой микросхему стабилизатора напряжения. Входное и выходное напряжение фильтруются конденсаторы.
Применение переменного тока: фильтрация
Конденсатор развязки — это конденсатор, используемый для отделения одной части электронного каскада от другой.Это это важно, потому что разные (аналоговые) ступени работают от разных напряжений постоянного тока. Ступени должны быть разделены по постоянному току. Постоянный ток должен быть заблокирован, но сигнал переменного тока должен пройти. Конденсатор отфильтровывает переменную часть сигнала.
На схемах развязывающие конденсаторы обычно рисуются горизонтально. Направление сигнала слева направо. (слева = вход, справа = выход).

Конденсатор блокирует прохождение постоянного тока.
Напряжение постоянного тока на одной стороне, поскольку на другой стороне конденсатора постоянное напряжение отсутствует.


AC может проходить через конденсатор. Потери (сопротивление переменному току) зависят от емкости и частоты. AC-сигнала.

В электронике сигналы переменного тока (звуки, биения сердца, видеоизображения …) очень часто должны быть усилены или преобразованы. Электронным ступеням нужна мощность питание (постоянный ток) для работы. Во время процесса сигнал переменного тока и напряжение постоянного тока накладываются друг на друга.Конденсаторы нужны для разделить каскады по постоянному току и подключить каскады по переменному току.

Это небольшой предварительный усилитель.
Микрофону необходимо определенное напряжение постоянного тока, а также транзистор. Напряжения постоянного тока должны быть развязаны, но микрофонный сигнал (AC) должен пройти. C1 выполняет эту работу. Также конденсатор C2 выводит выходной сигнал на следующий этап без постоянного напряжения. Ступени связаны по переменному току и изолированы по постоянному току.
Тестирование
Измеритель емкости — это электронное испытательное оборудование, используемое для измерения конденсаторов.Элитный цифровой мультиметр часто содержат функцию измерения емкости. Но на практике функция измерения емкости не работает. действительно необходимо, потому что дефекты на конденсаторах обычно видны.
При измерении электролитических конденсаторов имейте в виду, что они имеют плохие допуски.
Допуски 20% являются общими.

Если у вас нет измерителя емкости, работу электролитических конденсаторов можно проверить, подключив и отключение напряжения и измерение накопленного напряжения с помощью вольтметра.В зависимости от емкости напряжение упадет более-менее быстро.
С помощью какого-нибудь мультиметра вы можете включить диапазон Ω для зарядки конденсатора (с помощью внутренней батареи), а затем переключитесь на диапазон V, чтобы увидеть падение напряжения.

Поиск и устранение неисправностей
Большинство проблем с конденсаторами связано с электролитическими конденсаторами. Биполярные конденсаторы в электронике доски обычно служат вечно.

Причины неисправности электролитических конденсаторов — утечки, нагрев и низкое качество изготовления.Очень часто самое дешевое качество используется с испытательными напряжениями, очень близкими к рабочему напряжению. Через некоторое время работы над ограничить повреждение конденсаторов. Электролитические конденсаторы могут протечь, треснуть или даже взорваться. В большинстве случаев дефект виден. Необычно то, что электролитические конденсаторы теряют емкость без каких-либо признаков повреждения.

Эту потерю емкости часто бывает трудно обнаружить. Ток не становится больше, предохранители не срабатывают и ничего не греется.Оборудование вроде как-то работает, но не корректно. Напряжения не буферизуются, сигналы — нет. могут появиться фильтрованные и другие странные эффекты.

Причина неисправности — электролит внутри конденсатора. Часто конденсатор не герметичен. и конденсатор протекает. Диэлектрическая жидкость также может испаряться при высокой температуре, может создавать давление. на корпусе конденсатора и заставляет конденсатор разбухать или даже взорваться.

Утечка электролита может также вызвать коррозию печатной платы, на которой установлен конденсатор.Искать коррозии, очистите плату и замените места пайки.


Дефекты электролитических конденсаторов обычно заметны. Здесь тело лопается и диэлектрик выходит наружу.


Для предотвращения взрыва электролитические конденсаторы имеют перфорацию для выхода газов или диэлектрика. жидкость при выходе из строя.

При замене конденсатора имейте в виду следующее:

Убедитесь, что полярность правильная.
Электролитические конденсаторы сохраняют напряжение в течение длительного времени. Разрядите электролитические конденсаторы.
, коротко закоротив два клеммных провода. Конденсаторы высокого напряжения следует укоротить на резистор
Ом (например, 1 кОм). Проверьте напряжение с помощью мультиметра.
Выбирайте конденсаторы с максимально высоким испытательным напряжением. или лучше выше оригинала.

Цены
Дефекты неполяризованных конденсаторов встречаются редко. Нет необходимости иметь их на складе. Но немного электролитического конденсаторы должны быть в наличии в каждой мастерской.
Вот типичные цены на конденсаторы в Европе:
Керамика 0,10 €
МКС 630В 0,20 €
Конденсатор SMD 0,30 €
Тантал 10 F / 25V 0,30 €
Электролитический 10 F / 40 В 0,20 €
Электролитический 1000 F / 40 В 0.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *