Технология пайки алюминия и его сплавов (часть 3)
Известны бесфлюсовые способы низкотемпературной пайки. Бесфлюсовую пайку алюминия можно осуществить в газовых средах без применения защитных покрытий контактно-реактивным методом.
В качестве припоя применяют кремний, медь или серебро, которые наносят на алюминий гальваническим путем, термовакуумным напылением или плакировкой. Высокое качество паяного соединения получают при пайке в вакууме 10-5 мм рт. ст. и толщине покрытия 10-12 мкм.
Пайку алюминия припоями типа силумина осуществляют в специальных газовых средах. В качестве последних используют смеси аргона с парами магния. Такая атмосфера способна при температуре 550-580°С восстанавливать окись алюминия и обеспечивать смачивание паяемой поверхности припоями типа силумин.
При пайке алюминиевых сплавов в атмосфере паров магния последний переходит из газовой фазы в расплав. Предел прочности соединений сплава АМг6, выполненных этим способом, составляет 35,2-35,8 кгс/мм2
Пайку в защитной атмосфере можно осуществить при использовании самофлюсующих припоев (например, 3-15% Si, 0,4-10% Mg, Al — остальное).
Другой припой состава 7,5-13,0% Si, 0,3% Си, 0,1 % Mg, 4,5% Р, 0,1-30,0% металлов из группы Ni и Со, 0,2% Zn, 0,5% Mn, А1 — остальное. Пайку этими припоями следует производить в среде аргона, гелия или в вакууме.
Бесфлюсовую пайку алюминия припоями типа 34А, силумин ПСр 5АКЦ можно производить по предварительно луженной поверхности припоем П200А. Лужение производят абразивным способом, толщина слоя должна составлять 0,03-0,05 мм на сторону.
Нагрев под пайку рекомендуется производить в печи, в потоке аргона или на воздухе индукционным способом.
Известны способы низкотемпературной пайки без применения флюсов, такие как абразивная пайка или пайка трением. При этом способе пайки окисную пленку с поверхности алюминия можно удалить шабером, металлическими щетками, частицами абразива (асбест, металлические порошки, первичные кристаллы сплавов-припоев, в твердо-жидком состоянии и т. п.), находящимися в расплаве припоя.
Применяют также абразивные паяльники для лужения алюминия, у которых рабочая часть паяльника представляет собой стержень из частиц припоя и абразива.
Собственно операция пайки осуществляется уже после абразивного лужения путем обеспечения плотного контакта по луженым поверхностям при температуре полного расплавления припоя. Возможна подпитка шва припоем.
Ультразвуковое лужение можно производить с помощью ультразвуковых паяльников и в ультразвуковых ваннах.
В связи с тем, что при ультразвуковом лужении отмечается сильная эрозия основного металла, лужению этим способом нельзя подвергать детали с толщиной стенок менее 0,5 мм.
Имеется также способ абразивно-кавитационного лужения. При этом способе лужения твердые частицы, находящиеся в жидком припое, в ультразвуковом поле оказывают дополнительное абразивное воздействие на металл.
При пайке алюминия припоями-пастами на основе галлия в качестве наполнителя паст служат алюминий и сплав алюминия с магнием. Температура пайки 200-225°С, время выдержки 4-6 ч. Предел прочности соединений составляет 3-5 кгс/мм2.
При пайке по полуде чистым галлием с последующей термообработкой предел прочности соединения составляет 2,8-3,8 кгс/мм2. Паяные швы выдерживают ударные, вибрационные и термоциклические нагрузки, обеспечивают вакуумную плотность не ниже 10-2 мм рт. ст. и имеют удовлетворительную коррозионную стойкость.
Применяют также пайку цинковыми припоями по серебряному покрытию, нанесенному на поверхность алюминия предпочтительно термовакуумным напылением с последующей термообработкой.
Разработан ряд технологических процессов, обеспечивающих надежное соединение алюминия с медью и ее сплавами, со сталью, никелевыми и другими сплавами.
Основные трудности при осуществлении процесса пайки алюминия с указанными материалами заключаются в трудности выбора флюса или газовой среды, обеспечивающих удаление окислов с поверхностей столь разнородных материалов; в образовании хрупких соединений из-за возникновения интерметаллидов в зоне шва; в наличии большой разницы температурных коэффициентов линейного расширения алюминия и перечисленных выше материалов.
Первые два осложнения успешно преодолевают при предварительном нанесении на поверхности соединяемых материалов защитных металлических покрытий.
Пайку алюминия с медью можно успешно осуществить по никелевому покрытию, нанесенному на алюминий химическим способом. Пайку производят в водороде припоем состава 49% Ag, 20% Си, 31% In; температура пайки близка к температуре плавления алюминия.
Пайка алюминия с медью и ее сплавами может также быть осуществлена путем нанесения защитных покрытий типа цинк, серебро и их сплавы на поверхность меди. При этом используют припои на основе олова, кадмия, цинка.
Через серебряное покрытие на меди может быть осуществлена контактно-реактивная пайка с образованием в паяном шве хрупкой эвтектики Al — Ag — Си. Такие паяные соединения могут быть использованы только в несиловых конструкциях.
Соединение алюминия со сталью, в том числе и с нержавеющей, облегчается при предварительном лужении поверхности стальной детали легкоплавкими свинцово-оловянистыми припоями, алюминием и алюминиевыми припоями с применением активных флюсов на основе хлористых и фтористых солей.
При пайке алюминия со сталью очень важно строго ограничивать режим из-за опасности образования хрупких интерметаллидов в паяных швах. Время выдержки не должно превышать 1-4 мин, температура пайки также не должна превышать заданного предела.
Пайка алюминия с титаном возможна только по слою алюминия или олова, нанесенных на поверхность титана путем горячего лужения.
Флюсы для низкотемпературной пайки алюминия и его сплавов
Алифатические кислоты, аминикислоты
Состав флюсов для высокотемпературной пайки приведены в соответствующем разделе.
В таблице приведены состав, температурные интервалы активности и назначение некоторых флюсов, разработанных с 1973 по 1984 г. Среди органических кислот и других веществ, пригодных в качестве активатора флюсов
для пайки алюминия и его сплавов при температуре <300 °С, пригодны только алифатические кислоты, их амиды, а также триэтаноламин, имеющий свойства основания. Среди алифатических кислот наиболее активны одноосновные кислоты: стеариновая, элаидиновая, олеиновая, лауриновая, коприновая, каприловая, капроновая, валериановая, масляная, пропионовая, уксусная, муравьиная. Активность этих кислот повышается с увеличением их относительной молекулярной массы и температуры плавления. При взаимодействии их с оксидом Al2O3 протекают следующие реакции:
Al2O3 + 6RCOOH → 2 (RCOO)
2Al + 6RCOOH → (RCOO)3Al + ЗН2 (2)
Наиболее энергично протекает реакция с муравьиной и уксусной кислотами, менее энергично с капроновой кислотой. Однако введение этих кислот во флюсы мало перспективно вследствие их интенсивного выкипания при температуре пайки и снижения энергии разрыва связи СОО—НС — с возрастанием молекулярной массы кислоты. Соли карбоновых кислот, получаемые по реакциям (1) и (2), термически неустойчивы. Например, уксуснокислый алюминий разлагается при температуре 200°С.
Марка или номер флюса | Состав флюса, % | Температурный интервал активности,°С |
Примечание |
1 | 4—7 борофтористого аммония; 4—7 борофтористого кадмия; эпоксидная смола остальное |
<450 | Для пайки алюминия и сплава Al — 2 % Mg(АМг2). Высокая коррозионная стойкость |
Ф59А | 10±0,5 фторобората кадмия; 2,5±0,5 фторбората цинка; 5±0,5 фторбората аммония; 82±1 триэтаноламина |
150—320 | Для пайки алюминия или сплава АМц с медью и сталью припоями на основе: Sn — Zn, Zn —Cd |
Ф61А | 10 фторбората цинка; 8 фторбората аммония; 82 триэтаноламина |
150—320 | Для пайки алюминия, бериллиевой бронзы, оцинкованного железа, меди припоями на основе Sn — Zn, Zn — Cd |
Ф54А | 10 фторбората кадмия; 8 фторбората аммония; 82 триэтаноламина |
150—320 | |
3 | 7 бромида висмута; 47,9 уксусной кислоты; 55,1 олеиновой кислоты |
<380 | Для лужения в жидком олове более активен, чем флюс Ф54А |
4 | 4,2—10 иодида титана; 16,8—22 канифоли; капроновая кислота — остальное |
<350 | Для лужения алюминиевых сплавов слабокорро-зионно-активен |
5 | 1,5 триэтаноламина; 4 салициловой кислоты; 94,5 этилового спирта |
150—320 | Для пайки алюминия с медью, бериллиевой бронзой, оцинкованным железом припоями на основе Sn —Zn и Zn —Cd |
6 | 30 г иодида лития; 200 мл олеиновой кислоты |
<450 | Для пайки алюминия |
7 | 4,2—10 иодида титана; 16,8—22 канифоли; капроновая кислота — остальное |
<450 | |
8 | 5—8,6 BiBr2; 23—39,8 капроновой кислоты; канифоль — остальное |
<450 | |
9 | 10—15 тетрафторбората цинка; триэтаноламин остальное |
≥350 | Для пайки алюминиевых проводов с изоляцией (повышает ее стабильность) Для пайки алюминия |
10 | 7,5 фторгидрата анилина; 92,5 канифоли |
<250 | |
11 | 83 триэтаноламина; 9 фтор-бората кадмия; 7 кислого фтористого аммония; 1 канифоли |
> 150 |
Среди двуосновных предельных кислот, более сильных, чем одноосновные, первые три члена гомологического ряда кислот (щавелевая, малоновая, янтарная) не обладают активностью при пайке алюминия, что обусловлено декарбоксилированием их при нагреве. Высшие кислоты имеют во флюсах такую же активность, как и одноосновные кислоты, с тем же числом атомов в радикале.
Ангидриды кислот не активны при пайке. Более высокую активность во флюсах для пайки алюминия имеют галогензамещенные кислоты, что объясняется одновременным воздействием на оксид алюминия как карбоксильной группы, так и атома галогена.
Обнаружено, что активны во флюсах некоторые твердые аминокислоты: α-аминопропионовая и фениланитрониловая, которые обеспечивают хорошее растекание припоя.
С учетом физических свойств, степени токсичности и активности во флюсах среди органических кислот наиболее пригодными можно считать высшие жидкие незамещенные кислоты, их твердые аналоги и аминокислоты. Флюсующая способность смесей кислот в любых соотношениях не превышает активности компонента с наиболее высокой молекулярной массой.
Салициламид и мочевина по активности равноценны действию капроновой или элаидиновой кислоты.
Добавка солей в кислотные растворы
Активность аммонийных солей органических кислот близка к активности исходных одно- и двуосновных кислот. Эти соли имеют преимущества перед амидами — меньшую летучесть при пайке и лучшую растворимость в кислотах. Характерно, что введение органических кислот и их производных в триэтаноламин не повышает его активности при флюсовании алюминиевых сплавов.
Дальнейшее повышение флюсующей активности кислотных органических растворов достигается при добавке в них галлоидных солей аминов или металлов. Введение в дециловый спирт (температура кипения 231°С) LiI и SnCb или в капроновую кислоту (температура кипения 205°С) LiBr, LiI, NaI, SnCb в виде кристаллогидратов активирует раствор.
Введение в кислотные флюсующие растворы солей 95 %-ного этилового спирта дезактивирует их из-за вытеснения воды по реакции:
Al (OR)3 + 3H2O → Al (ОН)3 + 3ROH.
Однако присутствие кристаллизационной воды в спиртовом растворе хлорида олова не влияет на активность его при пайке
Реактивные органические флюсы
Для пайки алюминия легкоплавкими припоями были предложены реактивные органические флюсы. Основой этих флюсов является органический аминоспирт триэтаноламин, а активаторами фторбораты тяжелых металлов и аммония. В местах контакта фторборатов с алюминием через несплошности в оксидной пленке Al2O3 высаживаются металлы: кадмий и цинк. Остатки триэтаноламина в процессе нагрева переходят в инертное вещество смолообразного вида, не вызывающее коррозии паяных соединений. Эти флюсы и их остатки после пайки имеют рН = 8, что также подтверждает их некоррозионно-активность. Все эти флюсы не отличаются по коррозионной активности при пайке алюминия, но при пайке его со сплавом АМц, медью и ее сплавами наиболее эффективным является флюс Ф59А. Температурный интервал активности этих флюсов 150—300°С. Флюсы этого типа непригодны для пайки в нахлестку с укладкой припоя у зазора деформируемых сплавов АМг, Д1, Д16, В95 и литейных алюминиевых сплавов. Ими можно пользоваться только при облуживании паяемой поверхности алюминия с последующей пайкой, например с флюсом ЛТИ-120. При этом температура между паяемыми деталями при пайке не должна отличаться более чем на 10°С. Остатки флюсов легко смываются водой или протираются влажной салфеткой, смоченной водой или этиловым спиртом, и не вызывают сколько-нибудь заметной коррозии в течение более 1000 ч. Исследования показали, что по сравнению с флюсами, содержащими в качестве растворителя уксусную, капроновую, олеиновую, лауриновую кислоты, а в качестве активатора хлорид висмута, флюс Ф54А обеспечивает большую площадь растекания припоя П250А по алюминию АД1; но он менее активен при пайке коррозионностойкой стали, латуни и меди, чем флюсы, содержащие хлорид висмута.
Флюсы Ф54А, Ф59А и Ф61А пригодны для пайки в указанном интервале температур припоями П200А, П250А, П300А, П170А и П150А. Для этого используют терморегулирующие электропаяльники, индукционный нагрев, а также пайку погружением в расплавленный припой. Недопустима пайка с этими флюсами при нагреве открытым пламенем из-за возможности их сгорания. При температуре выше 350 °С в паяных швах соприкасающихся соединений, выполненных этими флюсами, образуются непропаи. При быстром нагреве (электроконтактным, индукционным способами) в среде чистого аргона пайка с этими флюсами возможна при температуре 320°С.
Есть данные о применении для пайки алюминиевых сплавов легкоплавкого припоя Sn — (8—15)% Zn— (2—5)% Pb с температурой плавления 190°С с флюсом в виде раствора борно-фтористого и фтористого аммония в моноэтаноламине. Во флюсах для низкотемпературной пайки алюминия и его сплавов вместо канифоли предложено использовать пентаэритрит бензоата, который более термостоек, чем канифоль, а остатки его некоррозионно-активны и в виде эластичной пленки предохраняют паяные швы от окисления. В качестве активатора флюса используют карбоновые кислоты. Паяные соединения (припой П250) не разрушаются в солевом растворе в течение 200 суток. Припой из проволоки (Sn—Pb—Ag) с сердцевиной из указанного флюса пригоден для пайки всех алюминиевых материалов, в которых содержится менее 3% Mg и 3% Si.
Припой для низкотемпературной пайки алюминия.
Повышение коррозионной паяного шва
Пайку нагревом до температуры 450°С проводят обычно оловянно-цинковыми, кадмиево-цинковыми и цинковыми припоями. Соединения из алюминия и его сплавов, паянные легкоплавкими припоями на основе олова или олова со свинцом, имеют низкую коррозионную стойкость как в условиях хранения, так и во всеклиматических условиях испытаний и в морской воде.
В 50—60-х годах было установлено, что склонность к коррозии может быть снижена при введении в легкоплавкие припои цинка. Однако существенного повышения коррозионной стойкости паяных соединений удается достичь лишь при введении в эти припои не менее 50% Zn. Вместе с тем подобное содержание цинка в оловянных и оловянно-свинцовых припоях приводит к существенному повышению температуры их полного расплавления (более 370°С). При ограничении температуры пайки 300°С содержание цинка в припоях Sn—Zn не превышает 20 %. При содержании в припоях 30 — 40 % Zn частичная замена олова кадмием или кадмием и свинцом мало влияет на их температуру начала и конца кристаллизации. Положительное влияние цинка на коррозионную стойкость соединений из алюминия и его сплавов, паянных оловянными или оловянно-свинцовыми припоями, по мнению Дж. Д. Дауда, обусловлено улучшением соотношения потенциалов паяемого металла и шва. Однако при этом важную роль играют процессы пассивирования, т. е. образования оксидной пленки на контактирую щих поверхностях металлов, тормозящие развитие коррозии. При развитии пассивирования соотношение потенциалов контактирующих металлов может и не оказывать существенного влияния на развитие коррозии. Развитие процессов пассивирования тормозится в узких зазорах между контактирующими металлами из-за затрудненного доступа в эти места кислорода, в результате чего в зазорах развивается щелевая коррозия.
Щелевая коррозия
Н. Ф. Лашко и С. В. Лашко высказали предположение, что развитие щелевой коррозии в соединениях из алюминия и его сплавов, паянных легкоплавкими припоями на основе олова или олово — свинец (отслоение шва от паяемого материала без видимых следов коррозии), связано с характером физико-химического взаимодействия олова и свинца с алюминием. Из двойных диаграмм состояния Al—Sn и Аl—Рb следует, что при низкотемпературной пайке растворимость алюминия в олове и свинце весьма мала; при пайке алюминия такими припоями слабо развивается диспергация оксидной пленки от мест ее разрушения. Это особенно проявляется при бесфлюсовой пайке с применением ультразвука или абразивной пайки. В результате этого паяный материало и шов связаны по отдельным «мостикам», между которыми располагаются невидимые для невооруженного глаза щели между паяным швом и основным материалом, по которым и протекает щелевая коррозия. При погружении паяного соединения в подсоленную воду образуются продукты коррозии (гидрооксиды), которые изменяют состав электролита и снижают его рН, что способствует более интенсивному развитию коррозии.
Положительное влияние на коррозионную стойкость цинка в припоях с оловом и свинцом обусловлено повышением при этом растворимости в припое алюминия и, как следствие, более активным развитием процесса диспергации оксидной пленки на поверхности алюминия при низкотемпературной пайке. Процессу диспергации способствуют также повышение температуры и длительности выдержки при пайке, а также введение в припои других элементов, обладающих достаточно высоким химическим сродством к алюминию, в том числе образующих с ним химические соединения, особенно выше температуры пайки. К таким элементам с высоким химическим сродством к алюминию относятся серебро, сурьма, никель, а также медь, титан, магний, литий и др.
Оценка стойкости припоев алюминия в промышленной и тропической атмосферах
Слабо взаимодействуют с алюминием не только олово и свинец, но и кадмий. Введение цинка в состав припоя для алюминия повышает коррозионную стойкость паяного соединения; припой П300А (60% Zn—40% Cd) образует с алюминиевым сплавом АМц коррозионностойкие паяные соединения, которые не снижают механических свойств после пребывания их в камере тропической атмосферы в течение четырех месяцев и в условиях полупромышленной атмосферы в течение девяти месяцев. Наиболее коррозионностойкими в этих условиях являются соединения из алюминиевого сплава АМц, паянные припоями Zn—20%Аl и Zn—15%Cu (П425А и П480А).
Исследования показали, что при ускоренных коррозионных испытаниях в растворе дистиллированной воды с 3% NaCl и 0,1 % Н2О2при 20°С время до разрушения образцов из алюминиевого сплава АМц, паянного припоями Sn— Pb, Sn—10%Zn: Sn—15%Pb —7 %Cd, измеряется десятками часов, а паянных наиболее коррозионностойким припоем Zn—5 %Al—тысячами часов. Введение в цинково-алюминиевый припой добавок олова, кадмия, свинца ухудшает коррозионную стойкость паяных соединений из алюминия: добавки хрома, меди, никеля, сурьмы, серебра способствуют ее повышению.
Для пайки алюминия и его сплавов используют припои системы Pb—Zn, Zn—Cd, Sn—Pb—Zn. Припои типа 63 % Pb—34 % Sn —3 %Zn обеспечивают лишь низкую коррозионную стойкость паяных соединений: припои 60 % Zn—40 %Cd и 70 %Zn—30 % Sn — среднюю их коррозионную стойкость, а припои Zn—5 %Al и 100 % Zn — высокую коррозионную стойкость паяных соединений. Цинковый припой Zn—5 %Al имеет соответственно температуру плавления 381 °С и температуру пайки 421—427°С.
Наилучшими припоями, обеспечивающими наиболее высокую коррозионную стойкость и прочность, являются сплавы с 70—95%Zn с добавками серебра, меди, алюминия. К недостаткам таких припоев относится относительно высокая температура пайки (370—510 °С), при которой наклепанный или нагартованный алюминий может отжигаться. При пайке этими припоями пригоден нагрев как газопламенный и погружением, так и в печи. Важнейшими технологическими особенностями пайки с этими припоями является необходимость кратковременного их нагрева (<1 с) и небольшого перегрева (не выше 25 °С).
Соединения из алюминия и его сплавов, паянные припоями на основе олова или олово — свинец, могут использоваться только после нанесения на них специальных лакокрасочных покрытий или в вакууме, инертных газовых средах. Соединения, паянные цинковыми припоями, изготовленными из цинка с повышенным содержанием примесей олова, свинца, сурьмы, кадмия, склонны к развитию в паяных швах межкристаллитной коррозии, и поэтому такие припои для пайки алюминиевых сплавов, особенно для пайки изделий, работающих в кипящей воде, изготовляют из цинка чистоты 99,99%.
Кроме того, цинковые припои склонны к межзеренной химической эрозии паяемых алюминиевых сплавов: введение в цинковые припои алюминия (> 4 %) снижает межзеренное проникновение припоя в паяемый материал при условии строгого соблюдения термического режима пайки. Введение хрома способствует измельчению зерна цинковых припоев.
Повышениие смачиваемости
Для улучшения смачивающей способности и упрочнения цинковых припоев для пайки алюминиевых сплавов А. Г. Спасским и Г. К. Смирновым предложено легировать их галлием. Исследования показали, что введение в припой Sn—40 % Zn галлия в количестве 1,5 % повышает его временное сопротивление разрыву от 68,6 до 98 МПа, не влияет на его удельное электросопротивление и не снижает коррозионную стойкость паяного соединения. Однако увеличение содержания галлия в припое выше 1,5 % резко снижает прочность припоя и его коррозионные свойства. Показано, что соединения из сплавов Д16 и АМгб, паянные припоем с 1,5 % Ge, выдерживают вибрационную нагрузку при ускорении 5—10 g, частоте 2000 Гц и циклическом нагреве от —60 до 60 °С, а также вакуум-плотны при давлении до 1,33 ·10-1Па, но должны быть защищены лакокрасочными покрытиями.
В табл. приведены составы легкоплавких припоев для пайки алюминия и его сплавов, предложенные в последние годы за рубежом. Необходимо при этом отметить, что припой Sn—(18— 20)% Cd — (0,5—1)% Ag — (0,5—1,5) % Ga образует паяные соединения из алюминиевого сплава АМц, выдерживают частоту 20—2000 Гц, перегрузки в 35 g длительностью 1 —10 мкс, а также термоциклирование от —60 до +60 °С; паяные соединения вакуум-плотны при давлении от 1,33 ·10-3 до 1,33·10-2 Па.
Основа | Содержание легирующих элементов, % | Температура плавления,°C | Примечание |
* Температура пайки. | |||
Sn | 0,3—3 Bi; 0,5—2 Сu; 0,5—2 Ni; 0,3—2 Mg; 37,4—63,0Zn |
160—250 | Повышенная прочность паяного соединения |
Sn | 7—9 Zn; 6—8 Bi; 2,4—4 Sb |
— | Повышенная коррозионная стойкость паяных соединений |
3—5 Zn; 2 Mg; 2 Ag; 2 Cu |
— | ||
Sn | 18—20 Cd; 0,5—1 Ag; 0,5—1 Ga |
— | Повышенная коррозионная стойкость паяных соединений. Для паяных соединений σв = 78—98 МПа |
Sn | 1,5—2 Zn; ≤1,5 Ag; 0,1—5 Cu; 0,5—7 Mg |
350 | Повышенная коррозионная стойкость паяных соединений |
Sn | 35—48 Zn; 0,5—1,5 Al; 0,1—0,8 Si; 0,5—1,1 Cu; 0,02—2,2 P3M |
<350 | Средняя коррозионная стойкость паяных соединений. Для абразивной пайки с газопламенным нагревом |
Pb | 1 — 10 Sn; ≤5 Ag; ≤0,1 Sb |
Повышенная коррозионная стойкость паяных соединений |
|
Pb | 3—15 Sb; 0,115 Zn; 0,1—5 Ag; примеси <0,05 % |
250—360 | Для ультразвуковой, вакуумной и флюсовой пайки; нагрев — погружением или в печи |
Pb | 5—30 Sn; 1 — 10 Bi; 0,5—5 Ag |
— | Повышенная коррозионная стойкость паяных соединений |
Sn | 20—40 Zn; 10—57 Cd |
300 | Для флюсовой пайки |
Zn | 40—50 Cd; 1—8 Cu; 2—10 Sn; 0,5—1,5 Ga; 0,5—1 Ag; 0,5—1,5Al |
350 | Повышенная коррозионная стойкость паяных соединений. На алюминий предварительно наносят цинк, никель, медь химическим, гальваническим или термовакуумным способами. Нагрев при пайке газо-пламенный или паяльником |
Zn | 7,5—11,5 Al; 3,5—4,5 Cu; 0,005—0,2 Be; примеси <0,3 |
440 * | Высокая коррозионная стойкость паяных соединений. Соединения не корродируют в кипящей воде в течение 100 ч |
Zn (99, 99) | 3—7 Al; 0,2—3 Cr |
— | |
Zn | 5—7 Al; 0,5—1 Cu; 0,005—0,5 Mg; 0,05—0,1 Mn; 0,1—0,4 Ni; 0,05—0,2 Cr** |
440 | Высокая коррозионная стойкость паяных соединений. Припой технологичен и не изменяет цвета |
Zn | 7,5—11,5 Al; 3,5—4,5 Cu; 0,005—0,2 Be; примеси <0,3; 4,3 |
440 | Высокая коррозионная стойкость паяных соединений. Швы не корродируют в кипящей воде в течение 100 ч. Для паяного соединения σв = 171 МПа |
Zn | 3—6 Al; 1,5—3,5 Cd; 1—2 Mg |
<450 |
Высокая коррозионная стойкость в промышленной атмосфере |
Zn | 3—7 Al; 0,5—1 Ag; 0,005—0,015 Mg; 0,005—0,1 Ni; 0,05—0,2 Сг; 0,005—0,2 Si; 0,001—0,05 Be; мишметалл*** |
440 | Высокая коррозионная стойкость паяных соединений для ультразвуковой пайки, прочны |
Zn | 7,5—11,5 Al; 3,5—4,5 Cu; 0,005—0,2 Be; примеси <0,3 |
440 * |
Соединения не корродируют в кипящей воде. Для печной пайки |
Zn | 3—4,5 Al; 1—3 Ag; 0,1—0,8 Mg |
330—420 | Паяные швы не склонны к межкристаллитной коррозии |
Zn | 3—7 Al; 0,3—2 Сг |
— | Для флюсовой пайки. Склонны к усадке |
Zn | 0,5—1,5 Al; 0,1—0,8 Si; 0,02—2,2 РЗМ; 0,5—1,1 Cu; 27,9—44,6 Sn |
— | Для абразивной пайки с газопламенным нагревом |
Zn | 17,2—40 Al; 4—15 Cu; 0,2—2,2Ag |
<450 | |
Zn | 34Cd |
265—305 | Для ультразвуковой пайки труб погружением |
Для цинковых припоев характерна не только интенсивная межзеренная, но и общая химическая эрозия алюминия и его сплавов.
Считают, что введение в оловянные припои меди, никеля, магния, цинка, сурьмы также повышает их прочность и легкоплавкость. Добавки магния, образующего соединение Mg2Si, упрочняют паяное соединение.
Флюс для низкотемпературной пайки алюминия: состав, виды
Алюминий признан самым капризным материалом, который требует применения специальных средств и технологий, где флюс для пайки алюминия обеспечивает высокое соединение контактов изделий. Прочное соединение требуется не только при проведении несложных работ в бытовых условиях, но им для обеспечения промышленного и производственного масштаба соединения алюминиевых материалов и активный флюс для низкотемпературной пайки алюминия будет гарантом прочного соединения. В отличие от других металлов и материалов, алюминий требует специальной технологии обработки проведения качественного соединения готовых обрабатываемых частей и главная конечная цель данного процесса создание специального и надёжного прочного соединения, относящегося к механическому типу, который обладает физико-химическими, а также электропроводными характеристиками.
Флюс для пайки алюминия
Особенности проведения работ по соединению алюминия
Применяя флюс для пайки алюминия, необходимо иметь представление о некоторых понятиях и терминах, используемые для данной работы. Итак, используя для работы флюс для пайки алюминия, помните, что это своеобразная смесь, где присутствуют органические или неорганические компоненты, главной задачей которых является обеспечение прочного соединения и адгезии физико-химической природы припоя для обеспечения прочного соединения однородной группы металлического поверхности, а иногда разных по природе материалов металла.
Использование флюса для пайки алюминия
Чтобы флюс для пайки алюминия ф 64 подошёл к материалу обработки, необходимо знать некоторые физические и химические характеристики и свойства алюминия:
- Алюминий имеет высокую степень для обеспечения теплопроводности, а также достаточную электропроводность.
- Алюминий очень устойчив к органическим и неорганическим растворителям.
- Материал имеет достаточную пластичность, то есть гнётся, меняет форму, что позволяет в свою очередь выпускать различные группы изделий – проволоку, технологические листы, изделия гнутой формы и т.д.
- Температура плавления одна из самых низких, всего +660 С.
Учитывая вышеперечисленные параметры можно сделать вывод, что флюс для пайки алюминия должен иметь специальную структуру взаимодействия с поверхностью.
«Важно!Электропроводность, это основной параметр популярности алюминия, и, следовательно, необходимо подбирать соответствующую группу пасты для пайки алюминия.»
Для создания технологических мостиков обеспечения соединения между алюминиевыми контактами, необходимо помнить, что имеются определённые трудности, которые не позволяют обеспечить качественное соединение материала. Низкое качество обеспечения соединения вызвано тем, что в процессе окисления на поверхности возникает эластичная, и в то же время прочная оксидная плёнка, которая имеет химическую формулу Al²O³. Главное преимущество данной плёнки, в химическую реакцию не могут вступить иные инородные материалы, а также обеспечивается надёжная защита соединения, если есть негативное воздействие жидкости (например, смоченный контакт сохранит свои первоначальные свойства без ущерба качества соединения).
Сфера применения
Использование флюса для пайки ф 64 достаточно обширное, и достаточно указать несколько технологических направлений, где широко используется алюминиевая основа:
- Создание систем теплопроводной магистрали, например, автомобильные радиаторы.
- В энергетических системах замкнутого пространства, например образование замкнутой электрической цепи.
- Соединение токоведущих частей, которые были разорваны под воздействием механической силы, например провода общей магистральной сети электропроводов.
- Создание технологических конструкций, которые обеспечивают связь по принципу электропроводимости.
Флюс Ф 64
Припои, основа для качественного соединения изделий из алюминия
Как видно, флюс для пайки своими руками позволит отремонтировать как сложные и проблемные источники повреждения, так и лёгкие участки и узлы. В качестве припоя используют такие традиционные материалы как:
- Олово;
- Сплав с использованием цинка;
- Сплав на основе кадмия.
Температура плавления выше перечисленных материалов в диапазоне от +200 С до +400 С, и для этих целей можно использовать не очень мощный работоспособный паяльный инструмент. Дополнительно в качестве припоя используют тугоплавкие вещества, в составе которых присутствуют медь, цинк и даже кремний.
В результате проведения технологического процесса состав флюса для пайки алюминия обеспечивает облуженный слой надежной конструкции, где происходит надёжное сцепление с поверхностью обрабатываемой части, которая создаёт своеобразный контактный мостик электросопротивления, что позволяет осуществлять дополнительную обработку в процессе проведения паяльных работ.
Серийная группа флюсов
В качестве примера можно привести флюс для пайки алюминия Векта.
Флюс Векта
А также серийный ряд припоев:
- ПОС-40. В состав припойного компонента входит до 40 % материала олова, а также 3-5 % сурьмы, и оставшаяся часть компонента состава включает в себя свинец. Номинальная действительная температура плавления материала 185-270 С. Применение данного препарата предпочтительно для мало-ответственных производственных узлов общего предназначения, например для простых технологических швов.
- Серия 34А. Этот тип флюса для пайки алюминия Firinit Afp 200 предназначен не только для соединения с алюминием, но и для пайки дюралюминия, авиаля, а также для сложного литейного сплава. Нет необходимости проходить дополнительную обработку расплавления обрабатываемых частей деталей.
Особенности флюсов для алюминиевых сплавов
Некоторые мастера знают, что флюс для пайки алюминия своими руками можно создать при помощи сподручных материалов, но в то же время есть традиционные группы, используемые в промышленных и бытовых условиях соединения изделий. В качестве таковых являются:
- Флюс 34А. Один из самых сильнейших препаратов, который основан на химическом принципе воздействия на окислы, создавая при этом качественное преобразование. По окончании производственных работ, необходимо удалить излишки препарата с поверхности обрабатываемого изделия.
- Машинное масло. Как ни странно, это самый простой и дешёвый способ удаления защитной окисной образуемой на поверхности плёнки, которая удаляется при помощи абразивного воздействия. Нанесённая жидкость полностью препятствует проникновению атмосферного воздуха, который независимо воздействует на поверхность изделия. В данном случае все обрабатываемая поверхность изделия становится исключительно восприимчивой к процессу нанесения припоя на поверхность алюминия.
Согласно общепринятой классификации припоев и флюсов, можно условно разделить на две группы, которые представлены следующими категориями:
- Твёрдая группа. В этом классе присутствуют материалы солей, а также органических веществ.
- Жидкая или гелеобразная группа флюсов. К этой группе относятся кислоты, а также традиционная органика, всем известная канифоль и солевая группа
Положительные стороны применения припоев заключаются в следующем:
- Допускается различная комбинация твёрдого преобразования совместно с припоем, например, при помощи проволоки, где наружная оболочка может выступать как твердоплавкий материал, а в сердцевине используется 100 % флюс.
- Жидкая основа. Достаточно опустить в специальное устройство припой, и им же натирается обрабатываемая поверхность.
- Все имеющиеся остатки жидкого вещества необходимо удалить.
Заключение
Техника безопасности применения припоев должна быть очень высокой. При проведении паяльных работ, необходимо помнить, что ряд припоев содержат ядовитые и опасные для организма человека вещества, которые раздражают слизистую оболочку глаз и дыхательные пути человека. Все работы необходимо осуществлять в перчатках, а также использовать специальные защитные средства. По окончании работы необходимо удалить остатки припоя, а также проветрить помещение, тщательно вымыть руки с мылом.
Видео: использование флюса Ф-64
Припои низкотемпературной пайки алюминия и его сплавов
Химия и химическая технология
Статьи Рисунки Таблицы О сайте English Есть данные о применении для пайки алюминиевых сплавов легкоплавкого припоя 8п— (8—15)% 2п — (2—5)% РЬ с температурой плавления 190 °С с флюсом в виде раствора борнофтористого и фтористого аммония в моноэтаноламине. Во флюсах для низкотемпературной пайки алюминия и его сплавов вместо канифоли предложено использовать пентаэритрит бензоата, который более термостоек, чем канифоль, а остатки его некорро-зионно-активны и в виде эластичной пленки предохраняют паяные швы от окисления. В качестве активатора флюса используют карбоновые кислоты. Паяные соединения (припой П250) не разрушаются в солевом растворе в течение 200 суток. Припой из проволоки (8п—РЬ—Ag) с сердцевиной из указанного флюса пригоден для пайки всех алюминиевых материалов, в которых содержится менее 3 % Mg и 3 % 81. [c.154]Одним из путей решения вопроса о низкотемпературной пайке алюминиевых сплавов является предварительное нанесение на детали никелевого слоя, электродный потенциал которого находится между потенциалами алюминия и основных компонентов легкоплавких припоев. Кроме того, по никелевому подслою хорошо растекается припой, [c.193]
Смотреть страницы где упоминается термин Припои низкотемпературной пайки алюминия и его сплавов: [c.270]
Пайка, ее физико-химические особенности, технология и технологический процесс (1988) — [ c.99 , c.266 ]
Смотрите так же термины и статьи:
Алюминий в сплавах
Припой
Сплавы припои
© 2020 chem21.info Реклама на сайте
Сварка и пайка алюминия. Припои и флюсы.
Пайка различных металлов и сплавов
Изделия, очищенные и подготовленные для пайки, не должны храниться продолжительное время во избежание окисления. Их следует возможно скорее загружать в печь или контейнер с обеспечением защитной среды. Особенное внимание должно быть уделено удалению воздуха при пайке высоколегированных сталей и сплавов, содержащих легкоокисляемые элементы. Удаление воздуха может достигаться вакуумированием или продуванием защитного газа — аргона. При продувании температура должна повышаться постепенно, начиная от комнатной до 800—900 С (1073— 1173 К). Этот процесс требует значительного расход аргона. Вакуумирование более рационально, так как при этом значительно снижается расход аргона. Большое значение при пайке имеет контроль температуры нагрева изделия; перегрев может оказать вредное влияние.
Общее время пребывания припоя в расплавленном состоянии состоит из времени:
t = t1 + t2 + t3
где t1 — время нагрева от температуры плавления припоя до температуры пайки; t2 — время выдержки при пайке; t3 — время охлаждения от температуры пайки до температуры кристаллизации припоя.
В случае взаимодействия припоя с основным металлом t1 и следует, возможно, сокращать. После окончания процесса панки необходимо удалить флюс, очистить окисленные поверхности, устранить наплывы и участки растекания припоя, в особенности в тех местах, которые подлежат последующей обработке. Требование удаления флюса вызвано возможным отрицательным влияние его, например появлением коррозии (в алюминиевых сплавах).
Флюсы (для пайки алюминиевого сплава) удаляют промывкой горячей и холодной водой при условии последующей обработки в растворе хромового ангидрида. Флюсы на основе буры образуют на поверхности твердую корку. Их удаляют механическим путем или погружением деталей в горячую воду. Паяные швы на алюминиевых сплавах обрабатывают металлической щеткой и вторично промывают от флюсов, могущих остаться в порах швов. Растекающийся припой удаляют механическим, химическим или электромеханическим способами.
Для контроля качества паяных соединений применяют разные методы. Существенное значение имеет внешний осмотр швов. Швы проверяются на прочность, плотность, электропроводность. Паяные швы можно контролировать физическими методами: рентгеновским просвечиванием, применением радиоактивных изотопов, прозвучиванием.
Кроме испытания паяных образцов без их разрушения, нередко применяют испытания с доведением их до разрушения. Результаты, полученные при испытаниях до разрушения нескольких образцов, позволяют установить механические свойства серии аналогичных изделий.
К углеродистым и низколегированным сталям относится стали, имеющие температуру плавления 1450—1520 С (1723—1793 К). При низкотемпературной пайке сталей применяются главным образом оловянно-свинцовые припои с активными флюсами. Перед пайкой рекомендуется детали облуживать. Это ускоряет процесс пайки и позволяет обеспечивать высокие механические свойства соединений.
Более часто для пайки сталей применяют высокотемпературные медно-цинковые припои с добавкой серебра (температура плавления 940—700 С (1213—973 К). Однако вследствие легкого испарения цинка эти припои не применяют для вакуумной панки. Их целесообразно использовать при пайке в среде с низкими окислительными свойствами, например продуктов неполного сгорания азотно-водородной смеси с флюсом в виде буры, борного ангидрида и т. д. Для пайки углеродистых сталей в качестве припоя применяют также чистую медь, в особенности при пайке в печах в среде водорода. Медь хорошо растекается, заполняет малые зазоры. При этом прочность соединений превосходит прочность самой меди.
К высоколегированным сплавам относятся коррозионно-стойкие аустенитные стали 0Х18Н9, 12Х18Н9 со стабилизирующими добавками — титаном, ванадием, ниобием и т. д., кислотоупорные хромистые стали Х17, Х25 и другие ферритного класса, жароустойчивые никелевые сплавы, например, имеющие около 80% Ni и др.
Указанные сплавы могут паяться легкоплавкими припоями с применением активных флюсов. Однако пайка легкоплавкими припоями указанной группы сплавов технически нецелесообразна. Рациональнее применять для их соединений высокотемпературные припои (табл. 1).
В соответствии с маркой припоя применяются флюсы с различными составляющими. Некоторые припои при быстром нагреве т. в. ч. теряют свои составляющие.
Высоколегированные сплавы и стали можно паять в среде аргона, водорода, в вакуумных печах, Недостаток пайки в аргоне — не вполне удовлетворительная растекаемость припоя. Для улучшения растекаемости во флюсы вводят добавки, например литий. Пайка в атмосфере водорода требует высокой его чистоты; использование водорода всегда сопряжено с некоторой опасностью взрыва.
Пайка в вакууме дает хорошие результаты при применении припоев, не содержащих легко испаряющихся элементов (цинка и др.). При пайке указанных выше материалов могут возникать поры вследствие испарения некоторых составляющих припоя, например, цинка: непровары в результате неудовлетворительного смачивания расплавленным припоем соединяемых частей или недостаточной очистки поверхностей; трещины при проникновении жидкого припоя между границами зерен основного металла. Особенно часто образуются трещины при пайке медно-цинковыми и медно-серебряными припоями. Применением более высокотемпературных припоев можно избежать растрескивания паяных соединений.
Таблица 1. Состав припоев, %
Применение никелевых припоев иногда сопровождается образованием подрезов основного металла в местах перехода к швам. Это происходит вследствие того, что припой этого рода имеет способность растворять основной металл. Чтобы избежать этого явления, следует вести технологический процесс пайки при возможно более низкой температуре.При помощи пайки хорошо соединяются изделия из чистой меди и медных сплавов. Чистая медь хорошо паяется при нагреве в вакуумных печах, а также в атмосфере хорошо очищенного водорода без каких-либо примесей кислорода. Медно-цинковые сплавы, содержащие 4—38% Zn, при длительном нагреве теряют его (цинк испаряется), поэтому латунные детали перед пайкой целесообразно покрывать медью.
Пайка широко применяется для соединений различных бронз; алюминиевых, содержащих 5—10% Аl; бериллиевых, применяемых в приборостроении и имеющих в своем составе 2—2,5% Be; хромовых, содержащих около 0,5% Сr; оловянных, применяемых при обработке давлением, содержащих олово, а также фосфор и др.
Медь и ее сплавы легко паяются при применении низкотемпературных припоев с использованием канифольных флюсов, не вызывающих коррозии. Нередко перед пайкой поверхности деталей облуживают чистым оловом слоем толщиной 0,005 мм на стали и 0,0075 мм на меди. Низкотемпературные припои не обеспечивают высокой прочности паяных соединений, поэтому рекомендуется пайка в печах высокотемпературными твердыми припоями. Целесообразно применение медно-фосфорных и серебряных припоев и флюсов на основе буры с добавлением фтористых соединений. Алюминиевые бронзы хорошо паяются серебряными припоями с никелем, который препятствует проникновению в припой алюминия и повышает производительность технологического процесса.
Титан и его сплавы паяют в электрических печах, т. в. ч., газопламенным горелками. Наилучшие механические свойства спая достигаются при пайке ТВЧ. Это объясняется тем, что в результате сокращения термического цикла при этом способе пайки отсутствует рост зерна, приводящий к охрупчиванию соединений. При пайке титановых сплавов целесообразно применять серебряные припои, имеющие температуру плавления ниже температуры рекристаллизации титана и выше температуры, требуемой для удовлетворения условий смачивания припоем паяных деталей.
Очень важная задача производства — соединение пайкой различного рода керамических материалов и окислов друг с другом и с металлами. Возможны разные случаи: металлы более тугоплавки, нежели керамика, при этом соединение обеих деталей происходит в твердом состоянии, контакт обеспечивается необходимым давлением, применением покрытий. В последнем случае соединение достигается при температурах ниже температуры плавления каждой из соединяемых деталей.
Особенно благоприятные условия для соединения, когда металлы имеют температуру плавления ниже температуры плавления керамики и в результате своих специфических химических свойств склонны к образованию связи с последней. Гак, например, титан и цирконий имеют большое сродство к кислороду и образуют твердые растворы со многими металлами и окислами. Окислы титана и циркония весьма тугоплавки. При некоторых условиях эти металлы восстанавливают окислы металлов, образующих керамику, и присоединяют к себе освобожденный кислород. Такое восстановление, необходимое для прессовой пайки, следует проводить в условиях вакуума или в среде аргона.
Серьезные затруднение пайки керамик с металлами — существенная разница в их температурных коэффициентах расширения, в результате чего в соединениях образуются остаточные напряжения значительной величины. В неблагоприятных случаях, при недостаточной пластичности материалов в них возникают трещины. Для устранения этого явления иногда между соединяемым металлом и керамикой прокладывают пластины из пластичного металла, например молибдена. При пластических деформациях последнего опасность возникновения трещин в керамике значительно уменьшается.
С помощью специальных присадочных металлов можно получать качественные соединения не только однородных элементов, например Al2O3 + Al2O3, но и разнородных. Сплавы, содержащие сильные карбидообразующие элементы — молибден, тантал, титан, цирконий и др., — хорошо смачивают графит.
Припои и флюсы для пайки
Большинство способов пайки осуществляют с применением различных припоев и лишь в тех случаях, когда в процессе пайки между металлами могут образоваться легкоплавкие эвтектики, пайка возможна без специального припоя.
К припоям предъявляют ряд требований общего характера. Припой должен хорошо растекаться по поверхности основного металла, смачивать и растворять его, легко заполнять зазоры между деталями, обеспечивать необходимую прочность соединения и т. п.
Припои применяют в виде лент, паст, прутьев. Особенно распространены припои в виде проволочных контуров и прокладок из фольги, штампуемых в соответствии с поверхностью соединяемых частей.
Широкое применение в качестве припоев получили высокотемпературные припои — сплавы на основе серебра, алюминия, меди и др., обладающие, как правило, температурой плавления выше 450—500 С (723—773 К). Медно-цинковые припои ПМЦ 36, ПМЦ 48, ПМЦ 54 имеют предел прочности σв = 21-35 кгс/мм2 (206,0—343,2 МН/м3), относительное удлинение до 26%, рекомендуются для пайки изделий из меди, томпака, латуни, бронзы. Серебряные припои имеют температуру плавления 740—830 С (413—1103 К). Согласно ГОСТ 8190-56 марки припоев разделяют в зависимости от содержания в сплавах серебра, которое изменяется в пределах от 10 (ПСр 10) до 72% (ПСр 72). В них также содержатся цинк, медь и в небольшом количестве свинец. Эти припои применяют для пайки тонких деталей, соединения медных проводов и в случаях, когда место спая не должно резко уменьшать электропроводность стыковых соединений.
Низкотемпературные припои имеют температуру плавления ниже 450—400 С (723—673 К). Они обладают небольшой прочностью. Их применяют для пайки почти всех металлов и сплавов в разных их сочетаниях. В большинстве случаев низкотемпературные припои содержат значительный процент олова.
Низкотемпературные оловянно-свинцовые припои (ГОСТ 1499—70) имеют верхнюю критическую точку плавления 209—327° С (482—600 К). Олово имеет точку плавления 232 С (505 К). Его предел прочности при растяжении 1,9 кгс/мм2 (18,6 МН/м2), относительное удлинение 49%, НВ 6.2 кгс/мм2 (60,8 МН/м2). Оловянно-свинцовые припои ПОС-90, ПОС-61, ПОС-40 и др. применяют при пайке медных аппаратов, авиационных радиаторов, изделий из латуни и железа, медных проводов и т. д.
Образование качественного паяного соединения в значительной степени зависит от возможности наиболее полного удаления с поверхности металла окисных, адсорбированных газовых и жидких пленок. В практике пайки для удаления поверхностных пленок применяют различного рода флюсы, восстановительную атмосферу или вакуум. В последнее время для этой цели успешно используют механическое разрушение пленок с помощью ультразвуковых упругих колебаний.
Флюсы при пайке имеют несколько назначений. Они защищают основной металл и припои от окисления, растворяют или восстанавливают образовавшиеся окислы, улучшают смачивание поверхностей, способствуют растеканию припоев. Флюсы можно применять в твердом, жидком и газообразном виде (в виде порошков, паст, растворов газов). Роль флюса выполняют некоторые специальные газовые атмосферы и вакуум, которые также могут способствовать восстановлению окислов и улучшению условий смачивания. Флюсующее действие оказывают в некоторых случаях отдельные составляющие, входящие в состав припоев. Например, фосфористые припои не требуют флюсов при пайке медных сплавов.
Флюсы сварочные
Флюсами называют специально приготовленные неметаллические гранулированные порошки с определенным размером зерен.
Назначение флюсов – расплавляясь, они создают шлаковый купол над зоной дуги, а после химико-металлургического воздействия образуют шлаковую корку на поверхности, в ней остаются окислы, вредные примеси и газы.
Флюсы делят на неплавящиеся, керамические и плавильные.
Керамические флюсы.
Изготавливают так же, как и электродное покрытие.
Сухие компоненты шихты замешиваются в жидком стекле. Полученную массу измельчают путем продавливания. Потом прокаливают, просеивают для получения частиц определенного размера.
Частицы сухой смеси могут быть скреплены за счет спекания. Происходит это при повышенных температурах без расплавления. Затем гранулируют до необходимого размера.
Не плавильные флюсы приготавливаются в виде механической смеси. Наиболее распространенны керамические флюсы. По составу близки к составу основного покрытия.
Легирование металла флюсом достигается путем введения в их состав ферросплавов.
Сочетание легирующих элементов может быть различно, а это позволяет получать практически любой состав металла шва.
Это наиболее характерная особенность керамических флюсов.
Химический состав шва также зависит от параметров сварки.
Чтобы определить, как изменились свойства шва, надо замерить твердость в различных местах.
Наиболее критичная зона – зона сплавления и околошовная зона. Керамические флюсы имеют и свои недостатки: малая прочность, вследствие чего в процессе транспортировки или эксплуатации меняют свою грануляцию.
Часто применяют для сварки высоколегированных и специальных сталей, а также для наплавочных работ.
Плавильные флюсы.
Сплавы оксидов и солей металлов. Процесс их изготовления включает следующие стадии:
1. Расчет и подготовка шихты.
2. Выплавка флюса.
3. Грануляция.
4. Сушка, если использовалась мокрая грануляция.
5. Просеивание.
Предварительно измельченные части флюса загружают в дуговые или плавильные печи. После расплавления и выдержки до окончания реакции при температуре 1400 C флюс выпускают из печи.
При сухой грануляции флюс выливается в металлические формы. После остывания отливка дробится, при этом используются валки. Размер частиц 0,1-3 мм. Затем флюсы просеивают.
Сухая грануляция применяется для гигроскопических флюсов, содержащих большое количество фтористых и хромистых солей.
Преимущество этих флюсов в том, что они могут быть использованы несколько раз.
Используют для сварки алюминиевых и титановых сплавов.
Мокрый способ грануляции: расплавленный флюс выпускается из печи достаточно тонкой струей и попадает в емкость с проточной водой. В ряде случаев используют дополнительную струю воды.
Далее идет просеивание.
Получают различную грануляцию. Флюс сушат при температуре 250-300 C, а после дробят, если возникает необходимость. После этого просеивают.
Флюс представляет из себя неровные зерна светло-серого, красно-бурого и коричневого цвета.
Транспортируют в герметичной таре, полиэтиленовых мешках, бочках.
Плавильный флюс не может содержать легирующих элементов в чистом виде, так как они окисляются в процессе изготовления. Поэтому легирование происходит путем восстановления окислов флюсов.
В основу классификации флюсов по химическому составу положено содержание в нем оксидов и солей.
Различают окислительные флюсы, имеющие оксид марганца и кремния в составе.
Для получения определенных свойств флюса, в его состав вводят другие компоненты – плавиковый шпат, более прочные оксиды.
Чем больше во флюсе оксида марганца и кремния, тем сильнее он может легировать металл данными элементами, но тем больше он будет окислять этот металл.
Плавильные флюсы применяются для сварки углеродистых и низколегированных сталей.
Безокислительные флюсы практически не содержат оксидов марганца и кремния, в их состав входят фториды, используются для сварки высоколегированных сталей.
Также безокислительные флюсы могут состоять из фтористых и хлоридных солей и элементов, не содержащих кислород.
Используют для сварки высокоактивных металлов – алюминия и титана.
В связи с широким применением флюсов, есть ГОСТ на основные марки: ГОСТ 9087-81 «Флюсы сварочные плавильные».
Регламентирует химический состав.
Различают стекловидный и пемзовидный характер зерна.
Строение зерна зависит от состава расплава флюса, степени его перегрева.
В зависимости от этого, флюс может получаться плотным, прозрачным, пористым, рыхлым.
Следует учитывать, что пемзовидный флюс при том же химическом составе, имеет в полтора-два раза меньший вес, чем стекловидный.
Данные флюсы хуже защищают металл от воздействия воздуха, но обеспечивают хорошее формирование шва при больших плотностях тока и скоростях сварки.
Буквы в обозначениях флюсов:
- М – мелкий
- С – стекловидный
- П – пемзовидный
- СП – смешанный
Сварка под флюсом
На первый взгляд может показаться, что одно из основных преимуществ сварки под флюсом — возможность получения большой глубины проплавления свариваемого металла — противоречит условиям сварки тонколистовой стали. Однако при определенных условиях сварка под флюсом допускает регулирование глубины проплавления металла, начиная от долей миллиметра, и поэтому хорошо известные ее достоинства могут быть использованы для сварки тонколистовой стали.
Успешное внедрение в производство сварки под флюсом изделий из тонколистовой стали стало возможным, главным образом, благодаря применению тонкой сварочной проволоки. Известны примеры сварки тонколистовой стали и обычной электродной проволокой диаметром, например, 4 мм. Однако в этом случае удавалось сваривать сталь толщиной не менее 3—4 мм при условии весьма тщательной сборки изделия.
Для сварки тонколистовой стали большое значение имеет применение приспособлений, облегчающих точную сборку изделия и обеспечивающих надежное поджатие к свариваемому стыку медной или флюсомедной подкладки, флюсовой подушки и т. п. Опыт показывает, что производительность автоматической сварки изделий из тонколистовой стали со сравнительно короткими швами зависит не столько от машинной скорости сварки, сколько от затрат времени на подготовительные и вспомогательные операции. Поэтому важной задачей является разработка эффективно действующих сборочных и сборочно-сварочных приспособлений.
Чем меньше величина тепловой энергии, передающейся от дуги основному металлу в процессе сварки, тем меньше глубина его проплавления и, следовательно, тем более тонкий металл можно сваривать без прожогов. Тепловая энергия, передаваемая основному металлу, может быть уменьшена за счет уменьшения мощности дуги или увеличения скорости ее перемещения по свариваемому соединению.
Для сварки тонколистовой стали в основном применяют уменьшение мощности дуги, а не увеличение скорости сварки. Это в значительной мере объясняется тем, что применение больших скоростей сварки (более 150—200 м/час) связано с жесткими требованиями к точности поддержания режима сварки, необходимостью тщательной очистки свариваемых кромок, с очень точной сборкой стыков, в ряде случаев со специальным наклоном изделия и электрода и т. п. При указанных скоростях сварки металл шва может быть поражен порами, поперечными трещинами и другими дефектами. Если при этом учесть, что производительность сварки тонколистовой стали, как указывалось выше, главным образом, зависит от затрат времени на установочные и подготовительные операции, то станет ясным, почему увеличение скорости не стало основным способом уменьшения погонной тепловой энергии.
Устойчивость процесса сварки
При сварке тонколистовой стали равномерность глубины проплавления имеет особенно важное значение. Если сваривая сталь толщиной более 4—5 мм, можно допустить колебание глубины проплавления в пределах ± 1 мм, не опасаясь возникновения прожогов, то в случае сварки тонких листов стали такое же колебание совершенно недопустимо.
Равномерность глубины проплавления зависит от устойчивости режима сварки, главным образом, от колебаний сварочного тока. Колебания скорости сварки, а также напряжения дуги сказываются в меньшей степени. Исходя из этого, для сварки тонколистовой стали следует рекомендовать сварочные автоматы с постоянной скоростью подачи электродной проволоки, так как они обеспечивают практически почти постоянные значения тока при колебании напряжения в сети или случайных изменениях длины дуги в процессе сварки. При этом сохраняются почти постоянной глубина проплавления, а также количество наплавляемого металла. Сварочные головки с регулируемой скоростью подачи электродной проволоки в тех же условиях не обеспечивают постоянство тока и поэтому применять их не рекомендуется.
Понижение мощности дуги, требующееся для сварки тонколистовой стали, может быть осуществлено только до определенного предела, зависящего от диаметра электродной проволоки. Дальнейшее снижение мощности резко ухудшает устойчивость процесса сварки и приводит к неудовлетворительному формированию шва. В случае сварки переменным током этот предел достигается при значительно большей мощности дуги, чем в случае сварки постоянным током обратной полярности. Поэтому сварку тонколистовой стали рекомендуется осуществлять постоянным током обратной полярности (положительный полюс присоединен к электроду). В табл. 1 приведены полученные опытным путем значения минимально-допустимых сварочных токов для электродной проволоки различных диаметров при сварке под флюсом АН-348 постоянным током обратной полярности.
Как следует из табл. 1, для обеспечения устойчивого горения дуги при понижении ее мощности необходимо увеличивать плотность тока в электроде, что практически достигается путем уменьшения диаметра электродной проволоки. Эту таблицу можно использовать для выбора диаметра электродной проволоки при сварке на заданном режиме.
При рассмотрении условий устойчивого горения электрической дуги пользуются ее статическими вольтамперными характеристиками. Вольтамперной характеристикой называется зависимость между током и напряжением дуги при постоянной ее длине. На фиг. 1 приведены такие характеристики для дуг различной длины. Каждая вольт- амперная характеристика дуги состоит из нескольких участков: падающего (с ростом тока напряжение падает), почти горизонтального (жесткий участок) и растущего (с ростом тока напряжение увеличивается). В зависимости от условии сварки, дуге соответствует тот или иной участок характеристики. Так, например, при сварке неплавящимся угольным или вольфрамовым электродом, при ручной сварке качественными электродами, при автоматической сварке под флюсом со сравнительно небольшой плотностью тока и в некоторых других случаях характеристика сварочной дуги является падающей с переходом к жесткой. При сварке под флюсом или в защитной газовой среде с повышенной плотностью тока в плавящейся электродной проволоке характеристика дуги становится растущей.
Если дуга имеет падающую вольтамперную характеристику, то устойчивое ее горение возможно только при том условии, что внешняя характеристика сварочного генератора также будет падающей, т. е. напряжение холостого хода генератора значительно превышает напряжение дуги при сварке.
С ростом плотности тока в плавящемся электроде изменяются свойства сварочной дуги. Эти изменения настолько существенны, что позволяют предъявить совершенно другие требования к характеристикам источников питания постоянного тока.
Еще в 1950 г. в Институте электросварки им. Е. О. Па- тона было доказано, что при повышении плотности тока в плавящемся электроде может быть получен устойчивый процесс сварки при использовании в качестве источника питания генератора постоянного тока с жесткой внешней характеристикой (напряжение холостого хода генератора практически равно напряжению дуги при сварке). В отечественной и зарубежной практике в последние годы такие генераторы нашли широкое применение.
Генераторы с жесткими внешними характеристиками значительно более экономичны, чем обычные сварочные генераторы с крутопадающими характеристиками и высоким напряжением холостого хода, так как пропорционально снижению напряжения холостого хода генератора снижаются затраты на активные материалы, уменьшается вес генератора и его стоимость.
Чем больше скорость подачи электродной проволоки п меньше сварочный ток, тем труднее возбудить дугу путем непосредственной подачи электродной проволоки к изделию. Опыт показывает, что при использовании обычных сварочных генераторов с крутопадающей внешней характеристикой в ряде случаев этот способ возбуждения дуги практически оказывается неосуществимым. Совершенно иное наблюдается в случае применения генераторов с жесткими внешними характеристиками. Резкое нарастание тока при закорачивании электрода на изделие обеспечивает безотказное возбуждение дуги. Короткое замыкание не наносит ущерба генератору, так как тонкая электродная проволока выполняет роль плавкой вставки в цепи, ограничивая время протекания и величину тока короткого замыкания.
В тех случаях, когда генераторы с жесткими внешними характеристиками по какой-либо причине не могут быть применены для сварки тонкого металла, следует применять генераторы с весьма пологопадающими характеристиками, т. е. с большой величиной тока короткого замыкания.
Чем резче изменяется ток в цепи при случайных изменениях длины дуги, тем интенсивнее протекают процессы саморегулирования и тем быстрее восстанавливается заданный режим сварки. Генераторы с крутопадающими внешними характеристиками дают значительно меньшие изменения тока при случайных колебаниях длины дуги, чем генераторы с пологопадающими, жесткими или растущими характеристиками, благодаря чему обеспечивают большую устойчивость процесса сварки тонкой электродной проволокой.
Весьма характерно влияние внешних характеристик генераторов на процесс сварки и формирование шва при изменении величины зазора в соединении. Опыт показывает, что в случае питания дуги от генераторов с жесткой или пологопадающей внешней характеристикой можно допустить большие по величине зазоры в стыке, не нарушая нормального формирования шва. Такое же явление наблюдается при увеличении плотности тока в электроде.
В табл. 2 приведены режимы сварки стыковых соединений стали толщиной 3 мм, собранных с постепенно возрастающим зазором от 0 до 5 мм при длине образцов 500 мм. Образцы сваривались электродной проволокой диаметром 3 мм при питании от генератора с крутопадающей внешней характеристикой и генератора с пологопадающей характеристикой. Один из образцов был сварен электродной проволокой диаметром 1,6 мм при питании от генератора с крутопадающей характеристикой. Как следует из табл. 2 и фиг. 2, где изображены образцы сварных соединений, в случае внешней характеристики генератора, приближающейся к жесткой (пологопадающей), а также в случае большей плотности тока в электроде (меньший диаметр электрода), максимальный зазор, при котором еще происходит правильное формирование шва, значительно больше.
Не следует считать, что приведенные в таблице максимальные зазоры могут быть рекомендованы как допустимые при сборке стыков. В данном случае имеет место плавное возрастание зазора, что не равноценно резким изменениям зазоров, которые могут наблюдаться в практике.
Влияние формы внешней характеристики, а также плотности тока на формирование швов при сварке с зазорами в стыке связано, по-видимому, с изменением интенсивности процессов саморегулирования.
При автоматической сварке стыкового соединения одно из активных пятен дуги расположено на расплавленном металле ванны, заполняющей разделку. В отдельные моменты времени скорость перемещения ванны расплавленного металла может отличаться от скорости движения электрода вдоль стыка. Одной из причин этого бывает изменение величины зазора между свариваемыми кромками или изменение зазора между подкладкой и свариваемыми листами.
При увеличении зазора в стыковом соединении или возникновении большего зазора между подкладкой и свариваемыми листами скорость перемещения ванны расплавленного металла уменьшается. Так как скорость движения электрода при этом остается прежней, имеет место рост дугового промежутка. Резкое увеличение дугового промежутка вызывает обрыв дуги и нарушение процесса сварки. При плавном удлинении дуги процесс может не нарушиться, активное пятно успеет занять новое положение, обеспечивая восстановление прежней длины дуги.
Если питание дуги осуществляется от генератора с крутопадающей внешней характеристикой, то при удлинении дуги, как показали исследования, наблюдается рост ее мощности, что ведет к дополнительному оплавлению кромок в месте повышенного зазора, где начала удлиняться дута. При этом электродного металла окажется недостаточно для заполнения зазора между оплавленными кромками, в результате чего образуется не заполненный металлом участок — прожог.
Увеличение интенсивности саморегулирования дуги, имеющее место в случае применения генераторов с жесткими внешними характеристиками или при повышенной плотности тока в электроде, в известных пределах может предотвратить возникновение прожогов. Благодаря интенсивному саморегулированию значительное удлинение или обрывы дуги не будут наблюдаться при отставании ванны жидкого металла в месте увеличившегося зазора. При этом длина дуги будет поддерживаться постоянной и опасный участок с увеличенным зазором может быть пройден без нарушения процесса сварки (без обрывов дуги, прожогов и пр.). Этот участок от остальной части шва будет отличаться только меньшим усилением шва или даже полным отсутствием усиления.
Как известно из практики автоматической сварки под флюсом, с увеличением плотности тока в электроде глубина проплавления заметно возрастает. Например, при сварке на токе 500 а увеличение плотности тока приблизительно в 3 раза, за счет уменьшения диаметра электродной проволоки от 5 до 3 мм, вызывает увеличение глубины проплавления на 25%. Так как переход к сварке тонкой электродной проволокой связан с еще большим увеличением плотности тока в электроде, то возникает опасение, не может ли интенсивный рост глубины проплавления в этом случае стать препятствием на пути применения тонкой электродной проволоки и повышенной плотности тока для сварки тонколистовой стали. Проведенные опыты показали, что это опасение несостоятельно.
На фиг. 3 приведен график зависимости глубины проплавления от диаметра электродной проволоки. Как видно из графика, рост глубины проплавления с увеличением плотности тока (уменьшением диаметра электрода) наблюдается только при сварке на токах, превосходящих 300—350 а. Что же касается интересующего пас диапазона токов, применяемых для сварки тонкой стали (до 300—350 а), то в нем увеличение плотности тока не вызывает изменения глубины проплавления. Это объясняется некоторыми особенностями, отличающими маломощные электрические дуги от дуг большей мощности.
Материал с сайта: http://ruswelding.com
Как паять алюминий — ООО «УК Энерготехсервис»
Чем паять алюминий в домашних условиях
Пайка соединений проводов с припоем считается самым надежным методом соединения проводов и жил кабелей. Хорошо, если нужно паять только медные провода, которые легко облуживаются припоем. Не зря в электронике все вывода элементов медные, луженые.
Пайка алюминия в домашних условиях
После того как цельные провода и многожильные жилы кабелей облудят, их довольно легко соединять пайкой. А как паять алюминий оловом, если припой отторгается окисью алюминия. Как известно алюминий покрыт тонким слоем окиси, которая мгновенно образуется на алюминии при контакте с кислородом. Чтобы припой хорошо держался на алюминиевом проводе нужно снять окись алюминия, а затем лудить.
Для этой цели в качестве флюса существуют: паяльная кислота, специальные флюсы для алюминия, смесь канифоли с ацетоном. Все эти плюсы разрушают или затрудняют образование пленки окиси на алюминии. После применения данного типа флюса процесс лужение алюминия упрощается.
Необходимые инструменты для пайки алюминия оловом являются: электрический паяльник, острый нож, плоскогубцы для скрутки проводов, мелкий напильник для подготовки жала паяльника. Из материалов потребуется: припой ПОС 61 или ПОС 50, флюс для пайки алюминия Ф-64 или аналогичный, губка.
Пайка алюминия оловом и флюсом Ф 64
Флюс Ф 64 предназначен для пайки алюминия. Методика пайки не сложна. В первую очередь нужно снять изоляцию с проводов на 5 см. Изоляция снимается острым ножом под углом к проводу, чтобы не надрезать его. Надрезанный алюминий легко обламывается.
Инструменты и материалы для пайки алюминиевого провода
Далее нужно хорошо зачистить провод мелкой наждачной бумагой или острым ножом. Зачистив провод, его смачивают кисточкой с плюсом и острым ножом продолжают зачищать провод, но уже под флюсом. Таким образом снимают пленку окиси алюминиевого провода, не давая вновь окисляться на воздухе. Далее разогретым паяльником с припоем начинают лужение провода с его конца.
Если начать облуживать провод около изоляции, тогда можно ее подпалить. В этом случае потеряются изоляционные свойства провода.
Провод облуживают паяльником, движениями вперед-назад, одновременно снимается окисная пленка с алюминия. Облудить провод ровно сразу не получится.
Поэтому на не облуженные участки провода снова наносят флюс и горячим паяльником с припоем и движениями вперед-назад снимают участки оставшейся окисной пленки и обслуживают.
Таким образом покрывают припоем алюминиевый провод полностью. После лужения алюминиевый провод окунают в раствор соды (5 ст. л. на 200 гр. воды) и зубной щеткой смывают остатки флюса.
В состав флюса входят активные кислоты, которые не только разъедают пленку, но и сам провод. Поэтому остатки флюса нужно смыть.
Смыть его полностью не получится, так как он частично остаётся под припоем и въедается в провод.
Но хоть частично его нужно смывать. Медный провод не обслуживают флюсом Ф 64, лучше использовать раствор канифоли и спирта (50% на 50%). Кисточкой наносят жидкую канифоль на медный провод (предварительно зачистив его) и горячим паяльником обслуживают провод, начиная с конца. Жало паяльника должно быть ровным и чистым. Раковины на конце жала паяльника убирают мелким напильником.
А остатки сгоревшего припоя (шлака) вытирают губкой или тряпкой. Как только алюминиевый и медный провода облуженны, их скручивают пассатижами, кисточкой наносят жидкую канифоль и спаивают соединение, начиная также с конца.
Если соединить алюминий без лужения припоем, то это соединение может нарушиться со временем. Соединение алюминия с медью представляет собой гальваническую пару, и при прохождении через него тока нагревает и разрушает соединение.
Таблица температурных режимов марок припоя
В результате место скрутки сильно нагревается и обугливается, что повышает пожароопасность. Оловянный припой нейтрален к алюминию, поэтому алюминиевые провода перед соединением с медью нужно лудить. Для пайки алюминиевых проводов хорошо подходят припой ПОС 61 и ПОС 50 с низкой температурой плавления 190 — 210С.
Пайка алюминия с медью оловом и канифолью
Пайка электрических проводов с помощью паяльной кислоты запрещена в ПУЭ. Это связано с тем, что эта кислота полностью не сгорает при пайке.
В результате место соединения проводов со временем разъедается кислотой, образуются окиси, которые нагреваются при прохождении тока и могут вызвать возгорание изоляции.
К таким кислотно содержащим флюсам относятся специальные флюсы для пайки алюминия, в том числе и Ф 64.
Так как же паять алюминий с медью, чтобы соединение было качественным и долговечным. По сложности метод лужения алюминия оловом и канифолью даже легче, чем лужение алюминия флюсом Ф 64. Но качество и надежность при лужении в канифоли будет высоким. При лужении алюминия в канифоли нужно сделать или подобрать низкую ванночку для жидкой канифоли (канифоль 60% и спирт 40%).
Флюсы для пайки алюминия
Заполняют ванночку жидкой канифолью так, чтобы провод утопал в ней с изоляцией на 5-10 мм.
Очищенный от изоляции провод кладут в канифоль и острым ножом (удобно скальпелем) снимают плёнку окиси с алюминиевого провода, не вынимая его из ванночки.
То есть под канифолью защищают провод по всей его длине со всех сторон. Под канифолью пленка на очищенных местах алюминиевого провода не образуется, так как нет соприкосновении с кислородом.
Теперь берут разогретой паяльник с припоем мощностью не менее 60 Вт и опустив его на оголенный и очищенный от окиси провод, у самой поверхности канифоли, понемногу прокручивают и вытаскивают уже облуженные участки провода. Суть метода заключается в том, чтобы провод облуживался у самой поверхности жидкой канифоли. Чтобы зачищенные участки провода от окиси не могли соприкасаться с воздухом.
Паяльник может быть временами погружен на 2-3 мм в канифоль. Немного облудив провод поднимите паяльник, чтобы он вновь нагрелся. Да в начале, будет много дыма, поэтому лучше учиться паять на улице или в помещении с хорошей вентиляцией. После нескольких попыток у вас выработается своя техника лужения и появится небольшой опыт.
Вы определитесь с положением паяльника, скорость лужения провода увеличится, то есть появится навык, и уменьшится количество дыма. Зато провод будет облужен идеально. Далее, как обычно, скручивают провода и так же паяют их небольшим количеством припоя.
Остатки канифоли на пропаянной скрутке проводов смывают кисточкой со спиртом. Недостаток такого метода — это невозможность пайки в труднодоступных местах. Для таких случаев, лучше использовать другие методы безопасных соединений алюминия с медью.
Как паять алюминий без аргона
Если на вашей машине протек масляный радиатор охлаждения или нужно срочно спаять между собой две алюминиевые трубки, а аргонной сварки под рукой нет, то на этот случай имеется альтернативный вариант — пайка при помощи специализированного припоя.
Особенности пайки без аргона
Для качественной пайки алюминия в домашних условиях используется специализированный припой (это hts-2000 и кастолин 192), который представляет собой тонкую цинковую трубку, наполненную твердым порошком флюса.
Флюс нужен для того, чтобы растворять твердую оксидную пленку на поверхности алюминия — причем сама пайка происходит при температуре 480 градусов по Цельсию.
Чтобы быстро расплавить припой, можно применять обычную газовую горелку.
Обратите внимание, что маленькую горелку для этих целей лучше не использовать, поскольку пламя у нее узкое и не прогревает поверхность трубки, в результате чего припой собирается в шарики. Оптимальный вариант — это горелка-насадка на баллон. Пламя у нее широкое и позволяет прогревать область металла.
Как правильно паять алюминий
Сначала немного прогреваем трубку, а потом подносим припой — он сразу плавится и быстро растекается, заполняя отверстия или трещины в металле. Таким способом можно паять не только отверстия в алюминиевых трубках, но и качественно спаивать вместе изделия, изготовленные из листового алюминия.
Специализированный припой позволяет паять различные алюминиевые трубки и полоски из алюминия в домашних условиях, обеспечивая при этом высокую герметичность и прочность шва.
Оцените запись
Как паять алюминий
Несмотря на возникающие трудности паять алюминиевые изделия можно. Существует несколько способов пайки алюминия.
Пайка алюминия сплавами
Отличные результаты можно получить при использовании следующих сплавов:
- две части цинка и восемь частей олова
- одна часть меди и 99 частей олова
- одна часть висмута и 30 частей олова
Перед пайкой и сплав, и собственно деталь необходимо хорошо разогреть. Также следует помнить, что при таком способе пайки должна использоваться паяльная кислота.
Пайка алюминия с помощью специальных флюсов
Флюс для пайки алюминия используется для работы с оловянно-свинцовыми припоями при рабочей температуре 250-360 градусов. Такой флюс и при пайке, и при лужении хорошо убирают пленку окисла, очищает поверхность металла и как следствие припой лучше растекается по поверхности. Все это приводит к созданию более плотного и прочного соединения сплавляемых деталей. Излишки этого флюса легко удаляются растворителями, спиртом или специальными жидкостями.
Также этот флюс можно считать универсальным, поскольку применять его можно и для работы с никелем, медью, нержавеющими сталями и т.д.
Другие способы пайки алюминия
Существуют и нестандартные способы решения данной проблемы, например:
- Место пайки на алюминиевом изделия тщательно зачищают и наносят пару капель концентрированного медного купороса. Небольшой отрезок медной проволоки, зачищают сворачивают в кружок диаметром равным месту пайки, а свободный конец проволоки подключают к «плюсу» вывода батареи на 4,5 вольта. Часть проволоки с со свернутым кружком опускается в небольшое количество медного купороса. Минус батареи надо соединить с деталью, на которой через некоторое время осядет некоторый слой меди. После просушивания к этому месту можно приварить необходимые детали или провода обычным способом.
- В этом случае используется абразивный порошок, смешанный с небольшим количеством трансформаторного масла до получения жидкой пасты. Эту пасту наносят на очищенные изделия для пайки. Далее паяльник хорошо пролуживают и трут эти места до выделения на поверхности слоя олова. Затем детали промывают и далее паяют обычным методом.
- Для этого способа понадобится трансформатор. Его минус подключают к изделию, а к плюсу подсоединяют медный провод большого сечения, состоящий из более мелких жил. Если на короткое время подсоединять этот провод к месту будущее пайки, то будет произведена микропайка меди и алюминия, которая в дальнейшем позволит провести пайку проводов обычным методом. Для упрощения процесса можно использовать паяльную кислоту.
Пайка алюминиевой посуды (без паяльника)
Определенным спросом у хозяек пользуется алюминиевая посуда, но иногда она выходит из строя, и чтобы не покупать новую (которая стоит немало), можно починить такие изделия с помощью пайки без паяльника. Нижеприведенный способ подходит для заделки небольших отверстий (до 7 мм в диаметре).
- Необходимо очистить место пайки до металлического блеска с помощью наждачной бумаги или напильника. Если посуда эмалированная, то вокруг заделываемого отверстия эмаль надо убрать в радиусе 5 миллиметров. Для этого легкими постукиваниями молотка с посуды отбивают эмаль. Затем обязательно металл надо зачистить.
- Место пайки смазывают паяльной кислотой или засыпается измельченной канифолью. С внутренней стороны на отверстие накладывается кусочек олова, а потом емкость нагревают над огнем кухонной плиты. Если посуда эмалированная, то ее лучше нагревать над спиртовкой – это дает более точечный нагрев, и потому остальная эмаль не потрескается от высокой температуры.
- При нагревании олово расплавляется и плотно закрывает отверстие в посуде. При этом помощь паяльника не понадобится.
Оценить способ изготовления:
(3
Способы пайки алюминия своими руками (припои и флюсы)
Алюминий – довольно специфический материал, требующий специальных методов обработки. Если возникла необходимость соединить между собой детали из этого металла, использование технологий, хорошо зарекомендовавших себя при работе с медью или латунью неоправданно. И всё же, паять алюминий можно! Главное, правильно выбрать материалы и инструменты.
Точная информация
Сначала следует, если есть такая возможность, точно определиться, из какого сплава изготовлены соединяемые детали. Ведь в чистом виде алюминий используется в электронике и технике крайне редко. От того, с какими химическими элементами и в каком количестве он смешан, будет зависеть многое.
- Критическая температура плавления. Некоторые добавки существенно увеличивают этот предел, который для чистого металла составляет 658 – 660 градусов Цельсия.
- Механические свойства. В зависимости от своего состава, некоторые сплавы становятся более пластичными, иные демонстрируют возросшую прочность.
- Взаимодействие с другими химическими элементами.
Заранее зная, с каким материалом предстоит работать, мастер сильно упрощает свою задачу.
Зачем нужен флюс
Основным препятствием при пайке алюминия является его оксидная плёнка. Утверждение о том, что её можно удалить механическим путём, несостоятельно, поскольку новая плёнка появляется практически мгновенно.
Именно поэтому выполнение работы без использования активных флюсов, за редким исключением, невозможно.
Задача этих флюсов – разрушение барьера Al2O3, чтобы металл мог беспрепятственно соединиться с материалами, входящими в состав припоя.
При желании можно изготовить флюс для пайки алюминия своими руками. Но дело это – довольно сложное, а потому проще приобрести уже готовый состав. Тем более что промышленность выпускает их в достаточном количестве.
Среди флюсов встречаются и широко распространённые, и узкоспециализированные. В аннотации к ним добросовестные производители указывают назначение и особенности предлагаемого товара.
Среди наиболее часто встречающихся можно перечислить:
- Ф-64. Он способен разрушать прочную оксидную плёнку значительной толщины, а потому хорошо подходит для пайки даже деталей большой массы. При этом он подходит для работы не только с алюминием, но и с оцинкованным железом, медью, бериллиевой бронзой и т. п.
- Ф-34А. Такой состав успешно используется с тугоплавкими припоями, содержащими значительное количество химических добавок.
- Ф-61. Его можно рекомендовать для низкотемпературной пайки или лужения изделий из алюминиевых сплавов.
- Castolin Alutin 51 L.Этот состав лучше всего оправдывает себя при использовании припоев того же производителя.
Окончательный выбор марки флюса зависит от многих факторов. Прежде чем принимать решение о непригодности состава, стоит убедиться в том, что соблюдены все важные технологические требования.
После того как оксидная плёнка разрушена, вступает в дело припой. Как и в случае с флюсом, его составу следует уделить самое тщательное внимание. Работающие при разной температуре, эти материалы должны выполнять основную задачу – соединяться с обрабатываемыми металлами.
Применение низкотемпературных составов себя не оправдывает, поскольку они могут разрушаться при нагреве в процессе эксплуатации. Наибольшее распространение получили смеси со средней и высокой температурой плавления. Но окончательный выбор будет зависеть от многих факторов.
Неплохо зарекомендовали отечественные припои ЦОП-40, содержащий олово и цинк в процентном соотношении 60 на 40, и 34А, применение которого оправданно при использовании газопламенного нагрева.
Тем не менее, при определённых условиях, конкуренцию им вполне способны составить припои Германиевый-1 и Германиевый-2, В-62, П550А, П575А и другие. Многие из них изготавливаются в смеси с флюсами, что упрощает их использование.
Но существуют и безфлюсовые припои, такие как содержащий алюминий и цинк
Как паять алюминий мягким припоем
1
Если возможно, определите тип алюминиевого сплава. Чистый алюминий поддается пайке, хотя работать с ним непросто. Однако многие предметы сделаны не из чистого металла, а из алюминиевых сплавов. Большинство сплавов можно паять так же, как и чистый алюминий, но некоторые из них трудно поддаются пайке, и в этом случае понадобится помощь профессионала.
Если сплав обозначен буквами или цифрами, загляните в справочник, есть ли специальные требования к его пайке. К сожалению, немаркированные алюминиевые сплавы сложно отличить друг от друга, поскольку для этого требуются специальные методы, использование которых имеет смысл лишь в том случае, если вы занимаетесь этим профессионально.
[1] Если сплав не маркирован, просто испытайте свою удачу, и, возможно, у вас все получится.
- При соединении алюминия с другим металлом ограничивающим фактором, как правило, являются свойства самого алюминия, поэтому точное знание состава другого металла необязательно. Имейте в виду, что некоторые комбинации (например, алюминий-сталь) особенно трудны для пайки, и в подобных случаях могут лучше подойти другие методы соединения.
2
Выберите низкотемпературный припой. Алюминий плавится при относительно низкой температуре (660ºC), что в сочетании с его высокой теплоемкостью делает практически невозможным использование обычных припоев.
Вам потребуется специальный припой с низкой температурой плавления, который можно заказать через Интернет.
Обычно в качестве такого припоя используют сплав алюминия, кремния и/или цинка, но на всякий случай проверьте, подходит ли данный припой для ваших целей, например, для соединения алюминий-алюминий или алюминий-медь.
- Формально материалы, температура плавления которых превышает 450ºC, относятся к классу твердых припоев. На практике же они часто продаются как мягкие припои, и процесс пайки такой же. Использование твердого припоя позволяет создать более прочное соединение, однако мягкий припой предпочтителен для соединения электрических цепей и других чувствительных материалов.
- По возможности не используйте припои, содержащие свинец.
3
Выберите флюс. Как и припой, флюс также должен быть специально предназначен для алюминия или используемой вами комбинации металлов.
Легче всего приобрести флюс там же, где и припой, поскольку они, как правило, предназначены для совместного использования. Рекомендуемая рабочая температура флюса должна быть близка к температуре плавления припоя.
Если температура выбранного вами припоя превышает 450ºC, найдите флюс для пайки твердым припоем.
- Некоторые флюсы для пайки твердым припоем не предназначены для нанесения на тонкие листы или проволоку из алюминия. В этом случае поищите флюс для «глубокой пайки».[2]
4
Выберите источник тепла. Для соединения алюминиевой проволоки можно использовать паяльник, однако для пайки более массивных деталей вам потребуется газовая горелка. Обычно используют низкотемпературную паяльную лампу, пламя которой имеет температуру 315–425ºC.
- Если ваше рабочее место не приспособлено для применения газовой горелки, используйте электрический паяльник мощностью 150 ватт.
5
Подберите дополнительные материалы и инструменты. Если вы не чините одну деталь, а соединяете пайкой несколько фрагментов, вам понадобится струбцина.
Рекомендуется также использовать травильный раствор, представляющий собой специальную жидкость для очистки поверхности металла от окислов после пайки.
Для очистки поверхности от некоторых смолосодержащих флюсов понадобится также ацетон.
6
Позаботьтесь о безопасности. Работайте в хорошо проветриваемом месте и защитите себя от токсичных испарений респиратором. Настоятельно рекомендуется использовать защитную маску или очки, а также перчатки из плотной кожи или натуральной ткани. Проследите, чтобы вокруг не было горючих материалов и запаситесь огнетушителем.
Учимся паять алюминий самостоятельно
Алюминий – материал, плохо поддающийся пайке. Но, несмотря на это, ее вполне можно сделать и в домашних условиях. Конечно, для этого не подойдет обычный припой или флюс, рекомендуется использовать специализированные марки.
В этой статье будет рассказано о том, как паять алюминий, и что для этого может понадобиться. Но сначала давайте разберемся, для каких целей проводится такая процедура.
Для чего может применяться пайка?
Пайка алюминия применяется, когда необходимо отремонтировать какую-то деталь, сделанную из этого материала или из сплавов, содержащих этот металл. Это могут быть и бытовые предметы, и запчасти автомобиля, и просто провода. Пайка во многих случаях проще и эффективнее сварки, особенно если дело касается мелких элементов. К тому же она не деформирует материал в результате его перегрева.
Чтобы успешно соединить все элементы паяльником, потребуется следующее:
Горелка для разогрева концов проводов.
Мощный паяльник.
Припой и флюс.
Стальная щетка для очистки верхнего слоя элементов.
Респиратор и защитная маска.
Перчатки.
С таким набором можно безопасно и быстро произвести спайку любых элементов из прочного материала.
Припой и флюс, необходимые для работы
Для пайки алюминиевых деталей можно использовать припои, состоящие из висмута и олова, можно использовать и олово с цинком. Хотя в некоторых случаях можно применить и ПОС-40 и 60. В последнем случае будет сложно добиться большой прочности. Но главное при этом – как паять, а не чем.
Чтобы залудить деталь, можно применять самые разнообразные материалы, вплоть до аспирина. Но лучше всё делать правильно и использовать материалы, предназначенные для пайки, а именно — флюс. Лучше всего подходят такие марки, как Ф34, Ф64, ФИМ или ФТБф. Чем качественней флюс, тем проще пройдет весь процесс.
Паяльник для алюминиевых деталей
Чтобы соединить такой прочный материал, понадобится паяльник большой мощности, порядка 100-200 Вт. Для небольших проводов достаточно 60-100 Вт.
Стоит учитывать, что слишком мощный прибор может расплавить металл и нарушить его структуру.
В большинстве случаев мощность зависит от того, что именно необходимо паять. Теперь давайте рассмотрим, как паять алюминий, а главное, какие подготовительные меры могут потребоваться для этого.
Подготовительные меры
Перед началом пайки деталь или провод необходимо правильно подготовить, то есть зачистить место соединения. Для этого с поверхности провода удаляется окисная пленка. Такое обезжиривание можно произвести с помощью бензина или ацетона, подойдет и любой другой растворитель.
Поверхность можно обработать шкуркой. Окисная пленка восстановится практически сразу же — это особенность алюминия. Но новая пленка будет значительно тоньше первоначальной, и с ней можно уже работать паяльником.
Метод пайки
Элемент или провод, который необходимо соединить, обрабатывается флюсом. Затем он нагревается при помощи паяльника. Делать это следует осторожно, не перегревая металл, не допускается его плавление. Поэтому рекомендуется применять нагревательный прибор с контролем температуры. Вообще такой метод мало чем отличается от обычной пайки.
В качестве припоя можно использовать олово. Особенно если под рукой нет специального. Припой плавится и равномерно распределяется на алюминиевой поверхности, после чего необходимые элементы соединяются.
Кабеля или детали из алюминия, которые требуется соединить, должны крепко прижиматься друг к другу луженой поверхностью. Соединение, сделанное таким образом, будет очень прочным при условии, что всё проделано правильно.
Полезные советы
Чтобы упростить процесс соединения двух алюминиевых концов, можно воспользоваться паяльной лампой, нагревая с её помощью концы. Таким образом припой будет легче ложиться. Главное при этом не перегреть металл слишком сильно. Стоит учесть, что во время нагрева концов нагревается весь элемент или провод, поэтому его лучше не держать руками — можно использовать для этого плоскогубцы.
Важно работать в хорошо проветриваемом помещении, так как пары от флюса и припоя ядовиты и вредны для здоровья человека. Рекомендуется все работы проводить в респираторе и защитной маске, руки можно защитить с помощью плотных перчаток. Также крайне важно, чтобы поблизости на всякий случай располагался огнетушитель.
Пайка алюминия в домашних условиях – чем и как паять, флюсы, припои
Пайка алюминия, как справедливо считают многие специалисты, является достаточно сложным в выполнении технологическим процессом.
Между тем такое мнение можно считать верным лишь в отношении тех ситуаций, когда спаять изделия из алюминия пытаются, используя для этого припои и флюсы, которые применяются для соединения деталей из других металлов: меди, стали и др.
Если же используется специальный флюс для пайки алюминия, а также соответствующий припой, то данный технологический процесс не представляет особых сложностей.
Пайка алюминия с использованием пропановой горелки
Особенности процесса
Сложности, которые вызывает пайка алюминия при помощи традиционных припоев и флюсов, объясняются рядом факторов, преимущественно связанных с характеристиками данного металла.
Основным из таких факторов является наличие на поверхности деталей из алюминия оксидной пленки, которая отличается высокой температурой плавления и исключительной химической стойкостью.
Такая пленка при выполнении пайки препятствует соединению основного металла и материала припоя.
Перед осуществлением пайки изделий из алюминия их поверхности необходимо тщательно очистить от оксидной пленки, для чего можно использовать механическую обработку или применять флюсы, в состав которых входят сильнодействующие компоненты.
Подготовленные к пайке дюралевые детали
Сам алюминий, в отличие от оксидной пленки на его поверхности, обладает достаточно низкой температурой плавления: 660 градусов, что также осложняет технологический процесс выполнения пайки.
Такая характеристика алюминия приводит к тому, что при нагреве детали из него быстро теряют прочность, а при определенной температуре, находящейся в интервале 250–300 градусов, конструкции из данного металла начинают терять устойчивость.
Самый легкоплавкий компонент, который входит в состав наиболее распространенных алюминиевых сплавов, начинает плавиться уже в интервале температур 500–640 градусов, что может привести к перегреву и даже к расплавлению самих соединяемых деталей.
Основу большей части легкоплавких припоев, использующихся для пайки, составляют олово, кадмий, висмут и индий.
С этими элементами алюминий плохо вступает в соединения, что делает паяные соединения, полученные с их использованием, очень непрочными и ненадежными.
Хорошей взаимной растворимостью обладают алюминий и цинк, поэтому данный элемент при его использовании в припоях обеспечивает полученному соединению высокую прочность.
Характеристики флюсов для пайки мягкими припоями
Состав флюсов, применяемых для пайки алюминия
Используемые материалы
При выполнении пайки изделий из алюминия можно использовать припои оловянно-свинцовой группы, если тщательно очистить поверхность деталей и применять высокоактивные флюсы.
Соединения, полученные с их помощью, по причине плохой взаимной растворимости алюминия, олова и свинца отличаются невысокой надежностью, также они склонны к развитию коррозионных процессов.
Чтобы сделать подобные соединения более устойчивыми к коррозии, их необходимо покрывать специальными составами.
Наиболее качественное, надежное и устойчивое к коррозии паяное соединение, позволяют получать припои, в составе которых содержится цинк, медь, кремний и алюминий.
Припои, включающие в свой состав данные элементы, производят как отечественные, так и зарубежные компании.
Наиболее распространенными отечественными марками являются ЦОП40, содержащий в своем составе 40% цинка и 60% олова, и 34А, в составе которого содержится алюминий (66%), медь (28%) и кремний (6%).
Цинк, содержащийся в припое для пайки изделий из алюминия, определяет не только прочность полученного соединения, но и его коррозионную устойчивость.
Самую низкую температуру плавления из всех вышеперечисленных имеют оловянно-свинцовые припои. Наиболее высокотемпературными являются те, в составе которых содержится алюминий и кремний, а также материалы, содержащие алюминий вместе с медью и кремнием. К последним, в частности, относится припой популярной марки 34А, температура плавления которого находится в интервале 530–550 градусов.
Для информации: материалы на основе алюминия и кремния плавятся при температуре 590–600 градусов.
Учитывая температуру плавления, применяют такие припои в тех случаях, когда соединить необходимо крупногабаритные детали из алюминия, в которых обеспечивается хороший теплоотвод, либо изделия, выполненные из алюминиевых сплавов, плавящихся при достаточно высоких температурах.
Но, конечно, максимальное удобство в работе демонстрируют низкотемпературные припои, одной из распространенных марок которых является HTS-2000.
Припой HTS-200 для спайки деталей из алюминия и цветных металлов
Технология пайки алюминия обязательно предполагает использование специального флюса, который необходим для того, чтобы улучшить соединяемость основного металла с материалом припоя. Именно поэтому подходить к выбору такого материала необходимо очень ответственно.
Особенно актуально это требование в тех случаях, когда детали из алюминия необходимо спаять при помощи оловянно-свинцового припоя. Состав флюсов содержит элементы, которые и формируют его активность по отношению к алюминию.
К таким элементам относятся: триэтаноламин, фторборат цинка, фторборат аммония и др.
Флюс Ф-64 для пайки легких сплавов без предварительной механической обработки поверхностей
Одним из наиболее популярных отечественных материалов является флюс марки Ф64. Популярность Ф64 обусловлена тем, что данный материал отличается повышенной активностью. Благодаря такому качеству выполнять пайку с флюсом Ф64 можно, даже не зачищая поверхность алюминиевых деталей от тугоплавкой оксидной пленки.
Из популярных высокотемпературных флюсов следует выделить материал марки 34А, в состав которого входит 50% хлорида калия, 32% хлорида лития, 10% фторида натрия и 8% хлорида цинка.
Подготовка деталей
Для получения качественного и надежного соединения недостаточно просто знать, как паять алюминий, важно также правильно подготовить поверхности соединяемых деталей к пайке. Заключается такая подготовка в обезжиривании поверхностей и удалении с них окисной пленки.
Для обезжиривания используют традиционные средства: ацетон, бензин или любой подходящий растворитель.
Удаление окисной пленки перед пайкой, которое также несложно выполнить своими руками, преимущественно совершается при помощи механической обработки, для чего можно использовать шлифовальную машинку, наждачную бумагу, металлическую щетку или сетку из нержавеющей проволоки. Значительно реже применяется химический способ удаления такой пленки, который подразумевает травление поверхности алюминиевых деталей при помощи кислотных растворов.
Зачистка поверхностей перед пайкой с помощью шлифовальной насадки на болгарку
Как известно, окисная пленка на поверхности алюминия образовывается практически моментально при ее контакте с окружающим воздухом. Такой процесс происходит и на зачищенной перед пайкой поверхности, но смысл выполнения зачистки состоит в том, что вновь образующаяся пленка значительно тоньше удаленной, поэтому флюсу будет гораздо легче с ней справиться.
Источники нагрева
В качестве элемента, при помощи которого выполняется прогрев габаритных соединяемых деталей из алюминия и расплавление припоя, преимущественно используется газовая горелка, работающая на пропане или бутане. Если вы решили спаять изделия из алюминия своими руками в условиях домашней мастерской, то можно использовать и обычную паяльную лампу.
Удобная в использовании газовая паяльная лампа
При выполнении нагрева необходимо очень внимательно следить за тем, чтобы не расплавились соединяемые детали. С этой целью к поверхности деталей как можно чаще прикасаются припоем, чтобы проконтролировать начало его плавления. Это и будет свидетельством того, что достигнута рабочая температура.
Нагревая детали и припой перед началом пайки, также необходимо следить за пламенем газовой горелки: смесь газа и кислорода, которая его формирует, должна быть сбалансированной.
Делать это необходимо по той причине, что сбалансированная газовая смесь активно нагревает металл, но не оказывает серьезного окислительного действия. О том, что газовая смесь сбалансирована, свидетельствует ярко-синий цвет пламени, которое имеет небольшой размер.
Если пламя горелки слишком маленькое по размеру и имеет бледно-голубой цвет, то это является свидетельством того, что в газовой смеси слишком много кислорода.
Для пайки небольших изделий из алюминия используются электрические паяльники и припои, плавящиеся при невысокой температуре.
Технологические приемы пайки
Пайка деталей, выполненных из алюминия, по технологии выполнения практически ничем не отличается от процесса соединения изделий, изготовленных из других металлов.
Сначала соединяемые детали обезжириваются и тщательно зачищаются, после этого их выставляют в нужное положение относительно друг друга.
Затем на зону будущего соединения необходимо нанести флюс и начать ее прогрев вместе с припоем до рабочей температуры.
Процесс пайки деталей из алюминиевого сплава
При достижении рабочей температуры кончик припоя начнет плавиться, поэтому им необходимо постоянно прикасаться к поверхности деталей, контролируя процесс нагрева.
Пайка изделий из алюминия, для выполнения которой используется безфлюсовый припой, имеет свои особенности.
Заключаются они в том, что для того, чтобы проникновению припоя к поверхности детали не препятствовала окисная пленка, его кончиком необходимо совершать чиркающие движения по месту будущего соединения.
Таким образом нарушается целостность пленки, и припой беспрепятственно соединяется с основным металлом.
Посмотреть, как пайка выполняется практически, можно на обучающем видео.
Есть еще один технологический прием, позволяющий разрушить оксидную пленку в процессе пайки. Сделать это можно при помощи стержня из нержавеющей стали или металлической щетки, которыми водят по месту соединения и уже расплавленному припою.
Чтобы получить максимально прочное соединение методом пайки, соединяемые поверхности необходимо подвергнуть предварительному лужению.
Сфера применения процесса
Большое практическое значение имеет не только пайка алюминия в домашних условиях. Данную технологию также активно используют на ремонтных и производственных предприятиях. Применяя метод пайки, можно получать соединения, отличающиеся высокой прочностью, надежностью и эстетической привлекательностью.
При работе с тонким листовым алюминием пайка позволяет избежать деформацию материала
Большой популярностью данная технология пользуется при выполнении ремонтных работ с автотранспортными средствами, тракторами и мотоциклами. Объясняется такая популярность тем, что при пайке не происходит изменение структуры соединяемого металла, поэтому подобный способ соединения во многих случаях является даже более предпочтительным, чем сварка.
Практически безальтернативной пайка является тогда, когда необходимо восстановить герметичность алюминиевого радиатора или картера, отремонтировать изношенную или разрушенную деталь, изготовленную из алюминиевого сплава. Удобно и то, что сделать такой ремонт можно и своими руками, для этого не потребуется сложного и дорогостоящего оборудования.
Отремонтированный в домашних условиях автомобильный радиатор
Прогары, сколы и трещины, образовавшиеся в блоке цилиндров, изготовленном из алюминиевого сплава, также можно успешно отремонтировать при помощи пайки. Очень полезна данная технология в том случае, если необходимо восстановить изношенную внутреннюю резьбу.
При этом изношенное резьбовое отверстие заполняется расплавленным припоем, а затем в него вворачивается болт. После того как припой застынет, болт из отверстия выворачивается, а внутри него оказывается сформированная по необходимым параметрам резьба.
Такая несложная операция позволяет получить новую резьбу, которая по своим прочностным характеристикам ничем не уступает исходной.
Кроме этого, пайка успешно применяется для ремонта и восстановления герметичности труб, изготовленных из алюминия и сплавов данного металла. Такие трубы сейчас активно используются во многих технических устройствах.
При помощи пайки вы можете своими руками, не прибегая к дорогостоящим услугам квалифицированных специалистов, отремонтировать многие предметы из алюминия и его сплавов, использующиеся в быту: посуду, лестницы, различные детали интерьера, водосточные желоба, элементы сайдинга и др.
При помощи пайки можно не только ремонтировать, но и своими руками изготавливать любые конструкции из алюминия.
Использование качественных расходных материалов и строгое следование технологии, которой совсем несложно обучиться и по видео урокам, позволяет получать методом пайки соединения, отличающиеся высоким качеством, надежностью, привлекательным и аккуратным внешним видом.
Использование подручных средств
Нередки ситуации, когда под рукой нет активного флюса и припоя, который специально предназначен для соединения деталей из алюминия, а спаять их необходимо срочно. В таких ситуациях можно выполнить пайку обычным припоем, состоящим из алюминия и олова или олова и свинца. В качестве флюса в данном случае можно использовать канифоль.
Оксидная пленка при использовании данного метода пайки разрушается под слоем канифоли, в которую можно дополнительно добавить металлические опилки.
Для ее разрушения применяется специальный паяльник со скребком, который необходимо предварительно залудить. Скребок наряду с опилками разрушает оксидную пленку на поверхности деталей, а канифоль не дает образоваться новой.
Кроме того, скребок-паяльник, перемещая расплавленный припой по месту будущего соединения, обеспечивает его лужение.
Конечно, такой способ пайки очень хлопотный и не всегда гарантирует получение качественного и надежного соединения, поэтому использовать его можно только в крайних случаях. Целесообразнее всего потрать время и деньги на приобретение качественных припоя и флюса и не переживать за качество формируемого с их помощью соединения.
Как паять алюминий — Weld Guru
Для профессионального ремонта алюминия не обязательно быть профессиональным сварщиком TIG.
На самом деле вы можете использовать алюминиевую пайку для ремонта трещин, отверстий, утечек, заклепок, сломанных ушей, резьб или для изготовления алюминия, литого алюминия и чугуна быстро, легко и прочнее, чем новые. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Это совсем не сложно.
Многие алюминиевые сплавы можно паять. Алюминиевые припои используются для придания полностью алюминиевой конструкции отличной коррозионной стойкости, хорошей прочности и внешнего вида.
Температура плавления припоя относительно близка к температуре плавления соединяемого материала. Однако основной металл не следует плавить; в результате необходим строгий умеренный контроль. Температура пайки, необходимая для алюминиевых сборок, определяется температурами плавления основного металла и присадочного металла.
Основы сварки алюминия пайкой
Процесс пайки относится к использованию тепла, выделяемого газом (800 градусов по Фаренгейту), и наполнителя, не содержащего железа, такого как алюминий, для соединения с различными металлами.Сам алюминий также можно использовать для замены части другого металла, которая могла треснуть или отвалиться.
- Стоимость оборудования : Не требуется аргон, катушка с проволокой, перчатки, щит или электричество.
- Портативность : Легко хранится вместе с фонариком.
- Необходимые навыки : Простые инструкции, которые может использовать практически каждый. Не требуется флюс, химикаты или специальные чистящие средства. 100% гарантия.
- Опасно : Не используется электричество высокого напряжения.
- Маслянистый алюминий : Гелиодуговая дуга закипает алюминий, и любые загрязнения под поверхностью должны быть доведены до верха и счищены.
- Тонкий алюминий : плавится на 500 градусов раньше алюминия.
- Различные сплавы : Работает с любыми сплавами алюминия или литым алюминием.
- Время задействовано : Многие ремонты выполняются намного быстрее, чем традиционные методы.
- Заполнение отверстий : Мгновенно заполняет отверстия любого размера для получения резьбы, намного более прочной, чем исходная резьба.
- Универсальность : один продукт заполняет трещины или отверстия, восстанавливает ушные раковины, герметизирует утечки или навсегда склеивает плоские детали.
Источники тепла включают пропан или газ MAPP, турбонагнетатель или кислородно-ацетиленовую горелку и специальные материалы.
Преимущества пайки перед сваркой
Многие новые и бывшие в употреблении детали, которые можно отремонтировать с помощью пайки алюминия и сделать их более прочными, чем исходная форма. Примеры включают:
- Алюминиевые головки
- Головки чугунные
- Линии кондиционирования
- ГРМ крышки коллекторов
- Топливные баки
- Колеса
- Алюминиевые лодки и т. Д.
Пайка — это группа сварочных процессов, в которых материалы соединяются путем нагрева до подходящей температуры и с использованием присадочного металла с температурой плавления выше 840 ° F (449 ° C), но ниже, чем у основного металла.
Наполнитель распределяется по плотно прилегающим поверхностям стыка за счет капиллярного действия. Ниже описаны различные процессы пайки.
Горелка для пайки (TB)
Пайка горелкой выполняется путем нагрева паяемых деталей газовой горелкой или горелками, работающими на кислородном топливе.
В зависимости от температуры и количества необходимого тепла топливный газ может сжигаться с воздухом, сжатым воздухом или кислородом.
Паяльный присадочный металл может быть предварительно нанесен на стык или подаваться из ручного присадочного металла.
Иногда необходимы очистка и флюсование.
Паяльная алюминиевая скульптураАлюминиевый припой, присадочные материалы
Промышленные припои для алюминиевых сплавов имеют основу из алюминия. Эти присадочные материалы доступны в виде проволоки или регулировочной прокладки.
Удобный метод предварительной замены присадочного металла — использование листа для пайки (основного металла из алюминиевого сплава, покрытого с одной или обеих сторон).
Также используются термически обрабатываемые или стержневые сплавы, состоящие в основном из марганца или магния.
Третий метод нанесения припоя — это использование пасты из порошка флюса и присадочного металла. Обычные алюминиевые припои содержат кремний в качестве депрессора точки плавления с добавками цинка, меди и магния или без них.
Флюс для пайки алюминия
Флюс для пайки алюминия требуется во всех операциях пайки алюминия.
Флюсы для пайки алюминия состоят из различных комбинаций фторидов и хлоридов и поставляются в виде сухого порошка.
Для пайки в горелке и печи флюс смешивают с водой для получения пасты. Эту пасту наносят щеткой, распыляют, окунают или растекают по всей площади стыка и пайки присадочного металла.
Паяльные флюсы для горелок и печей достаточно активны, могут серьезно повредить тонкий алюминий, и их следует использовать с осторожностью.
При пайке погружением ванна состоит из расплавленного флюса. В этом случае можно использовать менее активные флюсы, а тонкие компоненты можно безопасно паять.
Практика техники пайки металлов
Необходимые материалы:
Инструкции по пайке алюминия:
- Для начала убедитесь, что у вас есть безопасные условия для пайки алюминия. Это включает в себя надлежащую вентиляцию и сварочный шлем.
- Затем купите небольшой кусок трубы из углеродистой стали.
- Поместите трубу между 2 огнеупорными кирпичами на расстоянии примерно 3/4 дюйма друг от друга.
- Возьмите кислородно-ацетиленовую горелку и установите нейтраль
- Начните с той стороны стальной трубы, которая наиболее удобна для вас (например, правши начинают с правой стороны). Используйте горелку, чтобы расплавить кусок присадочного стержня на конце трубы. Примечание: после размещения начального количества расплавленного стержня на конце стальной трубы, используйте сам расплавленный металл, чтобы расплавить большую часть стержня. Не используйте пламя горелки.Если вы видите белый дым, поднимающийся от расплавленного металла, это означает, что у вас плохой сварной шов.
Если вы хотите охладить трубу и попробовать еще раз, возьмите инструмент и поместите в воду процесс, называемый закалкой сварного шва (вода ослабит сварной шов, но для практики это нормально).
Вот короткое 3-х минутное видео:
Конструкция паяного соединения
Паяные соединения должны быть внахлестку, фланец, замковый шов или тройник. Узнайте больше об этих суставах здесь.
Стыковые или косые соединения обычно не рекомендуются.
Тройники обеспечивают превосходный капиллярный поток и образование усиливающих галтелей на обеих сторонах соединения.
Для максимальной эффективности соединения внахлестку должны иметь перекрытие как минимум в два раза больше толщины самого тонкого соединительного элемента. Перекрытие более 1/4 дюйма (6,4 мм) может привести к образованию пустот или включений флюса. В этом случае выгодно использовать прямые канавки или накатки в направлении потока припоя присадочного металла.
Закрытые узлы должны обеспечивать легкий выход газов, а при пайке погружением легкий вход, а также отвод флюса.
Хорошая конструкция для длинных перехлестов требует, чтобы припой плавился только в одном направлении для максимальной прочности соединения. Конструкция соединения также должна позволять полное удаление флюса после пайки.
Приспособления для пайки
По возможности, детали должны быть сконструированы таким образом, чтобы их можно было закрепить. При использовании приспособлений между сборкой и приспособлением может произойти дифференциальное расширение, что приведет к деформации деталей.
Пружины из нержавеющей стали или инконеля часто используются с приспособлениями для компенсации различий в расширении. Материал крепления может быть низкоуглеродистой или нержавеющей. Однако для повторяющихся операций пайки в печи и пайки погружением, чтобы избежать загрязнения ванны флюса, предпочтительны приспособления из никеля, инконеля или стали с алюминиевым покрытием.
Предварительная очистка
Предварительная очистка необходима для создания прочных, герметичных паяных соединений. Очистка паром или растворителем обычно подходит для нетермообрабатываемых сплавов.Однако для термообрабатываемых сплавов необходима химическая очистка или ручная очистка проволочной щеткой или наждачной бумагой для удаления более толстой оксидной пленки.
Печь для пайки
Пайка в печи выполняется в печах с газовым, масляным или электрическим нагревом. Регулировка температуры в пределах 5ºF (2,8ºC) необходима для получения стабильных результатов.
Желательна непрерывная циркуляция атмосферы печи, поскольку она сокращает время пайки и приводит к более равномерному нагреву. Продукты горения в печи могут отрицательно сказаться на пайке и окончательной работоспособности паяных узлов в термообрабатываемых сплавах.
Горелка для пайки алюминия
Пайка горелкой отличается от пайки в печи тем, что тепло локализовано.
Деталь нагревают до тех пор, пока флюс и припой не расплавятся и не смачивают поверхности основного металла.
Процесс похож на газовую сварку, за исключением того, что припой более жидкий и течет за счет капиллярного действия.
Пайка горелкой часто используется для прикрепления фитингов к ранее сваренным или паяным в печи узлам, соединения обратных колен и подобных приложений.
Пайка погружением
При пайке алюминия погружением большое количество расплавленного флюса удерживается в керамической ванне при температуре пайки погружением.
Чашки для пайки погружением нагреваются изнутри путем прямого нагрева сопротивлением.
Низковольтные и сильноточные трансформаторы подают переменный ток на электроды из чистого никеля, никелевого сплава или угольные электроды, погруженные в ванну. Такие горшки обычно облицовывают огнеупорным кирпичом с высоким содержанием глинозема и огнеупорным раствором.
ПРЕДУПРЕЖДЕНИЕ
Растворы кислот, используемые для удаления флюсов для сварки и пайки алюминия после сварки или пайки, токсичны и вызывают сильную коррозию.При работе с кислотами и растворами необходимо надевать защитные очки, резиновые перчатки и резиновые фартуки. Не вдыхать пары. При попадании на тело или одежду немедленно промыть большим количеством холодной воды. Обратитесь за медицинской помощью.
Никогда не наливайте воду в кислоту при приготовлении растворов: вместо этого налейте кислоту в воду. Всегда медленно смешивайте кислоту и воду. Эти операции следует выполнять только в хорошо проветриваемых помещениях.
Очистка после пайки
Всегда необходимо чистить паяные узлы, так как припой на деталях ускоряет коррозию.
Наиболее удовлетворительный способ удаления большей части флюса — это как можно скорее погрузить горячие детали в кипящую воду после того, как припой затвердеет.
Образующийся пар удаляет большую часть остаточного флюса. Если деформация из-за закалки является проблемой, детали следует дать остыть на воздухе перед погружением в кипящую воду.
Оставшийся флюс можно удалить погружением в концентрированную азотную кислоту на 5-15 минут. Кислоту удаляют промыванием водой, предпочтительно в кипящей воде, чтобы ускорить высыхание.
Альтернативный метод очистки заключается в погружении деталей на 5–10 минут в 10-процентный раствор азотной кислоты плюс 0,25-процентный раствор плавиковой кислоты при комнатной температуре. За этой процедурой следует ополаскивание горячей водой.
Для паяных узлов, состоящих из секций толщиной менее 0,010 дюйма (0,254 мм), а также деталей, для которых важна максимальная устойчивость к коррозии. Обычное лечение — это погружение в горячую воду с последующим погружением в раствор 10-процентной азотной кислоты и 10-процентного дихромата натрия на 5-10 минут.Затем следует ополаскивание горячей водой. Когда детали выходят из ополаскивателя горячей водой, они сразу же сушатся нагнетаемым горячим воздухом, чтобы предотвратить образование пятен.
Другие алюминиевые направляющие
Пайка алюминия
Газовая сварка алюминия
Алюминий для сварки TIG
|
Пайка алюминия — Опции
Так в чем секрет пайки алюминия и какой припой вы для этого используете, мне любопытно?Примечание. Во всех перечисленных ниже вариантах вам необходимо предварительно тщательно очистить поверхности, подлежащие пайке, с помощью обезжиривателя и зашлифовать эти участки, чтобы удалить пленку оксида алюминия.
Вариант 1 низкотемпературная пайка
Если вам не нужна высокотемпературная пайка (~ 1100F), вы можете использовать любое количество низкотемпературных (~ 730F) прутков для пайки на основе цинка. Эти стержни похожи на стержни, продаваемые на барахолках, и продемонстрировали, что они соединяют вместе алюминиевые банки для бутылок или заполняют отверстия. Я купил упаковку 1/8 дюймового алюминиевого прутка Hobart в моей местной компании по поставке тракторов (TSC). Обычно эти стержни состоят на 93% из цинка, 4% из алюминия и 3% из меди и плавятся при температуре 728 F.
Для разогрева заготовки можно использовать пропановую, картографическую или пропиленовую газовую горелку. Я обнаружил, что пропан нагревается слишком медленно, и переключился на бензин MPS в своей старой горелке BenzOmatic Jet Torch. Скорее всего, один из новейших вихревых факелов был бы даже лучше.
Большим преимуществом низкотемпературного стержня на основе цинка является отсутствие необходимости в флюсе! Это также означает, что нет остатков флюса, которые нужно убирать, и это позволяет сэкономить время. Чтобы выполнить пайку стержнем на основе цинка, вы очищаете заготовку, широко ее нагреваете и иногда пытаетесь протащить стержень по стыку.Когда деталь достаточно горячая, стержень плавно плавится вдоль стыка — как при пайке. Это действительно очень просто. Результат выглядит хорошо, и после этого не нужно убирать.
Вариант 2 высокотемпературная пайка
Для обеспечения должной высокой температуры вы можете использовать специальные прутки для пайки алюминия, такие как 4047 (88% алюминия и 12% кремния), которые плавятся в узком диапазоне температур 10 градусов (1070-1080 F).
Для сравнения, для TIG / MIG используются два обычных алюминиевых стержня / проволоки:
4043 — (94% квасцов и 6% кремния), который плавится от 1065 до 1170 F.
5356 — (94% квасцов, 5% магния, 0,4% железа и 0,25% кремния), плавится от 1060 до 1175 F.
При какой температуре плавятся некоторые распространенные алюминиевые сплавы?
1100 алюминий = от 1190 до 1215 F
6061 алюминий = от 1080 до 1205 F
Алюминий 6063 = от 1140 до 1210 F.
Итак, с алюминиевым прутком 4047 мы производим пайку при температуре, которая может находиться в пределах от 10 до 130 градусов от точки плавления заготовки из алюминиевого сплава. Это означает, что вы должны проявлять осторожность, постепенность и осторожность при нагревании… иначе у вас будет просадка детали и клякса!
Так как же это сделать?
Очистить деталь, нанести на паяемые участки специальный жидкий флюс. Нагрейте заготовку. Используйте на расстоянии довольно слабое кислородно-ацетиленовое пламя (нейтральное / слегка уменьшающее), промойте пламя по всей паяемой поверхности. Держите фонарик в движении! По мере того, как основной металл нагревается и приближается к плавлению, если вы позволите горелке слишком долго задерживаться на одном месте, вы расплавите отверстие или вырежете канал.
При повышении температуры смоченный водой флюс высыхает сначала до белого порошка, затем до серого порошка и, наконец, до влажной серой жидкости, к которой вы сейчас близки. Попробуйте нанести присадочный стержень на стык. Когда температура будет достаточно высокой, нанесенный на нее присадочный стержень начнет плавиться, если провести щеткой по стыку. Продолжайте промывать пламя вдоль стыка … пока вы не сможете просто провести стержнем по всей длине стыка, и он просто плавится в стыке. Стоп, все готово.
С помощью этого процесса я сделал алюминий 1/16 дюйма и 1/8 дюйма; Мне все еще нужно быть более осторожным и равномерно прогревать весь сустав.
Когда заготовка достаточно остынет, чтобы ее можно было обрабатывать, вам нужно удалить этот неприятный флюс на основе флюса, иначе он поглотит влагу, превратится в жидкую кашицу и съест вашу заготовку. Рекомендуется использовать горячую (почти кипящую) воду и тщательно вытирать щеткой из волокна. Лично мне сложно избавиться от всего потока.Я обнаружил, что использование одного из этих ручных пароочистителей (например, небольшого чайника с длинной насадкой) работает лучше всего.
Хотя высокотемпературная пайка является сложной задачей, ее можно выполнить, немного потренировавшись, и при этом получается прочное соединение.
продолжение в следующем посте …
Lucas-Milhaupt представляет новый низкотемпературный алюминиевый припой
Ваша конфиденциальность
Когда вы посещаете веб-сайт, он может собирать информацию о вашем браузере, ваших предпочтениях или устройстве, чтобы веб-сайт работал так, как вы ожидаете.Эта информация собирается в виде файлов cookie. Собранная информация не идентифицирует вас напрямую, но может дать вам более персонализированный опыт работы с сайтом. Ниже описаны различные типы файлов cookie, которые мы используем, и вы можете запретить использование некоторых типов файлов cookie. Щелкните заголовок категории, чтобы узнать больше и изменить настройки файлов cookie по умолчанию. Обратите внимание, что блокировка некоторых типов файлов cookie может повлиять на работу вашего веб-сайта.
Совершенно необходимо
Эти файлы cookie необходимы для того, чтобы вы могли перемещаться по веб-сайту и использовать его функции.Без этих файлов cookie услуги веб-сайта, такие как запоминание товаров в корзине, не могут быть предоставлены. Мы не можем отключить эти файлы cookie в системе. Хотя вы можете настроить свой браузер так, чтобы он блокировал или предупреждал вас об этих файлах cookie, некоторые части веб-сайта не будут работать без них.
Модулей:Производительность
Эти файлы cookie собирают анонимную информацию о том, как люди используют веб-сайт: посещения веб-сайта, источники трафика, шаблоны кликов и аналогичные показатели.Они помогают нам понять, какие страницы наиболее популярны. Вся собранная информация агрегирована и поэтому анонимна. Если вы не разрешите использование этих файлов cookie, мы не узнаем, когда вы посетили наш веб-сайт.
Модулей:Таргетинг / реклама
Эти файлы cookie собирают информацию о ваших привычках просмотра, чтобы сделать рекламу более актуальной для вас и ваших интересов.Они создаются через наших рекламных партнеров, которые учитывают ваши интересы и нацеливают вас на релевантную рекламу на других веб-сайтах или платформах. Если вы не разрешите использование этих файлов cookie, вы не увидите нашу таргетированную рекламу в других местах в Интернете.
Модулей: ИксФреймворк ASP.NET
Технологический стек, необходимый для хостинга веб-сайта
ИксАутентификация Titan CMS
Технологический стек, необходимый для хостинга веб-сайта
ИксДиспетчер тегов Google
Используется для загрузки скриптов на страницы сайта.
ИксGoogle Analytics
Google Analytics собирает информацию о веб-сайтах, позволяя нам понять, как вы взаимодействуете с нашим веб-сайтом, и, в конечном итоге, обеспечить лучший опыт.
Имя файла cookie:
- _ga
Регистрирует уникальный идентификатор, который используется для генерации статистических данных о том, как посетитель использует веб-сайт.
лет
Срок действия: 2 - _ga
Регистрирует уникальный идентификатор, который используется для генерации статистических данных о том, как посетитель использует веб-сайт.
лет
Срок действия: 2 - _gid
Регистрирует уникальный идентификатор, который используется для генерации статистических данных о том, как посетитель использует веб-сайт.
Срок действия: 24 часы - NID
Cookie содержит уникальный идентификатор, который Google использует для запоминания ваших предпочтений и другой информации, такой как ваш предпочтительный язык (например, английский), сколько результатов поиска вы хотите отображать на странице (например, 10 или 20), и хотите ли вы чтобы включить фильтр Безопасного поиска Google.
лет
Срок действия: 2 - _gat_UA — ######## — #
Используется для ограничения частоты запросов.Если Google Analytics развернут через Диспетчер тегов Google, этот файл cookie будет называться _dc_gtm_
Expiration: 1 минута - _gac_ <идентификатор-свойства>
Содержит информацию о кампании для пользователя. Если вы связали свои учетные записи Google Analytics и AdWords, теги конверсии веб-сайта AdWords будут считывать этот файл cookie, если вы не отключите их.
Срок действия: 90 дней - AMP_TOKEN
Содержит токен, который можно использовать для получения идентификатора клиента из службы идентификатора клиента AMP.Другие возможные значения указывают на отказ, запрос в полете или ошибку при получении идентификатора клиента из службы идентификаторов клиентов AMP
год
Срок действия: 1
Titan Consent Manager
Используется для отслеживания настроек конфиденциальности и согласия конечных пользователей на веб-сайтах, размещенных на Titan CMS.
Имя файла cookie:
- TitanClientID
Однозначно идентифицирует пользователя для поддержки исторического отслеживания предпочтений согласия
лет
Истечение срока: 10 - CookieConsent_
Отражает самые последние настройки согласия для текущего сайта.
лет
Срок действия: 2
Hubspot
Эти файлы cookie используются HubSpot для анализа ваших посещений и предоставления целевой информации через сторонние электронные письма.
Имя файла cookie:
- Hstc
Основной файл cookie для отслеживания посетителей.Он содержит домен, utk (см. Ниже), начальную временную метку (первое посещение), последнюю временную метку (последнее посещение), текущую временную метку (это посещение) и номер сеанса (увеличивается для каждого последующего сеанса)
лет
Истечение срока: 2 - Hubspotutk
Этот файл cookie используется для отслеживания личности посетителя. Этот файл cookie передается в HubSpot при отправке формы и используется при дедупликации контактов
лет
Expiration: 10 - HSSC
Этот файл cookie отслеживает сеансы.Это используется, чтобы определить, следует ли увеличивать номер сеанса и временные метки в файле cookie __hstc. Он содержит домен, viewCount (увеличивает каждый pageView в сеансе) и временную метку начала сеанса
Expiration: 30 минут - HSSCRC
Каждый раз, когда HubSpot изменяет файл cookie сеанса, этот файл cookie также устанавливается. Мы устанавливаем его в 1 и используем его, чтобы определить, перезапустил ли посетитель свой браузер.Если этот файл cookie не существует, когда мы управляем файлами cookie, мы предполагаем, что это новый сеанс.
Истечение срока: Сессия
алюминиевых прутков для пайки / сварки, низкая температура с рабочей температурой 380-400 градусов, 10 шт.
Описание продукта:
Наши алюминиевые прутки для пайки / сварки позволяют легко и без проблем сваривать.
Характеристики продукта:
- ✅ Применение: Вы можете использовать эти стержни для сварки и поверхностной сварки благодаря их высокой термостойкости.
- ✅ Материал: Изготовлен из алюминия, не выделяет запаха, нетоксичен и достаточно прочен.
- ✅ Порошок: нет необходимости в паяльном порошке, так как в стержне имеется внутреннее напыление для сварки.
Как использовать:
1. Очистка и полировка физической поверхности.
2. нагрейте поверхность основного материала до тех пор, пока температура проволоки не достигнет рабочей температуры 380 градусов -400 градусов, чтобы вы могли положиться на сварочную проволоку теплопередачи основного металла для формирования сварных швов, не следует использовать пламя для сжечь провод.Когда температура поверхности основного металла достаточна, проволока может хорошо течь и проникать в металлический капилляр.
3. При ремонте тонкого алюминия, пока основной металл алюминия нагревается до соответствующей рабочей температуры, а затем используйте проволоку для плавления трением вперед и назад, чтобы сформировать сварной шов, только с металлической щеткой для сварки расплавленной проволокой для сварки на сварном шве. .
4. Используйте пропан для сварки небольших объектов, используйте промышленный газ или индукционное нагревательное устройство для нагрева и сварки больших объектов, естественное медленное охлаждение после сварки.
Технические характеристики продукта:
Как использовать:
1. Очистка и полировка физической поверхности.
2. нагрейте поверхность основного материала до тех пор, пока температура проволоки не достигнет рабочей температуры 380-400 градусов, так что вы можете положиться на сварочную проволоку теплопередачи основного металла для формирования сварных швов, не следует использовать пламя чтобы сжечь провод. Когда температура поверхности основного металла достаточна, проволока может хорошо течь и проникать в металлический капилляр.
3. При ремонте тонкого алюминия, пока основной металл алюминия нагревается до соответствующей рабочей температуры, затем используйте проволоку для плавления трением вперед и назад, чтобы сформировать сварной шов.
4. Используйте пропан для сварки небольших объектов, используйте промышленный газ или устройство индукционного нагрева для нагрева и сварки более крупных объектов, используйте естественное медленное охлаждение после сварки.
В комплект входит:
10 алюминиевых сварочных проволок
⚠️ПРЕДУПРЕЖДЕНИЕ: Этот продукт содержит химические вещества, которые, как известно в штате Калифорния, вызывают рак, врожденные дефекты или другие нарушения репродуктивной системы.www.p65warnings.ca.gov
Алюминиевые сварочные стержни Порошковая проволока для низкотемпературного припоя 500×2,0 мм для пайки алюминия — покупайте по низким ценам на платформе электронной коммерции Joom
Это низкотемпературная алюминиевая проволока, которая может сваривать почти весь белый металл, включая алюминий Сплав, литой алюминий, цинковый сплав, цинковое литье под давлением, магниевый сплав, медно-свинцовый сплав и сварка разнородных металлов, даже в случае серьезной коррозии или масляного загрязнения белого металла, даже если вы думаете, что алюминиевый сплав не может быть отремонтирован.Подходит для основного сварочного оператора, полная сварка, только небольшое нагревательное устройство, прочность сварного шва после сварки, как правило, выше, чем прочность основного металла, сварочные операции можно понять. Описание использования низкотемпературной алюминиевой проволоки: Первый шаг: физическая очистка, шлифовка поверхности. Второй шаг: сварка с нагревом на поверхности основного металла до тех пор, пока рабочая температура проволоки не достигнет 460-520 ℃, поэтому вы можете полагаться на формирование сварного шва при плавлении проволоки из основного металла с теплопроводностью, чтобы избежать горения проволоки пламенем только когда температура поверхности основного материала достаточна, проволока может хорошо течь и проникать в металлический капилляр.Шаг третий: При ремонте относительно тонкого алюминия, пока основной материал алюминия нагревается до подходящей температуры, а затем используйте проволоку, плавящуюся трением вперед и назад, чтобы сформировать сварочную проволочную щетку с плавлением металла сварного шва, заполняйте образование сварного шва при сварке только при температуре. Четвертый шаг: Небольшие детали сваривают пропаном, а крупные детали нагревают и сваривают с помощью промышленных газовых или индукционных нагревательных устройств и, естественно, после сварки остаются холодными. Вопросы, требующие внимания : Более толстые части нагреваются более проблематично, поэтому очень важно использовать разумный источник тепла, пока температура поверхности основного материала достигает проволоки.При рабочей температуре сварка может выполняться, сварка в нейтральном пламени используется при сварке ацетилена, но не непосредственно с помощью огневой сварочной проволоки. Применимый источник тепла: его можно использовать во многих источниках тепла, таких как пропан, оксиацетилен и т. Д. Хранение: в проветриваемом и сухом месте, срок хранения неограничен. Внимание к деталям работы: 1, поверхность основного материала необходимо очистить. Четкая и прямая сварка 2, температура основного материала составляет 460 ° C, а температура основного материала должна поддерживаться на уровне 460 ° C во время процесса сварки, и температура не может быть низкой.3, используйте пламя, чтобы сжечь сварочную проволоку. После того, как температура основного материала достигнет 460 ° С, проволока естественным образом расплавится за счет теплопроводности основного материала.
Упаковка: 1PK (500×2,0 мм / 19,68×0,079 дюйма)
Тип продукта: Сварочные принадлежности
Полное руководство — преимущества перед сваркой
Пайка алюминия — это популярный метод соединения металлов, который имеет ряд преимуществ по сравнению с другими видами сварки. форма горелки, которая включает соединение двух металлических частей флюсом цветных металлов с использованием газа, нагретого примерно до восьмисот градусов по Фаренгейту.
Почему лучше пайку алюминия вместо сварки? Пайка алюминия имеет множество преимуществ, которые делают ее лучшим выбором, чем сварка. Преимущества пайки следующие:
- Низкая стоимость входа
- Требуются начинающие навыки металлообработки
- Относительно безопасно
- Работает с различными сплавами
- Портативно и удобно
- Быстрый ремонт
- Универсальность
Если вы никогда не считали пайку алюминия методом металлообработки, она обладает множеством превосходных характеристик, которые делают ее полезным навыком.Читайте дальше, чтобы узнать больше о том, как работает пайка алюминия, и о ее преимуществах перед сваркой.
Преимущества пайки алюминия
Пайка алюминия имеет множество преимуществ по сравнению со сваркой и другими видами обработки металлов. Вот некоторые из преимуществ пайки алюминия по сравнению со сваркой:
Nr. | Преимущества пайки алюминия |
1 | Низкая стоимость |
2 | Простота использования |
3 | Безопасная практика |
5 | плавный процесс |
6 | быстрый ремонт |
- Низкая стоимость: Для сварки требуется много расходных материалов, таких как защитный газ, присадочная проволока и электричество. t необходимо для пайки алюминия горелкой.В конечном итоге это приводит к гораздо более дешевой обработке металла, поскольку стоимость защитных газов, таких как аргон и гелий, не из дешевых с точки зрения поставок.
- Простота использования: В отличие от сварочных установок для сварки TIG, которые слесарям может быть довольно сложно понять, поскольку они связаны с манипуляциями с расплавленной сварочной ванной, пайка горелкой является относительно несложным процессом. Это делает его отличным навыком металлообработки начального уровня по сравнению со сваркой MIG или TIG.
- Техника безопасности: В то время как пайка алюминия по-прежнему связана с высокой температурой, которая может привести к ожогу, пайка алюминия с помощью газовой горелки не требует работы с электричеством высокого напряжения.Это может сделать его отличным методом для металлистов, которым неудобно управлять напряжением на горелке TIG.
- Работы с несколькими сплавами: Пайка алюминия работает с любыми алюминиевыми сплавами или литым алюминием, что делает эту технику полезным выбором для многих различных проектов, связанных с алюминием.
- Гладкое, красивое соединение: В отличие от сварки (при выполнении которой начинающий сварщик может оставить разбрызганный или неровный сварной шов), пайка, как правило, легче в обращении и приводит к более равномерному соединению с меньшим количеством точечной коррозии или неровностей.
- Быстрый ремонт: Пайка алюминия — это гораздо более быстрый способ соединения металлов, чем сварка TIG и другие виды сварки. Поскольку он по прочности эквивалентен другим навыкам металлообработки, это делает пайку алюминия хорошим вариантом для работ по металлообработке, которые необходимо выполнять быстро или как часть сборочной линии.
Поскольку для начала работы требуется мало расходных материалов и обеспечивает качественное соединение с небольшой практикой, пайка алюминия может стать отличной отправной точкой для начинающих металлистов, которые сначала увлекаются хобби , прежде чем они решат покупать более дорогие Сварочное оборудование.
Обучение безопасной работе с оборудованием для горячей металлообработки, таким как паяльная горелка, также может укрепить уверенность в себе для начинающих металлистов и стать отличным стимулом для освоения более сложных методов обработки металлов в будущих проектах.
Перманентное соединение
Существенным преимуществом пайки алюминия является то, что, как и сварка плавлением, пайка является отличным выбором для обеспечения прочного соединения двух металлических деталей. Если пайка выполнена правильно, соединение должно быть таким же прочным, как и две соединяемые вместе металлические детали.
Пайка является популярной техникой для металлообработки, поскольку она может обеспечить постоянное сплавление металлических деталей так же быстро, как и сварка, когда две детали необходимо соединить без потери прочности на разрыв в месте соединения.
Лучшие типы соединений для пайки алюминия
Определенные типы соединений лучше подходят для пайки алюминия, чем сварка TIG и другие навыки металлообработки, из-за особенностей конструкции соединения. Следующие соединения являются лучшими типами для пайки алюминия:
Соединение внахлест ТройникПайка алюминия обычно не рекомендуется для стыковых или косых соединений.Это связано с тем, что между двумя соединениями недостаточно перекрытия для обеспечения прочного соединения. Соединения внахлест — это наиболее распространенная форма алюминиевых паяных соединений .
Подходящие проекты для пайки алюминия
Основным преимуществом пайки алюминия является универсальность , особенно в домашних мастерских, где нельзя использовать более сложное, дорогое или высоковольтное оборудование, такое как сварочные аппараты TIG. Пайка алюминия особенно хорошо подходит для ремонта автомобилей или нестандартных работ.
Вот некоторые области применения, которые хорошо подходят для пайки алюминия:
- Алюминиевые или чугунные автомобильные головки цилиндров (двигатель)
- Линии автомобильных систем кондиционирования
- Металлические скамейки
- Автомобильное топливо баки
- Автомобильные колеса / диски
- Алюминиевые лодки
- Ремонт велосипедов
Пайка алюминия имеет достаточно потенциальных применений в доме и в мастерской, поэтому стоит инвестировать в навыки, даже если вы не освоите дальнейшие методы в сварка. От ремонта сломанной металлической садовой мебели до создания металлической скульптуры — есть множество вещей, которые вы сможете сделать, если научитесь паять алюминий.
Пайка алюминия так же прочна, как сварка?
Пайка алюминия обычно такая же прочная или прочная, как сварные соединения, по нескольким причинам. Вот некоторые из причин, по которым пайка алюминия потенциально может обеспечить более прочное соединение, чем сварной шов:
- Более низкие температуры: Основные металлы в алюминиевой пайке сохраняются при более низкой температуре, чем основные металлы, сплавленные в сварном шве. , что позволяет им сохранять прочность на разрыв исходного материала, а не подвергаться неблагоприятному воздействию теплового повреждения.
- Меньше окисления: Поскольку алюминий можно паять при более низкой температуре, чем сваривать, он меньше подвержен высокотемпературному окислению, проблемам пористости и другим дефектам соединения, которые могут возникнуть в результате высокой температуры сварка.
- Нет проблем с распределением тепла: Если тепло подается к алюминиевому сварному шву неравномерно, это может повлиять на прочность полученного соединения. Поскольку при пайке алюминия тепло не применяется к основному металлу, проблема с внешним нагревом не является проблемой для проектирования.
Хотя распространено заблуждение, что пайка не обеспечивает такой прочности соединения, как сварка, это заблуждение является мифом. Дело в том, что пайка обеспечивает соединение, которое, по крайней мере, не уступает по прочности основным металлам, а в некоторых конструкциях даже более надежно.
Пайка алюминия / сварка для начинающих >> Посмотрите видео ниже
Пайка алюминия Vs. Сварка
Пайка обладает некоторыми уникальными свойствами, которые делают ее отличным навыком для слесаря. Вот способы, по которым пайка алюминия может быть предпочтительной сваркой:
- Можно соединять разнородные металлы: Пайка — это оптимальный вариант металлообработки для соединения двух металлов с очень разными температурами плавления. Из-за этого свойства неблагородные металлы с разными температурами плавления сложно плавить, поэтому пайка решает проблему, исключая из уравнения основные металлы.
- Пайка алюминия может соединять металлы и керамику: Из-за относительно низкого тепловыделения пайка алюминия является одним из способов включения керамики в металлические скульптуры или другие проекты металлообработки без повреждения керамики.
- Пайка сохраняет размеры готового продукта: В то время как сварка часто искажает размеры готовой сборки для учета сварного шва, пайка позволяет врезать наполнитель в стык, чтобы обеспечить гладкую поверхность, сводя к минимуму искажение размеров. Для сборок, требующих точности до десятых долей миллиметра для инженерного успеха, такая точность имеет решающее значение.
- Пайка может использоваться для соединения тонкого металла с толстым металлом: Высокий нагрев, связанный с сваркой, трудно использовать в листовых металлах, потому что сварщик легко может случайно прожечь основной материал.Пайка алюминия дает эффективное решение этой инженерной проблемы.
Металлообработка — это в основном вопрос о том, какие материалы могут быть успешно склеены вместе без какой-либо потери прочности на разрыв в полученном соединении. Несмотря на сложную химическую природу алюминия, другие его полезные свойства как металла делают его одним из лучших материалов для прикладной металлообработки.
Флюс для пайки алюминия
Флюс является необходимым аспектом пайки с алюминием, так же как это необходимый аспект сварки с алюминием. Это связано с тем, что, хотя алюминий в твердой форме является легким и обладает сильными антикоррозийными свойствами, он сильно подвержен окислению при плавлении во время процесса пайки. Это может привести к превращению поверхностного алюминия в оксид алюминия и нитрид алюминия.
Чтобы предотвратить это окисление и загрязнение из-за поглощения атмосферного водорода, алюминиевых присадочных стержней погружают в припой , чтобы действовать как химический экран для алюминия, когда он нагревается паяльной горелкой.
Флюс, используемый при пайке алюминия, обычно представляет собой смесь хлоридов натрия и калия. Снижение окисления и атмосферного загрязнения пайки необходимо для предотвращения физических дефектов или проблем с прочностью соединения.
Способы пайки алюминия
Есть несколько различных способов использования алюминия при пайке. Вот некоторые из методов, используемых при пайке алюминия:
- Пайка алюминия в горелке: Пайка в горелке — это тип пайки алюминия, который чаще всего используется отдельными слесарями, и это тип пайки, который наиболее легко используется любители и домашние ремесленники.
- Пайка алюминия в печи: Пайка в печи — это процесс пайки, который чаще используется в сложных производственных узлах, поскольку он позволяет одновременно соединять несколько соединений на металлическом узле для равномерного распределения тепла.
- Вакуумная пайка алюминия (безфлюсовая пайка): Вакуумная пайка алюминия похожа на печную пайку алюминия тем, что в ней используются печи, а не слесарь, выполняющий отдельные соединения, но при этом соединения нагреваются в герметичной среде, что снижает загрязнение окружающей среды и приводит к чрезвычайно повторяемой сборке.
Тот факт, что пайка алюминия может использоваться от цехов на заднем дворе до производственных предприятий, делает ее одной из самых универсальных форм металлообработки в мире.
Расходные материалы для пайки алюминия
По сравнению с другими видами сварки, вам понадобится относительно немного материалов, чтобы начать пайку алюминия горелкой. Вот материалы, которые вам понадобятся:
Наряду с необходимыми материалами вам также понадобится подходящая площадка для пайки. Лучшим вариантом является заземленный металлический сварочный стол в чистом помещении мастерской, в котором отсутствуют легковоспламеняющиеся или горючие материалы.
Подробнее о безопасности при сварке — Здесь вы можете найти статью с нашего веб-сайта о средствах индивидуальной защиты для сварщиков — СИЗ | Список и требования
При выборе флюса и наполнителя обязательно прочтите инструкции к вашим химикатам и убедитесь, что у вас есть подходящие материалы для работы. Замена неподходящего наполнителя или флюса из-за того, что вы не можете использовать правильный, — верный способ испортить сустав. Помните, что в металлургии химические свойства имеют решающее значение для успешного результата.
Советы
Пайка алюминия — одно из наиболее простых способов металлообработки, которым вы можете заниматься, но есть еще несколько приемов, которые вы можете использовать, чтобы убедиться, что ваш проект по пайке алюминия завершится так, как вы планировали.
Следуйте этим советам для успешной пайки алюминия:
- Обеспечьте чистую поверхность без окислов для пайки. Алюминий очень склонен к окислению и загрязнению из атмосферы. Это приводит к образованию покрытия из оксида алюминия на поверхности основных металлов, которое необходимо очистить (вручную или химически) перед тем, как приступить к пайке. Это связано с тем, что температура плавления оксида алюминия значительно выше, чем у чистого алюминия.
- Очистите соединенный узел после пайки, чтобы удалить припой. Остаточный флюс для пайки может сделать окончательную сборку более подверженной коррозии, поэтому обязательно закалите соединение в кипящей воде, как только пайка будет завершена.Другой вариант очистки готовых паяльных узлов помимо кипятка — это использование смеси азотной и плавиковой кислот.
- Держите горелку низко. Алюминий имеет низкую температуру плавления, поэтому небольшое нагревание имеет большое значение. Не нагревайте стык непосредственно от горелки — вместо этого позвольте естественному капиллярному действию наполнителя проникнуть в стык в результате воздействия тепла окружающей среды от горелки для пайки.
- Уменьшить зазор между основными металлами. Чем плотнее заполнитель между двумя кусками основного металла, которые вы пытаетесь спаять, тем прочнее будет полученное соединение.
- Обеспечьте равномерный нагрев паяльной горелкой. Чтобы добиться успешной пайки, важно убедиться, что обе части основного металла нагреваются примерно с одинаковой скоростью для создания прочного соединения между ними.
Пайка алюминия требует некоторой практики, но чем больше вы будете последовательно применять эффективные методы пайки, тем лучше станут ваши стыки. Как и большинство технических навыков, металлообработка — это то, чем вы становитесь лучше, чем больше вы ее применяете.
Безопасность
Пайка, как правило, считается безопасной формой металлообработки, но все же существует несколько рисков безопасности, которые следует учитывать при использовании этого метода. Соображения безопасности важны не только для предотвращения травм во время металлообработки, они также важны на производственном уровне для предотвращения снижения производительности, штрафов OSHA и требований компенсации работникам.
Вот несколько советов по безопасности при работе с припаянным алюминием:
- Всегда используйте средства индивидуальной защиты (СИЗ): При металлообработке, например, пайке, это означает сварочные очки, сварочный шлем и сварочные перчатки. Хотя паяные металлы не имеют тенденции к разбрызгиванию, как сварной шов, они все же связаны с температурами, которые могут сильно обжечь незащищенную кожу.
- Всегда помните о химических свойствах ваших материалов: Зная, с какими металлами вы работаете, вы можете лучше понять, какие ядовитые пары могут выделяться в результате воздействия высокой температуры.Убедитесь, что все детали из недрагоценных металлов полностью чистые, чтобы исключить неизвестные загрязнения, которые могут быть токсичными при вдыхании в виде аэрозоля.
- Всегда работайте в хорошо проветриваемом помещении: Значительный риск для здоровья рабочих-металлистов, помимо ожогов, представляет собой поражение органов дыхания опасными парами, которые являются побочным продуктом методов обработки металлов. Обязательно всегда выполняйте пайку с вентиляцией, чтобы предотвратить вдыхание этих паров.
- Всегда устанавливайте детекторы дыма и угарного газа: Независимо от того, какие ремесленные работы проводятся в вашем магазине, вы должны убедиться, что магазин защищен от воздействия возгорания или потенциальных электрических пожаров.
Пайка требует гораздо более низких температур, чем другие виды сварки, и не требует высокого напряжения. Это делает эту технику намного более безопасной для металлообработки, чем сварка TIG.
Однако не означает, что вы можете расслабиться при работе с проектом пайки. Шестьсот градусов — это все еще шестьсот градусов, и ожог третьей степени будет так же вреден, независимо от того, от газовой горелки вы или от горелки TIG.