Номинальной (установленной) мощностью эдектроприемника, называют мощность, на которую он рассчитан для длительного потребления электроэнергии из сети при номинальном напряжении и продолжительном номинальном режиме работы. Приводится на заводской табличке или в паспорте электроприемника. Там же указываются и другие технические параметры: род тока, номинальное напряжение Uном, частота, число фаз, коэффициент полезного действия, Т ном, коэффициент мощности при номинальной нагрузке cos ф и пр.
Номинальная мощность электродвигателей — это полезная механическая мощность на валу рн, выраженная в кВт. Для плавильных электропечей и сварочных установок — это полная мощность питающих их трансформаторов SH, выраженная в кВА. Для двигателей — генераторов, выпрямителей и преобразователей частоты принимается номинальная мощность генератора, выпрямителя и преобразователя (на вторичной стороне) в кВт или кВА.
Установленной мощностью для печей сопротивления, ванн электролиза, источников света является мощность, потребляемая этими электроприемниками из сети в кВт при номинальном напряжении.
Для электроприемников с повторно-кратковременным режимом работы за установленную принимается мощность рн, приведенная к продолжительному режиму, по выражениям:
Ниже видео о номинальной мощности электродинамиков:
Понравилась статья? Поделиться с друзьями:
Статьи
Что такое номинальная мощность?
С термином «номинальная мощность» мы сталкиваемся практически ежедневно. Выбираем ли электрический чайник или лампу накаливания – везде указано это значение. Единицей измерения являются ватты или киловатты. Казалось бы – что может быть проще в этом вопросе? Ведь еще со школьного курса физики всем известно, что для определения мощности (P) достаточно перемножить значения тока и напряжения. Но что скрывается за словами «номинальная мощность»? Под термином «номинальный» понимают определенное значение чего-либо, не учитывающее внешних корректирующих факторов. Таким образом, номинальная мощность – указанное производителем значение, которое может быть получено только при предусмотренных расчетных параметрах. Это общее понятие. В каждом же конкретном случае необходимо учитывать свои специфичные особенности. Приведем пример с лампой накаливания. На ее стеклянной колбе отмечено: 230 В, 100 Вт. То есть, 100 Вт может быть достигнуто только при напряжении в 230 В. Номинальная мощность – это те самые 100 Вт. Ее значение уменьшается со снижением напряжения и увеличивается с повышением так как эти параметры находятся в прямой зависимости друг от друга (P=I*U).Как правило, для большинства электроприборов есть ограничение по верхней границе, обычно 5-10%. Другими словами, допустима работа при 230 В + 23 В = 253 В. Нижний предел может не указываться, как в случае с лампой. Более сложное оборудование ограничено по паспортным параметрам как сверху, так и снизу. К примеру, как понять термин «номинальная мощность двигателя»? Существует два равноправных определения – одно с точки зрения электричества, а другое исходя из расчетной механической нагрузки на валу. Хотя они непосредственно взаимосвязаны, второе более простое для понимания. Мы приведем оба. На табличке с паспортными данными всегда указано значение мощности. Она численно равна потребляемой из электрической сети при расчетной механической нагрузке, причем температура корпуса должна находиться в допустимых пределах (подразумевается продолжительный режим работы). То есть, можно считать, что паспортное значение равно номинальному. Если же электропривод работает в повторно-кратковременном режиме (ПВ не равно 100%), то такое соответствие не выполняется, так как времени работы недостаточно для перехода в установившийся режим, когда увеличение нагрева компенсируется температурой окружающего воздуха. В этом случае потребуется нагрузочный график: номинальная мощность будет равна произведению паспортного значения P и корня квадратного из подобранного по графику коэффициента. Все вышесказанное верно для электрической составляющей. Согласно другому определению, номинальная мощность принимается равной механической, развиваемой двигателем при расчетном значении напряжения и температурном режиме, соответствующем паспортному. Таким образом, если напряжение (U) уменьшается, то изменяется и момент силы, хотя скорость вращения вала может остаться прежней. Как было сказано, производителем закладывается в изделие определенный «запас прочности»: колебания U в пределах +-5% позволяет двигателю развивать расчетный момент (при неизменности частоты сети). Для частоты такой запас составляет всего 2,5%. А вот номинальная мощность трансформатора учитывает только температурный режим. Если посмотреть в паспорт устройства, то там указаны две температуры: номинальная и окружающего воздуха. Если при работе первая не превышает своего расчетного значения, а вторая отличается от паспортных данных незначительно, то в этом режиме трансформатор выдает номинальную мощность. Любое повышение электрической нагрузки вызывает рост тока и температуры, поэтому вполне достаточно контроля последней. Как и в случае с двигателями, допускается небольшое превышение.
Выбор генератора по мощности
Выбирая генератор, потребитель обращает внимание на различные параметры установки – вес, запас моторесурса, мобильность, наличие дополнительного функционала, цену, и т.д. Но в первую очередь необходимо выбирать установку, ориентируясь на ее мощность. Как правильно рассчитать этот показатель и на что обратить внимание?
Чтобы было понятней, разберем эту ситуацию на простом примере. Допустим, в нашем пользовании имеются такие бытовые приборы: пылесос, калорифер, морозильник. Мощность этих бытовых приборов составляет соответственно 1 кВт, 2 кВт и 0,3 кВт. Получается, чтобы обеспечить работу этих приборов, нам необходим генератор мощностью не менее 3 кВт. Чтобы понять это, разберемся в таком понятии, как номинальная мощность генератора.
Номинальная, или, как ее еще называют, реальная мощность установки, существенно отличается от максимальной. В технической документации производители чаще всего указывают именно максимальные показатели по мощности для данной модели генератора. Стоит отметить, что с такой нагрузкой установка без критических последствий может работать очень непродолжительное время – в некоторых случаях это секунды, иногда 1-2 минуты. В то же время реальная, или номинальная мощность несколько ниже максимального показателя. Для ее расчета необходим коэффициент мощности cos φ. Этот показатель определяется отношением активной мощности к полной.
Пример
Допустим, в нашем распоряжении генератор с показателями мощности в 3 кВА и cos φ, равным 0,8. В таком случае номинальная мощность данной установки будет равна:
3 кВА х 0,8=2,4 (кВт)
Теперь можно понять, почему мощность может указываться в тех или иных единицах измерения, в ваттах (Вт) или Вольт Амперах (ВА). Некоторые производители, чтобы избавить потребителя от необходимости проведения вычислений, просто указывают в сопроводительной документации оба значения мощности – номинальной и максимальной. Встречаются также варианты, когда производителем указывается только одна из мощностей и приводится значение коэффициента мощности. Некоторые недобросовестные компании могут скрывать коэффициент мощности от потребителя. Это делается с целью выдать генератор за более мощную, чем на самом деле, установку.
Учет вида нагрузки
Для бытовых электроприборов характерны два вида нагрузки:
- Активная;
- Реактивная.
Активная (омическая) нагрузка потребляется приборами, которые преобразуют получаемую энергию в тепло. Это электрическая плита, утюг, фен, калориферы и т.д. Реактивную нагрузку потребляют остальные электроприборы, преобразующие в тепло только незначительную часть энергии. Основная часть потребляемой энергии используется с другой целью. Примерами таких приборов могут быть холодильник, пылесос, телевизор, компьютер и т.д.
Если вам нужна помощь в выборе мощности генератора для вашего дома, производственного цеха или любого другого объекта, обратитесь за квалифицированной консультацией к нашим специалистам.
Одна из естественных характеристик электродвигателя – его номинальная (эффективная) мощность (Pном ), которая для машин переменного и постоянного тока является механической мощностью на валу.
Это мощность двигателя, с которой он мог бы работать в номинальном режиме — режиме эффективной работы на протяжении длительного времени (не менее нескольких часов). Номинальная мощность измеряется в Вт (кВт) или лошадиных силах (л.с.) и указывается на щитке электрической машины вместе с остальными основными характеристиками.
, мощность двигателя развивается в полной мере. При загрузке двигателя до номинальной мощности на сравнительно короткий промежуток времени, можно считать, что он не используется в полную силу. В такой ситуации бывает целесообразна его кратковременная перегрузка, предел которой определяется перегрузочной мощностью двигателя. В паспорте электродвигателя заводом-изготовителем всегда указываются номинальные величины мощности Pном , напряжения Uном , коэффициента мощности cosϕном , номинальная угловая скорость двигателя ωном .Расчет номинальной мощности
Метод эквивалентного тока
Применим для расчета номинальной мощности при обязательном соблюдении во время работы неизменности показателей мощности потерь в обмотках двигателя, складывающейся из постоянной и переменной величин мощности, сопротивлений обмоток ротора и статора, потерь на механическое трение. Зная номинальный коэффициент мощности, показатели эквивалентного тока и номинального напряжения, возможно рассчитать номинальную мощность электродвигателя:
Pном ≥ Iэк ∙ Uном ∙cosϕном,
где Iэк – показатель эквивалентного тока,
Uном – номинальное напряжение,
cosϕном – номинальный коэффициент мощности, повышающийся с увеличением мощности и номинальной угловой скорости вращения ротора, а также зависящий от нагрузки. Для большинства электродвигателей составляет 0,8-0,9.
Метод эквивалентного момента
Электродвигатели любого типа имеют пропорциональный произведению тока и величине магнитного потока вращающий момент. Метод эквивалентного момента для расчета номинальной мощности используется в тех случаях, когда условия применяемой нагрузки определяют непосредственно требуемый от двигателя момент, а не ток. Для синхронных и асинхронных машин переменного тока, коэффициент мощности cosϕ приближенно принимается за постоянную величину:
Pном = Мвр ∙ ωном,
где Мвр – значение вращающего момента,
ωном – номинальная угловая скорость двигателя.
Определение номинальной мощности опытным путем
Указанная в паспорте или щитке устройства номинальная мощность будет равна этому значению только при оптимальной нагрузке на вал, определяемой заводом-изготовителем для номинального режима. На что ориентироваться, если по каким-то причинам не сохранился паспорт или стерлись надписи на табличке?
Помогут практические измерения и :
- Необходимо полностью отключить все прочие источники потребления электроэнергии: освещение, электроприборы и т.д.
- В случае использования электронного счетчика, следует подключить двигатель под нагрузкой на 5-6 минут, на электронном дисплее отобразиться величина нагрузки в кВт.
Дисковый счетчик проводит измерения в кВт∙час. Следует записать последние показания и включить двигатель на 10 минут с точностью до секунды. После остановки электромашины, отнять из полученного значения записанные показания и умножить на 6. Полученное число и будет являться активной механической мощностью двигателя.
При использовании этого метода важно правильно подобрать нагрузку, поскольку при ее недостаточности или перегрузке, определяемый показатель будет далек от номинальной мощности электродвигателя.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.
Это мощность двигателя, с которой он мог бы работать в номинальном режиме — режиме эффективной работы на протяжении длительного времени (не менее нескольких часов). Номинальная мощность измеряется в Вт (кВт) или лошадиных силах (л.с.) и указывается на щитке электрической машины вместе с остальными основными характеристиками.
При нагрузках, меньших P ном, мощность двигателя развивается в полной мере. При загрузке двигателя до номинальной мощности на сравн
11. Номинальная мощность (определение).
Номинальная активная мощность ЭП () – это мощность, потребляемая из сети при номинальной нагрузке ЭП, при которой он должен работать длительное время в установившемся режиме без превышения допустимой температуры.
Для длительного режима работы ЭП равна паспортной величине:
.
Для приемников, работающих в повторно-кратковременном режиме, номинальную мощность определяют по паспортной мощности путем приведения ее к длительному режиму работы (ПВ=1) в соответствии с формулами:
, или ,
где паспортная величина, о.е.; – коэффициент включения, рассчитывается по графику нагрузки ЭП, см. формулу (2.1).
Для электродвигателей мощность, потребляемая из сети, называется присоединенной мощностью и определяется по выражению:
,
где – номинальная мощность, развиваемая на валу двигателя, кВт;
–номинальный КПД электродвигателя, о.е.
Номинальная реактивная мощность ЭП () – реактивная мощность, потребляемая им из сети при номинальной активной мощности и номинальном напряжении.
Для ЭП, работающего в длительном режиме, величина вычисляется по формуле
,
где соответствует номинальномуЭП (– паспортная величина).
Для ЭП, работающего в повторно-кратковременном режиме, величина вычисляется по формуле
.
Номинальная полная мощность ЭП
.
12. Расчетная мощность (определение)
Одним из основных этапов проектирования систем электроснабжения объекта является правильное определение ожидаемых (расчетных) электрических нагрузок как отдельных ЭП, так и узлов нагрузки на всех уровнях системы электроснабжения.
Расчетные значения нагрузок – это нагрузки, соответствующие такой неизменной токовой нагрузке (), которая эквивалентна фактической изменяющейся во времени нагрузке по наибольшему тепловому воздействию (не превышая допустимых значений) на элемент системы электроснабжения.
Существуют различные методы определения расчетных электрических нагрузок, которые в свою очередь делятся на основные; и вспомогательные.
К расчётным электрическим нагрузкам относятся расчётные значения активной мощности (), реактивной мощности (), полной мощности () и тока ().
13. Среднеквадратичная мощность (определение)
Среднеквадратичное значение активной мощности отдельного ЭП за рассматриваемый промежуток времени
,
где – среднеквадратичное значение активной мощности электроприемника, кВт;– активная мощность, потребляемая ЭП за рассматриваемый промежуток времени(определяется из графика нагрузки по активной мощности), кВт;– интервал времени за который определяется, мин, ч.
При наличии графиков потребления реактивной мощности среднеквадратичное значение реактивной мощности определяется аналогично.
Среднеквадратичное значение реактивной мощности ЭП за рассматриваемый промежуток времени
,
где – среднеквадратичное значение реактивной мощности электроприемника, кВ·Ар;– активная мощность, потребляемая ЭП за рассматриваемый промежуток времени (определяется из графика нагрузки по реактивной мощности), кВ·Ар;– интервал времени, за который определяется, мин, ч.
При отсутствии графиков потребления реактивной мощности, среднеквадратичное значение реактивной мощности
,
где – соответствует номинальномуЭП (– паспортная величина).
По известным среднеквадратичным значениям активной и реактивной мощностей определяются среднеквадратичные значения полной мощности и тока.
Среднеквадратичное значение полной мощности ЭП за рассматриваемый промежуток времени
,
где – среднеквадратичное значение полной мощности ЭП, кВ·А.
Среднеквадратичное значение тока ЭП за рассматриваемый промежуток времени
,
где – среднеквадратичное значение тока ЭП, А;– номинальное напряжение ЭП, кВ.
Номинальная мощность
4а. Номинальный ток светового прибора
Ток, указанный изготовителем на световом приборе
3.2 номинальная мощность: Мощность, указанная на изделии, а также в технической документации, входящая в номинальные параметры и понимаемая в следующем смысле:
а) для автомобильных генераторов — максимальная полезная мощность, определяемая как произведение номинального напряжения на максимальный ток и измеряемая в ваттах;
б) для тракторных и мотоциклетных генераторов — мощность, определяемая как произведение номинального напряжения на номинальный ток и измеряемая в ваттах;
в) для мотоциклетных и мопедных генераторов с параметрическим регулированием — суммарная мощность потребителей электроэнергии на мотоцикле или мопеде;
г) для стартеров — наибольшая полезная мощность на валу, выраженная в ваттах или киловаттах;
д) для электродвигателей — полезная мощность при номинальном напряжении с номинальным моментом нагрузки на валу, выраженная в ваттах;
е) для всех остальных потребителей электроэнергии — потребляемая электрическая мощность на входных зажимах изделия, вычисляемая, если нет особых указаний, как произведение номинального напряжения на номинальный ток и измеряемая в ваттах.
3.12 номинальная мощность: Установленная предприятием-изготовителем мощность при полной нагрузке и номинальной частоте вращения коленчатого вала двигателя, изготовленного, отрегулированного и обкатанного в соответствии с технической документацией.
2.4 номинальная мощность: Мощность, маркируемая на лампе.
3.5 номинальная мощность (rated wattage): Мощность, маркируемая на лампе.
6. номинальная мощность: Мощность, маркируемая на лампе.
1.3.5 номинальная мощность : Мощность, маркируемая на лампе.
1.3.6 номинальная мощность: Мощность, указанная в соответствующем стандарте на лампу или установленная изготовителем или ответственным поставщиком.
1.5.11 номинальная мощность (rated wattage): Мощность, заданная в соответствии с настоящим стандартом.
3.23 номинальная мощность: Номинальное значение отдаваемой мощности источника питания исходя из номинального рабочего тока и напряжения.
3.3 номинальная мощность (rated output): Числовое значение выходной мощности, включенное в номинальные данные.
3.3 номинальная мощность (rated power): Потребляемая мощность, указанная для прибора производителем.
1.3.6 номинальная мощность (rated wattage): Мощность, заданная в соответствии с настоящим стандартом.
3.12 номинальная мощность (rated power): Величина мощности, объявленная производителем и соответствующая указанным режимам эксплуатации устройства или оборудования.
Примечание — Номинальная мощность — величина максимальной непрерывной электрической мощности, выдаваемой в режиме нормальной эксплуатации и при нормальных внешних условиях, которая была задана в процессе проектирования ВЭУ.
3.14 номинальная мощность (rated power), QH (QN): Реактивная мощность реактора, заданная для работы при номинальных напряжении и частоте.
1.3.6 номинальная мощность (rated wattage): Мощность, маркируемая на лампе.
3.3 номинальная мощность (rated wattage): Мощность, маркируемая на лампе.
2.3. Номинальная мощность — числовое значение мощности, отнесенное к номинальным данным.
Номинальная мощность
Длительная эффективная мощность двигателя, назначаемая и гарантируемая изготовителем при заданной частоте вращения двигателя, заданных окружающих условиях, полной комплектности и рабочих условиях, для которых предназначен дизель, с учетом возможности развития максимальной мощности
13. номинальная мощность: Мощность, маркируемая на лампе.
3.10 номинальная мощность: Величина мощности, как правило, указываемая разработчиком, для определенных условий эксплуатации узла, устройства, машины или оборудования. Для ВЭУ: это наибольшая мощность, которую она вырабатывает, находясь в длительном режиме работы при номинальных значениях исходных параметров (скорость ветра, влажность, температура, плотность воздуха).
Смотри также родственные термины:
3.14 номинальная мощность (для ВЭУ) [rated power (for wind turbines)]: Максимальная непрерывная электрическая выходная мощность ВЭУ, достижимая при условиях нормальной эксплуатации.
3.33 номинальная мощность (компрессора): Максимальная мощность компрессора и любых дополнительных частей с приводом от вала, необходимых для конкретных условий работы.
Примечания
1 В номинальную мощность включена мощность такого оборудования, как устройства подавления пульсации, трубопроводная обвязка, промежуточные холодильники и сепараторы.
2 Потери в системе трансмиссии и привода не включаются в номинальную мощность компрессора. Потери, происходящие в наружных подшипниках (например, используемых для поддержки крупных маховиков), включаются в номинальную мощность.
1.5.11 номинальная мощность (последовательно соединенной RC-сборки) (rated power (of a series RC-unit): Максимальная мощность, которую может рассеивать RC-сборка при номинальной температуре в течение длительной работы.
3.5 номинальная мощность PN (rated output): Числовое значение выходной мощности, включенное в номинальные данные.
Определения термина из разных документов: номинальная мощность PN
9.2.5. Номинальная мощность автотрансформатора
Номинальная проходная мощность обмоток, имеющих общую часть.
Примечание. Под обмотками понимаются обмотки высшего и низшего напряжения в двухобмоточном и обмотки высшего и среднего напряжения в трехобмоточном автотрансформаторе
3.2.8 номинальная мощность ВА:
20. Номинальная мощность высокочастотного вакуумного выключателя (переключателя)
Номинальная мощность
Максимальная мощность, пропускаемая в течение установленной наработки через замкнутые контакты электрической цепи высокочастотного вакуумного выключателя (переключателя) в условиях, указанных в нормативно-технической документации
3.16 номинальная мощность гидроагрегата :
Активная электрическая мощность на выводах генератора, соответствующая номинальному режиму работы электрической машины
3.10 номинальная мощность ГТУ в станционных условиях: Электрическая мощность на клеммах электрогенератора, определяемая для заданных станционных условий.
9.2.3. Номинальная мощность двухобмоточного трансформатора*
Номинальная мощность каждой из обмоток трансформатора.
Примечание. В трансформаторе с расщепленной обмоткой номинальная мощность — эта мощность нерасщепленной обмотки или равная ей суммарная мощность частей расщепленной обмотки
Номинальная мощность дизель-генератора
Длительная мощность на клеммах дизель-генератора, назначенная и гарантируемая изготовителем при заданной частоте вращения дизеля и заданных окружающих условиях
1.3.21 номинальная мощность конденсатора QN (rated output of a capacitor): Реактивная мощность, получаемая при номинальных значениях емкости, частоты и напряжения (или тока).
Определения термина из разных документов: номинальная мощность конденсатора QN
33. Номинальная мощность облучателя радиационно-технологической установки с закрытым радионуклидным источником ионизирующего излучения
Номинальная мощность облучателя РТУ
Мощность облучателя радиационно-технологической установки с закрытым радионуклидным источником ионизирующего излучения, необходимая для обеспечения заданной производительности установки
9.2.2. Номинальная мощность обмотка (ответвления обмотки)
Указанное на паспортной табличке трансформатора значение полной мощности на основном (данном) ответвлении, гарантированное изготовителем в номинальных условиях места установки и охлаждающей среды при номинальной частоте и номинальном напряжении обмотки (ответвления).
Примечание. Если на паспортной табличке трансформатора указаны несколько мощностей, соответствующих различным способам охлаждения, то за номинальную принимают наибольшую из этих мощностей
3.3 номинальная мощность при конденсационном режиме: Величина полезной мощности, объявленная изготовителем, кВт, соответствующая эксплуатации котла в режиме температур воды 50 °C/30 °C.
2.7 номинальная мощность рассеивания колодок выводов для плавких вставок (rated power dissipation value of a fuse terminal block): Максимальная мощность рассеивания в случае, когда колодка выводов для плавких предохранителей находится при длительной нагрузке в условиях, установленных для держателя плавкой вставки и собственно плавкой вставки.
45. Номинальная мощность рассеяния резистора
Номинальная мощность рассеяния
D. Nennleistung
E. Rated dissipation
F. Dissipation nominale
Наибольшая мощность, которую резистор может рассеивать в заданных условиях в течение срока службы с сохранением параметров в допускаемых пределах
99. Номинальная мощность трансформатора малой мощности
Номинальная мощность трансформатора
D. Neunleistung des Kleintransformators
E. Transformer power rating
F. Puissance nominale du transformateur
Сумма мощностей вторичных обмоток трансформатора малой мощности, в котором мощность каждой обмотки определяется произведением номинального тока на номинальное напряжение
3.1.11 номинальная мощность трансформатора напряжения : Значение полной мощности, указанное на паспортной табличке трансформатора напряжения, которую он отдает во вторичную цепь при номинальном вторичном напряжении с обеспечением соответствующих классов точности.
9.2.4. Номинальная мощность трехобмоточного трансформатора*
Наибольшая из номинальных мощностей отдельных обмоток трансформатора
55. Номинальная мощность электроагрегата (электростанции)
Номинальная мощность
D. Nennleistung
E. Rated power
Мощность, развиваемая электроагрегатом (электростанцией) без ограничения времени работы при номинальных значениях напряжения, тока, частоты вращения, частоты переменного тока, коэффициента мощности и при номинальных условиях эксплуатации, с учетом возможности развития максимальной мощности
3.13 номинальная мощность электродвигателя : Полезная механическая мощность на валу, выраженная в ваттах (Вт) или киловаттах (кВт).
Номинальная мощность электродвигателя (электродвигателей)
1.7
По ГОСТ 10512-78
Номинальная мощность электродвигателя (электродвигателей)
1.7
По ГОСТ 10512-78
3.21 номинальная мощность электронагревательной секции: Мощность (в ваттах), используемая в расчетах при определении линейного или поверхностного тепловыделения.
75. Номинальная мощность электропечи
Номинальная мощность
Мощность электропечи для осуществления электронагрева загрузки
6. Номинальная мощность электроприбора
Мощность, на которую рассчитан электроприбор и которая указывается на электроприборе
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
Что такое номинальная мощность
С термином «номинальная мощность» мы сталкиваемся практически ежедневно. Выбираем ли электрический чайник или лампу накаливания – везде указано это значение. Единицей измерения являются ватты или киловатты. Казалось бы – что может быть проще в этом вопросе? Ведь еще со школьного курса физики всем известно, что для определения мощности (P) достаточно перемножить значения тока и напряжения. Но что скрывается за словами «номинальная мощность»?
Под термином «номинальный» понимают определенное значение чего-либо, не учитывающее внешних корректирующих факторов. Таким образом, номинальная мощность – указанное производителем значение, которое может быть получено только при предусмотренных расчетных параметрах. Это общее понятие. В каждом же конкретном случае необходимо учитывать свои специфичные особенности. Приведем пример с лампой накаливания. На ее стеклянной колбе отмечено: 230 В, 100 Вт. То есть, 100 Вт может быть достигнуто только при напряжении в 230 В. Номинальная мощность – это те самые 100 Вт. Ее значение уменьшается со снижением напряжения и увеличивается с повышением так как эти параметры находятся в прямой зависимости друг от друга (P=I*U).
Как правило, для большинства электроприборов есть ограничение по верхней границе, обычно 5-10%. Другими словами, допустима работа при 230 В + 23 В = 253 В. Нижний предел может не указываться, как в случае с лампой. Более сложное оборудование ограничено по паспортным параметрам как сверху, так и снизу.
К примеру, как понять термин «номинальная мощность двигателя»? Существует два равноправных определения – одно с точки зрения электричества, а другое исходя из расчетной механической нагрузки на валу. Хотя они непосредственно взаимосвязаны, второе более простое для понимания. Мы приведем оба. На табличке с паспортными данными всегда указано значение мощности. Она численно равна потребляемой из электрической сети при расчетной механической нагрузке, причем температура корпуса должна находиться в допустимых пределах (подразумевается продолжительный режим работы). То есть, можно считать, что паспортное значение равно номинальному. Если же электропривод работает в повторно-кратковременном режиме (ПВ не равно 100%), то такое соответствие не выполняется, так как времени работы недостаточно для перехода в установившийся режим, когда увеличение нагрева компенсируется температурой окружающего воздуха. В этом случае потребуется нагрузочный график: номинальная мощность будет равна произведению паспортного значения P и корня квадратного из подобранного по графику коэффициента. Все вышесказанное верно для электрической составляющей.
Согласно другому определению, номинальная мощность принимается равной механической, развиваемой двигателем при расчетном значении напряжения и температурном режиме, соответствующем паспортному. Таким образом, если напряжение (U) уменьшается, то изменяется и момент силы, хотя скорость вращения вала может остаться прежней. Как было сказано, производителем закладывается в изделие определенный «запас прочности»: колебания U в пределах +-5% позволяет двигателю развивать расчетный момент (при неизменности частоты сети). Для частоты такой запас составляет всего 2,5%.
А вот номинальная мощность трансформатора учитывает только температурный режим. Если посмотреть в паспорт устройства, то там указаны две температуры: номинальная и окружающего воздуха. Если при работе первая не превышает своего расчетного значения, а вторая отличается от паспортных данных незначительно, то в этом режиме трансформатор выдает номинальную мощность. Любое повышение электрической нагрузки вызывает рост тока и температуры, поэтому вполне достаточно контроля последней. Как и в случае с двигателями, допускается небольшое превышение.
В электромеханике существует много приводов, которые работают с постоянными нагрузками без изменения скорости вращения. Их используют в промышленном и бытовом оборудовании как, например, вентиляторы, компрессоры и другие. Если номинальные характеристики неизвестны, то для расчетов используют формулу мощности электродвигателя. Вычисления параметров особенно актуальны для новых и малоизвестных приводов. Калькуляция выполняется с использованием специальных коэффициентов, а также на основе накопленного опыта работы с подобными механизмами. Данные необходимы для правильной эксплуатации электрических установок.
Что такое электродвигатель?
Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.
Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока
P = U х I,
где P — мощность, U — напряжение, I — сила тока.
Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.
Конструкция электрического двигателя
Привод включает в себя:
- Ротор.
- Статор.
- Подшипники.
- Воздушный зазор.
- Обмотку.
- Коммутатор.
Ротор — единственная подвижная деталь привода, которая вращается вокруг своей оси. Ток, проходя через проводники, образует индукционное возмущение в обмотке. Формируемое магнитное поле взаимодействует с постоянными магнитами статора, что приводит в движение вал. Их рассчитывают по формуле мощности электродвигателя по току, для которой берется КПД и коэффициент мощности, в том числе все динамические характеристики вала.
Подшипники расположены на валу ротора и способствуют его вращению вокруг своей оси. Внешней частью они крепятся к корпусу двигателя. Вал проходит через них и выходит наружу. Поскольку нагрузка выходит за пределы рабочей зоны подшипников, ее называют нависающей.
Статор является неподвижным элементом электромагнитной цепи двигателя. Может включать в себя обмотку или постоянные магниты. Сердечник статора выполнен из тонких металлических пластин, которые называют пакетом якоря. Он призван снижать потери энергии, что часто происходит с твердыми стержнями.
Воздушный зазор — расстояние между ротором и статором. Эффективным является небольшой промежуток, так как он влияет на низкий коэффициент работы электродвигателя. Ток намагничивания растет с увеличением размера зазора. Поэтому его всегда стараются делать минимальным, но до разумных пределов. Слишком маленькое расстояние приводит к трению и ослаблению фиксирующих элементов.
Обмотка состоит из медной проволоки, собранной в одну катушку. Обычно укладывается вокруг мягкого намагниченного сердечника, состоящего из нескольких слоев металла. Возмущение индукционного поля происходит в момент прохождения тока через провода обмотки. В этот момент установка переходит в режим конфигурации с явными и неявными полюсами. В первом случае магнитное поле установки создает обмотка вокруг полюсного наконечника. Во втором случае, в распределенном поле рассредотачивается слотов полюсного наконечника ротора. Двигатель с экранированными полюсами имеет обмотку, которое сдерживает магнитное возмущение.
Коммутатор используют для переключения входного напряжения. Состоит из контактных колец, расположенных на валу и изолированных друг от друга. Ток якоря подается на щетки контактов ротационного коммутатора, который приводит к изменению полярности и заставляет вращаться ротор от полюса к полюсу. При отсутствии напряжения мотор прекращает крутиться. Современные установки оборудованы дополнительными электронным средствами, которые контролируют процесс вращения.
Принцип действия
По закону Архимеда ток в проводнике создает магнитное поле, в котором действует сила F1. Если из этого проводника изготовить металлическую рамку и поместить ее в поле под углом 90°, то края будут испытывать силы, направленные в противоположную сторону относительно друг друга. Они создают крутящий момент относительно оси, который начинает ее вращать. Витки якоря обеспечивают постоянное кручение. Поле создается электрическими или постоянными магнитами. Первый вариант выполнен в виде обмотки катушки на стальном сердечнике. Таким образом, ток рамки генерирует индукционное поле в обмотке электромагнита, которое порождает электродвижущую силу.
Рассмотрим более подробно работу асинхронных двигателей на примере установок с фазным ротором. Такие машины работают от переменного тока с частотой вращения якоря, не равной пульсации магнитного поля. Поэтому их еще называют индукционными. Ротор приводится в движение за счет взаимодействия электрического тока в катушках с магнитным полем.
Когда во вспомогательной обмотке отсутствует напряжение, устройство находится в состоянии покоя. Как только на контактах статора появляется электрический ток, образуется постоянное в пространстве магнитное поле с пульсацией +Ф и -Ф. Его можно представить в виде следующей формулы:
nпр = nобр = f1 × 60 ÷ p = n1
где:
nпр — количество оборотов, которое совершает магнитное поле в прямом направлении, об/мин;
nобр — число оборотов поля в обратном направлении, об/мин;
f1 — частота пульсации электрического тока, Гц;
p — количество полюсов;
n1 — общее число оборотов в минуту.
Испытывая пульсации магнитного поля, ротор получает начальное движение. По причине неоднородности воздействия потока, он будет развиваться крутящий момент. По закону индукции, в короткозамкнутой обмотке образуется электродвижущая сила, которая генерирует ток. Его частота пропорциональна скольжению ротора. Благодаря взаимодействию электрического тока с магнитным полем создается крутящий момент вала.
Для расчетов производительности существуют три формулы мощности асинхронного электродвигателя. По сдвигу фаз используют
S = P ÷ cos (alpha), где:
S — полная мощность, измеряемая в Вольт-Амперах.
P — активная мощность, указываемая в Ваттах.
alpha — сдвиг фаз.
Под полной мощностью понимаются реальный показатель, а под активной — расчетный.
Виды электродвигателей
По источнику питания приводы разделяют на работающие от:
- Постоянного тока.
- Переменного тока.
По принципу работы их, в свою очередь, делят на:
- Коллекторные.
- Вентильные.
- Асинхронные.
- Синхронные.
Вентильные двигатели не относят к отдельному классу, так как их устройство является вариацией коллекторного привода. В их конструкцию входит электронный преобразователь и датчик положения ротора. Обычно их интегрируют вместе с платой управления. За их счет происходит согласованная коммутация якоря.
Синхронные и асинхронные двигатели работают исключительно от переменного тока. Управление оборотами происходит с помощью сложной электроники. Асинхронные делятся на:
- Трехфазные.
- Двухфазные.
- Однофазные.
Теоретическая формула мощности трехфазного электродвигателя при соединении в звезду или треугольником
P = 3 * Uф * Iф * cos(alpha).
Однако для линейных значений напряжения и тока она выглядит как
P = 1,73 × Uф × Iф × cos(alpha).
Это будет реальный показатель, сколько мощности двигатель забирает из сети.
Синхронные подразделяются на:
- Шаговые.
- Гибридные.
- Индукторные.
- Гистерезисные.
- Реактивные.
В своей конструкции шаговые двигатели имеют постоянные магниты, поэтому их не относят к отдельной категории. Управление работой механизмов производится с помощью частотных преобразователей. Существуют также универсальные двигатели, которые функционируют от постоянного и переменного тока.
Общие характеристики двигателей
Все моторы имеют общие параметры, которые используются в формуле определения мощности электродвигателя. На их основе можно рассчитать свойства машины. В разной литературе они могут называться по-разному, но означают они одно и то же. В список таких параметров входит:
- Крутящий момент.
- Мощность двигателя.
- Коэффициент полезного действия.
- Номинальное количество оборотов.
- Момент инерции ротора.
- Расчетное напряжение.
- Электрическая константа времени.
Вышеуказанные параметры необходимы, прежде всего, для определения эффективности электрических установок, работающих за счет механической силы двигателей. Расчетные величины дают лишь приблизительное представление о реальных характеристиках изделия. Однако эти показатели часто используют в формуле мощность электродвигателя. Именно она определяет результативность машин.
Вращательный момент
Этот термин имеет несколько синонимов: момент силы, момент двигателя, Вращательный момент, вертящий момент. Все они используются для обозначения одного показателя, хотя с точки зрения физики эти понятия не всегда тождественны.
В целях унификации терминологии были разработаны стандарты, которые приводят все к единой системе. Поэтому в технической документации всегда используются словосочетание «крутящий момент». Он представляет собой векторную физическую величину, которая равна произведению векторных значений силы и радиуса. Вектор радиуса проводится от оси вращения к точке приложенной силы. С точки зрения физики разница между крутящим и вращательным моментом заключается в точке прикладывания силы. В первом случае это внутреннее усилие, во втором — внешнее. Измеряется величина в ньютон-метрах. Однако в формуле мощности электродвигателя крутящий момент используется как основное значение.
Рассчитывается он как
M = F × r, где:
M — крутящий момент, Нм;
F — прикладываемая сила, H;
r — радиус, м.
Для расчета номинального вращающего момента привода используют формулу
Мном = 30Рном ÷ pi × нном, где:
Рном — номинальная мощность электрического двигателя, Вт;
нном — номинальное число оборотов, мин-1.
Соответственно, формула номинальной мощности электродвигателя бедует выглядеть следующим образом:
Рном = Мном * pi*нном / 30.
Обычно все характеристики указаны в спецификации. Но бывает, что приходится работать с совершенно новыми установками, информацию о которых найти очень сложно. Для расчета технических параметров таких устройств берут данные их аналогов. Также всегда известны только номинальные характеристики, которые даются в спецификации. Реальные данные необходимо рассчитывать самостоятельно.
Мощность двигателя
В общем смысле данный параметр представляет собой скалярную физическую величину, которая выражена в скорости потребления или преобразования энергии системы. Он показывает, какую работу механизм выполнит за определенную единицу времени. В электротехнике характеристика отображает полезную механическую мощность на центральном вале. Для обозначения показателя используют литеру P или W. Основной единицей измерения является Ватт. Общая формула расчета мощности электродвигателя может быть представлена как:
P = dA ÷ dt, где:
A — механическая (полезная) работа (энергия), Дж;
t — затраченное время, сек.
Механическая работа также является скалярной физической величиной, выражаемой действием силы на объект, и зависящей от направления и перемещения этого объекта. Она представляет собой произведение вектора силы на путь:
dA = F × ds, где:
s — пройденное расстояние, м.
Она выражает дистанцию, которую преодолеет точка приложенной силы. Для вращательных движений она выражается как:
ds = r × d(teta), где:
teta — угол оборота, рад.
Таким образом можно вычислить угловую частоту вращения ротора:
omega = d(teta) ÷ dt.
Из нее следует формула мощности электродвигателя на валу: P = M × omega.
Коэффициент полезного действия электромотора
КПД — это характеристика, которая отражает эффективность работы системы при преобразовании энергии в механическую. Выражается отношением полезной энергии к потраченной. По единой системе единиц измерений он обозначается как «eta» и является безразмерным значением, исчисляемым в процентах. Формула КПД электродвигателя через мощность:
eta = P2 ÷ P1, где:
P1 — электрическая (подаваемая) мощность, Вт;
P2 — полезная (механическая) мощность, Вт;
Также он может быть выражен как:
eta = A ÷ Q × 100 %, где:
A — полезная работа, Дж;
Q — затраченная энергия, Дж.
Чаще коэффициент вычисляют по формуле потребляемой мощности электродвигателя, так как эти показатели всегда легче измерить.
Снижение эффективности работы электродвигателя происходит по причине:
- Электрических потерь. Это происходит в результате нагрева проводников от прохождения по ним тока.
- Магнитных потерь. Вследствие излишнего намагничивания сердечника появляется гистерезис и вихревые токи, что важно учитывать в формуле мощности электродвигателя.
- Механических потерь. Они связаны с трением и вентиляцией.
- Дополнительных потерь. Они появляются из-за гармоник магнитного поля, так как статор и ротор имеют зубчатую форму. Также в обмотке присутствуют высшие гармоники магнитодвижущей силы.
Следует отметить, что КПД является одним из самых важных компонентов формулы расчета мощности электродвигателя, так как позволяет получить цифры, наиболее приближенные к действительности. В среднем этот показатель варьирует от 10% до 99%. Она зависит от конструктивного устройства механизма.
Номинальное количество оборотов
Еще одним ключевым показателем электромеханических характеристик двигателя является частота вращения вала. Он выражается в числе оборотов в минуту. Часто его используют в формуле мощности электродвигателя насоса, чтобы узнать его производительность. Но необходимо помнить, что показатель всегда разный для холостого хода и работы под нагрузкой. Показатель представляет физическую величину, равной количеству полных оборотов за некий промежуток времени.
Расчетная формула частоты оборотов:
n = 30 × omega ÷ pi, где:
n — частота вращения двигателя, об/мин.
Для того, чтобы найти мощность электродвигателя по формуле оборотистости вала, необходимо привести ее к расчету угловой скорости. Поэтому P = M × omega будет выглядеть следующим образом:
P = M × (2pi × n ÷ 60) = M × (n ÷ 9,55), где
t = 60 секунд.
Момент инерции
Этот показатель представляет собой скалярную физическую величину, которая отражает меру инертности вращательного движения вокруг собственной оси. При этом масса тела является величиной его инертности при поступательном движении. Основная характеристика параметра выражена распределением масс тела, которая равна сумме произведений квадрата расстояния от оси до базовой точки на массы объекта.В Международной системе единиц измерения он обозначается как кг·м2 и имеет рассчитывается по формуле:
J = ∑ r2 × dm, где
J — момент инерции, кг·м2 ;
m — масса объекта, кг.
Моменты инерции и силы связаны между собой соотношением:
M — J × epsilon, где
epsilon — угловое ускорение, с-2.
Показатель рассчитывается как:
epsilon = d(omega) × dt.
Таким образом, зная массу и радиус ротора, можно рассчитать параметры производительности механизмов. Формула мощности электродвигателя включает в себя все эти характеристики.
Расчетное напряжение
Его еще называют номинальным. Оно представляет собой базовое напряжение, представленное стандартным набором вольтажа, которые определяется степенью изоляции электрического оборудования и сети. В действительности оно может отличаться в разных точках оборудования, но не должно превышать предельно допустимых норм рабочих режим, рассчитанных на продолжительное функционирование механизмов.
Для обычных установок под номинальным напряжением понимают расчетные величины, для которых они предусмотрены разработчиком в нормальном режиме работы. Перечень стандартного вольтажа сети предусмотрен в ГОСТ. Эти параметры всегда описаны в технических характеристиках механизмов. Для расчета производительности используют формулу мощности электродвигателя по току:
P = U × I.
Электрическая константа времени
Представляет собой время, необходимое для достижения уровня тока до 63 % после подачи напряжения на обмотки привода. Параметр обусловлен переходными процессами электромеханических характеристик, так как они быстротечны ввиду большого активного сопротивления. Общая формула расчета постоянной времени:
te = L ÷ R.
Однако электромеханическая константа времени tm всегда больше электромагнитной te. Первый параметр получается из уравнения динамических характеристики двигателя при сохранении условии, когда ротор разгоняется с нулевой скоростью до максимальных оборотов холостого хода. В этом случае уравнение принимает вид
M = Mст + J × (d(omega) ÷ dt), где
Mст = 0.
Отсюда получаем формулу:
M = J × (d(omega) ÷ dt).
По факту электромеханическую константу времени рассчитывают по пусковому момент — Mп. Механизм, работающий в идеальных условиях, с прямолинейными характеристиками будем иметь формулу:
M = Mп × (1 — omega ÷ omega0), где
omega0 — скорость на холостом ходу.
Такие расчеты используют в формуле мощности электродвигателя насоса, когда ход поршня напрямую зависит от оборотистости вала.
Основные формулы расчета мощности двигателей
Для вычисления реальных характеристик механизмов всегда нужно учитывать много параметров. в первую очередь нужно знать, какой ток подается на обмотки электродвигателя: постоянный или переменный. Принцип их работы отличается, следовательно, отличаются метод вычислений. Если упрощенный вид расчета мощности привода выглядит как:
Pэл = U × I, где
I — сила тока, А;
U — напряжение, В;
Pэл — подведенная электрическая мощность. Вт.
В формуле мощности электродвигателя переменного тока необходимо также учитывать сдвиг фаз (alpha). Соответственно, расчеты для асинхронного привода выглядят как:
Pэл = U × I × cos(alpha).
Кроме активной (подведенной) мощности существует также:
- S — реактивная, ВА. S = P ÷ cos(alpha).
- Q — полная, ВА. Q = I × U × sin(alpha).
В расчетах также необходимо учитывать тепловые и индукционные потери, а также трение. Поэтому упрощенная модель формулы для электродвигателя постоянного тока выглядит как:
Pэл = Pмех + Ртеп +Ринд + Ртр, где
Рмех — полезная вырабатываемая мощность, Вт;
Ртеп — потери на образование тепла, ВТ;
Ринд — затраты на заряд в индукционной катушке, Вт;
Рт — потери в результате трения, Вт.
Заключение
Электродвигатели находят применение практически во всех областях жизни человека: в быту, в производстве. Для правильного использования привода необходимо знать не только его номинальные характеристики, но и реальные. Это позволит повысить его эффективность и снизить затраты.
Формула электрической мощности
Электрическая мощность — это скорость, с которой энергия передается в электрическую цепь или из нее. Батарея может передавать энергию, или элемент схемы, такой как резистор, может выделять энергию в виде тепла. Для любого элемента схемы мощность равна разности напряжений на элементе, умноженной на ток. По закону Ома V = IR, и поэтому существуют дополнительные формы формулы электрической мощности для резисторов. Мощность измеряется в единицах Вт (Вт), где Вт равен Джоулю в секунду (1 Вт = 1 Дж / с).
Общая форма:
электрическая мощность = разность напряжений х ток
P = VI
Резисторы:
P = электрическая мощность (Вт)
В = разность напряжений (В = J / C)
I = электрический ток (A = C / s)
R = сопротивление (Ом = В / А)
Формула электроэнергии Вопросы:
1) Если аккумулятор сотового телефона работает при напряжении 12,0 В и должен выдавать ток 0.9 Какая мощность требуется во время воспроизведения музыки?
Ответ: Требуемую мощность от батареи можно найти по формуле электрической мощности:
P = VI
P = (12,0 В) (0,9 A)
P = (12,0 Дж / с) (0,9 C / с)
P = 10,8 Дж / с
P = 10,8 Вт
Потребляемая мощность от аккумулятора телефона составляет 10,8 Вт.
2) Резистор с разностью потенциалов 24,0 В излучает тепло. Тепловая энергия генерируется в размере 16.0 Вт. Какое значение сопротивления?
Ответ: Значение сопротивления можно найти, переставив одну из формул формулы электроэнергии. Форма, которая применима, относится к мощности, напряжению и сопротивлению:
R = 36,0 В / А
R = 36,0 Ом
Значение сопротивления составляет 36,0 Ом.
Вентиляторы— КПД и энергопотребление
Потребляемая мощность вентилятора
Идеальное энергопотребление для вентилятора (без потерь) можно выразить как
P i = dp q (1)
где
P i = идеальная потребляемая мощность (Вт)
дп = общее повышение давления в вентиляторе (Па, Н / м 2 )
q = воздух объемный расход, подаваемый вентилятором (м 3 / с)
Потребляемая мощность при различных объемах воздуха и повышение давления указаны ниже:
Примечание! Для детального проектирования — используйте спецификации производителей для настоящих вентиляторов.
КПД вентилятора
КПД вентилятора — это соотношение между мощностью, передаваемой потоку воздуха, и мощностью, используемой вентилятором. КПД вентилятора в целом не зависит от плотности воздуха и может быть выражен как:
μ f = dp q / P (2)
где
μ f = КПД вентилятора (значения от 0 до 1)
дп = общее давление (Па)
q = объем воздуха, подаваемый вентилятором (м 3 / с)
P = мощность, используемая вентилятором (Вт, Нм / с)
Мощность, используемая вентилятором, может быть выражена как:
P = dp q / μ f ( 3)
Мощность, используемая вентилятором, также может быть выражена как:
P = dp q / (μ f μ b μ m ) (4)
, где
μ b = эффективность ремня
μ м = КПД двигателя
Типичные КПД двигателя и ремня
Энергопотребление вентилятора также может быть выражено как
P куб. Футов = 0,1175 q куб. Футов dp в / (μ f μ b μ м ) (4b)
, где
P куб. М. = потребляемая мощность (Вт)
q куб. М. = объемный расход (куб.WG)
Вентилятор и потери при установке (системная потеря)
Установка вентилятора будет влиять на общую эффективность системы
дп sy = x sy p d (5)
, где
дп sy = потери при монтаже (Па)
x sy = коэффициент потерь при установке
p d динамическое давление на номинальном входе и выходе вентилятора (Па)
Вентилятор и повышение температуры
Почти вся энергия, потерянная в вентиляторе, нагревает воздушный поток, и повышение температуры может быть выражено как
dt = dp / 1000 (6)
, где
d t = повышение температуры (K)
dp = повышение напора (Па)
Стандарты эффективности вентиляторов
- ISO 12759 «Вентиляторы — классификация эффективности для вентиляторов»
- AMCA 205 «Energy Классификация эффективности для вентиляторов »
В этой статье обсуждались основные формулы насоса с примерами, такими как расчет мощности насоса , формула , удельная скорость вращения центробежного насоса и законы сродства для центробежных и поршневых насосов . Также предоставляется онлайн калькулятор для расчета мощности насоса
Формулы эффективности насоса и мощности насоса с примерами
КПД и потребляемая мощность насоса
Объем работ, выполняемых насосом, равен весу перекачиваемой жидкости в единицу времени, умноженному на общий напор в метрах.Однако производительность насоса в М 3 / час и удельный вес жидкости используются вместо веса жидкости, перекачиваемой для работы, выполняемой насосом.
Входная мощность насоса «P» — это механическая мощность в кВт, или Вт, Вт, потребляемая валом или муфтой. Так что входная мощность насоса также называется Break Horse Power (BHP).
Вход насоса BHP — это мощность, подаваемая на вал насоса, и обозначается как тормозная мощность. поэтому входная мощность насоса также называется . Мощность на валу насоса .
Выходная мощность насоса р называется Мощность лошадиных сил (WHP ) или Гидравлическая мощность , и это полезная работа, выполняемая насосом. и обычно выражается формулой
Гидравлическая мощность Ph = Расход X Общая развитая головка X Плотность X Гравитационная постоянная
КПД насоса — это отношение входной и выходной мощности насоса.
, т. Е. КПД насоса — это отношение лошадиных сил к мощности лошадиных сил.
Формула расчета входной мощности насоса или формула расчета мощности на валу насоса
Входная мощность насоса = P
Формула — 1
P в ваттах =
Здесь
Q = Расход в м 3 / сек
В = Общая развернутая головка в метрах
= Плотность в кг / м 3
г = гравитационная постоянная = 9,81 м / с 2
η = КПД насоса (от 0% до 100%)
Формула — 2
P в кВт =
Здесь
Q = Расход в м 3 / час
В = Общая развернутая головка в метрах
= Плотность в кг / дм 3 (1 кг / м 3 = 0.001 кг / дм 3 )
η = КПД между 0 и <1 (не в%)
Формула — 3
P в кВт =
Здесь
Q = Расход в лт / сек (1 м 3 / сек = 3,6 х лт / сек)
В = Общая развернутая головка в метрах
= Плотность в кг / дм 3 (1 кг / м 3 = 0,001 кг / дм 3 )
η = КПД насоса (от 0% до 100%)
Формула — 4
P в Hp =
Здесь
Q = Расход в Лт./ сек
В = Общая развернутая головка в метрах
= Плотность в кг / дм 3
η = КПД насоса (от 0% до 100%)
Формула — 5 (единицы USCS)
P в Hp =
Здесь
Q = Расход в галлонах в минуту
H = общая развитая голова в ногах
= Плотность в фунтах / футах 3
η = КПД насоса (от 0% до 100%)
Для насосного агрегата с электродвигателем общая эффективность составляет
Общий КПД = КПД насоса х КПД двигателя
Тогда общая эффективность становится так называемой эффективностью «провод-вода-», которая выражается формулой
.Общая эффективность =
Удельная скорость насоса
Удельная скорость «Nq» является параметром, полученным из анализа размеров, который позволяет сравнивать рабочие колеса насосов различных размеров даже при их работе в аналогичном диапазоне Q -H .Определенную скорость можно использовать для классификации оптимальной конструкции рабочего колеса.
Удельная скорость насоса (Nq) определяется как скорость в об / мин, при которой геометрически подобное рабочее колесо будет работать, если оно будет пропорционально уменьшено в размерах, чтобы доставлять 75 кг воды в секунду до высоты 1 м.
Nq также определяется как теоретическая скорость вращения, при которой геометрически подобное рабочее колесо будет работать, если бы оно было такого размера, чтобы производить 1 м головки при скорости потока 1 м 3 / с в лучшем случае эффективности.
Удельную скорость можно сделать действительно безразмерным характеристическим параметром, сохранив то же числовое значение, используя следующее уравнение.
Метрическая система
Nq = =
где Nq = безразмерный параметр
N = об / мин насоса
n = об / с насоса
Q = Расход в м 3 / сек
H = голова в метрах
г = гравитационная постоянная (9,81 м / с 2 )
британских единиц
Nq =
, где N = число оборотов насоса
Q = Расход в галлонах в минуту (GPM)
H = голова в ногах
Примечание:
1.Для многоступенчатых насосов разработанная головка (H) с наилучшей эффективностью
2. Рассмотрим половину полного расхода в случае крыльчатки с двойным всасыванием.
Приблизительные исходные значения для удельной скорости центробежного насоса (Nq):
Радиальное рабочее колесо с высоким напором — до прибл. 25
Рабочее колесо с радиальной средней головкой — до прибл. 40
Радиальное рабочее колесо с низким напором — до прибл. 70
Рабочее колесо со смешанным потоком — до прибл. 160
Рабочее колесо с осевым потоком (пропеллер) — ок.от 140 до 400
Законы сродства для насосов — перейдите по ссылке ниже
Законы сродства для центробежных насосов | Положительные законы смещения поршневого насоса | Законы сродства насоса с примером
Зачем выбирать насос с лучшим КПД
Эффективность насоса является наиболее важным фактором при расчете потребляемой мощности. Таким образом, при выборе более высокой производительности насоса всегда выбирайте насос с наилучшей эффективностью.
Приведенная ниже формула поможет определить, какой тип КПД насоса лучше всего подходит.
N
N = количество единиц энергосбережения в год в киловаттах
= выше и ниже общий КПД двух насосных агрегатов.
P = подводимая мощность в кВт к двигателю (относится к насосу с низким КПД)
T = часы работы в год
Пример расчета эффективности насоса
= 75% и 65% соответственно
P = потребляемая мощность = 40 кВт
T = 3000 часов в год
N = 18461 Единиц (кВт)
Таким образом, при той же производительности КПД насоса увеличится на 10%, тогда энергосбережение составит 18461 кВт / ч в год.
Расчет мощности центробежного насоса онлайн
Примечание: 1000 кг / м 3 = 1 кг / дм 3
Нажмите здесь
Статья по теме:
Расчет давления пара насоса | Таблица давления водяного пара при разных температурах
Классификация насосов | Типы насосов и принципы их работы
Коэффициенты пересчета единиц и таблицы для расчета технического проекта
NPSH расчет | Потеря напора всасывающей и нагнетательной линии насоса с онлайн калькулятором
Спасибо за чтение этой статьи.Я надеюсь, что это может удовлетворить ваши требования. Оставьте отзыв, комментарии и, пожалуйста, не забудьте поделиться
,Что такое электроэнергия (P)
Электроэнергия — это показатель потребления энергии в электрооборудовании. цепи.
Электрическая мощность измеряется в единицах ватт.
Определение электроэнергии
Электроэнергия P равна энергопотреблению E, разделенному по времени потребления т:
P — электрическая мощность в ваттах (Вт).
E — потребление энергии в джоулях (Дж).
т — время в секундах.
Пример
Найти электрическую мощность электрической цепи, которая потребляет 120 джоулей за 20 секунд.
Решение:
E = 120J
т = 20 с
P = E / т = 120 Дж / 20 с = 6 Вт
Расчет электроэнергии
P = В ⋅ I
или
P = I 2 ⋅ R
или
P = V 2 / R
P — электрическая мощность в ваттах (Вт).
В — напряжение в вольтах (В).
I — ток в амперах (A).
R — сопротивление в омах (Ом).
Мощность цепей переменного тока
Формулы для однофазного переменного тока.
Для трехфазного переменного тока:
Когда напряжение между линиями (V L-L ) используется в формуле, умножьте мощность одной фазы на квадрат корень 3 (√3 = 1,73).
Когда линия к нулевому напряжению (V L-0 ) используется в формуле, умножьте однофазную мощность на 3.
Реальная мощность
Реальная или истинная сила — это сила, которая используется для выполнения работы над Загрузка.
P = В среднеквадратичное значение I среднеквадратичное значение cos φ
P — реальная мощность в ваттах [W]
Среднеквадратичное напряжениеВ , среднеквадратичное значение = пиковое значение V , / √2 в вольтах [V]
I среднеквадратичное значение — среднеквадратичное значение тока = I пиковое значение / √2 в амперах [A]
φ — фазовый угол импеданса = разность фаз между напряжением и током.
Реактивная мощность
Реактивная мощность — это энергия, которая тратится впустую и не используется для работа на нагрузку.
Q = В среднеквадратичное значение I среднеквадратичное значение грех φ
Q — реактивная мощность в Вольт-ампер-реактивный [VAR]
Среднеквадратичное напряжениеВ , среднеквадратичное значение = пиковое значение V , / √2 в вольтах [V]
I среднеквадратичное значение — среднеквадратичное значение тока = I пиковое значение / √2 в амперах [A]
φ — фазовый угол импеданса = разность фаз между напряжением и током.
Кажущаяся сила
Кажущаяся мощность — это мощность, которая подается в цепь.
S = В среднеквадратичное значение I среднеквадратичное значение
S — кажущаяся сила в Вольт-ампер [ВА]
Среднеквадратичное напряжениеВ , среднеквадратичное значение = пиковое значение V , / √2 в вольтах [V]
I среднеквадратичное значение — среднеквадратичное значение тока = I пиковое значение / √2 в амперах [A]
Соотношение реальных / реактивных / кажущихся мощностей
Реальная мощность P и реактивная мощность Q дают вместе кажущуюся мощность S:
P 2 + Q 2 = S 2
P — реальная мощность в ваттах [W]
Q — реактивная мощность в Вольт-ампер-реактивный [VAR]
S — кажущаяся сила в Вольт-ампер [ВА]
Коэффициент мощности ►