Номинальное фазное напряжение: Фазное и линейное напряжение

Содержание

Фазное и линейное напряжение

Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, трехфазные, шестифазные и т.д.

Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.

Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.

Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.

Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке – фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное – определяется как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин – 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные – на 220 вольт.

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом отсутствие заземления повышает риск поражения током, когда нарушена изоляция.

Отличие линейного напряжения от фазного

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.

Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.

Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.

Контроль и выравнивание данного параметра осуществляется с помощью линейного стабилизатора напряжения. Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.

Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.

Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.

Линейные и фазные напряжения

Под симметричной трехфазной системой принято понимать совокупность трех ЭДС синусоидальной формы равной частоты, амплитуды, сдвинутых по фазе на треть периода (угол 2/3) .

График изменения ЭДС во времени, векторная диаграмма имеют вид.

Источником системы 3-х-фазного напряжения обычно служит генератор, у которого в пазах статора уложены проводники – обмотки. Плоскости этих обмоток обычно сдвинуты на 120 гр в пространстве. Под фазой участка трехфазной цепи понимают расстояние с одинаковым по величине током.

Разность потенциалов между нулевым узлом схемы и началом любой из фаз именуют фазным напряжением, условно обозначая UA, Uв, Uс. Разность потенциалов от начала вектора принято называть линейным, обозначая UAB, UBC, UCA.

Соответственно, фазные напряжения согласно 2-му закону Кирхгофа в общем случае равны:

UAB =UА- UB.

На диаграмме векторов они изображается участком от концов векторов UA, UB. По аналогии, вычисляют и другие линейные величины — UBC, UCA. При симметричной системе фазных напряжений совокупность линейных также — симметрична.

Существуют 2 способа подключения обмоток генерирующих установок и приемников электроэнергии трехфазной сети:

— звезда;

— треугольник.

При соединении звездой величина линейного напряжения равна:

Uл = v3 Uф = 1,73Uф.

К примеру, если мы имеем фазное напряжение генераторной установки равное 220В, при этом линейное будет – 380В.

Другим способом соединения, использующий трехпроходное соединение, является треугольник.

В таком случае, конец каждой обмотки подключается к началу следующей, образуя треугольник, при этом линейные провода подключены к его вершинам.

При подключении треугольником линейное напряжение генераторной установки в общем случае равно фазному:

Uл = Uф .

Исходя из этого, делаем вывод: переключение обмоток генераторной установки со звезды к треугольнику приводит к увеличению линейного напряжения в 1,73р. Выполнять подключение обмоток, используя метод треугольника, рекомендуется лишь при симметричной нагрузке, поскольку в противном случае ток, может превышать номинальные величины.

Фазное напряжение — Chip Stock

Линейное и фазное напряжения – Страница 8

Содержание материала

Страница 8 из 16

В трехфазной электрической сети различают линейное и фазное напряжения.

Линейное (его называют также междуфазным или межфазным) – это напряжение между двумя фазными проводами.

Фазное – между нулевым проводом и одним из фазных. Линейные напряжения при нормальных эксплуатационных условиях одинаковы и в 1,73 раза больше фазных, т. е. напряжение между нулевым и фазным проводом (фазное) составляет 58 % линейного напряжения. Напряжение трехфазной сети принято оценивать по линейному напряжению.

Для отходящих от ТП трехфазных линий установлено номинальное линейное напряжение 380 В, что соответствует фазному 220 В. В обозначении номинального напряжения трехфазных четырехпроводных сетей указывают обе величины, т. е. 380/220 В.

Обратите внимание

Этим подчеркивается, что к такой сети можно подключать не только трехфазные электроприемники на номинальное напряжение 380 В, но и однофазные на 220 В.

Трехфазная система 380/220 В с заземленной нейтралью получила наибольшее распространение, но в некоторых населенных пунктах и садовых кооперативах можно встретить иные системы распределения электроэнергии. Например, трехфазную с линейным напряжением 220 В и незаземленной (изолированной) нейтралью.

Однофазные электроприемники 220 В подключают на линейное напряжение между любой парой фазных проводов, а трехфазные – к трем фазным проводам. При этой системе нулевой провод не требуется, а незаземленная нейтраль снижает вероятность поражения электрическим током в случае нарушения изоляции.

Однако выявление нарушений изоляции в такой системе сложнее, чем при заземленной нейтрали.

Прохождение электрического тока по проводам сопровождается потерями и напряжение у потребителей оказывается несколько меньшим, чем в начале линии у ТП. Чтобы обеспечить приемлемые уровни напряжения вдоль всей линии, на ТП приходится поддерживать напряжение выше номинала, т. е.

не 380/220 В, а 400/230 В. В электрических сетях сельских районов у потребителей, согласно действующим нормам, допускаются отклонения напряжения на 7,5 % от номинального значения.

Значит, на трехфазном электроприемнике допускается напряжение в пределах 350–410 В, а на однофазном 200–240 В.

Отклонения напряжения. Однако бывают случаи, когда величина напряжения выходит за допустимые пределы.

Важно

При понижении напряжения заметно падает интенсивность электрического освещения от ламп накаливания, уменьшается производительность электронагревательных приборов, нарушается устойчивость работы телевизоров и других радиоэлектронных приборов с электропитанием от сети.

Повышение напряжения приводит к преждевременному выходу из строя электроламп и нагревательных приборов. Электродвигатели в меньшей степени чувствительны к отклонениям напряжения.

Источник: http://magak.ru/hanmade/elektrik/349-2012-07-25-01-23-17?start=7

Как проверить или измерить напряжение электрического тока?

Январь 24, 2014

24236 просмотров

Сразу расскажу для чего необходимо самостоятельно в своей квартире или доме измерять в Вольтах напряжение.

Во-первых, для того что бы убедится  в исправности электрической розетки, выключателя, светильника- Мы проверяем на их контактах наличие напряжения, которое должно соответствовать 220 Вольтам с допустимыми отклонениями для домашней электросети.

Во-вторых, если напряжение в  электропроводки будет значительно выше  допустимых пределов, то как показала практика- это является очень часто причиной поломки электроники, бытовой техники и перегорания ламп в светильниках. Причем не только превышение или перенапряжение в электросети опасно, но так же, но конечно в меньшей степени- опасно снижение  ниже допустимой величины напряжения, в таких условиях, как правило ломается компрессор холодильника.

Допустимые значения напряжения, причины скачков

Согласно требованиям ГОСТа 13109, значение напряжения в домашней электрической сети должно быть в пределах 220В ±10% ( от 198 Вольт до 242 Вольт).

Если в вашем доме или квартире стали тускло гореть, моргать лампочки или, вообще они часто перегорают,  не стабильно работает бытовая техника и электроника- рекомендую сразу по максимуму все выключить и проверить значение напряжения в электропроводке.

Если Вы зарегистрировали скачки напряжения, то чаще всего в периодическом снижении ниже допустимого уровня виноваты соседи по дому или улице. Так как к линии, идущей от подстанции не только Вы подключены, но и ваши соседи.

Это обычно характерно для частных или индивидуальных домов, в случаях, если другой человек, а тем более если несколько, на той же линии включат мощный потребитель, который периодически меняет уровень энергопотребления, например сварочный аппарат, станок и т. д.

Второй вариант касается всех, но чаще встречается в многоквартирных домах. Если в щите на 380 Вольт отгорит ноль, все квартиры начинают получать электроэнергию в аварийном режиме. Причем, в зависимости от нагрузки на каждую фазу,

в одной квартире будет перенапряжение в другой наоборот- падение.

Почему это происходит? Потому что на этажный щиток приходит 3 фазы + ноль = заземляющий проводник. Каждая квартира подключается к одной фазе, нулю и заземлению (для 3 проводных линий).

Квартиры сидят на разных фазах, потому что необходимо обеспечить равномерную нагрузку на все 3 фазы для нормальной работы всей электросети до подстанции. Так вот напряжение между фазами 380 Вольт, а между фазой и нулем (заземлением)- 220 Вольт.

Получается что все нулевые проводники сведены в одну точку (смотрите справа схему), и при пропадании (обрыве) нулевого проводника- все квартиры начинают запитываться без него только фазами, которые оказываются подключенными в звезду.

Что такое линейное и фазное напряжение

Знание этих понятий очень важно для работы в электрощитах и с электротехническими устройствами, работающими на 380 Вольт.

Если у Вас обычная квартира и Вы не собираетесь работать в электрощитах, то этот пункт можете пропустить т. к. у Вас в квартире только фазное напряжение 220 вольт.

В большинстве частных или индивидуальных домов так же на электрощит или счетчик приходит только 2 (фаза и ноль) или 3 (+заземление) провода, что означает  присутствие в вашей квартире или доме напряжения 220 Вольт. Но если  приходит 4 или 5 проводов то, это означает что Ваш дом (бывает и в гаражах, и особенно в офисах) подключен к сети 380 Вольт.

Напряжение между любыми двумя из  трех фазами линии электропитания называется линейным, а между любой фазой и нулем- фазным.

Совет

В нашей стране линейное напряжение у электропотребителей равно 380 Вольтам (измеряется между фазами), а фазное- 220 Вольт. Смотрите на рисунке слева.

Бывают и другие значения в электросистеме нашей страны, но

фазное всегда меньше линейного на корень квадратный из трех.

Как проверить напряжение

Для измерения напряжения электрического тока  служат следующие измерительные приборы:

  1. Вольтметр, хорошо знакомый всем с уроков физики. В повседневной жизни он не используется.
  2. Мультиметр, обладающий многочисленными функциями, в том числе и измерения величины тока и напряжения. Рекомендую почитать нашу статью: «Как пользоваться мультиметром».
  3. Тестер— то же самое что и мультиметр, только механической стрелочной конструкции.

Внимание, при измерении источников постоянного тока (какие к ним относят) необходимо соблюдать полярность.

Как измерить  напряжение в розетке, в патроне лампы и т. п.:

  1.  Проверяем надежность изоляции измерительного прибора, особенно обращаем внимание на щупы, которые обязательно необходимо подключать только в соответствующие  проводимым операциям гнезда.
  2. Устанавливаем переключатель пределов измерений
    на приборе в положение измерения переменного напряжения до 250 Вольт (400- для измерений линейного напряжения).
  3. Вставляем  щупы  в розетку или подносим к контактам на лампе, светильнике или любом другом электроприборе.
  4. Снимаем показания.

Будьте осторожны- работа проводится под напряжением- не касайтесь руками не изолированных контактов и проводов, находящихся под напряжением.

Как измерить напряжение аккумулятора, батарейки и блока питания

Все источники постоянного тока необходимо измерять с соблюдением полярности- черный щуп ставим на минусовую клемму, а красный — на плюсовую клемму.

А так все аналогично проводятся как и при проведении вышеописанных измерений в розетке, но только тестер или мультиметр необходимо переключить в режим измерения постоянного тока с пределом выше указанного на АКБ, батарейке или блоке питания.

Источник: http://jelektro.ru/elektricheskie-terminy/kak_izmerit_naprjazhenie.html

Соотношение между фазными и линейными напряжениями. Номинальные напряжения

Напряжение фаз нагрузки отличны от значения ЭДС генератора из-за падения напряжения на линии от генератора к потребителю. Длина этих линий может составлять несколько метров, а может и пару сотен метров, также возможна длина и в тысячи километров.

Вопросы о падении напряжений на линиях электрических передач ЛЭП, снабжающих потребителей энергией электрической от электрических станций будут рассматриваться чуть позже, в последующих статьях.

Для упрощения расчетов указанным значением падений напряжений можно пренебречь.

Соединение звездой

При принятых допущениях для соединенных источников звездой:

применив второй закон Кирхгофа получим:

Из выражения (1) можно сделать вывод, что при симметричной системе ЭДС генератора его фазные напряжения также симметричны, и, соответственно, их векторная диаграмма:

не будет отличатся от векторной диаграммы ЭДС:

Исходя из уравнений, составленных по второму закону Кирхгофа для контуров (схема соединения в звезда указана выше):

Исходя из этих уравнений можно составить следующие уравнения, которые связывают линейные и фазные напряжения:

Использовав выражение (2) при наличии векторов фазных напряжений можно построить векторы линейных напряжений Uab, Ubc, Uca.

Исследовав векторную диаграмму при соединении звездой можно сделать вывод, что линейные напряжения будут равны и, как и фазные, сдвинуты друг относительно друга на угол 1200 или 2π/3. Векторы линейных напряжений чаще всего показывают как соединенные фазные направления:

Из этого следует:

Соответственно такие же соотношение и между остальными фазными и линейными значениями:

Соединение треугольником

Выражения (1) будут правильны и при соединении в треугольник источника. Из формул (2) следует равенство фазных и линейных напряжений при соединении треугольником, и это можно представить в таком виде:

Или можно записать как Uл = Uф.

Векторная диаграмма при соединении треугольником для линейных и фазных напряжений:

Номинальные напряжения

Из выше перечисленного можно сделать такие выводы как – трехфазная сеть имеет два напряжения, а именно фазные и линейные. При соединении звездой линейные напряжения больше фазных, а при соединении треугольником равны. Этот фактор необходимо учитывать при подключении нагрузки, чтоб не произошло аварийных ситуаций и выхода оборудования из строя.

Линейные напряжения тоже сдвинуты друг относительно друга на угол 1200 или 2π/3.

Номинальные напряжения – напряжения, на которые рассчитываются потребители электроэнергии, и которые соответствуют их нормальной работе.

Наиболее распространенными напряжениями в сетях до 1000 В являются 380В, 220В, 127В. 380 В и 220 В наиболее распространены в промышленности, а 220 В и 127 В в бытовых электросетях.

Обратите внимание

Также при четырехпроводной электросети (соединения звезда с нулевым проводом) существует возможность получения фазного напряжения, которые при линейном 380 В будут равны , а при линейном 220 В будут равны .

 Такое соединение дает плюс в виде возможности при наличии четырехпроводной сети производить подключение как трехфазных потребителей 380 В, так и однофазных с номиналом в 220 В.

Источник: http://elenergi.ru/sootnoshenie-mezhdu-faznymi-i-linejnymi-napryazheniyami-nominalnye-napryazheniya.html

Фазное и линейное напряжение

В том случае, если обмотки генератора трехфазного тока соединить между собой специальным образом («звездой» или треугольником), то у такого тока возникают свойства, которые удобны в применении.

Векторная диаграмма напряжений для соединения «звезда»

Схема соединения звездой (рис.1(а)) и соответствующая векторная диаграмма напряжений на обмотках (рис.1(в)) изображены на рис.1. Здесь имеется точка $О$, которая называется точкой одинакового потенциала. Напряжение на каждой обмотке называется фазным (его амплитуда $U_{mf}$). Проводник, который соединен с точкой одинакового потенциала называют нулевым проводом.

Проводники, которые соединены со свободными концами обмоток, называются фазными проводами. Получается, что фазные напряжения — это напряжения между нулевым и фазными проводами. Напряжения между фазными проводами называют линейным (его амплитуда $U_{ml}$). Линейное напряжение между проводами 1-2 могут обозначать как $U_{12}$, между проводами 1-3 – $U_{13}$ и так далее.

Рисунок 1.

Векторная диаграмма показывает, что амплитуды $U_{ml} $и $U_{mf}$находятся в соотношениях:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Ток, который течет через обмотки генератора называют фазным током ($I_f$), ток который течет в линиях называется током линии ($I_l$). В соединении звездой фазные токи равны токам в линии. Если сопротивления нагрузок не равны нулю, а $R_1=R_2=R_2=R$, то суммарная сила тока через нулевой провод равна нулю:

так как из векторной диаграммы видно, что $sumlimits_i{U_i=0.}$

Векторная диаграмма напряжений для соединения «треугольник»

Схема соединения обмоток генератора треугольник изображена на рис.2. В этом случае амплитуды напряжений фазного и линейного равны ($U_{mf}=U_{ml}$).

Рисунок 2.

Из векторной диаграммы токов (рис.2(в)) запишем амплитудных значений тока:

В соединении обмоток генератора треугольником ток замыкания в обмотках равен нулю. Однако это справедливо только для основной гармоники. Токи высших гармоник, появляющиеся из-за нелинейности колебаний, в обмотках есть.

Соединение нагрузок тоже может быть в виде звезды и в виде треугольника. На рис. 1 и рис.2 изображены соединения одного типа, как для генератора, так и для нагрузок. Но совсем не обязательно, что соединения обмоток генератора и нагрузок совпадают.

Важно

Так, можно реализовать четыре возможные комбинации соединения генератора и нагрузок: «звезда» – «звезда», треугольник — треугольник, «звезда» – треугольник, треугольник – «звезда». Каждое из перечисленных соединений имеет свои особенности.

Пример 1

Задание: В чем состоят особенности соединений «звезда» — «звезда» и «звезда» – треугольник?

Решение:

  1. При соединении «звезда» — «звезда» (рис.1) на всех нагрузках имеется разное напряжение. При одинаковых сопротивлениях ($R_1=R_2=R_3$) (или примерно равных) сила тока по нулевому проводу равна нулю (или очень мала).

    Теоретически нулевой провод можно убрать, но без него на каждую из пар нагрузок действует линейное напряжение, амплитудное значение которого равно:

[U_{ml}=sqrt{3}U_{mf}left(1.1
ight).]

Это напряжение распределяется между нагрузками в соответствии с величиной их сопротивлений.

Такая зависимость напряжений от нагрузок крайне не удобна, поэтому нулевой провод сохраняют.

  1. При соединении «звезда» – треугольник (рис.3). На каждое сопротивление действует линейное напряжение равное:
[U_{ml}=sqrt{3}U_{mf}left(1.2
ight).

]

Это линейное напряжение не зависит от величины сопротивления.

Рисунок 3.

Пример 2

Задание: Определите, чему равно фазное напряжение, если линейное $U_{ml}=220 В$. Чему будет равно линейное напряжение, если 220 В считать фазным напряжением? Считать, что соединение обмоток генератора – «звезда».

Решение:

В том случае, если обмотки генератора соединены звездой, и это соединение имеет нулевой провод, в линии существует две системы напряжений (линейное и фазное), что является достоинством такого соединения.

Для соединения «звезда» мы имеем соотношение:

[U_{ml}=sqrt{3}U_{mf}left(2.1
ight).]

Следовательно, для фазного напряжение имеем:

[U_{mf}=frac{U_{ml}}{sqrt{3}}=frac{220}{sqrt{3}}approx 127 left(В
ight).]

Если дано фазное напряжение, то:

[U_{ml}=sqrt{3}U_{mf}=sqrt{3}cdot 220approx 380 (В)left(2.2
ight).]

Ответ: 1. $U_{mf}=127 В.$ $U_{ml}=380 В.$

Источник: https://spravochnick.ru/fizika/peremennyy_sinusoidalnyy_tok/faznoe_i_lineynoe_napryazhenie/

Разбираемся в разнице между фазным и линейным напряжениями. Межфазное напряжение

ГлавнаяРазноеМежфазное напряжение

Самой популярной электрической цепью считается трехфазная линия, имеющая существенные преимущества перед другими видами подключения. По сравнению с многофазными цепями трехфазная линия более экономична в плане расхода материалов, а относительно однофазных линий – способна передавать большее напряжение.

Кроме этого, такое подключение применяется для включения в цепь электродвигателей: с его помощью легко образуется магнитное поле, что активно применяется для запуска электродвигателей и генераторов.

Еще одно преимущество трехфазной системы – возможность получать различное рабочее напряжение.

В зависимости от способа подключения нагрузки различают линейное и фазное напряжение, получаемое от питающей линии.

Основные определения

Прежде всего, давайте вспомним некоторые определения.

Трехфазная система

Трехфазной системой является совокупность трех электрических цепей, которые генерируются одним источником, но при этом относительно друг друга сдвинуты по фазе.

Фаза

При этом фазой называется каждая электрическая цепь многофазной системы. Началом фазы считается зажим или конец проводника, через который электроток поступает в данную цепь. При этом концы фаз можно соединить вместе. В этом случае, в электрической цепи начинает действовать суммарная ЭДС, а система называется связанной. Это получило широкое применение для запитывания электродвигателей.

Способы соединения

Трехфазное подключение широко применяется для включения обмоток электродвигателей и генераторов. При этом используется два варианта соединения обмоток с токоведущими жилами.

  • При соединении звездой с шести до четырех уменьшается число соединительных проводов, что положительно влияет на долговечность соединений. К началу обмотки подключаются питающие жилы, а концы при этом объединяются в узел, называемый точкой N или нейтралью генератора. Такой вариант подключения позволяет перейти на трехпроводное подключение, но только в том случае, если подключаемый приемник трехфазной нагрузки симметричен;
  • При перекрестном соединении обмоток треугольником, они создают замкнутый контур, который имеет относительно небольшое сопротивление. Такое соединение используется при подключении симметричной системы из трех ЭДС: в этом случае при отсутствии нагрузки в контуре не возникает ток.

Соединение звездой чаще используется для включения усилителей и различных стабилизаторов в сеть 220 вольт и мягкого старта электродвигателей при питании от 380В. Подключение треугольником позволяет двигателям набирать полную мощность, поэтому его чаще применяют в производственных целях, где требуется высокая производительность оборудования.

Фазные и линейные напряжения

В самом начале статьи мы отмечали, что трехфазное подключение позволяет получать два различных напряжения: линейное и фазное. Давайте разберемся более подробно, что это такое.

  • Фазное напряжение возникает при подключении к нулевой жиле и одной из трех фаз цепи;
  • Линейное напряжение образуется при подключении к любым двум фазам. Электрики его называют межфазным, что ближе по методу измерения.

Теперь давайте разберемся, в чем заключается отличие этих двух определений.

В нормальных условиях показатели линейного напряжения одинаковы между любыми фазами и при этом в 1,73 раза превышают показатели фазного.

Говоря по-простому, в соответствии с отечественными стандартами линейное напряжение равняется 380 вольт, а фазное – 220В.

Такие особенности трехфазных линий нашли свое применение в обеспечении бесперебойным электроснабжением как промышленных, так и бытовых потребителей.

Стоит отметить, что данные особенности имеет только трехфазная четырехпроводная цепь, номинальное напряжение которой маркируется как 380/220В. Из этого обозначения становится понятным, что к данной линии существует возможность подключить широкий спектр потребителей, рассчитанных на номинальный ток как 380В, так и 220 вольт.

Обратите внимание! Важно знать, что при проседании (падении) линейного напряжения, изменяется и фазное. Причем показатель фазного напряжения легко высчитывается, если известны линейные значения. Для этого из линейных показателей нужно извлечь квадратный корень из трех. Полученные данные будут равняться фазному напряжению.

Благодаря вышеописанным особенностям и разнообразию возможных подключений, именно четырехпроводниковая трехфазная цепь получила широкое распространение. Сфера применения такой схемы подачи электроэнергии универсальна. Поэтому применяется для питания больших объектов с мощными потребителями, жилых, офисных и административных зданий и других сооружений.

При этом совсем необязательно подключать оба вида потребителей на 380В и 220В. Например, в жилых домах чаще всего используются только бытовые приборы, рассчитанные на 220 вольт.

Совет

В этом случае, важно обеспечить равномерную нагрузку на все три фазы, правильно распределив мощность подключения каждой отдельной линии. В многоквартирных домах это обеспечивается шахматным порядком подключения квартир к фазным жилам.

В частном же доме (при наличии ввода на 380В) распределять нагрузку по выделенным линиям придется самостоятельно.

Теперь вы знаете, какие виды напряжений можно получить из трехфазной цепи, какие способы подключения к четырехжильному кабелю для этого используются. Эти знания будут полезны как электрикам, так и рядовым потребителям.

Загрузка…

5197

Источник: https://szemp.ru/raznoe/mezhfaznoe-napryazhenie.html

Что такое фазное и линейное напряжение?

Уровень напряжения является потенциальной характеристикой качества снабжения электрической энергией потребителей. Приборы длительно эксплуатируются при условии работы в допустимом диапазоне мощности сети.

Для определения параметров функционирования и подключения различают фазное и линейное напряжение в трехфазных цепях.

На выходе от производителя электричество изменяется для транспортировки, а после обратных преобразовательных этапов приобретает значения, применяемые потребителями.

Что такое фаза?

Фаза является значением тригонометрической функции, например определяющей вид или описывающей волновое или колебательное движение. Величина тождественна углу или аргументу периодической функции.

Зависимость целой фазы от координат и времени не всегда бывает линейной и гармонической. Конец проводника, по которому ток поступает в цепь, или зажим представляет собой начало фазы.

Изменение вольтажа цепи через временной промежуток является проекцией лучевого вектора на координатную ось.

Цепь представляет собой стандартные элементы – энергетический генератор, цепь передачи, приемник. Для понятия, что такое фазное, линейное напряжение, их взаимодействие требуется определение фазы. Положение фазы действует только для магистралей переменного тока. Понятие определятся в виде уравнения сектора векторного вращения с фиксацией одного конца в исходе координат.

Электрические линии отличаются числом фаз: одно-, двух-, трех- и многофазная.

В России популярна трехфазная сеть для питания потребителей, которые представлены бытовыми строениями или промышленными объектами. Подключение отличается преимуществами по сравнению с электроснабжающей однофазной цепью:

  • экономичность из-за выгодного применения материалов;
  • возможность транспортировки большого объема электричества;
  • включение в рабочую цепь электрогенераторов и двигателей высокой мощности;
  • создание разных показателей напряжения в зависимости от варианта включения потребляющей нагрузки в электрическую линию.

Работа в трехфазной цепи зависит от взаимного соотношения ее компонентов. Показатели напряжения зависят от фазы (угла наклона векторного луча к координатной плоскости оси). Вольтаж определяется по земельному потенциалу, который равен нулю.

Из-за этого кабель с присутствующим вольтажом именуют фазным, а заземляющий провод – нулевым. Угол фазы единичного вектора не имеет особой значимости, т. к. в линии он делает полный оборот на 360° за 1/50 часть секунды.

Во внимание берется междуфазный угол относительности 2 векторов.

В сети с применением реактивных деталей угол берется между векторными показателями электротока и вольтажа, он носит название сдвига фазы. Если значения подключенных нагрузок со временем не изменяются, то величина сдвига будет всегда постоянной. Неизменность показателя используется в расчете электрической линии и анализа работы.

Обратите внимание

При намотке на катушке множества оборотов провода номинальное напряжение увеличивается пропорционально числу витков. Явление привело к разработке генераторов, обеспечивающих потребителей электричеством.

Для эффекта от применения магнитного поля иногда устанавливают несколько бобин. Статорное магнитное поле за поворот ротора пересекают одновременно 3 катушки, что ведет к увеличению мощности генератора.

Это позволяет запитать сразу 3 пользователей.

Что такое фазное напряжение?

В трехфазных магистралях большинства государств размер напряжения равен 220 вольт. Фазный вольтаж измеряется в промежутке между фазами в начале и конце провода. Практически это величина посередине нулевого проводника и напряженного кабеля. При подсоединении по типу звезды значения линейных токов и фазного электричества не отличаются.

Симметричная система исключает присутствие нейтральной жилы, при несимметричном способе нулевой кабель поддерживает соразмерность с источником. Во втором варианте часто в цепь включаются приборы освещения, и требуется независимое функционирование 3 рабочих кабелей, тогда выводы приемника объединяются по типу треугольника.

Межфазное напряжение используется в многоквартирном секторе с магазинами или офисами на первых этажах. Так можно запитать торговые площадки силовыми кабелями в целях обеспечения 380 вольт.

В высотках подключение обеспечивает лифты, эскалаторы, промышленные холодильники.

Разводка выполняется относительно просто, учитывая, что в жилье идет ноль и жила под нагрузкой, а на общественные помещения ответвляются 3 рабочих кабеля и нейтральная жила.

Отличие трехфазного тока от однофазного состоит в том, что показатель сети – это линейная мощность, а параметры, имеющие отношение к нагрузке, представляют собой фазный вольтаж. От станции к потребителю проводится линия, включающая рабочие жилы и нулевой провод.

Для снижения утечек при прохождении по цепи в начале и конце сети ставятся преобразователи, но картина от этого не изменяется. Нейтральный провод фиксирует и транспортирует пользователю заявленный потенциал, полученный на выходе.

Мощность в проводе под нагрузкой создается, исходя из значения в нейтрали.

Величина напряжения фазы выявляется и возникает относительно центра подключения обмоток – нейтрального провода. В симметричной относительно нагрузок схеме трехфазной цепи через ноль передается ток с минимальными показателями. На выводе такой линии провода под нагрузкой окрашиваются в общепринятые стандартные цвета:

  • жила L1 – коричневый;
  • провод L2 – черный;
  • кабель L3 – серый;
  • нулевая оплетка N – синий;
  • желтый или зеленый – предусмотрен для заземления.

Такие мощные линии проводятся к крупным потребителям – целым микрорайонам, заводам. Для небольших приемников монтируется однофазная линия, включающая нагруженный провод и дополнительный ноль.

При равномерном распределении мощности в однофазных ответвлениях появляется равновесие в трехфазной конструкции.

Для прокладки составляющих ветвей принимается напряжение фазы одной жилы относительно нейтрали.

Источник: https://odinelectric.ru/elektrosnabzhenie/chto-takoe-faznoe-i-linejnoe-napryazhenie

Трёхфазная система. Фазное и линейное напряжение

Между двумя фазными проводами, иногда его упоминают как межфазное или междуфазное. Фазным считается напряжение между нулевым проводом и одним из фазных. В нормальных условиях эксплуатации линейные напряжения одинаковы и превосходят фазные в 1,73 раза.

Эксплуатационные напряжения трехфазной цепи

Трехфазные цепи обладают рядом преимуществ по сравнению с многофазными и однофазными, с их помощью можно легко получить вращательное круговое магнитное поле, которое обеспечивает работу асинхронных двигателей. Напряжение трехфазной цепи оценивают по ее линейному напряжению, для отходящих от подстанций линий его устанавливают 380 В, что соответствует фазному напряжению в 220 В. Для обозначения номинального напряжения трехфазной четырехпроводной сети используют обе величины — 380/220 В, подчеркивая этим, что к ней могут подключаться не только трехфазные устройства, рассчитанные на номинальное напряжение 380 В, но и однофазные — на 220 В.

Фазой называют часть многофазной системы, имеющую одинаковую характеристику тока. Вне зависимости от способа соединения фаз существуют три одинаковых по действующему значению напряжения трехфазной цепи. Они сдвинуты относительно друг друга по фазе на угол, составляющий 2π/3. У четырехпроводной цепи, помимо трех линейных напряжений, есть также три фазные.

Номинальные напряжения

Самыми распространенными номинальными напряжениями приемников переменного тока являются 220, 127 и 380 В. Напряжения 220 и 380 В чаще всего используются для питания промышленных устройств, а 127 и 220 В — для бытовых. Все они (127, 220 и 380 В) считаются номинальными напряжениями трехфазной сети. Их наличие в четырехпроводной сети дает возможность подключать однофазные приемники, которые рассчитаны на 220 и 127 В или 380 и 220 В.

Различия систем распределения электроэнергии

Наибольшее распространение получила трехфазная система 380/220 В с заземленной нейтралью, однако встречаются другие способы распределения электроэнергии. Например, в ряде населенных пунктов можно найти трехфазную систему с незаземленной изолированной нейтралью и линейным напряжением 220 В.

В данном случае нулевой провод не требуется, а вероятность поражения электрическим током при нарушении изоляции снижается за счет незаземленной нейтрали. Трехфазные приемники подключаются к трем фазным проводам, а однофазные — на линейное напряжение между любой парой фазных проводов.

Содержание:

Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, шестифазные и т.д.

Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое , обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.

Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.


Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.

Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке — фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение — возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное — определяется как межфазное или между фазное — возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин — 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные — на 220 вольт.

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом повышает риск поражения током, когда нарушена изоляция.

Отличие линейного напряжения от фазного

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.


Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.

Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.

Контроль и выравнивание данного параметра осуществляется с помощью . Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.


Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.

Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений . Что это значит?

Это значит, что на сомом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

В электротехнике часто применяют векторный метод изображения . Метод основан на положении, что при вращении некоторого вектора U вокруг начала координат с постоянной угловой скоростью ω, его проекция на ось Y пропорциональна синусу ωt, то есть синусу угла ω между вектором U и осью Х, который в каждый момент времени определен.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида U(ωt) отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

В настоящее время во всём мире получила широчайшее распространение так называемая трехфазная система переменного тока, изобретённая и разработанная в 1888 г. русским электротехником Доливо-Добровольским. Он первым сконструировал и построил трехфазный генератор, трехфазный асинхронный электродвигатель и трехфазную линию электропередачи. Эта система обеспечивает наиболее выгодные условия передачи электрической энергии по проводам и позволяет построить простые по устройству и удобные в работе электродвигатели.

Трехфазной системой электрических цепей называют систему, состоящую из трёх цепей, в которых действуют переменные ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода (j=120°). Каждую цепь такой системы называют фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют трёхфазным током.

Поддержание постоянного сдвига по фазе между колебаниями напряжений на выходе трёх независимых генераторов является довольно сложной технической задачей. На практике для получения трёх токов, сдвинутых по фазе, используются трехфазные генераторы. Индуктором в генераторе служит электромагнит, обмотка которого питается постоянным током. Индуктор является ротором, а якорь генератора-статором. Каждая обмотка генератора является самостоятельным генератором тока. Присоединив провода к концам каждой из них, как это показано на рисунке, мы получили бы три независимые цепи, каждая из которых могла бы питать энергией те или иные приемники, например электрические лампы. В этом случае для передачи всей энергии, которую поглощают приемники, требовалось бы шесть проводов. Можно, однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, то есть значительно сэкономить проводку. Первый из этих способов называется соединением звездой. При нём все концы фазных обмоток X, Y, Z соединяются в общий узел О (его называют нейтральной или нулевой точкой генератора), а начала служат зажимами для подключения нагрузки. Напряжение между нулевой точкой и началом каждой фазы называют фазным напряжением ( U ф ) , а напряжение между началами обмоток, то есть точками А и В, В и С, С и А, называют линейным напряжением ( U л ). При этом действующее значение линейного напряжения превышает действующее значение фазного напряжения в

В случае равномерной нагрузки всех трёх фаз ток в нулевом проводе равен нулю и его можно не использовать. При несимметричной нагрузке ток в нулевом проводе не равен нулю, но значительно слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем фазовые.

Обмотки трёхфазного генератора можно соединять треугольником. При этом конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам

Получение трехфазного тока.

Многофазной системой называют систему переменного тока, состоящую из нескольких цепей, в которых э.д.с. источников энергии имеют одинаковую частоту, но сдвинуты между собой по фазе. Однофазную цепь в такой системе называют фазой. Каждая э.д.с. может действовать в своей самостоятельной цепи и не быть связана с другими э.д.с. В этом случае электрическую систему называют несвязанной. Широкое применение на практике получили связанные многофазные системы, у которых отдельные фазы электрически соединены между собой.

По сравнению с однофазным многофазный ток имеет ряд преимуществ. Для передачи одной и той же мощности требуется меньшее сечение проводов. В работе двигателей и приборов переменного тока используется вращающееся магнитное поле, создаваемое неподвижными катушками или обмотками.

Рис. 1

Из всех систем многофазного тока широкое распространение на практике получил трехфазный ток. Цолучание трехфазного тока можно пояснить следующим образом. Если в однородном магнитном поле (рис. 1) поместить три витка, расположенных под углом 120° один к другому, и вращать их с постоянной угловой скоростью, в витках будут индуктироваться э.д.с., которые также будут сдвинуты по фазе на 120° . В промышленности для получения трехфазного тока на статоре генератора переменного тока делают три обмотки, сдвинутые одна относительно другой на 120° . Такие обмотки называют фазами генератора.

Рис. 2

Соединения звездой. Соединив фазные обмотки генератора или потребителя таким образом, чтобы концы обмоток были замкнуты в одну общую точку, а начала обмоток подключив к линейным проводам, получим соединение, называемое звездой (рис. 2). Таким образом, мы видим, что при образовании из трех однофазных систем переменного тока трехфазной системы, соединенной в звезду, вместо шести проводов требуются только четыре. Условно соединение звездой обозначается знаком Y . Точки, в которых соединены концы фазных обмоток, называют нулевыми, а провод, соединяющий их, — нулевым или нейтральным. Три провода, соединяющих свободные концы фаз генератора с концами фаз потребителя, называют линейными.

При равномерно нагруженной трехфазной симметричной системе нулевой провод не нужен; вся мощность может передаваться по трем проводам. Однако при включении в электрическую цепь однофазных потребителей нельзя достигнуть равномерной загрузки фаз. Поэтому в таких случаях нулевой провод необходим, хотя сечение его равняется половине сечения линейного провода.

Рис. 3

При таком соединении конец первой фазы соединяется с началом второй, конец второй — с началом третьей, а конец третьей — с началом первой фазы, а к точкам соединения фаз подключаются линейные провода (рис. 3). Соединение треугольником условно обозначают знаком Δ .

При соединении треугольником фазы генератора образуют замкнутый контур с небольшим сопротивлением. При неправильном соединении обмоток э.д.с. может увеличиться вдвое. При малом сопротивлении контура может установиться режим, близкий к короткому замыканию.

При соединении треугольником каждая фазная обмотка создает линейное напряжение. Фазное напряжение в данном случае равно линейному. Соединение треугольником применяют для осветительной и силовой нагрузок.

В двигателях трехфазного тока обычно выводят все шесть концов трех обмоток, которые по желанию можно соединить звездой или треугольником.

Номинальное и рабочее напряжения трансформаторных вводов

Подробности
Категория: Трансформаторы

Шкала номинальных линейных напряжений для установок трехфазного переменного тока с частотой 50 Гц, а также наибольших значений рабочих линейных напряжений неограниченной продолжительности, определены в ГОСТ 721—77. Значения этих напряжений приведены в табл. 1.

На изоляцию вводов воздействует фазное рабочее напряжение, которое в 73 меньше линейного. Оно является главным фактором, определяющим темпы электрического старения внутренней изоляции.

Допустимые в условиях эксплуатации кратковременные повышения рабочего напряжения частотой 50 Гц (уровень, продолжительность, число в году) для оборудования с номинальным напряжением от 1 до 750 кВ нормированы в ГОСТ 1516.3—96 (Приложение Б).

Таблица 1. Значения номинальных и наибольших рабочих линейных напряжений

Номинальное напряжение, кВ

15

20

24

27

35

110

150

220

330

500

750

Наибольшее рабочее напряжение, кВ

17,5

23

26,5

30

40,5

126

172

252

363

525

787

В сетях с изолированной нейтралью (до 35 кВ) возможны длительные режимы (минуты, часы) с замыканием одной фазы на землю, когда напряжение на здоровых фазах по отношению к земле увеличивается до линейного.

ТОЭ Лекции- №38 Способы соединения фаз трехфазных приемников

Приемники трехфазного тока могут подключаться к генератору по двум схемам – звезды (y) и треугольника (Δ). Как известно, на выходе трехфазного генератора получаются два напряжение (линейное и фазное), отличающиеся в Uл/Uф = √3 раз. С другой стороны каждый приёмник энергии рассчитан на работу при определенном напряжении, которое называется номинальным. Схема соединения фаз приемника должна обеспечить подключение его фаз номинальное фазное напряжение. Таким образом, выбор схемы соединения фаз трехфазного приемника зависит от соотношения номинальных напряжений приемника и генератора (сети).

Схема звезды применяется в том случае, если номинальное напряжение приемника соответствует (равно) фазному напряжению генератора. При соединении в звезду концы фаз приемника объединяются в одну точку “n”, называемую нулевой или нейтральной, а начала фаз подключаются к линейным выводам трехфазного генератора А, В, С линейными проводами. Если нулевая точка приемника “n” соединена с нулевой точкой генератора “N” нулевым проводом, то схема получила название звезды с нулевым проводом (рис. 38.1а). При отсутствии нулевого провода схема носит название звезды без нулевого провода (рис. 38.1б).

Токи, протекающие в линейных проводах по направлению от генератора к приемнику, называются линейными.

Токи, протекающие в фазах приемника по направлению от начал к концам, называются фазными. В схеме звезды фазы приемника включены последовательно с линейными проводами и по ним протекают одни и те же токи (IA, IB, IC). Поэтому для схемы звезды понятия линейные и фазные токи тождественны: IЛ = IФ.

Ток, протекающий в нулевом проводе от приемника к генератору, называется нулевым или нейтральным (IN).

Напряжения между началами и концами фаз приемника называются фазными (UAn, UBn, UCn), а напряжения между началами фаз – линейными (UAB, UBC, UCA). Линейные напряжения приемника и генератора тождественно равны.

В схеме звезды с нулевым проводом (рис. 38.1а) к каждой фазе приемника подводится непосредственно фазное напряжение генератора (UAN = UAn = UA, UBN = UBn = UB, UCN = UCn = UC), каждая из фаз при этом работает независимо друг от друга, а линейные (фазные) токи определяются по закону Ома:

Ток в нулевом проводе в соответствии с первым законом Кирхгофа равен геометрической сумме линейных (фазных) токов:

IN=IA+IB+IC

При симметричной нагрузке ZA=ZB=ZC ток в нулевом проводе IN=0 и, следовательно, надобность в нeм отпадает. Симметричные трехфазные приемники (например, трехфазные электродвигатели) включаются по схеме звезды без нулевого провода.

При несимметричной нагрузке относительная величина тока в нулевом проводе зависит от характера и степени не симметрии фазных токов. Как правило, трехфазные приёмники стремятся спроектировать по возможности близкими к симметричным, поэтому ток в нулевом проводе в реальных условиях значительно меньше линейных (фазных) токов.

схеме звезды без нулевого провода (рис. 38.1б) при любой нагрузке фаз должно выполняться условие первого закона Кирхгофа:

IA+IB+IC=0

Из уравнения следует вывод, что изменение одного из токов влечет изменение двух других токов, то есть отдельные фазы работают в зависимом друг от друга режиме. При несимметричной нагрузке потенциал нулевой точки приемника Un становится не равным нулю, он “смещается” на комплексной плоскости с нулевого положения, при этом фазные напряжения приемника (UAn, UBn, UCn) не равны соответствующим фазным напряжениям генератора (UA, UB, UC), происходит так называемый перекос фазных напряжений приемника (рис. 38.2).

Расчет токов и напряжений в схеме звезды без нулевого провода выполняется в следующей последовательности.

Определяется напряжение (потенциал) нейтральной точки приемника по методу двух узлов:

где ZN — комплексное сопротивление нулевого провода, при его отсутствии ZN=∞.

Фазные напряжения приемника определяются как разности потенциалов соответствующих точек:

UAn=UA-Un, UBn=UB-Un , UCn=UC-Un.

Фазные токи приемника определяются по закону Ома:

Комплексные мощности фаз приемника:

Режим работы приемника с перекосом фазных напряжений является ненормальным и может привести его к выходу из строя. По этой причине несимметричную трехфазную нагрузку запрещается включать по схеме звезды без нулевого провода (например, осветительную нагрузку).

Схема треугольника применяется в том случае, если номинальное фазное напряжение приемника соответствует (равно) линейному напряжению генератора. При соединении в треугольник конец каждой фазы соединяется с началом последующей, а точки соединения (вершины треугольника) подключаются к линейным выводам трехфазного генератора А, В, С линейными проводами (рис.38.3).

Токи, протекающие в фазах приемника по направлению от их начал к концам, называются фазными (IAB, IBC, ICA). Токи, протекающие в линейных проводах по направлению от генератора к приемнику, называются линейными (IA, IB, IC).

В схеме треугольника фазные и линейные напряжения приемника тождественно равны (UAB, UBC, UCA). В этой схеме к каждой фазе приемника подводится непосредственно линейное напряжение генератора, при этом отдельные фазы работают независимо друг от друга. Фазные токи определяются по закону Ома:

Линейные токи определяются из уравнений первого закона Кирхгофа для вершин треугольника, они равны геометрической разности фазных токов:

IA=IAB-ICA; IB=IBC-IAB; IC=ICA-IBC.

В симметричном режиме фазные и линейные токи симметричны, при этом отношение их модулей составляет IЛ/IФ = √3 .

При несимметричной нагрузке соотношение между линейными и фазными токами определяется уравнениями первого закона Кирхгофа. На рис. 38.4 показана векторная диаграмма токов и напряжений для произвольной трехфазной цепи при соединении фаз в треугольник.

Напряжение фазное — Энциклопедия по машиностроению XXL

Номинальное напряжение (фазное), в. . 49 Номинальная мощность, ква. …. 550 Пределы регулирования напряжения при номинальном напряжении сети, в. . . от 11,5 до 49  [c.152]

Задача получения замкнутых систем уравнений в более сложных случаях, чем рассмотренные ранее (см. 3 гл. 1 и 5,6 гл.З), фактически сводится к определению тензоров напряжений или а,- в фазах, потоков энергий i, qi, Aj, интенсивностей меж-фазного взаимодействия /, /, работы внутренних сил в фа-  [c.185]


Фазным (Уф) называется напряжение, создаваемое одной любой фазной обмоткой.  [c.113]

В системах с трехфазной сетью указывают линейное напряжение в системах с нулевым проводом (рис. 8, а) — линейное и фазное напряжения, например, 380/220 В.  [c.113]

Однофазные потребители, рассчитанные на фазное напряжение в трехфазной системе с нулевым проводом, включают между нулевым проводом и любым из линейных проводов потребители, рассчитанные  [c.113]

Напряжения vi Uqу на преобразованных контурах статора w y и Wqi выражаются через напряжения Uqy и i, фазных обмоток Wgy и и>й1 как функции угла (см. рис. 5.1) или как проекции результирующего напряжения статора Wi в виде  [c.104]

Силовые кабели с поясной изоляцией выпускаются трехжильного типа с секторными жилами из меди или алюминия в диапазоне сечений 6—240 мм . В качестве изоляции в них используется кабельная бумага, которая накладывается на жилу методом обмотки и пропитывается затем вязким маслоканифольным составом. Поверх скрученного из изолированных жил сердечника кабеля накладывается поясная изоляция, толщина которой меньше, чем толщина фазной (жильной) изоляции, так как жильная изоляция рассчитывается на линейное напряжение, которое в три раза больше фазного.  [c.259]

При симметричной системе синусоидальных напряжений, приложенных к статору, для фазных напряжений, приведенных к осям d я q, имеем выражения  [c.28]

Для насоса первого и второго контуров были спроектированы и изготовлены регулируемые электроприводы по схеме АВК с электродвигателями на напряжение 6000 В и частоту 50 Гц с фазным ротором. Структурная схема системы управления станцией, АВК и ГЦН приведена на рис. 5.29. Регулируемый электропривод дает возможность  [c.175]

Леонар- преобразователь муфта скольжения с фазным напряжения  [c.305]

Фазным напряжением Up называется напряжение между началом и концом каждой фазной обмотки. Ток, протекающий по фазной  [c.521]

В этом случае а) линейные напряжения равны фазным Ui == Up, б) линейные токи  [c.522]

При правильном порядке следования фаз, равенстве напряжений ,[ = У, и небольшом неравенстве частот ф м лампы, включённые по схеме фиг. 54, а, будут одновременно загораться и потухать. Из фиг. 54, б видно, что при неравенстве частот звезда векторов сети А — S — С будет вращаться со скоростью, отличной от скорости вра-( щения векторов звезды А В — С, и напряжения на фазных лампах будут одновременно возрастать или уменьшаться.  [c.535]

На фиг. 55 изображены кривая напряжения сети U и кривая э. д. с. приключаемого генератора Е и напряжение, приходящееся на каждую фазную лампу. Это напряжение будет возрастать от О до 2 6/, и поэтому лампы должны быть взяты на  [c.535]

Сварочные посты включаются на фазное напряжение (порядка 65 в) через реакторы таким образом, чтобы создать равномерную нагрузку фаз (фиг. 35).  [c.288]


В системах с нулевым проводом (фиг. 8, а) указываются линейное и фазное напряжения, например 380/220 в.  [c.225]

Включение однофазных потребителей (приемников) в трехфазной системе с нулевым проводом на фазное напряжение производится между нулевым и любым из линейных проводов потребители, рассчитанные на междуфазное напряжение, включаются между линейными проводами.  [c.225]

Трехфазные потребители, например статоры асинхронных электродвигателей, включаются звездой, если напряжение сети соответствует линейному напряжению потребителя (фиг. 9, а), или треугольником, если напряжение сети соответствует фазному напряжению потребителя (фиг. 9, б). Например, двигатель, рассчитанный на 380/220 в, при напряжении сети 380 в включается звездой, при напряжении сети 220 в — треугольником. Номинальные напряжения установок см. в табл. 3.  [c.225]

Фазным называется напряжение 11ф, создаваемое одной фазной обмоткой.  [c.461]

Следуюн(ий метод регулирования основан на использовании индукционного регулятора (рис. 5-8, г). Простейшим индукционным регулятором может служить заторможенЕ1ый асинхронный двигатель с фазным ротором, устроенный таким образом, чтобы ротор можно было плавно поворачивать на 180°. К тре хфазной сети присоединяются три фазные обмотки либо ротора, либо статора, создающие вращающееся магнитное поле. Если к сети присоединен ротор, то в каждой фазной обмотке статора благодаря вращающемуся магнитному полю индуктируется переменное напряжение. При повороте ротора амплитуда этого напряжения остается одной и той же, а фаза будет изменяться. Первичная обмотка испытательного трансформатора присоединяется к сети последовательно с одной из указанных выше фазных обмоток. Вследствие этого к трансформатору прикладывается геометрическая сумма напряжения сети П] и напряжения фазной обмотки В зависимости от положения ротора сдвиг фаз между напряжениями П, и Пз имеет различное значение. Таким образом, напряжение на первичной обмотке трансформатора Пт при повороте ротора будет плавно и.зменяться от минимума (О1 — С/. ) до максимума (и214 >) Индукционные регуляторы обеспечивают плавное регулирование напряжения, по вызывают искажение кривой напряжения.  [c.106]

В общем случае при неформальной постановке задача оптимизации ЭМУ включает в себя выбор онтималыюго типа об1 СКта (например, электрические машины постоянного тока с электромагнитным возбуждением и возбуждением от постоянных магнитов, асинхронные с короткозамкнутым и фазным ротором, синхронные и пр ), его конструктивной схемы (нормальное и обращенное, цилиндрическое и торцевое исполнение, способы охлаждения и передачи электрической энергии на вращающиеся части устройства, тин опор вращающихся частей и пр.), оптимизацию параметров объекта (геометрические размеры, обмоточные данные, характеристики электрических и магнитных материалов), а также поиск способов оптимального управления объектом (например, способов изменения напряжения и частоты питания) и, наконец, оптимизацию значений допусков па параметры.  [c.143]

Приведенные тензоры напряжений и векторы, характеризующие перенос импульса и энергии в дисперсной смеси. Рас-смотрпм более конкретные, нежели в 2, представления для осредненных тензоров напряжений и сил мея фазного взаимодействия в дисперсных смесях, учитывая структуру последних.  [c.66]

Если пренебречь также работой вязких напряжений, то уравнение притока тепла на меж фазн,ой границе примет вид  [c.82]

Если частота поля выбрана по условию (9-30) или (9-31), то электромагнитное поле в объеме нагреваемого тела син-фазно и, следовательно, квазистационарно. В квазистационарпом поле совпадают по фазе ток н напряженность магнитного поля, и поэтому (см. диаграмму на рис. 9-3) угол  [c.143]

СУВ состоит из маломощного трансформатора TI с сетевой обмоткой и вторичными обмотками Wg, Wi. Обмотка нагружена на диодный мост (ДМ), к выходам которого подключены формирователи синхронизирующих импульсов (ФСИ), формируюшде синхроимпульсы из огибающих фазных напряжений в моменты естественной коммутации. Входы фазосдвигающих устройств (ФСУ) подключены к ФСИ, а выходы — к фор-  [c.75]

Соотношения между линейным и фазным напряжениями и xoKaMt Соединение звездой  [c.342]

Соединение обмоток источников трехфазного тока (генераторов, тран-сформатороа) производится либо звездой (фиг. 8, а), либо треугольником (фиг, 8, б). Фазным называется напряжение 11ф, создаваемое одной любой фазной обмоткой линейным, или междуфазным, называется напряжение иизмеренное между двумя любыми линейными проводами.  [c.225]



Трехфазная конфигурация Y и треугольника | Многофазные цепи переменного тока

Трехфазное соединение звездой (Y)

Первоначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»).

Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника. (Рисунок ниже)

Трехфазное соединение «Y» имеет три источника напряжения, подключенных к общей точке.

Если мы нарисуем схему, показывающую, что каждый источник напряжения представляет собой катушку с проводом (генератор переменного тока или обмотку трансформатора), и произведем небольшую перестановку, конфигурация «Y» станет более очевидной на рисунке ниже.

Трехфазное четырехпроводное соединение «Y» использует «общий» четвертый провод.

Три проводника, идущие от источников напряжения (обмоток) к нагрузке, обычно называются линиями , а сами обмотки обычно называются фазами .

В системе с Y-соединением нейтральный провод может быть или не быть (рисунок ниже) в точке соединения посередине, хотя это, безусловно, помогает облегчить потенциальные проблемы, если один из элементов трехфазной нагрузки выйдет из строя, поскольку обсуждалось ранее.

Трехфазное трехпроводное соединение «Y» не использует нейтральный провод.

Значения напряжения и тока в трехфазных системах

Когда мы измеряем напряжение и ток в трехфазных системах, мы должны уточнить , где мы измеряем.

Напряжение сети означает величину напряжения, измеренного между любыми двумя проводниками линии в сбалансированной трехфазной системе. В приведенной выше схеме линейное напряжение составляет примерно 208 вольт.

Фазное напряжение относится к напряжению, измеренному на любом одном компоненте (обмотка источника или сопротивление нагрузки) в сбалансированном трехфазном источнике или нагрузке.

Для схемы, показанной выше, фазное напряжение составляет 120 вольт. Термины линейный ток и фазный ток следуют той же логике: первый относится к току через любой один линейный проводник, а второй — к току через любой один компонент.

Источники и нагрузки, подключенные по схеме Y, всегда имеют линейное напряжение больше, чем фазное, а линейные токи равны фазным токам. Если источник или нагрузка, подключенные по схеме Y, сбалансированы, линейное напряжение будет равно фазному напряжению, умноженному на квадратный корень из 3:

.

Однако конфигурация «Y» не единственная допустимая для соединения трехфазного источника напряжения или элементов нагрузки.

Трехфазная конфигурация, треугольник (Δ)

Другая конфигурация известна как «Дельта» из-за ее геометрического сходства с одноименной греческой буквой (Δ).Обратите внимание на полярность каждой обмотки на рисунке ниже.

Трехфазное, трехпроводное соединение Δ не имеет общего.

На первый взгляд кажется, что три таких источника напряжения могут вызвать короткое замыкание, электроны текут по треугольнику, и ничто иное, как внутренний импеданс обмоток, сдерживает их.

Однако из-за фазовых углов этих трех источников напряжения это не так.

Закон Кирхгофа о напряжении при соединении треугольником

Для быстрой проверки этого можно использовать закон Кирхгофа, чтобы увидеть, равны ли три напряжения вокруг контура нулю. Если они это сделают, тогда не будет доступного напряжения для проталкивания тока вокруг этого контура и, следовательно, не будет циркулирующего тока.

Начиная с верхней обмотки и двигаясь против часовой стрелки, наше выражение KVL выглядит примерно так:

В самом деле, если мы сложим эти три векторные величины вместе, они в сумме дадут ноль.Другой способ проверить тот факт, что эти три источника напряжения могут быть соединены вместе в петлю без возникновения циркулирующих токов, — это разомкнуть петлю в одной точке соединения и рассчитать напряжение на разрыве: (рисунок ниже)

Напряжение на открытии Δ должно быть нулевым.

Начиная с правой обмотки (120 В ∠ 120 °) и продвигаясь против часовой стрелки, наше уравнение KVL выглядит следующим образом:

Конечно, на разрыве будет нулевое напряжение, говорящее нам о том, что ток не будет циркулировать в треугольной петле обмоток, когда это соединение будет выполнено.

Установив, что трехфазный источник напряжения, подключенный по схеме Δ, не сгорит дотла из-за циркулирующих токов, перейдем к его практическому использованию в качестве источника питания в трехфазных цепях.

Поскольку каждая пара линейных проводов подключается непосредственно к одной обмотке в цепи Δ, линейное напряжение будет равно фазному напряжению.

И наоборот, поскольку каждый линейный провод присоединяется к узлу между двумя обмотками, линейный ток будет векторной суммой двух соединяемых фазных токов.

Неудивительно, что результирующие уравнения для Δ-конфигурации выглядят следующим образом:

Анализ цепи примера соединения треугольником

Давайте посмотрим, как это работает на примере схемы: (Рисунок ниже)

Нагрузка на источнике Δ подключена по схеме Δ.

Когда каждое сопротивление нагрузки получает 120 В от соответствующей фазной обмотки источника, ток в каждой фазе этой цепи будет 83.33 ампера:

Преимущества трехфазной системы Delta

Таким образом, каждый линейный ток в этой трехфазной системе питания равен 144,34 А, что значительно больше, чем линейные токи в системе с Y-соединением, которую мы рассматривали ранее.

Кто-то может задаться вопросом, не потеряли ли мы все преимущества трехфазного питания здесь, учитывая тот факт, что у нас такие большие токи в проводниках, что требует более толстого и более дорогостоящего провода.

Ответ — нет. Хотя для этой схемы потребуются три медных проводника калибра 1 (на расстоянии 1000 футов между источником и нагрузкой это составляет чуть более 750 фунтов меди для всей системы), это все же меньше, чем 1000+ фунтов меди, необходимых для Однофазная система, обеспечивающая одинаковую мощность (30 кВт) при одинаковом напряжении (120 В между проводниками).

Одним из явных преимуществ системы с Δ-соединением является отсутствие нейтрального провода. В системе с Y-соединением нейтральный провод был необходим на случай, если одна из фазных нагрузок выйдет из строя (или отключится), чтобы не допустить изменения фазных напряжений на нагрузке.

Это не обязательно (или даже возможно!) В схеме с Δ-соединением.

Если каждый фазовый элемент нагрузки напрямую подключен к соответствующей фазной обмотке источника, фазное напряжение будет постоянным независимо от обрывов в элементах нагрузки.

Возможно, самым большим преимуществом источника с Δ-подключением является его отказоустойчивость.

Возможно, что одна из обмоток трехфазного источника, подключенного по схеме Δ, откроется при отказе (рисунок ниже) без влияния на напряжение или ток нагрузки!

Даже при выходе из строя обмотки источника напряжение в сети по-прежнему составляет 120 В, а напряжение фазы нагрузки по-прежнему составляет 120 В.Единственное отличие — дополнительный ток в оставшихся функциональных обмотках источника.

Единственным последствием разрыва обмотки источника для источника, подключенного по схеме Δ, является увеличение фазного тока в остальных обмотках. Сравните эту отказоустойчивость с системой с Y-соединением и обмоткой с открытым источником на рисунке ниже.

Разомкнутая обмотка источника «Y» снижает вдвое напряжение на двух нагрузках по Δ, подключенных к нагрузке.

При подключении нагрузки по схеме Δ два сопротивления испытывают пониженное напряжение, в то время как одно остается при исходном линейном напряжении, 208.Нагрузка, подключенная по схеме Y, постигает еще худшую участь (рисунок ниже) из-за того же отказа обмотки в источнике, подключенном по схеме Y.

Обмотка с открытым источником в системе «Y-Y» снижает наполовину напряжение на двух нагрузках и полностью теряет одну нагрузку.

В этом случае два сопротивления нагрузки испытывают пониженное напряжение, а третье полностью теряет напряжение питания! По этой причине источники с Δ-соединением предпочтительнее для надежности.

Однако, если требуется двойное напряжение (например,грамм. 120/208) или предпочтительнее для более низких линейных токов, предпочтительной конфигурацией являются системы с Y-соединением.

ОБЗОР:

  • Проводники, подключенные к трем точкам трехфазного источника или нагрузки, называются линиями .
  • Три компонента, составляющие трехфазный источник или нагрузку, называются фазами .
  • Напряжение линии — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
  • Фазное напряжение — это напряжение, измеренное на отдельном компоненте трехфазного источника или нагрузки.
  • Линейный ток — это ток через любую линию между трехфазным источником и нагрузкой.
  • Фазный ток — это ток через любой компонент, содержащий трехфазный источник или нагрузку.
  • В симметричных Y-цепях линейное напряжение равно фазному напряжению, умноженному на квадратный корень из 3, а линейный ток равен фазному току.

  • В симметричных Δ-цепях линейное напряжение равно фазному напряжению, а линейный ток равен фазному току, умноженному на квадратный корень из 3.

  • Трехфазные источники напряжения, подключенные по схеме Δ, обеспечивают большую надежность в случае отказа обмотки, чем источники с подключением по схеме Y. Однако источники, подключенные по схеме Y, могут выдавать такое же количество энергии при меньшем линейном токе, чем источники, подключенные по схеме Δ.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Цепи трехфазного трансформатора

| Многофазные цепи переменного тока

Поскольку трехфазные сети так часто используются в системах распределения электроэнергии, вполне логично, что нам понадобятся трехфазные трансформаторы, чтобы иметь возможность повышать или понижать напряжение.

Это верно только частично, поскольку обычные однофазные трансформаторы могут быть объединены вместе для преобразования мощности между двумя трехфазными системами в различных конфигурациях, устраняя необходимость в специальном трехфазном трансформаторе.

Однако для этих задач созданы специальные трехфазные трансформаторы, которые могут работать с меньшими требованиями к материалам, меньшими размерами и меньшим весом, чем их модульные аналоги.

Обмотки и соединения трехфазного трансформатора

Трехфазный трансформатор состоит из трех наборов первичной и вторичной обмоток, каждый набор намотан на одну ногу узла железного сердечника.По сути, это выглядит как три однофазных трансформатора, совместно использующих объединенный сердечник, как показано на рисунке ниже.

Сердечник трехфазного трансформатора имеет три набора обмоток.

Эти наборы первичной и вторичной обмоток будут соединены в конфигурации Δ или Y, чтобы сформировать единый блок. Различные комбинации способов, которыми эти обмотки могут быть соединены вместе, будут в центре внимания этого раздела.

Независимо от того, используются ли комплекты обмоток с общим сердечником или каждая пара обмоток представляет собой отдельный трансформатор, варианты соединения обмоток одинаковы:

Первичная — Вторичная

  • Y — Y
  • Y — Δ
  • Δ — Y
  • Δ — Δ

Причины выбора конфигурации Y или Δ для соединений обмоток трансформатора те же, что и для любого другого трехфазного приложения: соединения Y обеспечивают возможность нескольких напряжений, в то время как соединения Δ имеют более высокий уровень надежности (если одна обмотка выходит из строя , два других могут поддерживать полное линейное напряжение нагрузки).

Вероятно, наиболее важным аспектом соединения трех наборов первичной и вторичной обмоток для формирования трехфазного трансформатора является уделение внимания правильному фазированию обмоток (точки, используемые для обозначения «полярности» обмоток).

Запомните правильное соотношение фаз между фазными обмотками Δ и Y: (рисунок ниже)

(Y) Центральная точка «Y» должна связывать либо все «-», либо все «+» точки намотки вместе.(Δ) Полярности обмоток должны складываться вместе (от + до -).

Правильная синхронизация фаз, когда обмотки не показаны в стандартной конфигурации Y или Δ, может быть непростой задачей. Позвольте мне проиллюстрировать это, начиная с рисунка ниже.

Входы A 1 , B 1 , C 1 могут быть соединены либо «Δ», либо «Y», как и выходы A 2 , B 2 , C 2 .

Разводка фаз для трансформатора Y-Y

Три отдельных трансформатора должны быть соединены вместе для преобразования энергии из одной трехфазной системы в другую.Сначала я покажу электрические соединения для конфигурации Y-Y:

Фазовая разводка трансформатора «Y-Y».

Обратите внимание на рисунок выше, как все концы обмотки, отмеченные точками, подключены к своим соответствующим фазам A, B и C, в то время как концы без точек соединены вместе, образуя центры каждой буквы «Y».

Наличие первичной и вторичной обмоток, соединенных по схеме «Y», позволяет использовать нейтральные проводники (N 1 и N 2 ) в каждой энергосистеме.

Фазовая разводка трансформатора «Y-Δ»

Теперь посмотрим на конфигурацию Y-Δ:

Фазовая разводка трансформатора «Y-Δ».

Обратите внимание на то, как вторичные обмотки (нижний набор, рисунок выше) соединены в цепочку, причем сторона с «точкой» одной обмотки соединена со стороной «без точки» следующей, образуя петлю Δ.

В каждой точке соединения между парами обмоток выполняется подключение к линии второй энергосистемы (A, B и C).

Фазовая проводка для трансформатора «Δ-Y»

Теперь давайте рассмотрим систему Δ-Y на рисунке ниже.

Фазовая разводка трансформатора «Δ-Y».

Такая конфигурация (рисунок выше) позволит обеспечить несколько напряжений (между фазой или между фазой и нейтралью) во второй энергосистеме от исходной энергосистемы, не имеющей нейтрали.

Фазовая проводка для трансформатора «Δ-Δ»

И, наконец, перейдем к конфигурации Δ-Δ:

Фазовая разводка трансформатора «Δ-Δ».

Когда нет необходимости в нейтральном проводе во вторичной энергосистеме, предпочтительны схемы подключения Δ-Δ (рисунок выше) из-за присущей надежности конфигурации Δ.

Фазовая проводка для трансформатора «V» или «открытый Δ»

Учитывая, что Δ-конфигурация может удовлетворительно работать без одной обмотки, некоторые разработчики энергосистем предпочитают создавать батарею трехфазных трансформаторов только с двумя трансформаторами, представляя конфигурацию Δ-Δ с отсутствующей обмоткой как на первичной, так и на вторичной стороне:

«В» или «разомкнутый Δ» обеспечивает питание 2 φ только с двумя трансформаторами.

Эта конфигурация называется «V» или «Open-Δ». Конечно, каждый из двух трансформаторов должен быть увеличен по размеру, чтобы выдерживать такое же количество мощности, что и три в стандартной Δ-конфигурации, но общие размеры, вес и стоимость часто того стоят.

Однако имейте в виду, что при отсутствии одного набора обмоток в форме Δ эта система больше не обеспечивает отказоустойчивость нормальной системы Δ-Δ. Если один из двух трансформаторов выйдет из строя, это определенно повлияет на напряжение и ток нагрузки.

Пример из реальной жизни

На следующей фотографии (рисунок ниже) показан блок повышающих трансформаторов на плотине гидроэлектростанции Гранд-Кули в штате Вашингтон.

Несколько трансформаторов (зеленого цвета) можно увидеть с этой точки обзора, и они сгруппированы по три: три трансформатора на гидроэлектрический генератор, соединенные вместе проводом в той или иной форме трехфазной конфигурации.

На фотографии не показаны соединения первичной обмотки, но похоже, что вторичные обмотки соединены по схеме Y, так как из каждого трансформатора выступает только один большой высоковольтный изолятор.

Это говорит о том, что другая сторона вторичной обмотки каждого трансформатора имеет потенциал земли или близок к нему, что может быть верно только в системе Y.

Здание слева — электростанция, где размещены генераторы и турбины. Справа наклонная бетонная стена представляет собой нижнюю поверхность плотины:

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Трехфазные системы питания | Многофазные цепи переменного тока

Что такое двухфазные системы питания?

Двухфазные энергосистемы обеспечивают высокий КПД проводников. и — низкий риск для безопасности за счет разделения общего напряжения на меньшие части и питания нескольких нагрузок с этими меньшими напряжениями, потребляя при этом токи на уровнях, типичных для системы полного напряжения.

Между прочим, этот метод работает так же хорошо для систем питания постоянного тока, как и для однофазных систем переменного тока. Такие системы обычно называют трехпроводными системами , а не с расщепленной фазой , потому что понятие «фаза» ограничивается переменным током.

Но из нашего опыта работы с векторами и комплексными числами мы знаем, что напряжения переменного тока не всегда складываются, как мы думаем, если они не совпадают по фазе друг с другом.

Этот принцип, применяемый к энергосистемам, может быть использован для создания энергосистем с еще большим КПД проводников и меньшей опасностью поражения электрическим током, чем с расщепленной фазой.

Примеры

Два источника напряжения, не совпадающих по фазе на 120 °

Предположим, что у нас есть два источника переменного напряжения, соединенных последовательно, как и в системе с расщепленными фазами, которую мы видели раньше, за исключением того, что каждый источник напряжения сдвинул по фазе на 120 ° друг с другом: (рисунок ниже)

Пара источников 120 В перем. Тока, фазированных под углом 120 °, аналогично расщепленной фазе.

Поскольку каждый источник напряжения составляет 120 вольт, и каждый нагрузочный резистор подключен непосредственно параллельно своему соответствующему источнику, напряжение на каждой нагрузке должно также составлять 120 вольт.Учитывая ток нагрузки 83,33 А, каждая нагрузка все равно должна рассеивать 10 киловатт мощности.

Однако напряжение между двумя «горячими» проводами не составляет 240 вольт (120 0 ° — 120 ∠ 180 °), потому что разность фаз между двумя источниками не равна 180 °. Вместо этого напряжение:

Условно мы говорим, что напряжение между «горячими» проводниками составляет 208 вольт (округляя в большую сторону), и, таким образом, напряжение энергосистемы обозначено как 120/208.

Если мы посчитаем ток через «нейтральный» провод, то обнаружим, что он равен , а не нулю, даже при сбалансированном сопротивлении нагрузки.Закон Кирхгофа говорит нам, что токи, входящие и выходящие из узла между двумя нагрузками, должны быть нулевыми: (рисунок ниже)

Нейтральный провод проводит ток в случае пары фазированных источников на 120 °.

Выводы и заключения

Итак, мы обнаруживаем, что «нейтральный» провод имеет полный ток 83,33 А, как и каждый «горячий» провод.

Обратите внимание, что мы все еще передаем 20 кВт общей мощности двум нагрузкам, при этом по «горячему» проводу каждой нагрузки проходит 83 провода.33 ампера как и раньше.

При одинаковом количестве тока через каждый «горячий» провод, мы должны использовать медные проводники одного калибра, поэтому мы не снизили стоимость системы по сравнению с системой с разделением фаз 120/240.

Однако мы добились повышения безопасности, потому что общее напряжение между двумя «горячими» проводниками на 32 В ниже, чем было в системе с разделенной фазой (208 В вместо 240 В).

Три источника напряжения, не совпадающих по фазе на 120 °

Дело в том, что нейтральный провод несет 83.33 ампера тока открывают интересную возможность: поскольку он все равно пропускает ток, почему бы не использовать этот третий провод в качестве еще одного «горячего» проводника, запитав другой нагрузочный резистор третьим источником на 120 вольт, имеющим фазовый угол 240 °?

Таким образом, мы могли бы передать на больше мощности (еще 10 кВт), не добавляя дополнительных проводников. Давайте посмотрим, как это может выглядеть: (рисунок ниже)

С третьей нагрузкой, фазированной под углом 120 ° к двум другим, токи такие же, как для двух нагрузок.

Расчеты SPICE для трехфазной системы

Полный математический анализ всех напряжений и токов в этой цепи потребовал бы использования сетевой теоремы, самой простой из которых является теорема суперпозиции.

Я избавлю вас от долгих, затяжных вычислений, потому что вы должны быть в состоянии интуитивно понять, что три источника напряжения с тремя разными фазовыми углами подадут 120 вольт каждый на сбалансированную триаду нагрузочных резисторов.

Для доказательства этого мы можем использовать SPICE для вычисления за нас: (Рисунок ниже, список SPICE: многофазная система питания 120/208)

Контур SPICE: три нагрузки 3-Φ, фазированные под углом 120 °.

120/208 многофазная система питания v1 1 0 ac 120 0 sin v2 2 0 ac 120 120 sin v3 3 0 ac 120 240 sin r1 1 4 1,44 r2 2 4 1,44 r3 3 4 1,44 .ac lin 1 60 60 .print ac v ( 1,4) v (2,4) v (3,4). Print ac v (1,2) v (2,3) v (3,1). Print ac i (v1) i (v2) i ( v3).конец 
НАПРЯЖЕНИЕ НА КАЖДУЮ НАГРУЗКУ частота v (1,4) v (2,4) v (3,4) 6.000E + 01 1.200E + 02 1.200E + 02 1.200E + 02 НАПРЯЖЕНИЕ МЕЖДУ «ГОРЯЧИМИ» ПРОВОДНИКАМИ частота v (1, 2) v (2,3) v (3,1) 6.000E + 01 2.078E + 02 2.078E + 02 2.078E + 02 ТОК ЧЕРЕЗ КАЖДЫЙ ИСТОЧНИК НАПРЯЖЕНИЯ частота i (v1) i (v2) i (v3) 6.000E +01 8.333E + 01 8.333E + 01 8.333E + 01 

Конечно, мы получаем 120 вольт на каждом нагрузочном резисторе с (приблизительно) 208 вольт между любыми двумя «горячими» проводниками и токами в проводниках, равными 83,33 ампера.(Рисунок ниже)

При таком токе и напряжении каждая нагрузка будет рассеивать 10 кВт мощности.

Обратите внимание, что в этой цепи нет «нейтрального» проводника, чтобы обеспечить стабильное напряжение для всех нагрузок в случае размыкания одной из них.

Здесь мы имеем ситуацию, аналогичную нашей схеме питания с расщепленной фазой без «нейтрального» проводника: если одна нагрузка выйдет из строя, падение напряжения на оставшейся (ых) нагрузке (ах) изменится.

Для обеспечения стабильности напряжения нагрузки в случае очередного размыкания нагрузки нам понадобится нейтральный провод для соединения узла источника и узла нагрузки:

Схема SPICE с аннотациями результатов моделирования: Три нагрузки 3-Φ, фазированные под углом 120 °.

Пока нагрузки остаются сбалансированными (равное сопротивление, равные токи), нейтральный провод вообще не должен пропускать ток. Он нужен на тот случай, если один или несколько нагрузочных резисторов выйдут из строя (или отключатся с помощью размыкающего переключателя).

Многофазная цепь

Эта схема, которую мы анализировали с тремя источниками напряжения, называется многофазной цепью . Префикс «поли» просто означает «более одного», как в « поли, теизм» (вера в более чем одно божество), « поли гон» (геометрическая форма, состоящая из нескольких отрезков линии: например, pentagon и hexagon ) и « poly atomic» (вещество, состоящее из нескольких типов атомов).

Поскольку все источники напряжения находятся под разными фазовыми углами (в данном случае три разных фазовых угла), это схема « poly phase».

В частности, это трехфазная цепь , которая используется преимущественно в крупных системах распределения электроэнергии.

Сравнение трехфазной системы и однофазной системы
Однофазная система

Давайте рассмотрим преимущества трехфазной системы питания по сравнению с однофазной системой с эквивалентным напряжением нагрузки и мощностью.Однофазная система с тремя нагрузками, подключенными напрямую параллельно, будет иметь очень высокий общий ток (83,33 умножить на 3, или 250 ампер (рисунок ниже)

).

Для сравнения, три нагрузки по 10 кВт в системе 120 В переменного тока потребляют 250 А.

Это потребует медного провода сечением 3/0 ( очень большого!), С плотностью около 510 фунтов на тысячу футов и со значительным ценником. Если бы расстояние от источника до нагрузки составляло 1000 футов, нам потребовалось бы более полутонны медного провода для выполнения этой работы.

Двухфазная система

С другой стороны, мы могли бы построить двухфазную систему с двумя нагрузками по 15 кВт, 120 В. (Рисунок ниже)

Система с разделенной фазой потребляет вдвое меньший ток 125 А при 240 В переменного тока по сравнению с системой на 120 В переменного тока.

Наш ток вдвое меньше того, который был при простой параллельной схеме, что является большим улучшением.

Мы могли бы обойтись без использования медного провода калибра 2 с общей массой около 600 фунтов, из расчета около 200 фунтов на тысячу футов с тремя участками по 1000 футов каждый между источником и нагрузками.Тем не менее, мы также должны учитывать повышенную угрозу безопасности, связанную с наличием в системе 240 вольт, даже если каждая нагрузка получает только 120 вольт.

В целом существует большая вероятность поражения электрическим током.

Трехфазная система

Если сравнить эти два примера с нашей трехфазной системой (рисунок выше), преимущества становятся очевидными.

Во-первых, токи в проводниках немного меньше (83,33 ампер против 125 или 250 ампер), что позволяет использовать гораздо более тонкий и легкий провод.Мы можем использовать провод калибра 4 с плотностью около 125 фунтов на тысячу футов, что составит 500 фунтов (четыре участка по 1000 футов каждый) для нашей примерной схемы.

Это означает значительную экономию затрат по сравнению с системой с разделением фаз, с дополнительным преимуществом, заключающимся в том, что максимальное напряжение в системе ниже (208 против 240).

Остается ответить на один вопрос: как вообще мы можем получить три источника переменного напряжения, чьи фазовые углы разнесены точно на 120 °?

Очевидно, что мы не можем отводить по центру обмотку трансформатора или генератора переменного тока, как это было в системе с расщепленной фазой, поскольку это может дать нам только формы волны напряжения, которые либо совпадают по фазе, либо не совпадают по фазе на 180 °.

Возможно, мы могли бы придумать способ использования конденсаторов и катушек индуктивности для создания фазовых сдвигов на 120 °, но тогда эти фазовые сдвиги также будут зависеть от фазовых углов наших импедансов нагрузки (замена резистивной нагрузки емкостной или индуктивной нагрузкой будет поменять все!).

Лучший способ получить фазовые сдвиги, которые мы ищем, — это генерировать его в источнике: сконструировать генератор переменного тока (генератор переменного тока), обеспечивающий мощность таким образом, чтобы вращающееся магнитное поле проходило через три набора проволочных обмоток, каждая установите на расстоянии 120 ° друг от друга по окружности машины, как показано на рисунке ниже.

(a) Однофазный генератор переменного тока, (b) Трехфазный генератор переменного тока.

Вместе шесть «полюсных» обмоток трехфазного генератора переменного тока соединены, чтобы образовать три пары обмоток, каждая пара вырабатывает переменное напряжение с фазовым углом 120 °, смещенным от любой из двух других пар обмоток.

Межсоединения между парами обмоток (как показано для однофазного генератора переменного тока: перемычка между обмотками 1a и 1b) для простоты на чертеже трехфазного генератора не показаны.

В нашем примере схемы мы показали три источника напряжения, соединенных вместе в конфигурации «Y» (иногда называемой конфигурацией «звезда»), с одним выводом каждого источника, привязанным к общей точке (узлу, к которому мы подключили «нейтраль»). Дирижер).

Обычный способ изобразить эту схему подключения — нарисовать обмотки в форме буквы «Y», как показано на рисунке ниже.

Генератор в конфигурации «Y».

Конфигурация «Y» — не единственный доступный нам вариант, но, вероятно, поначалу ее легче всего понять.Подробнее об этом мы поговорим позже в этой главе.

ОБЗОР:

  • Однофазная система питания — это система, в которой имеется только один источник переменного напряжения (одна форма волны напряжения источника).
  • Система питания с разделением фаз и — это система, в которой есть два источника напряжения, сдвинутых по фазе на 180 ° друг от друга, которые питают две последовательно соединенные нагрузки. Преимуществом этого является возможность иметь более низкие токи в проводниках при сохранении низкого напряжения нагрузки по соображениям безопасности.
  • Многофазная система питания использует несколько источников напряжения, находящихся под разными фазовыми углами друг от друга (много «фаз» формы волны напряжения в работе). Многофазная система питания может обеспечивать большую мощность при меньшем напряжении с проводниками меньшего сечения, чем однофазные или двухфазные системы.
  • Источники сдвинутого по фазе напряжения, необходимые для многофазной системы питания, создаются в генераторах переменного тока с несколькими наборами обмоток проводов. Эти наборы обмоток расположены по окружности вращения ротора под желаемым углом (-ами).

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Номинальное напряжение — обзор

8.4.1 Нормализация

Выбор базовых значений, используемых в единичной или нормализованной системе, в некоторой степени произвольный. В частном случае SYNCREL в литературе использовалось несколько различных схем. Однако следует понимать, что выводы, сделанные при использовании различных нормализаций, должны быть одинаковыми, поскольку они просто смотрят на систему немного по-другому.Также следует понимать, что некоторые нормализации больше подходят для анализа конкретных стратегий управления — они производят более простые выражения, которые легче анализировать.

Поскольку следующий анализ основан на моделях, построенных в предыдущем разделе, они основаны на тех же предположениях. Кроме того, большая часть анализа также предполагает, что сопротивлением статора можно пренебречь. Это предположение создает выражения, достаточно простые, чтобы по ним можно было почерпнуть основные свойства машины.

Одна нормализация, которую можно использовать для SYNCREL, основана на максимальном крутящем моменте на ампер, а также номинальном напряжении и токе машины [10]. Когда используется эта нормализация, индуктивности исчезают, поскольку они представлены в модели как отношение L d / L q , которое обозначается символом ξ.

Чтобы определить максимальный крутящий момент на ампер, нам необходимо определить угол вектора тока относительно оси d .Рассмотрим выражение (8.54), повторенное здесь для удобства:

(8.75) Te = 32pp (Ldr − Lqr) idriqr

Это выражение также можно записать как

(8.76) Te = 32pp (Ldr − Lqr) (icos⁡ θ) (isin⁡θ) = 34pp (Ldr − Lqr) i2sin⁡2θ

, где θ≜ угол текущего пространственного вектора относительно оси d станка, а i current текущего вектора величина (как определено на рис. 8.9).

Из (8.76) видно, что для данной величины вектора тока крутящий момент максимизируется, если θ = π / 4 радиан.Следовательно, максимальный крутящий момент для SYNCREL составляет

(8,77) Temax⁡ = 34pp (Ldr-Lqr) i02

, где i 0 ≜ номинальный ток для SYNCREL.

Для удобства мы определим базовый крутящий момент для машины в терминах двухфазной машины. Следовательно,

(8,78) T0 = 12pp (Ldr − Lqr) i02.

Базовая частота определяется как частота, при которой в машине заканчивается напряжение при базовом крутящем моменте и токе. Это нормальная «точка излома» характеристики крутящего момента машины.Следовательно, базовая частота равна

(8,79) ω0≜ppωbrk.

Номинальное напряжение машины (т. Е. Напряжение на частоте отключения) обозначается как В, 0 . 12

Базовый поток для станка может быть получен следующим образом:

(8.80) ψ0 = (Ldrid0r) 2+ (Lqriq0r) 2

, где i r d0 d — ток оси и i r q0 q — ток оси, оба когда величина тока равна i 0 .Как видно из рис. 8.9, эти токи можно записать как

(8,81) id0r = i0cos⁡θ = 12i0 для θ = π / 4

(8,82) iq0r = i0sin⁡θ = 12i0 для θ = π / 4

Следовательно, используя эти выражения, базовый поток можно записать как

(8,83) ψ0 = i02 (Ldr) 2+ (Lqr) 2.

Теперь можно определить другие базы в терминах уже определенных. Базовое напряжение

(8,84) v0 = ω0ψ0.

Теперь можно определить базовую мощность:

(8,85) P0 = v0i0 = ω0ψ0i0 = ω0i022 (Ldr) 2+ (Lqr) 2.

Теперь также можно определить базовое сопротивление и индуктивность:

(8,86) R0 = v0i0

Давайте теперь суммируем нормализованные значения, используя вышеуказанные основы для основных параметров машины.

Сводка 8.2

(8,88) Tn = TeT0 Pn = PP0 ψn = ψnψ0ωn = ωω0 in = iin vn = vv0Rn = RR0 Ln = LL0}.

Используя нормализацию в Сводке 8.2 и предполагая, что сопротивлением статора можно пренебречь, 13 мы можем вывести следующие нормализованные электрические уравнения из приведенных в Сводке 8.1:

(8,89) vdn = 2ξξ2 + 1 (1ω0pidn − ωnξiqn)

(8,90) vqn = 2ξξ2 + 1 (1ξω0piqn + ωnidn)

(8,91) Tn = in2sinθ2θ1 + 2in2θ2θ1

, где p ≜ оператор производной d / dt и

(8,92) ξ = LdrLqr (который известен как коэффициент значимости).

Используя эти базовые выражения, можно сгенерировать ряд других вспомогательных выражений. Установившиеся напряжения SYNCREL могут быть записаны как (допуская члены p в (8.89) и (8.90) равно нулю)

(8.93) vdn = −2ωniqnξ2 + 1

(8.94) vqn = −2ξωnidnξ2 + 1.

Используя тот факт, что tan θ≜ i qn / i dn и i n =

idn2 + iqn2

можно записать токи в machine как

(8.95) idn = in1 + tan⁡2θ

(8.96) iqn = intan⁡θ1 + tan⁡2θ

, которое можно подставить в (8.93) и (8.94), чтобы получить

(8.97) vdn = −2ωn (tan⁡θ) в (ξ2 + 1) (1 + tan⁡2θ)

(8.98) vqn = 2ξωnin (ξ2 + 1) (1 + tan⁡2θ).

Эти выражения напряжения могут быть заменены на В 2 n = v 2 dn + В 2 qn и преобразованы в следующее выражение для нормированной амплитуды тока в машине:

(8,99) in2 = (ξ2 + 1) (1 + tan⁡2θ) vn22ωn2 (tan⁡2θ + ξ2).

Затем его можно заменить на (8.91), чтобы получить:

(8.100) Tn = (ξ2 + 1) (tan⁡θ) vn2ωn2 (tan⁡2θ + ξ2).

Замечание 8.15 Это выражение для крутящего момента машины неявно предполагает, что текущий угол постоянен. Это происходит как следствие предположения об установившемся состоянии.

Еще одно очень полезное выражение может быть получено, если мы получим величину напряжения в терминах крутящего момента в переходных условиях . Если использовать тот факт, что i 2 n = i 2 dn + i 2 qn вместе с (8.91) можно записать

(8.101) idn = Tn2cot⁡θ

, что при подстановке в (8.89) и (8.90) дает нормированные напряжения в терминах крутящего момента и угла тока:

(8.103) vdn = ξξ2 + 1 [cot⁡θω0pTn − ωnξTntan⁡θ]

(8.104) vqn = ξξ2 + 1 [tan⁡θξω0pTn + ωnTncot⁡θ]

Замечание 8.16 Обратите внимание, что эти выражения напряжения предполагают, что θ является постоянным, т.е. не меняется во времени. Это позволило вынести члены на основе θ за пределы оператора p.Следовательно, эти уравнения и следующее уравнение, полученное из них, ограничиваются стратегиями управления с постоянным углом (CAC). Это означает, что токи i dn и i qn не являются независимыми, а связаны между собой соотношением tan θ.

Использование v 2 n = v 2 dn + v 2 qn и замена (8.103) и (8.104) можно записать

(8.105) vn2 = tan⁡θ + ξ2cot⁡θξ2 + 1 [14Tnω02 (pTn) 2 + ωn2Tn].

Наконец, еще одна полезная нормализация — это нормализованная скорость изменения нормализованного крутящего момента, то есть pT n . Это может быть нормировано на угловую скорость следующим образом:

(8.106) p’Tn = pTnω0

, который имеет единицы измерения pu / радиан.

Замечание 8.17 Можно интерпретировать p T n как то, насколько крутящий момент в о.е. возрастает за один радиан электрического цикла при частоте ω 0 .Например, если p T n = 5 / 2π , то крутящий момент увеличивается на 5 о.е. на радиан или на 1 о.е. на 2π / 5 радиан, что составляет 1/5 часть базовый электрический цикл .

Отношение линейного напряжения к фазному напряжению Отношение линейного тока к фазному току

Обновление:

В трехфазной сбалансированной системе напряжение на фазе по отношению к другой фазе всегда равно величине напряжения и фазового угла, а векторная сумма трех фаз всегда равна нулю.

Напряжение в сети или фазное напряжение выше 440 В можно измерить с помощью трансформатора напряжения. Измеритель потенциала снижает напряжение с более высокого уровня до низкого, обычно со 110 вольт до 63,5 вольт.

В то же время линейный ток или фазный ток выше 25 А, трансформатор тока используется для понижения уровня тока с высокого до низкого, как правило, 1 А или 5 А.

Что такое линейное напряжение:

В трехфазной системе питания разность потенциалов между двумя фазами называется линейным напряжением (обычно между фазами).Обозначается V L-L . Напряжение между R и Y, или Y с B, или от B до R. В энергосистеме напряжение системы означает линейное напряжение. См. Схему,

Пример: Наш бытовой блок питания трехфазный, 440 Вольт. Здесь 440 вольт означает, что межфазное напряжение равно 440.

Примечание: Если они упоминают в однофазной сети 230 вольт, это означает, что разность потенциалов между фазой и нейтралью составляет 230 вольт.

В звездообразном соединении:

Напряжение сети = 1.732 раза больше фазного напряжения.

Соединение треугольником:

Напряжение сети = фазное напряжение.

Что такое линейный ток:

Измерение тока в одной фазе перед подключением компонента по схеме звезды или треугольника называется линейным током (обычно входным током в двигателе или выходным током в генераторе). В трехфазной сбалансированной системе это может быть ток фазы R, ток фазы Y или ток фазы B.

Обозначается I L ампер.

В звездообразном соединении:

Линейный ток = фазный ток. (мы получаем это, применяя текущее правило Кирхгофа.)

Соединение треугольником:

Линейный ток = фазный ток. (мы получаем его, применяя правило Кирхгофа по напряжению.)

Что такое фазное напряжение:

В трехфазной системе разность потенциалов между одной фазой и естественной точкой называется фазным напряжением. Обозначается V ph вольт

Звездное соединение:

Фазное напряжение = деление линейного напряжения на 1.732

Соединение треугольником:

Фазный ток:

Фазный ток — это величина тока внутри соединения звездой или треугольником трехфазной системы. Обозначается I ph .

В звездообразном соединении:

Фазный ток = Линейный ток

Соединение треугольником:

Примечание: Значение 3 = 1,732.

Формула трехфазного напряжения

Используя вышеупомянутую формулу… V P = фазное напряжение V L = линейное напряжение I P = фазный ток I L = линейный ток R = R1 = R2 = R3 = сопротивление каждой ветви W = мощность, эквивалентная звездам и треугольнику W DELTA = 3 Вт, треугольник. Введите коэффициент мощности нагрузки. Таким образом, если угол включения равен нулю (cos (0) = 1), управляемый выпрямитель работает аналогично предыдущему трехфазному неуправляемому диодному выпрямителю со средними выходными напряжениями, такими же.Из этого поста вы узнаете, как рассчитать ток нагрузки трехфазного двигателя. Падения напряжения бывают междуфазными, для трехфазных, трехпроводных или трехфазных, четырехпроводных цепей 60 Гц. Большинство предыдущих ответов не ошибочны в отношении формул, но в большинстве из них не указывается, для какой конфигурации элемента (звезда или дельта) они действительны, или к какому напряжению или току (фазе или линии) они относятся. к. Если напряжения слишком сильно не сбалансированы, компоненты (например, двигатели и компрессоры) начнут перегреваться.Этот пост о объяснении формулы расчета тока трехфазного двигателя. Эти три напряжения должны быть почти, если не точно, равными друг другу. 4% от заявленного напряжения питания. Формула для расчета мощности, тока и напряжения в трехфазной проводке (несимметричная нагрузка, разные нагрузки на каждой из трех фаз): Pt = P1 + P2 + P3 P1 = V * I1 * cosφ1 I1 = P1 / (V * cosφ1) То же значение для каждой фазы… V = P1 / (I * cosφ1) Pt = общая мощность цепи в ваттах (Вт) P1, P2, P3 = мощность фазы 1, фазы 2 и фазы 3 в ваттах (Вт) трехфазное питание 100 А / фаза TN-S в здание (Ze = 0.28 Ом), а новая распределительная цепь будет запитываться от новых хвостовиков счетчиков через выключатель-предохранитель TP + N с предохранителями BS88 63A на фазу. CM = Circular-Mils (калибр проводов) Примечания: • Национальный электротехнический кодекс рекомендует не более 3% падения напряжения для параллельных цепей. Однофазное напряжение обычно составляет 115 В или 120 В, а трехфазное напряжение обычно составляет 208 В, 230 В или 480 В. Код для добавления этой кальки на ваш сайт. Формула падения напряжения для трехфазных систем следующая: где: VD = падение напряжения в цепи в вольтах.Входное напряжение инвертора составляет 220 В постоянного тока, а частота основной составляющей выходного напряжения составляет 50 Гц. Используется, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок. Его рейтинг — 100 кВА. Если питание однофазное при обычном уровне 240 В, это означает максимальное падение напряжения 4% от 240 В, что составляет 9,6 В, что дает (простыми словами) напряжение нагрузки всего 230,4 В. Для 415 V трехфазная система, допустимое падение напряжения будет 16.6 В при линейном напряжении нагрузки… Для двигателей рекомендуется умножить значение FLA на паспортной табличке на 1,25 для определения сечения провода. Также прочтите: Значения трехфазного тока в трехфазной системе; Мощность в соединении звездой. Напряжение в сети или фазное напряжение выше 440 В можно измерить с помощью трансформатора напряжения. Основная формула для расчета полной мощности в одно- и трехфазных цепях EE. Полная мощность определяется как произведение текущего напряжения на время, проходящего через цепь переменного тока. Ли-онг Ип Ли-онг Ип.Я = Ампер. Фаза A начинается с 0 при фазовом угле 0 градусов, увеличивается до 1 при 90 градусах, обратно до 0 при 180, до -1 при 270 градусах и обратно до 1 при 360 градусах. Среднее значение выходного напряжения может быть получено путем усреднения по одному. Калькулятор трехфазной мощности рассчитывает ток активной и реактивной мощности по следующим параметрам: Напряжение (В): введите межфазное напряжение (\ (V_ {LL} \)) напряжение для трехфазной сети переменного тока в вольтах. Таким образом, если нагрузка однофазная, то можно взять одну фазу из трехфазной цепи, а нейтраль можно использовать в качестве заземления для завершения цепи.Каждая фаза представляет собой синусоидальную волну. Напряжение во всех трех каналах одинаковое. Если у вас есть сбалансированная трехфазная мощность, где все три фазных напряжения равны по величине и разнесены по фазе на 120 °, то: $$ V_ {LL} = \ sqrt {3} \ times V_ {LN} $$ Чтобы понять, почему рассмотрим векторную диаграмму: Применение базового триггера: share | улучшить этот ответ | следовать | Создан 06 дек. Создан 06 дек. Чтобы лучше понять трехфазное питание, человеку следует сначала изучить и понять принципы, применимые к однофазному питанию.11.4 (б). Математически задана следующим образом: Простая формула для расчета номинальной мощности трехфазных трансформаторов: KVA = (√3. Здесь формула однофазной мощности состоит только из колеблющихся членов, а значение мощности для полного цикла равно нулю. Следовательно, чтобы передавать 3-фазный ток 100 А на фазу по длине маршрута 150 м с общей формулой сбалансированной трехфазной мощности. Если у вас есть 3-фазный автоматический выключатель на 50 А, это 50 на фазу — при расчете падения напряжения с использованием таблиц вы рассчитываете при использовании 50A или 150A? Пиковое выходное напряжение = пиковое линейное напряжение = 3 × Vm 2.Где: V — напряжение (вольты), а I — ток (амперы). Амперы — введите максимальный ток в амперах, который будет протекать через цепь. Конфигурация «треугольник» чаще всего используется для питания трехфазных промышленных нагрузок большей мощности. Это требует, чтобы анализ проводился во временной области. Ib — расчетный ток в амперах. Уравнение однофазной мощности для чисто емкостной цепи. Электропитание в трехфазной системе является непрерывным, поскольку все три фазы участвуют в выработке общей мощности.Первоначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»). Таким образом, единственное отличие от формулы, использованной выше для средней выходной мощности Напряжение трехфазного мостового выпрямителя выражено косинусоидальным углом cos (α) запускающего или запускающего импульса. Формулы разомкнутой 3-фазной цепи: Вт с разомкнутым треугольником = 2/3 Вт с треугольником, Вт с разомкнутой звездой = 1/2 Вт по схеме «звезда», Вт с разомкнутой четырехпроводной схемой = 2/3 Вт по схеме «звезда». Однако различные комбинации напряжений могут быть получены от одного трехфазного источника питания по схеме треугольник, путем выполнения соединений или «ответвлений» вдоль обмоток питающих трансформаторов.Например, сбалансированная двухфазная мощность может быть получена от трехфазной сети с помощью двух специально сконструированных трансформаторов с ответвлениями на 50% и 86,6% первичного напряжения. R = сопротивление проводника. Формула для тока трехфазной нагрузки поясняется данными паспортной таблички асинхронного двигателя с напряжением трехфазной нагрузки. Формула для расчета однофазных и трехфазных коротких замыканий трансформаторов (кА): ВА = Вольт-ампер или активная мощность. Напряжение — введите напряжение на источнике цепи.Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите, что, вставив соответствующее трехфазное напряжение для «В» и умножив его на 1,732, вы можете затем разделить это количество на «1000. », Чтобы получить конкретное число (или константу), которое вы можете использовать для умножения« кВт », чтобы получить ток, потребляемый этой трехфазной нагрузкой при соответствующем трехфазном напряжении. Опять же, предполагая равные номинальные мощности трех источников однофазного переменного тока, общая мощность, доступная для подключенной нагрузки трехфазного переменного тока, является произведением линейного напряжения трехфазного переменного тока, умноженного на 3-фазный линейный ток, умноженного на √ 3.Коэффициент мощности (cosΦ). В трехфазной сбалансированной системе напряжение на фазе по отношению к другой фазе всегда равно величине напряжения и фазового угла, а векторная сумма трех фаз всегда равна нулю. По формуле: Вольт-Ампер (ВА) = √3 × В ЛИНИЯ × ЛИНИЯ Трехфазное напряжение или соединение звездой обычно состоит из напряжения, протекающего по трем различным каналам, для простоты мы называем это Напряжение в красной линии (VR), Напряжение Желтой линией (VY), синей линией (VB) — напряжение.28 мая 2018 г. Основные формулы. Полная мощность определяется как произведение текущего напряжения на время, проходящего через цепь переменного тока. L = длина цепи от источника питания до нагрузки. Когда переменный ток проходит через конденсатор, он сначала заряжается до максимального значения, а затем разряжается. Предполагается, что распределительный кабель будет представлять собой 4-жильный кабель BS 6723 LSZH SWA сечением 16 мм2, использующий SWA в качестве CPC, и имеет длину 36 м, с четырьмя жилами TP + N. Трехфазное соединение звездой (Y). Такая конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника.V x I) / 1000. Для однофазного подключения напряжение может быть математически получено из приведенной ниже формулы. Для трехфазного подключения напряжение может быть математически получено из приведенной ниже формулы. Калькулятор тока также используется в электротехнике для измерения неизвестного тока двумя известными величинами, кВА и напряжением, приложенным к приведенные ниже формулы. При соединении треугольником стороны фаз соединяются циклически, чтобы образовать замкнутый контур, как показано на рисунке 1. Пример 11.3. В трехфазной цепи переменного тока полная истинная или активная мощность является суммой трехфазной мощности.Формула; Простой электрический калькулятор для расчета трех (3) фазной электрической мощности в цепи на основе напряжения и тока. % Импеданс = Импеданс трансформатора. В конце концов, трехфазная цепь — это, по сути, комбинация трех отдельных однофазных цепей, у которых есть пики и спады, разделенные периодом времени. Система трехфазного напряжения Системы трехфазного напряжения состоят из трех синусоидальных напряжений равной величины, одинаковой частоты, разделенных на 120 градусов.Двухфазные цепи могут быть соединены двумя парами проводов, или два провода могут быть объединены, что требует только трех проводов для цепи. т.е. 10-миллиметровый кабель, пропускающий 3 фазы 50A на 30 м VD = 3,8x50x30 / 1000 = 5,7V или VD = 3,8x150x30 / 1000 = 17,1V Я думаю, это должен быть первый, но я немного запутался, нужно освежить некоторые 3 фазы теория я думаю. Падение напряжения на отрезке кабеля (ов) рассчитывается по следующей формуле: где: мВ / А / м — табличное значение в мВ / А / м, полученное из Приложения 4 к BS 7671.Форма волны выходного напряжения однофазного инвертора с синусоидальной широтно-импульсной модуляцией такая же, как на рисунке. Пример: на следующем рисунке представлена ​​паспортная табличка трехфазного трансформатора. Линейный и фазный токи связаны друг с другом следующим образом: I_line = square_root (3) * I_phase Это означает, что какой бы ток питания мы ни имели, нам нужно сечение провода, умноженное только на 1 / square_root (3) линейный ток. Формула: Трехфазная электрическая мощность = V * I * 1,732 * PF, где V = напряжение I = ток PF = коэффициент мощности (0.8) Расчет трехфазной электрической мощности упрощен с помощью этого онлайн-калькулятора. Спроектируйте выходной фильтр так, чтобы коэффициент нелинейных искажений не превышал 5%. L — длина кабеля в метрах. Последовательность трехфазного вектора напряжения Последовательность {1-2-3} и последовательность {3-2-1} Обозначение нижнего индекса: После определения последовательности фаз и идентификации соответствующих индексов, вычисления с использованием этих индексов вместе с соглашениями, принятыми для Версия закона Ома для переменного тока предотвратит угловые ошибки.Синусоидальные волны для трехфазной системы показаны ниже. Каждая из трех фаз может использоваться как однофазная. Это соединение Scott T создает настоящую двухфазную систему с разницей во времени между фазами 90 °. Фаза B начинается с 0 при 120 градусах, а фаза C начинается с 0 при 240 градусах. Двухфазная электроэнергия Использует два напряжения переменного тока с фазовым сдвигом между ними на 90 электрических градусов. На рисунке 1 показаны функции косинуса в реальном времени и соответствующие векторные обозначения для трехфазной системы линейного напряжения с линейным напряжением V12 в качестве эталона.Анализ трехфазного выпрямителя с резистивной нагрузкой: Обозначение: Пусть V m = Пиковое напряжение между фазой и нейтралью. Полезная формула интегрирования: 4 3 6 6 cos () 6 ∫ 2 = + — π ω ω π π td t 1. Или сумма мощность всех трех фаз — это полная активная или истинная мощность. Трехфазное питание состоит из 3 «горячих» проводов, каждый из которых имеет полное линейное напряжение относительно двух других. Вольт = Вольт трансформатора. Если Z Y = Z∠θ, фазные токи отстают от соответствующих фазных напряжений на θ. 3-фазная звезда-звезда (сбалансированная нагрузка) 3-фазная открытая звезда-звезда (без нейтрали) IP = ILVP = VL… Для нагрузки, подключенной по схеме Y, фазные напряжения равны (1), где коэффициент √2 необходим, потому что V p было определено как действующее значение фазного напряжения.Ссылка на таблицы падения напряжения указывает на то, что сечение кабеля с падением напряжения 0,7 / 1000 В / А / м (0,7 мВ / А / м) ИЛИ МЕНЬШЕ является медным проводником диаметром 70 мм. Нет необходимости в сложной формуле. Ток (I): введите ток в амперах (A).

Статистика распределения

Kde, Объективный идеализм Гегеля, Что означают маленькие часы в сообщении Facebook, Рецепт Эпплджек с Everclear, Emerson Prima Snugger 42, Домашние аудиосистемы, Уровни услуг в области психического здоровья, Детали горелки Whirlpool Gas Range 5, Непрерывное улучшение качества в сфере здравоохранения Определение,

Трехфазное напряжение + расчеты

Электричество трехфазное.В этом уроке мы узнаем больше о трехфазном электричестве. Мы расскажем, как генерируются 3 фазы, что означают цикл и герц, изобразим форму волны напряжения по мере ее генерации, вычислим однофазное и трехфазное напряжения.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube по трехфазному напряжению + расчеты

Итак, в нашем последнем трехфазном руководстве мы рассмотрели основы того, что происходит внутри трехфазных систем электроснабжения, и в этом руководстве мы сделаем шаг вперед и немного глубже рассмотрим, как эти системы работают, и основные математика позади них.

Мы используем розетки в наших домах для питания наших электрических устройств. Напряжение от этих вилок варьируется в зависимости от того, где мы находимся. Например: в Северной Америке используется ~ 120 В, в Европе ~ 230 В, в Австралии и Индии ~ 230 В, а в Великобритании ~ 230 В.
Это стандартные напряжения, установленные правительственными постановлениями каждой страны. Вы можете найти их в Интернете, или мы можем просто измерить их дома, если у вас есть подходящие инструменты.

Находясь в Великобритании, я измерил напряжение в стандартной домашней розетке.Вы можете видеть, что я получаю около 235 В на этой вилке, используя простой счетчик энергии. В качестве альтернативы я могу использовать мультиметр, чтобы прочитать это. Значение немного меняется в течение дня, иногда выше, а иногда ниже, но остается в определенных пределах.

Если у вас нет счетчика энергии или мультиметра, они очень дешевые и очень полезные, поэтому я рекомендую вам их приобрести.

Теперь эти напряжения в розетках в наших домах однофазные от соединения звездой. Они возникают в результате соединения одной фазы с нейтралью или, другими словами, только одной катушкой от генератора.
Но мы также можем подключиться к двум или трем фазам одновременно, то есть к двум или трем катушкам генератора, и если мы это сделаем, мы получим более высокое напряжение.

В США мы получаем 120 В от одной фазы или 208 В от двух или трех фаз.
Европа мы получаем однофазный 230 В или 400 В
Австралия и Индия получаем однофазный 230 В или 400 В

Если я подключаю осциоскоп к однофазной сети, я получаю синусоидальную волну. Когда я подключаюсь ко всем трем фазам, я получаю три синусоиды подряд.

Итак, что здесь происходит, почему у нас разные напряжения? и почему мы получаем эти синусоидальные волны?

Итак, напомним.Получаем полезное электричество, когда много электроны движутся по кабелю в том же направлении. Мы используем медные провода, потому что каждый из миллиардов атомов внутри медного материала имеет слабосвязанные электрон в самой внешней оболочке. Этот слабо связанный электрон может свободно перемещаться. между другими атомами меди, и они действительно движутся все время, но случайным образом направления, которые нам не нужны.

Чтобы заставить их двигаться в одном направлении, мы перемещаем магнит вдоль медной проволоки. Магнитное поле заставляет свободные электроны двигаться в одном направлении.Если мы намотаем медную проволоку в катушку, мы сможем поместить больше атомов меди в магнитное поле и сможем переместить больше электронов. Если магнит движется вперед только в одном направлении, тогда электроны текут только в одном направлении, и мы получаем постоянный или постоянный ток, это очень похоже на воду, текущую в реке прямо из одного конца в другой. Если мы перемещаем магнит вперед, а затем назад, мы получаем переменный или переменный ток, при котором электроны движутся вперед, а затем назад. Это очень похоже на морской прилив, вода постоянно течет назад и вперед снова и снова.

Вместо того, чтобы целый день двигать магнитом вперед и назад, инженеры вместо этого просто вращают его, а затем помещают катушку медной проволоки вокруг снаружи. Мы разделяем катушку на две, но держим их соединенными, а затем размещаем один сверху и один снизу, чтобы закрыть магнитное поле.

Когда генератор запускается, северный и южный полюсы магнита находятся непосредственно между катушками, поэтому катушка не испытывает никакого эффекта и электроны не движутся. Когда мы вращаем магнит, северная сторона проходит через верхнюю катушку, и это толкает электроны вперед.По мере того, как магнитное поле достигает своего максимума, все больше и больше электронов начинают течь, но затем оно проходит максимум и снова направляется к нулю. Затем южный магнитный полюс встречает и тянет электроны назад, и снова количество движущихся электронов меняется, так как сила магнитного поля изменяется во время вращения.

Если мы построим график изменения напряжения во время вращения, то мы получим синусоидальную волну, в которой напряжение начинается с нуля, увеличивается до максимума, а затем уменьшается до нуля.Затем входит южный полюс и тянет электроны назад, поэтому мы получаем отрицательные значения, снова увеличиваясь до максимального значения, а затем снова опускаясь до нуля.

Эта схема дает нам однофазное питание. Если мы добавим вторая катушка вращается на 120 градусов относительно первой, тогда мы получаем вторую фазу. Эта катушка испытывает изменение магнитного поля в разное время по сравнению с к первой фазе, поэтому форма волны будет такой же, но с задержкой. Форма волны фазы 2 и не начинается, пока магнит не вращается в Вращение на 120 градусов.Если мы затем добавим третью катушку, вращающуюся на 240 градусов от сначала мы получаем третью фазу. И снова эта катушка испытает изменение магнитное поле в другое время по сравнению с двумя другими, поэтому его волна будет равна к остальным, за исключением того, что он будет отложен и начнется при 240 градусах вращение. Когда магнит вращается несколько раз, он в конечном итоге просто образует непрерывное трехфазное питание с этими тремя формами волны.

Когда магнит совершает 1 полный оборот, мы называем это циклом. Мы измеряем циклы в герцах или Гц.Если вы посмотрите на свои электрические устройства, вы увидите 50 Гц или 60 Гц — это производитель, который сообщает вам, к какому типу источника питания необходимо подключить оборудование. Некоторые устройства могут быть подключены к любому из них.

Каждая страна использует 50 Гц или 60 Гц. Северная Америка, некоторые из Южная Америка и несколько других стран используют 60 Гц в остальном мире использует 50 Гц. 50 Гц означает, что магнит совершает 50 оборотов в секунду, 60 Гц означает магнит совершает 60 оборотов в секунду.

Если магнит совершает полный оборот 50 раз в секунду, что составляет 50 Гц, то катушка в генераторе испытывает изменение полярности магнитного поля 100 раз в секунду (север, затем юг или положительный, затем отрицательный), поэтому напряжение изменяется между положительное значение и отрицательное значение 100 раз в секунду.Если это 60 Гц, то напряжение будет изменяться 120 раз в секунду. Поскольку напряжение подталкивает электроны к созданию электрического тока, электроны меняют направление 100 или 120 раз в секунду.

Мы можем рассчитать, сколько времени требуется для завершения одного поворота, используя формулу Time T = 1 / f.
f = частота. Таким образом, источник питания с частотой 50 Гц занимает 0,02 секунды или 20 миллисекунд, а источник питания 60 Гц — 0,0167 секунды или 16,7 миллисекунды.

Раньше мы видели, что напряжение в розетках разные во всем мире.

Эти напряжения известны как среднеквадратичное значение или среднеквадратичное значение. Мы рассчитаем это немного позже в видео. Напряжение, выходящее из розеток, не всегда составляет 120, 220, 230 или 240 В. Мы видели по синусоиде, что она постоянно меняется между положительными и отрицательными пиками.

Например, пики на самом деле намного выше.
В США напряжение в розетке достигает 170 В
Европа достигает 325 В
Индия и Австралия достигает 325 В

Мы можем рассчитать это пиковое или максимальное напряжение по формуле:

Поскольку три фазы испытывают магнитное поле в разное время, если мы сложим их мгновенные напряжения вместе, мы просто получим ноль, потому что они компенсируют друг друга, мы рассмотрим это позже.

К счастью, одному умному человеку пришла в голову идея использовать среднеквадратичное значение напряжения, которое равно средней мощности, рассеиваемой чисто резистивной нагрузкой, которая питается током постоянного тока.

Другими словами, они рассчитали напряжение, необходимое для питания ограничительной нагрузки, такой как нагреватель, питаемый от источника постоянного тока. Затем они выяснили, каким должно быть переменное напряжение, чтобы выделять такое же количество тепла.

Давайте очень медленно повернем магнит в генераторе, а затем вычислим напряжения для каждого сегмента и посмотрим, как это формирует синусоидальную волну для каждой фазы.

ЭКОНОМИЯ ВРЕМЕНИ: Загрузите нашу трехфазную таблицу Excel здесь
USA 👉 http://engmind.info/3-Phase-Excel-Sheet
EU 👉 http://engmind.info/3-Phase-Excel-EU
ИНДИЯ 👉 http://engmind.info/3-Phase-Excel-IN
UK 👉 http://engmind.info/3-Phase-Excel-UK
АВСТРАЛИЯ 👉 http://engmind.info/3-Phase- Excel-AU

Если разделить окружность генератора на сегментов, разнесенных на 30 градусов, что дает нам 12 сегментов, мы можем видеть, как каждая волна сделал. Я также нарисую график с каждым из сегментов, чтобы мы могли вычислить напряжение и построить это.Кстати, вы можете разделить это на столько сегментов, сколько хотите, чем меньше отрезок, тем точнее расчет.

Сначала нам нужно преобразовать каждый сегмент из градусов в радианы. Мы делаем это по формуле:

Для первой фазы мы вычисляем мгновенное напряжение в каждом сегменте по формуле.
(мгновенное напряжение просто означает напряжение в данный момент времени)

Так, например, при повороте на 30 градусов или 0,524 радиана мы должны получить значение
84.85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Просто выполните этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Синусоидальные напряжения фазы 1 на 30-градусных сегментах

Теперь, если мы построим это, то мы получим синусоидальную волну, показывающую напряжение в каждой точке во время вращения. Вы видите, что значения увеличиваются по мере того, как магнитное поле становится сильнее и заставляет течь больше электронов, затем оно уменьшается, пока не достигнет нуля, где магнитное поле находится точно между север и юг через катушку, поэтому это не имеет никакого эффекта.Затем наступает южный полюс и начинает тянуть электроны назад, поэтому мы получаем отрицательное значение, и оно увеличивается с изменением напряженности магнитного поля южных полюсов.

Для фазы 2 нам нужно использовать формулу

«(120 * pi / 180))» эта конечная часть просто учитывает задержку, потому что катушка находится на 120 градусов от первой.

Пример при 30 градусах для фазы 2 мы должны получить значение
-169,71 для источника питания 120 В
-311,13 для источника питания 220 В
-325.27 для питания 230 В
339,41 для питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Для фазы 3 нам нужно использовать формулу

Пример: при 30 градусах для фазы 3 мы должны получить значение
84,85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Теперь мы можем построить график, чтобы увидеть форму волны фаз 1.2 и 3 и то, как меняются напряжения. Это наш трехфазный источник питания, показывающий напряжение на каждой фазе при каждом повороте генератора на 30 градусов.

Если мы затем попытаемся суммировать мгновенное напряжение для всех фазы на каждом сегменте, мы видим, что они компенсируют друг друга. Так что вместо мы собираемся использовать эквивалентное среднеквадратичное напряжение постоянного тока.

Чтобы сделать это для фазы 1, мы возводим в квадрат мгновенное значение напряжения для каждого сегмента.Сделайте это для всех сегментов для полного цикла.

Затем сложите все эти значения вместе и затем разделите это число на количество сегментов, которое у нас есть, в данном случае у нас есть 12 сегментов. Затем извлекаем квадратный корень из этого числа. Это дает нам среднеквадратичное значение напряжения 120, 220, 230 В или 240 В в зависимости от того, для какого источника питания вы рассчитываете.

Это фазное напряжение. Это означает, что если мы подключим устройство между любой фазой и нейтралью, тогда мы получаем среднеквадратичное значение 120, 220, 230 или 240 В, как если бы у вас дома была розетка.

Сделаем то же самое для двух других фаз. Возведите в квадрат значение каждого мгновенного напряжения.

Если нам нужно больше мощности, мы подключаем между двумя или тремя фазы. Мы рассчитываем подаваемое напряжение, возводя в квадрат каждый из мгновенных значений. напряжения на фазу, затем сложите все три значения на сегмент и затем возьмите квадратный корень из этого числа.

Вы увидите, что трехфазное напряжение выходит на

.

208 В для источника питания 120 В
380 В для источника питания 220 В
398 В для источника питания 230 В
415 В для источника питания 240 В

Мы можем получить два напряжения от трехфазного источника питания.
Мы называем меньшее напряжение нашим фазным напряжением и получаем его, подключая любую фазу к нейтрали. Вот как мы получаем напряжение от розеток в наших домах, потому что они подключены только к одной фазе и нейтрали.

Мы называем большее напряжение линейным напряжением и получаем его, соединяя любые две фазы. Вот так мы получаем больше энергии от источника питания.

Например, в США многим приборам требуется 208 В, потому что 120 В просто недостаточно мощно, поэтому нам приходится подключаться к двум фазам.В Северной Америке мы также можем найти системы на 120/240 В, которые работают по-другому. Мы рассмотрим это в другом уроке.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *