Нормально замкнутое реле на DIP8.RU
Производитель: OMRON
Код товара: G6CK-2114P-US-12DC
Код произв-ля: G6CK-2114P-US 12VDC
Реле электромагнитное, SPST-NO + SPST-NC, Uобмотки 12VDC
На складе в Москве: 20 шт
Допоставка 118 шт 1 неделя ?
Конф. контактов: SPST-NO|SPST-NC
Тип тока обмотки: DC
Номинальное напряжение обмотки, В: 12
Ток контактов макс,, А: 8
Коммутируемое напряжение max DC, В: 125
Коммутируемое напряжение max AC, В: 380
Сопротивление контактов, мОм: 30
Сопротивление обмотки, Ом: 514
Исполнение реле: импульсное
Монтаж: PCB
Шаг контактов, мм: 7.62
Длина, мм: 20
Ширина, мм: 15
Высота, мм: 10
Рабочая температура мин,, °C: -25
Рабочая температура макс, °C: 70
Радиоприемник РП-4
Радиоприемник RP-4 — предназначен для подключения радиоканальных датчиков к проводным системам, имеет 4 канала. И выдает сигналы на 4 реле для имитации срабатывания проводных входов.
При приеме сигнала от радиодатчиков, реле размыкается на 3 секунды, имитируя срабатывание проводного датчика движения.
Видео обзор радиоприемника
Описание индикаторов:
Название | Описание |
Индикатор RF | Показывает активность в радиоэфире |
Индикаторы радиозон | Показывает состояние сигнального реле:- не светится, если реле выключено.- светится, если реле включено.При записи\удалении радиодатчиков:- горит – ожидает регистрации датчика- мигнул один раз – датчик зарегистрирован- мигает в течении 5 секунд – датчики в данной радиозоне удалены |
Назначение контактов:
Номер клемной колодки | Название | Описание |
1 | +12 | Питание устройства (+12В) |
2 | GND | Питание устройства (-12В) |
3 | РЕЛЕ1 Общий | Контакт 1 оптореле «Общий» |
4 | РЕЛЕ1 НЗ | Контакт 1 оптореле «НЗ» (нормально-замкнутый) |
5 | РЕЛЕ2 Общий | Контакт 2 оптореле «Общий» |
6 | РЕЛЕ2 НЗ | Контакт 2 оптореле «НЗ» (нормально-замкнутый) |
7 | РЕЛЕ3 Общий | Контакт 3 оптореле «Общий» |
8 | РЕЛЕ3 НЗ | Контакт 3 оптореле «НЗ» (нормально-замкнутый) |
9 | РЕЛЕ4 Общий | Контакт 4 оптореле «Общий» |
10 | РЕЛЕ4 НЗ | Контакт 4 оптореле «НЗ» (нормально-замкнутый) |
11 | Не задействован | |
12 | Не задействован | |
13 | Не задействован | |
14 | Не задействован |
СГГ10Б – бытовой сигнализатор горючих газов
Описание
Описание
Тип газоанализатора — стационарный
Способ забора пробы — диффузионный
Метод измерения — термохимический
Предназначен для выдачи сигнализации о превышении установленных пороговых значений довзрывоопасных концентраций горючих газов (метана или пропан-бутановой смеси) в воздухе.
Область применения
- жилые, коммунально-бытовые помещения с отопительным оборудованием с открытой или закрытой камерой сгорания оборудованные газогорелочными устройствами, работающими на природном или сжиженном газах
- помещения, оборудованные газогорелочными устройствами, работающими на природном (ГОСТ 5542+2014) или сжиженном (ГОСТ Р52087-2003) газах
Отличительные особенности
- соответствие ГОСТ Р ЕН 50194-2008 и Европейскому нормативу EN 501194:2000
- возможность организации сети через интерфейс RS485 или по радиоканалу
- подключение кабелей без пайки (клеммная колодка)
- возможность подвода питания «скрытой» подводкой
- наличие кнопки «сброс-тест» для тестирования сигнализатора
- срок службы датчика 5 лет
- гарантия 36 месяцев
- автокалибровка нуля при включении или раз в 30 дней
- межповерочный и межкалибровочный интервал 1 год
Возможный состав системы
Сигнализатор СГГ10-Б (6 различных модификаций).
Комплект монтажных проводов ИБЯЛ.413944.062 (провод 0, 75х2 — 5 метров, провод 0,5х2 — 2,5 метра).
Клапаны КЭГ 9720 ИБЯЛ.685181.001 (DN 15), — 01 (DN 20), -02 (DN 25) , -21 (DN 32)-40В.
Характеристики
Характеристики
Условное наименование и обозначение сигнализаторов | Наличие «сухих» контактов |
Наличие интерфейсов |
Исполнительное устройство | |
RS485 | радиоканал | |||
СГГ10-Б ИБЯЛ.413216.047 | — | — | — | К |
СГГ10-Б-МР ИБЯЛ.413216.047-02 | МР | — | — | |
СГГ10-Б-ОР ИБЯЛ.413216.047-04 | ОР | — | — | |
СГГ10-Б-И ИБЯЛ.413216.047-06 | — | + | — | |
СГГ10-Б-РК ИБЯЛ.413216.047-08 | — | — | + | |
СГГ10-Б-М ИБЯЛ.413216.047-10 | — | — | — | М |
МР — механическое реле, ОР — оптоэлектронное реле, К — электромагнитный клапан с импульсным управлением, М – механизм отключения подачи газа с электроприводом постоянного тока.
Основные технические характеристикиХарактеристики | Значения | Примечание |
Пороги срабатывания (по метану), % НКПР: 1 порог (аварийный / предупредительный) 2 порог (аварийный) |
10 20 |
аварийная сигнализация «ГАЗ» блокирующая (отключается нажатием кнопки «СБРОС») |
Параметры оптореле | 40 В; 0,2 А | нормально разомкнутое |
Параметры механического реле | 220В; 2,5А | нормально замкнутое |
Основная абсолютная погрешность, % НКПР, не более | ± 5 | |
Степень защиты (по ГОСТ 14254) | IP 42 | |
Напряжение питания, В | 100 — 250 | (50 ± 1) Гц |
Диапазон температуры окружающей среды, °С | от -10 до + 50 | |
Выход на клапан, В (напряжение импульсное) | 40 | КЭГ-9720 (Ду=15; 20; 25; 32) |
Время срабатывания сигнализации, с, не более | 15 | |
Габаритные размеры, мм, не более | 144х96х42 | |
Масса, кг, не более | 0,2 |
Специализированные модификации СГГ10-Б-И и СГГ10-Б-РК (совместно с блоком сбора и передачи информации БСП-РК), имеют возможность передавать данные по интерфейсу RS485 и радиоканалу соответственно, используются для создания сетей контроля за довзрывоопасными концентрациями горючих газов в многоквартирных домах, подъездах жилых домов и других подобных бытовых и административных объектах большой площади.
Документация
Документация
Сертификаты
Аксессуары
Аксессуары
ПГС — поверочные газовые смеси
Поверочные газовые смеси (ПГС) – государственные стандартные образцы (ГСО), эталоны, предназначенные для проведения корректировки показаний и поверки газоанализаторов.
Вентили ВТР, ВЗ, ВР
Предназначены для регулировки расхода газовой смеси, подаваемой из баллона ПГС-ГСО на газоанализатор (штуцер под ПВХ).
РЕЛЕ — военные твердотельные
Для военных приложений, где требуются более прочные и высококвалифицированные детали, Teledyne Relays имеет долгую историю предоставления высокопроизводительных продуктов для использования во всех отраслях вооруженных сил США. Эти MSSR разработаны в соответствии с MIL-PRF-28750 и тщательно проверены и протестированы, чтобы гарантировать их работоспособность в полевых условиях.
|
|
|
для 270 В постоянного тока |
Твердотельные реле с управляющими входами переменного или постоянного тока
Серия твердотельных реле SSRL компании Omega используется для управления нагревателями большого сопротивления в сочетании с регуляторами температуры.Твердотельные реле — это SPST, нормально разомкнутые коммутационные устройства без движущихся частей, способные выполнять миллионы циклов срабатывания. Подавая управляющий сигнал, SSR включает ток нагрузки переменного тока, как это делают подвижные контакты на механическом контакторе. Трехфазными нагрузками можно управлять с помощью 2 или 3 SSR. Используйте 3 SSR для трехфазных нагрузок Y или звезды с использованием нейтральной линии. Два SSR будут управлять нагрузкой по схеме «треугольник» без нейтрали. Три твердотельных реле также используются, когда нет нейтральной нагрузки, чтобы обеспечить резервирование и дополнительную уверенность в управлении.
«Переключение» происходит в точке перехода нулевого напряжения цикла переменного тока. Из-за этого не возникает заметных электрических шумов, что делает SSR идеальным для сред, где есть устройства, восприимчивые к RFI.
Общие характеристики
Рабочая температура: от -20 до 80 ° C (от -5 до 175 ° F)
Температура хранения: от -40 до 80 ° C (от -40 до 175 ° F)
Изоляция: 4000 В среднекв., От входа к выходу; 2500 В среднеквадр. Вход / выход относительно земли
Емкость: 8 пФ, вход-выход (макс.)
Диапазон частот линии: 47–63 Гц
Время включения: 20 мс, переменный ток; 05 цикл, постоянный ток
Время выключения: 30 мс, переменный ток; 05 cycle, dc
Эти SSR относятся к типу двойных тиристоров, которые по своей природе более надежны и способны выдерживать более высокие перегрузки до отказа, чем симисторы.В твердотельном реле выделяется тепло из-за падения номинального напряжения на коммутационном устройстве. Для отвода тепла твердотельный реле необходимо установить на радиатор с оребрением или алюминиевую пластину. SSR следует размещать в местах с относительно низкой температурой окружающей среды, поскольку номинальный ток переключения снижается при повышении температуры. Другой характеристикой SSR является небольшой ток утечки на выходе при разомкнутом реле. Из-за этого на стороне нагрузки устройства всегда будет присутствовать напряжение.
По сравнению с SSR и механическими контакторами, SSR имеет срок службы во много раз больше, чем у контакторов сравнимой цены. Однако твердотельные реле более склонны к выходу из строя из-за перегрузки и неправильной первоначальной проводки. Твердотельные реле могут выйти из строя, контакт замкнут, в цепях перегрузки. Важно, чтобы для защиты цепи нагрузки был установлен быстродействующий предохранитель I2T соответствующего номинала.
Ребристые радиаторы представляют собой анодированные изделия, которые поставляются с резьбовыми монтажными отверстиями и винтами.См. Кривые тепловых характеристик и инструкции по заказу для правильного выбора.
Все реле серии SSRL поставляются с теплопроводящей площадкой, установленной на опорной плите. Это значительно улучшит теплопроводность между радиатором и опорной пластиной SSR. Также рекомендуется использовать на крепежных винтах SSR момент затяжки 10 дюймов / фунт.
Выходные характеристики для моделей с входом переменного и постоянного тока
Технические характеристики | 10 ампер | 25 ампер | 50 ампер | 100 А | |
Макс.ток в рабочем состоянии | 10 A | 25 A | 50 A | 75 A | 100 A |
Макс.ток в рабочем состоянии | 100 мА | ||||
Макс.1-тактный скачок напряжения | 150 A | 300 A | 750 A | 1000 A | 1200 A |
Макс.1 сек скачок | 30 A | 75 A | 150 A | 225 A | 300 A |
1 2 T (60 Гц), A 2 сек | 416 | 937 | 2458 | 5000 | 6000 |
Серия SSR240 Электрические характеристики
Входной сигнал управления | Выход | ||||||
Модель | Тип | Управление Сигнал Напряжение | Управление Сигнал Включение | Управление Сигнал Отключение | Макс Вход Ток | Пик Напряжение * (60 сек. Макс.) | |
SSRL240AC10 SSRL240AC25 SSRL240AC50 SSRL240AC75 SSRL240AC100 | ac Control Сигнал | 90-280 Vac | 90 Vac | 90-280 Vac | 90 Vac | 800 В | |
SSRL240DC10 SSRL240DC25 SSRL240DC50 SSRL240DC75 SSRL240DC100 | пост. SSRL660AC50 SSRL660AC75 SSRL660AC100 | ac Управление Сигнал | 9 От 0 до 280 В перем. Тока | 90 В перем. Тока | 10 В перем. Тока | 10 мА | 1200 В |
SSRL660DC50 SSRL660DC75 SSRL660DC100 | пост. | 14 мА | 1200 В |
Серия SSR240 Характеристики выходной нагрузки переменного тока
Номер модели | Номинальная Линия переменного тока Напряжение | Номинальная Нагрузка Ток | Макс. Контакт Падение напряжения | Макс. Утечка в закрытом состоянии (макс. Окружающая среда 25 ° C) | |||
120 Vac | 240 Vac | 440 Vac | |||||
SSRL240AC10 SSRL240AC25 SSRL240AC50 SSRL240 до 280 Vac | 10 A 25 A 50 A 75 A 100 A | 1.6 В | 0,1 мА | 0,1 мА | НЕТ | ||
SSRL240DC10 SSRL240DC25 SSRL240DC50 SSRL240DC75 SSRL240DC100 | 24–280 В перем. | 1,6 В | 0,1 мА | 0,1 мА | НЕТ | ||
SSRL660AC50 SSRL660AC75 SSRL660AC100 | 48 до 660 В переменного тока | 50 A 75 A 100A | 1,6 В | 1,6 В | 25 мА | 0,25 мА | 0,25 мА |
SSRL660DC50 SSRL660DC75 SSRL660DC100 | 48-660 В перем. Тока | 50 A 75 A 100 A | 1,6 В | 0,25 мА | 0,29 0,29 мА мА |
SSAC Твердотельное реле 230VAC 10A Нет
SLR1610A — SSAC твердотельное реле 230 В перем. Тока, 10 А №Семейство серии SLR
В серии SLR нет изоляции между входом управляющего переключателя и полупроводниковым выходом.Выберите SLR для приложений, в которых переключатель управления является тем же источником напряжения, что и нагрузка. Обеспечивает бесшумность, надежность и длительный срок службы твердотельного реле без затрат на изоляционную схему. Переключение при нулевом напряжении SLR2 может продлить срок службы лампы накаливания до 10 раз по сравнению с нормальным сроком службы. Случайное переключение SLR1 обычно используется для индуктивных нагрузок. Когда на соединительных проводах используются полностью изолированные клеммы-розетки, система удовлетворяет требованиям к защищенным от прикосновения соединениям.
Эксплуатация
Твердотельный выход расположен между клеммами 1 и 2 и может быть заказан как нормально разомкнутый или нормально замкнутый, когда подано напряжение и S1 разомкнут. Когда S1 замкнут, твердотельный выход между клеммами 1 и 2 замыкается (или открывается). Если S1 открыт, твердотельный выход откроется (или закроется).
Сброс: открытие S1 сбрасывает выход в исходное состояние. Сброс также выполняется путем снятия входного напряжения.
Характеристики :
- SLR1 — Случайное переключение для индуктивных нагрузок
- SLR2 — Коммутация при нулевом напряжении для резистивных нагрузок и нагрузок накаливания
- Нормально открытый или нормально закрытый выход
- 1-20 А с пусковым током до 200 А
- 0.Заделка 25 дюймов (6,35 мм) с одиночным
монтажное отверстие
- Бесшумное переключение, надежность и длительный срок службы
Вспомогательные продукты :
- Быстроразъемное соединение с винтовым адаптером:
Обозначение: P1015-18
- Быстроразъемное соединение с внутренней резьбой:
- P / N: P1015-13 (AWG 10/12)
- P / N: P1015-64 (AWG 14/16)
- Номер детали: P1015-14 (AWG 18/22)
- P / N: P1015-13 (AWG 10/12)
Загрузите техническое описание серии SLR в формате * .pdf
Твердотельные реле
— // w3c // dtd html 4.0 transitional // ru «>
Твердотельные релеElliott Sound Products | Твердотельные реле и способы их изготовления и использования |
© 2020, Род Эллиотт (ESP)
ВершинаУказатель статей
Основной указатель
Содержание
Введение
Многие заставят вас поверить, что электромеханические реле (ЭМР) устарели и больше не подходят для выбора конструкции.Другие с радостью порекомендуют вам использовать его, даже если должно быть очевидно, что он выйдет из строя из-за длительного дугового разряда. Есть бесчисленное количество мест, где просто не имеет смысла даже рассматривать что-либо еще, а также другие, где EMR даже не следует рассматривать. Хотя можно простить мысль о том, что должен быть лучший способ включения и выключения, во многих случаях EMR является самым простым, дешевым и надежным способом сделать это. В качестве электромеханических устройств электромагнит используется для притягивания подвижного стального элемента (якоря), который активирует один или несколько наборов контактов.Реле в том виде, в каком мы его знаем, было изобретено Джозефом Генри в 1835 году. С тех пор оно постоянно используется, и, вероятно, они будут с нами еще многие десятилетия.
Есть места, где ЭМИ не подходят, особенно при переключении высоковольтного постоянного тока на любой ток выше пары сотен миллиампер. В некоторых промышленных процессах используется воспламеняющаяся атмосфера (из-за газа или мелких взвешенных частиц), где дуга от ЭМИ может вызвать взрыв. Существуют полностью герметичные типы только для этого типа использования, но, как и все дуговые контакты, они со временем изнашиваются.Каждый раз, когда происходит дуга контактов, небольшое количество материала переходит от одного контакта к другому, что в конечном итоге приведет к поломке.
Иногда на сайтах форумов вы видите сообщения, в которых пытаются убедить незадачливого вопрошающего, что отключение 96 В при 20 А или более может быть выполнено с помощью обычного реле (EMR). Сразу видно, что дебил, утверждающий, что у , никогда не пробовал , и должен был держать свои «идеи» при себе. Да, вы можете приобрести специализированные реле, которые могут выполнять и , но они (по определению) не только специализированные, но и очень дорогие.Вариант only для конструктора своими руками или любителя — использовать тщательно подобранный SSR. Также должен быть включен предохранительный выключатель подходящего номинала (и предназначенный для этой цели).
На каждую сложную проблему есть ясный, простой и неправильный ответ. Х. Л. Менкен
Недостаток понимания может легко привести к катастрофическим (и очень опасным) сбоям, и простых ответов нет (см. Выше). Надеюсь, это поможет объяснить, почему я вхожу в такие подробности — невозможно объяснить сложные проблемы простыми ответами.На сайте ESP есть и другие статьи, в которых подробно рассматриваются EMR, включая более сложные приложения …
Реле, выбор и использование (часть 1) Реле
(часть 2), схемы защиты контактов Гибридные реле
с использованием полевых МОП-транзисторов, триакомеров и тиристоров
Снижение и предотвращение возникновения контактной дуги
В этой статье рассматриваются только «твердотельные» реле (SSR), и существует несколько различных типов SSR. Некоторые из них подходят для использования в аудиосхемах, но большинство — нет. Некоторые даже не следует использовать для включения трансформаторов (как описано ниже), даже если их характеристики могут заставить вас подумать, что они были бы идеальными.
Есть много неправильных представлений о пригодности (или о другом) различных схем переключения. Многие из них связаны с непониманием, особенно с трансформаторами. Цель этой статьи — предоставить подробную информацию о различных типах SSR и о том, где их лучше всего использовать. Описать каждый тип реле довольно легко, потому что существует ограниченное количество коммутационных устройств, подходящих для этой задачи.
Многие веб-сайты обсуждают твердотельные реле, но цель здесь не только в том, чтобы предоставить руководство, но и в том, чтобы изучить их глубже, чем вы найдете где-либо еще.Есть много подводных камней, которых следует избегать, чтобы обеспечить надежное переключение, и, как и для всех полупроводников, тепло является врагом, и его необходимо устранять. Есть места, где используются SSR, и вы можете ожидать, что они прослужат вечно, но это не так. Поскольку электронные устройства обычно очень надежны, нам необходимо изучить то, что может пойти не так, и научиться определять SSR для того, что нам нужно делать.
На рынке представлены тысячи различных SSR. Они варьируются от миниатюрных типов монтажа на печатной плате, предназначенных для переключения слабосигнальных или других низких напряжений, до крупных модульных типов, которые используются для запуска электродвигателей и других сильноточных нагрузок.Вот некоторые из важных параметров …
- Изоляция между цепью активатора и переключающими устройствами позволяет цепям низкого напряжения безопасно управлять питанием от сети
- SSR легко управляются микроконтроллерами и в лучшем случае нуждаются в транзисторе и паре резисторов в качестве «вспомогательных» компонентов.
- Небольшой управляющий ток может управлять гораздо большим током через коммутационные устройства.
- Есть SSR, предназначенный для большинства (но далеко не всех) потребностей в электротехнике или электронной технике.
- SSR (обычно) очень надежны при условии правильного управления температурой
Для микроконтроллера довольно легко активировать небольшой SSR, который можно использовать для активации большего (электромеханического) реле, которое, в свою очередь, активирует контактор для питания большого двигателя в промышленном процессе.Это можно рассматривать как грубую форму усиления, при которой очень небольшой ток (обычно достаточно 10 мА) может в конечном итоге привести к запуску или остановке огромной машины или всей производственной линии.
1 — Основы SSR
Многие SSR активируются оптопарой. Свет (обычно от инфракрасного светодиода) падает на фототранзистор, фотодиод, фотоэлектрический элемент или фото-TRIAC (или иногда на LDR — светозависимый резистор). Все эти устройства выключены в темноте, поэтому ток не течет.При включении они либо переходят в состояние с низким сопротивлением, либо становятся «активными» и пропускают ток к переключающему устройству (ам). Есть несколько возможностей переключения, и выбор зависит от того, чего вы хотите достичь. Наиболее распространены …
SCR (кремниевый управляемый выпрямитель) — он же тиристор (только переменный ток)
TRIAC — двунаправленный тиристор (только переменный ток)
MOSFET — металлооксидный полупроводниковый полевой транзистор (переменного или постоянного тока, включая аудио) IGBT — биполярный транзистор с изолированным затвором (переменного или постоянного тока)
Помимо EMR, MOSFET SSR — единственные, которые могут использоваться со звуком.Все остальные перечисленные устройства вызывают грубых искажений, которые ухудшаются с уменьшением уровня. МОП-транзисторы имеют довольно линейную омическую область (R DS-on ), которая вносит некоторые искажения, но с хорошо подобранными устройствами они будут минимальными. Удержание R DS-on как можно ниже означает, что любые искажения сведены к минимуму.
Существуют также гибридные реле, сочетающие в себе лучшее из обоих миров. Например, реле защиты громкоговорителей почти всегда являются ЭМИ, но они выйдут из строя, если напряжение постоянного тока превышает 35 В или около того.Это решается за счет использования гибрида, имеющего EMR для передачи сигнального тока и SSR для управления отключением постоянного тока короткого замыкания. Этот подход описан в книге «Гибридные реле с использованием полевых МОП-транзисторов, симисторов и тиристоров», но подходящими кандидатами являются только полевые МОП-транзисторы.
A (относительно) недавняя разработка — это ИС драйвера Si8751 / 2 с изолированным МОП-транзистором. Это гораздо лучший вариант, чем фотоэлектрические ответвители, потому что они по своей природе очень медленные из-за ограниченного тока, обеспечиваемого фотоэлектрическими элементами.Это устройство подробно обсуждается в статье Project 198 MOSFET Relay.
В большинстве силовых SSR (то есть тех, которые предназначены для переключения сети переменного тока) используются TRIAC или SCR в качестве переключающего устройства, а также оптопара, такая как MOC3052 (или более ранняя версия MOC3022), для включения основного переключающего устройства. Эти микросхемы существуют очень давно и были основой коммерческих диммеров почти столько времени, сколько я себя помню. Хотя эти устройства невероятно распространены, они не лишены недостатков (ладно, в некоторых случаях это настоящие проблемы).MOC3052 — гораздо лучший выбор в новом дизайне, поскольку они более устойчивы к самопроизвольной проводимости.
Также доступно аналогичное устройство (например, MOC3042), которое имеет встроенную логику, которая предотвращает включение опто-TRIAC, кроме случаев, когда напряжение питания близко к нулю. Они известны как типы «перехода через нуль», и, хотя они подходят для резистивных нагрузок, они не могут использоваться для диммеров, и никогда не должен использоваться для подачи питания на трансформаторы. Пусковой ток трансформатора увеличивается до максимума, когда он включается при нулевом (или близком к нему) значении (см. Серию статей о трансформаторах, чтобы увидеть формы сигналов, которые показывают, что это так).Хотя многие люди думают, что переключение при нулевом напряжении лучше всего подходит для трансформаторов или двигателей, они ошибаются. Минимальный пусковой ток составляет , всегда достигается при подаче питания на пике формы волны напряжения.
Хотя TRIAC удобны, если вам нужна сильноточная коммутация, следует использовать SCR. Они доступны в значительно более высоком номинальном токе (и напряжении), чем TRIAC, но, конечно, вам нужно установить два устройства, а также несколько вспомогательных компонентов.И TRIAC, и SCR имеют прямое напряжение 1-2 В, поэтому они рассеивают 1-2 Вт / ампер тока нагрузки. Это может показаться не таким уж большим, пока вам не понадобится переключить 20A, поэтому рассеиваемая мощность составляет не менее 20 Вт для TRIAC (или 2 × 10 Вт для SCR). Вы можете купить готовые модули (некоторые довольно дешево), и у них есть одна общая характеристика — у них есть металлическая опорная пластина, предназначенная для установки на радиатор.
Действительно, это основной недостаток SSR в целом. Контакты (и внутренняя структура) ЭМИ на 20 А, вероятно, будут иметь сопротивление менее 10 мОм, и вся структура будет рассеивать, возможно, 4 Вт при номинальном токе.Для этого не требуется охлаждения, так как сама конструкция сможет рассеивать выделяемое тепло. Большинство SSR будут рассеивать не менее 20 Вт при тех же условиях, и поскольку переключение выполняется полупроводниками, их температура перехода должна поддерживаться ниже максимально допустимой (как описано в таблице данных).
Однако твердотельные реле имеют явные преимущества во многих приложениях, и комбинация двух технологий (гибридное реле) может быть лучшим выбором для минимизации требований к радиатору, обеспечения отсутствия дуги и поддержания очень низкого электрического шума.Электрически говоря, дуги очень шумные — они использовались как первая форма радиопередачи. Гибридное реле является более сложным, и во многих случаях дополнительные затраты (и занимаемое пространство) могут не гарантироваться.
2 — EMR Vs. ССР; Преимущества и недостатки
У любой техники будут свои достоинства и недостатки. Это особенно верно в тех случаях, когда «зрелые» технологии существуют так давно и остаются жизнеспособными даже в условиях жесткой конкуренции.Атрибуты, показанные ниже, несколько упрощены, но они охватывают большинство различий. Конструктивно ЭМИ имеют катушку, которая является индуктором. Это вызывает противо-ЭДС, когда ток катушки прерывается, а механическая инерция означает, что всегда есть задержка для включения и выключения. ТТР TRIAC и SCR не отключатся, пока ток нагрузки не упадет до нуля, но могут быть активированы практически мгновенно (максимум несколько микросекунд).
Электромагнитный Твердотельный Механические части, подверженные износу Без движущихся частей Сравнительно медленно (10-20 мс) Может быть почти мгновенно Отскок контактов происходит при замыкании контактов Отсутствие дребезга контактов (без контактов) Невосприимчивость к кратковременным повреждениям / статическому разряду Могут быть повреждены переходными процессами Очень низкое рассеивание контактной мощности Рассеивание зависит от тока нагрузки Немного или совсем не нагревается, радиатор не требуется Может потребоваться радиатор, если рассеиваемая мощность превышает 1 Вт Превосходная стойкость к переходной перегрузке Может быть повреждена при переходной перегрузке Катушка требует значительной мощности Обычно очень низкие требования к приводу Эрозия контактов из-за дуги Дуги нет, потому что нет физических контактов Даже «маленькие» реле физически велики Маленькие реле доступны как крошечные SMD-ИС Не подходит для высокого напряжения / тока постоянного тока Идеально подходит для постоянного тока при любом напряжении или токе Очень широкий диапазон, охватывающий большинство приложений Ограниченный диапазон, но улучшающийся Практически нулевой электрический шум при включении и выключении Может быть электрически зашумленным, в зависимости от используемой технологии Слышимый шум при работе Слышимый шум отсутствует Низкая стоимость и доступность Обычно более дорогая / менее доступная Может подходит для предохранительных выключателей (см. Техническое описание) Как правило, не подходит для критических с точки зрения безопасности приложений Фактически нулевой ток утечки в выключенном состоянии Ток утечки всегда существует (обычно измеряется в мкА или мА) Типы общего назначения могут использоваться (почти) где угодно Требуется выбор по назначению (например,г. AC, DC, аудио)
Поскольку SSR не имеет движущихся частей, механический износ невозможен. Теоретическая жизнь бесконечна, но этого нельзя достичь по довольно очевидным причинам. Однако они также чувствительны к теплу, и необходимо обеспечить охлаждение, чтобы поддерживать температуру перехода ниже максимально допустимой (обычно около 150 ° C). Потребность в радиаторе возникает гораздо раньше, чем ожидалось — что-либо более 1 Вт трудно рассеять на открытом воздухе, особенно если оно заключено в корпус с небольшим воздушным потоком.ЭМИ обычно имеют гораздо меньшие внутренние потери в контактах и внутренней структуре, и никакого охлаждения не требуется ни в одном из примеров, с которыми вы, вероятно, столкнетесь. Некоторые модели и имеют вентиляционные отверстия, которые можно открыть после автоматической пайки и промывки, но большинство из них этого не делают.
Engineering — это управление компромиссами для поиска лучшего решения с наименьшими затратами (первоначальное и техническое обслуживание). Любой, кто переоценивает все для повышения надежности без учета затрат, либо работает в военной / аэрокосмической организации, либо постоянно ищет работу.Сделай сам — это другое дело, но в конечном итоге бюджетное давление всегда будет накладывать ограничения на то, что в конечном итоге будет использоваться. Для большинства более приземленных приложений, таких как системы плавного пуска, такие как Project 39 или системы защиты динамиков от постоянного тока (например, Project 33), EMR обычно является лучшим выбором (но только если напряжение питания усилителя не превышает ± 35 В постоянного тока для P33).
Переключение высокого напряжения (> 30 В) и высокого постоянного тока гарантированно вызовет дугу, которая часто разрушает ЭМИ. Большинство из них создадут непрерывную дугу при напряжении около 45 В, если ток будет больше пары ампер.Это ситуация, когда выбора почти нет, но некоторые методы гашения дуги очень эффективны. Для SSR постоянного тока есть два основных варианта — MOSFET или IGBT. Можно использовать биполярные транзисторы, но требуемый высокий базовый ток означает, что они, как правило, непригодны, за исключением приложений с низким током (таких как питание ИС привода для MOSFET или IGBT). Составные конфигурации Дарлингтона / Шиклаи уменьшают базовый ток возбуждения, но увеличивают напряжение насыщения (включения), тем самым увеличивая рассеиваемую мощность.Ожидайте напряжение насыщения около 0,95 В с хорошо спроектированным трехтранзисторным (NPN, PNP, NPN) переключателем (достаточно близко 1 Вт / A, когда драйверы включены). Они не подходят для переменного тока без искажений и редко встречаются с тех пор, как появились полевые МОП-транзисторы.
|
Предупреждение, приведенное выше, нельзя игнорировать. Использование электронных нагрузок и обычных диммеров TRIAC было проблемой с момента появления компактных люминесцентных ламп и остается со светодиодными лампами, которые также используют импульсный источник питания (электронная нагрузка).Многие из новых ламп в некоторой степени решили эту проблему, но для достижения оптимальной производительности следует использовать 3-проводный диммер по задней кромке. См. Проект 157, 3-проводной диммер с задней кромкой для получения подробной информации о диммере, который работает с любой регулируемой лампой (включая лампы накаливания).
Трансформатор, за которым следует мостовой выпрямитель и конденсаторы фильтра, отличается, и можно использовать TRIAC , обычно , потому что ток намагничивания будет больше, чем ток фиксации или удержания.См. Раздел, посвященный TRIAC SSR, для получения подробной информации об этих параметрах. Если вы планируете использовать TRIAC с трансформатором, вы должны тщательно протестировать его перед использованием, чтобы убедиться, что он не ведет себя неправильно. Тороидальные трансформаторы имеют более низкий ток намагничивания, чем трансформаторы типа E-I, что делает тестирование еще более важным.
ЭМИобеспечивают полную изоляцию сигнала (включая сеть) с токами утечки, которые возникают исключительно из-за используемых изоляционных материалов. Даже при питании от сети 230 В можно ожидать, что утечка составит максимум несколько наноампер.SSR (все они) имеют некоторую утечку и не могут полностью изолировать. Хотя ток утечки вряд ли будет вредным, рисковать не стоит, так как любой полупроводник может закоротить в случае / при выходе из строя. Релейные контакты тоже могут залипать, поэтому никогда не работайте с какой-либо цепью с питанием от сети, если она не изолирована от сети — либо путем отсоединения, либо (если вы должен работать с под напряжением) через изолирующий трансформатор. Конечно, вы все еще можете умереть, поэтому когда-либо должны работать только квалифицированные специалисты!
3 — MOSFET реле
Одним из преимуществ реле MOSFET, в частности, является то, что они могут использоваться со звуком с очень небольшим добавленным искажением (обычно ниже слышимости).Ни одно из других полупроводниковых переключающих устройств не может этого сделать. Существуют полевые МОП-транзисторы с таким низким сопротивлением (R DS-on ), что они рассеивают очень мало энергии даже при высоком токе. Если вы стремитесь к устройству с сопротивлением 10 мОм R DS-on , каждый полевой МОП-транзистор будет рассеивать только 1 Вт при среднем токе 10 А, что эквивалентно 400 Вт при нагрузке 4 Ом (типичная пиковая мощность будет более 2,4 кВт!).
Помимо краткого описания здесь, я не буду вдаваться в подробности реле MOSFET, потому что эта тема подробно освещена в статье MOSFET Solid State Relays and Project 198.Схема P198 должна быть особенно привлекательной, потому что все было оптимизировано с использованием новейших и (по крайней мере, пока), безусловно, лучших изолированных микросхем драйверов. Плата и компоненты имеют очень разумную цену, хотя конечный результат будет стоить дороже, чем EMR. Однако он может работать с любым вероятным постоянным напряжением и / или током, которые могут вам понадобиться, просто путем выбора оптимальных полевых МОП-транзисторов.
Рисунок 3.1 — Реле ESP Project 198 MOSFET
На фотографии показана готовая плата P198, в данном случае оснащенная полевыми МОП-транзисторами DS-on со сверхнизким R .Он подходит для переключения звука высокой мощности (R DS-on составляет около 3,6 мОм для каждого полевого МОП-транзистора), а с высоковольтными устройствами он может легко переключаться в сеть. Его можно использовать в качестве диммера лампы (передняя или задняя кромка) или в качестве регулятора скорости небольшого асинхронного двигателя (режим передней кромки только ). В показанном реле используется микросхема Si8752, которая действует как светодиод для схемы управления. Полевые МОП-транзисторы выбираются в соответствии с областью применения — высокое напряжение (относительно) низкий ток или наоборот.Те, что показаны на рисунке 3.3, являются только примером.
Рисунок 3.2 — Схема реле ESP Project 198 MOSFET
Единственное преимущество следующей схемы — простота, но для большинства задач она принципиально бесполезна. Источник питания 12 В требуется для оптопары, которая имеет максимальное номинальное напряжение коллектор-эмиттер 30 В (при разомкнутой базе). Это означает, что вы не можете использовать основной источник питания, если он больше 30 В, но вы, , можете использовать стабилизатор стабилитрона, чтобы получить питание +12 В.Если вам нужно «настоящее» реле MOSFET для постоянного тока, то вам гораздо лучше использовать схему на рис. 3.1 с одним MOSFET. Конечно, он чувствителен к полярности, но ограничений по напряжению нет, и он может быть на стороне питания нагрузки, что сложнее сделать с упрощенными версиями. Есть много других возможностей, но они не относятся к схемам «общего назначения» и чаще всего используются в конечных схемах.
Рисунок 3.3 — Простое реле MOSFET только постоянного тока
Преимущество использования изолятора, такого как Si8752 (или Si8751), заключается в том, что переключатель MOSFET можно использовать в любом месте схемы, с единственными ограничениями на напряжение, ток и мощность, налагаемыми используемым MOSFET.Хотя рис. 3.3 (что-то вроде) квалифицируется как реле MOSFET, на самом деле это всего лишь переключатель, и для работы ему нужен источник постоянного тока. Если источник питания +12 В является плавающим (относится к источнику MOSFET), тогда схему можно использовать где угодно (верхняя или нижняя сторона), но обеспечение дополнительного питания требует дополнительных затрат и означает использование большего количества деталей. . Диод (D1) не является обязательным и необходим, если нагрузка индуктивная.
РелеMOSFET также можно включать и выключать с помощью ИС фотоэлектрических оптопар — светодиод светит на кучу крошечных фотоэлементов, которые генерируют достаточно напряжения для включения полевого МОП-транзистора.К сожалению, они находятся где-то между медленными и невероятно медленными , в зависимости от емкости MOSFET. Медленное переключение означает большое рассеивание во время периода переключения. У некоторых есть схемы, обеспечивающие быстрое отключение, но вы ничего не можете сделать, чтобы заставить их быстро включиться (кроме использования нескольких параллельно). Типичный выходной ток составляет всего около 50 мкА, поэтому с парой полевых МОП-транзисторов для их включения может потребоваться до 5 мс, потому что емкость затвора должна быть заряжена до порогового напряжения, прежде чем произойдет что-либо полезное.Для некоторых приложений этого может быть достаточно. но для других это слишком медленно.
Примером фотоэлектрической оптопары является Toshiba TLP591B, но есть и многие другие. Все они имеют аналогичные ограничения и недешевы (около 5 австралийских долларов каждый). Иногда можно использовать небольшой импульсный источник питания для обеспечения питания, которым затем можно управлять с помощью стандартной оптопары на фототранзисторах, но это дорого и громоздко. Если вам нужно полностью изолированное реле MOSFET, трудно найти что-либо, что лучше схемы Project 198.Его можно использовать с переменным или постоянным током, как показано, но для постоянного тока требуется только один полевой МОП-транзистор (другая позиция закорочена между стоком и истоком).
Рисунок 3.4 — Фотоэлектрическое реле MOSFET
довольно распространены, но полевые МОП-транзисторы с высокой емкостью затвор-исток означают более длительное время включения, и это может быть ограничением во многих приложениях. VOM1271 имеет внутреннюю схему «выключения», поэтому, по крайней мере, рассеивание энергии при выключении SSR сводится к минимуму. Выходное напряжение VOM1271 всего 8.9 В при токе светодиода 30 мА, при токе короткого замыкания 47 мкА. Для пары полевых МОП-транзисторов с объединенной входной емкостью 8,4 нФ (пары полевых МОП-транзисторов IRFP460, как показано) для достижения полной проводимости может потребоваться до 6 мс, в зависимости от тока нагрузки и напряжения питания. Общая входная емкость — это емкость затвор-исток плюс емкость Миллера (сток-затвор), и последняя может создавать «интересные» эффекты.
В частности, рассеивание энергии устройством может быть очень высоким во время критического периода включения, хотя обычно оно длится всего несколько миллисекунд.В отличие от микросхем Si8751 / 2, здесь нет схемы зажима Миллера, предотвращающей включение полевого МОП-транзистора при подаче напряжения питания с быстрым временем нарастания. В статье о реле MOSFET описывается схема изготовления дискретных зажимов Миллера, если это окажется необходимым. В статье также показано, как сделать цепь отключения с помощью резистора 2,2 МОм и полевого транзистора.
Вы заметите, что стабилитрон на 12 В включен в все схемы MOSFET и IGBT . Это включено для защиты изоляции ворот, которая легко может быть повреждена перенапряжением, однако это может быть вызвано.Это дешевая страховка, и я не рекомендую исключать ее.
Вы также можете получить встроенные реле MOSFET, обычно в шести- или восьмиконтактном корпусе. Примером может служить LCA110, рассчитанный на 350 В при среднеквадратичном значении до 100 мА или 200 мА постоянного тока, и есть много подобных устройств. В этом типе ИС почти всегда используется фотоэлектрическая оптопара, и время включения / выключения довольно медленное — 3 мс указаны для тока светодиода 5 мА. TLP592A (F) — другой, рассчитанный на 60 В переменного / постоянного тока и 500 мА RMS или 1 А постоянного тока.Время включения составляет 2 мс (макс.), А выключения — 500 мкс (макс.). Существует множество подобных устройств, многие из которых используют схему, аналогичную показанной на рисунке 3.4 (но обычно без схемы «выключения»). Я ожидаю, что стабилитрон включен внутри, но он не упоминается в таблицах данных.
3.1 — Переключающие или нормально замкнутые SSR
Большинство SSR обычно открыты , и для их включения требуется сигнал. Это очень отличается от EMR, которые могут обеспечивать как нормально разомкнутые (NO), так и нормально замкнутые (NC) операции, включая типы переключения.Можно использовать полевые МОП-транзисторы в режиме истощения, но они гораздо менее доступны, чем типы в режиме расширения, и имеют ограниченный диапазон номинальных значений напряжения и тока. Большинство из них также намного дороже для аналогичных рейтингов, поэтому обычно закрытые SSR встречаются редко. Это неприятно, потому что нормально замкнутые реле используются во многих приложениях.
Эквивалентным является использование стандартного MOSFET, IGBT, SCR или TRIAC SSR, который обычно имеет питание, поэтому по умолчанию включен. Выключить его означает снять сигнал привода.Если пара SSR используется для обеспечения функции переключения (SPDT — однополюсный, двойной бросок на языке EMR), вы, , должны обеспечить наличие встроенной задержки. Поскольку переключение может быть почти мгновенным, любое перекрытие (когда оба реле частично включены) может вызвать серьезную неисправность цепи. Это особенно верно для типов TRIAC и SCR, используемых с переменным током, потому что проводящий набор будет продолжать делать это, пока ток не упадет до нуля. Для этого может потребоваться задержка до 10 мс, чтобы убедиться, что проводящий SSR действительно отключился.Если вам нужна эта функция, рекомендуется, чтобы контрольная цепь блокировала непроводящий SSR, пока другой полностью не прекратил проводимость .
4 — IGBT реле
Хотя IGBT могут показаться идеальными для реле, они могут иметь некоторые недостатки по сравнению с MOSFET. Может показаться, что недостатком является скорость — полевые МОП-транзисторы намного быстрее, чем IGBT, но для реле это редко является важным фактором. Одним из их преимуществ является то, что они доступны с очень высоким номинальным напряжением (до 2500 В) и часто (но не всегда) имеют более низкое падение напряжения при максимальном токе.Ниже показаны несколько примеров, выбранных только для того же напряжения, тока и аналогичной мощности. Каждый полевой МОП-транзистор будет рассеивать 103 Вт при 30 А, в то время как IGBT рассеивают только 55,5 Вт. Однако обратите внимание, что предел рассеивания составляет 25 ° C, и в таблице данных будет указан коэффициент снижения мощности для повышенных температур. Подобно МОП-транзистору R DS-on с повышением температуры, падение напряжения на IGBT (V CE-sat ) также увеличивается с повышением температуры. Однако это проблема только при очень высоком токе — при низком токе (например.г. От 5А до 30А IGBT) он обычно остается довольно постоянным.
Технология Типовой номер Номинальные характеристики В Падение при 30 А Стоимость (2020) MOSFET R6030ENZ4C13 30 А, 600 В, 305 Вт 3,45 В (104 Вт) AU $ 7,80 IGBT STGW30V60F 30 А, 600 В, 260 Вт 1.85 В (56 Вт) AU $ 6,19
Те, что показаны выше, являются только примерами, но вы можете получить IGBT, которые могут выдерживать переходные токи до 570 А и напряжения до 2,5 кВ (хотя и не в одном устройстве!). Хотя вы увидите спецификации, которые кажутся совершенно невозможными, они почти всегда являются «краткосрочными», обычно не более 1 мс или около того. Все полупроводники в конечном итоге ограничены допустимым тепловыделением в зависимости от температуры, и каждый раз, когда вам нужно переключить значительный ток, вам понадобится радиатор.Добавление большого алюминиевого радиатора (вероятно, с вентилятором для обеспечения наилучшего охлаждения) ничего не делает для видимого уменьшения размера по сравнению с большим ЭМИ или контактором.
Рисунок 4.1 — Реле ESP Project 198 MOSFET с использованием IGBT
Похоже, что существует очень мало реле IGBT. Кажется, нет причин, по которым вы не можете использовать плату Project 198 с IGBT (хотя я не тестировал это), но она не может переключать звук, а для приложений переменного тока IGBT должны иметь ‘ антипараллельные диоды.Некоторые делают, некоторые нет. Без них IGBT почти наверняка будут разрушены при включении переменного тока. Хотя использование IGBT может дать некоторые преимущества для определенных приложений, большую часть времени P198 будет использовать MOSFET в соответствии с конструкцией.
Показанные IGBT (NGTB15N60S1EG) являются только примером, в данном случае выбранным для встроенного антипараллельного диода, а не для каких-либо конкретных характеристик. Печатная плата не была рассчитана на ток, с которым могут работать эти устройства (30 А), но это недорогое устройство (2 австралийских доллара.20 в 2020 году) и, вероятно, будет хорошо служить для переключения сети. Напряжение насыщения составляет 1,75 В (типичное), поэтому оно рассеивает 17,5 Вт при 10 А (это , а не , включая диоды, поэтому общее рассеивание будет ближе к. Это ожидается для IGBT в целом. Обратите внимание, что TRIAC SSR будет рассеивать около 10 Вт при той же силе тока.
Конечно, такая же компоновка может быть использована для постоянного тока, и нужен только один IGBT. Если используется печатная плата P198, другое положение устройства просто замыкается между коллектором и эмиттером (эквивалентно стоку и истоку для полевого МОП-транзистора).
5 — Реле TRIAC
TRIAC SSR (почти буквально) так же распространены, как грязь. Они существуют уже много лет и доступны в виде полных модулей. С номинальным током от 200 мА до 70 А есть TRIAC, который соответствует вашим требованиям. Однако будьте очень осторожны при заказе модулей или микросхем драйверов, поскольку они бывают двух разных «разновидностей». Типы переключения при нулевом напряжении (ZVS, также известные как ZC — переход через ноль) очень распространены, и часто номер детали не указывает на то, что реле использует ZV или «случайное» переключение.Несмотря на то, что вы можете подумать, трансформаторы и двигатели никогда не следует включать с помощью реле ZVS TRIAC (или SCR). Это гарантирует максимально возможный (в худшем случае) пусковой ток … при каждом включении!
Это задокументировано (с формами сигналов) в статьях о трансформаторах, и я использовал специально разработанную систему переключения, которая позволяет включать напряжение при переходе через ноль или пике формы волны переменного тока. Для минимального пускового тока питание должно подаваться при пиковом переменном напряжении (номинально 325 В для сети 230 В).Было бы полезно, если бы реле TRIAC / SCR с переключением пикового напряжения были легко доступны, но, насколько я могу судить, они доступны только у промышленных специализированных поставщиков, и они очень скромно раскрывают подробности. Так называемые «случайные» переключающие реле TRIAC могут быть включены в любое время в течение цикла, кроме перехода через нулевое напряжение, потому что нет доступного напряжения (или тока) срабатывания.
Что такое точно ТРИАК? Они описаны как подмножество тиристорных (SCR) устройств и фактически представляют собой пару SCR, соединенных спина к спине (с измененной топологией затвора.SCR — это твердотельный эквивалент оригинального газового тиратрона [1] (переключающий клапан). Они выглядят (но не являются) электронными лампами, потому что используют газ внутри. Термин «тиристор» представляет собой комбинацию «тиратрона» и «транзистора», и тиристоры стали коммерчески доступными в 1958 году. TRIAC — это двунаправленная версия основного тиристора (название происходит от «TRI», что означает три, а AC — переменный ток. ), и может переключать переменный ток с помощью одного устройства (два необходимы для переключения переменного тока с помощью тиристоров).SCR и TRIAC были впервые разработаны General Electric [4] . Хотя TRIAC в принципе кажутся достаточно простыми, для их надежной работы необходимо учитывать множество факторов.
Характеристика включения TRIAC (и SCR) является регенеративной — по мере того, как потребляется ток, он заставляет устройство включаться быстрее, что приводит к очень быстрым изменениям напряжения и тока. Если напряжение на устройстве высокое, скорость включения (и амплитуда гармоник) таковы, что они могут создавать электрические помехи в диапазонах МГц, и во многих схемах, в которых используются симисторы (например.г. диммеры с передним фронтом) требуют фильтрации радиочастот для уменьшения электрических шумов. Регенерация — это просто еще одно слово для обозначения положительной обратной связи.
Рисунок 5.1 — Триггерные квадранты TRIAC
Один из малоизвестных аспектов TRIAC заключается в том, что они чувствительны к полярности. Теоретически не имеет значения, положительный или отрицательный сигнал запуска, независимо от полярности входящего сигнала, однако это не совсем так. На приведенном выше рисунке показаны четыре возможных квадранта для проведения, а квадрант IV вызывает затруднения.Если полярность главной клеммы 2 (MT2) отрицательная, положительное напряжение затвора будет включать TRIAC, но это нечувствительно по сравнению с квадрантами I-III. Стоит отметить, что некоторые TRIAC специально разработаны для исключения срабатывания Q4. Их часто называют TRIAC «Snubberless ™ », потому что за счет исключения запуска Q4 многие проблемы, связанные с этим режимом запуска, устраняются. Вы также можете увидеть, что они называются «Альтерннистор ™ » или TRIAC с высокой коммутацией (Hi-Com ™ ), в зависимости от производителя.Квадранты I и III оптимальны, но не всегда достижимы.
Вы также увидите основные терминалы TRIAC, обозначенные как «A1» и «A2», что эквивалентно MT1 и MT2 (главный терминал 1, главный терминал 2). Обозначение «A» означает «анод», что может вводить в заблуждение, поскольку спорный вопрос, являются ли эти выводы анодами или катодами. Тем не менее, если вы видите TRIAC, обозначенный как A1 и A2, они эквивалентны MT1 и MT2, а ворота относятся к A1 или MT1.
|
На рис. 5.1 показан упрощенный чертеж коммерческого TRIAC SSR вместе с фотографией примера. Показан только относительно слабый ток (пик 400 В при максимуме 8 А, переключение при нулевом напряжении), и он предназначен для использования с радиатором при работе с максимальным током. Фото-TRIAC является внутренним, но есть много триггерных ИС, доступных от ряда поставщиков. MOC3022 (и ему подобные), вероятно, самые известные, и они могут использоваться сами по себе для слаботочных приложений.Их можно использовать с током до 100 мА, но для предотвращения перегрева предпочтительнее использовать более низкий ток (50 мА при 70 ° C). Также доступны версии с логикой ZVS. Иногда их называют «ZC» и «NZC» — переход через нуль и ненулевой переход.
Рисунок 5.3 — Схема TRIAC SSR
Оптопара питается от источника тока (Q1, Q2, R3), который поддерживает постоянным ток через оптопару во всем диапазоне входного напряжения (5–20 В постоянного тока). Регулятор тока, который гарантирует, что оптопара будет получать одинаковый ток всякий раз, когда присутствует управляющее напряжение, независимо от напряжения (в разумных пределах).С R3 на 56 Ом ток составляет около 12 мА. В индикаторе нет ограничителя тока, но при желании он может быть включен (или индикатор можно не указывать). Стабилизатор тока не нужен, если управляющее напряжение фиксировано — вам нужно только использовать последовательный резистор, чтобы поддерживать ток оптопара в пределах 10-15 мА. Q1 / Q2 может быть любым малосигнальным NPN-транзистором, который у вас есть под рукой — это не критично. В худшем случае рассеиваемая мощность составляет менее 170 мВт при напряжении на входе 15 В. Демпфер и MOV не являются обязательными и требуются только в том случае, если у вас индуктивная нагрузка и / или шумная сеть.
Схема включает в себя схемы, предназначенные для работы с индуктивными нагрузками, и она была упрощена за счет использования резисторов одного номинала во всех местах срабатывания триггера. Это может потребовать регулировки при проблемных нагрузках. В некоторых случаях это может привести к серьезным нарушениям, поэтому дополнительные RC-сети действуют как демпферы, ограничивая DV / Dt, применяемые к TRIAC и запускающие IC. Второй демпфер (C2, R7) может подвергаться чрезвычайно быстрым переходам, поэтому и резистор, и конденсатор должны быть импульсными.В худшем случае ток в этой сети составляет около 1,2 А при напряжении сети 230 В, поэтому пиковое рассеивание в R7 может достигать 70 Вт. Он очень недолговечный, но вам понадобится резистор из углеродистой композиции . Эти резисторы предназначены для импульсных применений.
Для этого доступны выделенные сети пульта дистанционного управления, в которых обе части объединены в один компонент. В показанном примере используется конденсатор из металлизированной бумаги, и устройство может выдерживать импульсный ток 12 А. Также можно использовать дискретные (импульсные) части.Не думайте, что вы можете использовать конденсаторы X2 или даже X1, поскольку они являются металлизированными пленочными типами, они не рассчитаны на импульс и выйдут из строя. Выживут только конденсаторы , специально разработанные для сильноточных импульсов. Пиковый ток через демпфер зависит от напряжения переменного тока и места его переключения, но в худшем случае — до нескольких ампер, что приводит к чрезвычайно высокому мгновенному рассеянию. При питании от сети 230 В пиковое рассеивание может составлять 120 Вт с резистором 47 Ом. Среднее рассеивание невелико — обычно несколько милливатт.Конденсатор также должен выдерживать такой же пиковый ток, поэтому будет использоваться фольга, а не металлизированная пленка.
Если кто-то строит самодельный TRIAC SSR, который будет себя вести при любой нагрузке, я предлагаю использовать демпферные TRIAC. Примером может служить BTA26-800CWRG, трехквадрантный TRIAC на 25 А, 800 В. Конечно, есть много других, и в большинстве случаев вам не нужно быть придирчивым. Недостатком «стандартных» симисторов является то, что демпфер обычно необходим, если нагрузка является индуктивной.Использование MOV (металлооксидного варистора) необязательно и в большинстве случаев не требуется.
TRIAC (и SCR, рассмотренные далее) имеют минимальное требование по току (называемое «удерживающим током»), ниже которого они отключаются. Это может варьироваться от нескольких миллиампер до 500 мА для сильноточных типов. Если ваша нагрузка не потребляет достаточно тока, TRIAC может не достичь уровня с фиксацией тока , и он не останется включенным после окончания триггерного импульса. Любая ситуация может привести к неожиданному прекращению проводимости реле TRIAC (или SCR).У них также есть максимальная скорость изменения напряжения (называемая DV / Dt или ΔVΔt, также известная как критическая скорость нарастания напряжения в закрытом состоянии), и если приложенное напряжение растет быстрее, чем максимально допустимое, TRIAC будет проводить. Обычно используется демпферная цепь (резистор-конденсатор) параллельно с TRIAC для ограничения DV / Dt и предотвращения спонтанной проводимости. Вам также необходимо знать о критическом росте тока в открытом состоянии (DI / Dt / ΔI / Δt). Если это превышено, TRIAC может выйти из строя из-за внутренних «горячих точек».
Рисунок 5.4 — Форма волны проводимости TRIAC SSR
Эти устройства по своей природе несколько излучают электрические помехи. Пики на переднем фронте сигнала, видимые на осциллограмме, указывают на очень быстрые переходы, что означает, что должен быть высокочастотный электрический шум. Эти выбросы узкие (около 100 мкс, но с очень быстрыми переходами при проведении TRIAC), гарантируя, что генерируемые частоты простираются до нескольких МГц. Показанная форма сигнала была получена от FOTEK SSR-25-DA TRIAC SSR.Это тип ZVS, рассчитанный на ток 25 А при напряжении до 380 В переменного тока. Форма волны была получена при 40 В переменного тока и нагрузке 8 Ом — среднеквадратичное значение 5 А. Как и ожидалось, прямое напряжение составляет 1 В и очень мало изменяется с током. Рассеивание составляет 1 Вт / А, поэтому во время моего теста оно рассеивалось 5 Вт.
Пики в начале каждого полупериода показывают, что должно присутствовать определенное напряжение (по крайней мере, пиковое 5 В), чтобы TRIAC мог зафиксироваться, в данном случае обеспечивая около 625 мА. Испытания при низком напряжении показали, что при среднеквадратичном напряжении менее 5 В Fotek SSR либо вообще не включается, либо ведет себя неправильно (полуволновая работа).Использование его для низковольтной или слаботочной нагрузки не сработает, и он прекратил «нормальную» проводимость при токе нагрузки ниже 100 мА. Это совсем не похоже на EMR, который обычно нормально функционирует практически при любом напряжении или токе в пределах своих номиналов.
TRIACникогда не должны работать с любой нагрузкой, потребляемой меньше, чем ток фиксации наихудшего случая (если вы достаточно смелы, вы можете вместо этого использовать «типичное» значение). Для серии BT139 максимальное значение составляет 40 мА, но меня это не совсем устраивает.Вы намного безопаснее, если удвоите показатель для наихудшего случая, особенно при тяжелых нагрузках (например, реактивных или электронных). Это означает около 20 ВА при напряжении сети 230 В или 10 ВА при 120 В. Есть все шансы, что он будет работать с меньшими затратами, но при некоторых нагрузках проводимость может быть неустойчивой.
Несмотря на эти предупреждения, большинство SSR TRIAC (или просто TRIAC) без проблем переключают силовые трансформаторы, а некоторые производители использовали TRIAC, поэтому сетевой выключатель может быть слаботочным. Он по-прежнему должен быть рассчитан на полное сетевое напряжение, но крошечный ток затвора TRIAC означает, что нет необходимости в сверхмощном переключателе для включения или выключения оборудования.Это (строго говоря) не реле, потому что нет изоляции, но оно все же позволяет управлять большим током с помощью гораздо меньшего тока.
Рисунок 5.5 — Пример сетевого выключателя TRIAC
В приведенном выше описании коммутатор должен выдерживать всего несколько миллиампер, в то время как TRIAC может использоваться для переключения очень большого силового трансформатора. Обычно для этого требуется сверхмощный переключатель, но для эстетики многие дизайнеры предпочли бы использовать миниатюрный переключатель. Он по-прежнему должен быть рассчитан на сетевое напряжение, но резкое снижение тока означает, что даже легкий выключатель, вероятно, прослужит дольше оборудования.Для TRIAC может потребоваться радиатор, если требуется большой ток (1 Вт / А типичен для большинства TRIAC). R2 и демпферная сеть не являются обязательными и могут (а могут и не потребоваться) при проектировании.
С TRIAC BT139F-600, как показано, для всего, что превышает средний ток 1A, потребуется радиатор (помните, что TRIAC рассеивают 1 Вт / А). Суффикс «F» означает, что это «полный комплект» (полностью изолированный), поэтому слюдяные шайбы и изолирующие втулки не нужны (а — очень плохая идея, если вы изолируете сетевое напряжение).Вы должны использовать термопасту между TRIAC и радиатором. Необходимо следить за тем, чтобы выводы TRIAC имели соответствующие расстояния утечки и зазоры, чтобы они не могли закоротить радиатор, которым часто является корпус, если он сделан из алюминия. Установка должна иметь крышку для предотвращения случайного прикосновения, а для подключения к переключателю должен использоваться сетевой кабель.
6 — Реле SCR
Во многих отношениях SSR (кремниевый выпрямитель) схожи с типами TRIAC, и для их управления можно использовать те же оптопары с фото-TRIAC.Использование SCR вместо TRIAC дает преимущества, особенно с точки зрения текущей пропускной способности. Например, тиристор CLA50E1200HB рассчитан на 1200 В, 50 А и рассеиваемую мощность 500 Вт в знакомом пластиковом корпусе TO247. При цене менее 10 австралийских долларов каждый (цена 2020 года) пара может выдержать колоссальную нагрузку. С номинальным пиковым током 650 А (10 мс) он может выдерживать гораздо больший ток, чем может обеспечить любая бытовая розетка. Ток срабатывания составляет 50 мА (макс.) При 25 ° C.
На следующем рисунке показан SSR с парой SCR.Этот рисунок очень похож на показанный выше (Рисунок 5.3), но изменен для использования SCR. SCR SSR несколько менее восприимчив к ложной или спонтанной проводимости, поэтому триггерные демпфирующие сети не нужны. Доступны тиристоры с гораздо более высоким номинальным током, чем триАК (последний ограничен примерно до 40 А), в то время как тиристоры могут выдерживать 2000 А или более (что несколько выходит за пределы диапазона цепей DIY). Номинальное напряжение также намного выше, до 2,6 кВ — они, как правило, недоступны для домашних хозяйств и требуют более сложных триггерных сетей.Как и ожидалось, здесь они не рассматриваются, но это дает вам представление о доступном диапазоне.
Рисунок 6.1 — Схема SCR SSR
На приведенном выше рисунке я использовал SCR, которые немного больше соответствуют тем, которые могут использоваться в версии DIY. Они по-прежнему могут обрабатывать 20A RMS для пары и могут обеспечивать пиковый ток 200A в течение 10 мс. Одним из самых больших преимуществ использования SCR вместо TRIAC является то, что мощность распределяется между двумя устройствами, поэтому их легче поддерживать в холодном состоянии из-за эффективного уменьшения вдвое тепловых сопротивлений.Регулятор тока такой же, как на рисунке 5.3. Как и в случае с версией TRIAC, демпфер и MOV не являются обязательными и требуются только в том случае, если у вас индуктивная нагрузка и / или шумная сеть.
SCRимеют полупроводниковую структуру PNPN с дополнительной легированной секцией для создания затвора. Сделать тиристор, используя пару транзисторов, удивительно просто. Концепция показана ниже, и она работает так же, как «настоящая вещь», за исключением того, что ток ограничен, потому что большая часть его должна проходить через базовые соединения.Время включения очень быстрое, потому что два транзистора работают в контуре положительной обратной связи. Согласно симулятору, проводимость начинается в пределах 15 нс от приложенного триггерного импульса, а время нарастания тока нагрузки составляет менее 18 нс.
Рисунок 6.2 — Сделай сам «SCR» на двух транзисторах
Хотя эта схема непрактична для силовых цепей, ее стоит помнить, если вам когда-нибудь понадобится слаботочный высокочувствительный переключатель с защелкой. Как и все тиристоры, он имеет минимальный ток удержания.В данном случае это около 65 мкА, установленное R1 и R2. Однако ожидать, что он будет работать с током менее 5 мА, вероятно, неразумно. При любом токе от 7 мА до 50 мА напряжение на «тиристоре» остается на уровне около 800 мВ. Это зависит от используемых транзисторов (для моделирования я использовал BD139 [NPN] и BD140 [PNP]). Диод предотвращает снижение чувствительности схемы резистором затвора (и увеличение требуемого тока удержания). В отличие от «настоящего» SCR, версия с транзистором может быть отключена. Доступны тиристоры GTO (закрытие затвора), но для этого требуется отрицательный импульс затвора высокой энергии.
Важно понимать, что реле SCR (вместе с TRIAC) имеют некоторый ток утечки, который указан в таблице данных. Если демпферная цепь R / C включена параллельно с реле, она увеличивается в зависимости от емкости и частоты. Например, конденсатор 10 нФ будет пропускать 722 мкА на частоте 50 Гц, и это может быть больше, чем вы получите из-за обратной утечки в выключенном состоянии. SCR серии BT152 имеют максимальную характеристику утечки 1 мА при 125 ° C и максимальном номинальном напряжении. Обычно это игнорируется, но это означает, что существует некоторый риск «покалывания», если вы полагаетесь на реле SCR для изоляции напряжения сети.Это одна из причин, по которой , а не , могут использовать их в качестве защитного выключателя.
Один тиристор может также переключать переменный ток, используя его между положительной и отрицательной клеммами мостового выпрямителя, причем одна клемма переменного тока является входом, а другая — выходом. Сильноточные тиристоры дешевле и имеют меньшую рассеиваемую мощность, чем сильноточные мостовые выпрямители, поэтому этот метод бесполезен и здесь не показан.
7 — переход через нуль, случайное, пиковое переключение и импульсный привод
В приведенных выше описаниях упоминались переход через нуль, случайное переключение и переключение пиков.Реле MOSFET (и IGBT) всегда «случайны», если не включены дополнительные схемы. Детекторы пересечения нуля подробно обсуждаются в статье AN-005 — Детекторы пересечения нуля, и аналогичная схема включена в микросхемы драйверов ZCS TRIAC. Очевидно, вы не можете включить TRIAC или SCR, когда напряжение составляет , фактически ноль, и у большинства из них есть порог до 35 В до срабатывания триггера. Это работает правильно только при напряжении питания переменного тока выше 30 В RMS, потому что при более низких напряжениях он может вообще не сработать.
Пиковое переключение несколько сложнее. Хотя, безусловно, можно зафиксировать (и удержать) пиковое напряжение, это требует времени. Как правило, может пройти до 40 мс (два полных цикла при 50 Гц), прежде чем схема сможет обнаружить пиковое напряжение и запустить реле. Альтернатива (и метод, который я использовал для специального тестера, который я сделал) состоит в том, чтобы обнаружить переход через ноль и подождать 5 мс (сдвиг на 90 ° при 50 Гц, что является пиковым напряжением), прежде чем запускать реле TRIAC или SCR. Это несложно, но требует дополнительных схем.Для приложений с частотой 50 и 60 Гц потребуются разные устройства, поэтому неудивительно, что этот метод не будет использоваться в коммерческих устройствах.
Случайное переключение означает, что SSR включится, как только появится достаточно напряжения, чтобы вызвать срабатывание и фиксацию TRIAC или SCR. С реле MOSFET или IGBT они будут включаться, когда напряжение затвора выше порогового значения — даже при нулевом токе — поэтому задержка очень мала. Для большинства реле TRIAC / SCR с произвольной коммутацией задержка в наихудшем случае в большинстве случаев составляет всего пару миллисекунд.
Триггерный сигнал для реле TRIAC / SCR может быть непрерывным или импульсным с высокой частотой (обычно> 10 кГц). Последняя система распространена, когда запуск осуществляется с помощью импульсных трансформаторов. Этот подход здесь не рассматривался, но ниже показан пример. Импульсные трансформаторы имеют некоторые преимущества перед оптопарами в том, что они могут обеспечивать более высокий пусковой ток и не подлежат ограничениям DV / Dt в той же степени, что и симисторы. Импульсное переключение может быть настроено для перехода через нуль, пика, случайного или определенного фазового угла (используется для схем диммера).Схема привода более сложна, чем при использовании оптронов.
Рисунок 7.1 — Запуск импульсного трансформатора для TRIAC SSR
Хотя этот подход выглядит идеальным, важна полярность импульса. Обратитесь к запускающим квадрантам, показанным на рисунке 5.1, и очевидно, что квадранты II и III являются единственным вариантом (поскольку квадрант IV следует избегать при использовании многих TRIAC [5, 6] ). Это означает, что триггерные импульсы должны быть отрицательными , хотя это спорный вопрос, когда используется трансформатор, потому что опорный сигнал постоянного тока всегда является средним значением формы сигнала.
Включение диодов Шоттки заставляет большую часть импульсного напряжения быть отрицательным, что позволяет запускать в квадрантах II и III. Это позволяет полностью избежать квадранта IV и обычно дает наилучшую производительность. Если частота запускающего импульса достаточно высока, диод можно не устанавливать, поэтому даже если TRIAC попытается (но потерпит неудачу) сработать в Q4, полярность изменится всего за несколько микросекунд, поэтому он сработает правильно. При использовании импульсного запуска последовательность импульсов требуется до тех пор, пока TRIAC включен.Применение только одного импульса в точке, где требуется проводимость, может привести к прерывистой работе, особенно с индуктивными нагрузками.
Наихудшая из возможных неисправностей возникает, когда TRIAC проводит только полуволны, поскольку это может привести к сгоранию двигателя или трансформатора. Это совсем не редкость, особенно если разработчик пытается запустить триггер в квадранте IV. К сожалению, похоже, что большинство любителей (и даже заявителей на патенты) не осведомлены о «проблеме квадранта IV» с TRIAC и пытаются запускать, используя только положительные импульсы, тогда как отрицательные импульсы всегда будут работать лучше.Если вы посмотрите таблицы данных TRIAC, вы обнаружите, что квадранты I-III более чувствительны, чем квадранты IV (последний может потребовать удвоения тока срабатывания по сравнению с квадрантами I-III), а многие типы TRIAC вообще запрещают запуск квадранта IV . .
Импульсный трансформатор должен быть рассчитан на напряжение изоляции, необходимое для цепи, и обычно составляет не менее 2 кВ. Их легко приобрести у многих поставщиков. Демпфер не включен, но может потребоваться в зависимости от области применения.
8 — Сводка SSR
Существует огромное количество различных типов реле (EMR и SSR) не только для коммутационных устройств, но и для требований к входам. Некоторые SSR предназначены исключительно для работы с переменным током, другие — только с постоянным током. Небольшое количество коммерческих SSR можно использовать с переменным или постоянным током. В этом отношении они гораздо более строгие, чем EMR, но они также предлагают некоторые уникальные преимущества. Излишне говорить, что они также имеют некоторые уникальные недостатки.
ТТРмогут использовать широкий спектр методов изоляции и управления, включая герконовые реле (что, строго говоря, делает его гибридным), преобразователи переменного / постоянного или постоянного / постоянного тока, преобразователи частоты сети, высокочастотные импульсные трансформаторы или (и чаще всего ) инфракрасный свет в корпусе IC. Оптопары значительно превосходят по численности другие методы для устройств средней мощности. Если контролируется значительная мощность, в схеме управления, вероятно, будет использоваться импульсный трансформатор.
Как и обычные реле, большинство SSR обеспечивают гальваническую развязку между входом и выходом, обычно рассчитанная на 2-3 кВ.Вместо того, чтобы использовать катушку для управления реле, в SSR обычно используется оптопара (Si875x является заметным исключением), поэтому активирующей средой является инфракрасный свет, а не магнитное поле. Там, где для электромеханического реле может потребоваться входная мощность до пары ватт (вплоть до 100 мВт), SSR обычно работают с мощностью всего 50 мВт, а некоторым требуется даже меньше.
Однако там, где контакты обычного реле могут рассеивать только несколько милливатт, SSR обычно рассеивает намного больше, а для мощных типов требуется радиатор для охлаждения электронного переключающего устройства.Это связано с тем, что переключающий элемент является полупроводниковым устройством, и поэтому на него распространяются все ограничения любого полупроводника. Сюда входит естественный враг всех полупроводников — тепло! Распространенными коммутационными устройствами являются тиристоры, симисторы, полевые МОП-транзисторы и IGBT , и каждое из них имеет свои собственные преимущества и ограничения.
Будьте особенно осторожны, если ваше приложение имеет высокий пусковой ток. Максимальный ток в наихудшем случае должен быть в пределах номинальных значений SSR, иначе существует реальный риск разрушения реле.SSR имеют удивительный набор спецификаций (некоторые из них более непостижимы, чем другие), но всегда будет указан максимально допустимый ток (обычно как «неповторяющийся пиковый импульсный ток»). Обратите внимание на использование термина «неповторяющийся» — это означает все, что производитель говорит о его значении. Это может быть 20 мс (один цикл при 50 Гц), это также может означать для некоторой другой указанной продолжительности (например, 1 мс), и, если вам повезет, будет график и даже некоторая информация о том, как бороться с пусковым током. Для получения дополнительной информации по этой теме, пожалуйста, прочтите статью о пусковом токе.
Переключение Используется для Комментарии SCR ½ Wave AC Два обычно используются в обратной параллели для мощного двухполупериодного переменного тока TRIAC Full Wave AC Обычно используется только для версий с низким энергопотреблением (например, 10 А или меньше) MOSFET AC или DC Доступны версии для переменного и постоянного тока, но обычно не являются взаимозаменяемыми IGBT AC или DC То же, что и выше, но не подходит для аудио.Подходит для высокого тока / напряжения
Чтобы ознакомиться с некоторыми из многих методов, используемых для реле MOSFET, см. Статью «Реле MOSFET», в которой описаны различные схемы управления, которые можно использовать. Статья в первую очередь нацелена на схемы защиты громкоговорителей от постоянного тока, но аналогичные методы могут быть использованы и в других местах. В SSR на основе полевого МОП-транзистора постоянного тока можно просто использовать полевой МОП-транзистор и фотоэлектрическую оптопару. Как правило, преимущества использования предварительно упакованной версии по сравнению с эквивалентом дискретных компонентов практически отсутствуют, за исключением случаев, когда требуется сертификация SSR для приложений, критически важных для безопасности.Хотя это возможных , обычно предпочтительны ЭМИ, потому что в выключенном состоянии утечка нулевая.
Общая компоновка, показанная на схеме на рис. 5.2, является общей для большинства SSR на основе SCR и TRIAC. Оптрон можно приобрести в виде дискретной ИС в версиях «мгновенного / случайного действия» или «с переходом через нуль». В этом случае «мгновенный» (или NZC — ненулевое пересечение) просто означает, что опто-TRIAC срабатывает мгновенно, когда на светодиод подается постоянный ток, независимо от напряжения переменного тока или полярности в этот момент времени.Версии с переходом через ноль предотвращают срабатывание, если напряжение переменного тока не находится в пределах (обычно) 30 В от нуля. Примерами являются MOC3052 (мгновенная / случайная фаза) или MOC3042 (переход через нуль). Оба рассчитаны на входной ток 10 мА.
Вам также необходимо внимательно прочитать документацию, чтобы убедиться, что ваши запасы и нагрузка никогда не могут превышать какие-либо пределы, описанные в таблицах данных. Кратковременное перенапряжение обычно не причиняет ни малейшей боли контактам стандартного реле, и даже кратковременное превышение тока обычно не является проблемой.С твердотельным реле нельзя превышать предельное значение … когда-либо . Вы также должны убедиться, что напряжение и / или ток не изменяются слишком быстро, потому что тиристоры и симисторы имеют определенные пределы, известные как DV / Dt (критическое изменение напряжения во времени) и DI / Dt (критическое изменение тока за время). При превышении любого из них устройство может неожиданно включиться или выйти из строя. Вы также увидите эти термины, записанные как ΔV / Δt и ΔI / Δt.
Максимальное пиковое напряжение также не может быть превышено, и горе вам, если нагрузка потребляет больше номинального пикового тока.Вы также должны использовать радиатор, если ток нагрузки в противном случае приведет к повышению температуры выше номинального максимума (типичный абсолютный максимум температура перехода составляет 150-175 ° C). Минусов много, но иногда нет выбора. Например, вы не можете использовать механическое реле в диммере с отсечкой фазы, потому что оно не может действовать достаточно быстро. Вы также не можете гарантировать, что механическое реле включается при определенном фазовом угле формы волны переменного тока — например, идеальным вариантом для индуктивной нагрузки является подача мощности на пике формы волны переменного тока.Это легко сделать с помощью SSR.
Несмотря на то, что это редко указывается, SSR с TRIAC и SCR имеют минимальный номинальный ток, ниже которого вероятна нестабильная работа. Если ток нагрузки ниже требуемого тока фиксации, SSR либо не будет работать должным образом (например, полуволновой режим), либо он может вообще не работать. Обычно это не проблема с ЭМИ, хотя некоторые – указывают минимальный ток, чтобы контакты не оставались открытыми из-за поверхностного загрязнения. Обычно это происходит только при очень низких напряжениях.
Стоит еще раз взглянуть на (обобщенные) преимущества и недостатки полупроводников по сравнению с электромеханическими реле.
ПреимуществаSSR …
- У некоторых из них корпус меньшего размера, позволяющий использовать больше устройств на единицу объема, но если требуется радиатор, это преимущество исчезает
- Отсутствие контактов, отсутствие дуги и возможность использования во взрывоопасных средах
- Увеличенный срок службы независимо от количества циклов переключения. Нет движущихся частей, которые изнашиваются
- Бесшумная работа (без слышимого шума)
- Намного быстрее электромеханических реле, и время их переключения составляет порядка микросекунд.
- Отсутствие дребезга контактов, с положительным переключением (может не относиться к ТТР TRIAC и SCR при низком токе)
- Версии постоянного тока могут отключать высокое напряжение и / или высокий ток, что может вызвать серьезное искрение на контактах.
- Менее чувствительны к механическим ударам, вибрации, влажности и внешним магнитным полям.
- Чувствительная входная цепь означает, что для работы требуется низкая мощность привода
ССР Недостатки…
- Большинство из них ограничено «1 форма-A» — один нормально разомкнутый «контакт»
- Вольт-амперные характеристики полупроводников, а не механических контактов
- Более высокое внутреннее сопротивление в замкнутом состоянии с выделением тепла
- Относительно высокий ток утечки, зависящий от напряжения, в открытом состоянии
- Искажение формы сигнала из-за нелинейных характеристик напряжения и тока
- Некоторые SSR имеют переключающие устройства, чувствительные к полярности.
- Реле SCR и TRIAC обычно не могут использоваться с постоянным током (их нельзя выключить)
- Реле SCR и TRIAC имеют минимальный рабочий ток , который обычно не указывается
- Некоторые могут переключаться случайным образом из-за скачков напряжения
- Как и большинство полупроводников, твердотельные реле откажутся от короткого замыкания.
- Чувствительная входная цепь означает, что переходные помехи могут вызвать непредвиденную работу
Неспособность большинства SSR обеспечить переключающие контакты или несколько наборов контактов может быть серьезным ограничением, а также может значительно увеличить затраты.Добавление еще одного набора контактов к электромеханическому реле стоит очень мало, но с SSR вам потребуется дополнительное устройство переключения высокого тока и улучшенный драйвер. В большинстве случаев, если вам нужно, чтобы цепь была нормально замкнута при выключенном питании, вам, вероятно, не повезло. Такие вещи действительно существуют (с использованием полевых МОП-транзисторов в режиме истощения), но я никогда не встречал ничего, кроме как в таблицах данных.
Одна из областей, где превосходят SSR на основе MOSFET и IGBT, — это прерывание высокого напряжения и высокого постоянного тока, что в корне является злом.При напряжении более 35 В и достаточном токе, протекающем в цепи, постоянный ток просто образует дугу на контактах большинства механических реле и переключателей. При высоком токе дуга расплавляет контакты и контактные рычаги до тех пор, пока воздушный зазор не станет достаточно большим, чтобы разорвать дугу. Подумайте о аппарате для дуговой сварки, потому что такие условия могут существовать при достаточном напряжении и токе. MOSFET не имеет этого ограничения и может отключать любое напряжение или ток, которые находятся в пределах его номинальных значений.
Также доступно множество небольших (DIP6, DIP8 или SMT) реле MOSFET. Они не подходят для больших токов, но некоторые из них, вероятно, будут хорошим выбором для переключения аудио и других сигналов низкого уровня. Номинальное напряжение колеблется от 60 В до 300 В или более. Примеры включают G3VM-61G1 (60 В, 400 мА переменного тока), Lh2156AT (300 В, 200 мА переменного тока) и PVDZ172N (60 В, 1,5 А, постоянный ток). Они выбираются более или менее случайно, и существуют сотни различных типов. Как и ожидалось, все, что я видел, — это нормально открытые SPST.Принципы работы во многом такие же, как описано выше, но все в одном пакете. Для типов переменного / постоянного тока номинальное напряжение — это пиковое переменное или непрерывное постоянное напряжение.
Твердотельные реле никогда не следует использовать в качестве системы отключения, критичной для безопасности. Поскольку отказ обычно означает короткое замыкание коммутационного устройства, в случае отказа SSR нагрузка будет постоянно находиться под напряжением. Вы должны знать свои характеристики нагрузки и знать, что многие SSR могут не выключить , если нагрузка имеет характеристику, которая генерирует переходные процессы достаточно быстро, чтобы вызвать самопроизвольное повторное срабатывание SCR или TRIAC.Некоторые нелинейные нагрузки могут вызывать срабатывание SSR только на одной полярности, вызывая полуволновое выпрямление и составляющую чистого постоянного тока в цепи питания нагрузки (обычно в сети). Некоторые проблемы SSR (даже временные) могут вызвать серьезные сбои в другом оборудовании, использующем тот же источник питания. Например, переходное полуволновое выпрямление в сети может вызвать насыщение трансформатора, серьезную перегрузку двигателя (снова насыщение), срабатывание автоматических выключателей и общий ущерб.
Меры предосторожности
При использовании любого SSR никогда не стоит недооценивать, насколько сильно может нагреться коммутационное устройство (а).Для TRIAC 1 Вт / А может показаться не таким уж большим, но даже в большом корпусе с креплением на шпильках очень тепло, рассеивает всего пару ватт (2 А), а меньшие корпуса хуже. Коммутационные устройства могут находиться внутри шасси с небольшим охлаждением или без него, что делает проблему более серьезной. Всегда необходимо правильное тестирование, о чем обычно не нужно беспокоиться с EMR. Точно так же не предполагайте ничего другого — SSR могут (и делают) неправильно работать с некоторыми нагрузками, они используют полупроводники, которые не работают при коротком замыкании, и они могут быть «случайно» включены с кратковременным скачком напряжения.
Является ли это проблемой (или нет) зависит от приложения и от того, отказывает ли устройство (или нет) в результате. Для сетевых приложений рассмотрите возможность использования MOV (металлооксидного варистора) для ограничения пикового напряжения. Для приложений на 230 В не используйте ничего, кроме MOV с номинальным среднеквадратичным значением 275 В (или около 400 В пикового значения). Для 120 В используйте 150 В RMS MOV 220 В, пик). Эти устройства несколько «резиновые» по своим характеристикам и могут иметь отрицательную характеристику сопротивления, когда они проводят. Когда они используются для зажима очень высокой энергии, они нередко катастрофически выходят из строя, поэтому не кладите к ним ничего деликатного.
MOV — это отдельная тема, поэтому я рекомендую, чтобы, если вы хотите включить один, вы читали как можно больше и покупали только у признанных поставщиков. Littelfuse производит устройство, которое они называют TMOV, которое включает в себя внутренний термовыключатель. Это предотвращает рассеяние MOV по шасси в случае отказа, но, конечно, если перегорает предохранитель, MOV навсегда выйдет из строя (и вы не узнаете, что это произошло). По крайней мере, если вы слышите взрыв внутри своего снаряжения, вы знаете, что что-то сломалось, но это не то, что большинство людей хотят испытывать.
Снабберы— это проблема, поэтому везде, где это возможно, используйте безнапорные триаки, которые (по определению) в них не нуждаются. Добавление демпфера означает, что используется больше места на печатной плате, и, хотя они не особенно дороги, каждая дополнительная деталь увеличивает размер и стоимость. В некоторых случаях (с TRIAC и SCR) может потребоваться включить небольшую индуктивность последовательно с нагрузкой. Это ограничивает ΔV / Δt, подаваемое на переключатель, и помогает уменьшить ΔI / Δt при его включении.
MOSFET SSR имеют свои ограничения, но при разумном выборе MOSFET проблем возникнуть не должно.Очень высокие скорости переключения не достигаются при использовании микросхемы драйвера, такой как Si8752, поэтому проблема электромагнитных помех возникает редко. По-прежнему важно провести надлежащее тестирование, чтобы гарантировать, что полевые МОП-транзисторы никогда не нагреваются более чем немного при нормальном использовании, и может потребоваться радиатор, если вам нужно проводить большой постоянный ток. Низкое R DS-on минимизирует рассеивание, но всегда ненулевое значение, когда идет ток.
Безопасность сети Всегда важна.Любой SSR, используемый для переключения сетевого напряжения, должен быть защищен от случайного прикосновения. Все соединения должны быть надежными, чтобы ничто не могло отсоединиться, что может привести к короткому замыканию или другим опасностям. Никогда не подключайте электрические цепи с помощью Veroboard или подобного, потому что дорожки расположены слишком близко друг к другу и у них нет приемлемых расстояний утечки или зазоров. Для обеспечения электробезопасности необходимы маркировочные полоски, пустой материал печатной платы с жесткой разводкой или правильно спроектированная печатная плата. Никогда не используйте слюдяные изоляторы и монтажные втулки для крепления TRIAC к радиатору, поскольку они не обеспечивают приемлемых расстояний утечки и зазоров.Помните, что для всех сетевых проводов необходимо использовать сетевой кабель, а не соединительный провод общего назначения.
Выводы
Нет сомнений, что некоторые приложения требуют использования SSR. Например, отключить источник постоянного тока на 100 В при токе нагрузки 20 А практически невозможно с помощью чего-либо еще. Однако у них также есть недостатки, прежде всего в цене и тепловых ограничениях. Иногда стоит взглянуть на гибридную систему (информацию см. В разделе «Гибридные реле») или даже изучить активные методы подавления дуги (см. Снижение дуги и подавление усиления).В конечном итоге то, что вы делаете, будет компромиссом, но если вы сможете собрать всю свою информацию воедино и выработать решение, вы сможете получить лучшую производительность при наименьших затратах. Вы заплатите за это сложностью, но если это единственный разумный способ заставить что-то работать надежно, то это цена, которую нужно заплатить.
Когда я публикую проекты, у меня есть привычка всегда проверять любую выдвигающуюся гипотезу. То же самое относится и к статьям, поскольку нет смысла распространять информацию, которая не является явно точной.Многие тесты проводятся с использованием симулятора, но все «интересное» также проходит стендовые испытания. К сожалению, Interweb дал право голоса всем, кто умеет печатать (особенно на страницах форума), и здесь доступно огромное количество дезинформации. Новички обычно не знают ничего лучшего и часто принимают совершенно ложную информацию как евангелие, где ее тут же повторно публикуют, пока она не станет настолько распространенной, что люди решат, что она должна быть правдой. Это было не для начала, и никакие повторные публикации лжи не сделают это реальным.
Если вы сделаете домашнее задание, изучите таблицы данных и проведете несколько тестов, вы найдете твердотельное или электромагнитное реле, которое сделает именно то, что вам нужно. В некоторых случаях вы обнаружите, что EMR по-прежнему является лучшим выбором, и это может применяться большую часть времени для «нормального» переключения. В некоторых таблицах данных и обсуждениях вы увидите, что многое связано с высокой чувствительностью SSR, снижающей потери мощности, но на самом деле переключающиеся полупроводники часто рассеивают гораздо больше энергии, чем даже самое нечувствительное электромеханическое реле с аналогичной номинальной нагрузкой.С любым SSR вы, , должны делать домашнее задание и знать о многих вещах, которые могут пойти не так. Также имейте в виду, что неисправность в SSR может вызвать повреждение другого оборудования, даже если оно не контролируется SSR, а просто находится на той же электросети.
Как и все в электронике, вам придется где-то идти на компромисс. В целом обычные реле обычно имеют меньше компромиссов, чем твердотельные версии, и предлагают гораздо более гибкое переключение. Имея потребляемую мощность всего полватта, вы можете легко контролировать 2 кВт или более, и вы можете рассчитывать, что он будет работать для сотен тысяч операций даже при полной нагрузке.Коммутационные потери минимальны, не требуются радиаторы, а надежность является выдающейся, если вы используете правильное реле для работы. Что важно для многих людей, электромеханические реле намного проще получить и, как правило, намного дешевле, чем твердотельные эквиваленты.
Есть также много приложений, в которых ничто не может сравниться с твердотельным реле. Полная свобода от искрения, что действительно важно во взрывоопасных средах с легковоспламеняющимися материалами, такими как газ или мелкие взвешенные частицы (порошки, мука и т. Д.)), быстрый (MOSFET), исключительно быстрый (типы SCR и TRIAC) и предсказуемое время отклика, а также отсутствие дребезга контактов могут иметь решающее значение в некоторых конструкциях. Процесс проектирования основан на знании доступных вариантов, поэтому вы можете выбрать тот, который лучше всего подойдет для вашего проекта. Не существует «лучшего» решения для всех приложений, и вы должны выбрать решение с наименьшим количеством записей в столбце «недостатки».
Список литературы
Википедия — не самое надежное справочное место, но описания этих устройств довольно хорошие.
- Тиратрон — Википедия
- Тиристор — Википедия
- TRIAC — Википедия
- История компании General Electric
- Управление TRIAC с микроконтроллером, питаемым от плюса — ST Microelectronics
- Управление TRIAC импульсным трансформатором — ST Microelectronics
- Решения для фотоэлектрических однокомпонентных / изолированных МОП-транзисторов — Vishay
- TRIAC — Основные понятия — IDC Online
Статьи, упомянутые в начале, также очень полезны и, возможно, являются наиболее полными описаниями, которые вы найдете в любом месте.
Указатель статей
Основной указатель
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2020. Воспроизведение или повторная публикация любыми способами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает сделать одну (1) копию для справки при создании проекта.Коммерческое использование запрещено без письменного разрешения Рода Эллиотта. |
Журнал изменений: страница создана, авторские права © Род Эллиотт, 28 сентября 2020 г./ Опубликовано в ноябре 2020 г.
Quick Tech | Автомобильные реле
Убивает ток. Токи выше 10 миллиампер могут вызвать настолько сильные сокращения мышц, что пострадавший не может отпустить провод, который их шокирует. При 20 миллиампер дыхание может стать затрудненным, а 75 миллиампер могут вызвать остановку дыхания.При 100 миллиампер возникает фибрилляция желудочков сердца. Это спастическое подергивание стенок желудочка сердца может привести к смерти. При силе тока 200 миллиампер человеческое сердце может принудительно зажать себя во время поражения электрическим током. Это может фактически защитить сердце от фибрилляции и увеличить шансы жертвы на выживание. Не волнуйтесь, естественное электрическое сопротивление вашего тела достаточно велико, чтобы ограничить ток от 12-вольтовой электрической системы автомобиля. Однако понимание важности текущих требований к различным системам транспортного средства является ключом к проектированию и совершенствованию его электрической системы.
Текст Майкл Феррара // Фото Джун Чен
ДСПОРТ Выпуск № 156Двигатели, вентиляторы, насосы, звуковые сигналы и освещение без использования светодиодов требуют повышенного тока. Для высоких требований к току требуются электрические провода и переключатели, способные оставаться холодными и собираться при протекании значительного количества тока. Это означает провода большего сечения и переключатели для тяжелых условий эксплуатации. Оба они тяжелые и дорогие. Средство минимизации длины проводки большого сечения и замена переключателей с большим током на переключатели с низким током снижает вес, стоимость и повышает эффективность.
При использовании проводов меньшего, чем оптимальный размер, напряжение может падать от начала до конца цепи. Хотя 10-процентное падение напряжения может не показаться большой потерей, яркость света может снизиться на 33% из-за такого падения напряжения.
В то время как все компоненты на 12 В будут обеспечивать улучшенную производительность с , полными 13,5-14,5 вольт, освещение — это одна область , на которую значительно влияют падения напряжения питания . Если ваши фары получают только 90 процентов от системного напряжения (12.1 вольт вместо из 13,5 вольт), выход будет только будет 67 процентов от того, что могло бы быть с полными 13,5 вольт.
В 1835 году Джозеф Генри изобрел реле постоянного тока. Генри показал, что меньший электромагнит можно использовать для включения и выключения большего электромагнита. Это позволяло очень малым токам на небольших проводах переключать сильноточный переключатель. Так родилось реле, и эта технология сделала возможными телеграф и телефон.
Лучшее место для реле сводит к минимуму длину провода между источником (аккумулятор или блок предохранителей) и устройством.Такое положение не только снижает потери напряжения в линии, но также снижает общий вес и стоимость системы. Поскольку провода управления или триггера реле могут быть очень маленькими по размеру, переключатели могут быть расположены в наиболее удобном месте.
Реле — это, по сути, переключатель с дистанционным управлением. По сути, в каждом реле есть две системы. Во-первых, это схема управления. Цепь управления, которую иногда называют цепью триггера, — это то, что «активирует» или активирует реле.Это часть устройства дистанционного управления. Коммутационная часть или силовая цепь — это часть реле, на которую высокое напряжение подается от линии (батареи) к нагрузке (устройству).
4-КОНТАКТНОЕ РЕЛЕ
Нормально разомкнутое реле (форма A / SPST-NO) Нормально разомкнутое 4-контактное реле замыкает свою «силовую» цепь, когда через его катушку проходит ток. Нормально разомкнутые реле используются для освещения автомобиля, звуковых сигналов, охлаждающих вентиляторов, электродвигателей нагнетателей, вентиляторов кондиционирования воздуха.Это наиболее распространенные реле на автомобилях.
В обычных 4- и 5-контактных реле одна пара клемм находится на противоположных сторонах, а ножки параллельны друг другу. Когда они пронумерованы, это будут клеммы 85 и 86. Для большинства реле требуется, чтобы на одну клемму подавалось положительное напряжение, а на другую клемму — отрицательную или заземленную. Однако это не относится к твердотельным реле. Твердотельные реле фактически имеют постоянное заземление на одной клемме (# 85), в то время как другая клемма (# 86) является сигналом переключения на землю, чтобы замкнуть силовую цепь в переключателе.Поскольку в ближайшем будущем твердотельные реле станут более распространенными, рекомендуется всегда заземлять клемму 85. На нетвердотельных реле на клемму 86 потребуется небольшой ток +12 В для активации реле. Тем не менее, это не всегда так. На твердотельных реле клемма 86 будет коммутируемой массой (скорее всего, это выход драйвера низкого уровня от ЭБУ). Твердотельные реле уникальны тем, что обе стороны цепи управления должны быть заземлены, чтобы силовая цепь замкнулась и передавала мощность с 30 на 87.
В обычных 4-контактных реле пара (4-контактных) клемм, расположенных напротив друг друга с перпендикулярными ножками, будет составлять силовую цепь реле. Клемма 30, которая имеет ту же ориентацию лезвий, что и клеммы 85 и 86, является местом, где питание должно поступать на реле. Источник питания с предохранителем должен подавать ток на клемму 30. Клемма 87 — это размер нагрузки реле. Это то место, откуда устройство будет потреблять ток после включения реле. Клемма 87 должна подключаться к плюсовому проводу топливного насоса, фары, нагнетателя, вентилятора или другого электрического устройства, которое необходимо переключить.Хотя 4-контактное реле также будет работать с перевернутыми выводами 30 и 87, это плохая практика, поскольку вы столкнетесь с проблемами как на 5-контактных, так и на твердотельных реле, если не соблюдаете надлежащие соглашения.
5-КОНТАКТНОЕ РЕЛЕ
Реле переключения (Форма C. SPDT) Реле переключения переключает ток с одной клеммы на другую. Клемма 87 по-прежнему будет нормально разомкнутой и замкнутой только тогда, когда цепь управления находится под напряжением. Однако клемма 87a будет замкнута, когда реле не запитано, и разомкнута при подаче напряжения.
В то время как 4-контактное реле действует как переключатель дистанционного управления, 5-контактное реле может использоваться для подачи тока на один источник, когда он не запитан, и переключения тока на другой источник, когда он находится под напряжением. Когда 5-контактное реле не запитано, контакт 87a будет подключен к контакту 30. Если контакт 30 имеет +12 В, контакт 87a будет иметь то же самое. Когда реле находится под напряжением, контакт 87a отключается, а контакт 87 будет иметь +12 вольт. Если бы определенный набор ламп был включен, когда реле было выключено, но выключил и активировал второй набор ламп, 5-контактное реле позволило бы легко осуществить это переключение.
4-КОНТАКТНОЕ ТВЕРДОЕ РЕЛЕ
Нормально разомкнутое реле (твердотельное / SPST-NO) Нормально разомкнутое 4-контактное реле замыкает свою «силовую» цепь, когда обе стороны цепи управления (85/86) замкнуты на землю. Твердотельные реле могут иметь широтно-импульсную модуляцию. В то время как твердотельное реле может подключаться к обычному держателю реле, проводка должна быть переназначена так, чтобы контакт 85 был постоянным заземлением, а контакт 86 заземлялся, когда реле необходимо включить цепь питания.
В твердотельной электронике нет движущихся или изнашиваемых частей. По сути, они могли длиться вечно. При переключении они не издают шума. Hella 931773987 — самое популярное твердотельное реле в традиционном форм-факторе. Это реле требует правильного подключения ко всем четырем клеммам. Плавкое питание на клемме 30; питание устройства на клемме 87; клемма 85 на постоянную массу и клемма 86 для переключения управления на массу. Клемма 86 заземления включает реле и замыкает силовую цепь 30-87.Это реле может работать от ЭБУ при рабочем цикле от 10 до 90 процентов. Частота может быть от 1 до 1000 Гц. Этому реле требуется всего около 0,0001 секунды для включения при замкнутом заземлении или 0,000075 секунды для срабатывания. Реле идеально подходит для использования с резистивными нагрузками при регулировании частоты с широтно-импульсной модуляцией. Общие примеры резистивных нагрузок включают в себя большинство электрических нагревателей и традиционные лампы накаливания. Следовательно, вы можете использовать твердотельное реле с ШИМ-управлением для управления температурой электрического обогревателя заднего стекла, подогрева сиденья или лампочки.
Провода, по которым проходит ток, также создают сопротивление, которое приводит к падению напряжения. Сопротивление провода зависит от его длины и ширины поперечного сечения или калибра. Длинные и тонкие провода добавляют цепи наибольшее сопротивление.
Помимо выбора между 4-проводным (нормально разомкнутым, SPST) реле и 5-проводным переключающим реле, необходимо учитывать и другие соображения. Также необходимо учитывать текущую грузоподъемность, размер упаковки и технологию.Наиболее распространенным традиционным реле, используемым в автомобильной промышленности, является 5-контактное реле 30A / 40A. Эти реле настолько распространены, что их производят по всему миру. Если вы не хотите регулярно их заменять, используйте реле, произведенные в США, Японии или Германии. На практике эти реле обычно не подходят для сильноточных охлаждающих вентиляторов и сильноточных топливных насосов. Для этих приложений лучше всего подходят сильноточные реле (которым требуются более широкие ножевые клеммы для поддержки проводов большего сечения).Нам также очень нравится использовать твердотельные реле в любой цепи, управляемой драйвером нижнего уровня от вторичного электронного блока управления. Отсутствие положительного напряжения в цепи управления твердотельных реле устраняет скачки напряжения, возникающие при выключении обычного реле. Это добавляет дополнительный уровень защиты ЭБУ. Наконец, есть также несколько «мини» реле меньшего размера, которые отлично работают при более скромных текущих потребностях. Поскольку твердотельные, сильноточные и «мини» реле немного сложнее найти в дороге, всегда полезно иметь при себе запасное.
Проведение провода 2-го калибра от аккумулятора к выключателю зажигания и обратно к стартеру было бы реальностью, если бы реле никогда не было изобретено. К счастью, реле живое и здоровое. Понимание истории, науки, передового опыта и применения реле позволит вам проектировать, обслуживать и улучшать электрическую систему вашего автомобиля для достижения максимальной производительности и эффективности.
Оптический переключатель
Оптический переключатель.- Оптический переключатель находится на верхней и нижней лебедке орудия Mk 45 Mod 1, чтобы указать наличие или отсутствие снаряда или метательного заряда. Блок состоит из оптического переключателя (детектора) и передатчика инфракрасного света. Попадая в подъемник, снаряд прерывает световой луч, который отключает выключатель. Микро-, бесконтактные и оптические переключатели обеспечивают входы для схем управления пистолетами, описанных в следующем разделе.Другие типы переключателей блокировки. Транзисторы могут использоваться в качестве переключателей в твердотельных схемах.Более подробная информация об этих коммутационных устройствах представлена далее в этой главе.
Реле
Реле — это просто выключатель с электромагнитным управлением. Реле предназначены для размыкания или замыкания цепи, когда ток через ее катушку подается и снимается или изменяется по величине. Основными частями реле являются катушка, намотанная на железный сердечник, и якорь, который управляет набором контактов. Простое реле и схема показаны на рисунке 5-8.
Глядя на рисунок 5-8, если вы замыкаете переключатель S1, ток течет через катушку, возбуждая электромагнит и вытягивая якорь вверх.Действие якоря замыкает контакты, и на нагрузку подается питание. К якорю можно добавить больше контактов, чтобы можно было выполнять другие функции,
Рабочая скорость реле определяется временем между замыканием цепи катушки и замыканием контактов реле. В малых специально
Рисунок 5-8.-Простая схема реле.
Реле, разработанные, как и те, что используются в схемах управления 5-дюймовой / 54 оружейной установки, рабочая скорость может составлять всего 1 миллисекунду.Скорость срабатывания реле может быть увеличена любым способом, уменьшающим вихревые токи в сердечнике. Изготовление сердечника из пластин — это один из методов уменьшения вихревых токов и, таким образом, увеличения скорости работы реле.
Другой метод — подключить резистор последовательно с катушкой реле и увеличить рабочее напряжение. Эти действия увеличивают скорость замыкания, потому что в момент подачи питания на реле все напряжение появится на катушке, и магнитное поле будет нарастать быстрее.Скорость срабатывания реле можно снизить, поместив тяжелую медную втулку на сердечник катушки. Медная втулка имеет эффект закороченного витка. Ток в гильзе противодействует полю в катушке, когда оно нарастает или схлопывается, тем самым задерживая срабатывание реле.
Тип материала, из которого изготовлены контакты, зависит от величины подаваемого тока. Большие силовые реле обычно имеют медные контакты и используют протирку, чтобы обеспечить хорошее соединение. В небольших реле может использоваться серебро или некоторый серебряный сплав, в то время как в некоторых случаях может использоваться вольфрам или какой-либо очень твердый материал, который предотвращает возгорание или окисление контактов.В общем, реле, которые открываются и закрываются с быстрым положительным срабатыванием, вызывают гораздо меньше проблем, чем реле, которые срабатывают медленно. Реле, которые вышли из строя или полностью вышли из строя, следует заменить. Реле не подлежат ремонту.
РЕЛЕ УПРАВЛЕНИЯ. Реле управления используются в цепях управления для автоматического выполнения операций переключения в надлежащей последовательности.
Рисунок 5-9.-Миниатюрное «герметичное» реле.
Управляющие реле миниатюрного типа.- Миниатюрные реле (рис. 5-9), часто называемые «герметичными» реле, представляют собой двухпозиционные реле в герметичном корпусе со вставными контактами, которые соединяются с розеткой. Электропроводка от клемм розетки завершает электрические цепи в зависимости от ситуации. Основные внутренние компоненты миниатюрного реле — это якорь с пружинным возвратом, катушка и шесть наборов контактов. (Каждый набор состоит из общего контакта, нормально разомкнутого контакта и нормально замкнутого контакта.) Когда реле срабатывает, нормально замкнутые контакты (HB) размыкаются, а нормально разомкнутые контакты (HF) замыкаются.
Реле с выдержкой времени. Реле с выдержкой времени (рис. 5-10) вводят контролируемые интервалы времени в электрические цепи. Реле состоят из пневматических блоков синхронизации, катушек и корпусов переключателей, а также клемм для проводки. Когда на катушку подается питание, плунжер катушки воздействует на диафрагму в пневматическом синхронизирующем устройстве. Поскольку контакты реле не могут сработать (или сломаться) до тех пор, пока воздух не выйдет из диафрагмы через регулируемое отверстие, размер отверстия определяет интервал задержки. В оружейных установках используются реле с выдержкой времени двух типов: с медленным размыканием и с мгновенным размыканием (SMIB) и с медленным размыканием с мгновенным замыканием (IMSB).
Электромеханическое или электрическое реле »Примечания по электронике
Электромеханическое реле — это электрический переключатель, который обычно приводится в действие с помощью электромагнетизма для приведения в действие механического переключающего механизма.
Технология реле включает:
Основы реле
Герконовое реле
Характеристики герконового реле
Релейные схемы
Твердотельное реле
Электрическое реле — это электрический выключатель с электромагнитным управлением — электромеханический выключатель.Относительно небольшой ток используется для создания магнитного поля в катушке внутри магнитного сердечника, и он используется для управления переключателем, который может управлять гораздо большим током.
Таким образом, электромеханическое реле или электрическое реле может использовать небольшой ток для переключения гораздо большего тока и обеспечения электрической изоляции обеих цепей друг от друга.
Электрические реле бывают разных размеров и могут быть разных типов с использованием немного разных технологий, хотя все они используют одну и ту же базовую концепцию.
Хотя в некоторых отношениях электромеханические реле могут рассматриваться как использующие старую технологию, а твердотельные реле / твердотельные переключатели могут считаться более эффективным средством переключения электрического тока.
Тем не менее, электромеханические реле обладают некоторыми уникальными свойствами, которые делают их идеальными для многих приложений, где другие типы могут быть не столь эффективными. При этом твердотельные переключатели, твердотельные реле или электронные переключатели широко используются и используются во многих областях, где электромеханические реле ранее использовались в качестве электрических переключателей.
Обозначение цепи реле
Обозначения схем электромеханических реле могут несколько отличаться — как и большинство обозначений схем. В наиболее распространенном формате катушка реле представлена в виде коробки, а контакты расположены рядом, как показано ниже.
Обозначение цепи релеОбратите внимание, что на этом символе показаны как нормально разомкнутые, так и нормально замкнутые контакты. Если один или несколько наборов контактов не используются, они часто не отображаются.
В других схемах, особенно новых, которые могут быть немного старше, катушка реле может отображаться как настоящая катушка.Хотя это не соответствует последним стандартам обозначений схем реле, тем не менее, это может быть замечено в некоторых случаях и хорошо описывает внутреннюю часть реле.
Обозначение цепи релеКатушка реле в более старом стиле.
Возможно наличие дополнительных комплектов контактов электрического переключателя. Точно так же, как на переключателе может быть несколько полюсов, то же самое можно сделать и с реле. Можно использовать несколько наборов переключающих контактов для переключения нескольких цепей.
Обозначение цепи релеКатушка реле в более старом стиле.
Основы реле переключателя
Реле — это разновидность электрического переключателя, который приводится в действие электромагнитом, который переключает переключение при подаче тока на катушку.
Эти реле могут приводиться в действие схемами переключателя, где переключатель не может выдерживать большой ток электрического реле, или они могут управляться электронными цепями и т. Д. В любом случае они обеспечивают очень простое и привлекательное предложение для электрического переключения.
Основная концепция работы переключателя электрического реле.Реле состоит из нескольких основных частей, которые образуют реле.
- Рама: Для удержания компонентов на месте требуется механическая рама. Эта рама обычно достаточно прочная, поэтому она может надежно удерживать дополнительные элементы электромеханического реле без относительного перемещения.
- Катушка: Необходима катушка, намотанная на железный сердечник для увеличения магнитного притяжения. Катушка с проволокой создает электромагнитное поле при включении тока и притягивает якорь.
- Якорь: Это подвижная часть реле. Этот элемент реле размыкает и замыкает контакты и имеет ферромагнитный металл, который притягивается электромагнитом. Узел имеет прикрепленную пружину, которая возвращает якорь в исходное положение.
- Контакты: Контакты приводятся в действие движением якоря. Некоторые электрические переключающие контакты могут замкнуть цепь при срабатывании реле, тогда как другие могут разомкнуть цепь.Они известны как нормально открытые и нормально закрытые.
Конструкция реле включает несколько аспектов. Это ключевой элемент конструкции, позволяющий получить необходимый магнитный поток для достаточно быстрого притяжения якоря без чрезмерного потребления тока. Также необходимо убедиться, что реле может быстро размыкаться после снятия тока питания. Магнитное удержание в материалах должно быть низким.
Когда через катушку течет ток, создается электромагнитное поле.Поле притягивает железный якорь, другой конец которого сближает контакты, замыкая цепь. При отключении тока контакты снова размыкаются, отключая цепь.
При выборе электромеханических реле будет видно, что контакты электрического переключателя бывают разных форматов. Как и обычные электрические переключатели, электромеханические реле определяются с точки зрения разрывов, полюсов и бросков, которые имеет устройство.
- Перерыв: Хотя некоторые термины, применяемые к электромеханическим реле, также применимы к электрическим переключателям малой мощности, этот термин больше применим к коммутации большей мощности.Это количество отдельных мест или контактов, где переключатель используется для размыкания или замыкания одной электрической цепи.
Все реле либо одинарные, либо двойные. Одиночный разрыв, контакт SB разрывает электрическую цепь только в одном месте. Затем, как видно из названия, двойной разрыв, контакт DB разрывает цепь в двух местах.
Одинарные размыкающие контакты обычно используются при переключении устройств малой мощности, возможно, электронных схем или электрических коммутационных устройств малой мощности.Контакты с двойным разрывом используются для электрического переключения устройств большой мощности. Если один из контактов заедает, то другой, скорее всего, все равно переключится и разомкнет цепь.
- Полюс: Количество полюсов электрического переключателя — это количество различных наборов переключающих контактов, которые он имеет. Однополюсный переключатель может переключать только одну цепь, тогда как двухполюсный переключатель может переключать две разные изолированные цепи одновременно. Однополюсный переключатель часто обозначается буквами SP, а двухполюсный — DP.Реле могут иметь один, два или несколько полюсов.
- Бросок: Количество бросков электрического переключателя — это количество доступных положений. Для электромеханического реле обычно есть только один или два хода. Реле одиночного перехода замыкает и разрывает цепь, тогда как реле двойного направления будет действовать как переключающее, маршрутизирующее соединение от одной конечной точки к другой. Одиночный и двойной бросок часто обозначают буквами ST и DT.
Например, в спецификации электрического реле может указываться однополюсный однополюсный: SPST, или одно может быть описано как двухполюсное одинарное: DPST и т. Д.Эти термины определяют количество наборов переключающих контактов и то, являются ли они размыкающими / замыкающими или обеспечивают функцию переключения.
Контакты электромеханического реле
Для обеспечения надежного обслуживания и увеличения срока службы реле. На контактах используются различные материалы, чтобы обеспечить их правильную работу по назначению.
Одна из проблем, возникающих с контактами, заключается в том, что происходит точечная коррозия — обычно материал имеет тенденцию накапливаться в центре одного контакта, в то время как происходит потеря материала из другого, где возникает «ямка».Это одна из основных причин выхода из строя контактов, особенно при возникновении искр.
В разных реле используются разные типы материалов для переключающих контактов в зависимости от области применения и требуемых характеристик. Есть много готовых изделий, которые можно использовать, некоторые из наиболее широко используемых перечислены ниже с их атрибутами.
- Серебро: Во многих отношениях серебро является одним из лучших материалов общего назначения для контактов реле с высоким уровнем проводимости.Однако он подвержен процессу сульфидирования, который, очевидно, зависит от атмосферы, в которой работает реле — в городских районах он намного выше. В результате этого процесса на поверхности образуется тонкая пленка с пониженной проводимостью, хотя более сильное контактное воздействие при замыкании контактов реле может прорваться через это. Пленка также может вызвать напряжение интерфейса в несколько десятых вольта, что может повлиять на производительность для некоторых приложений.
- Никель-серебро: Этот тип контакта был разработан для уменьшения эффекта точечной коррозии.Серебряный контакт легирован никелем для придания ему мелкозернистой структуры, в результате чего перенос материала происходит более равномерно по всей поверхности контакта, что продлевает срок службы.
- Оксид серебра и кадмия: Контакты, изготовленные из оксида серебра и кадмия, не могут сравниться с очень высокой проводимостью мелких серебряных контактов, но они действительно обеспечивают повышенное сопротивление переносу материала и потери контакта в результате искрения. Это означает, что эти контакты обычно служат дольше, чем контакты из серебра при тех же условиях.
- Золото: Высокая проводимость и отсутствие окисления означает, что золото идеально подходит для многих применений переключения. Он используется только для коммутации слабых токов, так как не отличается особой надежностью. Обычно для снижения затрат используется оклейка золотом, и в результате низкого уровня сульфидирования контакты остаются в хорошем состоянии в течение длительных периодов времени. Одна проблема с реле заключается в том, что, если они не используются какое-то время, в то время как контактное сопротивление может увеличиваться — этого не происходит с золотом.
- Вольфрам: Вольфрам используется в реле, предназначенных для высоковольтных устройств. Обладая высокой температурой плавления, превышающей 3380 ° C, он обладает превосходной стойкостью к дуговой эрозии, необходимой для этого типа переключения.
- Ртуть: Ртуть используется в герконовом реле особого типа, которое называется герконовым реле с ртутным контактом. Он обладает хорошей электропроводностью, а так как он является жидкостью, то есть точечная коррозия, вызванная переносом материала между контактами.После размыкания контактов переключателя ртуть возвращается в резервуар ртути, необходимый для этого типа реле, и новая ртуть используется для следующего переключения. Это действие сводит на нет эффект переноса материала во время переключения.
Хотя используется много различных типов материалов и сплавов, это наиболее часто используемые материалы для контактов и отделки.
Ограничение пускового тока для повышения надежности
Одна из ключевых проблем, с которой сталкиваются электрические коммутационные системы: электромеханические реле, а также твердотельные переключатели, — это пусковой ток.
Существует множество примеров того, насколько велики могут быть уровни пускового тока. Простая бытовая электрическая лампочка накаливания хорошо иллюстрирует это. В холодном состоянии нить накала имеет низкое сопротивление, и только когда лампа нагревается, ее сопротивление уменьшается. Обычно пусковой ток при включении может в десять-пятнадцать раз превышать ток в установившемся режиме. Несмотря на то, что в настоящее время обычно используются твердотельные лампы, этот пример хорошо иллюстрирует суть дела.
Кроме того, индуктивные нагрузки, такие как двигатели и трансформаторы, которые часто переключаются электромеханическими реле, имеют очень высокий пусковой ток.Часто пусковой ток может легко в десять раз превышать ток в установившемся режиме, поэтому контакты должны быть рассчитаны соответствующим образом.
Во многих областях делается поправка на пусковой ток. Используется коэффициент, на который умножается установившийся ток, чтобы получить номинал контакта. Таблица типичных коэффициентов умножения приведена ниже.
Общие умножители, используемые для компенсации пускового тока на реле | |
---|---|
Коммутируемая нагрузка | Множитель |
Люминесцентные лампы (переменного тока) | 10 |
Лампы накаливания | 6 |
Двигатели | 6 |
Резистивные нагреватели | 1 |
Трансформаторы | 20 |
Поэтому, используя приведенную ниже таблицу, если люминесцентные лампы должны быть включены и они обычно потребляют 1 А, тогда контакты реле должны быть рассчитаны на 20 А.
Другая проблема возникает при разрыве цепи. Обратная ЭДС, создаваемая индуктивной нагрузкой, может легко привести к искрообразованию, которое может быстро разрушить контакты реле.
Такие методы, как установка ограничителей броска тока на нагрузку, которые часто представляют собой резисторы с отрицательным температурным коэффициентом, могут помочь ограничить пусковой ток, а ограничители переходных процессов могут помочь ограничить обратную ЭДС.
Срок службы реле
Одной из ключевых проблем, связанных с электромеханическими реле, является срок службы контактов.В отличие от твердотельных реле и электронных переключателей, механические контакты изнашиваются при переключении и имеют ограниченный срок службы.
Возможны две цифры срока службы электромеханического реле:
- Ожидаемый электрический срок службы: Ожидаемый электрический срок службы — это количество переключений, которые выполняются, когда переключение, то есть контакты, обеспечивают требуемый уровень проводимости. Это очень зависит от приложения, так как пусковой ток и обратная дуга, создаваемая обратной ЭДС и т. Д.Ожидаемый электрический срок службы многих силовых реле составляет, возможно, 100 000 срабатываний, хотя, как уже упоминалось, это очень зависит от нагрузки, которую они переключают.
- Механический срок службы: Механический срок службы зависит от механических аспектов реле. Это количество механических переключений, которые могут быть выполнены независимо от электрических характеристик. Часто механический срок службы реле составляет около 10 000 000 срабатываний, а то и больше.
Истечение срока службы контактов обычно наступает, когда контакты прилипают или свариваются, или когда искрение и т. Д. Вызвало контактный ожог и перенос материала, так что не может быть достигнуто достаточное сопротивление контакта. Условия для этого будут зависеть от реле и его применения. Их характеристики обычно определяются в таблице данных реле.
Коаксиальное релеСм. Точки ввода коаксиального кабеля
Преимущества и недостатки реле
Как и у любой технологии, у использования электромеханических реле есть свои преимущества и недостатки.При проектировании схемы необходимо взвесить плюсы и минусы, чтобы выбрать правильную технологию для данной схемы.
Преимущества
- Обеспечивает физическую изоляцию между цепями.
- Обычно выдерживает высокое напряжение.
- Может выдерживать кратковременные перегрузки, часто без вредных последствий или с небольшими побочными эффектами — переходные процессы часто могут непоправимо повредить твердотельные реле / электронные переключатели.
Недостатки
- Механический характер реле означает, что оно работает медленнее по сравнению с полупроводниковыми переключателями.
- Имеет ограниченный срок службы из-за механической природы реле. Твердотельные переключатели, как правило, имеют более высокий уровень надежности при условии, что они не подвержены переходным процессам, выходящим за пределы их номинальных значений.
- Страдает от дребезга контакта, когда контакты начинают соприкасаться, а затем физического отскока, создавая и прерывая контакт и вызывая дугу в большей или меньшей степени.
Иногда еще одним вариантом, который можно рассмотреть, когда требуется электрическая изоляция между двумя цепями, может быть оптоизолятор.Эти оптоизоляторы часто включаются в твердотельные переключатели, часто также называемые твердотельными реле, благодаря чему достигается высокий уровень изоляции. Использование оптоизоляторов в твердотельных переключателях / твердотельных реле обеспечивает полную изоляцию между входной и выходной цепями.
Электромеханические реле используются в качестве электрических переключателей в течение очень многих лет, и эта технология хорошо зарекомендовала себя. Эти электромеханические или электрические реле могут выдерживать некоторые неправильные действия, и они обычно относительно терпимы к переходным скачкам или скачкам напряжения.В этом отношении они лучше, чем твердотельные переключатели / твердотельные реле, и хотя они изнашиваются быстрее, особенно при переключении индуктивных нагрузок, они должны выдерживать скачки включения в своих нагрузках.