Обратная мощность: Цели и способы защиты генераторов от обратной мощности и обратного тока

Содержание

Цели и способы защиты генераторов от обратной мощности и обратного тока

Целью защиты является защита генераторов от работы в режиме электродвигателя. Такой режим возможен в случае резкого снижения оборотов одним из параллельно работающих генераторных агрегатов или при неправильном включении генератора в судовую сеть. Защита осуществляется у генераторов постоянного тока при помощи реле обратного тока, а у генераторов переменного тока — при помощи реле обратной мощности или при помощи реле обратного активного тока, которые применяются в современных схемах электрических станций. Реле обратного тока и обратной мощности — это электромеханические двухкатушечные реле, имеющие катушки токовую и напряжения. Реле обратного активного тока — это электронное реле. Токовые катушки подключаются последовательно в полюс генератора (постоянный ток) через шунт, а для генератора переменного тока — последовательно в фазу через трансформатор тока.

Катушки напряжения подключаются в генераторах постоянного тока параллельно к полюсам генератора, а в генераторах переменного тока — параллельно фазам. Электронное реле подключается одной парой контактов последовательно в фазу генератора через трансформатор тока, а второй парой контактов — параллельно фазам через суммирующий трансформатор напряжения. Сами указанные реле устанавливаются в генераторных панелях ГРЩ.

При нормальной работе генератора магнитные потоки, создаваемые катушками токовой и напряжения, уравновешены. Реле находятся в состоянии покоя. При возникновении ненормального режима работы генератора (генератор начинает потреблять энергию из сети) магнитные потоки от катушек разбалансируются, и якорь реле начинает поворачиваться. При этом нормально открытые контакты замыкаются, а нормально закрытые размыкаются и разрывают цепь катушки нулевого напряжения автомата генератора. Генератор отключается от сети, а закрывшиеся нормально открытые контакты реле подают питание на звуковой и световой сигналы «Обратная мощность» на панели указанного генератора.

Места подключения реле к генераторам находятся на генераторной панели ГРЩ.

Избежать работы генератора в режиме электродвигателя можно, поддерживая регулятор числа оборотов первичного двигателя генератора и автоматический регулятор напряжения генератора в исправном состоянии, а также установкой реле обратной мощности, реле обратного тока, реле обратного активного тока и точной синхронизацией вводимых в параллель генераторов.

Похожие статьи

Метки: Электрооборудование

Для того, чтобы оставить комментарий, войдите или зарегистрируйтесь.

Реле обратной мощности и тока

Страница 36 из 53

§ 41. РЕЛЕ ОБРАТНОЙ МОЩНОСТИ

При параллельной работе генераторных агрегатов возможен переход одного из них в. двигательный режим вследствие изменения направления потока мощности в цепи генератора из-за нарушения нормальной работы первичного двигателя (изменения или прекращения подачи топлива).
На судах в электрических установках при параллельной работе генераторов применяют РОМ, предназначенные для защиты генератора от перехода в двигательный режим путем отключения автоматического выключателя генератора.
На судовых ЭС переменного тока часто применяют РОМ, которые относятся к индукционным направленным реле косвенного действия с зависимой характеристикой.
Реле (рис. 82, а, б) состоит из двух основных частей — магнитопровода (верхней 8 и нижней 5 магнитных систем) и подвижной системы. Таковая обмотка 11 магнитной системы, рассчитанная на ток 5 А, включена последовательно через трансформатор в одну фазу статора генератора, обмотка 12 напряжения, рассчитанная на напряжения 127 и 230 В, подключена параллельно .к статору синхронного генератора.
Подвижная система состоит из алюминиевого диска 6, насаженного на ось 4 (диск может поворачиваться на некоторый угол). Диск расположен между полюсами магнитных систем, вращается в зазорах двух постоянных магнитов 7, обеспечивающих зависимую от мощности выдержку времени.
На подвижной оси одним концом прикреплена спиральная пружина 2, другой конец которой закреплен неподвижно. Через зубчатую пару ось соединена с подвижным контактом 3. Неподвижный контакт 1 укреплен на пластмассовой колодке 9.

Спиральная пружина, воздействуя на подвижную систему,, удерживает ее в крайнем положении при отсутствии тока в обмотках электромагнита. Ток при работе генератора стремится повернуть диск в сторону действия пружины. При переходе синхронного генератора в двигательный режим меняется фаза тока в последовательной обмотке электромагнита, который стремится повернуть диск в противоположную сторону. При определенной уставке обратной мощности диск преодолевает противодействие пружины, поворачивается и с выдержкой времени замыкает контакты 10.

Изменением числа витков последовательной обмотки магнитной системы, включенной в цепь вторичной обмотки трансформатора, регулируется уставка величины обратной мощности (6,9 и 12% Рном). Выдержку времени реле регулируют в пределах 12 с изменением положения упора подвижного контакта.
Реле выпускают в брызгозащищенном исполнении в стальном кожухе (для защиты от механических повреждений и проникновения воды) с передним и задним присоединением внешних проводов.
Обслуживают реле в строгом соответствии с инструкцией завода-изготовителя. В настоящее время для проектируемых ЭЭС защита синхронных генераторов от перехода в двигательный режим осуществляется с помощью бесконтактного реле обратного активного тока РОТ-51, которое имеет ступенчатое регулирование срабатывания по току 5, 10, 15% /ном.

§ 42. РЕЛЕ ОБРАТНОГО ТОКА

При параллельной работе генераторов и зарядке аккумуляторных батарей от генераторов постоянного тока для защиты аккумуляторов и электрических машин от обратного тока применяют реле. В процессе перехода одного генератора в двигательный режим реле, воздействуя на автомат генератора, автоматически отключает его от сети.
На судах применяют РОТ типа ДТ (рис. 83), содержащий магнитные системы тока и напряжения и контакты.
Последовательная обмотка 8 сердечника 7 электромагнита включена в цепь якоря 4, укрепленного на оси 3 между полюсами Г) электромагнита. Обмотка напряжения на якоре 6 включается через добавочный резистор в цепь. Пружиной 1 якорь поворачивается против часовой стрелки до упора, размыкающий контакт 2 при этом замкнут.

При обтекании током последовательной и параллельной обмоток возникает электромагнитный вращающий момент, стремящийся повернуть якорь и зависящий от направления тока в обмотках тока и напряжения. Момент вращения совпадает с моментом противодействующей пружины, когда направления тока в обмотке напряжения и прямого тока последовательной обмотки совпадают. При этом момент направлен в сторону размыкания контактов (у реле с замыкающими контактами) и в сторону замыкания (у реле с размыкающими контактами). Изменение направления тока в последовательной обмотке электромагнита вызывает изменение момента вращения. При обратном токе, равном уставке, реле, преодолевая усилие пружины 1, срабатывает: реле с замыкающими контактами замыкается, а реле с размыкающими контактами — размыкается. Якорь с подвижным контактом возвращается в исходное положение автоматически при исчезновении обратного тока.

Рис. 83. Реле обратного тока
номинальные токи последовательных обмоток реле ДТ-11 и ДТ-15 соответствуют 6, 25, 50, 150 и 200 А, а для ДТ-12 и ДТ-16 — 400, 600 и 800 А. Обмотки допускают продолжительную нагрузку током 1,2/ном.
Рабочие токи, меньшие или большие номинального, а также при отклонении подводимого к обмотке напряжения, соответственно уменьшают или увеличивают чувствительность реле.
Параллельная обмотка рассчитана на напряжение 50 В, но РОТ изготовляют на напряжения 110 и 220 В, поэтому для поглощения избыточного напряжения последовательно с обмоткой напряжения включают дополнительный резистор, сопротивление которого для напряжения 110 В составляет 800 Ом, а для напряжения 220 В—2200 Ом.

Обслуживать РОТ следует в строгом соответствии с инструкцией завода-изготовителя.

обратная мощность — это… Что такое обратная мощность?

обратная мощность
adj

energ.syst. Rücklaufleistung, Rückleistung, Rückwatt

Универсальный русско-немецкий словарь. Академик.ру. 2011.

  • обратная молния
  • обратная мутация

Смотреть что такое «обратная мощность» в других словарях:

  • обратная рассеиваемая мощность диода — Pобр, PR Значение мощности, рассеиваемой диодом при протекании обратного тока. [ГОСТ 25529 82] Тематики полупроводниковые приборы EN reverse power dissipation FR dissipation de puissance en inverse …   Справочник технического переводчика

  • обратная рассеиваемая мощность управления тиристора

    — Обозначение Pу,обр PRG [ГОСТ 20332 84] Тематики полупроводниковые приборы EN reverse gate power dissipation FR puissance dissipée de gâchette inverse …   Справочник технического переводчика

  • Обратная рассеиваемая мощность диода — 13. Обратная рассеиваемая мощность диода E. Reverse power dissipation F. Dissipation de puissance en inverse Pобр Значение мощности, рассеиваемой диодом при протекании обратного тока Источник: ГОСТ 25529 82: Диоды полупроводниковые. Термины,… …   Словарь-справочник терминов нормативно-технической документации

  • Обратная рассеиваемая мощность управления тиристора — 104. Обратная рассеиваемая мощность управления тиристора E. Reverse gate power dissipation F. Puissance dissipée de gâchette inverse py,обр Источник: ГОСТ 20332 84: Тиристоры. Термины, определения и буквенные обозначения параметров …   Словарь-справочник терминов нормативно-технической документации

  • Отрицательная обратная связь — (ООС)  тип обратной связи, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое противодействует первоначальному изменению. Иными словами, отрицательная обратная связь  это такое влияние… …   Википедия

  • Электрическая мощность — Электрическая мощность  физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность …   Википедия

  • повторяющаяся импульсная обратная рассеиваемая мощность выпрямительного диода — Робр.и,п PRRM Значение мощности, рассеиваемой выпрямительным диодом, при воздействии периодических импульсов. [ГОСТ 25529 82] Тематики полупроводниковые приборы Обобщающие термины выпрямительные диоды EN repetitive peak reverse power dissipation …   Справочник технического переводчика

  • Повторяющаяся импульсная обратная рассеиваемая мощность выпрямительного диода — 50. Повторяющаяся импульсная обратная рассеиваемая мощность выпрямительного диода Е. Repetitive peak reverse power dissipation Pобр.и, п Значение мощности, рассеиваемой выпрямительным диодом, при воздействии периодических импульсов Источник: ГОСТ …   Словарь-справочник терминов нормативно-технической документации

  • Средняя обратная рассеиваемая мощность выпрямительного диода — 48. Средняя обратная рассеиваемая мощность выпрямительного диода Е. Average reverse power dissipation Pобр.ср Произведение мгновенных значений обратного тока и обратного напряжения выпрямительного диода, усредненное по всему периоду Источник:… …   Словарь-справочник терминов нормативно-технической документации

  • Ударная обратная рассеиваемая мощность лавинного выпрямительного диода — 49. Ударная обратная рассеиваемая мощность лавинного выпрямительного диода Е. Surge (non repetitive) reverse power dissipation Pобр.и, нп Значение мощности, рассеиваемой выпрямительным диодом, при воздействии одиночных импульсов тока в режиме… …   Словарь-справочник терминов нормативно-технической документации

  • обратное направление мощности — обратная мощность (от нагрузки в сеть) [Интент] Тематики счетчик электроэнергии Синонимы обратная мощность EN reverse powerreverse power flow …   Справочник технического переводчика

Автомобильный аккумулятор Berga Power-Block 77 (обратная полярность)

Описание

Параметры аккумулятора

Емкость

77 Ah

Пусковой ток

780 A

Габариты (мм)

278x175x190

Полярность

обратная (0)

Производитель

Германия

Гарантия

2 года

Маркировка

577 400 078

Преимущества аккумулятора

  • увеличенный запас электролита
  • низкий саморазряд
  • улучшенные стартерные характеристики
  • фиксация пластин у дна делает батареи максимально виброустойчивыми
  • термостойкий корпус из полипропилена позволяет использовать батарею при крайне низких и крайне высоких температурах
  • подходит для обычного режима эксплуатации

Berga Power-Block 77 – необслуживаемая аккумуляторная батарея, предназначенная для легковых автомобилей со стандартным количеством потребителей электроэнергии.

Аккумулятор Berga Power-Block 77 А/ч отличается высокой взрывобезопасностью, благодаря крышке снабженной центральным газоотводом.

В сравнении с представителями своего класса обладает более длительным сроком службы.

Продажа аккумулятора

Купить аккумулятор Berga Power-Block 577 400 078 с обратной (евро) полярностью в нашем интернет-магазине могут физические и юридические лица за наличный и безналичный расчет. Наши менеджеры проконсультируют Вас о преимуществах этой аккумуляторной батареи, при необходимости Вы можете заказать доставку или самостоятельно забрать аккумулятор с одного из пунктов выдачи.

Инструкция

Предупреждающие знаки

Инструкция по эксплуатации аккумуляторов

1. Хранение батареи.
Залитая и заряженная батарея хранится в течение 6-ти месяцев в сухом и прохладном помещении при температуре +5 … +35 С, кальциевая батарея до 6 – 12-ти месяцев.
Запрещено хранить батарею в разряженном состоянии.

2. Установка батареи.
При установке – аккумуляторная батарея должна быть надежно закреплена в посадочном гнезде. Клеммы проводов должны обеспечивать надежный контакт с клеммами батареи (при установке батареи первой крепится клемма “+”, при снятии первоначально отсоединяется клемма “-“) . Удары по клеммам недопустимы. Во избежание повреждения аккумуляторной батареи нельзя касаться металлическими предметами одновременно клемм “+” и “-“.

3. Уход за батареей.
Аккумуляторная батарея должна быть чистой и сухой, контактные клеммы чистыми. (Рекомендуем контактные соединения защищать кислотостойким вазелином).
Каждые 2 – 3 месяц контролировать уровень электролита в банках аккумуляторной батареи (10-15 мм выше пластин). При необходимости долить дистиллированную воду.
ДОЛИВАТЬ КИСЛОТУ и ЭЛЕКТРОЛИТ ЗАПРЕЩЕНО.

    На аккумуляторной батареи с индикатором заряженности возможно на основании цвета указателя – индикатора следить за состоянием заряженности:
  • зеленый цвет: аккумулятор в заряженном состоянии;
  • черный цвет: аккумулятору требуется подзарядка;
  • бесцветный: указывает, что в аккумулятор необходимо добавить дистиллированную воду.

Плотность электролита в заряженной аккумуляторной батарее должна быть 1,27 ± 0,01 г/см при температуре + 25С. При пониженной плотности или нарушении сроков хранения произвести зарядку до восстановления необходимых параметров (ток зарядки равняется 10% от емкости аккумуляторной батареи), например: АКБ 6СТ-55 заряжается током 4 – 5,5А.

ВНИМАНИЕ: перед зарядкой АКБ обязательно вывернуть пробки. При зарядке АКБ руководствоваться инструкцией по пользованию зарядным устройством. Особенно тщательно нужно контролировать степень заряженности в холодное время года. Сильный разряд батареи может привести к замерзанию жидкости и выходу АКБ из строя.

Во избежание повышенного разряда аккумуляторной батареи контролируйте напряжение зарядки на автомашине. Проверка производится на работающем двигателе с частотой вращения 1500-2000 об/мин с включенными электропотребителями (напряжение зарядки – 14,2В). При включенных электропотребителях напряжение зарядки не должно превышать 14,5 В. Допускается утечка вольтаж 0,5 – 1,0 мА.

Инструкция по технике безопасности

1. При работе с батареей пользоваться защитными очками и резиновыми перчатками. При зарядке батареи взрывоопасная газовая смесь, поэтому в течение зарядки необходимо интенсивно проветривать помещение. Запрещено пользоваться открытым огнем, курить или производить искрообразование.
2. В качестве электролита в аккумуляторе используется разбавленная серная кислота. При случайном попадании ее в глаза, следует промыть глаза струей воды в течении нескольких минут, затем обратиться к врачу. При соприкосновении с кожей или одеждой следует промывать их водой на протяжении 15 минут.

ЭФФЕКТИВНАЯ МОЩНОСТЬ СВАРОЧНОЙ ДУГИ ОБРАТНОЙ ПОЛЯРНОСТИ ПРИ НАПЛАВКЕ АЛЮМИНИЯ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ | Сидоров

1. Балановский А.Е. Структура катодного пятна сварочной дуги с неплавящимся электродом // Теплофизика высоких температур. 2018. Т. 56. № 1. С. 3-13.

2. Балановский А.Е. Новый механизм взаимодействия сварочного дугового разряда постоянного тока обратной полярности с поверхностью алюминия // Теплофизика высоких температур. 2019. Т. 57. № 6. С. 819-834.

3. Wang Y., Qi B., Cong B., Yang M., Liu F. Arc characteristics in double pulsed VP-GTAW for aluminum alloy // Journal of Materials Processing Technology. 2017. Vol. 249. P. 89-85.

4. Wang L.L., Wei J.H., Wang Z.M. Numerical and experimental investigations of variable polarity gas tungsten arc welding // The International Journal of Advanced Manufacturing Technology. 2018. Vol. 95. № 5-8. Р. 2421-2428. DOI: www.doi.org/10.1007/s00170-017-1387-6.

5. Jeong H., Park K., Bajek S., Cho J. Thermal efficiency decision of variable polarity aluminum arc welding through molten pool analysis // International Journal of Heat and Mass Transfer. 2019. Vol. 138. Р. 729-737.

6. Кархин В.А. Тепловые процессы при сварке. СПб.: Изд-во Политехн. ун-та, 2015. 572 с.

7. Неровный В.М., Коновалов А.В., Якушин Б.Ф., Макаров Э.Л., Куркин А.С. Теория сварочных процессов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2016. 704 с.

8. Сидоров В.П. Влияние рода и полярности тока на плавление основного и электродного металла при сварке под флюсом // Сварка и диагностика. 2013. № 3. С. 20-23.

9. Потапьевский А.Г., Сараев Ю.Н., Чинахов Д.А. Сварка сталей в защитных газах плавящимся электродом. Томск: Изд-во Томского политехнического университета, 2012. 208 с.

10. Лесков Г.И. Электрическая сварочная дуга. М.: Машиностроение, 1970. 335 с.

11. Коберник Н.В., Чернышов Г.Г., Гвоздев П.П., Линник А.А. Влияние рода и полярности тока на плавление электродного и основного металла при сварке под флюсом // Сварка и диагностика. 2011. № 5. С. 24-27.

12. Nasiri M.B., Behzadinejad M., Latifi H., Martikeinen J. Investigation on the influence of various welding parameters on the arc thermal efficiency of the GTAW process by calorimetric method // Journal of Mechanical Science and Technology. 2014. Vol. 28. № 8. Р. 3255-3261. DOI: www.doi.org/10.1007/s12206-014-0736-8.

13. Савинов А. В., Лапин И.Е., Лысак В.И. Дуговая сварка неплавящимся электродом. М.: Машиностроение, 2011. 477 с.

14. Столбов В.И. Сварочная ванна. Тольятти: ТГУ, 2007. 247 с.

15. Щицын Ю.Д., Белинин Д.С., Кучев П.С., Неулыбин С.Д. Особенности теплопередачи в изделие при работе плазмотрона на обратной полярности // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. 2014. Т. 16. № 2. С. 40-50.

16. Ерохин А.А. Основы сварки плавлением. М.: Машиностроение, 1973. 448 с.

17. Ленивкин В.А., Дюргеров Н.Г., Сагиров Х.Н. Технологические свойства сварочной дуги в защитных газах. М.: Машиностроение, 1989. 264 с.

18. Halmoy E. Current-voltage process characteristic in gas metal arc welding // American Society of Mechanical Engineers, Production Engineering Division. 1991. Vol. 51. P. 17-27.

19. Halmoy E., Karkhin V.A. Dynamic simulation of aluminium and steel electrode melting in pulsed GMAW // Welding Conference LUT JOIN’ 99. Lappeenranta, 1999. P. 106-117.

20. Сидоров В.П., Борисов Н.А., Советкин Д.Э. О плавлении алюминиевого электрода аргоновой дугой прямой полярности // Вектор науки Тольяттинского государственного университета. 2019. № 4. С. 52-57.

Реле мощности обратной последовательности серии РМОП-2-1

  • 6 августа 2009 г. в 10:57
  • 240
  • Поделиться

  • Пожаловаться

Назначение

Реле мощности обратной последовательности серии РМОП-2-1 предназначены для применения в схемах релейной защиты и автоматики энергетических систем в качестве органа, реагирующего на повышение тока.

Условия эксплуатации

Климатическое исполнение УХЛ или О, категория размещения «4» по ГОСТ 15150—69.

Диапазон рабочих температур окружающего воздуха от минус 20 до плюс 55°С для исполнения УХЛ4 и от минус 10 до плюс 55°С для исполнения О4.

Группа механического исполнения М39 по ГОСТ 17516.1—90

Степень защиты оболочки реле IP40, а контактных зажимов для присоединения внешних проводников — IP00 по ГОСТ 14255—69.

Фотографии, изображения
Скачать документацию

Производитель

Чебоксарский электроаппаратный завод, ЗАО

ЗАО «ЧЭАЗ» предлагает технические решения, позволяющие на современном уровне обеспечить электроснабжение и управление на электрических станциях, подстанциях, энергообъектах крупных промышленных предприятий и ЖКХ.

Смотрите также компании в каталоге, рубрика «Реле мощности»

Похожие документы

×
  • Facebook
  • Twitter
  • Pinterest

Многоагрегатные энергетические установки на базе ДГУ, предназначенных для параллельной работы

Параллельный режим работы дизель-генераторов

Под параллельной работой ДЭС понимается выработка электроэнергии двумя или более агрегатами на общую нагрузку. Условие для параллельной работы — это равенство частоты, напряжения, порядка чередования фаз и углов фазового сдвига на каждом генераторе. Общая нагрузка при параллельной работе генераторов распределяется пропорционально их номинальным мощностям, внешние характеристики, построенные с учетом изменения скорости вращения первичных двигателей в зависимости от относительного значения тока I/Iн, одинаковы.

Параллельный режим работы дизель генераторов применяется в многоагрегатных энергетических установках с целью улучшения их рабочих характеристик:

  • оптимизации коэффициента нагрузки каждого агрегата и как следствие — повышение топливной экономичности;
  • повышения ресурса мощности свыше единичной мощности одного агрегата;
  • повышения надежности всей энергетической установки за счет применения однотипных дизель-генераторов;
  • оптимизации циклов сброса — наброса нагрузки на каждый дизель-генератор путём применения предварительно заданных законов приема и снятия нагрузки;
  • коммутационные аппараты срабатывают при малых значениях тока, повышается ресурс коммутационной аппаратуры.

Параллельный режим работы дизель-генераторов стал применяться в генераторных установках на судах и промышленных электростанциях в середине 20-го века. Квалификация обслуживающего персонала была высокой, в то время, как степень автоматизации процесса была значительно ниже, чем в наши дни. Также вследствие низкой автоматизированности процесса, накладывались конструктивные ограничения на применяемость дизель-генераторных агрегатов. Например, требовалось равенство статизма нагрузочных характеристик дизель-генераторов, вводящихся в параллель.


В настоящее время, системы управления, построенные на принципе ПИД-регулирования позволяют вводить в параллель даже установки с первичными двигателями разного типа (например: дизель-генератор с газотурбинным генератором).

Методы ввода в параллельную работу двух и более дизель генераторов