Объясните принцип действия асинхронного двигателя: Трехфазный асинхронный двигатель

Содержание

КПД электродвигателей | Полезные статьи

Электрическими двигателями переменного или постоянного тока комплектуются приводы станков, насосов и вентиляторов, а также других механизмов, используемых на предприятиях тяжелой и легкой промышленности. Рентабельность производства напрямую зависит от себестоимости продукции, на которую в большой степени влияет эффективность эксплуатации оборудования, поэтому КПД и мощность электродвигателя являются основными параметрами, на основании которых выполняется подбор привода.

Определение КПД электродвигателя

Принцип работы любой электрической машины основан на преобразовании энергии тока, протекающего по обмоткам статора и создающего магнитное поле, во вращение ротора. Коэффициент полезного действия (КПД) электродвигателя определяется соотношением вырабатываемой им механической мощности на валу (p2) к полной мощности, потребляемой из сети (p1) и выражается в процентах:

η=p2/p1*100%

Исходя из формулы, следует, что чем ближе этот параметр к единице, тем выше будет эффективность использования оборудования.

Факторы, влияющие на величину КПД

Коэффициент полезного действия никогда не может быть равным единице, так как существуют неизбежные потери, снижающие полезную мощность. Они делятся на три группы:

  • электрические;
  • магнитные;
  • механические.

Электрические потери зависят от степени нагрузки двигателя и являются следствием нагрева обмоток статора, вызванного работой тока по преодолению электрического сопротивления проводников, из которых они выполнены. Поэтому максимальный КПД электродвигателя достигается, когда нагрузка на двигатель составляет 75% от максимальной расчетной величины.

Магнитные потери происходят из-за неизбежного перемагничивания активного железа статора и ротора, а также возникновения в нем вихревых токов.

Третья группа обусловлена наличием трения в подшипниках, на которых вращается вал, а также сопротивлением, оказываемым воздухом крыльчатке вентилятора и самому ротору (якорю). Из-за наличия щеточно-коллекторного узла КПД электродвигателя постоянного тока несколько ниже коэффициента полезного действия машин с короткозамкнутым ротором.

Это также относится к асинхронным электродвигателям с фазным ротором из-за дополнительного трения щеток об контактные кольца.

Способы повысить КПД двигателя

Следует помнить, что реальный коэффициент полезного действия может несколько отличатся от паспортных величин, указанных на шильдике двигателя. Чтобы выполнить расчет КПД электродвигателя в реальных условиях эксплуатации, необходимо учитывать неравномерность распределения питающего напряжения в фазах. В зависимости от величины асимметрии падение полезной мощности может достигать 5-7%.

Увеличение КПД электрической машины возможно только за счет снижения потерь и контроля качества силовой сети.

Механические потери можно уменьшить благодаря более качественным подшипникам, установки крыльчатки вентилятора, выполненной из современных материалов для уменьшения сопротивлению воздуху. Нагрев обмоток можно уменьшить благодаря использованию обмоточных проводов, выполненных из очищенной меди, имеющих меньшее сопротивление.

Снизить потери на перемагничивание активного железа и минимизировать влияние вихревых токов можно используя для набора сердечника необходимо использовать качественную электромагнитную сталь с надежной изоляцией. Кроме того, ведутся работы по разработке наилучшей геометрии зубцов статора, благодаря которым будет увеличена концентрация магнитного поля.

В реальности КПД асинхронного электродвигателя можно несколько увеличить за счет использования частотного преобразователя, позволяющего оптимизировать расход электроэнергии. Следует помнить, что эффективность эксплуатации двигателя с КПД 98% сильно упадет, если его использовать для приведения в движения механизма, имеющего более низкий коэффициент полезного действия.

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

Перечень вопросов для 42 С-Э

ПЕРЕЧЕНЬ ВОПРОСОВ

ПО ПРЕДМЕТУ

«ЭЛЕКТРОТЕХНИКА»

  1. Сформулируйте законы Ома для участка электрической цепи и для полной замкнутой цепи. Запишите формулы для каждого закона.
  2. Дайте определение «электрическому току». Перечислите условия необходимые для существования и виды действия тока.
  3. Объясните что такое «электрическая цепь»? Охарактеризуйте основные элементы электрической цепи (источник, потребитель, пассивные и активные элементы).
  4. Сформулируйте законы Кирхгофа. Запишите формулы для каждого закона.
  5. Охарактеризуйте работу и мощность постоянного электрического тока. Сформулируйте закон Джоуля-Ленца.
  6. Дайте определение «электрическому сопротивлению». Перечислите основные параметры и виды резисторов.
  7. Охарактеризуйте способы соединения резисторов (последовательное, параллельное, смешанное).
  8. Дайте характеристику магнитного поля и о его основных параметров (магнитная индукция, напряженность магнитного поля, относительная магнитная проницаемость, магнитный поток).
  9. Сформулируйте закон электромагнитной индукции. Дайте определение самоиндукции и взаимоиндукции.
  10. Дайте определение «переменному электрическому току»? Охарактеризуйте основные параметры переменного тока (амплитуда, частота, период).
  11. Охарактеризуйте электрическую цепь переменного тока с активным сопротивлением.
  12. Охарактеризуйте электрическую цепь переменного тока с индуктивным сопротивлением.
  13. Охарактеризуйте электрическую цепь переменного тока с емкостным сопротивлением.
  14. Объясните, что такое трехфазная электрическая цепь переменного тока? Опишите принцип действия генератора переменного тока.
  15. Опишите устройство и принцип действия однофазного трансформатора.
  16. Охарактеризуйте типы трансформаторов (измерительные трансформаторы, автотрансформаторы, сварочные трансформаторы).
  17. Дайте характеристику режимам работы трансформатора (номинальный, холостого хода, короткого замыкания).
  18. Объясните принцип работы электронно-дырочного перехода. Изобразите схему прямого и обратного включения p-n-перехода.
  19. Поясните назначение, конструкцию и принцип действия полупроводниковых диодов. Начертите вольтамперную характеристику выпрямительного диода.
  20. Поясните назначение, конструкцию и принцип действия транзисторов.
  21. Дайте определение что такое «электрическое измерение»? Перечислите и опишите средства измерения.
  22. Охарактеризуйте погрешности измерений электроизмерительных приборов (абсолютная, относительная, приведенная).
  23. Опишите способы измерения сопротивления (метод амперметра-вольтметра, мостовая схема).
  24. Объясните назначение, конструкцию и принцип действия асинхронных электродвигателей с короткозамкнутым ротором.
  25. Опишите устройство и принцип действия синхронных машин переменного тока.
  26. Опишите устройство и принцип действия генератора постоянного тока.
  27. Дайте характеристику неавтоматическим выключателям (рубильник, кнопки управления, пакетные выключатели).
  28. Поясните назначение и конструкцию предохранителей. Изобразите их условно-графическое обозначение, опишите условия выбора.
  29. Поясните назначение и конструкцию автоматических выключателей. Изобразите их условно-графическое обозначение, опишите условия выбора.
  30. Дайте характеристику реле (электромагнитное, тепловое, электронное). Опишите работу геркона.
  31. Расскажите об устройстве и принципе действия аппаратов управления (контроллеры, контакторы, магнитные пускатели).
  32. Дайте характеристику основным типам электрических станций (ТЭС, ГЭС, АЭС).
  33. Опишите конструктивное исполнение воздушных и кабельных линий электропередач.
  34. Дайте характеристику источникам света (лампы накаливания, газоразрядные лампы).
  35. Охарактеризуйте режимы работы электродвигателей (продолжительный, кратковременный, повторно-кратковременный).

 

Преподаватель                                                              С.А. Гаро

ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАДАНИЙ

ПО ПРЕДМЕТУ

«ЭЛЕКТРОТЕХНИКА»

  1. В цепь переменного тока включен резистор. Действующие значения тока и напряжения на нем I=350 мА и U=42 В. Определить сопротивление резистора, выделившуюся на нем мощность, а так же амплитудное значение тока.
  2. В электрическую цепь с генератором постоянного тока, ЭДС которого 210 В, с внутренним сопротивлением 0,5 Ом включены последовательно пять резисторов сопротивлением 2 Ом каждый. Найдите силу тока.
  3. Сопротивления R1, R2, R3, R4 и R
    5
    соединены последовательно и включены в сеть напряжением 220 В. Определите эквивалентное сопротивление и силу тока в цепи, если R1 = 40 Ом, R2 = 70 Ом, R3 = 100 Ом, R4 = 15 Ом, R5 = 20 Ом.
  4. Число витков первичной обмотки понижающего трансформатора 400, вторичной обмотки – 38, ток вторичной обмотки 24 А. Найдите ток первичной обмотки.
  5. Номинальные значения первичного и вторичного напряжения однофазного трансформатора U1ном = 110 кВ, U2ном = 6,3 кВ. Номинальный первичный ток I1ном = 95 А. Определите номинальную мощность трансформатора и номинальный вторичный ток.
  6. Определить сопротивление ламп накаливания при указанных на них мощности P=25;40;60;100 Вт и напряжении U=220 В.
  7. Шкала вольтметра имеет 75 делений, номинальное напряжение вольтметра 3 В. Найдите показание вольтметра, если его стрелка отклонилась на 20 делений.
  8. Для трехфазного асинхронного двигателя с техническими данными: Рном = 0,9 кВт; ηном = 0,6; cosφном = 0,7; Iп/Iном = 5. Найдите номинальный и пусковой ток двигателя, потребляемую им из сети мощность. Двигатель включен в сеть с линейным напряжением 380 В.
  9. Найдите скольжение и число пар полюсов трехфазного асинхронного двигателя, если частота вращения ротора 1440 об/мин, а частота тока сети 50 Гц.
  10. Начертите схему соединения обмоток трехфазного генератора «звездой».
  11. Начертите схему соединения обмоток трехфазного генератора «треугольником».

 

 

Преподаватель                                                              С.А. Гаро

 

 

ПЕРЕЧЕНЬ ВОПРОСОВ

по предмету

«ЭЛЕКТРОМАТЕРИАЛОВЕДЕНИЕ»

 

  1. Дайте определение магнитным материалам. Опишите магнитные характеристики электротехнических материалов.
  2. Охарактеризуйте минеральные жидкие диэлектрики. Перечислите функции трансформаторного масла в трансформаторах и масляных выключателях.
  3. Дайте определение понятию «нагревостойкость». Перечислите классы нагревостойкости и материалы, которые к ним относятся.
  4. Дайте определение понятиям «лаки и эмали». Объясните классификацию лаков по назначению. Опишите область применения.
  5. Перечислите основные газообразные диэлектрики. Объясните их назначение, свойства и назовите область применения.
  6. Поясните, что называется пластмассами. Опишите основные составляющие пластмасс. Область применения пластмасс.
  7. Опишите электрические характеристики электротехнических материалов.
  8. Перечислите, на какие виды делятся электроизоляционные бумаги. Охарактеризуйте их и назовите область применения.
  9. Опишите процесс получения керамических изделий. Перечислите основные керамические материалы и назовите область их применения.
  10. Дайте определение понятию «жаростойкость». Опишите свойства, характеристики и назначение жаростойких материалов.
  11. Поясните что такое компаунды. Состав компаундов. Классификация по назначению. Отличие лаков и эмалей от компаундов.
  12. Охарактеризуйте металлические магнитомягкие материалы. Основные характеристики. Состав, области применения.
  13. Изложите общие сведения о слюдяных материалах. Миканиты, их классификация, маркировка.
  14. Поясните применение и состав электроизоляционной резины. Вулканизация резины.
  15. Поясните основные характеристики, состав, область применения металлических магнитотвердых материалов.
  16. Охарактеризуйте полупроводниковые материалы. Собственная и примесная электропроводимости. Основные свойства германия, кремния.
  17. Поясните что такое металлокерамические материалы и изделия. Область применения металлокерамических материалов.
  18. Дайте характеристику и поясните область применения минеральных твердых диэлектриков (асбеста, асбоцемента).
  19. Поясните назначение припоев и флюсов. Назовите требования, предъявляемые к припоям и флюсам.
  20. Охарактеризуйте электроугольные изделия. Процесс получения. Графитизация. Виды электрощеток.

 

Преподаватель                                                              И. И.Мещерякова

 

ПЕРЕЧЕНЬ ВОПРОСОВ

по предмету

«ОХРАНА ТРУДА»

 

  1. Назовите основные условия и причины поражения электрическим током.
  2. Назовите знаки и плакаты электробезопасности.
  3. Поясните действие электрического тока на организм человека. Электрические травмы.
  4. Поясните основные задачи и функции службы охраны труда на предприятии.
  5. Поясните как осуществляется освобождение пострадавших от действия электрического тока.
  6. Назовите инструктажи по охране труда и порядок их проведения.
  7. Назовите основные признаки нарушения жизненно важных функций организма человека. Реанимация.
  8. Поясните как осуществляется надзор и контроль за состоянием охраны труда. Трёхступенчатый контроль.
  9. Дайте понятие пожара. Назовите условия и причины возникновения пожара.
  10. Перечислите организационно-технические мероприятия по защите от поражения электрическим током.
  11. Поясните допустимые величины тока и напряжения. Что такое шаговое напряжение и напряжение прикосновения?
  12. Поясните назначение, устройство и правила применения порошковых огнетушителей.
  13. Назовите основные законодательные акты Республики Беларусь в области охраны труда.
  14. Поясните обязанности работников при возникновении пожара.
  15. Назовите виды ответственности за нарушение нормативных и правовых актов по охране труда.
  16. Поясните классификацию помещений по степени опасности поражения электрическим током.
  17. Поясните роль предварительных и периодических осмотров в охране здоровья работающих.
  18. Поясните назначение, устройство и правила применения углекислотных огнетушителей.
  19. Поясните систему организационных и технических противопожарных мероприятий.
  20. Назовите причины возникновения пожара на производстве и в быту. Причины пожаров в электроустановках.
  21. Поясните правила, способы, приемы, последовательность оказания первой помощи при поражении электрическим током.
  22. Поясните назначение и область применения защитных средств. Основные и дополнительные защитные средства.

 

 

Преподаватель                                                                     Н.И. Горчичко

 

«СПЕЦИАЛЬНАЯ ТЕХНОЛОГИЯ»

  1. Поясните, что такое допуск размера и поле допуска. Перечислите и охарактеризуйте виды посадок.
  2. Поясните классификацию и основные характеристики средств измерений. Охарактеризуйте погрешности измерений.
  3. Поясните назначение, устройство, условные графические обозначения на кинематических схемах, достоинства и недостатки механических передач. Поясните, что такое передаточное число.
  4. Поясните порядок организации электромонтажных работ.
  5. Поясните назначение, конструкции и марки проводов и кабелей.
  6. Поясните способы соединения и ответвления жил проводов и кабелей.
  7. Поясните назначение и виды заземлений. Охарактеризуйте последовательность операций при монтаже заземляющих устройств.
  8. Поясните, как обеспечивается организация технического обслуживания и ремонта электрооборудования промышленных предприятий.
  9. Охарактеризуйте виды и системы освещения.Начертите и поясните схемы включения ламп накаливания и люминесцентных ламп.
  10. Охарактеризуйте виды электропроводок и способы их прокладки.
  11. Поясните назначение, устройство и принцип работы преобразователей электрической энергии.
  12. Поясните конструкции и область применения кабелей.
  13. Перечислите и охарактеризуйте основные элементы воздушных линий. Поясните порядок и правила монтажа воздушных линий.
  14. Поясните особенности конструкции и правила монтажа кабелей напряжением до 1000 В и свыше 1000 В.
  15. Поясните назначение, устройство, принцип действия и условные обозначения на принципиальных электрических схемах промежуточных реле, реле  тока, реле напряжения и реле времени.
  16. Поясните назначение, устройство и принцип работы рубильников и пакетных выключателей.
  17. Поясните назначение, устройство и принцип работы предохранителей.
  18. Поясните назначение, устройство и принцип работы автоматических выключателей.
  19. Поясните назначение, устройство и принцип работы магнитных пускателей.
  20. Поясните назначение, устройство и принцип работы тепловых реле.
  21. Поясните правила монтажа пускорегулирующей аппаратуры.
  22. Поясните, как выполняется техническое обслуживание пускорегулирующей аппаратуры.
  23. Поясните устройство и принцип работы асинхронного двигателя с короткозамкнутым ротором.
  24. Поясните устройство и принцип работы асинхронного двигателя с фазным ротором.
  25. Поясните устройство и принцип работы синхронного двигателя.
  26. Поясните устройство и принцип работы двигателя постоянного тока.
  27. Поясните правила монтажа электрических машин.
  28. Охарактеризуйте периодичность и объём работ при техническом обслуживании и ремонте электрических машин.
  29. Перечислите и поясните виды испытаний электрических машин, проводимых после ремонта.
  30. Поясните назначение, устройство и принцип действия силовых трансформаторов.

 

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

  1. Постройте поле допуска и определите характер посадки, если диаметр отверстия Øмм, а диаметр   вала Øмм. 
  2. Измерьте сопротивление изоляции обмоток электродвигателя с помощью мегомметра.
  3. Выберите сечение кабеля для питания электродвигателя 4А160М4У3. Напряжение сети 380 В.
  4. Выберите сечение провода для питания сети освещения с установленной мощностью

Руст = 2,5 кВт. Напряжение сети 220 В.

  1. Начертите и поясните схему включения однофазного электрического счетчика с трансформаторами тока.
  2. Начертите и поясните схему включения трехфазного электрического счетчика с трансформаторами тока.
  3. Начертите и поясните схему включения трех однофазных электрических счетчиков в трехфазную сеть.
  4. Начертите и поясните схему включения люминесцентной лампы низкого давления.
  5. Начертите и поясните схему выполнения квартирной электропроводки (с люстрой, розеткой, электрическим счетчиком)
  6. Начертите схему и поясните принцип работы однофазного мостового выпрямителя.
  7. Выберите предохранители для защиты однофазной сети освещения. Напряжение сети 220В, установленная мощность светильников Руст = 2,5 кВт.
  8. Выберите предохранители для защиты трехфазного асинхронного двигателя с короткозамкнутым ротором 4А160М4У3. Напряжение сети 380 В.
  9. Выберите автоматический выключатель для защиты трехфазного асинхронного двигателя с короткозамкнутым ротором 4А160М4У3 от коротких замыканий и перегрузок. Напряжение сети 380 В.

14.Начертите и поясните схему включения трехфазного асинхронного двигателя с помощью нереверсивного магнитного пускателя.

  1. Начертите и поясните схему включения трехфазного асинхронного двигателя с помощью нереверсивного магнитного пускателя с тепловым реле.
  2. Начертите и поясните схему включения трехфазного асинхронного двигателя с помощью реверсивного магнитного пускателя.
  3. Начертите и поясните схему включения трехфазного асинхронного двигателя с помощью реверсивного магнитного пускателя с тепловым реле.
  4. Определите ток уставки теплового реле ТРН-25 с нагревателями на ток Iнагр. = 16А.
  5. Определите ток уставки автоматического выключателя АП-50-3МТ с тепловым расцепителем на ток Iнтепл. = 10А.
  6. Определите ток уставки автоматического выключателя АЕ 2016 с тепловым расцепителем на ток Iнтепл. = 6А.

 

 

Примечание:

В экзаменационных билетах марки двигателей, аппаратов управления и защиты, напряжение сети, положение регуляторов тока уставки, номинальные токи тепловых и электромагнитных  расцепителей, мощность потребителей могут отличаться от указанных в данном перечне вопросов.

 

Преподаватель:                                                             Лагута С.А.

 

 

§76. Асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором (рис. 249 и 250) состоит из следующих основных частей: статор с трехфазной обмоткой, ротор с короткозамкнутой обмоткой и остов. Обмотка ротора выполнена бесконтактной (она не соединена ни с какой внешней цепью), что определяет высокую надежность такого двигателя.

Магнитная система. Асинхронная машина в отличие от машины постоянного тока не имеет явно выраженных полюсов. Такую магнитную систему называют неявнополюсной. Число полюсов в машине определяется числом катушек в обмотке статора и схемой их соединения. В четырехполюсной машине (рис. 251) магнитная система состоит из четырех одинаковых ветвей, по каждой из которых проходит половина магнитного потока Фп одного полюса, в двухполюсной машине таких ветвей две, в шестиполюсной — шесть и т. д. Так как через все элементы магнитной системы проходит переменный магнитный поток, то не только ротор 1, но

Рис. 249. Асинхронный двигатель с короткозамкнутым ротором: 1 — остов; 2 — статор; 3 — ротор; 4 — стержни обмотки ротора; 5 — подшипниковый щит; 6 — вентиляционные лопатки ротора; 7 — вентилятор; 8 — коробка выводов

Рис. 250. Электрическая схема асинхронного двигателя с короткозамкнутым ротором (а) и его условное графическое изображение (б): 1 — статор; 2 — ротор

Рис.251. Магнитное поле четырехполюсной асинхронной машины

Рис. 252. Листы ротора (а) и статора (б)

Рис. 253. Пакет собранного статора (а) и статор с обмоткой (б)

и статор 2 выполняют из листов электротехнической стали (рис. 252), изолированных один от другого изоляционной лаковой пленкой, окалиной и пр. В результате этого уменьшается вредное действие вихревых токов, возникающих в стали статора и ротора при вращении магнитного поля. Листы статора и ротора имеют пазы открытой, полузакрытой или закрытой формы, в которых располагаются проводники соответствующих обмоток. В статоре чаще всего применяют полузакрытые пазы прямоугольной или овальной формы, в машинах большой мощности — открытые пазы прямоугольной формы.

Сердечник статора 1 (рис. 253, а) запрессовывают в литой остов 3 и укрепляют стопорными винтами. Сердечник ротора напрессовывают на вал ротора, который вращается в шариковых подшипниках, установленных в двух подшипниковых щитах. Воздушный зазор между статором и ротором имеет минимальный размер, допускаемый с точки зрения точности сборки и механической жесткости конструкции. В двигателях малой и средней мощности воздушный зазор обычно составляет несколько десятых миллиметра. Такой зазор обеспечивает уменьшение магнитного сопротивления магнитной цепи машины, а следовательно, и уменьшение намагничивающего тока, требуемого для создания в двигателе магнитного потока. Снижение намагничивающего тока позволяет повысить коэффициент мощности двигателя.

Обмотка статора. Она выполнена в виде ряда катушек из проволоки круглого или прямоугольного сечения. Проводники, находящиеся в пазах, соединяются, образуя ряд катушек 2 (рис. 253,б). Катушки разбивают на одинаковые группы по числу фаз, которые располагают симметрично вдоль окружности статора (рис. 254, а) или ротора. В каждой такой группе все катушки электрически соединяются, образуя одну фазу обмотки, т. е. отдельную электрическую цепь. При больших значениях фазного тока или при необходимости переключения отдельных катушек фазы могут иметь несколько параллельных ветвей. Простейшим элементом обмотки является виток (рис. 254,б), состоящий из двух проводников 1 и 2, размещенных в пазах, находящихся друг от друга на неко-

Рис. 254. Расположение катушек трехфазной обмотки на статоре асинхронного двигателя (а) и виток из двух проводников (б)

тором расстоянии у. Это расстояние приблизительно равно одному полюсному делению т, под которым понимают длину дуги, соответствующую одному полюсу.

Обычно витки, образованные проводниками, лежащими в одних и тех же пазах, объединяют в одну или две катушки. Иногда их называют секциями. Их укладывают таким образом, что в каждом пазу размещается одна сторона катушки или две стороны — одна над другой. В соответствии с этим различают одно- и двухслойные обмотки. Основным параметром, определяющим распределение обмотки по пазам, является число пазов q на полюс и фазу.

В обмотке статора двухполюсного двигателя (см. рис. 254, а) каждая фаза (А-Х; B-Y; C-Z) состоит из трех катушек, стороны которых расположены в трех смежных пазах, т. е. q = 3. Обычно q > 1, такая обмотка называется распределенной.

Наибольшее распространение получили двухслойные распределенные обмотки. Их секции 1 (рис. 255, а) укладывают в пазы 2 статора в два слоя. Проводники обмотки статора укрепляют в пазах текстолитовыми клиньями 5 (рис. 255,б), которые закладывают у головок зубцов.

Стенки паза покрывают листовым изоляционным материалом 4 (электрокартоном, лакотканью и пр.). Проводники, лежащие в пазах, соединяют друг с другом соответствующим образом с торцовых сторон машины. Соединяющие их провода называют лобовыми частями. Так как лобовые части не принимают участия в индуцировании э. д. с, их выполняют как можно короче.

Отдельные катушки обмотки статора могут соединяться «звездой» или «треугольником». Начала и концы обмоток каждой фазы выводят к шести зажимам двигателя.

Обмотка ротора. Обмотка ротора выполнена в виде беличьей клетки (рис. 256,а). Она сделана из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (рис. 256,б). Стержни этой обмотки вставляют в пазы ротора без какой-либо изоляции, так как напряжение в короткозамкну-

Рис. 255. Двухслойная обмотка статора асинхронного двигателя: 1 — секция; 2 — паз; 3 — проводник; 4 — изоляционный материал; 5 — клин; 6 — зубец

Рис. 256. Короткозамкнутый ротор: а — беличья клетка; б — ротор с беличьей клеткой из стержней; в — ротор с литой беличьей клеткой; 1 — короткозамыкающие кольца; 2— стержни; 3— вал; 4 — сердечник ротора; 5 — вентиляционные лопасти; 6 — стержни литой клетки

той обмотке ротора равно нулю. Пазы короткозамкнутого ротора обычно выполняют полузакрытыми, а в машинах малой мощности — закрытыми (паз имеет стальной ободок, отделяющий его от воздушного зазора). Такая форма паза позволяет хорошо укрепить проводники обмотки ротора, хотя и несколько увеличивает ее индуктивное сопротивление.

В двигателях мощностью до 100 кВт стержни беличьей клетки обычно получают путем заливки расплавленного алюминия в пазы сердечника ротора (рис. 256, в). Вместе со стержнями беличьей клетки отливают и соединяющие их торцовые короткозамыкающие кольца.

Для этой цели пригоден алюминий, так как он обладает малой плотностью, достаточно высокой электропроводностью и легко плавится.

Обычно двигатели имеют вентиляторы, насаженные на вал ротора. Они осуществляют принудительную вентиляцию нагретых частей машины (обмоток и стали статора и ротора), позволяя получить от двигателя большую мощность. В двигателях с короткозамкнутым ротором лопасти вентилятора часто отливают совместно с боковыми кольцами беличьей клетки (см. рис. 256, в).

Асинхронные двигатели с короткозамкнутым ротором просты по конструкции, надежны в эксплуатации. Их широко применяют для привода металлообрабатывающих станков и других устройств, которые начинают работать без нагрузки. Однако сравнительно малый пусковой момент у этих двигателей и большой пусковой ток не позволяют использовать их для привода таких машин и механизмов, которые должны пускаться в ход сразу под большой нагрузкой (с большим пусковым моментом). К таким машинам относятся грузоподъемные устройства, компрессоры и др.

Увеличить пусковой момент и уменьшить пусковой ток можно при выполнении беличьей клетки с повышенным активным сопротивлением. При этом двигатель будет иметь увеличенное скольжение и большие потери мощности в обмотке ротора. Такие двигатели называют двигателями с повышенным скольжением (обозначаются АС). Их можно использовать для привода машин, работающих сравнительно небольшое время. На э. п. с. переменного тока эти двигатели (со скольжением до 10%) применяют для привода компрессоров, которые работают периодически в течение коротких промежутков времени при уменьшении давления в воздушных резервуарах ниже определенного предела.

Двигатели с повышенным пусковым моментом. Короткозамкнутые асинхронные двигатели с повышенным пусковым моментом имеют специальную конструкцию ротора (обозначаются АП). К ним относятся двигатели с двойной беличьей клеткой и двигатели с глубокими пазами.

Ротор 3 (рис. 257,а) двигателя с двойной беличьей клеткой имеет две короткозамкнутые обмотки. Наружная клетка 1 является пусковой. Она обладает большим активным и малым реактивным сопротивлениями. Внутренняя клетка 2 является основной обмоткой ротора; она, наоборот, обладает незначительным активным и большим реактивным сопротивлениями. В начальный момент пуска ток проходит, главным образом, по наружной клетке, которая создает значительный вращающий момент. По мере увеличения частоты вращения ток переходит во внутреннюю клетку, и по окончании процесса пуска машина работает как обычный короткозамкнутый двигатель с одной (внутренней) клеткой. Вытеснение тока в наружную клетку в начальный момент пуска объясняется действием, э. д. с. самоиндукции, индуцируемой в проводниках ротора. Чем ниже расположен в пазу проводник, тем большим магнитным потоком рассеяния 6 он охватывается и тем большая э. д. с. самоиндукции в нем индуцируется (рис. 257, в), следовательно, тем большее он будет иметь индуктивное сопротивление.

Вытеснение тока в верхние проводники ротора сильно сказывается при неподвижном роторе, когда частота тока, индуцируемого в обеих клетках ротора, велика. При этом индуктивные

Рис. 257. Конструкция роторов асинхронных двигателей с повышенным пусковым моментом: с двойной беличьей клеткой (а), с глубокими пазами (б) и разрезы их пазов (в и г)

сопротивления обеих клеток значительно больше активных и ток распределяется между ними обратно пропорционально их индуктивным сопротивлениям, т. е. проходит в основном по наружной клетке с большим активным сопротивлением. По мере возрастания частоты вращения ротора частота тока в нем будет уменьшаться (вращающееся магнитное поле будут пересекать проводники ротора с меньшей частотой), и ток начнет проходить по обеим клеткам в соответствии с их активными сопротивлениями, т. е., главным образом, через внутреннюю клетку.

Таким образом, процесс пуска двигателя с двойной беличьей клеткой имеет сходство с процессом пуска асинхронного двигателя с фазным ротором, когда в начале пуска в цепь обмотки ротора вводится добавочное активное сопротивление (пусковой реостат), а по мере разгона это сопротивление выводится. Точно так же и в рассматриваемом двигателе ток в начале пуска проходит по наружной клетке с большим активным сопротивлением, а затем по мере разгона постепенно переходит во внутреннюю клетку с малым активным сопротивлением.

Для повышения активного сопротивления пусковой клетки стержни ее изготовляют из маргацовистой латуни или бронзы. Стержни рабочей клетки выполняют из меди, обладающей малым удельным сопротивлением, причем площадь поперечного сечения их больше, чем у пусковой клетки. В результате этого активное сопротивление пусковой клетки увеличивается в 4—5 раз по сравнению с рабочей. Между стержнями обеих клеток имеется узкая щель 5, размеры которой определяют индуктивность рабочей клетки. Двухклеточный двигатель на 20—30% дороже коротко-замкнутого двигателя обычной конструкции. Для упрощения технологии изготовления ротора двухклеточные двигатели небольшой и средней мощности выполняют с литой алюминиевой клеткой.

Действие двигателей с глубокими пазами (рис. 257, б) также основано на использовании явления вытеснения тока. В этих двигателях стержни 4 беличьей клетки выполнены в виде узких медных шин, заложенных в глубокие пазы ротора 3 (высота паза в 10— 12 раз больше его ширины). Нижние слои стержней, расположенные дальше от поверхности ротора, охватываются значительно большим числом магнитных линий потока рассеяния 6, чем верхние (рис. 257,г), поэтому они имеют во много раз большую индуктивность. В начале пуска в результате увеличенного индуктивного сопротивления нижних частей стержней ток проходит, главным образом, по их верхним частям. При этом используется только небольшая часть поперечного сечения каждого стержня, что приводит к увеличению его активного сопротивления, а следовательно, и к возрастанию активного сопротивления всей обмотки ротора.

При увеличении частоты вращения ротора вытеснение тока в верхние части стержней уменьшается (по той же причине, что и в двигателе с двойной беличьей клеткой), и после окончания пуска ток равномерно распределяется по площади их поперечного сечения.

Асинхронные электродвигатели. Виды и устройство. Работа

Асинхронные электродвигатели были изобретены в 1889 году. В настоящее время выпускается большой спектр электрических двигателей. Из них наибольшую популярность приобрел электродвигатель асинхронного типа, трехфазный. Половина всей электроэнергии в мире расходуется такими электродвигателями. Они нашли широкое использование во многих отраслях промышленности, в быту, электроинструменте, так как имеет невысокую стоимость, повышенную надежность, простое обслуживание и эксплуатацию.

Область использования таких электромашин становиться все шире, так как их конструкция совершенствуется. В переводе с английского такой электродвигатель называют индукционным. И это легко объяснить, так как это вид моторов, в котором явление индукции применяется для создания полюсов, другими словами, применяются наводки для образования движущей силы. Особенностью асинхронных двигателей является отличие частоты поля от скорости вращения вала. В других типах двигателей используются постоянные магниты, обмотки и т.д.

Устройство

Асинхронные электродвигатели состоят из:

  • Ротора.
  • Статора.

 

Статор, состоит из основных частей:
  • Корпус. Служит для образования соединений деталей мотора. При малом размере мотора корпус цельнолитой. Материал изготовления – чугун. Могут использоваться сплавы алюминия, либо сталь. Часто в небольших двигателях функцию сердечника выполняет корпус. В больших моторах со значительной мощностью корпус имеет сварную конструкцию.
  • Сердечник. Эта деталь запрессована в корпус, и предназначена для повышения магнитной индукции, изготовлена из электротехнической стали в виде пластин. Для уменьшения потерь, возникающих при вихревых токах, сердечник покрывается лаком.
  • Обмотка. Она расположена в пазах сердечника. Для ее намотки применяется медная проволока, секциями, соединенными между собой по определенной схеме. Витки образуют 3 катушки, которые по сути дела играют роль обмотки статора. Эта обмотка первичная, непосредственно к ней подключается питание.
Ротор:
  • Ротор – элемент двигателя, находящийся во вращении, предназначен для трансформации магнитного поля в энергию движения, состоит из частей:
  • Вал. Подшипники вала находятся на его хвостовиках. При сборке двигателя подшипники запрессовываются, фиксируются болтами к крышкам корпуса.
  • Сердечник. Его сборку производят на валу двигателя. Он состоит из металлических пластин электротехнической стали, которая обладает свойством малого сопротивления магнитному полю. Форма сердечника в виде цилиндра используется для укладки катушки якоря, которая называется вторичной. Она получает энергию от магнитного поля, появляющегося вокруг обмоток статора при подаче питания.
Классификация по типу ротора
  • С короткозамкнутым ротором.


Такой тип двигателя оснащен обмоткой в виде алюминиевых стержней, расположенных в пазах сердечника. На торце ротора они замыкаются между собой кольцами.

  • С ротором, оснащенным контактными кольцами.


Оба типа моторов имеют схожую конструкцию статора. Разница состоит лишь в конструкции якоря.

Классификация по числу фаз

Асинхронные электродвигатели трехфазные являются основными типами моторов. Они оснащены 3-мя обмотками на статоре, смещены на 120 градусов, соединены между собой треугольником, либо звездой, получают питание от трех фаз переменного тока.

Асинхронные электродвигатели небольшой мощности чаще всего изготавливаются двухфазными. Они отличаются от 3-фазных моторов оснащением 2-мя обмотками на статоре, которые смещены между собой на угол 90 градусов.

В случае равенства токов по модулю, и их сдвигу по фазе на 90 градусов, действие мотора не будет иметь отличия от 3-фазного двигателя. Но такие типы двигателей чаще подключаются от однофазной сети, а искусственный сдвиг на 90 градусов образуется за счет конденсаторов.

Асинхронные электродвигатели однофазные оснащаются единственной обмоткой на статоре. Они практически не могут работать. Когда вал электродвигателя неподвижен, то при подаче питания образуется только импульсное магнитное поле, а момент вращения равен нулю. Но если ротор у такого электродвигателя принудительно раскрутить, то он сможет функционировать и приводить в действие какой-либо привод механизма.

В таком случае пульсирующее поле складывается из 2-х симметричных полей: прямого и обратного. Они образуют разные моменты: один двигательный, другой тормозной. Но двигательный момент получается больше тормозного, возникающего вследствие токов ротора высокой частоты.

В связи с этим 1-фазные моторы оснащаются второй обмоткой, применяющейся в качестве пусковой. В ее цепи для сдвига фаз подключают конденсаторы. Их емкость имеет значительную величину, и может достигать нескольких десятков мкФ при маломощном моторе, меньше 1000 ватт.

В управляющих системах применяют 2-фазные асинхронные электродвигатели, получившие название исполнительных. Они оснащены двумя обмотками статора, которые имеют сдвиг фаз на 90 градусов. Одна обмотка (возбуждения) питается от сети 50 герц, а вторая применяется в качестве управляющей.

Чтобы образовалось магнитное поле с вращающим моментом, ток в управляющей обмотке должен иметь сдвиг 90 градусов. Для регулировки скорости мотора изменяют значение тока в этой обмотке, либо меняют угол фазы. Реверсивное движение обеспечивается сменой фазы в обмотке управления на 180 градусов, с помощью переключения обмотки.

2-фазные асинхронные электродвигатели производятся в разных исполнениях:
  • Короткозамкнутым ротором.
  • Полым магнитным ротором.
  • Полым немагнитным ротором.
Линейные моторы

Чтобы преобразовать движение вращения в поступательное движение, необходимо применение определенных механизмов. Поэтому при необходимости двигатель конструктивно выполняют таким образом, что его ротор сделан в виде бегунка с линейными движениями.

В таком случае двигатель получается развернутым. Обмотка статора такого мотора сделана, как и у обычного двигателя, но она должна быть уложена на всей длине перемещения бегунка (ротора) в пазы. Такой ротор в виде бегунка чаще бывает короткозамкнутым. К нему присоединен привод механизма. На краях статора располагают ограничители, которые не дают ротору выходить за определенные пределы.

Принцип действия

Якорь электродвигателя приводится в действие с помощью эффекта магнитного поля, возникающего в катушках статора. Для лучшего понимания принципа работы мотора, нужно освежить в памяти закон самоиндукции. Он говорит, что вокруг подключенного к питанию проводника образуется магнитное поле. Его величина прямо зависит от индуктивности проводника и потока частиц.

Также, магнитное поле образует силу, направленную в определенную сторону, которая вращает ротор мотора. Чтобы двигатель работал с достаточной эффективностью, нужно получить значительный магнитный поток. Его можно создать особой установкой первичной обмотки.

Источник напряжения выдает переменное напряжение, значит, вокруг статора магнитное поле будет с такими же свойствами, и прямо зависит от изменения тока сети. Фазы смещены между собой на 120 градусов.

Процессы в обмотке статора

Все фазы сети подключаются к катушкам статора, каждая фаза к определенной катушке. Поэтому магнитное поле будет иметь смещение на 120 градусов. Питание поступает в виде переменного напряжения, значит, вокруг катушек возникнет переменное магнитное поле.

Схема двигателя выполняется так, чтобы магнитное поле вокруг катушек постепенно менялось и переходило от одной катушки к другой. Так образуется магнитное поле с эффектом вращения. Можно определить частоту вращения, которая будет измеряться в числе оборотов вала мотора. Она вычисляется по формуле:

n = 60*f / p, где f – частота тока в сети, р – количество пар полюсов статора.

Работа ротора

Процессы во вторичной обмотке ротора, и особенность конструкции, которую имеют асинхронные электродвигатели с короткозамкнутым ротором.

К обмотке якоря напряжение не подается. Оно возникает из-за индукционной связи с первичной обмоткой. Из-за этого и происходит действие, обратное действию в статоре. Оно соответствует закону: при пересечении проводника магнитным потоком, в нем образуется электрический ток. Магнитное поле возникает вокруг первичной обмотки от того, что к ней подключается трехфазное питание.

Совместная работа ротора и статора

Мы имеем асинхронный мотор с ротором, в котором протекает электрический ток по его обмотке. Этот ток станет причиной появления магнитного поля возле обмотки якоря. Но полярность потока не будет совпадать с потоком статора. А значит, и сила, которая создается им, будет противодействовать силе магнитного поля первичной обмотки, что заставит двигаться ротор, потому что на нем выполнена вторичная обмотка, а вал закреплен на подшипниках в корпусе мотора.

Разберемся в ситуации, когда взаимодействуют силы магнитных полей ротора и статора, по истечении времени. Известно, что магнитное поле первичной катушки вращается с определенной частотой. Образованная им сила будет передвигаться с такой же скоростью. Это приводит в действие асинхронный двигатель, его ротор будет вращаться вокруг своей оси.

Подключение двигателя к питанию

Для запуска электродвигателя его нужно подключить к напряжению 3-фазного тока. Выполнить такое подключение возможно двумя методами: звездой и треугольником.

Схема звездой

Здесь изображен способ соединения треугольником.

Схемы собираются в клеммной коробке, расположенной на корпусе двигателя.

Чтобы запустить электродвигатель в обратном направлении вращения, необходимо только изменить местами две любые фазы путем перебрасывания двух проводов в коробке двигателя.

Похожие темы:

Устройство асинхронный двигатель


5.2. Устройство асинхронного двигателя

Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каж­дая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора — вто­ричной, так как энергия в нее поступает из обмотки статора за счет магнит­ной связи между этими обмотками.

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рас­смотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.5.2). Двигатели этого вида имеют наиболее широкое применение.

Рис.5.2. Устройство трехфазного асинхронного двигателя

с короткозамкнутым ротором:

1 — вал; 2, 6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов;

5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкну-

той обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы

Неподвижная часть двигателя — статор — состоит из корпуса // и сердечника 10 с трехфазной обмоткой. Корпус двигателя отливают из алю­миниевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехничес­кой стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными свар­ными швами по наружной поверхности пакета. Такая конструкция Сердеч­ника способствует значительному уменьшению вихревых токов, возникаю­щих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продоль­ные пазы, в которых расположены пазовые части обмотки статора, соеди­ненные в определенном порядке лобовыми частями, находящимися за преде­лами сердечника по его торцовым сторонам. Конструкция короткозамкнутого ротора приведена на рис.5.3.

Рис.5.3. Конструкция короткозамкнутого ротора: а — беличья клетка; б — ротор с медной стержневой обмоткой; в — ротор с алюминиевой литой обмоткой;

1 — сердечник ротора; 2 — стержни; 3 — замыкающие кольца;

4 — лопасти вентилятора

Обмотка статора асинхронного электродвигателя может быть соединена звездой или треугольником. Схемы соединения представлены на рис.5.4

Рис.5.4. Схемы соединения выводов трехфазных обмоток электродвигателя:

а — звезда; б — треугольник

5.3. Принцип образования вращающегося магнитного поля

Принцип образования вращающегося магнитного поля рассмотрим на при­мере простейшей трехфазной двухполюсной обмотки, каждая фаза которой состоит из одной секции, фазы обмотки соединены звездой (рис.5.5). При этом секции тока в фазных обмотках (по времени) относительно друг друга на электрический угол 120° (рис.5.5, б). Проведем ряд построений вектора МДС трехфазной обмотки Fm, соответствующих различным моментам времениt0, t1, t2,t3отмеченным на графике рис.5.5, б.

В момент времени t0ток в фазе А равен 0, в фазе В ток имеет отрица­тельное, а в фазе С — положительное направления. Эти направления тока отмечаем на рис.5.5, б в сечениях обмоток статора для данного момента времени. При этом следует помнить, что за положительное направление тока

Рис.5.5. Получение вращающегося магнитного поля: а — трехфазная обмотка статора;

б — вращение МДС; в — модель магнитного поля статора;

1-4 — обмотка фазы А; 3-6 — обмотка фазы В;

5—2 — обмотка фазы С (первая цифра — начало обмотки)

в фазной обмотке принимается направление тока от начала обмотки к ее концу и обозначается х, а, следовательно, отрицательное направление тока в обмотке соответствует направлению тока от конца к началу и обозначается •. Затем в соответствии с указанными на рис. 5, б направлениями токов определяем (по правилу буравчика) направление вектора МДС трехфазной обмотки статора (вектор Fmнаправлен вниз).

В момент времени t1т.е. через (1/3) Т, ток в фазе В равен нулю, в фазе А имеет положительное, а в фазе С — отрицательное направление. Сделав построения, аналогичные моменту времени t0, заметим, что вектор МДС обмотки статора Fmпо сравнению с его положением в момент вре­мени t0повернулся на 120° в направлении движения часовой стрелки.

Проведя аналогичные построения вектора МДС обмотки статора для момента t2и t3, видим, что каждый раз при переходе от одного момента времени к другому вектор Fmповорачивается на 120°, а за один период изменения токов в обмотках (с t0до t3) делает полный оборот (360°) и будет, таким образом, вращающимся. Вращающаяся МДС создает враща­ющееся магнитное поле, эквивалентное полю магнита N — S с индукци­ей Во (рис.5, в). Это поле вращается с синхронной частотойn0кото­рая пропорциональна частоте переменного токаfи обратно пропорцио­нальна числу пар полюсов обмоток статора р, т.е.

,

Зависимость n0 от р и f представлена в табл.5.2.

Таблица 5.2

f = 50 Гц

Р

1

2

3

4

5

6

n0, об/мин

3000

1500

1000

750

600

500

р=1

f. ГЦ

50

100

200

400

500

1000

Круговое вращающееся магнитное поле характеризуется тем, что пространственный вектор магнитной индукции этого поля Во вра­щается равномерно (n0= const).

При необходимости изменить направление вращения магнитного поля статора нужно по­менять порядок следования токов в фазных обмотках статора, для чего переключают фазы на зажимах двигателя (рис.5.6).

Рис.5.6. Изменение направления вращения магнитного поля.

Асинхронный двигатель

Содержание:

Среди устройств, преобразующих электрическую энергию в механическую, несомненным лидером является трехфазный асинхронный двигатель – простой и надежный в эксплуатации агрегат. Благодаря своим качествам, он получил широкое применение в промышленности и других областях, где используются механизмы. Название двигателя связано с основным принципом его работы. У этих устройств магнитное поле статора вращается с частотой, превышающей частоту вращения ротора. Работа агрегата осуществляется от сети переменного тока.

Где применяются

Асинхронные двигатели активно используются во многих отраслях промышленности и сельского хозяйства. Они потребляют примерно 70% всей энергии, предназначенной для преобразования электричества во вращательное или поступательное движение. Асинхронные двигатели зарекомендовали себя наиболее эффективными в качестве электрической тяги, без которой не обходятся многие технологические операции.

Асинхронные двигатели обладают множеством положительных качеств. Простая конструкция позволяет изготавливать наиболее дешевые и надежные устройства. Минимальные расходы по эксплуатации обеспечиваются отсутствием скользящего узла токосъема, что одновременно повышает и надежность агрегата.

Данный тип электродвигателей может быть трехфазным или однофазным, в зависимости от количества питающих фаз. В случае необходимости и при соблюдении определенных условий, трехфазный агрегат может питаться и работать от однофазной сети. Эти устройства применяются не только в промышленности, но и в бытовых условиях, а также на садовых участках или домашних мастерских. Однофазные двигатели обеспечивают работу и вращение вентиляторов, стиральных машин, небольших станков, водяных насосов и электроинструмента.

Для нормального действия асинхронного агрегата необходимо выбирать наиболее рациональную схему управления. Трехфазный двигатель будет работать в однофазном режиме при условии правильного расчета конденсаторов, выбора типа и сечения проводов, аппаратуры защиты и управления.

Устройство асинхронного двигателя

Понятие асинхронный означает не совпадающий по времени, неодновременный. В связи с этим, ротор такого двигателя вращается с частотой, меньшей чем частота вращения электромагнитного поля статора.

Подобное отставание называется скольжением и обозначается символом S в формуле, применяемой для расчетов:

  • S = (n1 – n2)/n1 – 100%, где n1 является синхронной частотой магнитного поля статора, а n2 – частотой вращения вала.

Конструктивно, стандартный асинхронный электродвигатель включает в себя следующие элементы и детали:

  • Статор с обмотками. Эту функцию также может выполнять станина, внутри которой помещается статор с обмотками.
  • Короткозамкнутый ротор. Если используется фазный – он может называться якорем или коллектором.
  • Подшипники различного типа – качения или скольжения. На двигателях повышенной мощности в передней части установлены крышки для подшипников с уплотнениями.
  • Металлический или пластмассовый охлаждающий вентилятор, помещенный в кожух с прорезями для подачи воздуха.
  • Подключение кабелей осуществляется с помощью клеммной коробки.

Данные конструктивные элементы могут незначительно изменяться, в зависимости от модификации электродвигателя.

Как уже отмечалось, асинхронные двигатели бывают трехфазными или однофазными. Первый вариант, в свою очередь, выпускается с короткозамкнутым или фазным ротором. Наибольшее распространение получили трехфазные асинхронные электродвигатели с короткозамкнутым ротором, поэтому их следует рассмотреть более подробно.

Статор обладает круглой формой и собирается из специальных стальных листов, изолированных между собой. В результате, конструктивно образуется сердечник с пазами, в которые укладываются обмотки. Для этих целей используется обмоточный медный провод, изолированный лаком. В мощных агрегатах обмотки делаются в виде шины. При укладке они сдвигаются между собой на 120 градусов. Соединение осуществляется по схеме звезды или треугольника.

Конструкция самого короткозамкнутого ротора изготавливается в виде вала с надетыми на него стальными листами. Этот набор листов образует сердечник с пазами, заливаемые расплавленным алюминием. Равномерно растекаясь по пазам, алюминий образует стержни, края которых замыкают алюминиевые кольца.

Фазный ротор состоит из вала с сердечником и трех обмоток. С одного конца они соединяются звездой, а с другого – соединяются с токосъемными кольцами, на которые с помощью щеток подается электрический ток. Во время запуска образуется большой пусковой ток асинхронного двигателя. Его можно уменьшить путем добавления к фазным обмоткам нагрузочного реостата.

Принцип работы

Устройство и конструктивные особенности асинхронного двигателя определяют и принцип действия данного агрегата. Когда на обмотку статора подается напряжение, в ней образуется магнитное поле. Такая подача напряжения приводит к изменениям магнитного потока и всего магнитного поля статора. Измененные магнитные потоки поступают к ротору, приводят его в действие, после чего он начинает вращаться. Для того чтобы статор и ротор работали асинхронно, требуется, чтобы значения напряжения и магнитного потока были равны переменному току, используемому в качестве источника питания.

Сам двигатель работает следующим образом:

  • Вращающееся магнитное поле воздействует на короткозамкнутую обмотку, специально приспособленную для вращения.
  • Поле пересекает проводники роторной обмотки, индуктируя в них электродвижущую силу.
  • Под воздействием силы в проводниках ротора начнется течение электрического тока, взаимодействующего с вращающимся магнитным полем. Это приводит к появлению электромагнитных сил, воздействующих на обмотку ротора.
  • В сумме, действия приложенных сил вызывают появление вращающего момента, приводящего во вращение ротор в направлении магнитного поля.

Величина индуктированной ЭДС зависит от частоты пересечения проводников вращающимся магнитным полем. То есть, чем выше разница между n1 и n2, тем больше будет величина ЭДС. Ротор будет вращаться с частотой n2, которая всегда будет отставать от синхронной частоты поля статора n1. Эта разница между обеими частотами и будет частотой скольжения ∆n= n1- n2. Данное неравенство является необходимым условием появления электромагнитного вращающегося момента в асинхронном двигателе. Поэтому агрегат так и называется, поскольку вращение ротора происходит несинхронно с полем статора.

Что такое скольжение

Понятие скольжения представляет собой отношение частоты вращения к частоте поля. Данная величина S берется в процентном отношении от частоты вращения магнитного поля. В соответствии с формулой, рассмотренной ранее, частота вращения ротора, определяемая с помощью скольжения составит: n2 = n1 x (1 – S).

Ротор асинхронного двигателя вращается в том же направлении, что и его магнитное поле. В свою очередь, направление вращения поля зависит от последовательности фаз трехфазной сети. Изменить направление вращения ротора возможно за счет изменения направления вращения поля, создаваемого статором. В этом случае изменяется порядок поступления импульсов тока к отдельным обмоткам. В случае необходимости может быть задано вращение по часовой или против часовой стрелки.

Важным моментом считается пуск асинхронного двигателя, при котором происходит пересечение обмотки ротора вращающимся магнитным полем. В результате, индуктируется большая ЭДС, создающая высокий пусковой ток. Подобное состояние компенсируется специальной нагрузкой, снижающей скорость вращения ротора.

Устройство и принцип действия асинхронных электродвигателей

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство и принцип действия асинхронных электродвигателей. Так же я бы хотел немного сказать о способах регулировки их частоты вращения, и перечислить их основные преимущества и недостатки.

Раньше, я уже писал статьи, касающиеся асинхронных электродвигателей. Если кому интересно, то можете почитать. Вот список:

Схема пуска асинхронного двигателя.

Расчёт тока электродвигателя.

Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором.

Ну а теперь давайте перейдём к теме сегодняшней статьи.

В нынешнее время, очень трудно представить, как бы существовали все промышленные предприятия, если бы не было асинхронных машин. Эти двигателя установлены практически везде. Даже дома у каждого человека есть такой двигатель. Он может стоять на вашей стиральной машинке, на вентиляторе, на насосной станции, в вытяжке и так далее.

Вообще асинхронный электродвигатель – это колоссальный прорыв в мировой промышленности. Во всём мире их выпускают более 90 процентов от количества всех выпускаемых двигателей.

Асинхронный электродвигатель – это электрическая машина, которая преобразовывает электрическую энергию в механическую. То есть потребляет электрический ток, а взамен дают крутящий момент, с помощью которого можно вращать многие агрегаты.

А само слово «асинхронный» — означает неодновременных или не совпадающий по времени. Потому что у таких двигателей частота вращения ротора немного отстаёт от частоты вращения электромагнитного поля статора. Ещё это отставанием называют – скольжением.

Обозначается это скольжение буквой: S

А вычисляется скольжение по такой формуле: S = ( n1 — n2 )/ n1 — 100%

Где, n1 – это синхронная частота магнитного поля статора;

n2 – это частота вращения вала.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Принцип действия.

Когда на обмотки статора подаются электрический ток, то в этих обмотках возникает электрический поток. Как вы помните, из выше написанных слов, фазы у нас смещены относительно друг друга на 120 градусов. И вот этот поток в обмотках начинает вращаться.

И при вращении магнитного потока статора, в обмотках ротора появляется электрический ток, и своё магнитное поле. Два этих магнитных поля начинают взаимодействовать и заставляют вращаться ротор электродвигателя. Это если ротор короткозамкнутый.

По принципу роботы вот посмотрите видео ролик.

Ну а с фазным ротором, по сути, принцип тот же. Напряжение подаётся на статор и на ротор. Появляются два магнитных поля, которые начинают взаимодействовать и вращать ротор.

Достоинства и недостатки асинхронных двигателей.

Основные достоинства асинхронного электродвигателя с короткозамкнутым ротором:

1. Очень простое устройство, что позволяет сократить затраты на его изготовление.

2. Цена намного меньше по сравнению с другими двигателями.

3. Очень простая схема запуска.

4. Скорость вращения вала практически не меняется с увеличением нагрузки.

5. Хорошо переносит кратковременные перегрузы.

6. Возможность подключения трёхфазных двигателей в однофазную сеть.

7. Надёжность и возможность эксплуатировать практически в любых условиях.

8. Имеет очень высокий показатель КПД и cos φ.

Недостатки:

1. Не возможности контролировать частоту вращения ротора без потери мощности.

2. Если увеличить нагрузку, то уменьшается момент.

3. Пусковой момент очень мал по сравнению с другими машинами.

4. При недогрузе увеличивается показатель cos φ

5. Высокие показатели пусковых токов.

Достоинства двигателей с фазным ротором:

1. По сравнению с короткозамкнутыми двигателями, имеет достаточно большой вращающий момент. Что позволяет его запускать под нагрузкой.

2. Может работать с небольшим перегрузом, и при этом частота вращения вала практически не меняется.

3. Небольшой пусковой ток.

4. Можно применять автоматические пусковые устройства.

Недостатки:

1. Большие габариты.

2. Показатели КПД и cos φ меньше, чем у двигателей с короткозамкнутым ротором. И при недогрузе эти показатели имеют минимальное значение

3. Нужно обслуживать щёточный механизм.

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

С уважением Александр!

Устройство и принцип работы асинхронного двигателя

Немало техники — бытовой, строительной, производственной имеют двигатели. Если задаться целью и проверить тип мотора, в 90% окажется, что стоит асинхронный двигатель. Это обусловлено простотой конструкции, высоким КПД, отсутствием электрического контакта с движущейся частью (в моделях с короткозамкнутым ротором). В общем, причин достаточно. 

Что такое асинхронный двигатель и принцип его действия

Любой электродвигатель — устройство для преобразования электрической энергии в механическую. Электрический двигатель состоит из неподвижной (статор) и подвижной части (ротор). Строение статора таково, что он имеет вид полого цилиндра, внутри которого имеется обмотка. В это цилиндрическое отверстие вставляется подвижная часть — ротор. Он также имеет вид цилиндра, но меньшего размера. Между статором и ротором имеется воздушный зазор, позволяющий ротору свободно вращаться. Ротор вращается из-за наводимых магнитным полем статора токов. По способу вращения двигатели делят на синхронные и асинхронные.

Так выглядит разобранный асинхронный двигатель с короткозамкнутым ротором

Асинхронный электродвигатель отличается тем, что частота вращения ротора и магнитного поля, создаваемого статором, у него неравны. То есть, ротор вращается несинхронно с полем, что и дало название этому типу машин. Характерно, в рабочем режиме скорость его вращения меньше. Второе название этого типа двигателей — индукционные. Это название связано с тем, что движение происходит за счёт наводимых на нём токов индукции.

Асинхронный двигатель в разобранном виде: основные узлы и части

Коротко описать принцип работы асинхронного двигателя можно так. При включении мотора на обмотки статора подаётся ток, из-за чего возникает переменное магнитное поле. В область действия силовых линий этого попадает ротор, который начинает вращаться вслед за переменным полем статора.

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.

Недостатки:

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Принцип действия асинхронного двигателя — Asutpp

Электродвигатель предназначен для преобразования, с малыми потерями, электрическую энергию в механическую.

Предлагаем рассмотреть принцип действия асинхронного электродвигателя с короткозамкнутым ротором, трехфазного и однофазного типа, а также его конструкцию и схемы подключения.

Строение двигателя

Основные элементы электродвигателя это – статор, ротор, их обмотки и магнитопровод.

Преобразование электрической энергии в механическую происходит во вращающейся части мотора – роторе.

У двигателя переменного тока, ротор получает энергию не только за счет магнитного поля, но и при помощи индукции. Таким образом, они называются асинхронными двигателями. Это можно сравнить с вторичной обмоткой трансформатора. Эти асинхронные двигатели еще называют вращающимися трансформаторами. Чаще всего используется модели рассчитанные на трех фазное включение.

Конструкция асинхронного двигателя

Направление вращения электродвигателя задается правилом левой руки буравчика: оно демонстрирует связь между магнитным полем и проводником.

Второй очень важный закон – Фарадея:

  1. ЭДС наводиться в обмотке, но электромагнитный поток меняется во временем.
  2. Величина наведенной ЭДС прямо пропорциональна скорости изменения электрического потока.
  3. Направление ЭДС противодействует току.

Принцип действия

При подаче напряжения на неподвижные обмотки статора, оно создает магнитное в статора. Если подается напряжение переменного тока, то магнитный поток, созданный им, изменяется. Так статор производит изменение магнитного поля, и ротор получает магнитные потоки.

Таким образом, ротор электродвигателя принимает эти поток статора и, следовательно, вращается. Это основной принцип работы и скольжения в асинхронных машинах. Из вышеизложенного следует отметить, что магнитный поток статора (и его напряжение) должно быть равно переменному току для вращения ротора, так что асинхронная машина может работать только от сети переменного тока.

Принцип работы асинхронного двигателя

Когда такие двигатели действуют в качестве генератора, они будет генерировать непосредственно переменный ток. В случае такой работы, ротор вращается с помощью внешних средств скажем, турбины. Если ротор имеет некоторый остаточный магнетизм, то есть некоторые магнитные свойства, которые сохраняет по типу магнита внутри материала, то ротор создает переменный поток в стационарной обмотке статора. Так что это обмотки статора будут получать наведенное напряжение по принципу индукции.

Индукционные генераторы используются в небольших магазинах и домашних хозяйствах, чтобы обеспечить дополнительную поддержку питания и являются наименее дорогостоящими из-за легкого монтажа. В последнее время они широко используется людьми в тех странах, где электрические машины теряют мощность из-за постоянных перепадов напряжения в питающей электросети. Большую часть времени, ротор вращается при помощи небольшого дизельного двигателя соединенного с асинхронным генератором переменного напряжения.

Как вращается ротор

Вращающийся магнитный поток проходит через воздушный зазор между статором, ротором и обмоткой неподвижных проводников в роторе. Этот вращающийся поток, создает напряжение в проводниках ротора, тем самым заставляя наводиться в них ЭДС. В соответствии с законом Фарадея электромагнитной индукции, именно это относительное движение между вращающимся магнитным потоком и неподвижными обмотками ротора, которые возбуждает ЭДС, и является основой вращения.

Двигатель с короткозамкнутым ротором, в котором проводники ротора образовывают замкнутую цепь, в следствии чего возникает ЭДС наводящая ток в нем, направление задается законом Ленса, и является таким, чтобы противодействовать причине его возникновения. Относительное движение ротора между вращающимся магнитным потоком и неподвижным проводником и является его действием к вращению. Таким образом, чтобы уменьшить относительную скорость, ротор начинает вращаться в том же направлении, что и вращающийся поток на обмотках статора, пытаясь поймать его. Частота наведенной на него ЭДС такая же, как частота питания.

Гребневые асинхронные двигатели

Когда напряжение питания низкое, возбуждение обмоток короткозамкнутого ротора не происходит. Это обусловлено тем что, когда число зубцов статора и число зубьев ротора равное, таким образом вызывая магнитную фиксацию между статором и ротором. Этот физический контакт иначе называется зубо-блокировкой или магнитной блокировкой. Данная проблема может быть преодолена путем увеличения количества пазов ротора или статора.

Подключение

Асинхронный двигатель можно остановить, просто поменяв местами любые два из выводов статора. Это используется во время чрезвычайных ситуаций. После он изменяет направление вращающегося потока, который производит вращающий момент, тем самым вызывая разрыв питания на роторе. Это называется противофазным торможением.

Видео: Как работает асинхронный двигатель

Для того чтобы этого не происходило в однофазном асинхронном двигателе, необходимо использование конденсаторного устройства.

Его нужно подключить к пусковой обмотке, но предварительно обязательно проводится его расчет. Формула

QC = Uс I2 = U2 I2 / sin2

Схема: Подключение асинхронного двигателя

Из которой следует, что электрические машины переменного тока двухфазного или однофазного типа, должны снабжаться конденсаторами с мощностью, равной самой мощности двигателя.

Аналогия с муфтой

Рассматривая принцип действия асинхронного электродвигателя, используемого в промышленных машинах, и его технические характеристики, нужно сказать про вращающуюся муфту механического сцепления . Крутящий момент на валу привода должен равняться крутящему моменту на ведомом валу. Кроме того, следует подчеркнуть, что эти два момента являются одним и тем же, поскольку крутящий момент линейного преобразователя вызывается трением между дисков внутри самой муфты.

Электромагнитная муфта сцепления

Похожий принцип действия и у тягового двигателя с фазным ротором. Система такого мотора состоит из восьми полюсов (из которых 4 – основные, а 4 – добавочные), и остовы. На основных полюсах расположены медные катушки. Вращение такого механизма обязано зубчатой передаче, которая получает крутящий момент от вала якоря, так же называемого сердечником. Включение в сеть, производится четырьмя гибкими кабелями. Основное назначение многополюсного электродвигателя – приведение в движение тяжелой техники: тепловозы, тракторы, комбайны и в некоторых случаях, станки.

Достоинства и недостатки

Устройство асинхронного двигателя является практически универсальным, но так же, у данного механизма есть свои плюсы и минусы.

Преимущества асинхронных двигателей переменного тока:

  1. Конструкция простой формы.
  2. Низкая стоимость производства.
  3. Надежная и практичная в обращении конструкция.
  4. Не прихотлив в эксплуатации.
  5. Простая схема управления

Эффективность этих двигателей очень высока, так как нет потерь на трение, и относительно высокий коэффициент мощности.

Недостатки асинхронных двигателей переменного тока:

  1. Не возможен контроль скорости без потерь мощности.
  2. Если увеличивается нагрузка – уменьшается момент.
  3. Относительно небольшой пусковой момент.

Асинхронный двигатель: принцип работы и устройство :

Из всего спектра выпускаемых в настоящее время электрических моторов наибольшее распространение получил двигатель асинхронный трёхфазный. Практически половина производимой в мире электроэнергии используется именно этими машинами. Они широко применяются в металлообрабатывающей и деревообрабатывающей промышленности. Асинхронный двигатель незаменим на фабриках и насосных станциях. Без таких машин не обойтись и в быту, где они используются и в другой домашней технике, и в ручном электроинструменте.

Область применения этих электрических машин расширяется с каждым днём, так как совершенствуются и сами модели, и используемые для их изготовления материалы.

Каковы же основные части этой машины

Разобрав двигатель асинхронный трехфазный, можно наблюдать два главных элемента.

1. Статор.

2. Ротор.

Одна из важнейших деталей — статор. На фото сверху эта часть двигателя расположена слева. Он состоит из следующих основных элементов:

1. Корпус. Он необходим для соединения всех деталей машины. Если двигатель небольшой, то корпус изготавливают цельнолитым. В качестве материала используют чугун. Применяются также сталь или сплавы алюминия. Иногда корпус малых двигателей совмещает функции сердечника. Если же двигатель имеет большие размеры и мощность, то корпус сваривают из отдельных частей.

2. Сердечник. Этот элемент двигателя запрессовывается в корпус. Служит он для улучшения качеств магнитной индукции. Выполняется сердечник из пластин электрической стали. Для того чтобы снизить потери, неизбежные при появлении вихревых токов, каждая пластина покрывается слоем специального лака.

3. Обмотка. Она размещается в пазах сердечника. Состоит из витков медной проволоки, которые собираются в секции. Соединённые в определённой последовательности, они образуют три катушки, которые в совокупности являются обмоткой статора. Подключается она непосредственно к сети, поэтому называется первичной.

Ротор — это подвижная часть двигателя. На фото он находится справа. Служит он для преобразования силы магнитных полей в механическую энергию. Состоит ротор асинхронного двигателя из следующих деталей:

1. Вал. На хвостовиках его закреплены подшипники. Они запрессовываются в щиты, крепящиеся болтами к торцовым стенкам коробки статора.

2. Сердечник, который собирается на валу. Состоит из пластин специальной стали, обладающей таким ценным свойством, как низкое сопротивление магнитным полям. Сердечник, обладая формой цилиндра, и является основой для укладки обмотки якоря. Роторная, или, как её ещё называют, вторичная обмотка получает энергию благодаря магнитному полю, которое появилось вокруг катушек статора при прохождении по ним электрического тока.

Двигатели по типу изготовления подвижной части

Различают двигатели:

1. Имеющие короткозамкнутую обмотку ротора. Один из вариантов исполнения этой детали показан на рисунке.

Асинхронный двигатель с короткозамкнутым ротором имеет обмотку, сделанную из алюминиевых стержней, которые располагаются в пазах сердечника. В торцевой части они замкнуты кольцами накоротко.

2. Электродвигатели, имеющие ротор, изготовленный с контактными кольцами.

У обоих типов асинхронных двигателей конструкция статора одинаковая. Различаются они только исполнением якоря.

Каков же принцип работы

Якорь трёхфазного асинхронного двигателя, исполненный подобным образом, приводится во вращение благодаря эффекту возникновения переменного магнитного поля в статорных катушках. Чтобы понять, каким образом это происходит, необходимо вспомнить физический закон самоиндукции. Он гласит, что вокруг проводника, по которому проходит поток заряженных частиц, возникает магнитное поле. Величина его будет прямо пропорциональна индуктивности провода и интенсивности протекающего в нём потока заряженных частиц. Кроме того, это магнитное поле формирует силу с определённой направленностью. Именно она нас и интересует, так как является причиной вращения ротора. Для эффективной работы двигателя необходимо иметь мощный магнитный поток. Создаётся он благодаря специальному способу монтажа первичной обмотки.

Известно, что источник питания имеет переменное напряжение. Следовательно, магнитное поле вокруг статора будет иметь такую же характеристику, напрямую зависящую от изменения тока в подающей сети. Примечательно то, что каждая фаза смещена одна относительно другой на 120˚.

Что происходит в обмотке статора

Каждая фаза сети питания подключается к соответствующей катушке статора, поэтому возникающее вокруг них магнитное поле будет смещено на 120˚. Источник питания имеет переменное напряжение, следовательно, вокруг катушек статора, которыми располагает асинхронный двигатель, будет возникать переменное магнитное поле. Схема асинхронного двигателя собирается так, чтобы магнитное поле, возникающее вокруг катушек статора, постепенно изменялось и последовательно переходило от одной обмотки к другой. Таким образом создаётся эффект вращающегося магнитного поля. Можно вычислить его частоту вращения. Измеряться она будет в оборотах за минуту. Определяется по формуле: n=60f/p, где f — это частота переменного тока в подключенной сети (Гц), p — соответствует числу пар полюсов, смонтированных на статоре.

Как работает ротор

Теперь необходимо рассмотреть, какие процессы возникают во вторичной обмотке. Асинхронный двигатель с короткозамкнутым ротором имеет конструкционную особенность. Дело в том, что к его якорной обмотке напряжение не подводится. Оно там возникает благодаря магнитоиндукционной связи с первичной обмоткой. Поэтому и происходит процесс, обратный тому, что наблюдался в статоре, в соответствии с законом, который гласит, что при пересечении проводника, а в нашем случае это короткозамкнутая обмотка ротора, магнитным потоком в нём возникает электрический ток. Откуда берётся магнитное поле? Оно возникло вокруг первичной катушки при подключении трёхфазного источника питания.

Соединим статор и ротор. Что получится?

Таким образом, имеем асинхронный короткозамкнутый двигатель с ротором, в обмотке которого проходит электрический ток. Он и будет причиной возникновения магнитного поля вокруг якорной обмотки. Однако полярность этого потока будет отличаться от созданного статором. Соответственно, и сила, образуемая им, будет вступать в противодействие с той, которая вызвана магнитным полем первичной обмотки. Это и приведёт в движение ротор, так как на нём собрана вторичная катушка, и хвостовики вала якоря закреплены в корпусе двигателя на подшипниках.

Рассмотрим ситуацию взаимодействия сил, возникающих от магнитных полей статора и ротора, с течением времени. Знаем, что магнитное поле первичной обмотки вращается и обладает определённой частотой. Созданная им сила будет перемещаться, имея аналогичную скорость. Это заставит асинхронный двигатель заработать. И его ротор будет свободно вращаться вокруг оси.

Эффект скольжения

Ситуация, когда силовые потоки ротора как бы отталкиваются от вращающегося магнитного поля статора, получила название скольжения. Следует отметить, что частота асинхронного двигателя (n1) всегда меньше той, с которой перемещается магнитное поле статора. Объяснить это можно так. Чтобы в роторной обмотке возник ток, она должна быть пересечена магнитным потоком с определённой угловой скоростью. И поэтому справедливо утверждение, что скорость вращения вала больше либо равна нулю, но меньше интенсивности перемещения магнитного поля статора. Ротор имеет частоту вращения, зависящую от силы трения в подшипниках, а также от величины отбора мощности с вала ротора. Поэтому он как бы отстаёт от магнитного поля статора. Именно из-за этого частота называется асинхронной.

Таким образом, электроэнергия питающего источника преобразовалась в кинетическую энергию вращающегося вала. Скорость его вращения прямо пропорциональна частоте тока питающей сети и количеству пар полюсов статора. Для увеличения частоты вращения якоря можно использовать частотные преобразователи. Однако работа этих устройств должна быть согласована с количеством пар полюсов.

Как подключить двигатель к источнику питания

Чтобы осуществить пуск асинхронного двигателя, его необходимо подключить к сети трёхфазного тока. Схема асинхронного двигателя собирается двумя способами. На рисунке показана схема соединения выводов двигателя, в которой статорные обмотки собраны способом «звезда».

На этом рисунке изображён другой способ соединения, именуемый «треугольник». Собираются схемы в клеммной коробке, закреплённой на корпусе.

Следует знать, что начала каждой из трёх катушек, их ещё называют обмотками фаз, именуются С1, С2, С3 соответственно. Аналогично подписываются концы, которые имеют названия С4, С5, С6. Если в клеммной коробке нет маркировки выводов, то начала и концы придётся определить самостоятельно.

Как сделать реверс

При возникновении потребности осуществить пуск асинхронного двигателя, изменив направление вращения якоря, надо просто поменять местами два провода подключаемого источника трехфазного напряжения.

Однофазный асинхронных двигателей

В быту проблематично использовать трёхфазные двигатели из-за отсутствия требуемого источника напряжения. Поэтому существует однофазный асинхронный двигатель. Он также имеет статор, но с существенным конструкционным отличием. Оно заключается в количестве и способе расположения обмоток. Это определяет и схему запуска машины.

Если однофазный асинхронный двигатель имеет статор с двумя обмотками, то расположены они будут со смещением по окружности под углом в 90˚. Катушки называются пусковой и рабочей. Соединяются они параллельно, но, чтобы создать условия для появления вращающееся магнитного поля, дополнительно вводится активное сопротивление или конденсатор. Это создаёт сдвиг фаз токов обмоток, близкий к 90˚, благодаря чему создаётся условие для образования вращающегося магнитного поля.

Если статор имеет только одну катушку, то подключённый к ней однофазный источник питания будет причиной пульсирующего магнитного поля. В замкнутой накоротко обмотке ротора появится переменный ток. Он станет причиной возникновения своего магнитного потока. Результирующая двух образовавшихся сил будет равна нулю. Поэтому для запуска двигателя, имеющего такую конструкцию, требуется дополнительный толчок. Создать его можно, подключив конденсаторную схему пуска.

Подключить двигатель к однофазной цепи

Изготовленный для работы от трёхфазного источника питания электромотор может работать и от домашней однофазной сети, но при этом существенно снизятся его характеристики, такие как КПД, коэффициент мощности. Кроме того, снизятся мощность и пусковые показатели.

Если же без подключения не обойтись, то требуется из трёх обмоток статора собрать схему, где их будет только две. Одна рабочая, а другая пусковая. Например, есть три катушки с началами С1, С2, С3 и концами С4, С5, С6 соответственно. Для создания первой (рабочей) обмотки двигателя объединяем концы С5 и С6, а их начала С3 и С2 подключаем к источнику однофазного тока, например, бытовой сети 220 вольт. Роль второй, пусковой обмотки, будет выполнять оставшаяся незадействованная катушка стартера. Она подключается к источнику питания через конденсатор, соединённый с ней последовательно.

Параметры асинхронного двигателя

При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические — это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.

Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.

Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.

Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.

Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.

Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.

Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.

Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.

В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.

В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.

Принцип работы асинхронного двигателя

Двигатель, работающий по принципу электромагнитной индукции , известен как асинхронный двигатель. Электромагнитная индукция — это явление, при котором электродвижущая сила индуцирует электрический проводник, когда он находится во вращающемся магнитном поле.

Статор и ротор — две важные части двигателя. Статор является неподвижной частью, и он несет перекрывающиеся обмотки, в то время как ротор несет основную обмотку или обмотку возбуждения.Обмотки статора равномерно смещены друг от друга на угол 120 °.

Асинхронный двигатель — это двигатель с одним возбуждением, то есть питание подается только на одну часть, то есть на статор . Термин возбуждение означает процесс создания магнитного поля на частях двигателя.

Когда на статор подается трехфазное питание, на нем создается вращающееся магнитное поле. На рисунке ниже показано вращающееся магнитное поле, созданное в статоре:

Считайте, что вращающееся магнитное поле индуцирует против часовой стрелки.Вращающееся магнитное поле имеет подвижные полярности. Полярность магнитного поля меняется в зависимости от положительного и отрицательного полупериода питания. Изменение полярности заставляет магнитное поле вращаться.

Проводники ротора неподвижны. Этот неподвижный проводник отсекает вращающееся магнитное поле статора, и из-за электромагнитной индукции в роторе возникает ЭДС. Эта ЭДС известна как ЭДС, индуцированная ротором, и возникает из-за явления электромагнитной индукции.

Проводники ротора закорачиваются либо концевыми кольцами, либо с помощью внешнего сопротивления. Относительное движение между вращающимся магнитным полем и проводником ротора индуцирует ток в проводниках ротора. Когда ток течет по проводнику, на нем наводится магнитный поток. Направление потока ротора такое же, как и направление тока ротора.

Теперь у нас есть два потока: один из-за ротора, а другой из-за статора. Эти потоки взаимодействуют друг с другом.На одном конце проводника потоки нейтрализуют друг друга, а на другом конце плотность потока очень высока. Таким образом, поток высокой плотности пытается подтолкнуть проводник ротора к области потока низкой плотности. Это явление вызывает крутящий момент на проводнике, и этот крутящий момент известен как электромагнитный крутящий момент.

Направление электромагнитного момента и вращающегося магнитного поля одинаковы. Таким образом, ротор начинает вращаться в том же направлении, что и вращающееся магнитное поле.

Скорость ротора всегда меньше вращающегося магнитного поля или синхронной скорости. Ротор пытается вращаться со скоростью ротора, но всегда ускользает. Таким образом, двигатель никогда не работает со скоростью вращающегося магнитного поля, и по этой причине асинхронный двигатель также известен как асинхронный двигатель.

Почему ротор никогда не работает с синхронной скоростью?

Если скорость ротора равна синхронной скорости, относительного движения между вращающимся магнитным полем статора и проводниками ротора не происходит.Таким образом, на проводнике не наводится ЭДС, и в нем возникает нулевой ток. Без тока крутящий момент также не создается.

По вышеуказанным причинам ротор никогда не вращается с синхронной скоростью. Скорость ротора всегда меньше скорости вращающегося магнитного поля.

В качестве альтернативы принцип работы асинхронного двигателя можно также объяснить следующим образом.

Давайте разберемся в этом, рассмотрев единственный проводник на неподвижном роторе.Этот проводник рассекает вращающееся магнитное поле статора. Учтите, что вращающееся магнитное поле вращается по часовой стрелке. Согласно закону электромагнитной индукции Фарадея, в проводнике индуцируется ЭДС.

Когда цепь ротора замыкается внешним сопротивлением или концевым кольцом, ротор индуцирует ЭДС, которая вызывает ток в цепи. Направление индукционного тока ротора противоположно направлению вращающегося магнитного поля. Ток ротора индуцирует магнитный поток в роторе.Направление потока ротора такое же, как у тока.

Взаимодействие потоков ротора и статора создает силу, которая действует на проводники ротора. Сила действует на ротор по касательной и, следовательно, вызывает крутящий момент. Крутящий момент толкает проводники ротора, и, таким образом, ротор начинает двигаться в направлении вращающегося магнитного поля. Ротор начинает движение без какой-либо дополнительной системы возбуждения, поэтому двигатель называется самозапускающимся двигателем .

Работа двигателя зависит от напряжения, наведенного на ротор, поэтому его называют асинхронным двигателем .

Принцип работы и типы асинхронного двигателя

Асинхронные двигатели — наиболее часто используемые двигатели во многих сферах применения. Их также называют асинхронными двигателями , потому что асинхронный двигатель всегда работает со скоростью ниже синхронной. Синхронная скорость означает скорость вращающегося магнитного поля в статоре.
В основном существует 2 типов асинхронных двигателей в зависимости от типа входного питания — (i) однофазный асинхронный двигатель и (ii) трехфазный асинхронный двигатель.

Или их можно разделить по типу ротора — (i) двигатель с короткозамкнутым ротором и (ii) двигатель с контактным кольцом или тип

.

Основной принцип работы асинхронного двигателя

В двигателе постоянного тока необходимо подавать питание как на обмотку статора, так и на обмотку ротора. Но в асинхронном двигателе только обмотка статора питается переменным током.
  • Из-за источника переменного тока вокруг обмотки статора образуется переменный поток. Этот переменный поток вращается с синхронной скоростью. Вращающийся поток называется «вращающимся магнитным полем» (RMF).
  • Относительная скорость между RMF статора и проводниками ротора вызывает индуцированную ЭДС в проводниках ротора согласно закону электромагнитной индукции Фарадея. Проводники ротора закорочены, и, следовательно, ток ротора возникает из-за наведенной ЭДС. Поэтому такие двигатели называются асинхронными двигателями . (Это действие аналогично тому, что происходит в трансформаторах, поэтому асинхронные двигатели могут называться вращающимися трансформаторами .)
  • Теперь индуцированный ток в роторе также будет создавать вокруг него переменный поток. Этот поток ротора отстает от потока статора. Направление индуцированного тока ротора, согласно закону Ленца, таково, что он будет иметь тенденцию противодействовать причине его возникновения.
  • Поскольку причиной возникновения тока ротора является относительная скорость между потоком вращающегося статора и ротором, ротор будет пытаться догнать RMF статора.Таким образом, ротор вращается в том же направлении, что и магнитный поток статора, чтобы минимизировать относительную скорость. Однако ротору никогда не удается догнать синхронную скорость. Это основной принцип работы асинхронного двигателя любого типа, однофазный трехфазный.
Синхронная скорость:

где, f = частота подачи

P = количество полюсов

Скольжение:

Ротор пытается догнать синхронную скорость поля статора, и, следовательно, он вращается.Но на практике ротор никогда не догоняет. Если ротор достигает скорости статора, не будет относительной скорости между потоком статора и ротором, следовательно, не будет индуцированного тока ротора и создания крутящего момента для поддержания вращения. Однако это не остановит двигатель, ротор замедлится из-за потери крутящего момента, крутящий момент снова будет действовать из-за относительной скорости. Вот почему ротор вращается со скоростью, которая всегда меньше синхронной скорости.

Разница между синхронной скоростью (N s ) и фактической скоростью (N) ротора называется скольжением.

Каков принцип работы асинхронного двигателя | by Starlight Generator

Асинхронный двигатель

Асинхронный двигатель, также известный как «асинхронный двигатель», представляет собой устройство, которое помещает ротор во вращающееся магнитное поле и получает вращающий момент под действием вращающегося магнитного поля. поле, тем самым вращая ротор.

Статор — это не вращающаяся часть двигателя. Основная задача — создать вращающееся магнитное поле.Вращающееся магнитное поле не достигается механически. Вместо этого он подключен к паре электромагнитов переменным током, так что его свойства магнитного полюса меняются циклически, поэтому он эквивалентен вращающемуся магнитному полю.

Принцип работы

Вращающееся магнитное поле, создаваемое статором (скорость вращения — это синхронная скорость вращения n1) и относительное движение обмотки ротора, линия магнитной индукции, режущая обмотку ротора, создает наведенную электродвижущую силу, тем самым генерирование индуцированного тока в обмотке ротора.Индуцированный ток в обмотке ротора взаимодействует с магнитным полем, создавая электромагнитный момент, который заставляет ротор вращаться. Поскольку индуцированный ток постепенно уменьшается по мере того, как скорость ротора постепенно приближается к синхронной скорости, генерируемый электромагнитный крутящий момент также соответственно уменьшается. Когда асинхронный двигатель работает в состоянии двигателя, скорость ротора меньше синхронной скорости.

Разница между синхронным двигателем и асинхронным двигателем

Синхронный двигатель и асинхронный двигатель являются наиболее широко используемыми типами двигателей переменного тока.Разница между этими двумя типами заключается в том, что синхронный двигатель вращается со скоростью, привязанной к частоте сети, поскольку он не полагается на индукцию тока для создания магнитного поля ротора. Напротив, асинхронный двигатель требует скольжения: ротор должен вращаться немного медленнее, чем переменный ток, чтобы вызвать ток в обмотке ротора.

Малые синхронные двигатели используются в системах хронометража, таких как синхронные часы, таймеры в приборах, магнитофонах и прецизионных сервомеханизмах, в которых двигатель должен работать с точной скоростью; Точность скорости — это точность частоты линии электропередачи, которая тщательно контролируется в крупных взаимосвязанных сетевых системах.

Синхронные двигатели доступны от самовозбуждающихся субфракционных размеров в лошадиных силах до мощных промышленных размеров.

Starlight Power обеспечивает синхронный генератор мощностью от 20 до 2500 кВт различных производителей, таких как Stamford, Siemens, Marathon, Engga, Leroy-Somer и генератор переменного тока Starlight. Свяжитесь с нами по электронной почте: [email protected]

В диапазоне дробных лошадиных сил большинство синхронных двигателей используются там, где требуется точная постоянная скорость. Эти машины обычно используются в аналоговых электрических часах, таймерах и других устройствах, где требуется точное время.В промышленных масштабах большой мощности синхронный двигатель выполняет две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в работу. Во-вторых, он может работать с опережающим или единичным коэффициентом мощности и тем самым обеспечивать коррекцию коэффициента мощности.

Двигатели переменного тока | Принцип работы | Ресурсы для инженеров

Универсальные моторы

Универсальный двигатель — это однофазный последовательный двигатель, который может работать как от переменного (ac), так и от постоянного (dc) тока, и характеристики одинаковы как для переменного, так и для постоянного тока.Обмотки возбуждения последовательных двигателей соединены последовательно с обмотками якоря

.
Основные принципы Universal Motors

Областями электрического проектирования универсального двигателя являются магнитная цепь, обмотки возбуждения и якоря, коммутатор и щетки, изоляция и система охлаждения.


Процесс коммутации универсальных двигателей

Тактико-технические характеристики универсальных двигателей

Двигатели с экранированными полюсами

Двигатель с экранированными полюсами — это однофазный асинхронный двигатель переменного тока.Вспомогательная обмотка, состоящая из медного кольца, называется затеняющей катушкой. Ток в этой катушке задерживает фазу магнитного потока в этой части полюса, чтобы обеспечить вращающееся магнитное поле. Направление вращения — от незатененной стороны к закрашенному кольцу.


Основные принципы двигателя с экранированными полюсами
  • Эта система затеняющих катушек (кольцо) смещает ось затененных полюсов от оси основных полюсов
  • Когда питание подается на статор, магнитный поток в основной части полюса индуцирует напряжение в затеняющей катушке, которая действует как вторичная обмотка трансформатора.
  • Так как ток во вторичной обмотке трансформатора не совпадает по фазе с током в первичной обмотке.
  • Ток в затеняющей катушке не в фазе с током в основной обмотке возбуждения.
  • Таким образом, поток затеняющего полюса не в фазе с потоком основного полюса.


Вращающееся поле двигателя с экранированными полюсами

Синхронные двигатели

Синхронные двигатели переменного тока — это электродвигатели с постоянной скоростью, которые работают синхронно с частотой сети.Скорость синхронного двигателя определяется количеством пар полюсов и всегда является отношением частоты сети.

  • Статор снабжен двумя простыми катушками, которые можно напрямую подключить к сети.
  • Ротор состоит из цилиндрического постоянного двухполюсного магнита, диаметрально намагниченного.


Основные принципы синхронных двигателей

Теория двигателей переменного тока | Sciencing

Обновлено 8 декабря 2018 г.

Автор: J.Дайан Дотсон

Никола Тесла изобрел двигатели переменного тока, или двигатели переменного тока, в конце 19 века. Двигатели переменного тока отличаются от двигателей постоянного или постоянного тока тем, что в них используется переменный ток, который меняет направление. Двигатели переменного тока преобразуют электрическую энергию в механическую. Двигатели переменного тока по-прежнему широко используются в современной жизни, и вы можете найти их в бытовой технике и гаджетах у себя дома.

TL; DR (слишком долго; не читал)

Двигатели переменного тока или двигатели переменного тока были изобретены Николой Тесла в 19 веке.Теория двигателя переменного тока предполагает использование электромагнитов с токами для создания силы и, следовательно, движения.

Каков принцип работы двигателя?

Простейший принцип работы двигателя заключается в использовании электромагнитов с токами для создания силы для перемещения чего-либо, другими словами, для преобразования электрической энергии в механическую энергию вращения. В двигателях установлены электромагниты во вложенных кольцах, причем полярность магнитов в кольцах чередуется с севера на юг. Магниты ротора движутся, а магниты статора — нет.Полярность этих электромагнитов с севера на юг должна постоянно меняться.

Как работает двигатель переменного тока?

До изобретений Теслы двигатели постоянного тока были основным типом двигателей. Двигатель переменного тока работает, подавая переменный ток на обмотки статора, которые создают вращающееся магнитное поле. Поскольку магнитное поле вращается таким образом, двигатель переменного тока не нуждается в силе или механической помощи для воздействия на ротор. Ротор будет вращаться за счет магнитного поля и создавать крутящий момент на приводном валу двигателя.Скорость вращения зависит от количества магнитных полюсов в статоре. Эта скорость называется синхронной скоростью. Однако асинхронные двигатели переменного тока работают с задержкой или скольжением, чтобы обеспечить прохождение тока ротора.

Различные двигатели переменного тока будут иметь разное количество полюсов и, следовательно, разную скорость по сравнению друг с другом. Однако скорость двигателя переменного тока не является переменной, а скорее постоянной. В этом отличие от многих двигателей постоянного тока. Двигатели переменного тока не требуют щеток (силовых контактов) или коммутаторов, которые необходимы двигателям постоянного тока.

Изобретения Теслы значительно изменили ландшафт двигателей, создав более эффективные и надежные устройства. Эти двигатели переменного тока произвели революцию в отрасли и проложили путь для использования во многих устройствах, используемых в 21 веке, таких как кофемолки, вентиляторы для душа, кондиционеры и холодильники.

Сколько типов двигателей существует?

Существует несколько типов двигателей переменного тока, работающих по одному и тому же основному принципу. Многие из этих двигателей представляют собой разновидности асинхронных двигателей переменного тока, хотя более современные двигатели переменного тока с постоянными магнитами, или PMAC, работают немного иначе.

Самым распространенным двигателем переменного тока является универсальный трехфазный асинхронный двигатель. Этот многофазный двигатель работает с задержкой, а не с синхронной скоростью. Эта разница в скорости называется скольжением двигателя. Индуцированные токи, протекающие в роторе, вызывают это скольжение, что приводит к возникновению большого тока при его запуске. Из-за скольжения эти двигатели считаются асинхронными. Трехфазные асинхронные двигатели обладают высокой мощностью и эффективностью с высоким пусковым моментом. Таким двигателям часто требуется механическое пусковое усилие для приведения ротора в движение.Трехфазные асинхронные двигатели — это мощные двигатели, обычно используемые в промышленных устройствах.

Двигатели с короткозамкнутым ротором — это двигатель переменного тока, в котором алюминиевые или медные токопроводящие шины на роторе расположены параллельно валу. Размер и форма токопроводящих стержней влияет на крутящий момент и скорость. Название происходит от сходства устройства с клеткой.

Асинхронный двигатель с фазным ротором — это двигатель переменного тока, который состоит из ротора с обмотками, а не стержнями. Асинхронным двигателям с фазным ротором требуется высокий пусковой момент.Сопротивление вне ротора влияет на скорость крутящего момента.

Однофазный асинхронный двигатель представляет собой разновидность двигателя переменного тока, в котором пусковая обмотка добавлена ​​под прямым углом к ​​обмотке главного статора. Универсальные двигатели — это однофазные двигатели, которые могут работать как от переменного, так и от постоянного тока. Пылесос в вашем доме, скорее всего, оснащен универсальным двигателем.

Конденсаторные двигатели — это двигатель переменного тока, который требует добавления емкости для создания фазового сдвига между обмотками. Они удобны для машин, требующих высокого пускового момента, таких как компрессоры.

Конденсаторные электродвигатели представляют собой однофазные электродвигатели переменного тока, обеспечивающие уравновешивание хорошего пускового момента и работы. В этих двигателях используются конденсаторы, подключенные к вспомогательным пусковым обмоткам. В некоторых печных вентиляторах вы найдете конденсаторные двигатели. В двигателях с конденсаторным пуском используется конденсатор с пусковой обмоткой, который может создавать наибольший пусковой крутящий момент. Оба этих типа двигателей требуют двух конденсаторов в дополнение к переключателю, поэтому их части повышают стоимость таких двигателей. Если выключатель убрать, полученный двигатель с постоянным разделенным конденсатором будет работать с меньшими затратами, но также будет использовать более низкий пусковой момент.Эти типы двигателей переменного тока, хотя и являются более дорогими в эксплуатации, хорошо подходят для нужд с высоким крутящим моментом, таких как воздушные компрессоры и вакуумные насосы.

Электродвигатели с расщепленной фазой — это электродвигатели переменного тока, в которых используется пусковая обмотка малого диаметра и различные соотношения сопротивления и реактивного сопротивления. Это дает разность фаз через узкие проводники. Двигатели с разделенной фазой обеспечивают более низкий пусковой момент, чем другие конденсаторные двигатели, и высокий пусковой ток. Поэтому электродвигатели с расщепленной фазой обычно используются в небольших вентиляторах, небольших шлифовальных машинах или электроинструментах.Мощность электродвигателей с расщепленной фазой может достигать 1/3 л.с.

Двигатели с расщепленными полюсами — это недорогие однофазные асинхронные двигатели переменного тока с одной обмоткой. Двигатели с экранированными полюсами используют магнитный поток между незатененными и затемненными частями затененной катушки из меди. Их лучше всего использовать в качестве небольших одноразовых двигателей, не требующих длительного времени работы или большого крутящего момента.

Синхронные двигатели названы так потому, что создаваемые ими магнитные полюса вращают ротор с синхронной скоростью.Количество пар полюсов определяет скорость синхронного двигателя. Подтипы синхронных двигателей включают трехфазные и одиночные синхронные двигатели.

Гистерезисные двигатели представляют собой стальные цилиндры без обмоток и зубьев. Эти двигатели обладают постоянным крутящим моментом и работают плавно, поэтому их часто используют в часах.

В большинстве двигателей переменного тока используются электромагниты, потому что они не ослабевают, в отличие от постоянных магнитов. Однако новые технологии сделали двигатели переменного тока с постоянными магнитами жизнеспособными и даже предпочтительными в определенных обстоятельствах.Двигатели переменного тока с постоянными магнитами или PMAC используются в приложениях, требующих точного крутящего момента и скорости. Это надежные, популярные сегодня моторы. Магниты установлены на роторе либо на его поверхности, либо в его пластинах. Магниты, используемые в PMAC, сделаны из редкоземельных элементов. Они производят больше магнитного потока, чем индукционные магниты. PMAC — это синхронные машины, которые работают с высоким КПД и функционируют независимо от того, является ли потребность в крутящем моменте переменной или постоянной. PMAC работают при более низких температурах, чем другие двигатели переменного тока.Это помогает снизить износ деталей двигателя. Благодаря своей высокой эффективности PMAC потребляют меньше энергии. Более высокие первоначальные затраты в конечном итоге компенсируются длительной работой этого эффективного двигателя.

Может ли любой двигатель переменного тока работать с регулируемой скоростью?

Одно из преимуществ двигателей постоянного тока заключается в том, что их скорость может изменяться. Двигатели переменного тока, однако, не склонны работать с переменной скоростью. Они работают с постоянной скоростью независимо от нагрузки. Это полезно для поддержания точной скорости.Однако для некоторых приложений требуется переменная скорость. Попытки изменить скорость двигателей переменного тока могут привести к их повреждению или перегреву. Однако есть способы обойти эти проблемы и создать двигатель переменного тока с регулируемой скоростью. Существуют механические решения для изменения скорости двигателей переменного тока. В некоторых устройствах это можно сделать с помощью шкивов, например токарного станка. Другое механическое решение — использовать промежуточный вал.

Многие современные машины по-прежнему работают на основе оригинальных асинхронных двигателей переменного тока Николы Теслы.Эти двигатели выдержали испытание временем благодаря своей адаптивности и долговечности. Инженеры стремятся сделать двигатели более эффективными, с меньшим износом и тепловыделением, с меньшими затратами и меньшим воздействием на окружающую среду.

Что такое асинхронный двигатель? Принцип, работа, типы и применение

Асинхронный двигатель — это машина, которая просто работает по принципу индукционного типа. Его изобрел ученый Тесла, ранее проводивший несколько экспериментов по работе систем переменного тока.Позже было проведено несколько экспериментов для улучшения характеристик этого типа. Это привело к изобретениям генератора индукционного типа. Но этот тип имеет ограниченный доступ из-за некоторых минусов, чем плюсов этого генератора. Однако автомобильная функция востребована во многих областях, таких как промышленность и бытовая техника. В этой статье мы подробно рассмотрим этот тип, например, что такое асинхронный двигатель, принцип работы, типы, преимущества и области применения.

Что такое асинхронный двигатель (IM)?

Асинхронный двигатель

— это устройство с одиночным возбуждением, которое работает по принципу взаимной индукции.Он похож на трансформатор, который также работает по тому же принципу. Разница между трансформатором и IM состоит в том, что трансформатор является статическим устройством, а IM — вращающимся устройством.

Принцип работы IM

IM работает по принципу взаимной индукции I, e. Когда проводник с током помещается в изменяющееся магнитное поле, в нем индуцируется ЭДС. Эта наведенная ЭДС в первичной обмотке (обмотке статора) индуцируется в короткозамкнутой вторичной обмотке (обмотке ротора) по принципу взаимной индукции.Трансформатор также работает по тому же принципу, но с постоянной частотой, но IM работает с переменной частотой.

Компоненты

IM состоит из двух основных компонентов. Это статор и ротор.

Статор — это неподвижная часть, а ротор — это вращающаяся часть. Обмотка, расположенная на статоре, действует как первичная обмотка, а ротор — как вторичная обмотка. Статор и ротор IM показаны на рисунке ниже.

Статор и ротор

Как запускается асинхронный двигатель

IM запускается с помощью вращающегося магнитного поля, которое развивает крутящий момент, который, в свою очередь, вращает ротор IM.

В зависимости от системы фаз питания, это может быть одно- или трехфазный IM в зависимости от заданного источника питания.

Однофазный IM не является самозапускающимся двигателем, тогда как трехфазный IM является самозапускающимся двигателем. Самозапуск двигателя зависит от создания крутящего момента из-за RMF.

Однофазный двигатель IM не производит RMF, поскольку он однофазный, поэтому это не самозапускающийся двигатель. Он запускается самостоятельно с помощью внешнего источника. Например, вентилятор, используемый в бытовых целях, запускается с помощью конденсатора.По этой причине вентилятор перестает работать без конденсатора.

Трехфазный IM производит RMF, который развивает крутящий момент, способный вращать ротор, так что это самозапускающийся двигатель.

Производство RMF в трехфазном асинхронном двигателе

RMF — вращающееся магнитное поле, развиваемое внутри IM, просто это изменение полярности между интервалами. RMF показан на рисунке ниже.

Вращающееся магнитное поле

Для производства RMF есть два основных требования:

  • Обмотки необходимо сместить под углом 120 градусов, как показано на рисунке ниже.
  • Уравновешенный ток должен течь по всем трем обмоткам.

Работа асинхронного двигателя

Когда трехфазное питание подается на обмотку статора двигателя, RMF будет развиваться с синхронной скоростью (N с ). Этот разработанный RMF будет вращаться внутри воздушного зазора между статором и ротором. На проводники ротора будет влиять RMF, поскольку всякий раз, когда проводники с током находятся в переменном магнитном поле, будет индуцироваться ЭДС.Поскольку проводники ротора закорочены, ЭДС индуцируется от статора к ротору посредством электромагнитной индукции. RMF — это изменение полярности по времени, показанное на рисунке ниже.

Вращающееся трехфазное магнитное поле

Разработанный RMF создает однонаправленный крутящий момент, который помогает ротору вращаться в том же направлении, что и RMF. Электромагнитное поле, индуцированное в проводниках ротора, пытается поймать скорость RMF I, e (N s ). Но он никогда не сможет догнать свою скорость из-за закона Ленца.Согласно закону Ленца, он противостоит причине, которая его породила. Таким образом, ротор вращается со скоростью меньше (N s ), что также известно как асинхронный двигатель.

Классификация асинхронных двигателей

На основании конструкции ротора IM классифицируется далее как

.
  • Беличья клетка IM и
  • Контактное кольцо IM.

Беличья клетка Тип

Строительство

Он состоит из ярма, обмотанного статора, ротора с короткозамкнутым ротором, вала, подшипников, концевых колец и вентилятора.Ярмо — это внешняя часть двигателя, которая используется в качестве защитного кожуха. Статор — это неподвижная часть двигателя, на которую намотана обмотка якоря и питается от трех фаз. Ламинированный лист двигателя с короткозамкнутым ротором показан на рисунке ниже.

Ламинирование двигателя

Стержни ротора покрыты цилиндрическим сердечником для уменьшения потерь на вихревые токи. Ротор с короткозамкнутым ротором показан на рисунке ниже.

Ротор с короткозамкнутым ротором

Передняя часть двигателя покрыта щеткой и подшипниковыми узлами.Подшипники используются для уменьшения трения между движущимися частями. Вал используется как механический выход двигателя. Наконечники предназначены для замыкания вторичной обмотки. Предусмотрен вентилятор для охлаждения тепла, выделяемого внутри двигателя, которое выводится через вентиляционный канал. Вся часть ротора выглядит как беличья клетка, отсюда и название двигателя с беличьей клеткой.

рабочий

Когда на статор IM подается трехфазное питание, в обмотке якоря возникает RMF в воздушном зазоре внутри двигателя.Этот RMF вращается с синхронной скоростью и перерезает проводники ротора. На проводники ротора действует сила из-за тока, индуцированного в соответствии с уравнением силы Лоренца. Двигатель с короткозамкнутым ротором показан на рисунке ниже.

Беличий двигатель

Этот ток индуцируется, когда проводники ротора находятся под воздействием RMF. Ротор пытается вращаться со скоростью RMF, но он не может этого сделать из-за противодействия, вызванного согласно закону Ленца. Двигатель с короткозамкнутым ротором потребляет высокий пусковой ток (в 6-7 раз больше тока полной нагрузки) и низкий пусковой момент.Эти недостатки устраняются введением контактных колец IM.

Контактное кольцо IM

Чтобы преодолеть недостатки двигателя с короткозамкнутым ротором, на конце цепи прикреплены контактные кольца. Он используется как внешняя цепь, которая имеет высокое сопротивление, включенное последовательно с цепью. Внешний контур контактного кольца IM показан на рисунке ниже.

Контактные кольца

Из-за этого высокого сопротивления ограничивается высокий пусковой ток, поскольку высокое сопротивление препятствует поступлению тока.Он также обеспечивает двигатель хорошим пусковым моментом. После плавной работы двигателя внешняя цепь удаляется, чтобы избежать потерь при работе. Таким образом, он действует как внешняя цепь для поддержания высокого пускового момента и потребляет низкий ток при запуске. Кроме того, все условия работы токосъемного кольца IM такие же, как у беличьего типа.

Преимущества IM

  • Низкая стоимость
  • Высокая надежность
  • Меньше обслуживания
  • Прочная конструкция.

Приложения

  • Используется в бытовых целях.
  • Используется в промышленности.
Преимущества контактного кольца IM по сравнению с беличьей клеткой
  • Контактное кольцо с высоким пусковым моментом
  • Он потребляет меньше пускового тока.
Недостатки контактного кольца IM
  • Высокие требования к капиталу
  • Операционные потери
  • Дизайн сложный
  • Высокая стоимость обслуживания.

Таким образом, в этой статье мы получили обзор того, что такое IM, как он запускается, типы трех IM, производство RMF, тип белка и контактного кольца, а также основные различия между ними, преимущества и недостатки.Из этой статьи можно сделать вывод, что ИМ — это машина вращающегося типа, которая работает по принципу электромагнитной индукции. Вопрос к читателям, как мы можем контролировать скорость обмена мгновенными сообщениями?

Принцип работы асинхронного двигателя

— однофазный и трехфазный асинхронный двигатель

Асинхронный двигатель представляет собой электрическую машину переменного тока, которая преобразует электрическую энергию в механическую. Асинхронный двигатель широко используется в различных областях, от основных бытовых приборов до тяжелой промышленности.У машины так много применений, что трудно сосчитать, и вы можете представить себе масштабы, зная, что почти 30% электроэнергии, производимой во всем мире, потребляется самими асинхронными двигателями. Эта удивительная машина изобретена великим ученым Николой Тесла, и это изобретение навсегда изменило ход человеческой цивилизации.

Вот нескольких применений однофазных и трехфазных асинхронных двигателей , которые мы можем найти в повседневной жизни.

Применение однофазных асинхронных двигателей:

  • Электровентиляторы в дом
  • Станки сверлильные
  • Насосы
  • Шлифовальные машины
  • Игрушки
  • Пылесос
  • Вытяжные вентиляторы
  • Компрессоры и электробритвы

Применение трехфазных асинхронных двигателей:

  • Малые, средние и крупные производства.
  • Подъемники
  • Краны
  • Станки токарные приводные
  • Маслоэкстракционные заводы
  • Роботизированное оружие
  • Конвейерная ленточная система
  • Тяжелые дробилки

Асинхронные двигатели бывают разных размеров и форм с соответствующими характеристиками и электрическими характеристиками. Они различаются по размеру от нескольких сантиметров до нескольких метров и имеют номинальную мощность от 0,5 до 10000 л.с. Пользователь может выбрать наиболее подходящую из множества моделей, отвечающих его запросам.

Мы уже обсуждали «Основы двигателей» и их работу в предыдущей статье. Здесь мы подробно обсудим конструкцию и работу асинхронного двигателя .

Принцип работы асинхронного двигателя

Чтобы понять принцип работы асинхронного двигателя, давайте сначала рассмотрим простую установку, показанную на рисунке.

Здесь,

  • Берут два железных или ферритовых сердечника одинакового размера и подвешивают в воздухе на некотором расстоянии.
  • Эмалированная медная проволока намотана на верхнюю жилу, затем на нижнюю и два конца отведены в сторону, как показано на рисунке.
  • Сердечник здесь действует как среда для переноса и концентрации магнитного потока, генерируемого катушкой во время работы.

Теперь, , если мы подключим источник переменного напряжения к двум концам медного провода, у нас будет что-то вроде того, что показано ниже.

Во время положительного цикла AC :

Здесь в течение первого полупериода , положительное напряжение в точке «A» будет постепенно повышаться от нуля до максимума, а затем возвращается к нулю.В этот период ток в обмотке можно представить как.

Здесь,

  • Во время положительного цикла источника питания переменного тока ток в обеих обмотках постепенно увеличивается от нуля до максимума, а затем постепенно возвращается от максимума к нулю. Это связано с тем, что согласно закону Ома ток в проводнике прямо пропорционален напряжению на клеммах, и мы много раз обсуждали это в предыдущих статьях.
  • Обмотки намотаны таким образом, что ток в обеих обмотках течет в одном направлении, и мы можем видеть то же самое, что показано на схеме.

Теперь давайте вспомним закон, называемый законом Ленца, который мы изучили ранее, прежде чем двигаться дальше. Согласно закону Ленца, « Проводник, по которому проходит ток, будет генерировать магнитное поле вокруг своей поверхности»,

, и если мы применим этот закон в приведенном выше примере, то магнитное поле будет генерироваться каждой петлей в обеих катушках. Если мы добавим магнитный поток, создаваемый всей катушкой, то он получит значительную величину. Весь этот поток появится на железном сердечнике, поскольку катушка была намотана на корпус сердечника.

Для удобства, если мы нарисуем линии магнитного потока, сосредоточенные на железном сердечнике на обоих концах, то у нас будет что-то вроде того, что показано ниже.

Здесь вы можете увидеть концентрацию магнитных линий на железных сердечниках и их движение через воздушный зазор.

Эта интенсивность потока прямо пропорциональна току, протекающему в катушках, намотанных на обоих металлических корпусах. Таким образом, во время положительного полупериода поток изменяется от нуля до максимума, а затем снижается с максимума до нуля.После того, как положительный цикл завершится, напряженность поля в воздушном зазоре также достигнет нуля, и после этого у нас будет отрицательный цикл.

Во время отрицательного цикла AC :

Во время этого отрицательного цикла синусоидального напряжения положительное напряжение в точке «B» будет постепенно повышаться от нуля до максимума, а затем возвращается к нулю. Как обычно, из-за этого напряжения будет течь ток, и мы можем видеть направление этого тока в обмотках на рисунке ниже.

Поскольку ток линейно пропорционален напряжению, его величина в обеих обмотках постепенно увеличивается от нуля до максимума, а затем снижается от максимума до нуля.

Если мы рассмотрим закон Ленца, то магнитное поле появится вокруг катушек из-за протекания тока, как и в случае, изученном в положительном цикле. Это поле будет сконцентрировано в центре ферритовых сердечников, как показано на рисунке. Поскольку интенсивность потока прямо пропорциональна току, протекающему в катушках, намотанных на обоих железных телах, этот поток также будет изменяться от нуля до максимума, а затем снижаться с максимума до нуля в зависимости от величины тока.Хотя это похоже на положительный цикл, есть разница, и это направление силовых линий магнитного поля. Вы можете наблюдать эту разницу в направлении потока на диаграммах.

После его отрицательного цикла следует положительный цикл, за которым следует другой отрицательный цикл, и так продолжается до тех пор, пока синусоидальное напряжение переменного тока не будет снято. И из-за этого цикла смены напряжения магнитное поле в центре на железных сердечниках постоянно меняется как по величине, так и по направлению.

В заключение, используя эту установку,

  • Мы разработали область сосредоточения магнитного поля в центре железных сердечников.
  • Напряженность магнитного поля в воздушном зазоре постоянно меняется как по величине, так и по направлению.
  • Поле повторяет синусоидальную форму волны переменного напряжения.

Закон электромагнитной индукции Фарадея

Эта установка, которую мы обсуждали до сих пор, лучше всего подходит для реализации закона электромагнитной индукции Фарадея.Это связано с тем, что постоянно меняющееся магнитное поле является самым основным и важным требованием для электромагнитной индукции.

Мы изучаем этот закон здесь, потому что асинхронный двигатель работает по принципу закона электромагнитной индукции Фарадея.

Теперь, чтобы изучить явление электромагнитной индукции, давайте рассмотрим установку, представленную ниже.

  • Берется проводник, и он формируется в форме квадрата с закороченными концами.
  • Металлический стержень закреплен в центре квадрата проводника, который действует как ось установки.
  • Теперь квадратный проводник может свободно вращаться вдоль оси и называется ротором.
  • Ротор расположен в центре воздушного зазора, так что проводящая петля может испытывать максимальное поле, создаваемое катушками ротора.

Мы знаем, что согласно закону электромагнитной индукции Фарадея «, когда переменное магнитное поле разрезает металлический проводник, в проводнике индуцируется ЭДС или напряжение» .

Теперь применим этот закон к , чтобы понять работу асинхронного двигателя:

  • Согласно этому закону электромагнитной индукции, ЭДС должна индуцироваться в проводнике ротора, расположенном в центре, из-за изменяющегося магнитного поля, испытываемого им.
  • Из-за этой наведенной ЭДС и короткого замыкания проводника по всему контуру протекает ток, как показано на рисунке.
  • Вот ключ к работе асинхронного двигателя. Мы знаем, что согласно закону Ленца проводник с током создает вокруг себя магнитное поле, интенсивность которого пропорциональна величине тока.
  • Поскольку закон универсален, проводящая петля ротора также должна генерировать магнитное поле, потому что ток течет через него из-за электромагнитной индукции.
  • Если мы назовем магнитное поле, создаваемое обмотками статора и стальным сердечником, как основной поток или поток статора. Тогда мы можем назвать магнитное поле, создаваемое проводящей петлей ротора, потоком ротора.
  • Из-за взаимодействия между главным потоком и потоком ротора на ротор действует сила. Эта сила пытается противодействовать индукции ЭДС в ротор, регулируя положение ротора. Следовательно, в это время мы увидим движение вала.
  • Теперь магнитное поле продолжает изменяться из-за переменного напряжения, сила также постоянно регулирует положение ротора без остановки.
  • Таким образом, ротор продолжает вращаться из-за переменного напряжения, и, таким образом, мы имеем механический выход на валу или оси ротора.

Таким образом, мы увидели, как из-за электромагнитной индукции в роторе возникает механический выход на валу. Таким образом, название, данное для этой установки, называется «Асинхронный двигатель».

До сих пор мы обсуждали принцип работы асинхронного двигателя, но помните, что теория и практика различны. А для работы асинхронного двигателя требуется дополнительная настройка, о которой мы поговорим ниже.

Однофазный асинхронный двигатель

Асинхронный двигатель, работающий от однофазного переменного тока, называется однофазным асинхронным двигателем .

Линия электропередачи, доступная для нас дома, — это однофазная линия переменного тока 240 В / 50 Гц, а индукционные двигатели, которые мы используем в повседневной жизни в наших домах, называются однофазными асинхронными двигателями.

Чтобы лучше понять принцип работы однофазного асинхронного двигателя, давайте рассмотрим конструкцию однофазного асинхронного двигателя.

Здесь,

  • Возьмем несколько проводов и установим их на свободно вращающийся вал, как показано на рисунке.
  • Кроме того, мы закоротим концы всех проводников металлическим кольцом, создав петли из нескольких проводников, которые мы изучили ранее.
  • Эта установка ротора при ближайшем рассмотрении выглядит как беличья клетка, поэтому ее называют асинхронным двигателем с беличьей клеткой.Давайте посмотрим на трехмерную структуру ротора с короткозамкнутым ротором.

  • Статор, который считался цельной железной частью, на самом деле представляет собой группу тонких листов железа, сложенных вместе. Они так плотно прижаты друг к другу, что между ними буквально не будет воздуха. Мы используем стопку железных листов вместо одной железной детали по той же причине, по которой мы используем прокатные железные листы в случае силового трансформатора, который предназначен для уменьшения потерь в стали. Используя метод стекирования, мы значительно снизим потери мощности при сохранении производительности.

Работа этой установки аналогична установке, использованной для объяснения принципа работы асинхронного двигателя.

  • Во-первых, мы обеспечим переменное напряжение, и из-за этого напряжения ток течет через обмотку статора, намотанную как на верхнем, так и на нижнем сегментах.
  • Из-за тока магнитное поле создается как на верхней, так и на нижней обмотке.
  • Большая часть металлических листов действует как основная среда для переноса магнитного поля, создаваемого катушками.
  • Это переменное магнитное поле, переносимое железным сердечником, концентрируется в центральном воздушном зазоре из-за преднамеренной конструкции.
  • Теперь, когда ротор помещен в этот воздушный зазор, закороченные проводники, закрепленные на роторе, также испытывают это переменное поле.
  • Из-за поля в проводниках ротора индуцируется ток.
  • Поскольку ток проходит через проводники ротора, вокруг ротора также создается магнитное поле.
  • При взаимодействии между генерируемым магнитным полем ротора и магнитным полем статора на ротор действует сила.
  • Эта сила перемещает ротор вдоль оси и, таким образом, мы получаем вращательное движение.
  • Поскольку напряжение постоянно изменяется по синусоидальной форме, ротор также продолжает непрерывно вращаться вдоль своей оси. Таким образом, у нас будет непрерывный механический выход для заданного однофазного входного напряжения.

Хотя мы предполагали, что ротор будет вращаться автоматически после подачи питания на однофазный двигатель, это не так.Поскольку поле, создаваемое однофазным асинхронным двигателем, представляет собой переменное магнитное поле, а не вращающееся магнитное поле. Таким образом, при запуске двигателя ротор блокируется в своем положении, потому что сила, испытываемая им из-за нижней и верхней катушек, будет одинаковой величины и противоположного направления. Таким образом, в начале чистая сила, испытываемая ротором, равна нулю. Чтобы избежать этого, мы будем использовать вспомогательную обмотку для асинхронного двигателя, чтобы сделать его самозапускающимся. Эта вспомогательная обмотка будет обеспечивать необходимое поле для запуска ротора.Примером для этого случая является электрический вентилятор, который мы видим в нашей повседневной жизни, который запускает конденсатор и запускает асинхронный двигатель со вспомогательной обмоткой, соединенной последовательно с конденсатором.

Трехфазный асинхронный двигатель

Асинхронный двигатель, работающий от трехфазного переменного тока, называется трехфазным асинхронным двигателем. Обычно трехфазные асинхронные двигатели используются в промышленности и не подходят для домашнего использования.

Линия электропитания, доступная для промышленности, составляет 400 В / 50 Гц. Трехфазные четырехлинейные двигатели переменного тока и индукционные двигатели, которые работают от этого источника питания в промышленности, называются трехфазными асинхронными двигателями.

Для лучшего понимания принципа работы трехфазного асинхронного двигателя давайте рассмотрим конструкцию трехфазного асинхронного двигателя.

Здесь,

  • Обмотка фазы A начинается с верхнего сегмента, за которым следует нижний сегмент, как показано на рисунке.
  • Что касается двух концов фазы, одна обмотка подключена к линии питания фазы A трехфазного источника питания, а другой конец подключен к нейтрали тех же трех фаз четырехполюсного источника питания.Это возможно, потому что в трехфазном четырехлинейном источнике питания у нас есть первые три линии, несущие три линейных напряжения, а четвертая линия является нейтральной.
  • Другие двухфазные обмотки следуют той же схеме, что и фаза A. На двух концах обмотки фазы B одна подключена к силовой линии фазы B трехфазного источника питания, а другой конец подключен к нейтрали тех же трех фазы четырехполюсного питания.
  • Конструкция ротора похожа на короткозамкнутый ротор и представляет собой тот же тип ротора, который используется в однофазном асинхронном двигателе.

Теперь, если мы подаем электроэнергию на трехфазные обмотки статора, то ток начнет течь по всем трем обмоткам. Из-за этого протекания тока катушками будет создаваться магнитное поле, и это поле будет проходить через путь с меньшим магнитным сопротивлением, обеспечиваемый многослойным сердечником. Здесь конструкция двигателя сконструирована таким образом, что магнитное поле, переносимое сердечником, концентрируется в воздушном зазоре в центре, где расположен ротор. Таким образом, магнитное поле, сосредоточенное сердечником в центральном зазоре, воздействует на проводники в роторе, вызывая в них ток.

При наличии тока в проводнике ротор также генерирует магнитное поле, которое взаимодействует с полем статора в любой момент времени. И из-за этого взаимодействия на ротор действует сила, которая приводит к вращению двигателя.

Здесь магнитное поле, создаваемое статором, имеет вращающийся тип из-за трехфазного питания, в отличие от переменного типа, который мы обсуждали в однофазном двигателе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *