Существует еще одна, более популярная конструкция двухполупериодного выпрямителя, построенная на основе конфигурации с четырьмя диодами. Такая конструкция известна как двухполупериодный мостовой выпрямитель или просто мостовой выпрямитель.
Преимущество этого типа выпрямителя по сравнению с версией выпрямителя с центральным отводом заключается в том, что для него не требуется сетевой трансформатор с центральным отводом во вторичной обмотке, что резко снижает его размер и стоимость.
Также эта конструкция использует полностью все вторичное напряжение в качестве входного. Используя тот же трансформатор, мы получаем вдвое больше пикового напряжения и вдвое больше постоянного напряжения с мостовым выпрямителем, чем с двухполупериодным выпрямителем с центральным отводом. Именно поэтому мостовые выпрямители используются гораздо чаще, чем двухполупериодные со средней точкой.
Двухполупериодный мостовой выпрямитель
Чтобы выпрямить оба полупериода синусоидальной волны, как мы уже говорили ранее, в мостовом выпрямителе используются четыре диода, соединенных вместе в конфигурации «моста». Вторичная обмотка трансформатора подключена с одной стороны диодного моста, а нагрузка — с другой.
На следующем рисунке показана схема мостового выпрямителя.
Во время положительного полупериода переменного напряжения диоды D1 и D2 смещены в прямом направлении, в то время как диоды D3 и D4 смещены в обратном направлении. Это создает положительное напряжение на нагрузочном резисторе (обратите внимание на плюс-минус полярности на нагрузочном резисторе).
В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь диоды D3 и D4 смещены в прямом направлении, а диоды D1 и D2 — в обратном. Это также создает положительное напряжение на нагрузочном резисторе, как и раньше.
Обратите внимание, что независимо от полярности напряжения на входе, полярность на нагрузке постоянная, а ток в нагрузке течет в одном направлении. Таким образом, схема преобразует входное переменное напряжение в пульсирующее постоянное напряжение.
Если вам трудно запомнить правильное расположение диодов в схеме мостового выпрямителя, вы можете обратиться к альтернативному представлению схемы. Это точно такая же схема, за исключением того, что все диоды расположены горизонтально и направлены в одном направлении.
Значение постоянного напряжение выходного сигнала
Здесь формула для расчета среднего значения напряжения такая же, как и для двухполупериодного выпрямителя со средней точкой:
Это уравнение говорит нам, что значение постоянного напряжения составляет около 63,6 процента от пикового значения. Например, если пиковое переменное напряжение составляет 10 В, то постоянное напряжение будет 6,36 В.
Когда вы измеряете напряжение на выходе мостового выпрямителя с помощью вольтметра, показание будет равно среднему значению.
Аппроксимация второго порядка
В действительности мы не получаем идеальное напряжение на нагрузочном резисторе. Из-за потенциального барьера, диоды не включаются, пока источник напряжение не достигнет около 0,7 В.
И поскольку в мостовом выпрямителе работают по два диода за раз, то падение напряжения составит 0,7 x 2 = 1,4 В. Таким образом, пиковое выходное напряжение определяется следующим образом:
Выходная частота
Полноволновой выпрямитель инвертирует каждый отрицательный полупериод, удваивая количество положительных полупериодов. Из-за этого у такого выпрямителя на выходе в два раза больше циклов, чем на входе. Поэтому частота полноволнового сигнала в два раза превышает входную частоту.
Например, если частота на входе составляет 50 Гц, выходная частота будет 100 Гц.
Фильтрация постоянного напряжения
Сигнал на выходе, который мы получаем от двухполупериодного мостового выпрямителя, является по сути пульсирующим постоянным напряжением, которое вырастает до максимума, а затем снижается до нуля.
Для того чтобы избавиться от пульсаций, нам необходимо отфильтровать двухволновой сигнал. Один из способов сделать это — подключить сглаживающий конденсатор.
Первоначально конденсатор разряжен. На протяжении первой четверти цикла диоды D1 и D2 смещены в прямом направлении и из-за этого сглаживающий конденсатор начинает заряжаться. Процесс заряда длится до тех пор, пока напряжение с мостового выпрямителя не достигнет своего пикового значения. В этот момент напряжение на конденсаторе будет равно Vp.
После того, как напряжение с выпрямителя достигает своего пика, оно начинает уменьшаться. Как только напряжение снизиться ниже Vp соответствующая пара диодов (D1 и D2) не будет проводить.
Когда диоды выключены, конденсатор разряжается через нагрузку, пока не будет достигнут следующий пик. Когда наступает следующий пик, конденсатор заряжается уже через диоды D3 и D4 до пикового значения.
Недостатки мостового выпрямителя
Единственным недостатком мостового выпрямителя является то, что выходное напряжение меньше, чем входное напряжение на 1,4 В, в результате падения на двух диодах.
Этот недостаток ощутим только в источниках питания с очень низким напряжением. Например, если пиковое напряжение источника составляет всего 5 В, то напряжение нагрузки будет иметь только 3,6 В.
Но если пиковое напряжение источника составляет 100 В, напряжение нагрузки будет близко к идеальному двухполупериодному напряжению и влияние падения на диодах будет не значительным.
принцип работы, схемы и т.д.
Двухполупериодный выпрямитель — устройство или контур, проводящий ток в течение обеих половин цикла переменного тока. Двухполупериодный выпрямитель состоит из трансформатора с центральным отводом вторичной обмотки, двух диодов и сопротивления нагрузки.
Схема двухполупериодного выпрямителяОбратите внимание на основы электричества и на приборы электроники.
Принцип действия двухполупериодного выпрямителя
В течение первой половины цикла переменного тока верхний конец вторичной обмотки положителен, а нижний конец вторичной обмотки отрицателен. Диод D1 находится в состоянии прямого подключения, а диод D2 находится в состоянии обратного подключения, поскольку средняя точка отрицательна относительно положительной стороны вторичной обмотки и положительна относительно отрицательной стороны вторичной обмотки. Ток протекает от средней точки через сопротивление нагрузки, через D1 к положительной стороне вторичной обмотки. Падение напряжения на сопротивлении RL представляет собой положительную полуволну.
В течение второй половины цикла переменного тока верхний конец вторичной обмотки отрицателен, а нижний конец вторичной обмотки положителен. Диод D1 находится в состоянии обратного подключения, а диод D2 находится в состоянии прямого подключения. Как изображено на рисунке 3-7, ток протекает от средней точки через сопротивление нагрузки, через D2 к положительной стороне вторичной обмотки. Падение напряжения на сопротивлении RL снова представляет собой положительную полуволну.
Путь тока в двухполупериодном выпрямителе: D2 находится в состоянии прямого подключенияПоскольку ток протекает через сопротивление RL в одном и том же направлении в течение обеих половин цикла входного напряжения, через RL проходят две полуволны в течение каждого полного цикла. Тем не менее, поскольку у этого трансформатора есть средняя точка, падение напряжения на сопротивлении нагрузки представляет собой лишь
половину того, что могло бы быть, если бы нагрузка была соединена ко всей вторичной обмотке. Форма кривой выходного сигнала двухполупериодного выпрямителяМостовая схема (рис. 1.3) состоит из трансформатора и четырех диодов VD1 – VD4. Переменное напряжение u2ф подводится к одной диагонали моста, а нагрузка rВ, LВ подключается к другой его диагонали. Диоды VD1, VD2 образуют катодную группу, VD3 – VD4 – анодную. Предполагаем вначале, что нагрузка выпрямителя носит активный характер (см. рис. 1.3, ключ К замкнут).
В положительный полупериод (0 – θ1) напряжения u2ф верхний конец обмотки трансформатора имеет положительную полярность, а нижний – отрицательную (без скобок). В соответствии с этим открываются диоды VD1 и VD3, а диоды VD2 и VD4 запираются. Ток проходит по пути «а – VD1 – rВ – VD3 – б». В результате, к нагрузке прикладывается положительная полуволна напряжения u2ф. В следующий полупериод θ1 – θ2 (см. рис. 1.1, б) полярность напряжения изменяется (см. рис. 1.3, полярность в скобках). При этом диоды VD1, VD3 запираются, а диоды VD2, VD4 оказываются открытыми, и ток нагрузки замыкается по контуру «б – VD2 – rВ – VD4 – а». Направление тока через нагрузку rВ осталось таким же, как и в предыдущий полупериод. Нужно заметить, что ток протекает всегда по двум последовательно соединенным диодам. Следовательно, падение напряжения в диодах в мостовой схеме в два раз выше, чем в нулевой.
Во вторичной обмотке ток проходит дважды за период в противоположных направлениях, поэтому вынужденное подмагничивание сердечника трансформатора постоянным током отсутствует.
Из изложенного принципа работы следует, что точка соединения катодов имеет положительный потенциал выпрямленного напряжения, а точка соединения анодов – отрицательный. Включение индуктивности LВ в цепь нагрузки (см. рис. 1.3, ключ К разомкнут) приводит к изменению формы и расчетных величин токов. Кривые напряжений и токов в мостовой схеме при различном характере нагрузки имеют такой же вид, как в нулевой схеме (см. рис. 1.1, б – д). В отличие от нулевой схемы (см. рис. 1.1, а) действующие значения тока I2 вторичной обмотки трансформатора в мостовой схеме для активной и индуктивной нагрузки соответственно равны:
В связи с этим изменяются расчетные значения мощностей S1, S2, SТ Параметры, характеризующие работу мостовой схемы, приведены в таблице 1.1.
В мостовой схеме, возможно одновременно получить два значения выпрямленного напряжения: Ud и Ud/2, если вывести среднюю точку трансформатора (рис. 1.3). Проводя сравнительный анализ рассмотренных однофазных схем выпрямления, нулевой и мостовой (см. рис. 1.1, 1.3 и таблицу 1.1), можно сделать следующие выводы:
1. Обе схемы проводят ток в течение обоих полупериодов сетевого напряжения, поэтому они называются двухполупериодными.
2. Кратность пульсаций выпрямленного напряжения по отношению к частоте сети в обеих схемах равна m = 2. Коэффициенты пульсации одинаковы.
3. При одинаковых значениях выходных параметров выпрямителей Ud, Id амплитуда обратного напряжения в мостовой схеме в два раза меньше, а число диодов в два раза больше, чем в нулевой схеме. В связи с этим нулевую схему целесообразнее использовать для управления низковольтными машинами.
4. Использование трансформатора в мостовой схеме эффективнее (примерно на 20 %), чем в нулевой.
5. Мостовая схема может работать без трансформатора, если величина выпрямленного напряжения соответствует напряжению сети. Схему с нулевым выводом без трансформатора осуществить невозможно.
6. Остальные параметры обеих схем выпрямления, характеризующие использование диодов по току (kI), и его реакции на питающую сеть (kИ, kГ) одинаковы.
Схема однофазного двухполупериодного выпрямителя представлена на рис. 3.3. Схема представляет собой два однополупериодных выпрямителя, работающих на общую нагрузку.
Рис. 3.3. Однофазный двухполупериодный выпрямитель
В схеме диоды VD1 и VD2 подключены к двум одинаковым вторичным полуобмоткам, действующее напряжение на которых равно U2.
Рассмотрим временную диаграмму работы схемы (рис. 3.4). Под действием переменного напряжения вторичной обмотки u2 диод VD1 проводит ток только в нечётные полупериоды, а диод VD2 – только в чётные. В нагрузке получается два полупериода пульсирующего напряжения, частота пульсаций в два раза выше частоты питающей сети. Приведённые выше формулы (3.1)…(3.4) выведены в общем виде, поэтому для рассматриваемой схемы будем записывать только окончательный результат.
Среднее значение выпрямленного напряжения
.
Среднее значение выпрямленного тока .
Среднее значение тока диода .
Максимальное обратное напряжение на диоде достигает удвоенной амплитуды значения напряжения вторичной обмотки
.
Ток вторичной обмотки представляет собой сумму токов каждой из полуобмоток, поэтому подмагничивания сердечника трансформатора нет, что является существенным преимуществом данной схемы. Однако напряжение на закрытом диоде получается слишком большим, примерно в три раза больше выпрямленного напряжения, поэтому двухполупериодную схему используют при Ud £ 30 В.
Рис. 3.4. Временная диаграмма работы однофазного двухполупериодного выпрямителя
Подробнее рассмотрим режим работы трансформатора. Действующее значение тока вторичной обмотки
.
Следовательно, для рассматриваемой схемы коэффициент формы тока
.
Действующее значение напряжения вторичной обмотки трансформатора
.
Расчетная мощность вторичной обмотки трансформатора
,
где Pd = Ud×Id – мощность постоянного тока в нагрузке.
Расчетная мощность первичной обмотки
.
Расчетная (типовая) мощность трансформатора
.
Коэффициент использования трансформатора по мощности
.
В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт. Фото трансформаторный блок питания Фотография трансформатора Однополупериодный выпрямительСхема однополупериодный выпрямитель Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:Выпрямленный ток после однополупериодного выпрямителя Электролитический конденсатор большой емкости Выпрямленный ток в однополупериодном выпрямителе после конденсатора Двухполупериодный выпрямитель со средней точкойСхема двухполупериодный выпрямитель со средней точкой Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике: График двухполупериодного выпрямителя Двухполупериодный выпрямитель, мостовая схемаСхема двухполупериодный выпрямитель мостовая схема И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:Диодный мост рисунок Объяснение работы диодного моста График мостого выпрямителя Еще одно изображение диодного моста Фото импортного диодного моста Фото диодный мост кц405 Трехфазные выпрямителиСуществуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь. Фото трехфазного трансформатора Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки. Схема Миткевича Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.Схема Ларионова Форум Обсудить статью ВЫПРЯМИТЕЛИ |
Цепь выпрямителя, которая выпрямляет как положительные, так и отрицательные полупериоды, может называться двухполупериодным выпрямителем, поскольку выпрямляет полный цикл. Конструкция двухполупериодного выпрямителя может быть двух типов. Они есть
- Двухполупериодный выпрямитель с центральным отводом
- Мостовой двухполупериодный выпрямитель
Оба из них имеют свои преимущества и недостатки. Давайте теперь рассмотрим как их построение, так и работу с их формами волны, чтобы узнать, какая из них лучше и почему.
Полноволновой выпрямитель с центральным отводом
Цепь выпрямителя, чья вторичная обмотка трансформатора подключена для получения требуемого выходного напряжения, с использованием двух диодов для альтернативного выпрямления полного цикла, называется двухполупериодной цепью выпрямителя с центральным отводом . В отличие от других случаев трансформатор здесь отводится по центру.
Особенности центрирующего трансформатора —
Постукивание осуществляется путем вытягивания провода в средней точке вторичной обмотки. При этом эта обмотка делится на две равные половины.
Напряжение в повернутой средней точке равно нулю. Это формирует нейтральную точку.
Отвод по центру обеспечивает два отдельных выходных напряжения, которые равны по величине, но противоположны по полярности друг другу.
Для получения различных уровней напряжений можно вытянуть несколько обмоток.
Постукивание осуществляется путем вытягивания провода в средней точке вторичной обмотки. При этом эта обмотка делится на две равные половины.
Напряжение в повернутой средней точке равно нулю. Это формирует нейтральную точку.
Отвод по центру обеспечивает два отдельных выходных напряжения, которые равны по величине, но противоположны по полярности друг другу.
Для получения различных уровней напряжений можно вытянуть несколько обмоток.
Трансформатор с центральным отводом и двумя выпрямительными диодами используется в конструкции двухполупериодного выпрямителя с центральным отводом . Принципиальная электрическая схема двухполупериодного выпрямителя с центральным отводом показана ниже.
Работа CT-FWR
Работу двухполупериодного выпрямителя с центральным отводом можно понять по приведенному выше рисунку. Когда прикладывается положительный полупериод входного напряжения, точка М на вторичной обмотке трансформатора становится положительной по отношению к точке N. Это делает диод D1 смещенным в прямом направлении. Следовательно, ток i1 протекает через нагрузочный резистор от A до B. Теперь у нас есть положительные полупериоды на выходе
Когда прикладывается отрицательный полупериод входного напряжения, точка М на вторичной обмотке трансформатора становится отрицательной по отношению к точке N. Это делает диод D2 смещенным в прямом направлении. Следовательно, ток i2 протекает через нагрузочный резистор от А до В. Теперь у нас есть положительные полупериоды на выходе, даже во время отрицательных полупериодов на входе.
Формы волны CT FWR
Форма входных и выходных сигналов двухполупериодного выпрямителя с центральным отводом выглядит следующим образом.
Из приведенного выше рисунка видно, что выходные данные получены как для положительных, так и для отрицательных полупериодов. Также наблюдается, что выходной сигнал через нагрузочный резистор имеет одинаковое направление для обоих полупериодов.
Пиковое обратное напряжение
Поскольку максимальное напряжение на половине вторичной обмотки составляет Vm, все вторичное напряжение появляется на непроводящем диоде. Следовательно, пиковое обратное напряжение в два раза превышает максимальное напряжение на полу-вторичной обмотке, т.е.
PIV=2Vm
Недостатки
Есть несколько недостатков для выпрямителя с центральным ответвлением, таких как —
- Расположение центра постукивания сложно
- Выходное напряжение постоянного тока мало
- PIV диодов должен быть высоким
Следующим типом двухполупериодной выпрямительной цепи является мостовая двухполупериодная выпрямительная схема .
Мостовой двухполупериодный выпрямитель
Это такая двухполупериодная схема выпрямителя, в которой используются четыре диода, соединенных в виде моста, чтобы не только создавать выходной сигнал в течение полного цикла ввода, но и устранять недостатки двухполупериодной выпрямительной схемы с центральным отводом.
В этой цепи нет необходимости в центральном постукивании трансформатора. Четыре диода, называемые D1, D2, D3 и D4, используются при построении сети мостового типа, так что два из диодов проводят один полупериод, а два — другой полупериод входного питания. Схема мостового двухполупериодного выпрямителя показана на следующем рисунке.
Работа мостового двухполупериодного выпрямителя
Двухполупериодный выпрямитель с четырьмя диодами, соединенными в мостовой схеме, используется для получения лучшего отклика на двухволновом выходе. Когда задан положительный полупериод входного питания, точка P становится положительной по отношению к точке Q. Это делает диод D1 и D3 смещенным в прямом направлении, а D2 и D4 — в обратном направлении. Эти два диода теперь будут последовательно подключены к нагрузочному резистору.
На следующем рисунке это показано вместе с обычным током в цепи.
Следовательно, диоды D1 и D3 проводят в течение положительного полупериода входного питания, чтобы создать выходной сигнал вдоль резистора нагрузки. Поскольку два диода работают для получения выходной мощности, напряжение будет вдвое превышать выходное напряжение двухполупериодного выпрямителя с центральным выводом.
Когда задан отрицательный полупериод входного питания, точка P становится отрицательной по отношению к точке Q. Это делает диод D1 и D3 смещенным в обратном направлении, тогда как D2 и D4 смещены в обратном направлении. Эти два диода теперь будут последовательно подключены к нагрузочному резистору.
На следующем рисунке это показано вместе с обычным током в цепи.
Следовательно, диоды D2 и D4 проводят во время отрицательного полупериода входного питания, создавая выход вдоль нагрузочного резистора. Здесь также два диода работают, чтобы произвести выходное напряжение. Ток течет в том же направлении, что и во время положительного полупериода входа.
Форма волны моста FWR
Форма входных и выходных сигналов двухполупериодного выпрямителя с центральным отводом выглядит следующим образом.
Из приведенного выше рисунка видно, что выходные данные получены как для положительных, так и для отрицательных полупериодов. Также наблюдается, что выходной сигнал через нагрузочный резистор имеет одинаковое направление для обоих полупериодов.
Пиковое обратное напряжение
Всякий раз, когда два из диодов параллельны вторичной обмотке трансформатора, максимальное напряжение вторичной обмотки на трансформаторе появляется в непроводящих диодах, что делает PIV цепи выпрямителя. Следовательно, пиковое обратное напряжение является максимальным напряжением на вторичной обмотке, т.е.
PIV=Vm
преимущества
Мостовой двухполупериодный выпрямитель имеет много преимуществ, таких как —
- Нет необходимости постукивать по центру.
- Выходное напряжение постоянного тока в два раза выше, чем у FWR центральных отводов.
- PIV диодов в два раза меньше, чем у FWR центрального датчика.
- Конструкция схемы проще с лучшим выходом.
Давайте теперь проанализируем характеристики двухполупериодного выпрямителя.
Анализ двухполупериодного выпрямителя
Чтобы проанализировать схему двухполупериодного выпрямителя, предположим, что входное напряжение Vi равно
Vi=Vm sin omegat
Ток i1 через нагрузочный резистор RL определяется как
i1=Im sin omegat quadдля quad0 leq omegat leq pi
i1= quad0 quad quad quadдля quad pi leq omegat leq2 pi
куда
im= гидроразрываVmRF+RL
Rf — сопротивление диода в состоянии ВКЛ.
Аналогично, ток i2, протекающий через диод D2 и нагрузочный резистор RL, определяется как
i2= quad0 quad quad quadдля quad0 leq omegat leq pi
i2=Im sin omegat quadдля quad pi leq omegat leq2 pi
Общий ток, протекающий через RL, является суммой двух токов i1 и i2, т.е.
I=i1+i2
DC или средний ток
Среднее значение выходного тока, которое показывает амперметр постоянного тока, определяется как
Idc= frac12 pi int2 pi0i1d left( omegat right)+ frac12 pi int2 pi0i2d left( omegat right)
= frac12 pi int pi0Im sin omegatd left( omegat right)+0+0+
frac12 pi int2 pi0Im sin omegatd left( omegat right)
= fracIm pi+ fracIm pi= frac2Im pi=0.636Im
Это вдвое превышает значение полуволнового выпрямителя.
Выходное напряжение постоянного тока
Выходное напряжение постоянного тока на нагрузке определяется как
Vdc=Idc timesRL= frac2ImRL pi=0.636ImRL
Таким образом, выходное напряжение постоянного тока в два раза выше, чем у полуволнового выпрямителя.
RMS Current
Среднеквадратичное значение тока определяется как
Irms= left[ frac1 pi int pi0t2d left( omegat right) right] гидроразрыва12
Поскольку ток имеет две одинаковые формы в двух половинах
= left[ fracI2m pi int pi0 sin2 omegatd left( omegat right) right] frac12
= гидроразрываim SQRT2
Эффективность выпрямителя
Эффективность выпрямителя определяется как
ета= гидроразрываР−постоянногоР−ас
Сейчас,
Pdc= left(Vdc right)2/RL= left(2Vm/ pi right)2
А также,
Pac= left(Vrms right)2/RL= left(Vm/ sqrt2 right)2
Следовательно,
eta= fracPdcPac= frac left(2Vm/ pi right)2 left(Vm/ sqrt2 right)2= гидроразрыва8 р2
=0,812=81,2%
Эффективность выпрямителя можно рассчитать следующим образом:
Выходная мощность постоянного тока,
Pdc=I2dcRL= frac4I2m pi2 timesRL
Входная мощность переменного тока,
$$ P_ {ac} = I_ {rms} ^ {2} \ left (R_f + R_L \ right) = \ frac {I_ {m} ^ {2}} {2} \ left (R_f + R_L \ right) $ $
Следовательно,
eta= frac4I2mRL/ pi2I2m left(Rf+RL right)/2= frac8 pi2 fracRL left(Rf+RL right)
= \ frac {0.812} {\ left \ {1+ \ left (R_f / R_L \ right) \ right \}}
Следовательно, процентная эффективность
= frac0.8121+ left(Rf+RL right)
=81.2% quadifRf=0
Таким образом, двухполупериодный выпрямитель имеет эффективность, в два раза превышающую эффективность полуволнового выпрямителя.
Пульсационный фактор
Форм-фактор выпрямленного выходного напряжения двухполупериодного выпрямителя задается
F= гидроразрываIэффIпостоянноготока= гидроразрываim/ SQRT22Im/ р=1,11
Коэффициент пульсации gamma определяется как (с использованием теории цепей переменного тока)
gamma= left[ left( fracIrmsIdc right)−1 right] frac12= left(F2−1 справа) frac12
= left[ left(1.11 right)2−1 right] frac12=0,48
Это значительное улучшение по сравнению с коэффициентом пульсации полуволнового выпрямителя, равным 1,21.
регулирование
Выходное напряжение постоянного тока определяется как
Vdc= frac2ImRL pi= frac2VmRL pi left(Rf+RL right)
= frac2Vm pi left[1− fracRfRf+RL right]= frac2Vm pi−IdcRf
Коэффициент использования трансформатора
TUF полуволнового выпрямителя составляет 0,287
В выпрямителе с центральным отводом имеются две вторичные обмотки, и, следовательно, TUF двухполупериодного выпрямителя с центральным выводом
left(TUF right)avg= fracPdcVAрейтингofaтрансформатор
= frac left(TUF right)p+ left(TUF right)s+ left(TUF right)s3
= гидроразрыва0,812+0,287+0,2873=0,693
Полуволна против полноволнового выпрямителя
Изучив все значения различных параметров двухполупериодного выпрямителя, давайте просто попробуем сравнить и сопоставить особенности полуволновых и двухполупериодных выпрямителей.
Однофазные схемы выпрямления — Студопедия
При небольшой мощности нагрузки (до нескольких сотен ватт) преобразование переменного тока в постоянный осуществляют с помощью однофазных выпрямителей, питающихся от однофазной сети переменного тока. Такие выпрямители предназначены для питания постоянным током различных устройств промышленной электроники, обмоток возбуждения двигателей постоянного тока небольшой и средней мощности и т.д.
Однофазная однополупериодная схема выпрямления
Сущность процесса выпрямления рассмотрим на примере простейшей однофазной однополупериодной (однотактной) схемы выпрямления. В этой схеме (рисунок 76) трансформатор имеет одну вторичную обмотку, напряжение u2которой изменяется по синусоидальному закону. Ток в цепи нагрузки проходит только в положительные полупериоды, когда точка а вторичной обмотки, к которой присоединен анод вентиля V1, имеет положительный потенциал относительно точки b, к которой через нагрузку присоединен катод.
В результате напряжение u2оказывается приложенным к резистору Rd, через который начинает протекать ток нагрузки id.
Поскольку при активной нагрузке ток по фазе совпадает с напряжением, вентиль V1 будет пропускать ток до тех пор, пока напряжение u2 не снизится до нуля. В отрицательные полупериоды (интервал времени t1 – t2 на рис. 76) к вентилю V1 прикладывается все напряжение источника U2. Оно является для диода обратным, и он будет закрыт.
Таким образом, на резисторе Rd будет пульсирующее напряжение udтолько одной полярности, т.е. выпрямленное напряжение, которое будет описываться положительными полуволнами напряжения u2 вторичной обмотки трансформатора Т. Ток в нагрузке id проходит в одном направлении, но имеет также пульсирующий характер и представляет собой выпрямленный ток.
Рисунок 76 — Однофазный однополупериодный выпрямитель: схема и диаграммы напряжений и токов на элементах схемы
Выпрямленные напряжения udи ток id содержат постоянную (полезную) составляющую Ud, Id и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57.
Для однополупериодной схемы справедливы следующие соотношения между напряжениями, токами и мощностями в отдельных элементах выпрямителя по отношению к соответствующим средним значениям на нагрузке.
Среднее за период значение выпрямленного напряжения при идеальных вентилях и трансформаторе
Ud = 0,45 U2
Максимальное значение обратного напряжения на вентиле
Uобр.max = √2U2 = 3,14Ud
где U2 — действующее значение напряжения вторичной обмотки трансформатора Т
Среднее значение тока, протекающего через вентиль и нагрузку
Iв.ср= Id= Im/π,
где Im = Um/Rd — амплитуда тока цепи.
Действующее значение тока цепи
I2 = Im /2
Таким образом, в однополупериодной схеме выпрямления среднее значение выпрямленного тока в π раз меньше его амплитуды, а действующее значение — в 2 раза меньше амплитуды тока.
Средняя мощность, отдаваемая в нагрузку, определяется
Pd = UdId
Расчетную (типовую) мощность Sт трансформатора, определяющую его габариты, можно представить как полусумму расчетных мощностей первичной S1 = U1I1 и вторичной S2 = U2I2 обмоток, т.е.
Sт = (S1 + S2) /2 = 3,09Pd
Следовательно, расчетная мощность трансформатора, работающего на выпрямитель, больше мощности в нагрузке в 3,09 раза, так как во вторичной обмотке проходит несинусоидальный ток, имеющий постоянную и переменные составляющие, а в первичной обмотке кроме тока основной частоты f1— токи высших гармоник. По отношению к сети питания эти токи являются реактивными и, не создавая полезной мощности, лишь нагревают обмотки трансформатора выпрямителя. Наличие во вторичной обмотке постоянной составляющей тока Id увеличивает степень насыщения магнитпровода трансформатора, что вызывает возрастание тока холостого хода, и как следствие этого возникает необходимость в завышении расчетной мощности трансформатора.
Действующее значение тока вторичной обмотки трансформатора определяется формулой
I2 = 1,57Id
Действующее значение напряжения вторичной обмотки
U2 = 2,22Ud
Действующее значение тока первичной обмотки с учетом коэффициента трансформации трансформатора n = U1/U2равно
I1 = I2/n
Недостатки этой схемы выпрямления следующие: плохое использование трансформатора, большое обратное напряжение на вентилях, большой коэффициент пульсации выпрямленного напряжения.
Достоинства выпрямителя: простота схемы и питающего трансформатора; применяется только один вентиль или одна группа последовательно соединенных вентилей.
Двухполупериодная однофазная схема со средней точкой
Схема (рис. 77) состоит из трансформатора Т, имеющего одну первичную и две последовательно соединенные вторичные обмотки с выводом общей (нулевой) точки у этих обмоток. Коэффициент трансформации nопределяется отношением U1/U2,где U2 — напряжение каждой из вторичных обмоток (фазные напряжения), сдвинутые относительно друг друга на 180°.
Свободные концы вторичных обмоток а и Ь присоединяются к анодам вентилей V1 и V2, катоды которых соединяются вместе. Нагрузка Rdвключается между катодами вентилей, которые являются положительным полюсом выпрямителя, и нулевым выводом 0 трансформатора, который служит отрицательным полюсом.
Рисунок 77 — Однофазный двухполупериодный выпрямитель со средней точкой: схема и диаграммы напряжений и токов на элементах схемы
Вентили в этой схеме, как и вторичные обмотки трансформатора, работают поочередно, пропуская в нагрузку ток при положительных значениях анодных напряжений u2a и u2b.
Действительно, при изменении напряжения в точках а и b, в тот полупериод, когда напряжение в обмотке 0а положительно, ток проводит вентиль V1, анод которого положителен по отношению к катоду, связанному через резистор Rdс точкой 0 вторичных обмоток. Анод вентиля V2, так же как вывод b обмотки 0b, в этот полупериод (t0-t1) отрицателен по отношению к нулевому выводу 0 и, следовательно, тока не пропускает.
В следующий полупериод (интервал времени t1-t2 на рис. 77), когда напряжения на первичной и вторичной обмотках трансформатора изменяют свою полярность на обратную, ток будет пропускать вентиль V2. Врезультате к нагрузке Rdбудет теперь приложено напряжение u2b, а ток id будет равен току iв2 вентиля V2. Вентиль V1 выключится, так как к нему будет приложено обратное напряжение. Спустя полупериод, начиная с момента времени t2, процесс повторяется: ток будет проводить вентиль V1, а вентиль V2 выключится и т.д.
Ток idв нагрузке все время течет в одном направлении — от катодов вентилей к нулевой точке 0 вторичных обмоток трансформатора, и на резисторе Rd появляется выпрямленное пульсирующее напряжение ud содержащее постоянную и переменную составляющие.
Для однофазной нулевой схемы справедливы следующие соотношения между напряжениями, токами и мощностями в отдельных элементах выпрямителя.
Среднее значение выпрямленного напряжения
Ud = 0,9U2,
где U2 — действующее значение напряжения на вторичной полуобмотке,
U2 = 1,11 Ud
Среднее значение выпрямленного тока в нагрузке
Id = Ud/Rd
Среднее значение тока через каждый вентиль в 2 раза меньше тока Id, проходящего через нагрузку, т.е.
Iв.ср = 0,5Id
Действующее значение тока вентиля Iв равно действующему значению тока вторичной обмотки трансформатора I2 и определяется формулой
I2 = 1,57 Iв.ср
Вентиль, не работающий в отрицательную часть периода, оказывается под воздействием обратного напряжения, равного двойному фазному напряжению 2U2. Максимальное значение обратного напряжения
Uобр.max = 2√2U2 = 3,14Ud
Действующее значение тока первичной обмотки с учетом коэффициента трансформации n,выраженное через ток Id,
I1 = √2 I2/n = 1.11 Id/n
Расчетные мощности обмоток трансформатора определяют по произведениям действующих значений токов и напряжений: S1 = U1I1 = 1,23 Pd и S2 = 2U2I2= 1,74Pd, а типовую мощность — как полусумму мощностей S1 и S2, т.е.
ST = (S1 + S2)/2 = 1,48Pd
Оценка качества выпрямленного напряжения производится посредством коэффициента пульсации, который представляет собой отношение амплитуды первой (основной) гармонической Ud1m, как наибольшей из всех остальных к среднему значению напряжения Udи определяется по формуле
q = Ud1m / Ud = 2/(m2 -1)
где m — число фаз выпрямления, т.е. число полуволн выпрямленного напряжения, приходящихся на один период переменного тока, питающего выпрямитель.
Для рассматриваемой схемы частота первой гармоники пульсации fn1 = 2fc при частоте питающей сети fc = 50 Гц составляет 100 Гц. Подставляя в последнею формулу m = 2, определяем коэффициент пульсации: q = 0,67.
Однофазная мостовая схема
Состоит из трансформатора Т сдвумя обмотками и четырех диодов V1 — V4, соединенных по схеме моста (рисунок 78, а). К одной диагонали моста (точки 1,3) присоединяется вторичная обмотка, а в другую (точки 2, 4) включается нагрузка Rd. Общая точка катодов вентилей V1 и V2 является положительным полюсом выпрямителя, а отрицательным — точка связи анодов вентилей V3 и V4.
Вентили в этой схеме работают парами поочередно. В положительный полупериод напряжения u2 соответствующая полярность которого обозначена без скобок, проводят ток вентили V1 и V3, а к вентилям V2 и V4 прикладывается обратное напряжение, и они закрыты. В отрицательный полупериод напряжения u2 будут проводить ток вентили V2 и V4, а вентили VI и V3 закрыты и выдерживают обратное напряжение uобр = u2.
Рисунок 78 — Однофазный мостовой выпрямитель:
а — схема включения; б и в — временные диаграммы напряжений и токов на элементах схемы
Далее указанные процессы периодически повторяются. Диаграммы токов и напряжений на элементах схемы (рис. 78, в) будут такими же, как для однофазного двухполупериодного выпрямителя со средней точкой.
Ток idвнагрузке проходит все время в одном направлении — от соединенных катодов диодов VI и V2 к анодам диодов V3 и V4. Ток I2 во вторичной обмотке трансформатора (рисунок 78, б) меняет свое направление каждые полпериода и будет синусоидальным. Постоянной составляющей тока во вторичной обмотке нет. Следовательно, не будет подмагничивания сердечника трансформатора постоянным магнитным потоком. Ток i1 в первичной обмотке трансформатора также синусоидальный.
Средние значения выпрямленного напряжения Udи тока Iв.ср через вентиль в этой схеме получаются такими же, как и в двухполупериодной схеме с нулевой точкой.
Обратное напряжение, приложенное к закрытым вентилям, определяется напряжением U2вторичной обмотки трансформатора, так как не работающие в данный полупериод вентили оказываются присоединенными ко вторичной обмотке трансформатора Т через два других работающих вентиля, падением напряжения в которых можно пренебречь. Следовательно,
Uобр.max = √2U2 = 1,57Ud
Токи во вторичной и первичной обмотках трансформатора определяются по формулам
I2 = U2/Rd I1 = I2/n
Типовая мощность трансформатора
ST = 1,23Pd
На рисунке 79 также представлена однофазная мостовая схема, аналогичная рассмотренной. Чаще всего именно так изображается мостовое включение выпрямительных диодов.
Рисунок 79 – Схема однофазного мостового выпрямителя
Сравним достоинства двухполупериодных однофазных схем выпрямления.
Однофазная нулевая схема:
1) Число вентилей в 2 раза меньше, чем в однофазной мостовой.
2) Потери мощности в выпрямителе будут меньше, так как в нулевой схеме ток проходит через один вентиль, а в мостовой — последовательно через два.
Однофазная мостовая схема:
1) Амплитуда обратного напряжения на вентилях в 2 раза меньше, чем в нулевой схеме.
2) Вдвое меньше напряжение (число витков) вторичной обмотки трансформатора при одинаковых значениях напряжения Ud
3) Трансформатор имеет обычное исполнение, так как нет вывода средней точки на вторичной обмотке.
4) Расчетная мощность трансформатора на 25% меньше, чем в нулевой схеме, следовательно, меньше расходуется меди и железа, меньше будут размеры и масса.
Данная схема выпрямителя может работать и без трансформатора, если напряжение сети U1 подходит по значению для получения необходимого напряжения Udи не требуется изоляции цепи выпрямленного тока от питающей сети.
Трёхфазные схемы выпрямления
Питание постоянным током потребителей средней и большой мощности производится от трехфазных выпрямителей, применение которых снижает загрузку вентилей по току, уменьшает коэффициент пульсаций и повышает частоту пульсации выпрямленного напряжения, что облегчает задачу его сглаживания.
Трехфазная схема выпрямления с нулевым выводом (или трехфазная нулевая)
К сети трехфазного тока подключен трансформатор Т, три первичные обмотки которого могут быть соединены в звезду или треугольник, вторичные обмотки — только в звезду (рисунок 80, а). Свободные концы а, Ь, с каждой из фаз вторичной обмотки присоединяются к анодам вентилей VI, V2, V3. Катоды вентилей соединяются вместе и служат положительным полюсом для цепи нагрузки Rd, а нулевая точка 0 вторичной обмотки трансформатора — отрицательным полюсом.
Рисунок 80 — Трехфазный выпрямитель с нулевой точкой:
а — схема соединения обмоток трансформатора и вентилей;
6 — г- диаграммы напряжений и токов на элементах
Из временной диаграммы на рисуноке 80 видно, что напряжения u2a,u2b,u2с сдвинуты по фазе на одну треть периода (Т/3или 120°) и в течение этого интервала напряжение одной фазы выше напряжения двух других фаз относительно нулевой точки трансформатора. Ток через вентиль, связанную с ним вторичную обмотку и нагрузку будет протекать в течение той трети периода, когда напряжения в данной фазе больше, чем в двух других. Работающий вентиль прекращает проводить ток тогда, когда потенциал его анода становится ниже общего потенциала катодов, и к нему прикладывается обратное напряжение.
Переход тока от одного вентиля к другому (коммутация тока) происходит в момент пересечения кривых фазных напряжений (точки а, б, в и г на рис. 80, б). Выпрямленный ток idпроходит через нагрузку Rd непрерывно (рис. 80, в).
Напряжение udна выходе выпрямителя в любой момент времени равно мгновенному значению напряжения той вторичной обмотки, в которой вентиль открыт, и выпрямленное напряжение представляет собой огибающую верхушек синусоид фазных напряжений u2ф трансформатора Т.
Следовательно, анодный ток будет иметь форму прямоугольника с основанием Т/3, ограниченного сверху отрезком синусоиды. На рисунке 80, г изображен ток фазы а, токи фаз б и с изображаются подобными кривыми, сдвинутыми на 120° относительно друг друга.
Для трехфазной нулевой схемы выпрямления характерны следующие соотношения между напряжениями, токами и мощностями в отдельных элементах выпрямителя.
Среднее значение выпрямленного напряжения
Ud = 1,17U2ф,
где U2ф — действующее значение фазного напряжения на вторичной обмотке трансформатора.
Выпрямленное напряжение udсодержит постоянную составляющую Udи наложенную на нее переменную составляющую, имеющую трехкратную частоту по отношению к частоте сети. Коэффициент пульсаций напряжения на выходе выпрямителя
q = 2/(m2 -1) = 2/(32 -1) = 0,25
Обратное напряжение Uобр приложенное к неработающему вентилю, равно междуфазному (линейному) напряжению вторичных обмоток трансформатора, так как анод закрытого вентиля присоединен к одной из фаз, а катод через работающий вентиль присоединен к другой фазе вторичной обмотки Т. На рисунок 80, г показана кривая обратного напряжения Uобр между анодом и катодом вентиля V1.
Максимальное значение Uобр равно амплитуде линейного напряжения на вторичных обмотках трансформатора, т.е.
Uобр.max = √3 √2 U2ф = 2,09Ud
Каждый вентиль в данной схеме работает 1 раз за период в течение Т/3. Следовательно, среднее значение тока через вентиль в 3 раза меньше тока нагрузки, т.е.
Iв.ср = (1 /3)Id
Действующее значение токов во вторичной обмотке I2 и вентиля Iв,д определяется формулой
I2 = Iв,д = √3Iв.ср = 0,585 Id
Таким образом, в данной схеме токи вторичных обмоток имеют пульсирующий характер и содержат постоянные составляющие.
Среднее значение тока через каждый вентиль в 3 раза меньше тока Id
Iв.ср = 0,33Id
При одинаковом числе фаз первичной и вторичной обмоток трансформатора и одинаковых схемах соединения обмоток (звезда-звезда) действующее значение первичного фазного тока I1меньше приведенного значения вторичного фазного тока I2, так как в кривой тока первичной обмотки отсутствует постоянная составляющая, которая не трансформируется, т.е.
I1 ≈ 1/n 0,47Id
Поочередное прохождение однонаправленных токов по вторичным обмоткам трансформатора, которые не полностью компенсируются токами первичной обмотки, создает в стержнях сердечника поток Фо одного направления, значение которого составляет 20-25% основного магнитного потока Фв трансформатора и который изменяется с тройной частотой в соответствии с пульсацией анодного тока.
Наличие потока однонаправленного или вынужденного подмагничивания Фо в сердечнике приводит к увеличению тока холостого хода, в результате чего сердечник трансформатора насыщается, а в стальной арматуре возникают дополнительные тепловые потери. Помимо насыщения сердечника трансформатора такой поток приводит к значительному возрастанию падения напряжения в обмотках, что вызывает резкое уменьшение среднего значения выпрямленного напряжения.
Устранить эти нежелательные явления можно либо увеличением сечения сердечника трансформатора, а следовательно, и типовой мощности трансформатора, либо уменьшением амплитуды основного потока Фв. При заданной мощности трансформатора это приводит к увеличению размеров магнитной системы и влечет за собой повышение не только массы стали, но и массы обмоток трансформатора, поскольку с повышением периметра сечения сердечника растет и средняя длина витка у обмоток.
Типовая мощность трансформатора при соединении вторичных обмоток в звезду
Sт = (S1 + S2) /2 = 1,35Pd
Трехфазная мостовая схема выпрямления
Выпрямитель в данной схеме состоит их трансформатора, первичные и вторичные обмотки которого соединяются в звезду или треугольник, и шести диодов, которые разделены на две группы (рис. 81, а):
1) катодную, или нечетную (диоды V1, V3 и V5), в которой электрически связаны катоды вентилей и общий вывод их является положительным полюсом для внешней цепи, а аноды присоединены к выводам вторичных обмоток трансформатора;
2) анодную, или четную (диоды V2, V4 и V6), в которой электрически связаны между собой аноды вентилей, а катоды соединяются с анодами первой группы.
Общая точка связи анодов является отрицательным полюсом для внешней цепи. Нагрузка подключается между точками соединения катодов и анодов вентилей, т.е. к диагонали выпрямленного моста.
Катодная группа вентилей повторяет режим работы трехфазной нулевой схемы. В этой группе вентилей в течение каждой трети периода работает вентиль с наиболее высоким потенциалом анода (рис. 81, 6). В анодной группе в данную часть периода работает тот вентиль, у которого катод имеет наиболее отрицательный потенциал по отношению к общей точке анодов.
Вентили катодной группы открываются в момент пересечения положительных участков синусоид (точки а, 6, в и г на рис. 81, 6), а вентили анодной группы — в момент пересечения отрицательных участков синусоид (точки к, л, м и н). Каждый из вентилей работает в течение одной трети периода (Т/3, или 2π/3).
Рисунок 81 — Трехфазная мостовая схема выпрямителя:
а — схема соединения элементов; б — в-временные диаграммы напряжений и токов
При мгновенной коммутации тока в трехфазной мостовой схеме в любой момент времени проводят ток два вентиля — один из катодной, другой из анодной группы, при этом любой вентиль одной группы работает поочередно с двумя вентилями другой группы, соединенными с разными фазами вторичной обмотки (рис. 81, г и д). Иными словами, проводить ток будут те два накрест лежащих вентиля выпрямительного моста, между которыми действует в проводящем направлении наибольшее линейное напряжение u2л. Например, на интервале времени t1 – t2ток проводят вентили V1, V6, на интервале t2 — t3—вентили V1, V2, на интервале t3 – t4 — вентили V3, V2 и т.д. Таким образом, интервал проводимости каждого вентиля составляет 2π/3, или 120° (рис. 81, е), а интервал совместной работы двух вентилей равен π/3, или 60°. За период напряжения питания Т = 2πпроисходит шесть переключений вентилей (шесть тактов), в связи с чем такую схему выпрямления часто называют шестипульсной.
Следует отметить, что нумерация вентилей в данной схеме не носит случайный характер, а соответствует порядку их вступления в работу при условии соблюдения фазировки трансформатора. Через каждую фазу трансформатора ток i2 будет проходить в течение 2/3 периода: 1/3 периода — положительный и 1/3 — отрицательный. Ток idв нагрузке все время проходит в одном направлении. Контур тока нагрузки при открытых вентилях V1 и V6 показан на схеме (рис. 81, а) тонкой черной линией.
Выпрямленное напряжение ud в этой схеме описывается верхней частью кривых междуфазных (линейных) напряжений (рис. 81, е). Частота пульсаций кривой ud равна 6f1,коэффициент пульсаций напряжения на выходе выпрямителя
q = 2/(m2 -1) = 2/(62 -1) = 0,25= 0,057
Обратное напряжение на закрытом вентиле определяется разностью потенциалов его катода и анода. Максимальное значение обратного напряжения на вентиле в трехфазной мостовой схеме равно амплитуде линейного напряжения вторичной обмотки трансформатора, т.е. Uo6p.max = √2 U2л = 1,05 Ud.При открытом состоянии двух вентилей выпрямительного моста другие четыре вентиля закрыты приложенным к ним обратным напряжением. Выпрямленный ток id при работе на чисто активную нагрузку полностью повторяет кривую напряжения ud.
Напряжение на нагрузке по сравнению с трехфазной схемой с нулевым выводом получается вдвое большим. Это объясняется тем, что трехфазная мостовая схема выпрямителя представляет собой как бы две трехфазные схемы с нулевым выводом, выходы которых включены последовательно. Это сокращает число витков вторичных обмоток трансформатора и снижает требования к изоляции.
U2 = π/3√6 = 0,425Ud
Среднее значение тока через каждый вентиль в 3 раза меньше тока Id
Iв.ср = 0,33Id
Токи во вторичной и первичной обмотках трансформатора определяются по формулам
I2 = Iв,д = √(2/3) = 0,585Id I1 = I2/n
Типовая мощность трансформатора
ST = π/3 Pd = 1,045Pd
Мостовой выпрямитель— его эксплуатация, преимущества и недостатки
В полноволновом мостовом выпрямителе вместо трансформатора с центральным отводом используется обычный трансформатор. Схема образует мост, соединяющий четыре диода D 1 , D 2, D 3 и D 4 . Принципиальная электрическая схема мостового выпрямителя приведена ниже.
Содержание:
Источник переменного тока, который должен быть выпрямлен, подается по диагонали к противоположным концам моста.Принимая во внимание, что нагрузочный резистор R L подключен через оставшиеся две диагонали противоположных концов моста.
Работа двухполупериодного мостового выпрямителя
Когда источник переменного тока включен, переменное напряжение V в появляется на клеммах AB вторичной обмотки трансформатора, который требует выпрямления. Во время положительного полупериода вторичного напряжения конец A становится положительным, а конец B становится отрицательным, как показано на рисунке ниже.
Диоды D 1 и D 3 имеют прямое смещение, а диоды D 2 и D 4 смещены в обратном направлении. Следовательно, диоды D 1 и D 3 проводят, а диоды D 2 и D 4 не проводят. Ток (i) протекает через диод D 1 , нагрузочный резистор R L (от М до L), диод D 3 и вторичный трансформатор. Форма волны двухполупериодного мостового выпрямителя показана ниже.
Во время отрицательного полупериода конец A становится отрицательным, а конец B — положительным, как показано на рисунке ниже.
Из вышеприведенной диаграммы видно, что диоды D 2 и D 4 находятся под прямым смещением, а диоды D 1 и D 3 имеют обратное смещение. Следовательно, диоды D 2 и D 4 проводят, а диоды D 1 и D 3 не проводят. Таким образом, ток (i) протекает через диод D 2 , нагрузочный резистор R L (от М до L), диод D 4 и вторичный трансформатор.
Ток проходит через нагрузочный резистор R L в одном и том же направлении (от M до L) в течение обоих полупериодов. Следовательно, выходное напряжение постоянного тока V из получается через нагрузочный резистор.
Пиковое обратное напряжение двухполупериодного мостового выпрямителя
Когда вторичное напряжение достигает своего максимального положительного значения, а клемма A положительна, а B отрицательна, как показано на принципиальной схеме ниже.
В этот момент диод D 1 и D 3 смещены в прямом направлении и проводят ток.Таким образом, клемма M достигает того же напряжения, что и A ‘или A, тогда как клемма L достигает того же напряжения, что и напряжение B’ или B. Следовательно, диоды D 2 и D 4 смещены в обратном направлении, а пик максимума обратный напряжение на них обоих составляет V м .
Следовательно,
Преимущества двухполупериодного мостового выпрямителя
- Центральный трансформатор отводится.
- Выходная мощность в два раза выше, чем у двухполупериодного выпрямителя с центральным выводом для того же вторичного напряжения.
- Пиковое обратное напряжение на каждом диоде составляет половину центральной отводной цепи диода.
Недостатки двухполупериодного мостового выпрямителя
- Для этого нужны четыре диода.
- Цепь не подходит, когда требуется выпрямить небольшое напряжение. Это связано с тем, что в этом случае два диода соединены последовательно и обеспечивают двойное падение напряжения из-за их внутреннего сопротивления.
См. Также: Половолновой и Полноволновой Выпрямитель
,Теория мостового выпрямителя с рабочим режимом
Мостовой выпрямительМостовой выпрямительный контур является общей частью электронных источников питания. Многие электронные схемы требуют выпрямленного источника постоянного тока для питания различных электронных базовых компонентов от доступной сети переменного тока. Мы можем найти этот выпрямитель в самых разнообразных электронных силовых устройствах переменного тока, таких как бытовая техника, контроллеры двигателей, процесс модуляции, сварочные работы и т. Д.
Что такое мостовой выпрямитель?
Мостовой выпрямитель — это преобразователь переменного тока в постоянный ток (DC), который выпрямляет вход переменного тока переменного тока в выход постоянного тока.Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронных компонентов или устройств. Они могут быть выполнены с четырьмя или более диодами или любыми другими управляемыми твердотельными переключателями.
В зависимости от требований тока нагрузки выбирается правильный мостовой выпрямитель. При выборе источника питания выпрямителя для применения в соответствующих электронных схемах учитываются номинальные характеристики и характеристики компонентов, напряжение пробоя, диапазоны температур, номинальные значения переходного тока, номинальные значения прямого тока, требования к монтажу и другие факторы.
Типы мостовых выпрямителей
Невестовые выпрямители подразделяются на несколько типов в зависимости от следующих факторов: тип питания, возможности управления, конфигурации коммутационных цепей и т. Д. Мостовые выпрямители в основном подразделяются на однофазные и трехфазные выпрямители. Оба эти типа далее классифицируются на неконтролируемые, полууправляемые и полностью контролируемые выпрямители. Некоторые из этих типов выпрямителей описаны ниже.
1. Однофазные и трехфазные выпрямители
Однофазные и трехфазные выпрямителиХарактер поставки, т.е.однофазное или трехфазное питание решает эти выпрямители. Однофазный мостовой выпрямитель состоит из четырех диодов для преобразования переменного тока в постоянный, тогда как трехфазный выпрямитель использует шесть диодов, как показано на рисунке. Это могут быть снова неконтролируемые или управляемые выпрямители в зависимости от компонентов схемы, таких как диоды, тиристоры и так далее.
2. Неконтролируемые мостовые выпрямители
Неконтролируемые мостовые выпрямители
Этот мостовой выпрямитель использует диоды для выпрямления входа, как показано на рисунке.Поскольку диод является однонаправленным устройством, которое позволяет току течь только в одном направлении. При такой конфигурации диодов в выпрямителе она не позволяет изменять мощность в зависимости от требуемой нагрузки. Таким образом, этот тип выпрямителя используется в постоянных или фиксированных источниках питания.
3. Управляемый мостовой выпрямитель
Управляемый мостовой выпрямительВ этом типе выпрямителя, преобразователя переменного / постоянного тока или выпрямителя — вместо неуправляемых диодов, управляемых твердотельных устройств, таких как SCR, MOSFET, IGBT и т. Д.используются для изменения выходной мощности при разных напряжениях. При запуске этих устройств в различные моменты выходная мощность на нагрузке соответствующим образом изменяется.
Принципиальная схема мостового выпрямителя
Основным преимуществом мостового выпрямителя является то, что он выдает почти удвоенное выходное напряжение, как в случае двухполупериодного выпрямителя с использованием трансформатора с центральным отводом. Но эта схема не нуждается в трансформаторе с центральным отводом, поэтому она напоминает недорогой выпрямитель.
Принципиальная схема мостового выпрямителя состоит из различных ступеней таких устройств, как трансформатор, диодный мост, фильтрация и регуляторы.Как правило, все эти комбинации блоков называются регулируемым источником питания постоянного тока, который питает различные электронные приборы.
Первая ступень схемы представляет собой трансформатор понижающего типа, который изменяет амплитуду входного напряжения. В большинстве электронных проектов используется трансформатор 230/12 В для снижения напряжения в сети переменного тока 230 В до 12 В.
Принципиальная схема мостового выпрямителяСледующий этап — диодно-мостовой выпрямитель, который использует четыре или более диода в зависимости от типа мостового выпрямителя.Выбор конкретного диода или любого другого переключающего устройства для соответствующего выпрямителя требует некоторых соображений относительно устройства, таких как пиковое обратное напряжение (PIV), прямой ток If, номинальное напряжение и т. Д. Он отвечает за создание однонаправленного или постоянного тока в нагрузке путем проведения набор диодов для каждого полупериода входного сигнала.
Поскольку выходной сигнал после выпрямительных диодных мостов имеет пульсирующий характер, и для его производства в виде чистого постоянного тока необходима фильтрация. Фильтрация обычно выполняется с одним или несколькими конденсаторами, подключенными к нагрузке, как вы можете видеть на рисунке ниже, где выполняется сглаживание волны.Эта емкость конденсатора также зависит от выходного напряжения.
Последней ступенью этого регулируемого источника постоянного тока является регулятор напряжения, который поддерживает выходное напряжение на постоянном уровне. Предположим, что микроконтроллер работает при 5 В постоянного тока, но выходной сигнал после мостового выпрямителя составляет около 16 В, поэтому для снижения этого напряжения и поддержания постоянного уровня — независимо от изменений напряжения на входной стороне — необходим регулятор напряжения.
Работа мостового выпрямителя
Как мы уже говорили выше, однофазный мостовой выпрямитель состоит из четырех диодов, и эта конфигурация подключена к нагрузке.Чтобы понять принцип работы мостового выпрямителя, мы должны рассмотреть схему ниже для демонстрационных целей.
Во время положительного полупериода входного сигнала переменного тока диоды D1 и D2 смещены в прямом направлении, а D3 и D4 — в обратном направлении. Когда напряжение, превышающее пороговый уровень диодов D1 и D2, начинает проводить — через него начинает течь ток нагрузки, как показано красной линией на схеме ниже.
Работа мостового выпрямителяВо время отрицательного полупериода входного сигнала переменного тока диоды D3 и D4 смещены в прямом направлении, а D1 и D2 — в обратном смещении.Ток нагрузки начинает протекать через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.
Мы можем заметить, что в обоих случаях направление тока нагрузки одинаково, то есть сверху вниз, как показано на рисунке, — так однонаправлено, что означает постоянный ток. Таким образом, при использовании мостового выпрямителя входной переменный ток преобразуется в постоянный ток. Выход на нагрузку с этим мостиковым волновым выпрямителем носит пульсирующий характер, но для получения чистого постоянного тока требуется дополнительный фильтр типа конденсатора.Та же операция применима для разных мостовых выпрямителей, но в случае управляемых выпрямителей для запуска тока необходимо подать ток на нагрузку.
Это все о теории мостовых выпрямителей, ее типах, схемах и принципах работы. Мы надеемся, что этот полезный вопрос по этой теме будет полезен при создании проектов для электроники или электрики учащихся, а также при наблюдении за различными электронными устройствами или приборами. Благодарим Вас за внимание и внимание к этой статье.И поэтому, пожалуйста, напишите нам, чтобы выбрать необходимые характеристики компонентов в этом мостовом выпрямителе для вашего приложения и для любых других технических рекомендаций.
Фото Кредиты:
.Однофазный мостовой выпрямитель
Это наиболее часто используемая цепь для электронных источников питания постоянного тока. Для него требуется четыре диода, но используемый трансформатор не имеет центральных отводов и имеет максимальное напряжение V SM. Двухполупериодный мостовой выпрямитель доступен в трех различных физических формах.
- Четыре дискретных диода,
- Одно устройство внутри четырехполюсника,
- В составе массива диодов в интегральной схеме
Работа цепи
Во время положительной входной полуволны, клемма M вторичного является положительным, а N является отрицательным, как показано на рисунке 2.
Диод D 1 и D 3 смещены в прямом направлении (ВКЛ), тогда как D 2 и D 4 смещены в обратном направлении (ВЫКЛ). Следовательно, ток течет вдоль MEABCFN, вызывая падение R L .
Во время отрицательного входного полупериода вторичная клемма N становится положительной, а M отрицательной. Теперь D 2 и D 4 смещены в прямом направлении. Ток цепи течет вдоль NFABCEM, как показано на рисунке 3.
Следовательно, мы обнаруживаем, что ток продолжает течь через сопротивление нагрузки R L в одном и том же направлении AB в течение обоих полупериодов источника переменного тока.Следовательно, точка A мостового выпрямителя всегда действует как анод, а точка C — как катод. Выходное напряжение на R L такое, как показано на рисунке. Его частота в два раза больше частоты источника питания.
Похожие темы
- Среднее и среднеквадратическое значение мостового выпрямителя
- КПД мостового выпрямителя Мостовой коэффициент 9000 Выпрямитель
- Пиковое обратное напряжение (PIV) мостового выпрямителя
- Пиковый ток мостового выпрямителя
- Коэффициент использования трансформатора мостового выпрямителя
- Преимущество моста
- Недостаток мостового выпрямителя
,
Однофазный двухполупериодный выпрямитель с нагрузкой ‘R’:
На рисунке ниже показаны однофазные двухполупериодные выпрямители с R-нагрузкой
• Однофазный полностью управляемый выпрямитель позволяет преобразовывать однофазный переменный ток в постоянный. Обычно это используется в различных приложениях, таких как зарядка аккумулятора, управление скоростью двигателей постоянного тока и внешнего интерфейса ИБП (источник бесперебойного питания) и SMPS (импульсный источник питания).
• Все четыре используемых устройства являются тиристорами. Моменты включения этих устройств зависят от подаваемых сигналов зажигания. Отключение происходит, когда ток через устройство достигает нуля, и он смещается в обратном направлении, по крайней мере, на время, равное времени выключения устройства, указанного в техническом паспорте.
• В положительном полупериоде тиристоры T1 и T2 работают под углом α.
• Когда T1 и T2 проводят
Vo = Vs
IO = is = Vo / R = Vs / R
• В отрицательном полупериоде входного напряжения, SCR T3 и T4 запускаются под углом (π + α)
• Здесь выходной ток и ток питания в противоположном направлении
∴ is = -io
T3 и T4 отключаются при 2π.
Однофазный двухполупериодный выпрямитель с нагрузкой ‘RL’:
На рисунке ниже показаны однофазные двухполупериодные выпрямители с RL-нагрузкой.
Функцию этого режима можно разделить на четыре режима
Режим 1 (от α до π)
• В положительном полупериоде прикладываемого сигнала переменного тока значения SCR T1 и T2 являются прямым смещением и могут быть включены под углом α.
• Напряжение нагрузки равно положительному мгновенному переменному напряжению питания.Ток нагрузки является положительным, без пульсаций, постоянным и равным Io.
• Из-за положительной полярности напряжения нагрузки и тока нагрузки индуктивность нагрузки будет накапливать энергию.
Режим 2 (от π до π + α)
• При wt = π входная мощность равна нулю и после π становится отрицательной. Но индуктивность противостоит любым изменениям через нее.
• Для поддержания постоянного тока нагрузки и в том же направлении. Самоиндуцирование появляется через «L», как показано на рисунке.
• Из-за этого наведенного напряжения, SCR T1 и T2 являются прямыми байтами, несмотря на отрицательное напряжение питания.
• Напряжение нагрузки отрицательное и равно мгновенному напряжению переменного тока, тогда как ток нагрузки положительный.
• Таким образом, нагрузка действует как источник, и накопленная энергия в индуктивности возвращается обратно к источнику переменного тока.
Режим 3 (от π + α до 2π)
• При wt = π + α включаются T3 и T4 SCR и T1, T2 — обратное смещение.
• Таким образом, процесс проводимости переносится с T1, T2 на T3, T4.
• Напряжение нагрузки снова становится положительным, и энергия накапливается в индуктивности.
• T3, T4 проводят в отрицательном полупериоде от (π + α) до 2π
• При положительном напряжении нагрузки и токе нагрузки энергия сохраняется
Режим 4 (от 2π до 2π + α)
• При wt = 2π входное напряжение проходит через ноль.
• Индуктивная нагрузка будет пытаться противостоять любым изменениям тока, если будет поддерживать постоянный ток нагрузки и в том же направлении.
• Индуцированная ЭДС положительна и поддерживает проводящие SCR T3 и T4 также с обратной полярностью.
• Таким образом, VL отрицательно и равно мгновенному напряжению переменного тока. Тогда как ток нагрузки продолжает оставаться положительным.
• Таким образом, нагрузка действует как источник, и накопленная энергия в индуктивности возвращается обратно к источнику переменного тока.
• При wt = α или 2π + α переключаются T3 и T4 и включаются T1, T2.