Откуда берется ноль в электросети – Откуда берется ноль в электричестве

Содержание

Откуда берется ноль в электричестве

Что такое фаза и ноль в электричестве

Очень немного людей понимают суть электричества. Такие понятия как «электричество», «фаза» и «ноль» для большинства являются темным лесом, хотя с ними мы сталкиваемся каждый день. Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве.

Для обучения электричеству с «нуля» нам нужно разобраться с фундаментальными понятиями. В первую очередь нас интересуют электрический ток и электрический заряд.

Электрический ток и электрический заряд

Электрический заряд – это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон.

Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд (избыток электронов, которые были захвачены атомами палочки при контакте с шерстью). Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным (волосы теряют электроны)

Электрический ток – это направленное движение заряженных частиц (носителей заряда) по проводнику. Само движение заряженных частиц возникает под действием электромагнитного поля – одного из фундаментальных физических полей.

Электрический ток может быть постоянным и переменным . При постоянном токе направление и величина тока не меняются. Переменный ток – это ток, изменяющийся во времени.

Источником постоянного тока является, например, батарейка. Но именно переменный ток используется в бытовых розетках, которые стоят в наших домах. Причина в том, что переменные токи гораздо проще получать и передавать на большие расстояния.

Вам понравится: Преподаватель любит глазами: как оформить ссылки, сноски в курсовой работе и защитить ее с первого раза?

Основным видом переменного тока является синусоидальный ток . Это такой ток, который сначала нарастает в одном направлении, достигая максимума (амплитуды) начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении.

Непосредственно о таинственных фазе и нуле

Все мы слышали про фазу, три фазы, ноль и заземление.

Простейший случай электрической цепи – однофазная цепь . В ней всего два провода. По одному из проводов ток течет к потребителю (пусть это будет утюг или фен), а по другому – возвращается обратно. Как правило, в однофазной сети есть еще один провод – земля (или заземление). Данный провод не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или «стекает» в землю.

Провод, по которому ток идет к прибору, называется фазой . а провод, по которому ток возвращается – нулем.

Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому — отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного. Именно по такой сети ток идет до наших квартир. Подходя непосредственно к потребителю (квартирам), ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ — 50 Гц.

Вам понравится: Инфографика на тему: Стажировки для студентов в Москве

Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи. Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску. Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза — белого, черного или коричневого. Провод заземления также имеет свой окрас — желто-зеленый.

Ноль и электричество

Итак, сегодня мы узнали, что же значат понятия «фаза» и «ноль» в электричестве. Мы будем просто счастливы, если для кого-то эта информация была новой и интересной. Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, Вы уже будете знать, о чем идет речь. Напоследок напоминаем, если Вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, Вы можете смело обращаться к нашим авторам . «съевшим собаку» в электротехнике. С помощью наших специалистов даже самая дикая и сложная задача станет Вам «по зубам».

Главная » Теория » Напряжение » Что такое фаза и ноль в электрике — учимся определять разными способами?

Что такое фаза и ноль в электрике — учимся определять разными способами?

Электрические сети бывают двух типов. Сети переменного тока и сети с постоянным током. Электрический ток, как известно, — это упорядоченное движение электронов. В случае постоянного тока они двигаются в одном направлении и. как принято говорить, имеют постоянную поляризацию. В случае с переменным током направление движения электронов все время меняется, то есть ток имеет переменную поляризацию.

Принцип работы сети переменного тока

Сеть переменного тока делится на две составляющие: рабочая фаза и пустая фаза. Рабочую фазу иногда просто называют фазой. Пустую называют нулевой фазой или просто — ноль. Она служит для создания непрерывной электрической сети при подключении приборов, а также для заземления сети. А на фазу подается рабочее напряжение.

При включении электроприбора не важно, какая фаза рабочая, а какая пустая. Но при монтаже электропроводки и подключении ее в общедомовую сеть это нужно знать и учитывать. Дело в том, что установка электропроводки делается или с помощью двухжильного кабеля, или трехжильного. В двухжильном одна жила – рабочая фаза, вторая – ноль. В трехжильном рабочее напряжение делится на две жилы. Получается две рабочих фазы. Третья жила – пустая, ноль. Общедомовая сеть выполняется из трехжильного кабеля. Общая схема электропроводки в частном доме или квартире, в основном, тоже делается из трехжильного провода. Поэтому перед подключением квартирной проводки нужно определить рабочие и нулевую фазы.

Способы определения фазных и нулевых проводов

Узнать, на какую жилу подается напряжение, а на какую нет, несложно. Есть несколько способов определения фазы и нуля.

Первый способ. Фазы определяются по цвету оболочки жил. Обычно рабочие фазы имеют цвета черный, коричневый или серый, а ноль – светло-синий. Если устанавливается дополнительное заземление, то его жила — зеленого цвета.

В этом случае не используют дополнительных приборов для определения фаз. Следовательно, такой способ не очень надежен, потому что, монтируя проводку, электрики могут не соблюдать цветовую маркировку жил.

Основным отличием между фазным и линейным напряжением в сетях переменного тока является показатель величины напряжения, который у линейного в 3 раза выше, чем у фазного.

Для организации уличного освещения используют фотореле. Как правильно подключить такое устройство, можно узнать здесь.

Надежнее определять фазы с помощью электроиндикаторной отвертки. Она представляет собой непроводящий ток корпус, в который встроены индикатор и резистор. В качестве индикатора используют неоновую лампочку. При касании жалом отвертки оголенного, под напряжением, провода индикатор, если жила рабочая, загорается. Если ноль, то не срабатывает. С помощью такой отвертки можно определять и исправность сети. Если при касании жалом поочередно жил провода лампочка не загорается, то сеть неисправна.

Случается, что индикатор загорается при прикосновении к обеим жилам провода, то есть и к фазе и к нулю. Это значит, что в пустой фазе где-то есть обрыв. Его нужно найти и устранить.

Можно осуществить определение фазы мультиметром. Сначала устанавливаем режим измерений – переменное напряжение. Потом конец одного щупа зажимаем в руке. Вторым щупом касаемся жилы. Если фаза рабочая, то на экране прибора будет показана величина напряжения.

Можно определить рабочую фазу и с помощью обычной электрической лампочки. Берем лампочку. вкрученную в патрон, с двумя отрезками провода. Один конец заземляем. Можно заземлить его, прикрутив к отопительной батарее. Концы проводов, естественно, должны быть оголенными. Вторым концом касаемся жилы. Если лампочка загорается, то фаза – рабочая.

Один из методов, показывающих что такое фаза и ноль в электрике, на видео

Совет 1: Почему в электрике есть фаза и ноль

Чтобы понять основы электрики, не обязательно углубляться в технические подробности электрической цепи. Достаточно знать, способы передачи электрического тока, которые бывают однофазными или трехфазными. Трехфазная сеть – это, когда электричество поступает по трем проводам, а еще по одному должно вернуться обратно, к источнику тока, которым может быть трансформатор, электрический счетчик. Однофазная сеть – это, когда электричество поступает по одному проводу, а по другому возвращается обратно к источнику питания. Такая система называется электрическая цепь, а ее основы проходят на уроках физики.

Вспомните – электрическая цепь состоит из источника, потребителей, соединительных проводов и других элементов. В любом источнике тока «работают» положительно и отрицательно заряженные частицы. Они накапливаются на разных полюсах источника, один из которых становится положительным, а другой отрицательным. Если полюса источника соединить, возникает электрический ток. Под действием электростатической силы частицы приобретают движение только в одном направлении.

Для начала рассмотрите пример однофазной сети: квартира, в которой электричество к чайнику, микроволновке, стиральной машине поступает по одному проводу, а назад к источнику тока – по другому проводу. Если такую цепь разомкнуть, то, электричества не будет. Провод, подающий ток, называется фазовым или фазой, а провод, по которому ток возвращается – нулевым или нулем.

Если сеть трехфазная, электричество будет поступать по трем проводам, а возвращаться так же по одному. Трехфазные сети чаще бывают в домах загородного типа. Если в такой сети разомкнуть один провод, то, на других фазах ток останется.

То есть, фаза в электрике – это провод, который подает ток от источника питания, а ноль – это провод, который отводит ток обратно, к источнику питания. Если току не обеспечить постоянную цепь – случились аварии на линии, произошел обрыв проводов, то, приборы могут просто перестать работать или сгорят от перенапряжения в электрической сети. В электрике это явление называется «перекос фаз». Если оборвался ноль, напряжение может измениться как в наибольшую, так и в наименьшую сторону.

Совет 2: Как стать электриком

В наше время, когда практически любое строение оснащено хотя бы простейшей электропроводкой, профессия электрика очень востребована, поэтому все больше абитуриентов настроено на получение данной профессии.

Образование

Минимальным базовым образованием для начала обучения профессии электрик является неполное среднее образование. Это значит, что для начала обучения данной профессии необходимо окончить хотя бы 9 классов средней образовательной школы. Найти специальность “электрик” можно в техникуме, профессиональном техническом училище или колледже практически любого российского города областного значения. Также существуют специальные обучающие центры, предусматривающие подготовку специалистов по данному направлению.

Личные качества

Несмотря на кажущуюся доступность получения данной профессии, стать хорошим электриком не так уж просто. Необходимо обладать техническим складом ума, уметь работать руками и мыслить логически. Так же, ввиду большой травмоопасности занятия, потенциальному электрику следует быть аккуратным и уметь хорошо концентрироваться во время работы.

Группы электробезопасности и разряды

По окончании курса обучения по специальности “Электрик” студент, в зависимости от наполненности курса обучения и результатов сдачи итогового экзамена, получает либо второй либо третий квалификационный разряд. Всего разрядов для электриков шесть, существует также пять так называемых групп допуска (групп электробезопасности). Не следует путать разряд электрика с группой допуска электрика. Разряд показывает квалификацию электрика, то, насколько сложную работу в своей области он способен выполнить. Группа допуска, в свою очередь, показывает уровень опасности, с которым может справиться работник. Чем большие разряд и группу допуска имеет электрик, тем он более востребован и тем выше заработная плата, которую ему может предложить работодатель.

Удостоверение электрика

По результатам итоговых испытаний электрику выдается специальное удостоверение электрика, в котором указывается присвоенная ему группа по электробезопасности а также оценка его квалификации по пятибалльной шкале. Квалификацию электрика необходимо подтверждать каждые пять лет, кроме того, возможно проведение внеочередной проверки на квалификацию, к примеру, с целью повысить разряд и(или) группу по электробезопасности. Следует отметить, что электрик, имеющий 2-5 группу допуска, при проведении работ, соответствующих данному диапазону групп, обязательно должен иметь при себе удостоверение.

Совет 3: Как повесить люстру

Для того, чтобы повесить люстру. не нужно обладать специальными профессиональными навыками. Однако базовые знания о бытовой электрике вам всё же понадобятся.

Для начала проверьте, есть ли у вас всё необходимое для того, чтобы повесить люстру. Во-первых, у вас должна быть стремянка или другая устойчивая опора. Кроме того, вам понадобятся некоторые инструменты: пассатижи, кусачки, отвёртка с индикатором напряжения, отвёртка с узким жалом и монтажные зажимы (так называемые «лягушки»). Не забудьте также позаботиться о том, чтобы комната была достаточно хорошо освещена, ведь вы не сможете пользоваться осветительными приборами во время работы. Крайне желательно перед началом работ запастись фонариком.

Люстры обычно вешаются на заранее подготовленный крюк. Его необходимо тщательно обмотать изолентой или другим не пропускающим ток материалом. Желательно нанести изоленту не менее чем в два слоя – для исключения непокрытой поверхности. Обязательно сверьтесь с инструкцией к вашему осветительному прибору и убедитесь, что его использование не требует обязательного заземления. В противном случае необходимо будет заземлить его.

Теперь следует приступить к обесточиванию помещения. Для этого нужно выключить автоматический выключатель на электрическом счётчике, а отсутствие в сети напряжения проверить отвёрткой-индикатором. На потолке должны находиться три окончания провода (два конца – «фаза», а один конец – «нуль»). «Нулевой» кончик впоследствии будет направлен в монтажную коробку, а «фазные» – к выключателю. Все три конца зачищаются (следует оголить не менее 3-4 мм провода) и разводятся в стороны так, чтобы они не соприкасались.

Теперь нам необходимо определить, какие же из окончаний являются «фазными», а какой – «нулевым». Для этого мы переводим автоматический выключатель во включённое положение и проверяем концы проводов отвёрткой-индикатором. На тех проводах, где будет «фаза», лампочка загорится, на «нуле» же – нет. Желательно пометить провода, чтобы не перепутать их впоследствии. Надо отметить, что современные провода не нужно проверять на фазность: они имеют обязательную маркировку. Провода с «фазой» маркируются чёрно-коричневым, а «нулевые» – синим цветом.

Такая же маркировка может быть и у проводов люстры. В противном случае фазность проводов проверяется следующим образом. Два провода подсоединяются к розетке. Часть ламп должна загореться, помечаем провода, которые в этот момент были подсоединены к сети. Теперь меняем один из проводов на третий. В случае, если загорелась вторая часть ламп, первый провод является «нулевым», а второй и третий (которые менялись местами) – «фазные». Если же лампы не загорелись, значит вынутый из розетки провод является «нулевым».

Теперь можно приступить к монтажу люстры. Сама она вешается на крюк, а её «нулевой» провод соединяется с «нулевым» же проводом на потолке. «Фазные» провода также соединяются между собой. Проверив работу люстры на включение и выключение, можно завинчивать защитный колпачок, который закрывает соединённые провода.

Как видите, повесить люстру своими руками довольно несложно.

Источники: http://zaochnik.ru/blog/chto-takoe-faza-i-nol-v-elektrichestve/, http://elektrik24.net/teorija/napryazhenie/chto-takoe-faza-i-nol.html, http://www.kakprosto.ru/kak-93005-pochemu-v-elektrike-est-faza-i-nol

electricremont.ru

Значение фаза и ноль в электричестве

Передача электрического тока осуществляется по трехфазным сетям, при этом большинство домов имеет однофазные сети. Расщепление трехфазной цепи осуществляется с помощью вводно-распределительных устройств (ВРУ). Простым языком этот процесс можно описать следующим образом. К электрощитку дома подводится трехфазная цепь, состоящая из трех фазных, одного нулевого и одного заземляющего проводов. Посредством ВРУ цепь расщепляется – к каждому фазному проводу добавляется один нулевой и один заземляющий, получается однофазная сеть, к которой и подключаются отдельные потребители.

Что такое фаза и ноль

Попробуем разобраться, что такое ноль в электричестве и чем он отличается от фазы и земли. Фазные проводники используются для подачи электроэнергии. В трехфазной сети три токоподающих провода и один нулевой (нейтральный). Передаваемый ток сдвигается по фазе на 120 градусов, поэтому в цепи достаточно одного нуля. Фазовый проводник имеет напряжение 220 В, пара «фаза-фаза» – 380 В. Ноль не имеет напряжения.

Фазы генератора и фазы нагрузки соединяются между собой линейными проводниками. Нулевые точки генератора и нагрузки соединяются между собой рабочим нулем. По линейным проводам ток движется от генератора к нагрузке, по нулевым – в обратном направлении. Фазные и линейные напряжения равны независимо от способа подключения. Земля (заземляющий провод) также как и ноль не имеет напряжения. Он выполняет защитную функцию.

Зачем нужно зануление

Человечество активно использует электричество, фаза и ноль – важнейшие понятия, которые нужно знать и различать. Как мы уже выяснили, по фазе электричество подается к потребителю, ноль отводит ток в обратном направлении. Следует различать нулевой рабочий (N) и нулевой защитный (PE) проводники. Первый необходим для выравнивания фазового напряжения, второй используется для защитного зануления.

В зависимости от типа линии электропередач может использоваться изолированный, глухозаземленный и эффективно-заземленный ноль. Большинство ЛЭП, питающих жилой сектор, имеет глухозаземленную нейтраль. При симметричной нагрузке на фазных проводниках рабочий ноль не имеет напряжения. Если нагрузка неравномерна, ток небаланса протекает по нулю, и схема электропитания получает возможность саморегулирования фаз.

Электросети с изолированной нейтралью не имеют нулевого рабочего проводника. В них используется нулевой заземляющий провод. В электросистемах TN рабочий и защитный нулевой проводники объединены на всем протяжении цепи и имеют маркировку PEN. Объединение рабочего и защитного нуля возможны только до распределительного устройства. От него к конечному потребителю пускается уже два нуля – PE и N. Объединение нулевых проводников запрещается по технике безопасности, так как в случае короткого замыкания фаза замкнется на нейтраль, и все электроприборы окажутся под фазным напряжением.

Как различить фазу, ноль, землю

Проще всего определить назначение проводников по цветовой маркировке. В соответствие с нормами, фазный проводник может иметь любой цвет, нейтраль – голубую маркировку, земля – желто-зеленого цвета. К сожалению, при монтаже электрики цветовая маркировка соблюдается далеко не всегда. Нельзя забывать и вероятности того, что недобросовестный или неопытный электрик легко может перепутать фазу и ноль или подключить две фазы. По этим причинам всегда лучше воспользоваться более точными способами, чем цветовая маркировка.

Определить фазный и нулевой проводники можно с помощью индикаторной отвертки. При соприкосновении отвертки с фазой загорится индикатор, так как по проводнику проходит электроток. Ноль не имеет напряжения, поэтому индикатор загореться не может.

Отличить ноль от земли можно с помощью прозвонки. Сначала определяется и маркируется фаза, затем щупом прозвонки нужно прикоснуться к одному и проводников и клемме заземления в электрощитке. Ноль звониться не будет. При прикосновении к земле раздастся характерный звуковой сигнал.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru

Что такое «фаза», «ноль» и «земля», и зачем они нужны.

Сегодня решил попробовать разобраться с тем, что такое «фаза», «ноль» и «земля».
Небольшой поиск в Гугле по этому поводу выявил, что в основном люди в интернете отвечают на этот вопрос каждый по-своему, где-то неполно, где-то с ошибками.
Я решил разобраться в этом вопросе досконально, в результате чего появилась эта статья.
Достаточно длинная, но в ней всё объяснено, в том числе, что такое фаза, ноль, земля, как это всё появилось и зачем всё это нужно.

Если очень кратко, то фаза и ноль — для электричества, а земля — только для заземления корпусов электроприборов, во имя спасения жизни человека в случае утечки электрического тока на корпус электроприбора.

Если начать с самого начала: откуда берётся электричество?
Все электростанции построены на одном и том же принципе: если магнит вращать внутри катушки (создавая тем самым периодическое «переменное» магнитное поле), то в катушке возникает «переменный» электрический ток (и, соответственно, «переменное» напряжение).
Этот величайший по своему значению эффект называется в физике «ЭлектроДвижущей Силой индукции», она же «ЭДС индукции», была открыта в середине XIX века.

«Переменное» напряжение — это когда берётся обычное «постоянное» напряжение (как от батарейки), и изгибается по синусу, и оно поэтому то положительное, то отрицательное, то снова положительное, то снова отрицательное.

Напряжение на катушке является «переменным» по своей природе (никто его специально не изгибает) — просто потому что таковы законы физики (электричество из магнитного поля можно получить только тогда, когда магнитное поле «переменное», и поэтому получаемое на катушке напряжение тоже всегда будет «переменным»).

Итак, значит, где-то в дебрях электростанции вращается магнит (для примера — обычный, а в реальности — «электромагнит»), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (равномерно «размазаны» по поверхности статора).

Вращается этот магнит, не человеком, не рабом, и не огромным сказочным големом на цепи, а, например, потоком воды на мощной ГидроЭлектроСтанции (на рисунке магнит стоит на оси турбины в «Генераторе»).

Поскольку в таком случае (случае вращения магнита на роторе) магнитный поток, проходящий через катушки (неподвижные на статоре), периодически меняется во времени, то в катушках на статоре создаётся «переменное» напряжение.

Каждая из трёх катушек соединена в свою отдельную электрическую цепь, и в каждой из этих трёх электрических цепей возникает одинаковое «переменное» напряжение, только сдвинутое («по фазе») на треть окружности (120 градусов из полных 360-ти) друг относительно друга.



Такая схема называется «трёхфазным генератором»: потому что есть три электрических цепи, в каждой из которых (одинаковое) напряжение сдвинуто по фазе.
(на рисунке выше «N-S» — это обозначение магнита: «N» — северный полюс магнита, «S» — южный; также на этом рисунке вы видите те самые три катушки, которые для упрощения понимания маленькие и стоят отдельно друг от друга, но в реальности они по ширине занимают треть окружности и плотно прилегают друг к другу на кольце статора, так как в таком случае получается больший КПД генератора электроэнергии)

Можно было бы с одной такой катушки оба конца проводки просто взять и вести к дому, а там от них чайник запитать.
Но можно сэкономить на проводах: зачем тащить в дом два провода, если можно один конец катушки просто тут же заземлить (воткнуть в землю), а от второго конца вести провод в дом (этот провод назовём «фазой»).
В доме этот провод подсоединяется, например, к одному штырьку вилки чайника, а другой штырёк вилки чайника — заземляется (грубо говоря, просто втыкается в землю).
Получим то же самое электричество: одна дырка в розетке будет называться «фазой», а вторая дырка в розетке будет называться «землёй».

Теперь, раз уж у нас три катушки, сделаем так: скажем, «левые» концы катушек соединим вместе и прямо тут же заземлим (воткнём в землю).
А оставшиеся три провода (получается, это будут «правые» концы катушек) по отдельности потянем к потребителю.
Получится, мы тянем к потребителю три «фазы».

Вот мы и получили «трёхфазный ток», идущий от генератора «трёхфазного тока».
Это «трёхфазное» напряжение идёт по проводам Линии ЭлектроПередач (ЛЭП) к нам во двор, в дворовую подстанцию (домик такой стоит, рядом с детской площадкой, со знаком «осторожно, высокое напряжение»).
И не только «к нам во двор» — по всей огромной России тянули наши предки эти ЛЭПы во времена ударных пятилеток коммунизма (а это огого какая гигантская работа: тянули электричество, прокладывали дороги, осушали болота, заводы строили по всей стране, поднимали целину — это не в офисах под кондиционерами сидеть).

Изобретён этот «трёхфазный ток» был в самом конце XIX века.
Передача электричества в виде именно трёхфазного тока, как некоторые говорят, экономичнее (возможно, меньше потерь в проводах, или что-нибудь типа того), и там ещё, говорят, у него есть разные преимущества над обычным током для промышленного применения.
Например, все вращающиеся штуки на заводах — станки там, двигатели, насосы, и прочее — сделаны именно для трёхфазного тока, поскольку гораздо легче построить вращающуюся штуковину на трёхфазном токе: достаточно просто точно так же подсоединить эти три фазы к трём катушкам на кольце, и в центр вставить металлический стержень с рамкой — и будет он сам крутиться, как только пойдёт ток.
Такой агрегат называется «трёхфазным двигателем».
Поскольку изначально электричеством заморачивались именно на заводах (не было тогда ещё в домах компьютеров, холодильников и люстр), то исторически всё идёт от промышленности в первую очередь.
Поэтому, видимо, ток из электростанции в ЛЭП пускают всегда трёхфазным, с напряжением 35 килоВольтов между фазами (а сила тока в проводах при этом — около 300 Амперов).

Такое высокое напряжение нужно, потому что нужна большая мощность тока: весь город энергию ест, как-никак, да и различные заводы потребляют порою огого сколько мощности: металлургические, например.
Большую мощность тока можно получить либо повышая силу тока, либо повышая напряжение (потому что мощность тока — это сила тока умноженная на напряжение).
При этом чем больше сила тока, тем больше энергии тратится впустую при преодолении сопротивления проводов при передаче электроэнергии на расстояние по проводам (потерянная энергия равняется силе тока в квадрате, умноженной на сопротивление проводов — именно поэтому чем толще провода в ЛЭП, тем экономичнее, потому что чем толще провод, тем меньше его сопротивление).
Поэтому экономически целесообразно повышать мощность передаваемого тока, наращивая не силу тока, а напряжение (напряжению никак не мешает сопротивление проводов — такова его природа).
Потребитель потребляет из розетки именно мощность (силу тока, умноженную на напряжение), а не отдельно ток и не отдельно напряжение, поэтому его не волнует, в каком виде эта мощность к нему в дом придёт по проводам: будет ли там больше тока и меньше напряжения, или, наоборот, больше напряжения и меньше тока — потребителя волнует только мощность в целом.

Поэтому на электростанции, перед передачей электроэнергии в провода ЛЭП, излишнюю силу тока, выработанного электрогенератором, перегоняют в напряжение, а при приёме тока в «подстанции» во дворе вашего дома выполняется обратное преобразование — излишнее напряжение перегоняют обратно в силу тока, поскольку к этому моменту весь путь по ЛЭП уже успешно пройден электроэнергией с минимальными потерями.

Прямо всю силу тока перекачать в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить через изоляцию, например, или зажарить человека, проходящего под ЛЭП, или ещё чего-нибудь).
Вот забавное видео про короткое замыкание ЛЭП в 110 килоВольтов — весёлый феерверк:

Занимательный факт: при длине ЛЭП переменного тока более нескольких тысяч километров возникает ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц, провод работает как антенна.

Я уже объяснил, что такое «фаза» и что такое «земля», и дальше я объясню, что такое «ноль» («нулевой провод») и зачем он нужен. Объяснение займёт следующие несколько абзацев, и может показаться непростым, но для понимания того, что такое «ноль», придётся понять это объяснение.

Для упрощения, пока представим, что как будто бы трёхфазный генератор стоит не на ГидроЭлектроСтанции, а прямо у нас в квартире. Условно «левые» концы катушек на статоре мы, как и раньше, соединяем вместе.

Такой способ соединения называется соединением по схеме «звезда». Полученная точка соединения трёх фазных проводов называется «нейтралью».



«Нейтраль» обычно заземляют для большей безопасности: если нейтраль не заземлить, то потом когда одна из фаз случайно замкнётся на землю где-нибудь в доме, то полученная электрическая цепь будет разомкнутой — не будет токопроводящего пути от места касания фазой земли в доме обратно на эту фазу на подстанции. А если бы нейтраль заземлили на подстанции, то обратный путь с земли в доме на фазу на подстанции прошёл бы через землю: землю можно в данном случае представить как огромный проводник, хотя строго говоря это и не так, она же не металлическая, но для наглядности можно представить её как один огромный проводник. Итак, при отсутствии заземления «нейтрали» на подстанции, при коротком замыкании фазы на землю ток из фазы в землю не пойдёт (или, может быть, пойдёт, но будет относительно небольшим), и такая неисправность не будет засечена специально созданными для этого приборами («автоматами»), и эти приборы («автоматы») не смогут вовремя предотвратить опасное замыкание фазы на землю, выключив электричество. Подробнее принцип работы «автоматов» описан в конце этой статьи. А если вас заинтересует более подробное объяснение, зачем используется именно заземлённая нейтраль, то можете прочесть его по этой ссылке.

В «нейтральной» точке, как можно посчитать по школьным формулам тригонометрии (или на глаз отмерить по графику с тремя фазами напряжения, который я давал в начале статьи), суммарное напряжение равно нулю. Всегда, в любой момент времени. Вот такая интересная особенность. Поэтому она и называется «нейтралью».

Теперь возьмём и подсоединим к «нейтрали» провод, и этот, получается, уже четвёртый провод тоже будет тянуться рядом с тремя фазными проводами (и ещё рядом будет тянуться пятый провод — это «земля», которой можно будет заземлить корпус подключенного электроприбора).

Получается, от генератора теперь будет идти четыре провода (плюс пятый — «земля»), а не три, как раньше.
Подключим эти провода к какой-нибудь нагрузке (например, к какому-нибудь трёхфазному двигателю, который тоже стоит у нас в квартире).
(на рисунке ниже генератор изображён слева, а трёхфазный двигатель — справа; точка G — это «нейтраль»).

На нагрузке (на двигателе) все три фазных провода тоже соединяются в одну точку (только не напрямую, чтобы не было короткого замыкания, а через некоторые большие сопротивления), и получается ещё одна такая «как бы нейтраль» (точка M на рисунке).
Теперь соединим четвёртый провод (идущий он «нейтрали»; точка G на рисунке) с этой второй «как бы нейтралью» (точка M на рисунке), и получим так называемый «нулевой провод» (идущий от точки G к точке M).



Зачем нужен этот «нулевой» провод?
Можно было бы, как и раньше, не заморачиваться, и просто подсоединять одну из фаз на один шпенёк вилки чайника, а другой шпенёк вилки чайника соединять с землёй, как мы делали раньше, и чайник бы нормально работал.
Вообще, как я понял, так и делали в старых советских домах: там от подстанции в дом заходят только два провода — провод фазы и провод земли.


В новых же домах (новостройках) в квартиры входят уже три провода: фаза, земля и этот «ноль». Это более прогрессивный вариант. Это европейский стандарт.
И правильно соединять фазу именно с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током (именно такой смысл должно нести слово «заземление», и никакого отношения к потреблению тока в розетке оно иметь не должно).
Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится, будет поставлен с ног на голову весь смысл заземления.

Теперь немного математики, для тех, кто умеет её считать, и для тех, кто ещё не устал: попробуем посчитать напряжение между фазой и «нейтралью» (то же самое, что между фазой и «нулём»).
(вот ещё ссылка с расчётами, если кто-то захочет заморочиться этим)
Пусть амплитуда напряжения между каждой фазой и «нейтралью» равна U (само напряжение переменное, и скачет по синусу от минус амплитуды до плюс амплитуды).
Тогда напряжение между двумя фазами равно:
U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√3 U cos(a + 60).
То есть, напряжение между двумя фазами в √3 («квадратный корень из трёх») раз больше напряжения между фазой и «нейтралью».
Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше. Оно всегда постоянно, всегда 220 Вольт, и вы можете быть уверены, что пока вся электрика в доме правильно подсоединена, у вас ничего не сгорит.
Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы так называемый «перекос фаз», и у кого-то что-то могло бы сгореть в квартире (возможно даже в прямом смысле слова, вызвав пожар). Например, банально могла бы загореться изоляция проводки, если она не является пожаробезопасной.



До сих пор мы для простоты рассматривали случай воображаемого трёхфазного генератора, стоящего прямо в квартире.
Поскольку расстояние от квартиры до дворовой подстанции мало, и на проводах можно не экономить, то можно (и нужно, так же удобнее) перенести этот воображаемый трёхфазный генератор из квартиры в подстанцию.
Мысленно перенесли.
Теперь разберёмся с воображаемостью генератора. Понятно, что реальный генератор стоит не на подстанции, а где-нибудь далеко, на ГидроЭлектроСтанции, за городом. Можем ли мы на подстанции, имея три входящих фазных провода от ЛЭП, как-нибудь их соединить так, чтобы получилось всё то же самое, как если бы генератор стоял прямо в этой подстанции? Можем, и вот как.
В дворовой подстанции приходящее с ЛЭП трёхфазное напряжение снижается так называемым «трёхфазным» трансформатором до 380 Вольт на каждой фазе.
Трёхфазный трансформатор — это в простейшем случае просто три самых обычных трансформатора: по одному на каждую фазу

В реальности его конструкцию немного улучшили, но принцип работы остался тем же самым:



Бывают маленькие, и не очень мощные, а бывают большие и мощные:


Таким образом, входящие фазные провода от ЛЭП не прямо подсоединяются и заводятся в дом, а идут на этот огромный трёхфазный трансформатор (каждая фаза — на свою катушку), из которого уже «бесконтактным» способом, через электромагнитную индукцию, передают электроэнергию на три выходные катушки, от которых она идёт по проводам в жилой дом.
Поскольку на выходе из трёхфазного трансформатора имеются те же самые три фазы, которые вышли из трёхфазного генератора на электростанции, то здесь можно точно так же одни концы (условно, «левые») этих трёх выходных катушек трансформатора соединить друг с другом, чтобы получить «нейтраль» у себя на подстанции. А из нейтрали — вывести в жилой дом четвёртый «нулевой провод», вместе с тремя фазными (идущими от условно «правых» концов этих трёх выходных катушек трансформатора). И ещё добавить пятый провод — «землю».

Таким образом, из подстанции в итоге выходят три «фазы», «ноль» и «земля» (всего — пять проводов), и далее распределяются на каждый подъезд (например, можно распределить по одной фазе в каждый подъезд — получается по три провода заходит в каждый подъезд: одна фаза, ноль и земля), на каждую лестничную площадку, в электрораспределительные щитки (где счётчики стоят).

Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» (иногда «ноль» называют ещё «нейтралью») и «земля».
«фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт между фазами на подстанции; между фазой и нулём получится ровно 220 Вольт).
«ноль» — это провод от «нейтрали» на подстанции.
«земля» — это просто провод от хорошего правильного грамотного заземления (например, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю рядом с подстанцией).

Внутри подъезда фазовый провод по схеме параллельного включения расщипляется на все квартиры (то же самое делается с нулевым проводом и проводом земли).
Соответственно, делиться ток по квартирам будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше подключенная нагрузка в каждой квартире.
То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через квартирный счётчик, который это всё будет подсчитывать).

Что может произойти, если все включат обогреватели зимним вечером?
Потребляемая мощность резко возрастёт, ток в проводах ЛЭП может превзойти допустимые рассчитанные пределы, и может либо какой-то из проводов перегореть (провод разогревается тем сильнее, чем больше его сопротивление и чем большая сила тока в нём течёт, и борется с этим сопротивлением), либо просто сама подстанция сгорит (не та, которая во дворе дома, а одна из Главных Подстанций города, которая может оставить без электроэнергии сотни домов, часть города может несколько суток сидеть без света и без возможности приготовить себе еду).

Если ещё у кого-то остался вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?

Только фазу и землю тянуть не получится (в общем случае).
Выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
А вот чему равно напряжение между фазой и землёй — это не факт.
Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды», когда я объяснял её выше), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз», и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже могут загореться, что может привести к пожару в квартире.
Точно такой же перекос фаз получится, если провод «нуля» оборвётся, или даже просто отгорит на подстанции, если по нулевому проводу пойдёт слишком большой ток (чем больше «перекос фаз», тем сильнее ток идёт по проводу нуля).
Поэтому в домашней сети обязательно должен использоваться ноль, и нельзя ноль заменить землёй.
Помню, когда мой отец делал разводку в его квартире в новостройке в Москве, и видел знакомый ему с советской молодости провод земли, а потом видел незнакомый ему провод ноля, то он, недолго думая, просто откусывал кусачками провод ноля, приговаривая, что «а он не нужен»…

Тогда зачем нам в доме нужен провод «земли»?

Для того, чтобы «заземлять» корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током при прикосновении.

Приборы тоже иногда ломаются.

Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?

Если корпус прибора вы заранее заземлили, то возникнет «ток утечки» (произойдёт короткое замыкание фазы на землю, вследствие чего упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления — по создавшемуся короткому замыканию фазы на землю).

Этот ток утечки будет немедленно замечен либо «автоматом» стоящим в щитке, либо «Устройством Защитного Отключения» (УЗО), тоже стоящим в щитке, и оно сразу разомкнёт цепь.

Почему недостаточно обычного «автомата», и зачем ставят именно УЗО? Потому что у «автомата» и у УЗО разный принцип работы (а ещё, «автомат» срабатывает гораздо позже, чем УЗО).



УЗО наблюдает за входящим в квартиру током (фаза) и исходящим из квартиры током (ноль), и размыкает цепь, если эти токи неодинаковы (в то время как «автомат» измеряет только силу тока на фазе, и размыкает цепь, если ток на фазе превосходит допустимый предел).
Принцип работы УЗО очень прост и логичен: если входящий ток не равен исходящему, то, значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй, чего по правилам быть не должно.
УЗО измеряет разность между силой тока на фазе и силой тока на нуле. Если эта разность превышает несколько десятков миллиАмперов, то УЗО немедленно срабатывает и выключает электричество в квартире, чтобы никто не пострадал, прикоснувшись ко сломанному прибору.
Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на заземлённый корпус компьютера, и лежал бы так себе незамеченным, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления (которая тоже фактически является одной гигантской землёй, т.к. протяжённость отопительной сети огромная), то догадайтесь, что бы стало с этим человеком.
А если бы, например, УЗО стояло, но корпус компьютера не был бы заземлён, то УЗО сработало бы только во время прикосновения человека к корпусу и батарее. Но, по крайней мере, оно бы в любом случае мгновенно сработало, в отличие от «автомата», который бы сработал только через некоторый промежуток времени, пусть и маленький, но не мгновенно, как УЗО, и к тому времени человек мог бы быть уже «зажарен». Казалось бы, тогда, можно и не заземлять корпусы электроприборов — УЗО же в любом случае «мгновенно» сработает и разомкнёт цепь. Но кто-нибудь хочет испытать судьбу на предмет того, успеет ли УЗО достаточно «мгновенно» сработать и отключить ток, пока этот ток не нанесёт серьёзных повреждений организму?
Так что и «земля» нужна, и УЗО нужно ставить.

Поэтому нужны все три провода: «фаза», «ноль» и «земля».

В квартире к каждой розетке подходит тройка проводов «фаза», «ноль», «земля».
Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета — всё это называют «слаботочкой», потому что там протекают маленькие токи, неопасные), и идут в квартиру.
В квартире на стене (в современных квартирах) висит внутренний квартирный щиток.
Там эти три провода расщепляются и на каждую «точку доступа» к электричеству стоит свой отдельный «автомат», подписнанный: «кухня», «зал», «комната», «стиральная машина», и так далее.
(на рисунке ниже: сверху стоит «общий» автомат; после которого стоят подписанные «отдельные» автоматы; зелёный провод — земля, синий — ноль, коричневый — фаза: это стандарт цветового обозначения проводов)



От каждого такого «отдельного» автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка проводов к печке, тройка проводов к посудомойке, одна тройка проводов на все зальные розетки, тройка проводов на освещение, и т.п..

Наиболее популярно сейчас совмещать «главный» автомат и УЗО в одном устройстве (на рисунке ниже оно показано слева). Счётчик электроэнергии ставится между «главным» общим автоматом (который имеет также встроенное УЗО) и остальными, «отдельными», автоматами (синий — ноль, коричневый — фаза, зелёный — земля: это стандарт цветового обозначения проводов):



И вот ещё до кучи схема, по сути, о том же (только здесь главный автомат и УЗО — это разные устройства):

Каждый «автомат» изготовлен на заводе под определённую максимально допустимую силу тока.

Поэтому он «вырубается», если вы даёте слишком большую нагрузку на «точке доступа» (например, включили слишком много всего мощного в розетки в зале).

Также, автомат «вырубится» в случае «короткого замыкания» (замыкания фазы на ноль), чем спасёт вашу квартиру от пожара.

Жизнь человека, при отсутствии правильного заземления электроприборов, автомат без УЗО не спасёт, так как автомат слишком медленно срабатывает (это более грубое устройство, так сказать).

Вроде бы, по этой теме пока всё.

halt-hammerzeit.blogspot.com

Что такое фаза, ноль, земля в электрике и зачем они нужны

Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.

Простое объяснение

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке — выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человека от поражения электрическим током. Подробнее о заземлении вы можете узнать в соответствующем разделе сайта.

Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить цветовую маркировку проводов, чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику«!

Рекомендуем также прочитать:

samelectrik.ru

Фаза и ноль в электрике

Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления. Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой. В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.

В чем отличие фазного проводника от нулевого?

Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.

Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.

Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.

В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.

В зависимости от назначения электропередающей линии она может иметь:

  • Глухозаземленный нейтральный кабель.
  • Изолированный нулевой провод.
  • Эффективно-заземленный ноль.

Первый тип линий все чаще используется при обустройстве современных жилых зданий.

Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.

Наглядно про разницу между фазой и нолем на видео:

Для чего нужен заземляющий кабель?

Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.

На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.

Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Заключение

В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.

yaelectrik.ru

фаза и ноль. Куда что течет, откуда что берется? Ликбез

Ток течет из за разности потенциалов. В один период потенциал больше чем у земли, в другой период, потенциал меньше чем у земли. Деньги платишь за то, что создается эта самая разность потенциалов в фазе относительно земли или нуля. Это так же с водой по сути. Вода тоже из земли берется, а если бы не строили водонапорные башни, или насосные станции, которые создают разность уровней (по сути потенциалов) , то и вода не текла бы. Так что не важно откуда ток берется из земли или с электростанции, важно то, за счет чего он движется, А движется он за счет разности потенциалов, которая создается за счет работы всяких устройств на электростанции. По другому из земли ток никак не получить))

Каша у вас — даже разгребать не хочется.
Из основного: из ноля ничего не течет; «ноль» и «земля» — разное.
Почитайте внимательно еще раз ключевые понятия.

Лампочка светиться не будет, хотя напруга, возожно, будет.
Ток течет по замкнутой цепи, т. е. второй «нулевой» вывод розетки должен быть воткнут в землю, а величина тока будет определяться сопротивлением земли промеж ломом и воткнутым в землю выводом.
Правда, «нулевой» вывод ужо «воткнут» в землю изначально.
Ессно, ответ некорректный, но.. . но такой уж и сам вопрос.

P.S.
Все переменные розетки запитываются от транчформатора.. . с которым Вам все ясно.. . что, судя по вопросу, сомнительно.

Так воткните два лома, а между ними подключите лампочку и пользуйтесь дармовой электоэнергией)) )
В вашем случае земля является проводником

Для того чтобы в этом разбираться нужно как минимум прослушать курс по энергетике.
На электростанции «О» заземлен, на подстанции «О» заземлен, жилой многоквартирный дом заземлен. Все это заземлено на специальный контур заземления. Это сделано для того чтобы не было разности потенциалов между домами, между этажами, между квартирами. И если вас бьет слегка током когда вы набираете воду в ванную или умываетесь, то это не всегда значит что кто то ворует электроэнергию, это и есть разность потенциалов между нулями. Она блуждает по земле и проедает оболочки и броню кабелей и делает еще много, много нехороших вещей.
PS если воткнуть хорошо два лома, то работает транзисторный радиоприемник, я в детстве так пробовал.

Тогда вопрос. Вода вытекает из трубы, втекает в другую трубу обратно к источнику. Между этими двумя трубами стоит потребитель и жадно пьёт вытекающую водичку. Откуда в источнике восполняется выпитая водица!?! (Если система замкнутая по контуру, как в случае в вашими генераторами и ломами?) а потребитель сливает воду вне цикла системы потребления. Т, е. откуда в системе электроснабжения генератором появляются Электроны с неизрасходованным зарядом.

touch.otvet.mail.ru

Откуда берется ноль в трансформаторе

Защитное зануление

Защитное зануление от точки «А» до точки «Б»

Откуда к нам в дом попадает защитное зануление, оно же ноль или нейтраль? Давайте рассмотрим его путь от трансформаторной подстанции. Как видно из схемы (внизу), начинается оно с глухозаземленной нейтрали.

В нашем случае глухозаземленная нейтраль – это нейтраль силового трансформатора, соединённая с заземляющим устройством. Затем вместе с линией, состоящей из трех фаз, нейтраль попадает во вводной шкаф и распределяется по электрощитам на этажах.

От нее берется рабочий ноль, который вместе с фазой образует привычное для нас фазное напряжение. Ноль называется рабочим, потому что вы используете его для работы электроприборов (электроустановок).

А вот отдельный ноль (защитный ноль), взятый со щитка, электрически соединенный с глухозаземленной нейтралью, и образует защитное зануление .

Помните, в цепи защитных зануляющих проводников не должно быть разделяющих приспособлений и предохранителей.

Никогда не используйте рабочий ноль как защитный (защитное зануление). этим вы подвергните опасности, как себя, так и окружающих вас людей.

Поскольку при обрыве цепи рабочего нуля, фазный ток через включенные нагрузки попадет на корпус электроприбора. и вместо защиты вы получите ничем не защищенный источник опасного напряжения .

Назначение защитного зануления – устранение опасности поражения электрическим током при прикосновении к корпусу электроустановки или другим нетоковедущим частям, оказавшимся под напряжением, при замыкании фазы на корпус или землю.

Принцип действия зануления заключается в превращении замыкания фазного проводника на корпус электроустановки в однофазное короткое замыкание. Что вызывает большой ток, который обеспечивает быстрое срабатывание защиты поврежденной электроустановки и отключает ее от питающей сети.

Электросхема по теме защитное зануление

1 – Трансформаторная подстанция

  • S – Отсекатель
  • FV1 – FV6 разрядники
  • F1 – F3 предохранители
  • Т – силовой трансформатор
  • S1 – рубильник
  • SF1 – SF3 – автоматические выключатели
  • A. B. C – Линия состоящая из фаз
  • N – Глухозаземленная нейтраль

2 – Многоэтажный дом

2b – Распределительный электрический щит

  • SF – автоматический выключатель
  • BW – Счетчик
  • L c – фаза
  • N – нейтраль

2C – Вводной электрошкаф

  • A. B. C – Фазные линии
  • N – Глухозаземленная нейтраль
  • F 4 – F 6 Предохранители
  • S 2 – Рубильник

Зануляющие и питающие проводники должны быть одного сечения, кабеля с тремя проводами легко решают эту проблему. Нужное вам сечение провода можете выбрать по таблице «Допустимые значения тока, А»

Статья написана в ознакомительных целях для более простого представления, что такое защитное зануление и откуда оно берется.

Удачного монтажа!
————————————————————————————-
Источники:
Консультант Святенко С. П.
Сайт «Школа для электрика» http://electricalschool.info
Г. А. Дулицкий, А.П. Комаревцев справочник «Электробезопасность при эксплуатации электроустановок до 1000В»

Устройство трансформатора

Что такое трансформатор? Как он работает и для чего он вообще нужен? Давайте разберемся.

Слово “трансформатор” образуется от английского слова “transform” – преобразовавывать, изменяться. Надеюсь все помнят фильм “Трансформеры”. Там машинки лекго преобразовывались в трансформеров и обратно. Но. трансформатор у нас не преобразовывается по внешнему виду. Он обладает еще более удивительным свойством – преобразовывает переменное напряжение одного значения в переменное напряжение другого значения! Это свойство трансформатора очень широко используется в радиоэлектронике и электротехнике.

Трансформаторы бывают однофазные и трехфазные. Что это означает? Да все просто! Есть ток, который течет по четырем проводам – три фазы и ноль – это и есть трехфазный электрический ток. А есть ток, который течет по двум проводам – фаза и ноль – это однофазный ток. Для того, чтобы из трехфазного сделать однофазный, достаточно взять один провод трехфазного и его другой провод – ноль. Однофазный электрический ток поступает в Ваши дома. В вашей розетке переменный однофазный электрический ток 220 Вольт. Думаю, не будем сильно углубляться в подробности и рассмотрим в нашей статье однофазный трансформатор бытового назначения.

Рассмотрим вот такую картинку:

1 – первичная обмотка трансформатора

3 – вторичная обмотка трансформатора

Ф – направление магнитного потока

U1 – напряжение на первичной обмотке

U2 – напряжение на вторичной обмотке

На картинке показан самый обычный однофазный трансформатор. Давайте разберемся что у нас там накаверкано. 2 – это у нас магнитопровод. Он состоит из пластинок стали, по нему течет магнитный поток Ф (показано стрелками). Этот магнитный поток создается переменным напряжением, поданым на провод, намотанный на этот самый магнитопровод Ф. А снимается напряжение с провода, намотанного на другой стороне магнитопровода. Откуда берется напряжение во вторичной обмотке? Оно ведь никак не связано проводами? Все дело в магнитном потоке, который создает первичная обмотка. А вторичная обмотка его ловит и преобразовывает в переменное напряжение с такой же частотой.

Вот здесь точно такой же трансформатор, но в другом конструктивном виде.

Такой конструктивный вид обладат такими плюсами, как малые габариты и удобство использования.

Так от чего же зависит напряжение, которое выдает нам трансформатор на вторичной обмотке? А зависит оно от витков, которые намотаны на первичной и вторичной обмотке ! Вот она, вот она, формула моей мечты! ВОТ ОНА!

U2 – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

I 1 – сила тока первичной обмотки

I 2 – сила тока вторичной обмотки

В трансформаторе соблюдается закон сохранения энергии, то есть какая мощность в транс заходит, такая и выходит.

Если подзабыли, что такое мощность, тогда читаем статью работа и мощность постоянного тока. Для переменного тока она определяется также, но только вместо постоянного напряжения берется среднеквадратичное напряжение.

Итак, у нас в гостях трансформатор от выжигательного прибора по дереву:

Его первичная обмотка – это цифры 1,2. Вторичная обмотка – цифры 3,4. N1 – 2650 витков, N2 – 18 витков. Транс построен по упрощенной конструкции:

Его внутренности выглядят вот так:

Подключаем первичную обмотку транса к 220 Вольтам

Ставим крутилку на мультике на измерения переменного тока и замеряем напряжение на первичной обмотке (напряжение сети).

Замеряем напряжение на вторичной обмотке.

Настало время проверить наши формулы

1.54/224=0.006875 (коэффициент отношения напряжения)

18/2650=0.006792 (коэффициент отношения обмоток)

Сравниваем числа. погрешность вообще копейки! Формула работает, ура! Погрешность связана с потерями на нагрев обмоток транса и магнитопровода, а также погрешность измерения мультика. Насчет силы тока есть одно простое правило для транса: понижая напряжение, повышаем силу тока и наоборот, повышая напряжение трансом, понижаем силу тока.

Трансформатор, который преобразовывает большее напряжение в меньшее. называется понижающим. а который преобразовывает меньшее напряжение в большее напряжение, называется повышающим. Также есть трансы, которые выдают такое же напряжение на выходе, как и на входе. Их чаще всего называют разделительными или развязывающими. У понижающего трансформатора вторичная обмотка выполнена из провода больше диаметра, потому что через нее потечет большая сила тока при низкоомной нагрузке. Если провод во вторичной обмотке будет малого диаметра, то согласно закону Джоуля-Ленца у нас он просто напросто нагреется и спалит весь транс.

Основные неисправности транса могут заключаться в обрыве или в коротком замыкании обмоток. Хоть на трансе они прилегают очень пллотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка транса. Если где-то возникло короткое замыкание, то транс будет сильно греться или издавать сильный гул при работе. Все зависит от того, где коротнули обмотки.

При обрыве все намного проще. Для этого с помощью мультика мы проверяем целостность первичной и вторичной обмотки. На фото ниже я проверяю целостность первичной обмотки, которая состоит из 2650 витков. Сопротивление есть? Значит все ОК. Обмотка не в обрыве. Если бы была в обрыве, мультик показал бы на дисплее “1”.

Таким же способом проверяем и вторичную обмотку, которая состоит из 18 витков

В заключении хотелось бы добавить, что некоторые электронщики сами мотают трансы. С помощью формулы транса они могут получить напряжение какое захотят. Кто-то с нуля мотает транс, а кто то переделывает под себя, добавляя обмотки или наоборот убирая лишние.

Фаза, ноль и земля – что это такое?

Электрическая энергия, которой мы пользуемся, вырабатывается генераторами переменного тока на электростанциях. Их вращает энергия сжигаемого топлива (угля, газа) на ТЭС, падающей воды на ГЭС или ядерного распада на АЭС. До нас электричество добирается через сотни километров линий электропередач, претерпевая по дороге преобразования с одной величины напряжения в другую. От трансформаторной подстанции оно приходит в распределительные щитки подъездов и далее – в квартиру. Или по линии распределяется между частными домами поселка или деревни.

Разберемся, откуда берутся понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — понижающий трансформатор. с его обмоток низкого напряжения идет питание потребителю. Обмотки соединяются в звезду внутри трансформатора, общая точка которой (нейтраль ) заземляется на трансформаторной подстанции. Отдельным проводником она идет к потребителю. Идут к нему и проводники трех выводов других концов обмоток. Эти три проводника называются «фазами » (L1, L2, L3), а общий проводник – нулем (PEN).

Система с глухозаземленной нейтралью

Поскольку нулевой проводник заземлен, то такая система называется «системой с глухозаземленной нейтралью ». Проводник PEN называется совмещенным нулевым проводником. До выхода в свет 7-го издания ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования. Для этого их соединяли с нулем, и это называлось занулением. Но через ноль шел и рабочий ток, и его потенциал не всегда равнялся нулю, что создавало риск поражения электрическим током.

Теперь из вновь вводимых трансформаторных подстанций выходят два нулевых проводника: нулевой рабочий (N) и нулевой защитный (РЕ). Функции их разделены: по рабочему протекает ток нагрузки, а защитный соединяет подлежащие заземлению токопроводящие части с контуром заземления подстанции. На отходящих от нее линиях электропередачи нулевой защитный проводник дополнительно соединяют с контуром повторного заземления опор, содержащих элементы защиты от перенапряжений. При вводе в дом его соединяют с контуром заземления.

Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

Напряжение между фазами трехфазной системы называют линейным. а между фазой и рабочим нулем – фазным. Номинальные фазные напряжения равны 220 В, а линейные – 380 В. Провода или кабели, содержащие в себе все три фазы, рабочий и защитный ноль, проходят по этажным щиткам многоквартирного дома. В сельской местности они расходятся по поселку при помощи самонесущего изолированного провода (СИП). Если линия содержит четыре алюминиевых провода на изоляторах, значит, используются три фазы и PEN. Разделение на N и РЕ в таком случае выполняется для каждого дома индивидуально во вводном щитке.

К каждому потребителю в квартиру приходит одна фаза, рабочий и защитный ноль. Потребители дома распределяются по фазам равномерно, чтобы нагрузка была одинаковой. Но на практике этого не получается: невозможно предугадать, какую мощность будет потреблять каждый абонент. Так как токи нагрузки в разных фазах трансформатора не одинаковы, то происходит явление, называемое «смещением нейтрали ». Между «землей» и нулевым проводником у потребителя появляется разность потенциалов. Она увеличивается, если сечения проводника недостаточно или его контакт с выводом нейтрали трансформатора ухудшается. При прекращении связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю. В ненагруженных фазах напряжение становится близким к 380 В, и все оборудование выходит из строя.

В случае, когда в такую ситуацию попадает проводник PEN, под напряжением оказываются все зануленные корпуса щитов и электроприборов. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

Как распознать фазные и защитные проводники

Фазные проводники несут в себе потенциал относительно земли, равный 220 В (фазному напряжению). Прикосновение к ним опасно для жизни. Но на этом основан способ их распознавания. Для этого применяется прибор, называемый однополюсным указателем напряжения или индикатором. Внутри него расположены последовательно соединенные лампочка и резистор. При прикосновении к «фазе» индикатором ток протекает через него и тело человека в землю. Лампочка светится. Сопротивление резистора и порог зажигания лампочки подобраны так, чтобы ток был за гранью чувствительности человеческого организма и им не ощущался.

Конструкция однополюсного указателя напряжения

Конструкция однополюсного указателя напряжения

Источники: http://masstter.com/elektrika/zashhitnoe-zanulenie.html, http://www.ruselectronic.com/news/ustrojstvo-transformatora/, http://electric-tolk.ru/faza-nol-i-zemlya-chto-eto-takoe/

electricremont.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о