Параллельное или последовательное соединение: Последовательное и параллельное соединение — это… Что такое Последовательное и параллельное соединение?

Содержание

Последовательное и параллельное соединение — это… Что такое Последовательное и параллельное соединение?

Последовательное и параллельное соединение

Последовательное соединение проводников.

Параллельное соединение проводников.

Последовательное и параллельное соединение в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все, входящие в цепь, элементы объединены двумя узлами и не имеют связей с другими узлами. При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Последовательное соединение

При последовательном соединении проводников сила тока в любых частях цепи одна и та же: I = I1 = I2

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи: U = U1 + U2

Резисторы

Катушка индуктивности

Электрический конденсатор

.

Мемристоры

Параллельное соединение

Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединенных проводниках: I = I1 + I2

Напряжение на участках цепи АВ и на концах всех параллельно соединенных проводников одно и то же: U = U1 = U2

Резисторы

.

Катушка индуктивности

.

Электрический конденсатор

.

Мемристоры

См. также


Wikimedia Foundation. 2010.

  • Последовательное деление
  • Последняя фантазия

Смотреть что такое «Последовательное и параллельное соединение» в других словарях:

  • Последовательное и параллельное соединение проводников — Последовательное соединение проводников …   Википедия

  • Параллельное соединение — Последовательное соединение проводников. Параллельное соединение проводников. Последовательное и параллельное соединение в электротехнике  два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы… …   Википедия

  • Параллельное соединение (информатика) — В области телекоммуникаций и информатике параллельным соединением называют метод передачи нескольких сигналов с данными одновременно по нескольким параллельным каналам. Это принципиально отличается от последовательного соединения; это различие… …   Википедия

  • Последовательное соединение — проводников. Параллельное соединение проводников. Последовательное и параллельное соединение в электротехнике  два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так,… …   Википедия

  • Последовательное соединение (информатика) — В области телекоммуникаций и информатике под термином последовательное соединение понимают процесс пересылки данных по одному биту за раз (последовательно) по каналу связи или компьютерной шине. Это противопоставляется параллельному соединению, в …   Википедия

  • СОЕДИНЕНИЕ — (1) деталей, изделий, конструкций способы механического скрепления или сочленения составных частей для образования из них машин, агрегатов, механизмов, приборов, а также сборных элементов в строительных конструкциях с целью выполнения ими… …   Большая политехническая энциклопедия

  • Стабилитрон — У этого термина существуют и другие значения, см. Стабилитрон (значения) …   Википедия

  • Электрическая цепь — У этого термина существуют и другие значения, см. Цепь (значения). Рисунок 1  Условное обозначение электрической цепи Электрическая цепь   совокупность устройств, элементов, предназначенных для протекания …   Википедия

  • Электрические цепи — Электрической цепью называют совокупность соединенных друг с другом источников электрической энергии и нагрузок, по которым может протекать электрический ток. Изображение электрической цепи с помощью условных знаков называют электрической схемой… …   Википедия

  • Реостатно-контакторная система управления — (сокр. РКСУ) комплекс электромеханического оборудования, предназначенного для регулирования тока в обмотках тяговых электродвигателей (ТЭД) подвижного состава метрополитена, трамвая, троллейбуса и железных дорог. Содержание 1 Принцип действия …   Википедия


Как отличить параллельное соединение от последовательного

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

В физике изучается тема про параллельное и последовательное соединение, причем это могут быть не только проводники, но и конденсаторы. Здесь важно не запутаться в том, как выглядит каждое из них на схеме. А уже потом применять конкретные формулы. Их, кстати, нужно помнить наизусть.

Как различить эти два соединения?

Внимательно посмотрите на схему. Если провода представить как дорогу, то машины на ней будут играть роль резисторов. На прямой дороге без каких-либо разветвлений машины едут одна за другой, в цепочку. Так же выглядит и последовательное соединение проводников. Дорога в этом случае может иметь неограниченное количество поворотов, но ни одного перекрестка. Как бы ни виляла дорога (провода), машины (резисторы) всегда будут расположены друг за другом, по одной цепочке.

Совсем другое дело, если рассматривается параллельное соединение. Тогда резисторы можно сравнить со спортсменами на старте. Они стоят каждый на своей дорожке, но направление движения у них одинаковое, и финиш в одном месте. Так же и резисторы — у каждого из них свой провод, но все они соединены в некоторой точке.

Формулы для силы тока

О ней всегда идет речь в теме «Электричество». Параллельное и последовательное соединение по-разному влияют на величину силы тока в резисторах. Для них выведены формулы, которые можно запомнить. Но достаточно просто запомнить смысл, который в них вкладывается.

Так, ток при последовательном соединении проводников всегда одинаков. То есть в каждом из них значение силы тока не отличается. Провести аналогию можно, если сравнить провод с трубой. В ней вода течет всегда одинаково. И все препятствия на ее пути будут сметаться с одной и той же силой. Так же с силой тока. Поэтому формула общей силы тока в цепи с последовательным соединением резисторов выглядит так:

Здесь буквой I обозначена сила тока. Это общепринятое обозначение, поэтому его нужно запомнить.

Ток при параллельном соединении уже не будет постоянной величиной. При той же аналогии с трубой получается, что вода разделится на два потока, если у основной трубы будет ответвление. То же явление наблюдается с током, когда на его пути появляется разветвление проводов. Формула общей силы тока при параллельном соединении проводников:

Если разветвление составлено из проводов, которых больше двух, то в приведенной формуле на такое же количество станет больше слагаемых.

Формулы для напряжения

Когда рассматривается схема, в которой выполнено соединение проводников последовательно, то напряжение на всем участке определяется суммой этих величин на каждом конкретном резисторе. Сравнить эту ситуацию можно с тарелками. Удержать одну из них легко получится одному человеку, вторую рядом он тоже сможет взять, но уже с трудом. Держать в руках три тарелки рядом друг с другом одному человеку уже не удастся, потребуется помощь второго. И так далее. Усилия людей складываются.

Формула для общего напряжения участка цепи с последовательным соединением проводников выглядит так:

Другая ситуация складывается, если рассматривается параллельное соединение резисторов. Когда тарелки ставятся друг на друга, их по-прежнему может удержать один человек. Поэтому складывать ничего не приходится. Такая же аналогия наблюдается при параллельном соединении проводников. Напряжение на каждом из них одинаковое и равно тому, которое на всех них сразу. Формула общего напряжения такая:

Формулы для электрического сопротивления

Их уже можно не запоминать, а знать формулу закона Ома и из нее выводить нужную. Из указанного закона следует, что напряжение равно произведению силы тока и сопротивления. То есть U = I * R, где R — сопротивление.

Тогда формула, с которой нужно будет работать, зависит от того, как выполнено соединение проводников:

  • последовательно, значит, нужно равенство для напряжения — Iобщ * Rобщ = I1 * R1 + I2 * R2;
  • параллельно необходимо пользоваться формулой для силы тока — Uобщ / Rобщ = U1 / R1 + U2 / R2 .

Далее следуют простые преобразования, которые основываются на том, что в первом равенстве все силы тока имеют одинаковое значение, а во втором — напряжения равны. Значит, их можно сократить. То есть получаются такие выражения:

  1. R общ = R 1 + R 2 (для последовательного соединения проводников).
  2. 1 / R общ = 1 / R 1 + 1 / R 2 (при параллельном соединении).

При увеличении числа резисторов, которые включены в сеть, изменяется количество слагаемых в этих выражениях.

Стоит отметить, что параллельное и последовательное соединение проводников по-разному влияют на общее сопротивление. Первое из них уменьшает сопротивление участка цепи. Причем оно оказывается меньше самого маленького из использованных резисторов. При последовательном соединении все логично: значения складываются, поэтому общее число всегда будет самым большим.

Работа тока

Предыдущие три величины составляют законы параллельного соединения и последовательного расположения проводников в цепи. Поэтому их знать нужно обязательно. Про работу и мощность необходимо просто запомнить базовую формулу. Она записывается так: А = I * U * t, где А — работа тока, t — время его прохождения по проводнику.

Для того чтобы определить общую работу при последовательном соединении нужно заменить в исходном выражении напряжение. Получится равенство: А = I * (U 1 + U 2) * t, раскрыв скобки в котором получится, что работа на всем участке равна их сумме на каждом конкретном потребителе тока.

Аналогично идет рассуждение, если рассматривается схема параллельного соединения. Только заменять полагается силу тока. Но результат будет тот же: А = А 1 + А 2.

Мощность тока

При выведении формулы для мощности (обозначение «Р») участка цепи опять нужно пользоваться одной формулой: Р = U * I. После подобных рассуждений получается, что параллельное и последовательное соединение описываются такой формулой для мощности: Р = Р 1 + Р 2.

То есть, как бы ни были составлены схемы, общая мощность будет складываться из тех, которые задействованы в работе. Именно этим объясняется тот факт, что нельзя включать в сеть квартиры одновременно много мощных приборов. Она просто не выдержит такой нагрузки.

Как влияет соединение проводников на ремонт новогодней гирлянды?

Сразу же после того, как перегорит одна из лампочек, станет ясно, как они были соединены. При последовательном соединении не будет светиться ни одна из них. Это объясняется тем, что пришедшая в негодность лампа создает разрыв в цепи. Поэтому нужно проверить все, чтобы определить, какая перегорела, заменить ее – и гирлянда станет работать.

Если в ней используется параллельное соединение, то она не перестает работать при неисправности одной из лампочек. Ведь цепь не будет полностью разорвана, а только одна параллельная часть. Чтобы отремонтировать такую гирлянду, не нужно проверять все элементы цепи, а только те, которые не светятся.

Что происходит с цепью, если в нее включены не резисторы, а конденсаторы?

При их последовательном соединении наблюдается такая ситуация: заряды от плюсов источника питания поступают только на внешние обкладки крайних конденсаторов. Те, что находятся между ними, просто передают этот заряд по цепочке. Этим объясняется то, что на всех обкладках появляются одинаковые заряды, но имеющие разные знаки. Поэтому электрический заряд каждого конденсатора, соединенного последовательно, можно записать такой формулой:

Для того чтобы определить напряжение на каждом конденсаторе, потребуется знание формулы: U = q / С. В ней С — емкость конденсатора.

Общее напряжение подчиняется тому же закону, который справедлив для резисторов. Поэтому, заменив в формуле емкости напряжение на сумму, мы получим, что общую емкость приборов нужно вычислять по формуле:

Упростить эту формулу можно, перевернув дроби и заменив отношение напряжения к заряду емкостью. Получается такое равенство: 1 / С = 1 / С 1 + 1 / С 2.

Несколько по-другому выглядит ситуация, когда соединение конденсаторов — параллельное. Тогда общий заряд определяется суммой всех зарядов, которые накапливаются на обкладках всех приборов. А значение напряжения по-прежнему определяется по общим законам. Поэтому формула для общей емкости параллельно соединенных конденсаторов выглядит так:

С = (q 1 + q 2 ) / U.

То есть эта величина считается, как сумма каждого из использованных в соединении приборов:

Как определить общее сопротивление произвольного соединения проводников?

То есть такого, в котором последовательные участки сменяют параллельные, и наоборот. Для них по-прежнему справедливы все описанные законы. Только применять их нужно поэтапно.

Сперва полагается мысленно развернуть схему. Если представить ее сложно, то нужно нарисовать то, что получается. Объяснение станет понятнее, если рассмотреть его на конкретном примере (см. рисунок).

Ее удобно начать рисовать с точек Б и В. Их необходимо поставить на некотором удалении друг от друга и от краев листа. Слева к точке Б подходит один провод, а вправо направлены уже два. Точка В, напротив, слева имеет два ответвления, а после нее расположен один провод.

Теперь необходимо заполнить пространство между этими точками. По верхнему проводу нужно расположить три резистора с коэффициентами 2, 3 и 4, а снизу пойдет тот, у которого индекс равен 5. Первые три соединены последовательно. С пятым резистором они параллельны.

Оставшиеся два резистора (первый и шестой) включены последовательно с рассмотренным участком БВ. Поэтому рисунок можно просто дополнить двумя прямоугольниками по обе стороны от выбранных точек. Осталось применить формулы для расчета сопротивления:

  • сначала ту, которая приведена для последовательного соединения;
  • потом для параллельного;
  • и снова для последовательного.

Подобным образом можно развернуть любую, даже очень сложную схему.

Задача на последовательное соединение проводников

Условие. В цепи друг за другом подсоединены две лампы и резистор. Общее напряжение равно 110 В, а сила тока 12 А. Чему равно сопротивление резистора, если каждая лампа рассчитана на напряжение в 40 В?

Решение. Поскольку рассматривается последовательное соединение, формулы его законов известны. Нужно только правильно их применить. Начать с того, чтобы выяснить значение напряжения, которое приходится на резистор. Для этого из общего нужно вычесть два раза напряжение одной лампы. Получается 30 В.

Теперь, когда известны две величины, U и I (вторая из них дана в условии, так как общий ток равен току в каждом последовательном потребителе), можно сосчитать сопротивление резистора по закону Ома. Оно оказывается равным 2,5 Ом.

Ответ. Сопротивление резистора равно 2,5 Ом.

Задача на соединение конденсаторов, параллельное и последовательное

Условие. Имеются три конденсатора с емкостями 20, 25 и 30 мкФ. Определите их общую емкость при последовательном и параллельном соединении.

Решение. Проще начать с параллельного подключения. В этой ситуации все три значения нужно просто сложить. Таким образом, общая емкость оказывается равной 75 мкФ.

Несколько сложнее расчеты будут при последовательном соединении этих конденсаторов. Ведь сначала нужно найти отношения единицы к каждой из этих емкостей, а потом сложить их друг с другом. Получается, что единица, деленная на общую емкость, равна 37/300. Тогда искомая величина получается приблизительно 8 мкФ.

Ответ. Общая емкость при последовательном соединении 8 мкФ, при параллельном — 75 мкФ.

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Последовательное и параллельное соединение проводников

В реальной жизни сложно себе представить существование в электрической цепи одного единственного потребителя. Такие цепи существуют, но всегда очень примитивны. Например, если мы с вами включим в розетку одну единственную лампочку, то в цепи лампочка-розетка, мы будем иметь одно единственное устройство-потребитель. Даже если электризуются волосы, то можно говорить о двух потребителях. Но на практике таких устройств всегда гораздо больше и если рассмотреть ту же самую цепь в разрезе электростанция-лампочка, то схема подключения будет содержать уже множество дополнительных потребителей.

Внутри электрических устройств также используются целые схемы, которые содержат в своем составе множество элементов. Например, управляющая схема телевизора состоит из множества резисторов, транзисторов, диодов и других элементов. Достаточно взглянуть на любую печатную плату и обратить внимание на количество вспомогательных «дорожек». Все они соединены последовательно или параллельно. Кроме того, типы соединений могут смешиваться.

Каждый тип соединения подразумевает определенное соотношение между основными параметрами, такими как напряжение, сила тока и сопротивление.

Типов соединения бывает всего два, а третий – это комбинированный вариант подключения.

Первый вариант соединения – это последовательное подключение. Второй вариант – параллельное подключение. Эти подключения могут комбинироваться в реальной практике.

Чем отличаются параллельное и последовательное подключения

Последовательное подключение представляет собой последовательное соединение проводников в одной общей электрической цепи.

Почему оно последовательное?

Всё очень просто – проводники располагаются в электрической цепи аналогично птицам, которые сидят на проводе – один за другим. В данном случае представим, что птицы держатся за лапы – каждая птица держит своей левой лапой правую лапу ближайшей птицы. Получаем ёлочную гирлянду. Все сидят последовательно.

Кстати говоря, если свободные лапы крайних птиц прислонить к источнику питания, то выйдет фейерверк :)…

Представим, например, светодиод, который имеет + и -. Для того, чтобы объединить такие светодиоды в единую последовательную цепь, мы должны соединить ножку + первого светодиода с плюсом источника постоянного тока, а ножку – соединить с ножкой + следующего светодиода. Ножку – следующего светодиода мы подключаем также к ножке + следующего светодиода, а – подключаем к – источника постоянного тока. Вот мы и собрали простейшую последовательную цепь из трех элементов.

Параллельное подключение выглядит немного иначе.

Если вернуться к примеру с птицами, то птицы уже не сидят на проводе одна за другой, а держат друг друга лапами.

Причем, птицы так извернулись, что одна птица держит своей правой лапой, правую лапу соседней птицы, а левой лапой левую лапу этой же птицы.

Для того, чтобы зажарить таких птиц, остаётся только прислонить букет из этих соответствующих друг другу лап к полюсам источника тока.

Здесь мы берем, скажем, два светодиода, которые имеют ножки + и – соответственно, и соединяем сначала ножки светодиодов по принципу + к + и – к -.

Собранную цепь мы подключаем к источнику тока соответственно полюсам, т.е. общий плюс от двух светодиодов присоединяем к + источника тока, а общий – к минусу источника тока. В результате получили параллельную цепь.

Смешанное соединение сочетает в себе как параллельное, так и последовательные соединения. В зависимости от цели, эти комбинации могут быть различными.

На практике чаще всего используются именно смешанные схемы. Часто анализ такого соединения вызывает затруднения у студентов и школьников.

На самом же деле, тут нет ничего сложного.

Для того, чтобы разобраться во всех параметрах, нужно попросту разложить цепь на удобные фрагменты.

Так, если мы имеем ряд последовательно подключенных резисторов, которые скомпонованы вместе с параллельно соединенными резисторами, то цепь можно разбить на два обобщенных условных участка, где и определить значимый параметр.

Часто испуг вызывает появление в схеме поворотов, углов и изгибов. Человек теряется и не понимает, что от смены направления линии соединительных проводов, логика не меняется.  

Основные параметры последовательного и параллельного подключений

Типы подключений следует различать из-за особенностей основных параметров электрической цепи при таких подключениях.

При параллельном подключении, напряжение на элементах цепи всегда будет постоянным, а сила тока суммируется из токов на каждом элементе. Есть еще такой параметр, как сопротивление. Мы не рекомендуем заучивать наизусть все формулы, а руководствоваться законом Ома, предположив, что один из параметров будет постоянным. Но для ускорения решения задач заучить выкладку может быть полезно. Собственно, там отношение единицы к сопротивлению цепи, равно сумме отношений 1 к каждому из сопротивлений.

При последовательном подключении, напряжение на каждом элементе будет суммироваться, а сила тока будет постоянной. Сопротивление мы также можем узнать из закона Ома. Или же запомнить, что сопротивление равно сумме сопротивлений элементов цепи.

Особенности параметров при последовательном и параллельном подключениях можно легко запомнить, если представить, что соединительные провода – это трубы, а электрический ток вода. Сравнить с водой тут можно именно силу тока. Почему же силу тока? Потому что ток характеризуется количеством заряженных частиц (читай, как наличие воды в трубе).

Представим, что в случае последовательного подключения мы соединяем две трубы одинакового сечения (представим именно одинаковое сечение, т.к. дальше уже начинают влиять такие параметры, как сопротивление) и в каждой трубе есть вода при её наличии в водопроводе. Если же мы соединим две трубы параллельно, то поток распределится равномерно (а на деле в соответствии с геометрическими параметрами труб) между двумя трубами, т.е сила тока будет суммироваться из всех участков.

Почему всё происходит именно так и почему при параллельном подключении ток распределяется именно по двум проводникам и суммируется? Это сложный фундаментальный вопрос, обсуждение которого займет ни одну статью. На данный момент предлагаю считать, что это просто свойство, которое нужно знать. Как и то, что лёд ощущается холодным, а огонь горячим.

При смешанном подключении мы предварительно должны разбить цепь на простые для понимания участки, а затем проанализировать, как они в итоге будут соединены. Соответственно, на выходе мы получим простой вариант несложного подключения, которое однозначно будет или последовательное, или параллельное.

Зная все эти параметры, мы легко можем проанализировать любую электрическую цепь и собрать новую с нужными параметрами.

Как пользоваться знаниями про особенности параллельного и последовательного подключений

Наверное, самый главный вопрос, который встаёт перед учеником – это зачем вообще всё это знать?

Тут всё довольно просто. Зная эти параметры, можно легко собрать нужную цепь. Например, представим, что мы хотим соединить два аккумулятора, напряжение каждого из которых 6 В для подключения автомобильного светодиода, рассчитанного на 12 В. Как соединить аккумуляторы? Если параллельно, то получим повышенную емкость и напряжение 6 В. Диод не «раскурится». Если же использовать последовательное подключение, то на выходе будем иметь сумму 6 В + 6 В = 12 В. Задача решена. Таких примеров можно привести очень и очень много.

Ещё один вопрос, как рассчитывать другие параметры (емкость, мощность, индуктивность) при последовательном и параллельном соединении проводников.

Например, если мы подключим последовательно 5 конденсаторов, как узнать общую емкость этой цепи? Конечно же, можно, опять-таки, заучить формулы. На практике вы их забудете сразу, как перестанете решать подобные задачи. Поэтому, гораздо важнее держать в уме физическое определение ёмкости, а уже из него выводить конкретный частный случай, помня, что при последовательном подключении сила тока всегда одинакова, а напряжение суммируется.

Вас также может заинтересовать

Параллельное соединение трех проводников. Теперь используем формулу расчета сопротивления. Последовательное соединение проводников

При решении задач принято преобразовывать схему, так, чтобы она была как можно проще. Для этого применяют эквивалентные преобразования. Эквивалентными называют такие преобразования части схемы электрической цепи, при которых токи и напряжения в не преобразованной её части остаются неизменными.

Существует четыре основных вида соединения проводников: последовательное, параллельное, смешанное и мостовое.

Последовательное соединение

Последовательное соединение – это такое соединение, при котором сила тока на всем участке цепи одинакова. Ярким примером последовательного соединения является старая елочная гирлянда. Там лампочки подключены последовательно, друг за другом. Теперь представьте, одна лампочка перегорает, цепь нарушена и остальные лампочки гаснут. Выход из строя одного элемента, ведет за собой отключение всех остальных, это является существенным недостатком последовательного соединения.

При последовательном соединении сопротивления элементов суммируются.

Параллельное соединение

Параллельное соединение – это соединение, при котором напряжение на концах участка цепи одинаково. Параллельное соединение наиболее распространено, в основном потому, что все элементы находятся под одним напряжением, сила тока распределена по-разному и при выходе одного из элементов все остальные продолжают свою работу.

При параллельном соединении эквивалентное сопротивление находится как:

В случае двух параллельно соединенных резисторов

В случае трех параллельно подключенных резисторов:

Смешанное соединение

Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.


Сначала найдем эквивалентное сопротивление для параллельного участка цепи, а затем прибавим к нему оставшееся сопротивление R 3 . Следует понимать, что после преобразования эквивалентное сопротивление R 1 R 2 и резистор R 3 , соединены последовательно.

Итак, остается самое интересное и самое сложное соединение проводников.

Мостовая схема

Мостовая схема соединения представлена на рисунке ниже.



Для того чтобы свернуть мостовую схему, один из треугольников моста, заменяют эквивалентной звездой.

И находят сопротивления R 1 , R 2 и R 3 .

Содержание:

Во всех электрических схемах используются резисторы, представляющие собой элементы, с точно установленным значением сопротивления. Благодаря специфическим качествам этих устройств, становится возможной регулировка напряжения и силы тока на любых участках схемы. Данные свойства лежат в основе работы практически всех электронных приборов и оборудования. Так, напряжение при параллельном и последовательном соединении резисторов будет отличаться. Поэтому каждый вид соединения может применяться только в определенных условиях, чтобы та или иная электрическая схема могла в полном объеме выполнять свои функции.

Напряжение при последовательном соединении

При последовательном соединении два резистора и более соединяются в общую цепь таким образом, что каждый из них имеет контакт с другим устройством только в одной точке. Иначе говоря, конец первого резистора соединяется с началом второго, а конец второго — с началом третьего и т.д.

Особенностью данной схемы является прохождение через все подключенные резисторы одного и того же значения электрического тока. С возрастанием количества элементов на рассматриваемом участке цепи, течение электрического тока становится все более затрудненным. Это происходит из-за увеличения общего сопротивления резисторов при их последовательном соединении. Данное свойство отражается формулой: R общ = R 1 + R 2 .

Распределение напряжения, в соответствии с законом Ома, осуществляется на каждый резистор по формуле: V Rn = I Rn x R n . Таким образом, при увеличении сопротивления резистора, возрастает и падающее на него напряжение.

Напряжение при параллельном соединении

При параллельном соединении, включение резисторов в электрическую цепь выполняется таким образом, что все элементы сопротивлений подключаются друг к другу сразу обоими контактами. Одна точка, представляющая собой электрический узел, может соединять одновременно несколько резисторов.

Такое соединение предполагает течение отдельного тока в каждом резисторе. Сила этого тока находится в обратно пропорциональной . В результате, происходит увеличение общей проводимости данного участка цепи, при общем уменьшении сопротивления. В случае параллельного соединения резисторов с различным сопротивлением, значение общего сопротивления на этом участке всегда будет ниже самого маленького сопротивления отдельно взятого резистора.

На представленной схеме, напряжение между точками А и В представляет собой не только общее напряжение для всего участка, но и напряжение, поступающее к каждому отдельно взятому резистору. Таким образом, в случае параллельного соединения, напряжение, подаваемое ко всем резисторам, будет одинаковым.

В результате, напряжение при параллельном и последовательном соединении будет отличаться в каждом случае. Благодаря этому свойству, имеется реальная возможность отрегулировать данную величину на любом участке цепи.

Нужно вычислить сопротивление последовательной, параллельной или комбинированной цепей? Нужно, если вы не хотите сжечь плату! Эта статья расскажет вам, как это сделать. Перед чтением, пожалуйста, уясните, что у резисторов нет «начала» и нет «конца». Эти слова вводятся для облегчения понимания изложенного материала.

Шаги

Сопротивление последовательной цепи

Сопротивление параллельной цепи

Сопротивление комбинированной цепи

Некоторые факты

  1. Каждый электропроводный материал имеет некоторое сопротивление, являющееся сопротивляемостью материала электрическому току.
  2. Сопротивление измеряется в Омах. Символ единицы измерения Ом — Ω.
  3. Разные материалы имеют разные значения сопротивления.
    • Например, сопротивление меди 0.0000017 Ом/см 3
    • Сопротивление керамики около 10 14 Ом/см 3
  4. Чем больше значение сопротивления, тем выше сопротивляемость электрическому току. Медь, которая часто используется в электрических проводах, имеет очень малое сопротивление. С другой стороны, сопротивление керамики очень велико, что делает ее прекрасным изолятором.
  5. Работа всей цепи зависит от того, какой тип соединения вы выберете для подключения резисторов в этой цепи.
  6. U=IR. Это закон Ома, установленный Георгом Омом в начале 1800х. Если вам даны любые две из этих переменных, вы легко найдете третью.
    • U=IR: Напряжение (U) есть результат умножения силы тока (I) * на сопротивление (R).
    • I=U/R: Сила тока есть частное от напряжение (U) ÷ сопротивление (R).
    • R=U/I: Сопротивление есть частное от напряжение (U) ÷ сила тока (I).
  • Запомните: при параллельном соединении существует несколько путей прохождения тока по цепи, поэтому в такой цепи общее сопротивление будет меньше сопротивления каждого отдельного резистора. При последовательном соединении ток проходит через каждый резистор в цепи, поэтому сопротивление каждого отдельного резистора добавляется к общему сопротивлению.
  • Общее сопротивление в параллельной цепи всегда меньше сопротивления одного резистора с самым низким сопротивлением в этой цепи. Общее сопротивление в последовательной цепи всегда больше сопротивления одного резистора с самым высоким сопротивлением в этой цепи.

Всем доброго времени суток. В прошлой статье я рассмотрел , применительно к электрическим цепям, содержащие источники энергии. Но в основе анализа и проектирования электронных схем вместе с законом Ома лежат также законы баланса , называемым первым законом Кирхгофа, и баланса напряжения на участках цепи, называемым вторым законом Кирхгофа, которые рассмотрим в данной статье. Но для начала выясним, как соединяются между собой приёмники энергии и какие при этом взаимоотношения между токами, напряжениями и .

Приемники электрической энергии можно соединить между собой тремя различными способами: последовательно, параллельно или смешано (последовательно — параллельно). Вначале рассмотрим последовательный способ соединения, при котором конец одного приемника соединяют с началом второго приемника, а конец второго приемника – с началом третьего и так далее. На рисунке ниже показано последовательное соединение приемников энергии с их подключением к источнику энергии

Пример последовательного подключения приемников энергии.

В данном случае цепь состоит из трёх последовательных приемников энергии с сопротивлением R1, R2, R3 подсоединенных к источнику энергии с U. Через цепь протекает электрический ток силой I, то есть, напряжение на каждом сопротивлении будет равняться произведению силы тока и сопротивления

Таким образом, падение напряжения на последовательно соединённых сопротивлениях пропорциональны величинам этих сопротивлений.

Из вышесказанного вытекает правило эквивалентного последовательного сопротивления, которое гласит, что последовательно соединённые сопротивления можно представить эквивалентным последовательным сопротивлением величина, которого равна сумме последовательно соединённых сопротивлений. Это зависимость представлена следующими соотношениями

где R – эквивалентное последовательное сопротивление.

Применение последовательного соединения

Основным назначением последовательного соединения приемников энергии является обеспечение требуемого напряжения меньше, чем напряжение источника энергии. Одними из таких применений является делитель напряжения и потенциометр


Делитель напряжения (слева) и потенциометр (справа).

В качестве делителей напряжения используют последовательно соединённые резисторы, в данном случае R1 и R2, которые делят напряжение источника энергии на две части U1 и U2. Напряжения U1 и U2 можно использовать для работы разных приемников энергии.

Довольно часто используют регулируемый делитель напряжения, в качестве которого применяют переменный резистор R. Суммарное сопротивление, которого делится на две части с помощью подвижного контакта, и таким образом можно плавно изменять напряжение U2 на приемнике энергии.

Ещё одним способом соединения приемников электрической энергии является параллельное соединение, которое характеризуется тем, что к одним и тем же узлам электрической цепи присоединены несколько преемников энергии. Пример такого соединения показан на рисунке ниже


Пример параллельного соединения приемников энергии.

Электрическая цепь на рисунке состоит из трёх параллельных ветвей с сопротивлениями нагрузки R1, R2 и R3. Цепь подключена к источнику энергии с напряжением U, через цепь протекает электрический ток с силой I. Таким образом, через каждую ветвь протекает ток равный отношению напряжения к сопротивлению каждой ветви

Так как все ветви цепи находятся под одним напряжением U, то токи приемников энергии обратно пропорциональны сопротивлениям этих приемников, а следовательно параллельно соединённые приемники энергии можно заметь одним приемником энергии с соответствующим эквивалентным сопротивлением, согласно следующих выражений

Таким образом, при параллельном соединении эквивалентное сопротивление всегда меньше самого малого из параллельно включенных сопротивлений.

Смешанное соединение приемников энергии

Наиболее широко распространено смешанное соединение приемников электрической энергии. Данной соединение представляет собой сочетание последовательно и параллельно соединенных элементов. Общей формулы для расчёта данного вида соединений не существует, поэтому в каждом отдельном случае необходимо выделять участки цепи, где присутствует только лишь один вид соединения приемников – последовательное или параллельное. Затем по формулам эквивалентных сопротивлений постепенно упрощать данные участи и в конечном итоге приводить их к простейшему виду с одним сопротивлением, при этом токи и напряжения вычислять по закону Ома. На рисунке ниже представлен пример смешанного соединения приемников энергии


Пример смешанного соединения приемников энергии.

В качестве примера рассчитаем токи и напряжения на всех участках цепи. Для начала определим эквивалентное сопротивление цепи. Выделим два участка с параллельным соединением приемников энергии. Это R1||R2 и R3||R4||R5. Тогда их эквивалентное сопротивление будет иметь вид

В результате получили цепь из двух последовательных приемников энергии R 12 R 345 эквивалентное сопротивление и ток, протекающий через них, составит

Тогда падение напряжения по участкам составит

Тогда токи, протекающие через каждый приемник энергии, составят

Как я уже упоминал, законы Кирхгофа вместе с законом Ома являются основными при анализе и расчётах электрических цепей. Закон Ома был подробно рассмотрен в двух предыдущих статьях, теперь настала очередь для законов Кирхгофа. Их всего два, первый описывает соотношения токов в электрических цепях, а второй – соотношение ЭДС и напряжениями в контуре. Начнём с первого.

Первый закон Кирхгофа гласит, что алгебраическая сумма токов в узле равна нулю. Описывается это следующим выражением

где ∑ — обозначает алгебраическую сумму.

Слово «алгебраическая» означает, что токи необходимо брать с учётом знака, то есть направления втекания. Таким образом, всем токам, которые втекают в узел, присваивается положительный знак, а которые вытекают из узла – соответственно отрицательный. Рисунок ниже иллюстрирует первый закон Кирхгофа


Изображение первого закона Кирхгофа.

На рисунке изображен узел, в который со стороны сопротивления R1 втекает ток, а со стороны сопротивлений R2, R3, R4 соответственно вытекает ток, тогда уравнение токов для данного участка цепи будет иметь вид

Первый закон Кирхгофа применяется не только к узлам, но и к любому контуру или части электрической цепи. Например, когда я говорил о параллельном соединении приемников энергии, где сумма токов через R1, R2 и R3 равна втекающему току I.

Как говорилось выше, второй закон Кирхгофа определяет соотношение между ЭДС и напряжениями в замкнутом контуре и звучит следующим образом: алгебраическая сумма ЭДС в любом контуре цепи равна алгебраической сумме падений напряжений на элементах этого контура. Второй закон Кирхгофа определяется следующим выражением

В качестве примера рассмотрим ниже следующую схему, содержащую некоторый контур


Схема, иллюстрирующая второй закон Кирхгофа.

Для начала необходимо определится с направлением обхода контура. В принципе можно выбрать как по ходу часовой стрелки, так и против хода часовой стрелки. Я выберу первый вариант, то есть элементы будут считаться в следующем порядке E1R1R2R3E2, таким образом, уравнение по второму закону Кирхгофа будет иметь следующий вид

Второй закон Кирхгофа применяется не только к цепям постоянного тока, но и к цепям переменного тока и к нелинейным цепям.
В следующей статье я рассмотрю основные способы расчёта сложных цепей с использованием закона Ома и законов Кирхгофа.

Теория это хорошо, но без практического применения это просто слова.

Параллельное и последовательное соединение проводников – способы коммутации электрической цепи. Электрические схемы любой сложности можно представить посредством указанных абстракций.

Определения

Существует два способа соединения проводников, становится возможным упростить расчет цепи произвольной сложности:

  • Конец предыдущего проводника соединен непосредственно с началом следующего — подключение называют последовательным. Образуется цепочка. Чтобы включить очередное звено, нужно электрическую схему разорвать, вставив туда новый проводник.
  • Начала проводников соединены одной точкой, концы – другой, подключение называется параллельным. Связку принято называть разветвлением. Каждый отдельный проводник образует ветвь. Общие точки именуются узлами электрической сети.

На практике чаще встречается смешанное включение проводников, часть соединена последовательно, часть – параллельно. Нужно разбить цепь простыми сегментами, решать задачу для каждого отдельно. Сколь угодно сложную электрическую схему можно описать параллельным, последовательным соединением проводников. Так делается на практике.

Использование параллельного и последовательного соединения проводников

Термины, применяемые к электрическим цепям

Теория выступает базисом формирования прочных знаний, немногие знают, чем напряжение (разность потенциалов) отличается от падения напряжения. В терминах физики внутренней цепью называют источник тока, находящееся вне – именуется внешней. Разграничение помогает правильно описать распределение поля. Ток совершает работу. В простейшем случае генерация тепла согласно закону Джоуля-Ленца. Заряженные частицы, передвигаясь в сторону меньшего потенциала, сталкиваются с кристаллической решеткой, отдают энергию. Происходит нагрев сопротивлений.

Для обеспечения движения нужно на концах проводника поддерживать разность потенциалов. Это называется напряжением участка цепи. Если просто поместить проводник в поле вдоль силовых линий, ток потечет, будет очень кратковременным. Процесс завершится наступлением равновесия. Внешнее поле будет уравновешено собственным полем зарядов, противоположным направлением. Ток прекратится. Чтобы процесс стал непрерывным, нужна внешняя сила.

Таким приводом движения электрической цепи выступает источник тока. Чтобы поддерживать потенциал, внутри совершается работа. Химическая реакция, как в гальваническом элементе, механические силы – генератор ГЭС. Заряды внутри источника движутся в противоположную полю сторону. Над этим совершается работа сторонних сил. Можно перефразировать приведенные выше формулировки, сказать:

  • Внешняя часть цепи, где заряды движутся, увлекаемые полем.
  • Внутренняя часть цепи, где заряды движутся против напряженности.

Генератор (источник тока) снабжен двумя полюсами. Обладающий меньшим потенциалом называется отрицательным, другой – положительным. В случае переменного тока полюсы непрерывно меняются местами. Непостоянно направление движения зарядов. Ток течет от положительного полюса к отрицательному. Движение положительных зарядов идет в направлении убывания потенциала. Согласно этому факту вводится понятие падения потенциала:

Падением потенциала участка цепи называется убыль потенциала в пределах отрезка. Формально это напряжение. Для ветвей параллельной цепи одинаково.

Под падением напряжения понимается и нечто иное. Величина, характеризующая тепловые потери, численно равна произведению тока на активное сопротивление участка. Законы Ома, Кирхгофа, рассмотренные ниже, формулируются для этого случая. В электрических двигателях, трансформаторах разница потенциалов может значительно отличаться от падения напряжения. Последнее характеризует потери на активном сопротивлении, тогда как первое учитывает полную работу источника тока.

При решение физических задач для упрощения двигатель может включать в свой состав ЭДС, направление действия которой противоположно эффекту источника питания. Учитывается факт потери энергии через реактивную часть импеданса. Школьный и вузовский курс физики отличается оторванностью от реальности. Вот почему студенты, раскрыв рот, слушают о явлениях, имеющих место в электротехнике. В период, предшествующий эпохе промышленной революции, открывались главные законы, ученый должен объединять роль теоретика и талантливого экспериментатора. Об этом открыто говорят предисловия к трудам Кирхгофа (работы Георга Ома на русский язык не переведены). Преподаватели буквально завлекали люд дополнительными лекциями, сдобренными наглядными, удивительными экспериментами.

Законы Ома и Кирхгофа применительно к последовательному и параллельному соединению проводников

Для решения реальных задач используются законы Ома и Кирхгофа. Первый выводил равенство чисто эмпирическим путем – экспериментально – второй начал математическим анализом задачи, потом проверил догадки практикой. Приведем некоторые сведения, помогающие решению задачи:

Посчитать сопротивления элементов при последовательном и параллельном соединении

Алгоритм расчета реальных цепей прост. Приведем некоторые тезисы касательно рассматриваемой тематики:

  1. При последовательном включении суммируются сопротивления, при параллельном — проводимости:
    1. Для резисторов закон переписывается в неизменной форме. При параллельном соединении итоговое сопротивление равняется произведению исходных, деленному на общую сумму. При последовательном – номиналы суммируются.
    2. Индуктивность выступает реактивным сопротивлением (j*ω*L), ведет себя, как обычный резистор. В плане написания формулы ничем не отличается. Нюанс, для всякого чисто мнимого импеданса, что нужно умножить результат на оператор j, круговую частоту ω (2*Пи*f). При последовательном соединении катушек индуктивности номиналы суммируются, при параллельном – складываются обратные величины.
    3. Мнимое сопротивление емкости записывается в виде: -j/ω*С. Легко заметить: складывая величины последовательного соединения, получим формулу, в точности как для резисторов и индуктивностей было при параллельном. Для конденсаторов все наоборот. При параллельном включении номиналы складываются, при последовательном – суммируются обратные величины.

Тезисы легко распространяются на произвольные случаи. Падение напряжения на двух открытых кремниевых диодах равно сумме. На практике составляет 1 вольт, точное значение зависит от типа полупроводникового элемента, характеристик. Аналогичным образом рассматривают источники питания: при последовательном включении номиналы складываются. Параллельное часто встречается на подстанциях, где трансформаторы ставят рядком. Напряжение будет одно (контролируются аппаратурой), делятся между ветвями. Коэффициент трансформации строго равен, блокируя возникновение негативных эффектов.

У некоторых вызывает затруднение случай: две батарейки разного номинала включены параллельно. Случай описывается вторым законом Кирхгофа, никакой сложности представить физику не может. При неравенстве номиналов двух источников берется среднее арифметическое, если пренебречь внутренним сопротивлением обоих. В противном случае решаются уравнения Кирхгофа для всех контуров. Неизвестными будут токи (всего три), общее количество которых равно числу уравнений. Для полного понимания привели рисунок.

Пример решения уравнений Кирхгофа

Посмотрим изображение: по условию задачи, источник Е1 сильнее, нежели Е2. Направление токов в контуре берем из здравых соображений. Но если бы проставили неправильно, после решения задачи один получился бы с отрицательным знаком. Следовало тогда изменить направление. Очевидно, во внешней цепи ток течет, как показано на рисунке. Составляем уравнения Кирхгофа для трех контуров, вот что следует:

  1. Работа первого (сильного) источника тратится на создание тока во внешней цепи, преодоление слабости соседа (ток I2).
  2. Второй источник не совершает полезной работы в нагрузке, борется с первым. Иначе не скажешь.

Включение батареек разного номинала параллельно является безусловно вредным. Что наблюдается на подстанции при использовании трансформаторов с разным передаточным коэффициентом. Уравнительные токи не выполняют никакой полезной работы. Включенные параллельно разные батарейки начнут эффективно функционировать, когда сильная просядет до уровня слабой.

Последовательное и параллельное подключение насосов

В статье «КАК ВЫБРАТЬ УСТАНОВКУ ПОВЫШЕНИЯ ДАВЛЕНИЯ ДЛЯ СИСТЕМЫ ВОДОСНАБЖЕНИЯ» мы рассказывали о принципах выбора технологического решения для повышения давления в системе водоснабжения. Однако, в статье основное внимание уделялось системам частного дома. Для повышения давления в многоквартирном доме, торгово-развлекательном центре или промышленном предприятии напора или расхода одного насоса явно не хватает. Такие насосные станции используются в системах водоснабжения для повышения давления и в системах пожаротушения. В этих случаях прибегают к установкам повышения давления состоящих из нескольких соединенных насосов. В то же время иногда, бывает разумнее и дешевле купить установку повышения давления из нескольких насосов чем из одного большого. Такие установки повышения давления могут состоять из параллельно или последовательно подключенных насосов. Сейчас мы более подробно разберем в чем отличие способа подключения насосов.


ВАЖНО


При последовательном соединение важно чтобы расход (производительность) насосов был одинаковый

При параллельном соединение важно, чтобы напор насосов был одинаковый

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ НАСОСОВ

Последовательное подключение насосов используется для повышение общего напора (H), при этом расход насосов (Q1и Q2) должны быть одинаковыми. При таком типе соединения напор жидкости получивший энергию от первого насоса поступает во всасывающий патрубок следующего. Напор в системе последовательно подключенных насосов растет ступенчато от одного насоса к другому. Поэтому насосные станции с последовательным подключением часто классифицируют по количеству ступеней. Насосы могут быть соединены последовательно как непосредственно друг к другу, так и на значительном расстоянии.


На практике последовательное подключение насосов используется не часто. Этому есть несколько причин. Во-первых, нужно всегда обращать внимание на максимальное рабочее давление насоса. Оно не должно превышать давление, поступаемое из предыдущего насоса. Также надо понимать, что, как и любое другое техническое изделие, насосы, которые долго находятся в работе при высоком давлении, будут чаще выходить из строя. Поэтому надо обращать внимание на прочность и материалы из которых изготовлены корпуса второго и последующего насоса. Возможно возникновение и гидравлических ударов в такой системе, что может вывести из строя соединительную арматуру. Во-вторых, всегда лучше подобрать один насос большего типоразмера с подходящей рабочей точкой, чем несколько небольших. Чем больше будет подключено насосов последовательно в цепочку, тем меньше КПД будет у такой насосной станции. Часть энергии будет всегда теряться в соединениях.

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ НАСОСОВ

Параллельное соединение насосов используют, когда необходимо увеличить расход жидкости (Q) в системе. Параллельно соединенные насосы подают жидкость в один общий нагнетательный трубопровод. Также такое соединение может быть использовано для подключения резервного насоса в систему водоснабжения.

Как мы отмечали выше, при выборе насосов для их параллельного соединения необходимо, нужно учитывать, что бы у них был одинаковый напор (H1и Н2). В противном случае насос с меньшей характеристикой напора будет постоянно преодолевать сопротивление напорного трубопровода, что в свою очередь приведет к снижению его КПД. Если все же есть необходимость параллельного подключения насосов (как в случае с резервным насосом), подключают автоматику, которая приводит в работу насос с меньшими характеристиками только тогда, когда другой насос перестает работать.


Одним из наиболее значительных плюсов насосной станции такого типа может быть то, что при изменяющимися характеристиками центральной водопроводной магистрали, гидравлические параметры насосной станции могут регулироваться количеством включенных и отключенных насосов в станции.

Благодаря этим свойствам, насосные станции с параллельным подключением повсеместно используются в качестве установок повышения давления воды в водопроводе и системах пожаротушения в многоквартирных домах, торгово-развлекательных центрах и промышленных объектах. В таких установках может быть одновременно подключено до 6 однотипных насосов. Установка имеет один общий всасывающий коллектор и один общий напорный коллектор. Каждый соединенный насос на входе и на выходе имеет запорную арматуру и обратный клапан на выходе.

Стоить отметить также огромный плюс насосных станций с параллельным подключением, что при оснащении ее частотным регулятором, можно произвести тонкую настройку работы каждого насоса. При такой настройке насосы будут включать по принципу, когда первым запускается насос, имеющий наименьшее количество часов выработки и так далее по нарастающей. Это увеличивает средний срок службы всех насосов, также срок их службы будет примерно одинаковым.

Самые частые случаи применения параллельного подключения насосов:

  • Необходимость установки резервного насоса. Резервный насос начинает работу, когда происходит отключение первого в следствии неполадки.

  • Подключение пикового насоса. Пиковый насос включается когда не справляется основной с пиковые часы нагрузки водопровода.

  • Снижение затрат в следствии эксплуатации. Насосы, благодаря тонкой настройке частотных регуляторов, включаются попеременно, и увеличивается количество включенных одновременно насосов только при изменении параметров сети.

ПРОИЗВОДИТЕЛИ НАСОСНЫХ СТАНЦИИ


Каждый крупный производитель насосного оборудование имеет в своем ассортименте широкий выбор насосных станции, с использованием соединений нескольких насосов. Благодаря такому широкому спектру моделей, пользователь может подобрать необходимую установку по гидравлическим параметрам и бюджету.

Компания PROM GURU (ПРОМ ГУРУ) предлагает насосные станции от лучших мировых брендов GRUNDFOS, WILO, LOWARA, CALPEDA, DAB. Выбор неверной по характеристикам или некачественно собранной насосной станции может привести к серьезной аварии на объекте эксплуатации.


Еще более серьезно нужно отнестись к выбору оборудования, когда речь идет о станциях пожаротушения, которые используются в общественных местах или производственных предприятиях. Компания PROM GURU (ПРОМ ГУРУ) имеет большой опыт поставок установок пожаротушения в крупные торгово-развлекательные центры и гипермаркеты известных федеральных торговых сетей.

Помимо этого, квалифицированные сервисные инженеры и специалисты компании PROM GURU (ПРОМ ГУРУ) проводят самостоятельную сборку и подбор насосных станций. Такие случае нередки, когда необходимо уложиться в бюджет предприятия или изготовить станции под необходимые параметры заказчика.

ЭКСПЛУАТАЦИЯ НАСОСНЫХ СТАНЦИЙ


Как и любая сложная инженерная система насосные станции требуют постоянного облуживания в ходе эксплуатации. Лучше всего доверить подключение, монтаж, обслуживание и настройку профессионалам.


Помимо этого всегда покупайте качественное сопутствующее оборудование. Особенное внимание стоит уделить соединительной запорной арматуре. Ведь на эти узлы постоянно оказывается высокое давление. При выборе некачественной продукции разрыв узла соединения, может привести к серьезной поломке и дорогостоящему ремонту оборудования.

Если у Вас остались вопросы по подбору насосных станций в качестве установок повышения давления и или станции пожаротушения, Вы можете обратиться за бесплатной консультацией к специалистам компании PROM GURU (ПРОМ ГУРУ):

Последовательное и параллельное соединение проводников

Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей – проводников.

Для начала давайте вспомним, что такое проводник? Проводник – это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:

формула сопротивление проводника

ρ – это удельное сопротивление, Ом × м

R – сопротивление проводника, Ом

S – площадь поперечного сечения, м2

l – длина проводника, м

Более подробно об этом я писал здесь.

Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.

обозначение резистора на схемах

Последовательное соединение проводников

Сопротивление при последовательном соединении проводников

Последовательное соединение проводников – это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.

последовательное соединение резисторов

Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.

Получается, можно записать, что

формула при последовательном соединении резисторов

Пример

У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.

Решение

Rобщее =R1 + R2 + R3 = 3+5+2=10 Ом.

То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .

показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:

Сила тока через последовательное соединение проводников

Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.

Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .

сила тока через последовательное соединение проводников

Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .

Напряжение при последовательном соединении проводников

Давайте еще раз рассмотрим цепь с тремя резисторами

Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?

Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на  любом резисторе. Давайте так и сделаем.

Пусть у нас будет цепь с такими параметрами.

Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.

Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.

Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3  . Но как это сделать?

Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.

Следовательно,

UR1 = IR1 =1×2=2 Вольта

UR2 = IR2 = 1×3=3 Вольта

UR3 = IR3 =1×5=5 Вольт

Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.

Получается

U=UR1+UR2+UR3

Мы получили самый простой делитель напряжения.

Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.

 

Параллельное соединение проводников

Параллельное соединение проводников выглядит вот так.

параллельное соединение резисторов

Ну что, думаю, начнем с сопротивления.

Сопротивление при параллельном соединении проводников

Давайте пометим клеммы как А и В

В этом случае общее сопротивление RAB будет находиться по формуле

 

Если же мы имеем только два параллельно соединенных проводника

То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.

Напряжение при параллельном соединении проводников

Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.

Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn

Сила тока при параллельном соединении проводников

Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.

Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.

Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что

I1 = U/R1

I2 = U/R2

I3 = U/R3

Если бы у нас еще были резисторы, соединенные параллельно, то для них

In = U/Rn

В этом случае, сила тока в цепи будет равна:

Задача

Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.

Решение

Воспользуемся формулами, которые приводили выше.

I1 = U/R1

I2 = U/R2

I3 = U/R3

Если бы у нас еще были резисторы, соединенные параллельно, то для них

In = U/Rn

Следовательно,

I1 = U/R1 = 10/2=5 Ампер

I2 = U/R2 = 10/5=2 Ампера

I3 = U/R3 = 10/10=1 Ампер

Далее, воспользуемся формулой

чтобы найти силу тока, которая течет в цепи

I=I1 + I2 + I3 = 5+2+1=8 Ампер

2-ой способ найти I

I=U/Rобщее

Чтобы найти Rобщее мы должны воспользоваться формулой

Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.

I=U/Rобщее = 10/1,25=8 Ампер.

Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.

Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.

Подробное объяснение на видео:

Прикольный набор радиолюбителя по ссылке <<<

Похожие статьи по теме “последовательное и параллельное соединение”

Закон Ома

Проводник (электрический проводник)

Что такое резистор

Делитель напряжения

Делитель тока

Что такое напряжение

Что такое сила тока

Последовательное и параллельное соединение светодиодов

При конструировании различных электронных устройств часто возникает необходимость в последовательном, параллельном или комбинированном включении элементов. Не стали исключением и светодиоды. Учитывая их небольшие размеры, а также с целью повышения яркости, в одном корпусе осветительного прибора можно разместить несколько LED-чипов.

Как правильно собрать электрическую цепь, чтобы надёжность схемы была на высоком уровне? Что нужно знать о светодиодах, соединяя их параллельно или последовательно?

Параллельное соединение

Необходимость в параллельном включении возникает в случае, когда напряжения источника питания недостаточно для запитки нескольких последовательно соединённых светодиодов. Теоретически, в самом простом варианте можно было бы отдельно объединить все аноды и все катоды излучающих диодов. После чего подключить их к источнику напряжения с соблюдением полярности.

Но такая схема не работоспособна, так как дифференциальное сопротивление открытого светодиода чрезмерно мало, что провоцирует режим короткого замыкания. В результате все светодиоды в цепи единожды вспыхнут и навсегда погаснут.

Но как говорят: «Правило без исключений не бывает». В китайских игрушках и зажигалках с подсветкой можно увидеть, что светодиоды запитаны прямо от батареек без каких-либо промежуточных элементов. Почему они не перегорают? Дело в том, что ток в цепи ограничен внутренним сопротивлением круглых батареек типа AG1. Их мощности недостаточно, чтобы нанести вред светодиоду.

Ограничить резкое нарастание тока в нагрузке можно с помощью резистора. О том, как это грамотно сделать с одним светодиодом, подробно написано в данной статье. Для цепи из нескольких параллельно подключенных LED с одним резистором схема примет следующий вид.

Но и этот вариант не пригоден для конструирования осветительных устройств с высокой надёжностью. Почему? Ответ на этот вопрос кроется в особенностях строения полупроводников. В процессе производства полупроводниковых элементов невозможно получить два абсолютно одинаковых прибора. Даже у светодиодов из одной партии будет разное дифференциальное (внутреннее) сопротивление, от которого зависит величина прямого напряжения. Это касается не только светодиодов, но и других полупроводников. Среди  диодов, транзисторов и тиристоров тоже не найти двух приборов с равными электрическими параметрами.

Из второй схемы видно, что резистор R1 ограничивает только суммарный ток цепи, который затем распределяется по ветвям со светодиодами в зависимости от их сопротивления. По закону Ома светодиод с наименьшим сопротивлением p-n-перехода получит наибольшую порцию тока. И скорее всего он будет больше номинального значения, что ускорит деградацию кристалла. Работа светодиода в режиме перегрузки по току рано или поздно приведёт к выходу из строя на обрыв. Оставшиеся в работе светодиоды распределят между собой ток сгоревшего элемента, что также приведёт к резкой потере яркости.

Как и в первом варианте, китайцы не стесняются конструировать светильники на базе «полурабочих» схем. Схему с одним резистором часто можно встретить в дешёвых фонариках и маломощных светильниках на пальчиковых батарейках. А чтобы светодиоды проработали хотя бы год, сопротивление резистора умышленно завышают, как бы, исключая возможные перегрузки.

Ниже приведен единственно верный вариант параллельного включения светодиодов.

Здесь последовательно с каждым светодиодом подключен ограничительный резистор. Такое схемотехническое решение позволяет выровнять токи в каждой отдельной ветви, не позволяя им превышать рабочее значение.

Подключать светодиоды через резистор рекомендуется только от стабилизированного источника постоянного напряжения.

Пример расчета

Для закрепления теоретических знаний параллельное соединение светодиодов рассмотрим на конкретном примере.

В схеме включены два светодиода: слаботочный красный и мощный одноваттный белый, которые для удобства можно запитать от разных выключателей.

Дано:

  • источник напряжения U = +5 В;
  • LED1 – красного свечения с ULED1 = 1,8 В и ILED1 = 0,02 А;
  • LED2 – белого свечения с ULED2 = 3,2 В и ILED2 = 0,35 А.

Требуется рассчитать параметры и выбрать резисторы R1 и R2.

При параллельном включении к обеим ветвям (R1-LED1 и R2- LED2) прикладывается одинаковое напряжение, равное 5 В. Сопротивление каждого резистора определим по формуле:

Округляем полученное значение R2 до ближайшего большего значения из стандартного ряда E24 – 5,1 Ом. Подставив его обратно в формулу, находим реальный ток во второй ветви: С учетом возможного отклонения сопротивления выбранного резистора, которое для ряда Е24 может достигать 5%, ток 0,33 А является оптимальным. Снижение рабочего тока примерно на 4% сильно не повлияет на яркость, но позволит светодиоду работать без перегрузок.

Мощность, которую должны рассеивать резисторы, определим с учетом пересчёта тока LED2 по формуле:

Резистор R1 подойдёт любой как планарный, так и с выводами сопротивлением 160 Ом и мощностью 0,125 Вт. Корпус резистора R2 должен эффективно отводить тепло в течение длительной работы светильника. Поэтому его выбираем с двойным запасом по мощности, а именно: 5,1 Ом – 1 Вт.

Последовательное соединение

В последовательном включении светодиодов нужно соблюдать правило: «Напряжение источника питания должно быть больше суммы падений напряжений на светодиодах».

Остаток напряжения в неравенстве гасится одним единственным резистором R, правильное включение которого показано на схеме. Все светодиоды подключаются поочередно от анода к катоду. Сопротивление резистора задаёт ток цепи. Это значит, что соединять последовательно можно светодиоды только с одинаковым рабочим током.

Пример расчета

Расчет сопротивления и мощности резистора проведём на примере включения трёх белых светодиодов из серии Cree XM-L, для которых характерным является ток ILED = 0,7 А и прямое напряжение ULED = 2,9 В. Взяв за основу цветовую температуру и требуемую яркость, можно последовательно подключать светодиоды из разных групп в пределах серии XM-L. Например, один Cree XM-L-T6 с ТС=5000°K и два Cree XM-L-T2 с ТС=2600°K, которые в итоге дадут мощный поток нейтрального света.

Питание на схему поступает от блока стабилизированного напряжения U = +12 В. Сопротивление резистора находим по закону Ома: Ближайший стандартный номинал – 4,7 Ом, при котором ток теоретически будет равен 0,702 А. Это не критично, но следует быть уверенным, что сопротивление резистора не изменится под влиянием температуры во время работы. Поэтому устанавливать нужно либо прецизионный резистор с допуском менее 1%, либо последовательно с R1 = 4,7 Ом запаять ещё одно сопротивление 0,1-0,2 Ом такой же мощности.

Найдём мощность резистора:

По аналогии с расчётами для первой схемы устанавливать нужно резистор примерно с двойным запасом по мощности, то есть один на 5 Вт. Можно его заменить на два штуки по 2 Вт, но тогда придётся пересчитать сопротивление.

Два важных момента

В момент первого включения желательно измерить мультиметром ток в цепи и падение напряжения на каждом светодиоде. Если полученные данные будут отличаться от расчётных, то нужно пересчитать сопротивление резистора. Иначе, ток в схеме может оказаться слишком заниженным (с потерей яркости) или завышенным (с перегревом чипа светодиода).

Как в последовательном, так и в параллельном включении светодиодов нельзя делать расчеты, ссылаясь исключительно на способность источника питания обеспечить нужный ток или напряжение. Важны оба этих параметра, произведение которых даёт мощность. Мощность блока питания всегда должна быть больше мощности потребления, чтобы гарантировать стабильную и продолжительную работу всего устройства.

В чем разница между последовательной и параллельной связью?

Во встроенных системах устройства обмениваются данными, отправляя и получая сообщения, часто по кабелям и проводам. Тип кабеля / провода и связи зависит от конкретного используемого приложения. В этой статье мы обсудим различия между двумя распространенными режимами связи: последовательным и параллельным.

Как работает последовательная связь?

Последовательную связь можно лучше всего визуализировать, используя аналогию с автострадой или межгосударственным шоссе.Полосы на межгосударственной автомагистрали будут представлять отдельные полосы или провода, используемые для связи, а автомобили представляют биты данных.

Последовательная связь осуществляется по одному проводу или, в данном случае, по одной полосе дороги. Биты отправляются последовательно, при этом стартовый и стоповый бит помещаются в начало или конец пакета. Все данные принимаются и собираются принимающим устройством по одному биту за раз.

Как работает параллельная связь?

Используя те же изображения, что и раньше, для параллельной связи требуется больше полос, чем для последовательной.Параллельно устройства отправляют и получают несколько битов информации одновременно. Каждый бит данных передается по одному проводу, поэтому для восьмибитового пакета (или 1 байта) потребуется восемь отдельных проводов для передачи сообщения. Это означает, что пакет данных принимается оконечным устройством сразу. Все данные отправляются синхронно при параллельной связи и используют один провод или полосу на бит. Все данные должны быть получены в одно и то же время, чтобы пакет был получен правильно и без ошибок.

Параллельные и последовательные кабели

Кабели, используемые для параллельной и последовательной связи, немного отличаются друг от друга.Параллельные кабели обычно толще и короче, чем последовательные кабели, и обычно имеют более сложные соединительные головки.

Параллельные кабели

Параллельные кабели легче всего обнаружить, если вы видите отдельные контакты, видимые на головке разъема, как показано на рисунке ниже. Эти контакты напрямую связаны с отдельным проводом в кабеле. Для каждого контакта на мужской стороне соединительной головки вы можете найти входной слот на женском конце кабеля. Соединение не прерывается от одного конца до другого.Кабель обычно толстый и жесткий на ощупь по сравнению с последовательными кабелями из-за количества проводов в кабеле.

Последовательные кабели

Последовательные кабели гораздо чаще встречаются в повседневной жизни. Кабель USB является примером кабеля последовательного типа. Как видите, соединительная головка существенно отличается от параллельного кабеля просто потому, что она меньше по размеру и не имеет видимых контактов. Еще один отличительный аспект — это толщина кабеля.

Преимущества параллельной связи

Параллельная связь до появления стандарта USB была гораздо более распространена в повседневных приложениях. От подключения принтера до подключения внешнего монитора параллельная связь использовалась почти исключительно со старыми ПК. Причина, по которой этот стандарт был адаптирован так широко, заключалась в том, что он, как правило, является быстрым стандартом для работы. Поскольку пакеты данных отправляются одновременно, можно передать больше данных за более короткий период времени.При использовании связи на уровне байтов параллельные данные могут отправлять 1 байт в восемь раз быстрее, чем последовательная связь. Однако по мере того, как кабели становились длиннее, а приложения становились все более тяжелыми для данных, параллельная связь начала видеть некоторые ограничения.

Недостатки параллельной связи

Перекрестный разговор

Обычная проблема, с которой инженеры сталкиваются при работе с проводами, — это перекрестные помехи между линиями данных. Перекрестные помехи или шум вызываются электромагнитными сигналами, влияющими на другой электронный сигнал.Это очень часто, когда провода расположены слишком близко друг к другу. Перекрестные помехи искажают данные и вызывают ошибки, если они присутствуют.

Ограничения на высоких частотах и ​​больших диапазонах

Другая проблема, возникающая при параллельном обмене данными, возникает при высокочастотной передаче данных. На более высоких частотах биты обычно перемешиваются и достигают приемного устройства в разное время. Это проблематично, поскольку параллельный режим требует, чтобы все биты данных принимались одновременно.Получатель должен замедлить передачу сообщений, чтобы дождаться прибытия всех пакетов данных, прежде чем принимать полный пакет данных. Если это происходит, обычно для получателя выполняется резервное копирование. Если он не может принять все сообщения одновременно из-за запаздывающих битов данных, входящие биты могут попасть в ожидающие пакеты, вызывая дополнительные проблемы. Параллель лучше всего подходит для приложений на короткие расстояния.

Штифты, подверженные повреждениям

Другая проблема, которая возникает при использовании соединительных головок с видимыми контактами, — это высокая вероятность повреждения.Очень распространенная проблема, с которой люди сталкиваются, особенно со старыми принтерами, — это изгиб контактов разъема при подключении устройств. Выравнивание контактов в таком разъеме может быть трудным и требует большего внимания. Обычные кабели USB не имеют этой проблемы, поскольку в конструкции отсутствуют видимые контакты.

Большой физический след

Пространство — один из наиболее ценных аспектов любой современной конструкции печатных плат или устройств. По мере того, как дизайн становится меньше, входные и выходные разъемы также должны уменьшаться.Поскольку для подключения к параллельным портам требуются отдельные контакты, пространство, необходимое на печатной плате или устройстве, увеличивается по мере добавления дополнительных контактов. Из-за этой потребности в пространстве очень редко можно увидеть эти типы портов на современных компьютерах и мониторах. Для экономии места и размера были приняты более мелкие последовательные порты.

Дороже

Параллельные кабели и соединители также дороже в изготовлении и внедрении, чем их последовательные аналоги. Поскольку для приложения требуется больше проводов, каждый провод увеличивает общую стоимость разработки.При параллельной передаче данных для некоторых более сложных операций может потребоваться до 34 проводов. Разница между 1 и 34 проводами может быть экспоненциально дороже и часто является огромным фактором при принятии решения о переходе от последовательного к параллельному для приложения.

Преимущества последовательной связи

Последовательная связь стала универсальным стандартом для подключения устройств. Благодаря малой занимаемой площади (кабельные и соединительные головки), простоте использования и надежности последовательный порт зарекомендовал себя как будущее подключенных устройств.Некоторые из многих преимуществ последовательной связи включают:

Компактность и простота использования

Последовательные порты

обычно известны своей простотой использования и небольшими физическими размерами. Благодаря тому, что многие последовательные порты теперь допускают возможность подключения независимо от ориентации, усилия, необходимые для пользователя, теперь минимальны. Упрощение процесса подключения сделало взаимодействие с последовательными портами намного более безболезненным.

Головки разъемов и порты также значительно меньше по сравнению с параллельными.Возможность занимать иногда менее четверти места на печатной плате или устройстве, необходимого для параллельной работы, является большим положительным моментом для современных производителей устройств. Это ценное пространство можно использовать для других функций, таких как больший аккумулятор, больше памяти, или его можно исключить, чтобы полностью раздвинуть границы для уменьшающихся устройств.

Это также означает, что последовательные порты, кабели и разъемы также более рентабельны. Меньше проводов, необходимых для передачи данных, означает меньшие и менее сложные трассы.Упрощенная конструкция снижает затраты на производство и проектирование.

Увеличенные вставки

Головки разъемов для последовательных портов также допускают гораздо большее количество вставок в течение срока службы разъема по сравнению с параллельными. Поскольку открытые контакты были удалены, а процесс подключения стал проще, вероятность повреждения порта или головки разъема практически исключена. Это означает, что эти порты теперь прослужат дольше, чем параллельные.

Надежность на высоких частотах и ​​на больших расстояниях

Последовательный протокол также намного более надежен при высокочастотной передаче данных и приложениях на большие расстояния.Поскольку последовательный порт отправляет один бит за раз по одному проводу, данные очень трудно спутать при увеличении скорости. Данные не могут достичь получателя до или после того, как биты будут отправлены исходным устройством. Полностью оптимизированное параллельное приложение действительно может отправлять больше данных с большей скоростью, чем последовательное, но высокий уровень оптимизации требует много времени для разработки и совершенствования.

Последовательный порт

также лучше использовать для соединений на большие расстояния (более 3 футов). Поскольку все данные отправляются по одному проводу, приложения для дальней связи намного надежнее при использовании последовательного интерфейса.Данные не сгруппированы и могут быть отправлены на очень высоких скоростях с почти идеальной точностью, что делает последовательный порт идеальным для надежных приложений передачи данных на большие расстояния.

Отказ от последовательной связи

Главный недостаток последовательной связи — отсутствие скоростного потенциала. Чем больше проводов, тем выше скорость. Если приложения оптимизируют параллельную связь и устранят все проблемы с синхронизацией на уровне битов, скорость передачи данных значительно превысит скорость последовательной связи.Однако с развитием современных технологий многие ограничения скорости, изначально обнаруженные при последовательной связи, были преодолены. Необходимость уменьшить пространство и стоимость конструкций привели к преобладанию последовательных протоколов. Поскольку технология продолжает развиваться, нередко можно увидеть последовательную связь со скоростью выше 10 Гбит / с в USB 3.1.

Общие последовательные протоколы

Некоторые из наиболее распространенных последовательных протоколов включают SPI, I2C, CAN и USB. Эти протоколы используются в часах реального времени, ЖК-экранах, автомобилях, медицинских устройствах и мобильных телефонах в широком спектре приложений.У этих протоколов есть одна общая черта — их стиль связи; все они общаются по последовательному каналу.

Программирование и отладка последовательных протоколов

Total Phase специализируется на анализаторах и программаторах последовательных протоколов. Двумя наиболее популярными инструментами Total Phase, которые используются для отладки последовательных протоколов, являются хост-адаптер Aardvark I2C / SPI и анализатор протоколов Beagle I2C / SPI.

Хост-адаптер Aardvark I2C / SPI — это карманный программатор протоколов, предлагаемый по доступной цене.Его способность программировать SPI на частоте до 8 МГц и I2C на частоте до 800 кГц делает адаптер Aardvark очень привлекательным инструментом для инженеров встраиваемых систем. Адаптер имеет бесплатное и простое в использовании программное обеспечение и полностью поддерживается в операционных системах Windows, Linux и Mac. Этот мощный, портативный и доступный инструмент является отличным инструментом для всех инженеров I2C и SPI. Beagle I2C / SPI Protocol Analyzer — еще один инструмент Total Phase, который знают и любят встраиваемые системные инженеры. Хотя анализатор Beagle I2C / SPI очень похож на адаптер Aardvark по размеру и цене, он сильно отличается по способу использования.Этот анализатор способен осуществлять ненавязчивый мониторинг шины I2C и SPI на частотах до 5 МГц и 24 МГц соответственно. Анализатор работает с бесплатным программным обеспечением центра обработки данных, которое полностью поддерживается в операционных системах Windows, Linux и Mac.

Анализатор Beagle I2C / SPI и адаптер Aardvark — это лишь некоторые из многих инструментов последовательного протокола Total Phase. Total Phase поддерживает не только I2C и SPI, но и приложения USB, CAN, eSPI и A2B.

Заключение

Последовательная и параллельная связь имеет свои плюсы и минусы при выборе стандарта для внедрения в устройства и конструкции.Скорость, на которую способна параллельная работа, привлекательна, но добиться ее сложно и дорого. В то время как надежность и небольшие размеры последовательной связи делают ее привлекательным вариантом. С ростом скорости последовательная связь становится стандартом для приложений доставки данных и является преобладающим стилем связи, применяемым сегодня.

Передача данных

— параллельная или последовательная передача

Что такое передача данных?

Передача данных относится к процессу передачи данных между двумя или более цифровыми устройствами.Данные передаются с одного устройства на другое в аналоговом или цифровом формате. По сути, передача данных позволяет устройствам или компонентам внутри устройств общаться друг с другом.

Как происходит передача данных между цифровыми устройствами?

Данные передаются в виде битов между двумя или более цифровыми устройствами. Для передачи данных между цифровыми устройствами используются два метода: последовательная передача и параллельная передача. Последовательная передача данных отправляет биты данных один за другим по одному каналу.Параллельная передача данных отправляет несколько битов данных одновременно по нескольким каналам.

Что такое последовательная передача?

Когда данные отправляются или принимаются с использованием последовательной передачи данных, биты данных организованы в определенном порядке, так как они могут быть отправлены только один за другим. Порядок битов данных важен, поскольку он определяет, как будет организована передача при ее получении. Он рассматривается как надежный метод передачи данных, поскольку бит данных отправляется только в том случае, если предыдущий бит данных уже был получен.

Пример последовательной передачи данных

Последовательная передача имеет две классификации: асинхронную и синхронную.

Асинхронная последовательная передача
Биты данных могут быть отправлены в любой момент времени. Стоповые и стартовые биты используются между байтами данных для синхронизации передатчика и приемника и для обеспечения правильной передачи данных. Время между отправкой и получением битов данных не является постоянным, поэтому для обеспечения времени между передачами используются промежутки.

Преимущество использования асинхронного метода заключается в том, что не требуется синхронизации между передатчиком и приемником. Это также более рентабельный метод. Недостатком является то, что передача данных может быть медленнее, но это не всегда так.

Синхронная последовательная передача
Биты данных передаются в виде непрерывного потока во времени с главными часами. Передатчик и приемник данных работают с синхронизированной тактовой частотой; поэтому стартовые биты, стоповые биты и промежутки не используются.Это означает, что данные перемещаются быстрее, а ошибки синхронизации менее часты, поскольку время передатчика и приемника синхронизировано. Однако точность данных во многом зависит от правильной синхронизации времени между устройствами. По сравнению с асинхронной последовательной передачей этот метод обычно дороже.

Когда для отправки данных используется последовательная передача?

Последовательная передача обычно используется для передачи данных на большие расстояния. Он также используется в случаях, когда объем отправляемых данных относительно невелик.Он обеспечивает сохранение целостности данных, поскольку передает биты данных в определенном порядке, один за другим. Таким образом, биты данных принимаются синхронно друг с другом.

Что такое параллельная передача?

Когда данные отправляются с использованием параллельной передачи данных, несколько битов данных передаются по нескольким каналам одновременно. Это означает, что данные можно отправлять намного быстрее, чем при использовании методов последовательной передачи.

Пример параллельной передачи данных

Учитывая, что несколько битов отправляются по нескольким каналам одновременно, порядок получения битовой строки может зависеть от различных условий, таких как близость к источнику данных, местоположение пользователя, и доступность полосы пропускания.Ниже можно увидеть два примера параллельных интерфейсов. В первом параллельном интерфейсе данные отправляются и принимаются в правильном порядке. Во втором параллельном интерфейсе данные отправляются в правильном порядке, но некоторые биты были получены быстрее, чем другие.

Пример параллельной передачи — данные получены правильно


Пример параллельной передачи — данные получены неправильно


Преимущества и недостатки использования параллельной передачи данных

Основными преимуществами параллельной передачи по сравнению с последовательной передачей являются:

  • проще программировать;
  • , и данные отправляются быстрее.

Хотя параллельная передача позволяет передавать данные быстрее, для нее требуется больше каналов передачи, чем для последовательной передачи. Это означает, что биты данных могут быть рассинхронизированы в зависимости от расстояния передачи и скорости загрузки каждого бита. Простым примером того, где это можно увидеть, является вызов передачи голоса по IP (VOIP), когда заметны искажения или помехи. Это также можно увидеть, когда в видеопотоке есть пропуски или помехи.

Когда используется параллельная передача данных?

Параллельная передача используется, когда:

  • отправляется большой объем данных;
  • отправляемые данные чувствительны ко времени;
  • , и данные нужно отправить быстро.

Сценарий, в котором для отправки данных используется параллельная передача, — это потоковое видео. Когда видео передается зрителю, биты должны приниматься быстро, чтобы предотвратить приостановку или буферизацию видео. Потоковое видео также требует передачи больших объемов данных. Отправляемые данные также чувствительны ко времени, поскольку медленные потоки данных ухудшают восприятие пользователем.

QUANTIL предоставляет решения для ускорения высокоскоростной передачи данных, потокового видео в реальном времени, видео по запросу (VOD), загружаемого контента и веб-сайтов, включая мобильные веб-сайты.Если вы хотите узнать больше о том, как мы доставляем данные, вы можете задать свои вопросы нашей команде в Твиттере на @Team_QUANTIL.

Лаура Меллон присоединилась к компании QUANTIL в апреле 2016 года в качестве менеджера по контент-маркетингу. Она работает с внутренними и внешними профильными экспертами (МСП) для разработки информативного контента о продуктах CDN.

Установите пользовательское содержимое вкладки HTML для автора на странице своего профиля

Разница между последовательным и параллельным портами

Предварительное условие — введение портов в компьютерах
1.Последовательный порт:
Последовательный порт — это интерфейс, который используется для подключения последовательных линий для обеспечения последовательной связи. К этим портам можно пристыковать 9-контактный D-образный разъем, который подключается к линии передачи, называемый разъемами DB-9. Последовательная связь осуществляется по одному проводу, и от одного конца к другому передается только один поток данных. Следовательно, как и при параллельной передаче, несоответствие скорости передачи данных при последовательной передаче не является проблемой. При необходимости длину проволоки можно увеличивать.

Скорость передачи последовательного порта сравнительно низкая по сравнению со скоростью передачи параллельного порта. Последовательные порты обычно используются в модемах, соединительных устройствах, контроллерах, мыши, а также в камерах видеонаблюдения. Схема разъема DB-9 представлена ​​ниже.

2. Параллельный порт:
В отличие от последовательного порта, параллельный порт может перемещать набор из 8 бит за раз по восьми разным проводам. Вот почему он быстрее по сравнению с последовательной связью.В отличие от последовательного порта, здесь используется 25-контактный разъем, который называется разъемом DB-25. Чтобы устранить перекрестные помехи и ошибки, все потоки битов должны передавать данные с одинаковой скоростью при параллельном обмене данными. Но это непрактично. Следовательно, по этой причине предпочтительно, чтобы линии передачи были короткими при параллельной связи.

Параллельные порты обычно используются в zip-накопителях, принтерах, жестких дисках, приводах CD-ROM и т. Д. Схема разъемов DB-25 приведена ниже.


Разница между последовательным и параллельным портами:

S.НЕТ Последовательный порт Параллельный порт
1. Последовательный порт используется для последовательной передачи. Параллельный порт используется для параллельной передачи.
2. Скорость передачи последовательного порта сравнительно низкая по сравнению со скоростью передачи параллельного порта. В то время как скорость передачи параллельного порта выше, чем скорость передачи последовательного порта.
3. При обмене данными через последовательный порт используется меньшее количество проводов. При обмене данными через параллельный порт используется большее количество проводов по сравнению с последовательным портом.
4. Последовательный порт может передавать единый поток данных. Параллельный порт может передавать несколько потоков данных.
5. Последовательный порт отправляет бит после очередного укуса за раз. Параллельные порты одновременно отправляют несколько битов.
6. В последовательном порту задействованы штыревые порты. В параллельном порту задействованы порты-мама.
7. Последовательные порты обычно реализуются в модемах, соединительных устройствах, камерах наблюдения и контроллерах. Параллельные порты обычно используются в zip-накопителях, принтерах, жестких дисках, приводах CD-ROM и т. Д.

Внимание, читатель! Не прекращайте учиться сейчас. Получите все важные концепции теории CS для собеседований SDE с курсом CS Theory Course по приемлемой для студентов цене и будьте готовы к работе в отрасли.

Разница между последовательной и параллельной передачей

Существует два метода, используемых для передачи данных между компьютерами, которые приведены ниже: последовательная передача и параллельная передача.

Последовательная передача:
При последовательной передаче биты данных передаются от одного компьютера к другому в двух направлениях. В этой передаче один бит проходит за один тактовый импульс. При последовательной передаче 8 бит передаются одновременно, имея стартовый и стоповый бит.

Параллельная передача:
При параллельной передаче многие биты одновременно передаются от одного компьютера к другому. Параллельная передача битов быстрее, чем последовательная передача. Параллельная передача используется на короткие расстояния.


Разница между последовательной и параллельной передачей:

1.
S.NO

Последовательная передача

Параллельная передача

При последовательной передаче данные (биты) передаются в двух направлениях. При параллельной передаче данные передаются в несколько строк.
2. Последовательная передача экономична. Параллельная передача не рентабельна.
3. При последовательной передаче один бит передается за один тактовый импульс. При параллельной передаче восемь битов передаются за один тактовый импульс.
4. Последовательная передача медленная по сравнению с параллельной передачей. Параллельная передача быстрее по сравнению с последовательной передачей.
5. Как правило, для передачи на большие расстояния используется последовательная передача. Обычно параллельная передача используется на короткие расстояния.
6. Схема, используемая в последовательной передаче, проста. Схема, используемая в параллельной передаче, относительно сложна.

Внимание читатель! Не прекращайте учиться сейчас.Получите все важные концепции теории CS для собеседований SDE с курсом CS Theory Course по приемлемой для студентов цене и будьте готовы к работе в отрасли.

Разница между параллельным и последовательным портами

В компьютерном мире порт — это средство для подключения внешних устройств к центральному процессору (ЦП). По сути, это разъемы на задней панели ПК, которые используются для связи с принтерами, клавиатурами, модемами и мониторами или практически с любыми периферийными устройствами или компонентами.Порты подключаются напрямую к материнской плате или к карте расширения. Мы здесь, чтобы поговорить о двух наиболее часто используемых портах — последовательных и параллельных портах.

Что такое параллельный порт?

Параллельный порт — это внешний интерфейс на задней панели персональных компьютеров, который используется для подключения практически ко всему, что вы хотите подключить к компьютеру. Он действует как интерфейс для подключения компьютерных периферийных устройств, таких как принтеры, или любого другого устройства, требующего относительно высокой пропускной способности.Параллельный порт является одним из наиболее универсальных портов ввода-вывода в системе, поскольку его можно использовать для различных устройств, включая оптические приводы, сканеры, внешние CD-ROM и т. Д. Имя parallel описывает способ отправки данных; это подразумевает параллельную связь, то есть несколько битов данных отправляются одновременно без каких-либо задержек. В параллельном порту используется гнездовой разъем DB25, а на конце кабеля, который подключается к устройствам, используется разъем Centronics — по названию компании, разработавшей стандартный интерфейс для подключения принтера к компьютеру.

Что такое последовательный порт?

Последовательный порт — это еще один тип порта и отличная альтернатива параллельным портам, где биты данных отправляются по одному в одном потоке из единиц и нулей. В отличие от параллельного порта, это интерфейс последовательной связи, через который данные передаются по одному проводу или паре проводов, или, в случае беспроводной связи, по одному пути передачи. Также известные как COM-порты (коммуникационные), существует множество различных типов последовательных интерфейсов, доступных для компьютеров, таких как повсеместный порт RS-232, порт RS-485, IEEE-394 и USB.Последовательный порт использует стандартный 9-контактный D-образный разъем и используется для подключения таких устройств, как мышь, модемы, игровые контроллеры, старые принтеры и т. Д. Это один из самых старых интерфейсов, используемых для подключения в основном модема и принтеров к компьютеру. . Но современные последовательные порты используются для специализированных устройств, таких как камеры видеонаблюдения, мониторы с плоским экраном, приемники GPS и так далее.

Разница между параллельным портом и последовательным портом

Основы

— Параллельный порт — это внешний интерфейс, используемый для подключения периферийных устройств компьютера, таких как принтеры, или любого другого устройства, требующего относительно высокой пропускной способности, к вашим персональным компьютерам.В параллельном порту используется гнездовой разъем DB25, а на конце кабеля, который подключается к устройствам, используется разъем Centronics. С другой стороны, последовательный порт — это интерфейс последовательной связи, используемый для подключения последовательных линий для облегчения последовательной связи. Последовательный порт использует стандартный 9-контактный D-образный разъем, который ранее использовался для подключения модемов и принтеров к компьютеру.

Трансмиссия

— Параллельный порт может перемещать набор из 8 бит (единиц и нулей) данных параллельно одновременно по 8 отдельным проводам, что означает одновременную отправку нескольких бит данных.В параллельном порту используется 25-контактный D-образный разъем, который обычно называют разъемом DB25. Последовательный порт — отличная альтернатива параллельному порту, где биты данных отправляются по одному за раз в одном потоке единиц и нулей по одному проводу. Последовательный порт использует стандартный 9-контактный D-образный разъем и используется для подключения таких устройств, как мышь, модемы, игровые контроллеры, старые принтеры и т. Д.

Производительность

— Параллельная передача относительно намного быстрее, чем последовательная передача, даже с той же частотой сигнала.Таким образом, скорость передачи в параллельных портах выше, поскольку они способны передавать несколько потоков данных одновременно, тем самым устраняя перекрестные помехи и ошибки. Таким образом, для связи через параллельный порт используется относительно больше проводов. Последовательные порты относительно медленнее с точки зрения скорости передачи, потому что они могут передавать только один поток данных за раз по одному проводу. В отличие от параллельной связи, вы можете увеличить длину провода по мере необходимости при последовательной связи.

Устройства

— Параллельный порт является одним из наиболее универсальных портов ввода-вывода в системе, поскольку его можно использовать для различных устройств, включая принтеры, оптические приводы, сканеры, внешние CD-ROM, жесткие диски и т. Д. Последовательный порт используется для подключения таких устройств, как мышь, модемы, игровые контроллеры, старые принтеры и т. Д. Однако современные последовательные порты используются для подключения таких устройств, как камеры видеонаблюдения, мониторы с плоским экраном, приемники GPS, телескопы, инверторы питания. , так далее.

Параллельный порт и последовательный порт: сравнительная таблица

Сводка параллельного порта и последовательного порта

В двух словах, параллельный порт — это параллельный интерфейс для подключения компьютерных периферийных устройств, которым требуется относительно высокая пропускная способность. Это соединение восьми или более проводов, по которым биты данных могут передаваться одновременно. В последовательном интерфейсе биты данных передаются по одному по одному проводу или, в случае беспроводной связи, по одному пути передачи.Последовательные порты относительно медленнее параллельных портов с точки зрения скорости передачи. А параллельный интерфейс вмещает больший объем данных, чем последовательный интерфейс, поскольку несколько битов данных передаются одновременно через параллельный интерфейс.

Сагар Хиллар — плодовитый автор контента / статей / блогов, работающий старшим разработчиком / писателем контента в известной фирме по обслуживанию клиентов, базирующейся в Индии. У него есть желание исследовать разноплановые темы и разрабатывать высококачественный контент, чтобы его можно было лучше всего читать.Благодаря его страсти к писательству, он имеет более 7 лет профессионального опыта в написании и редактировании услуг на самых разных печатных и электронных платформах.

Вне своей профессиональной жизни Сагар любит общаться с людьми из разных культур и происхождения. Можно сказать, что он любопытен по натуре. Он считает, что каждый — это опыт обучения, и это приносит определенное волнение, своего рода любопытство, чтобы продолжать работать. Поначалу это может показаться глупым, но через некоторое время это расслабляет и облегчает начало разговора с совершенно незнакомыми людьми — вот что он сказал.»

Последние сообщения от Sagar Khillar (посмотреть все)

: Если вам понравилась эта статья или наш сайт. Пожалуйста, расскажите об этом. Поделитесь им с друзьями / семьей.

Cite
APA 7
Хиллар, С. (23 ноября 2020 г.). Разница между параллельным и последовательным портами. Разница между похожими терминами и объектами. http://www.differencebetween.net/technology/difference-between-parallel-port-and-serial-port/.
MLA 8
Хиллар, Сагар.«Разница между параллельным и последовательным портами». Различия между похожими терминами и объектами, 23 ноября 2020 г., http://www.differencebetween.net/technology/difference-between-parallel-port-and-serial-port/.

Последовательное и параллельное хранилище | Computerworld

Данные, хранящиеся на диске, состоят из длинных строк (называемых дорожками и секторами) единиц и нулей. Головки дисков считывают эти строки по одному бит за раз, пока диск не накопит желаемое количество данных, а затем отправит их в процессор, память или другие устройства хранения.То, как диск отправляет эти данные, влияет на общую производительность.

Много лет назад все данные, отправляемые на диски и с дисков, передавались в последовательной форме — один бит отправлялся сразу за другим, используя только один канал или провод.

Подробнее

Computerworld
QuickStudies

Однако с интегральными схемами стало возможным и дешевым размещать несколько устройств на одном кристалле кремния, и родился параллельный интерфейс. Обычно он использовал восемь каналов для передачи, что позволяло отправлять восемь бит (один байт) одновременно, что было быстрее, чем при прямом последовательном соединении.В стандартном параллельном интерфейсе использовался громоздкий и дорогой 36-жильный кабель.

Так почему же производители отказываются от параллельных интерфейсов в пользу последовательных, когда нам нужно получать данные на диски и с дисков быстрее, чем когда-либо?

Например, большинство принтеров больше даже не имеют параллельных портов. Ноутбуки отказались от традиционных параллельных и последовательных портов в пользу высокоскоростной универсальной последовательной шины и портов IEEE 1394. [См. QuickLink 29332 для получения дополнительной информации об этих технологиях.] Теперь мы видим ту же миграцию в интерфейсах, которые подключают дисковые накопители.

На первый взгляд это кажется нелогичным. Разве параллельное соединение не более эффективно, чем последовательное, с большей емкостью? Не совсем и, конечно, больше нет. При нынешних скоростях параллельная передача имеет несколько недостатков.

Накладные расходы на обработку

Во-первых, помните, что данные сохраняются и извлекаются по одной дорожке за раз, по одному биту за раз. Мы говорим о байтах для удобства, но байт — это просто строка из восьми битов подряд, и в конечном итоге мы должны обрабатывать каждый бит отдельно.

Таким образом, прежде чем мы сможем отправить байт параллельно на диск, мы должны получить эти восемь битов и выровнять их, направляя каждый к другому проводу. Когда мы выполнили всю обработку и перемещение, чтобы подготовить их все, мы запускаем этот байт.

На другом конце кабеля, когда дисковод получает биты, он должен пройти обратный процесс, чтобы преобразовать этот байт обратно в последовательный поток битов, чтобы записывающие головки дисковода могли записать его на диск.

Чтобы представить это по-другому, подумайте о том, что представляет собой почти обратный процесс — преобразование параллельного порта в последовательный для передачи и обратно.Вот что происходит при отправке кода Морзе по телеграфной линии. Сообщение начинается с написанных слов (думайте параллельно) на листе бумаги. Процессор (то есть мозг оператора) должен преобразовать каждую букву в серию точек и тире (последовательных), а затем отправить их по сети.

На принимающей стороне другой процессор должен прослушивать эти последовательные точки и тире, а затем преобразовывать их обратно в буквы и слова. Требуется много накладных расходов, потому что среда передачи не соответствует исходному входу или желаемому выходу.

Искажение сигнала

Когда сигнал проходит по проводу или трассе интегральной схемы, дефекты проводов или драйверов интегральной схемы могут замедлить работу некоторых битов.

При параллельном соединении восемь битов, которые уходят одновременно, не достигают другого конца одновременно; некоторые доберутся до них позже, чем другие. Это называется перекосом. Чтобы справиться с этим, принимающая сторона должна синхронизироваться с передатчиком и ждать, пока не будут получены все биты.Последовательность обработки такова: чтение, ожидание, фиксация, ожидание тактового сигнала, передача.

Чем больше проводов и чем больше расстояние между ними, тем больше перекос и выше задержка. Эта задержка ограничивает эффективную тактовую частоту, а также длину и количество параллельных линий, которые можно использовать.

Перекрестные помехи

Тот факт, что параллельные провода физически связаны, означает, что один сигнал иногда может «отпечататься» на проводе рядом с ним.Пока сигналы различны, это не вызывает проблем.

Но по мере того, как биты становятся ближе друг к другу, мощность сигнала уменьшается с увеличением расстояния (особенно на более высоких частотах), а паразитные отражения накапливаются из-за промежуточных разъемов. В результате вероятность ошибки значительно возрастает, и контроллер диска может быть не в состоянии отличить единицу от нуля. Чтобы этого не произошло, необходима дополнительная обработка.

Последовательные шины избегают этого, изменяя сигналы во время передачи, чтобы компенсировать такие потери.В последовательной топологии все пути передачи хорошо контролируются с минимальной изменчивостью, что позволяет последовательной передаче надежно работать на значительно более высоких частотах, чем в параллельных схемах.

Новые, меньшие серийные номера

Мы уже видели, как последовательные соединения вытесняют параллельные для принтеров и других периферийных устройств. Теперь внутри компьютеров мы заменяем параллельные подключения к дисковым накопителям и массивам, как SCSI, так и Advanced Technology Attachment (ATA), новой последовательной архитектурой, называемой Serial Attached SCSI и Serial ATA.

Другие связанные с хранилищем последовательные системные интерфейсы включают Serial RapidIO, InfiniBand и Fibre Channel.

Проблемы с параллельным

Кей — писатель Computerworld из Вустера, штат Массачусетс. Вы можете связаться с ним по адресу [email protected].

См. Дополнительные Computerworld QuickStudies

Новые правила хранения

Истории в этом отчете:



Авторские права © 2003 IDG Communications, Inc.

Последовательная связь — обзор

Введение

На протяжении многих лет отладка проблем последовательной связи во встроенных системах обычно сводилась к отладке капризов протокола RS-232. Удивительно, но это все еще верно сегодня, потому что RS-232C является самым основным и фундаментальным из протоколов последовательной связи и, как правило, довольно надежен. Отладка обычно заключалась в том, чтобы правильно согласовать скорости передачи данных или возиться с передаваемыми данными на выходе и передаваемыми данными на контактах 2 и 3 разъема.Отладка канала последовательной связи была первой частью ввода-вывода, которая требовалась инженеру для правильной работы, потому что связь с целевой системой зависела от правильной работы этого канала.

Сегодня протоколы последовательной связи сильно эволюционировали и используются как для периферийных коммуникаций, так и для связи между элементами сетей. Эти системы быстродействующие и сложные. Им требуются узкоспециализированные инструменты измерения для анализа и исправления ошибок в потоках данных.Любое обсуждение, которое мы могли бы провести об отладке этих систем, быстро сосредоточилось бы на том, какой анализатор компании следует купить.

Таким образом, давайте сузим наши рамки до типов систем связи, с которыми нам, скорее всего, придется иметь дело при проектировании систем управления в реальном времени без необходимости прибегать к специализированным инструментам. Кроме того, мы также можем исключить из нашего обсуждения протоколы USB и Ethernet. Вы можете возразить, что эти протоколы довольно фундаментальны. Фактически, у меня в офисе есть лазерный принтер с уже установленными портами USB и Ethernet.Разве мы не должны обсудить это?

Ярмарка. Однако, как правило, у нас будет стандартная ИС некоторой разновидности, которая будет обрабатывать трансляцию протокола связи физического уровня во что-то, с чем может иметь дело остальная часть системы. Эта схема ИС физического уровня довольно стандартна, и если вы будете следовать правилам проектирования и примерам схем, приведенным в примечаниях к применению, ваша схема с высокой вероятностью будет работать правильно. Однако, как только он покидает схему транслятора, мы должны рассматривать его как еще один элемент нашей общей системы, и тогда в игру вступают обсуждения предыдущих глав.

Вот простой пример. Ранние версии одноплатных компьютеров Arduino содержали преобразователь USB в UART IC, произведенный Future Technology Device International (FTDI). Все микроконтроллеры Atmel, которые были ядром семейства плат Arduino, имели интерфейсы UART, которые могли так же легко подключать чип к шине RS-232. Чип FTDI преобразует протокол USB в UART.

Более поздние версии микросхемы, такие как ATMEGA16U2-MU, обновили коммуникационный порт для прямого взаимодействия с USB 2.0, что устраняет необходимость в микросхеме интерфейса FTDI. Все, что теперь требуется, — это два последовательных резистора 220 Ом между разъемом USB и микроконтроллером.

Итак, какие последовательные протоколы мы должны обсудить? Основываясь на моем опыте решения проблем моих учеников с разработкой их микропроцессорных конструкций, почти все периферийные устройства, которые они подключают к своему контроллеру, являются либо интерфейсом SPI, либо интерфейсом I 2 C. Поэтому давайте обсудим эти протоколы, исходя только из уровня боли.

Поскольку RS-232 все еще существует и все еще используется во многих системах, мы рассмотрим основы этого протокола и проблемы, связанные с его работой.

Наконец, и в основном из-за того, что он получил широкое распространение во многих отраслях промышленности в качестве протокола связи, мы рассмотрим шину CAN. Изначально шина CAN развивалась как стандарт связи для автомобильных систем, но с годами получила гораздо большее признание и в других отраслях промышленности.

Наконец, еще одна причина, по которой, как мне кажется, имеет смысл обсудить эти четыре протокола в контексте отладки, является то, что простые смертные могут находить и исправлять ошибки, используя только стандартный осциллограф или логический анализатор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *