Параллельное соединение конденсаторов это: Параллельное соединение конденсаторов формула — Всё о электрике

Содержание

Параллельное соединение конденсаторов формула - Всё о электрике

Способы подключения конденсаторов в электрическую цепь

Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом. Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей. Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения.

Параллельное включение конденсаторов в цепь

Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей.

Параллельное соединение конденсаторов:

Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока.

В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии.

Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

При параллельном соединении конденсаторов емкость равняется:

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Конденсаторы, соединенные параллельно, имеют напряжение:

Последовательное включение конденсаторов в цепь

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.

Последовательное соединение конденсатора:

При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния.

По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак. Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Формула нахождения заряда на конденсаторе, схема подключения конденсатора:

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости. Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки. Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.

Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:

Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:

Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:

Смешанное включение емкостных накопителей в схему

Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением.

Участок цепи подсоединенных смешанным включением накопителей емкости:

Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:

  • разбивается схема на простые для вычисления участки, это последовательное и параллельное соединение конденсаторов;
  • вычисляем эквивалентную емкость для группы конденсаторов, последовательно включенных на участке параллельного соединения;
  • проводим нахождение эквивалентной емкости на параллельном участке;
  • когда эквивалентные емкости накопителей определены, схему рекомендуется перерисовать;
  • рассчитывается емкость получившейся после последовательного включения эквивалентных накопителей электрической энергии.

Накопители емкостей (двухполюсники) включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:

  1. Использование для подключения электрических двигателей и другого оборудования в цехах, в радиотехнических устройствах.
  2. Упрощение вычисления величин электросхемы. Монтаж выполняется отдельными участками.
  3. Технические свойства всех элементов не меняются, когда изменяется сила тока и магнитное поле, это применяется для включения разных накопителей. Характеризуется постоянной величиной емкости и напряжения, а заряд пропорционален потенциалу.

Вывод

Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников. В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу (треугольником). В этой схеме минус соединяется с минусом, а плюс — с плюсом. Происходит увеличение емкости накопителя, и меняется работа двухполюсника.

Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

Соединение конденсаторов

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.

Рисунок 1. Способы соединения конденсаторов.

Параллельное соединение конденсаторов.

Если группа конденсаторов включена в цепь таким обра­зом, что к точкам включения непосредственно присоединены пластины всех конденсаторов, то такое соединение называется параллельным соединением конденсаторов (рисунок 2. ).

Рисунок 2. Параллельное соединение конденсаторов.

При заряде группы конденсаторов, соединенных параллель­но, между пластинами всех конденсаторов будет одна и та же разность потенциалов, так как все они заряжаются от одного и того же источника тока. Общее же количе­ство электричества на всех конденсаторах будет равно сумме количеств электричества, помещающихся на каждом из кон­денсаторов, так как заряд каждого их конденсаторов проис­ходит независимо от заряда других конденсаторов данной группы. Исходя из этого, всю систему параллельно соединен­ных конденсаторов можно рассматривать как один эквива­лентный (равноценный) конденсатор. Тогда

общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.

Обозначим суммарную емкость соединенных в батарею конденсаторов бук­вой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:

Последний знак + и многоточие указывают на то, что этой формулой можно пользоваться при четырех, пяти и во­обще при любом числе конденсаторов.

Последовательное соединение конденсаторов.

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое

соединение конденсаторов называется последо­вательным (рисунок 3).

Рисунок 2. Последовательное соединение конденсаторов.

При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заря­жаются через влияние. При этом заряд пла­стины 2 будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.

Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:

Последовательно-параллельное (смешанное) соединение конденсаторов

Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.

На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.

Рисунок 4. Последовательно-параллельное соединение конденсаторов.

При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:

1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.

2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.

3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.

4. Рассчитывают емкость полученной схемы.

Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.

Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.

Подробнее о расчетах соединения конденсаторов можно узнать в мультимедийном учебнике по основам электротехники и электроники:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Соединение конденсаторов Параллельное соединение конденсаторов

При параллельном соединении конденсаторов к каждому кон­денсатору приложено одинаковое напряжениеU, а величина за­ряда на обкладках каждого конденсатора Q пропорциональна его емкости (рис. 2).

Общий заряд Q всех конденсаторов

Общая емкость С, или емкость батареи, параллельно включенных конденсаторов равна сумме емкостей этих конденсаторов.

Параллельное подключение конденсатора к группе других включенных конденсаторов увеличивает общую емкость батареи этих конденсаторов. Следовательно, параллельное соединение конденсаторов при­меняется для увеличения емкости.

4)Если параллельно включены т одинаковых конденсаторов ем­костью С´ каждый, то общая (эквивалентная) емкость батареи этих конденсаторов может быть определена выражением

Последовательное соединение конденсаторов

На обкладках последовательно соединенных конденсаторов, подключенных к источнику постоянного тока с напряжением U, появятся заряды одинаковые по величине с противоположными знаками.

Напряжение на конденсаторах распределяется обратно пропорционально емкостям конденса­торов:

Обратная величина общей емкости последовательно соединенных конденсаторов равна сумме обратных величин емкостей этих кон­денсаторов.

При последовательном включении двух конденсаторов их об­щая емкость определяется следующим выражением:

Если в цепь включены последовательно п одинаковых конден­саторов емкостью С каждый, то общая емкость этих конденса­торов:

Из (14) видно, что, чем больше конденсаторов п соединено последовательно, тем меньше будет их общая емкость С, т. е. по­следовательное включение конденсаторов приводит к уменьше­нию общей емкости батареи конденсаторов.

На практике может оказаться , что допустимое ра­бочее напряжение Up конденсатора меньше напряжения, на кото­рое необходимо подключить конденсатор. Если этот конденсатор подключить на такое напряжение, то он выйдет из строя, так как будет пробит диэлектрик. Если же последовательно включить не­сколько конденсаторов, то напряжение распределится между ними и на каждом конденсаторе напряжение окажется мень­ше его допустимого рабочего Up. Следовательно, последовательное соединение конденсаторов применяют для того, чтобы напряжение на каждом конденсаторе не превышало его рабочего напряжения Up.

Смешанное соединение конденсаторов

Смешанное соединение (последовательно-параллельное) кон­денсаторов применяют тогда, когда необходимо увеличить ем­кость и рабочее напряжение батареи конденсаторов.

Рассмотрим смешанное соединение конденсаторов на ниже­приведенных примерах.

где Q — заряд конденсатора или конденсаторов, к которым при­ложено напряжение U; С — электрическая емкость конденсатора или батареи соединенных конденсаторов, к которой приложено напряжение U.

Таким образом, конденсаторы служат для накопления и сохра­нения электрического поля и его энергии.

15.Дайте определение понятиям трех лучевая звезда и треугольник сопротивлений. Запишите формулы для преобразования трех лучевой звезды сопротивлений в треугольник сопротивлений и наоборот. Преобразуйте схему к двум узлам (Рисунок 5)

Рисунок 5- Схема электрическая

Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях.

На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в цепи.

1.Схемы замещения элементов электрических цепей

На расчетных схемах источник энергии можно представить ЭДС без внутреннего сопротивления, если это сопротивление мало по сравнению с сопротивлением приемника (рис. 3.13,6).

Приr= 0 внутреннее падение напряженияUо = 0, поэтому

напряжение на зажимах источника при любом токе равно

В некоторых случаях источник электрической энергии на расчетной схеме заменяют другой (эквивалентной) схемой (рис. 3.14, а), где вместо ЭДСЕ источник характеризуется его током короткого замыканияIK, а вместо внутреннего со­противления в расчет вводится внутренняя проводимостьg=1/r.

Возможность такой замены можно доказать, разделив равенство (3.1) на r:

где U/r = Io—некоторый ток, равный отношению напряжения на зажимах источника к внутреннему сопротивлению;E/r = IK — ток короткого замыкания источника;

Вводя новые обозначения, получим равенство IK= Io + I, которому удовлетворяет эквивалентная схема рис. 3.14,а.

В этом случае при любой величине напряжения на зажимах; источника его ток остается равным току короткого замыкания (рис. 3.14,6):

Источник с неизменным током, не зависящим от внешнего сопротивления, называют источником тока.

Один и тот же источник электрической энергии может быть заменен в расчетной схеме источником ЭДС или источником тока.

{SOURCE}

Параллельное и последовательное соединение конденсаторов

Соединение конденсаторов

Как правильно соединять конденсаторы?

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение


Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.


Параллельное соединение электролитов


Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.


Последовательное соединение электролитов


Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Последовательное и параллельное соединение конденсаторов

Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы, могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.

Последовательное соединение конденсаторов

При последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику ЭДС/тока одной из своих пластин. Заряд одинаков на всех пластинах, но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.

Напряжение на данном участке цепи соотносятся следующим образом:

Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:

Сократив выражение на Q, получим знакомую формулу:

Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:

Параллельное соединение конденсаторов

При параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.

Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:

Так как заряд конденсатора

А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов

Пример 1

Какова результирующая емкость 4 конденсаторов включенных последовательно и параллельно, если известно что С1 = 10 мкФ, C2 = 2 мкФ, C3 = 5 мкФ, а C4 = 1 мкФ?

При последовательном соединении общая емкость равна:

При параллельном соединении общая емкость равна:

Пример 2

Определить результирующую емкость группы конденсаторов подключенных последовательно-параллельно, если известно, что С1 = 7 мкФ, С2 = 2 мкФ, С3 = 1 мкФ.

Сначала найдем общую емкость параллельного участка цепи:

Затем найдем общую емкость для всей цепи:

По сути, расчет общей емкости конденсаторов схож с расчетом общего сопротивления цепи в случае с последовательным или параллельным соединением, но при этом, зеркально противоположен.

Параллельное и последовательное соединение конденсаторов

Элементы цепи могут быть подключены двумя способами:

Проиллюстрируем данные подключения на примере двух конденсаторов (рис. 1).

  • последовательное соединение конденсаторов

Рис. 1. Последовательное соединение конденсаторов

Логическая зарядка конденсаторов происходит как показано на рис.1. Приходя из цепи, электрон останавливается на левой обкладке (пластине) конденсатора. При этом, благодаря своему электрическому полю (электризация через влияние), он выбивает другой электрон с правой обкладки, уходящий дальше в цепь (рис. 1.1). Этот образовавшийся электрон приходит на левую обкладку следующего конденсатора, соединённого последовательно. И всё повторяется снова. Таким образом, в результате «прохождения» через последовательную цепь конденсаторов «одного» электрона, мы получаем заряженную систему с одинаковыми по значению зарядами на каждом из конденсаторов (рис. 1.2).

Кроме того, напряжение на последовательно соединённой батареи конденсаторов есть сумма напряжений на каждом из элементов (аналог последовательного сопротивления проводников).

Рис. 2. Последовательное соединение конденсаторов

Часть задач школьной физики касается поиска общей электроёмкости участка цепи, логика такого поиска: найти такую электроёмкость, которым можно заменить цепь, чтобы параметры напряжения и заряда остались неизменными (рис. 2). Пусть заряд на обоих конденсаторах — (помним, что они одинаковы), электроёмкости — , и соответствующие напряжения — и .

  • где
    • — напряжение на первом конденсаторе,
    • — электроёмкость первого конденсатора,
    • — заряд конденсатора.
  • где
    • — напряжение на втором конденсаторе,
    • — электроёмкость второго конденсатора,
    • — заряд конденсатора.
  • где
    • — напряжение полной цепи,
    • — электроёмкость общего конденсатора,
    • — заряд общего конденсатора.

Памятуя о том, что конденсаторы соединены последовательно, получаем:

Или в общем виде:

  • где
    • — электроёмкость последовательно соединённых конденсаторов,
    • — сумма обратных емкостей.

Для цепи из двух последовательных соединений:

  • параллельное соединение конденсаторов

Рис. 3. Параллельное соединение конденсаторов

Параллельное подключение конденсаторов представлено на рисунке 3. При внесении электрона в систему, у него есть выбор: пойти на верхний или нижний конденсатор. При большом количестве электронов заполнение обкладок конденсатора происходит прямо пропорционально электроёмкости конденсаторов.

Рис. 4. Параллельное соединение конденсаторов. Поиск полной электроёмкости

Опять попробуем решить задачу по поиску полной ёмкости конденсаторов (рис. 4). Помним, что при параллельном подключении напряжения на элементах одинаковы, тогда:

  • где
    • — заряд на первом конденсаторе,
    • — электроёмкость первого конденсатора,
    • — напряжение на первом конденсаторе.
  • где
    • — заряд на втором конденсаторе,
    • — электроёмкость второго конденсатора,
    • — напряжение на втором конденсаторе.
  • где
    • — заряд на общем конденсаторе,
    • — электроёмкость полного конденсатора,
    • — напряжение на общем конденсаторе.

С учётом того, что , получим:

Или в общем виде:

  • где
    • — электроёмкость параллельно соединённых конденсаторов,
    • — сумма электроёмкостей последовательно соединённой цепи.

Вывод: в задачах, в которых присутствует цепь, необходимо рассмотреть, какое конкретно соединение рассматривается, а потом использовать соответствующую логику рассуждений:

  • для последовательного соединения
    • заряды всех конденсаторов одинаковы: .
    • напряжение во всей цепи есть сумма напряжений на каждом из элементов: ,
    • полная электроёмкость цепи конденсаторов, соединённых последовательно равна: .
  • для параллельного соединения
    • заряд системы конденсаторов есть сумма зарядов на каждом из них: ,
    • напряжение на каждом из элементов одинаково: ,
    • полная электроёмкость цепи конденсаторов, соединённых параллельно равна: .

Поделиться ссылкой:

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

{SOURCE}

примеры на последовательное, параллельное и смешанное соединение

Задания по электротехнике успешно даются только тем, кто может досконально разобраться в теме, нарисовать схему электроцепи и объяснить, каким образом в ней происходит взаимодействие между элементами. Ошибочно думать, что это очень сложный раздел физики, с которым под силу разобраться только электромеханикам. При желании эта тема доступна каждому среднестатистическому человеку. Давайте с ней разберемся!

Задания по электротехнике на тему «Конденсаторы»

Прежде чем приступать непосредственно к задачам, вспомним теорию.

Конденсатор — это два электрических проводника, разделенных между собой тонким слоем диэлектрика.

Проводники соединяют между собой с целью получить батареи. Существует 3 способа подключения конденсаторов:

  • параллельное;
  • последовательное;
  • комбинированное.

Последовательным соединением называется подключение двух или более конденсаторов в цепь так, что каждый отдельный проводник соединен с другим только в одной точке.

Параллельным называется такое соединение конденсаторов, при котором все они подключены между одной и той же парой точек. 

Комбинированное — это вид соединения, в котором часть проводников подключены параллельно, а часть — последовательно.

Знание каких формул и законов потребуется для решения

В зависимости от того, какой вид подключения проводников используется, по-разному будут определяться ключевые характеристики конденсаторов: емкость, заряд, напряжение.

Для решения заданий по данной теме в большинстве случаев понадобятся следующие формулы:

Источник: uk-parkovaya.ru

Предлагаем рассмотреть примеры решения типовых задач по данной теме со всеми необходимыми пояснениями, чтобы окончательно усвоить, как правильно разбирать такие задания. 

Решение задач на параллельное соединение

Задача

Три проводника соединены между собой параллельно. Емкость первого равна 100 микрофарад, второго — 200 микрофарад, третьего — 500 микрофарад. Найдите общую емкость конденсаторов.

Решение

  1. Запишем известные вводные: C1=100 мкФ, C2=200 мкФ, C3=500 мкФ, C=?
  2. Так как соединение в цепи параллельное, общая емкость будет определяться по формуле: C=C1+C2+C3
  3. Подставляем числовые значения в формулу и получаем ответ: 800 мкФ.

Решение задач на последовательное соединение

Задача

Батарея состоит из двух конденсаторов, соединенных последовательно. Емкость первого — 4 мкФ, второго — 6 мкФ. Батарея заряжена до напряжения 220 Вольт. Определите емкость и заряд батареи.

Решение

  1. Запишем известные нам данные из условий задачи: C1=4 мкФ, C2=6 мкФ, U=220 В, C=? q=?
  2. Так как конденсаторы соединены последовательно, емкость батареи будет определяться по формуле: \(\frac1c=\frac1{c_1}+\frac1{c_2}\)
  3. Общий заряд батареи будет равен заряду первого и заряду второго проводника, т. е. q=q1=q2
  4. Ищем значение емкости батареи по указанной выше формуле, получаем значение, равное 2,4 мкФ.
  5. Заряд батареи можно вычислить по формуле: \(q=C\times U\)
  6. Подставляем числовые значения в формулу и получаем ответ: 528 мкКл.

Решение задач на смешанное соединение

Предлагаем рассмотреть более сложное задание, правильный ответ на которое включает в себя сразу четыре варианта решения:

Источник: bambookes.ru

Остались вопросы? Физика по-прежнему кажется сложным для понимания предметом? Вы не понимаете разницу между постоянным и переменным током? Не знаете откуда берется энергия? Обращайтесь за помощью в решении задач и подготовке докладов к специалистам нашего образовательного сервиса ФениксХелп. Для нас нет нелюбимых предметов и сложных тем!

Вывод формулы последовательного соединения конденсаторов

Как правильно соединять конденсаторы?

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение


Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.


Параллельное соединение электролитов


Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.


Последовательное соединение электролитов


Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом. Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей. Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения.

Параллельное включение конденсаторов в цепь

Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей.

Параллельное соединение конденсаторов:

Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока. В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии.

Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

При параллельном соединении конденсаторов емкость равняется:

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Конденсаторы, соединенные параллельно, имеют напряжение:

Последовательное включение конденсаторов в цепь

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.

Последовательное соединение конденсатора:

При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния. По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак. Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Формула нахождения заряда на конденсаторе, схема подключения конденсатора:

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости. Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки. Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.

Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:

Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:

Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:

Смешанное включение емкостных накопителей в схему

Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением.

Участок цепи подсоединенных смешанным включением накопителей емкости:

Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:

  • разбивается схема на простые для вычисления участки, это последовательное и параллельное соединение конденсаторов;
  • вычисляем эквивалентную емкость для группы конденсаторов, последовательно включенных на участке параллельного соединения;
  • проводим нахождение эквивалентной емкости на параллельном участке;
  • когда эквивалентные емкости накопителей определены, схему рекомендуется перерисовать;
  • рассчитывается емкость получившейся после последовательного включения эквивалентных накопителей электрической энергии.

Накопители емкостей (двухполюсники) включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:

  1. Использование для подключения электрических двигателей и другого оборудования в цехах, в радиотехнических устройствах.
  2. Упрощение вычисления величин электросхемы. Монтаж выполняется отдельными участками.
  3. Технические свойства всех элементов не меняются, когда изменяется сила тока и магнитное поле, это применяется для включения разных накопителей. Характеризуется постоянной величиной емкости и напряжения, а заряд пропорционален потенциалу.

Вывод

Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников. В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу (треугольником). В этой схеме минус соединяется с минусом, а плюс — с плюсом. Происходит увеличение емкости накопителя, и меняется работа двухполюсника.

Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

При параллельном соединении конденсаторов к каждому кон­денсатору приложено одинаковое напряжениеU, а величина за­ряда на обкладках каждого конденсатора Q пропорциональна его емкости (рис. 2).

Общий заряд Q всех конденсаторов

Общая емкость С, или емкость батареи, параллельно включенных конденсаторов равна сумме емкостей этих конденсаторов.

Параллельное подключение конденсатора к группе других включенных конденсаторов увеличивает общую емкость батареи этих конденсаторов. Следовательно, параллельное соединение конденсаторов при­меняется для увеличения емкости.

4)Если параллельно включены т одинаковых конденсаторов ем­костью С´ каждый, то общая (эквивалентная) емкость батареи этих конденсаторов может быть определена выражением

Последовательное соединение конденсаторов

На обкладках последовательно соединенных конденсаторов, подключенных к источнику постоянного тока с напряжением U, появятся заряды одинаковые по величине с противоположными знаками.

Напряжение на конденсаторах распределяется обратно пропорционально емкостям конденса­торов:

Обратная величина общей емкости последовательно соединенных конденсаторов равна сумме обратных величин емкостей этих кон­денсаторов.

При последовательном включении двух конденсаторов их об­щая емкость определяется следующим выражением:

Если в цепь включены последовательно п одинаковых конден­саторов емкостью С каждый, то общая емкость этих конденса­торов:

Из (14) видно, что, чем больше конденсаторов п соединено последовательно, тем меньше будет их общая емкость С, т. е. по­следовательное включение конденсаторов приводит к уменьше­нию общей емкости батареи конденсаторов.

На практике может оказаться , что допустимое ра­бочее напряжение Up конденсатора меньше напряжения, на кото­рое необходимо подключить конденсатор. Если этот конденсатор подключить на такое напряжение, то он выйдет из строя, так как будет пробит диэлектрик. Если же последовательно включить не­сколько конденсаторов, то напряжение распределится между ними и на каждом конденсаторе напряжение окажется мень­ше его допустимого рабочего Up. Следовательно, последовательное соединение конденсаторов применяют для того, чтобы напряжение на каждом конденсаторе не превышало его рабочего напряжения Up.

Смешанное соединение конденсаторов

Смешанное соединение (последовательно-параллельное) кон­денсаторов применяют тогда, когда необходимо увеличить ем­кость и рабочее напряжение батареи конденсаторов.

Рассмотрим смешанное соединение конденсаторов на ниже­приведенных примерах.

где Q — заряд конденсатора или конденсаторов, к которым при­ложено напряжение U; С — электрическая емкость конденсатора или батареи соединенных конденсаторов, к которой приложено напряжение U.

Таким образом, конденсаторы служат для накопления и сохра­нения электрического поля и его энергии.

15.Дайте определение понятиям трех лучевая звезда и треугольник сопротивлений. Запишите формулы для преобразования трех лучевой звезды сопротивлений в треугольник сопротивлений и наоборот. Преобразуйте схему к двум узлам (Рисунок 5)

Рисунок 5- Схема электрическая

Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях.

На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в цепи.

1.Схемы замещения элементов электрических цепей

На расчетных схемах источник энергии можно представить ЭДС без внутреннего сопротивления, если это сопротивление мало по сравнению с сопротивлением приемника (рис. 3.13,6).

Приr= 0 внутреннее падение напряженияUо = 0, поэтому

напряжение на зажимах источника при любом токе равно

В некоторых случаях источник электрической энергии на расчетной схеме заменяют другой (эквивалентной) схемой (рис. 3.14, а), где вместо ЭДСЕ источник характеризуется его током короткого замыканияIK, а вместо внутреннего со­противления в расчет вводится внутренняя проводимостьg=1/r.

Возможность такой замены можно доказать, разделив равенство (3.1) на r:

где U/r = Io—некоторый ток, равный отношению напряжения на зажимах источника к внутреннему сопротивлению;E/r = IK — ток короткого замыкания источника;

Вводя новые обозначения, получим равенство IK= Io + I, которому удовлетворяет эквивалентная схема рис. 3.14,а.

В этом случае при любой величине напряжения на зажимах; источника его ток остается равным току короткого замыкания (рис. 3.14,6):

Источник с неизменным током, не зависящим от внешнего сопротивления, называют источником тока.

Один и тот же источник электрической энергии может быть заменен в расчетной схеме источником ЭДС или источником тока.

Серия

и параллельное подключение конденсаторов

  • Ресурс исследования
  • Исследовать
    • Искусство и гуманитарные науки
    • Бизнес
    • Инженерная технология
    • Иностранный язык
    • История
    • Математика
    • Наука
    • Социальная наука
    Лучшие подкатегории
    • Продвинутая математика
    • Алгебра
    • Базовая математика
    • Исчисление
    • Геометрия
    • Линейная алгебра
    • Предалгебра
    • Предварительный расчет
    • Статистика и вероятность
    • Тригонометрия
    • другое →
    Лучшие подкатегории
    • Астрономия
    • Астрофизика
    • Биология
    • Химия
    • Науки о Земле
    • Наука об окружающей среде
    • Науки о здоровье
    • Физика
    • другое →
    Лучшие подкатегории
    • Антропология
    • Закон
    • Политология
    • Психология
    • Социология
    • другое →
    Лучшие подкатегории
    • Бухгалтерский учет
    • Экономика
    • Финансы
    • Менеджмент
    • другое →
    Лучшие подкатегории
    • Аэрокосмическая техника
    • Биоинженерия
    • Химическая инженерия
    • Гражданское строительство
    • Компьютерные науки
    • Электротехника
    • Промышленное проектирование
    • Машиностроение
    • Веб-дизайн
    • другое →
    Лучшие подкатегории
    • Архитектура
    • Связь
    • Английский
    • Гендерные исследования
    • Музыка
    • Исполнительское искусство
    • Философия
    • Религиоведение
    • Письмо
    • другое →
    Лучшие подкатегории
    • Древняя история

Различия между последовательной и параллельной цепями

Ключевые различия между последовательными и параллельными цепями

В электротехнике и электронике очень важно знать различия между последовательными и параллельными цепями.Это две основные формы электрических цепей, а другая - последовательно-параллельная цепь, которая представляет собой комбинацию обоих, может быть понята, применяя те же правила.

Прежде чем углубляться в их различия, сначала мы собираемся обсудить, что такое электрическая цепь и каковы основные компоненты электрической цепи.

Электрическая цепь

Электрическая цепь или сеть представляет собой замкнутый контур, который обеспечивает замкнутый путь для прохождения тока.Это путь, который соединяет вместе различные электрические компоненты (такие как источник питания, резистор, конденсаторы, катушка индуктивности и т. Д.). Он начинается и заканчивается в одной и той же точке, образуя петлеобразную структуру. Схема состоит из 3 основных компонентов; источник питания, электрические компоненты (нагрузка) и проводники (провода) для соединения между ними.

Источник питания - это то, что возбуждает цепь и позволяет подавать ток в цепь. Источником питания может быть источник напряжения или источник тока.Типичный пример источника напряжения - аккумулятор.

Электрические компоненты обычно резисторы, конденсаторы, индукторы и т. Д. Представляют собой нагрузку, подключенную к источнику питания. Использование различных типов электрических компонентов влияет на свойства цепи.

Провода являются чистыми проводниками и соединяют электрические компоненты и источник питания вместе. Соединение компонентов в различных конфигурациях также меняет свойства схемы, такие как Series , Parallel и Serial-Parallel Circuit.

Основными двумя типами цепей являются последовательные и параллельные цепи. Но прежде чем переходить к последовательной и параллельной схеме, давайте разберемся, что такое последовательное и параллельное соединение.

Последовательное соединение

Последовательное соединение между компонентами - это когда два или более чем два компонента соединяются вместе в каскадной форме или хвост 1-го компонента соединяется с головкой 2 -го компонента и т. Д. . Последовательно соединенные компоненты образуют цепочечную структуру в одну линию.

Параллельное соединение

Соединение называется параллельным, если два или более чем два компонента соединены вместе рядом или их головки соединены вместе, а их хвосты соединены вместе. Компоненты, соединенные параллельно, образуют несколько путей или петель.

Последовательная схема

Схема называется последовательной схемой, если компоненты соединены в последовательной конфигурации или каскадном образовании в одной линии.Последовательная цепь образует путь, который имеет только один контур, поэтому ток, протекающий через компоненты, одинаков, а напряжение делится в зависимости от сопротивления каждого компонента.

Ток в последовательной цепи

Ток через каждый компонент в последовательной цепи остается неизменным и равен току, подаваемому от источника питания. Поскольку есть только один путь для текущего потока, ток не делится.

I T = I 1 + = I 2 = I 3 +… I n

Напряжение в последовательной цепи

Сумма падений напряжения на каждом составляющая в последовательной цепи равна напряжению питания.Напряжение - это последовательная цепь, которая делится между компонентами в зависимости от их сопротивления. Поэтому падение напряжения на каждом компоненте разное и зависит от значения сопротивления компонентов.

V T = V 1 + V 2 + V 3 +… V n

Сопротивление в последовательной цепи:

При последовательном подключении резисторов их общее сопротивление складывается, и это сумма отдельных сопротивлений каждого резистора.

R экв = R 1 + R 2 + R 3 +… R n

Общее сопротивление в последовательной цепи всегда больше, чем ее индивидуальное сопротивление.

Конденсатор в последовательной цепи:

Когда конденсаторы соединены последовательно, их общая или эквивалентная емкость уменьшается, потому что разница напряжений на каждом конденсаторе уменьшается, и заряд, накопленный за счет этого напряжения, также уменьшается.

1 / C eq = 1 / C 1 + 1 / C 2 + 1 / C 3 +… 1 / C n

Общая емкость в последовательной цепи всегда меньше индивидуальной емкости.

Катушка индуктивности в последовательной цепи:

Общая индуктивность двух или более чем двух катушек индуктивности в последовательной цепи является суммой индивидуальных индуктивностей.

L eq = L 1 + L 2 + L 3 +… L n

Общая индуктивность увеличивается и всегда превышает индивидуальную индуктивность в последовательной цепи.

Неисправность в последовательной цепи:

Если есть неисправность в каком-либо компоненте в последовательной цепи, вся цепь не будет работать, потому что ток прерывается и нет другого пути для прохождения тока. Таким образом, неисправность одного компонента приведет к отключению всей цепи. Чтобы устранить неполадки в последовательной цепи, вы должны проверить каждый компонент. Таким образом, поиск неисправностей в последовательной цепи сложнее, чем в параллельной.

Типичным примером последовательной цепи могут быть рождественские огни, они соединены последовательно.Если один из них перестанет работать, вся струна не загорится и дефектный свет очень сложно обнаружить.

Источники питания в последовательной цепи:

Если два или более чем два источника питания подключены последовательно, их общее или эквивалентное напряжение будет суммой отдельных напряжений, в то время как общий подаваемый ток останется таким же, как и ток, подаваемый через индивидуальная поставка.

Вы можете использовать следующие электрические формулы для расчета мощности в последовательной цепи:

P = I 2 R 1 + I 2 R 2 +… I 2 R n

или

P = V 1 2 / R 1 + V 2 2 / R 2 +… V n 2/ R

2 n

Итак, если вы хотите увеличить напряжение источника питания, подключенного последовательно.Например, две батареи на 6 В, соединенные последовательно, обеспечат 12 В от общего напряжения.

Параллельная цепь

Цепь называется параллельной цепью, если электрические компоненты соединены в параллельной конфигурации или их конец соединен с общей точкой. Он образует несколько петель или путей для прохождения тока.

Ток в параллельной цепи

Ток в параллельной цепи делится и разветвляется по каждому пути.Здесь общий ток или ток питания равен eq.

Серия

против объяснения параллельных подключений

Введение

В этом разделе более подробно рассматривается последовательное, параллельное и последовательно-параллельное соединение. В цель этого раздела - объяснить, почему используются определенные соединения, как настроить желаемое соединение, а также выбор наиболее выгодного соединения на основе ваша ситуация.

Почему параллельно?

Строго параллельные соединения в основном используются в небольших, более простых системах и обычно с ШИМ-контроллеры, хотя они и есть исключения. Параллельное подключение панелей увеличит усилители и поддерживайте напряжение прежним. Это часто используется в системах 12 В с несколькими панелями в качестве параллельная проводка панелей 12В позволяет сохранить зарядные возможности 12В.

Обратной стороной параллельных систем является то, что при большом токе трудно преодолевать большие расстояния. без использования очень толстых проводов. Системы мощностью до 1000 Вт могут выдавать более 50 ампер. что очень сложно передать, особенно в системах, где ваши панели больше 10 футов от вашего контроллера, и в этом случае вам придется перейти на 4 AWG или более толстый, который может быть дорого в долгосрочной перспективе.Кроме того, для параллельных систем требуется дополнительное оборудование, такое как соединители ответвлений. или комбайнер.

Почему серия?

Строго последовательные соединения в основном используются в небольших системах с контроллером MPPT. Последовательное соединение панелей увеличит уровень напряжения и сохранит силу тока. В Причина, по которой последовательные соединения используются с контроллерами MPPT, заключается в том, что контроллеры MPPT фактически могут принимать более высокое входное напряжение и по-прежнему иметь возможность заряжать батареи 12 В или более.Контроллеры Renogy MPPT могут принимать входное напряжение 100 В. Преимущество серий в том, что их легко передача на большие расстояния. Например, у вас может быть 4 панели Renogy 100 Вт последовательно, запустите ее. 100 футов и используйте только тонкий провод 14 калибра.

Обратной стороной серийных систем являются проблемы с затенением. Когда панели соединяются последовательно, все они смысл зависят друг от друга. Если одна панель затенена, это повлияет на всю строку.Это не будет происходят при параллельном подключении.

Почему последовательно-параллельный?

Панели солнечных батарей обычно ограничены одним фактором - контроллером заряда. Контроллеры заряда предназначены только для приема определенной силы тока и напряжения. Часто для больших систем в чтобы оставаться в пределах этих параметров силы тока и напряжения, мы должны проявлять изобретательность и использовать последовательное параллельное соединение.Для этого соединения строка создается двумя или более панелями в серии. Затем необходимо создать равную строку и провести параллель. 4 панели последовательно должны быть параллельно с другими 4 панелями последовательно, иначе произойдет серьезная потеря мощности. Вы можете увидеть больше в пример ниже.

На самом деле нет недостатков в последовательно-параллельном подключении. Обычно они используются при необходимости и других варианты недоступны.

Как настроить вашу систему параллельно.

Параллельное соединение достигается путем соединения плюсов двух панелей вместе, а также негативы каждой панели вместе. Это можно сделать разными способами, но обычно для меньшие системы это будет использоваться через соединитель ответвления. Разветвитель имеет Y-образную форму и один имеет два входа для положительного, который меняется на один, а также два входа для отрицательного, что меняется на одного. См. Рисунок ниже.

Модель 2.4.1

Как вы можете видеть, у вас есть слот для отрицательной клеммы панели # 1 и отрицательной клеммы панель №2.А также положительные эквиваленты. Тогда отрицательный выход и положительный выход будут используется для подключения к контроллеру заряда через кабель фотоэлектрической солнечной батареи.

См. Диаграмму ниже.

Модель 2.4.2


Давайте посмотрим на числовой пример. Скажем, у вас есть две солнечные панели по 100 Вт и аккумулятор на 12 В.Поскольку каждая панель рассчитана на 12 В, а аккумулятор, который вы хотите зарядить, - на 12 В, вам необходимо параллельно в вашей системе, чтобы напряжение оставалось неизменным. Рабочее напряжение составляет 18,9 В, а рабочий ток составляет 5,29 ампер. При параллельном подключении системы напряжение останется неизменным, а токи увеличатся на количество параллельных панелей. В этом случае у вас 5,29 ампер x 2 = 10,58 ампер. Напряжение остается на уровне 18,9 Вольт.Чтобы проверить математику, вы можете сделать 10,58 ампер x 18,9 вольт = 199,96 ватт, или почти 200. Вт.

Как настроить вашу систему в серии

Последовательное соединение осуществляется путем соединения плюса одной панели с минусом другая панель вместе. При этом вам не потребуется никакого дополнительного оборудования, кроме выводов панели. предоставлена. См. Схему ниже.

Модель 2.4,3



Давайте посмотрим на числовой пример. Скажем, у вас есть две солнечные панели по 100 Вт и батарея на 24 В. Поскольку каждая панель рассчитана на 12 В, а аккумулятор, который вы хотите зарядить, - на 24 В, вам необходимо система повышения напряжения. В целях безопасности используйте напряжение холостого хода для расчета серии соединений, в данном случае 100-ваттная панель имеет 22.Обрыв цепи 5 Вольт и 5,29 А. Подключение последовательно будет 22,5 вольт x 2 = 45 вольт. Ампер останется на уровне 5,29. Причина, по которой мы используем open напряжение цепи - это мы должны учитывать максимальное входное напряжение контроллера заряда.

* Если вы хотите проверить математику, он не будет работать с напряжением холостого хода. Вы можете использовать рабочее напряжение, так что 18,9 вольт x 2 = 37,8 вольт.37,8 В x 5,29 А = 199,96 Вт, или почти 200 Вт.

Как настроить систему последовательно-параллельно

Последовательно-параллельное соединение выполняется как последовательным, так и параллельным соединением. Каждый раз, когда вы группируете панели в серию, будь то 2, 4, 10, 100 и т. Д., Это называется строка. Выполняя последовательно-параллельное соединение, вы, по сути, параллельно используете 2 или более равных струны вместе.

См. Диаграмму ниже

Модель 2.4.4



Как вы можете видеть, это последовательное параллельное соединение состоит из 2 цепочек по 4 панели. Струны параллельны все вместе.

Давайте посмотрим на числовой пример этой диаграммы. Это в основном используется в нашем Renogy 40 Amp MPPT. Контроллер, поскольку он может принимать мощность до 800 Вт, но может принимать только 100 вольт, поэтому нельзя делать все последовательно.Параллельное соединение 8 панелей также приведет к слишком высокому сила тока.

В этом примере вы должны использовать напряжение холостого хода 22,5 В и рабочий ток 5.29 ампер. Создавая гирлянду из 4 панелей, у вас будет напряжение 22,5 В x 4 = 90 Вольт, что ниже предела 100 В. Затем при параллельном подключении другой струны напряжение останется 90 вольт и ампер увеличатся вдвое, поэтому 5.29 ампер x 2 = 10,58 ампер.

* Имейте в виду, что обычно существует еще один фактор, который необходимо учитывать при выборе размера для контроллера MPPT называется повышающим током. Об этом будет сказано в обвинении. раздел контроллера.

* Если вы хотите проверить математику, он не будет работать с напряжением холостого хода. Вы можете использовать рабочее напряжение, так 18.9 вольт x 4 = 75,6 вольт. 75,6 В x 10,58 А = 799,85 Вт, или почти 800 Вт.

Параллельные и последовательные видеосвязи:

Серия подключение конденсаторов

Теория:

Конденсаторы подчиняются тому же закону с использованием обратных величин.Общая емкость конденсаторов, включенных последовательно, равна сумме обратных величин их индивидуальных емкостей:

.

Экспериментальная часть:

Рисунок 3.1

Соберите схему на рисунке 3.1 с синусоидой напряжения Vm = 5 В, f = 2 кГц.

Перенести данные из A1 и V0 (виртуальные устройства) в таблицу 3.1

Таблица 3.1

I, м U, B
77.0 4,8 2,91 1,3 0,6

Номинальное значение емкостного реактивного сопротивления и емкости. Проверить эквивалентную емкость расчета схемы. Расчет емкостного реактивного сопротивления:

376,6 Ом 168,8 Ом

77,9 Ом 623,3 Ом

Вычислить w: = 12.56 кГц

0,2114 мкФ 0,4717 мкФ

1.022 мкФ 0.1277 мкФ

Проверка расчета схемы эквивалентной емкости:

на C экв = 0,1303 мкФ

4. Параллельное соединение конденсаторов:

Теория:

Общая емкость конденсаторов, включенных параллельно, равна сумме их индивидуальных емкостей:

.

Рабочее напряжение параллельной комбинации конденсаторов всегда ограничено наименьшим рабочим напряжением отдельного конденсатора.

Экспериментальная часть:

Рис. 4.1

Соберите схему на Рисунке 4.1 с синусоидой Напряжения Vm = 5 В, f = 1 кГц.

Перенести данные из A1 и V0 (виртуальные устройства) в Таблицу 4.1

Таблица 4.1

I, м м , м , м
4.9 53,0 6,9 14,7 31,4

Рассчитайте и сравните с практическим значением:

723,3 Ом 341,1 Ом

160,1 Ом 924,5 Ом

Измерено: Вычислено:

C экв = 1 / (w * X экв ) = 1,722 мкФ C экв = (1,0 + 0,22 + 0.47) мкФ = 1,69 мкФ

Заключение:

В этой лабораторной работе мы узнали о цепи переменного тока с конденсатором. Мы обнаружили, что в цепях постоянного тока (DC) после начального заряда или разряда ток не может течь, в цепях переменного тока ток все время течет в конденсатор и выходит из него, в зависимости от импеданса в цепи.

Задачей 1 st мы обнаружили, что ток через конденсатор опережает напряжение на четверть фазы или 90 градусов.У нас были некоторые ошибки в измерениях, потому что были инструментальные ошибки и мы не могли точно найти точки (которые должны быть записаны) на графике.

В эксперименте 2 и мы должны определить реактивное сопротивление цепи. По результатам измерений построили график и обнаружили, что полное сопротивление в этой цепи является реактивным сопротивлением конденсатора, которое зависит от частоты источника и емкости конденсатора.

Эксперименты

3 rd и 4 th посвящены последовательному и параллельному соединению конденсаторов, мы узнали о соотношении между эквивалентной емкостью и эквивалентным сопротивлением цепи.У нас тоже были ошибки в измерениях, это зависит от ошибок устройств.




:

параллельное соединение - Deutsch Übersetzung - Englisch Beispiele

Diese Beispiele können unhöflich Wörter auf der Grundlage Ihrer Suchergebnis enthalten.

Diese Beispiele können umgangssprachliche Wörter, die auf der Grundlage Ihrer Suchergebnis enthalten.

Несколько блоков захвата могут быть объединены в последовательное или параллельное соединение .

Mehrere Einfangeinheiten können dabei zu einer Serienoder Parallelschaltung zusammengefasst sein.

Схема по п.1, в которой упомянутые резистивные элементы упомянутого параллельного соединения имеют разные значения сопротивления.

Schaltkreis nach Anspruch 1, wobei die Widerstandselemente der Parallelschaltung unterschiedliche Widerstandswerte haben.

Каждый фильтрующий блок содержит фильтрующий элемент с параллельным соединением (4), через который выхлопные газы могут проникать без фильтрации.

Jede Filtereinheit enthält ein Filterelement mit einem Nebenschluss (4), durch den das Abgas ungefiltert hindurchtreten kann.

Там расчет параллельного соединения резисторов представлен в файле Excel.

Dort wird die Berechnung der Parallelschaltung von Widerständen mittels einer Excel-Datei vorgestellt.

Непосредственно цепь огней с помощью трансформатора в параллельном соединении .

Он может даже напоминать набор из множества газоразрядных трубок, соединенных между собой различными способами последовательностью и параллельным соединением .

Es kann sogar ein Satz von vielen Entladungsröhren, в Verschiedener Weise Serie Parallelschaltung verschaltet ähneln.

Аналогично, параллельное соединение конденсаторов необходимо для дополнения недостающей длины кабеля.

Ebenso ist die Parallelschaltung von Kondensatoren zur Ergänzung fehlender Kabellängen erforderlich.

Меньшие значения ESR могут быть достигнуты, например, параллельным соединением нескольких обычных конденсаторных ячеек в одном корпусе.

Kleinere ESR-Werte können beispielsweise durch Parallelschaltung mehrerer herkömmlicher Kondensatorzellen in einem Gehäuse erreicht werden.

Идеально подходит для дуговой катодной обработки. Высокая сила тока и мощность благодаря параллельному соединению нескольких генераторов.

Идеально для Arc-Kathoden-Prozesse Hohe Stromstärken und Leistungen durch Parallelschaltung mehrerer Generatoren.

Устройство по одному из предшествующих пунктов, отличающееся тем, что несколько воспламеняющихся пиротехнических зарядов расположены в параллельном соединении с общими соединительными линиями.

Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere zündbare Sprengladungen in einer Parallelschaltung mit gemeinsamen Anschlußleitungen angeordnet sind.

Способ по п.1 или 2, при котором имеется множество зон предварительного смешивания, соединенных последовательно или параллельно, .

Verfahren nach Anspruch 1 или 2, wobei mehrere Vormischzonen in Reihen- oder Parallelschaltung vorhanden sind.

Диаграмма 22: Шаг 1 - Параллельное соединение заменяется

Большинство химических соединений допускают параллельное соединение , и литий-ионный является одним из наиболее подходящих. На рисунке 3 показаны четыре последовательно соединенных элемента.

Die meisten Chemien erlauben eine Parallelschaltung , und Lithium-Ion ist eine der Besten.Figur 3 zeigt vier parallel geschaltete Zellen.

параллельное соединение , возможно до 50 датчиков

Посредством параллельного соединения двух или более систем тестирования можно тестировать даже большие силовые трансформаторы в диапазоне GVA.

Durch die Parallelschaltung von zwei oder mehr Prüfsystemen ist es möglich, selbst größte Leistungstransformatoren im GVA-Bereich zu prüfen.

более крупные жилые единицы могут обслуживаться параллельным подключением нескольких устройств

Größere Einheiten können durch Parallelschaltung mehrerer Geräte abgedeckt werden.

Устройство по любому из пп.1-3, отличающееся тем, что при параллельном соединении двух резонансных трубок (4, 4а; 12, 12а) они окружают друг друга соосно.

Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei einer Parallelschaltung zweier Resonanzrohre (4, 4a; 12, 12a) diese einander koaxial umschließen.

Устройство по п.1, отличающееся тем, что соединительный элемент содержит последовательное или параллельное соединение резистора, конденсатора и / или катушки.

Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Koppelglied aus einer Reihen- oder Parallelschaltung von einem Widerstand, einem Kondensator und / oder Spule besteht.

Резиновая опора по п.1, отличающаяся тем, что несколько поршневых цилиндров (9, 10) объединены в параллельном соединении .

Gummilager nach Anspruch 1, dadurch gekennzeichnet, daß mehrere Kolben-Zylinder-Einheiten (9, 10) in einer Parallelschaltung zusammengefaßt sind.

Параллельное соединение элемента, имеющего поведение PTC, и варистора может быть реализовано как в виде микроскопа, так и в виде макроскопического устройства.

Die Parallelschaltung von Element mit PTC - Verhalten und Varistor kann sowohl durch einen mikroskopischen Aufbau wie auch durch eine makroskopische Anordnung realisiert werden.

PPT - Параллельный / последовательный резистор и конденсаторы Презентация PowerPoint

  • Параллельный / последовательный резистор и конденсаторы

  • Когда два или более компонента соединены в линию, это называется последовательным соединением (слева на рисунке) .• Когда они соединены друг с другом, это называется параллельным соединением (справа на рисунке). • В этом модуле рассматривается, как рассчитать суммарное сопротивление или емкость обоих этих соединений.

  • Серия • Начнем с последовательно соединенных резисторов. Функция резистора - ограничивать ток. Чем больше сопротивление, тем сильнее ограничивается ток. • Когда мы соединяем два резистора вместе, каждый резистор по очереди ограничивает ток, поэтому общее сопротивление больше, чем у любого отдельного резистора.• Общее сопротивление (Rt) - это сумма всех резисторов: Rt = R1 + R2 + R3 + .... + Rn

  • Параллельно • При параллельном подключении резисторов ток может течь по любому резисторов. Это облегчает прохождение тока и снижает общее сопротивление. Если два резистора равного номинала подключены параллельно, ток равномерно распределяется по ним, и общее сопротивление составляет половину индивидуального значения. Поскольку значения обычно различаются, мы можем использовать следующее уравнение:

  • Параллельный • Хотя это уравнение выглядит сложным, большинство калькуляторов имеют ключ 1 / x или обратный ключ.Предположим, R1 = 100 и R2 = 50, тогда на калькуляторе вы должны ввести: • 100, за которым следует 1 / x (= 0,01), 50, за которым следует 1 / x (= 0,02) Сложите члены вместе 0,01 + 0,02 = 0,03 Наконец, нажмите 1 / x для получения 33,3

  • Параллельные конденсаторы • Конденсаторы состоят из пары металлических пластин, удерживающих заряд. Чем больше пластины, тем больше заряда они могут удерживать. Фактически, соединяя два конденсатора параллельно, мы получаем один конденсатор с большими пластинами, который имеет большую емкость.Общая емкость (Ct) рассчитывается путем сложения каждой из емкостей вместе: • Ct = C1 + C2 + C3 + ... + Cn

  • Параллельные конденсаторы • При последовательном соединении конденсаторов общая емкость ниже чем отдельные ценности.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *