Петля фаза ноль нормы – «Фаза-нуль». Испытания. | ЭЛЕКТРОлаборатория

Содержание

Проверка согласования параметров цепи фаза-ноль с характеристиками аппаратов защиты

В лаборатории  ООО “Электротехника”  вы можете заказать проведение проверки согласования параметров цепи петля фаза-ноль с характеристиками аппаратов защиты.

С ценами вы можете ознакомиться позвонив нам по телефону или отправить нам заявку.

Цель проведения измерений

В современных автоматах, как правило, применяются тепловой и электромагнитный расцепители. Первый отключает защищаемый участок цепи в случае перегрузки, а второй — при возникновении короткого замыкания. Номинальные параметры аппарата, защищающего линию, выбираются, исходя из расчетных значений потребляемой мощности и минимального значения Iкз для данной цепи.

Проверка непрерывности защитных проводников и согласования характеристик аппаратов защиты с параметрами петли «фаза-ноль» (далее для краткости — измерение полного сопротивления петли «фаза-ноль» или проверка параметров петли «фаза-ноль») проводится как на этапе приемо-сдаточных испытаний, так и в процессе эксплуатации. Данный вид электроизмерений позволяет определить, правильно ли выбраны автоматические выключатели и достаточно ли хорошо они защищают отходящие линии?

Требования ПУЭ и ПТЭЭП

Зная расчетный ток  КЗ, можно проверить временные характеристики аппарата защиты и их соответствие требованиям ПТЭЭП и ПУЭ.

ПТЭЭП, прил. 3, п. 28.4:

Проверка срабатывания защиты при системе питания с заземленной нейтралью (TN—C, TN—C—S, ТN—S).

Проверяется непосредственным измерением тока однофазного короткого замыкания с помощью специальных приборов или измерением полного сопротивления петля фаза-ноль с последующим определением тока короткого замыкания.

При замыкании на нулевой защитный рабочий провод ток однофазного короткого замыкания должен составлять не менее:

  • трехкратного значения номинального тока плавкой вставки предохранителя;
  • трехкратного значения номинального тока нерегулируемого расцепителя автоматического выключателя с обратнозависимой от тока характеристикой;
  • трехкратного значения уставки по току срабатывания регулируемого расцепителя автоматического выключателя обратнозависимой от тока характеристикой;
  • 1,1 верхнего значения тока срабатывания мгновенно действующего расцепителя (1,1 x Iном x N, где Iном – номинальный ток срабатывания, а N = 5, 10 и 20, для характеристик «B», «C» и «D» соответственно).

ПУЭ, 7 изд.

18.37. Электрические аппараты, вторичные цепи и электропроводки напряжением до 1 кВ.

  1. Проверка действия автоматических выключателей.

3.2. Проверка действия расцепителей. Проверяется действие расцепителя мгновенного действия. Выключатель должен срабатывать при токе не более 1,1 верхнего значения тока срабатывания выключателя, указанного заводом-изготовителем.

 

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.

1.7.79. В системе TN время автоматического отключения питания не должно превышать значений, указанных в табл. 1.7.1:

табл. 1.7.1,
Наибольшее допустимое время защитного автоматического отключения для системы TN

Номинальное фазное напряжение U, В

Время отключения, с

127

0,8

220

0,4

380

0,2

Более 380

0,1

Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1.

В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.

Если расчетный ток КЗ превышает верхнее значение тока срабатывания мгновенного расцепителя автомата в 1,1 раза (и более), то время срабатывания расцепителя заведомо меньше 0,02 секунды (см. время-токовые характеристики). При этом выполняются требования ПУЭ и ПТЭЭП.

Если ток КЗ не превышает 1,1 верхнего значения тока срабатывания выключателя, то необходимо определять время срабатывания расцепителя с использованием время-токовой характеристики. В соответствии с ПУЭ наибольшее допустимое время защитного отключения для групповых цепей (в т.ч. осветительных и розеточных) составляет 0,4 секунды, а для линий, питающих распределительные, групповые, этажные и др. щиты и щитки — 5 секунд.

 

Периодичность

Проводить проверку параметров цепи петля «фаза-ноль» следует соответствии с системой планово-предупредительного ремонта (ППР), при проведении капитального и текущего ремонтов, а также межремонтных испытаний (ПТЭЭП, прил. 3, п. 28.4).

С ремонтами все понятно, а что касается межремонтных, т.е. эксплуатационных или профилактических испытаний, то на практике чаще всего привязываются к периодичности замеров сопротивления изоляции. Поэтому и параметры цепи петля «фаза-ноль» измеряют либо каждые 3 года, либо ежегодно.

Исключения составляют электроустановки, которые подходят под категорию во взрывоопасных зонах — для них периодичность четко прописана в ПТЭЭП, 1 раз в 2 года.

ПТЭЭП, п. 3.4.12:

В электроустановках напряжением до 1000 В с глухозаземленной нейтралью (системы ТN) при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года должно измеряться полное сопротивление петли фаза-ноль электроприемников, относящихся к данной электроустановке и присоединенных к каждой сборке, шкафу и т.д., и проверяться кратность тока КЗ, обеспечивающая надежность срабатывания защитных устройств.

Внеплановые измерения должны выполняться при отказе устройств защиты электроустановок.

Результаты измерений

После проведения измерений результаты заносятся в протокол согласования характеристик аппаратов защиты с параметрами цепи петля «фаза-ноль» и подшиваются в технический отчет.

 

 

etl46.ru

Измерение петли фаза-ноль: методика, приборы, периодичность

Со временем эксплуатации линии электроснабжения в них происходят изменения, которые невозможно проконтролировать визуально или установить их с помощью математических расчетов. Для стабильной и бесперебойной работы электрооборудования необходимо периодически делать замеры определенных параметров. Одним из них является измерение петли фаза-ноль, которое делают при помощи специальных приборов. Если фазный провод замкнуть на нулевой в точке потребления, то между фазным и нулевым проводником создается контур, который и является петлей фаза-ноль. В нее входят: трансформатор, рубильники, выключатели, пускатели – все коммутационное оборудование. Ниже мы расскажем читателям Сам Электрик, как измерить сопротивление петли, предоставив существующие методики и оборудование.

Периодичность и назначение замеров

Для надежной работы электросети необходимо периодически проводить проверку силового кабеля и оборудования. Перед сдачей объекта в эксплуатацию, после капитального и текущего ремонта электросетей, после проведения пуско-наладочных работ, а также по графику, установленном руководителем предприятия проводят эти испытания. Измерения делают по следующим основным параметрам:

  • сопротивление изоляции;
  • сопротивление петли фаза-ноль;
  • параметры заземления;
  • параметры автоматических выключателей.

Основной задачей измерения параметра петли фаза-ноль является защита электрооборудования и кабелей от перегрузок, возникающих в процессе эксплуатации. Повышенное сопротивление может привести к перегреву линии, и как следствие, к пожару. Большое влияние на качество кабеля, воздушной линии оказывает окружающая среда. Температура, влажность, агрессивная среда, время суток – все это оказывает влияние на состояние сети.

В цепь для проведения замеров включают контакты автоматической защиты, рубильники, контакторы, а также проводники подачи напряжения к электроустановкам. Этими проводниками могут быть силовые кабели, подающие фазу и ноль, или воздушные линии, выполняющие эту же функцию. При наличии защитного заземления — фазный проводник и провод заземления. Такая цепь имеет определенное сопротивление.

Полное сопротивление петли фаза-ноль можно рассчитать с помощью формул, которые будут учитывать сечение проводников, их материал, протяженность линии, хотя точность расчетов будет небольшой. Более точный результат можно получить, измерив физическую цепь с имеющимися устройствами.

В случае использование в сети устройства защитного отключения (УЗО), его при измерении необходимо отключить. Параметры УЗО рассчитаны так, что при прохождении больших токов оно произведет отключение сети, что не даст достоверных результатов.

Обзор методик

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

  1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
  2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
  3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки. Полученные данные обрабатывают и с помощью формул определяют нужный параметр.

Основной методикой такого испытания стало измерение падения напряжения при подключении нагрузочного сопротивления. Этот метод стал основным, ввиду его простоты использования и возможности дальнейших расчетов, которые нужно провести для получения дальнейших результатов. При измерении петли фаза-ноль в пределах одного здания, нагрузочное сопротивление включают на самом дальнем участке цепи, максимально удаленном от места подачи питания. Подключение приборов проводят к хорошо очищенным контактам, что нужно для достоверности замеров.

Сначала проводят измерение напряжения без нагрузки, после подключения амперметра с нагрузкой замеры повторяют. По полученным данным делают расчет сопротивления цепи фаза-ноль. Используя готовое, предназначенное для такой работы устройство, можно сразу по шкале получить нужное сопротивление.

После проведения измерения составляют протокол, в который заносят все нужные величины. Протокол должен быть стандартной формы. В него также вносят данные об измерительных приборах, которые были использованы. В конце протокола подводят итог о соответствии (несоответствии) данного участка нормативно-технической документации. Образец заполнения протокола выглядит следующим образом:

Какие приборы используют?

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

  • М-417. Проверенный годами и надежный прибор для измерения сопротивления цепи фаза-ноль без снятия питания. Используют для замеров параметра методом падения напряжения. При использовании этого устройства можно провести испытание цепи с напряжением 380 В с глухозаземленной нейтралью. Он обеспечит размыкание измерительной цепи за 0,3 с. Недостатком является необходимость калибровки перед началом работы.
  • MZC-300. Устройство нового поколения, построенное на базе микропроцессора. Использует метод измерения падения напряжения при подключении известного сопротивления (10 Ом). Напряжение 180-250 В, время замера 0,03 с. Подключают прибор к сети в дальней точке, нажимают кнопку старт. Результат выводится на цифровой дисплей, рассчитанный с помощью процессора.
  • Измеритель ИФН-200. Выполняет много функций, в том числе, и измерение петли фаза-ноль. Напряжение 180-250 В. Для подключения к сети есть соответствующие разъемы. Готов к работе через 10 с. Подключаемое сопротивление 10 Ом. При сопротивлении цепи более 1 кОм измерение проводиться не будут – сработает защита. Энергонезависимая память сохраняет 35 последних вычислений.

О том, как измерить сопротивление петли фаза-ноль с помощью приборов, вы можете узнать, просмотрев данные видео примеры:

Использование ИФН-300

Как пользоваться MZC-300

Для использования вышеперечисленных методик необходимо привлекать только обученный персонал. Неправильное проведение замеров может привести к неверным конечным данным или к выходу из строя существующей системы электроснабжения. Хуже всего – это может привести к травмированию работников. Надеемся, теперь вы знаете, для чего нужно измерение петли фаза-ноль, а также какие методики и приборы для этого можно использовать.

Рекомендуем также прочитать:

samelectrik.ru

Измерение петли фаза-ноль - ElectrikTop.ru

Если в вашем доме или квартире регулярно срабатывают автоматические выключатели на вводах (перед электросчетчиком), и даже увеличение их номинала не дает результата – невозможно, например, одновременно включить стиральную машину и электрический чайник, то вам стоит провести замер полного сопротивления цепи. На языке профессионалов эта процедура называется «измерение сопротивления петли фаза-ноль».

Что такое петля фаза-ноль?

В силовых подстанциях напряжением до 1 тыс. вольт, с которых подается электроэнергия бытовым потребителям, выходные обмотки трехфазного трансформатора соединены звездой – c так называемой глухозаземленной технической нейтралью. По ней, вследствие естественного перекоса фаз, не выходящего за пределы норм эксплуатации электроустановок, может течь ток.

Теперь условно представьте, что вы единственный потребитель на линии и у вас есть только один электроприбор – электрическая лампочка. Один конец подающейся вам фазы подключен к технической нейтрали трансформатора, другой – к центральной клемме (надеемся, что это именно так) электропатрона. Через нить лампы она соединяется с нейтральным проводом.

Так образуется непрерывное кольцо, по которому циркулирует электрический ток. Вот оно и называется петлей фаза-ноль, которая обладает сопротивлением, складывающимся из удельного сопротивления проводников и нити лампы накаливания.

На практике количество элементов, составляющих полное сопротивление цепи, может быть значительно большим. Часть из них является естественным условием нормальной эксплуатации электроустановки. Другие возникают в результате нарушений, которые до поры до времени не приводят к катастрофическим последствиям.

Например, дома у вас могут быть ослаблены скрутки в клеммных коробках. Они способны добавить в общую копилку до сотен Ом! А на уличном столбе треснувший изолятор отдает часть фазы земле или заброшенный мальчишками на провода воздушный змей частично закорачивает электролинию и вызывает едва заметное – на пару вольт, падение напряжения. Вот именно эти нарушения и выявляются измерением петли фаза-ноль.

Почему срабатывают автоматы на вводах

Причины частого и необъяснимого срабатывания автоматов на вводах бывают двух типов:

  1. Внешние, обусловленные нарушениями в работе электролинии.
  2. Внутренние, из-за неисправности электропроводки в доме.

Внешние характеризуются стойким несоответствием норме номинала напряжения. Например, оно у вас постоянно не 220, а 200 вольт. Это сопровождается увеличением силы тока, протекающего по вашей домашней электропроводке. Увеличение номинала автоматического выключателя на входе, например, с 25 до 40 А в этом случае вам ничего не даст, кроме того, что сам автомат будет нагреваться, а при дальнейшем вашем упорствовании может даже эффектно взорваться.

Внутренних причин несколько. Самые распространенные из них:

  • Неплотный контакт в клеммных коробках.
  • Не соответствующее номиналу тока сечение проводов.
  • Уменьшение сопротивления изоляции проводов в результате естественного старения.

Внешне они проявляются нагревом проводников и скруток. Поэтому установка более мощных автоматических выключателей приведет к пожару. Конечно, можно потратить день на то, чтобы руками перещупать все розетки, провода и скрутки в доме. Но, во-первых, это чревато электротравмой. И, во-вторых, слишком субъективно. Измерение даст лучший результат.

Как и чем измерять

Сразу скажем, что замерить сопротивление петли фаза-ноль на внешнем контуре (от силовой подстанции до вводов в дом) могут только лица из оперативно-технического персонала местного РЭС. Вам этого делать категорически нельзя. Во-вторых, это сделать не удастся из-за отсутствия нужных приборов, а если и получится, то вы не сможете воспользоваться полученным значением. Ведь вам не с чем его сравнивать – у вас нет доступа к протоколам испытаний электрической сети.

Дома вы можете сделать это двумя способами:

  1. Использовать сетевое напряжение и прибор с эталонным сопротивлением.
  2. Протестировать схему с помощью внешнего источника напряжения.

Перед началом измерений вам надо определить общую длину электрических проводников и вычислить их удельное сопротивление. При этом вы должны считать, что их сечение соответствует нормам электробезопасности при пропускании через них тока, сила которого равна номиналу автоматических выключателей на вводе. После этого рассчитываете сопротивление всех энергопотребителей, для чего делите квадрат напряжения на величину их паспортной мощности. Полученное значение суммируете с удельным сопротивлением проводников.

Измерение прибором с эталонным сопротивлением

В этом случае вы оставляете домашнюю электропроводку подключенной к электрической сети. Находите самую дальнюю от вводных автоматов розетку. Если контуров несколько, то измерение проводятся отдельно для каждого. Ваша цель – установить величину падения напряжения при включении эталонного сопротивления в цепь измерителя.

Если у вас нет специальных приборов для таких измерений, то используйте мультиметр и сопротивление 100 Ом, рассчитанное на работу с напряжением 230 вольт. Установив количество вольт в розетке без нагрузки, подключаете эталонное сопротивление к нейтральной линии и повторяете опыт.

После этого вам надо сравнить расчетное падение напряжения с фактическим, эти значения не должны отличаться более чем на 5–6 вольт. Проведя подобные опыты с каждой розеткой, и сдвигаясь при этом в сторону вводных автоматов, вы найдете проблемную клеммную коробку или участок проводки.

От необходимости проводить вычисления после опытов вас избавят приборы MZC-300 или ИФН-200, они выводят на дисплей значение сопротивления тестируемого участка цепи.

Измерение с внешним источником напряжения

Внешним источником напряжения может стать гальванический мегомметр. Однако при его использовании надо принять меры предосторожности и подготовить электропроводку.

  • Отключить внешнюю сеть.
  • Закоротить выходные клеммы автоматического выключателя на вводах или в ближайшей клеммной коробке.
  • Отключить всех потребителей от розеток, вместо них установить эталонные сопротивления по 100 Ом каждое.
  • Вместо светодиодных и люминесцентных ламп (экономок) установить лампы накаливания.
  • Если есть дифавтоматы (АВДТ) или УЗО, установить между входными и выходными клеммами с маркировкой N перемычки из проводников того же сечения, что и в фазной линии.

Предел измерений мегомметра устанавливается по шкале кОм. Произведите опыт на самой дальней розетке и сравните полученное значение с вычисленной суммой удельного сопротивления проводников, всех эталонных сопротивлений в розетках и ламп в светильниках.

Измерение полного сопротивления цепи фаза-ноль является частью регламента по обслуживанию электрических сетей и электроустановок. Оно дает наиболее точную картину их состояния.

Поэтому результаты протоколируются и являются основанием для проведения ремонта или нахождения виновных в случае чрезвычайных ситуаций. В бытовых условиях оно применяется редко. Однако вы можете провести его и самостоятельно. При этом надо строго соблюдать все меры электробезопасности.

electriktop.ru

Замер сопротивления цепи «фаза-нуль»

Измерения сопротивления петли "фаза-Нуль" и токов однофазных замыканий проводится с целью проверки временных параметров срабатывания устройств защиты электрооборудования от сверхтоков при замыкании фазы на корпус.

Все мы хотим видеть электроснабжение нашего электрооборудования безопасным и безупречным, но не всегда желаемое можно выдавать за действительное. В процессе беспощадной эксплуатации энергосистемы и электрооборудования, пользователи забывают о том, что её надо периодически обследовать и заранее выявлять всевозможные неисправности. Не стоит дожидаться, когда пропадёт фаза в недрах скрытой электропроводки, а для включения электрооборудования срочно надо искать калоши и диэлектрические перчатки, подпирая палкой постоянно отключающийся автоматический выключатель. Как же уберечь себя от свалившихся на голову неприятностей? Для предупреждения и устранения вышеперечисленных неисправностей, требуется периодически проводить комплекс электроизмерений. В этой статье мы хотим рассказать вам о замере сопротивления цепи «фаза – нуль». Как и для каких целей требуется проводить замер сопротивления цепи «фаза – нуль».

Измерения сопротивления петли "Фаза-Нуль" и токов однофазных замыканий проводятся:

  • перед приемкой электрооборудования в эксплуатацию;
  • в сроки, определенные графиком планово-предупредительных ремонтов;
  • после капитального ремонта электрооборудования.

После проведения электромонтажных работ, электромонтажные организации вызывают специалистов электролаборатории для проведения электроизмерений. Всё это делается для того, чтобы передать в эксплуатацию надёжную и безопасную систему электроснабжения. Но давайте рассмотрим другую ситуацию. Вы выполнили электромонтажные работы своими силами или при помощи дяди Вани из ближнего зарубежья, а уверенности в безопасной эксплуатации не имеете. С виду всё чинно и благородно. И, как обычно, вы полагаетесь на «русское авось» и ждёте когда «грянет гром». Как обезопасить себя от прогнозируемых ситуаций? Выход есть, единственно верный, это своевременное проведение электроизмерений для выявления неисправностей в электроснабжении электрооборудования.

Давайте попробуем с вами поэтапно выполнить замер сопротивления петли «фаза – нуль». Первым делом надо провести визуальный осмотр силового щита, сверить существующую однолинейную схему (нарисовать схему расположения автоматических выключателей с нанесением на схему номиналов аппаратов защиты), определить соответствие номинала автоматического выключателя сечению кабеля отходящих линий (номинал автоматического выключателя обязан защитить кабель от перегрузок). При осмотре автоматических выключателей, надо обратить внимание, чтобы аппараты защиты не имели механических повреждений. Перед проведением измерения сопротивления петли «фаза – нуль», для получения достоверных показателей, требуется проверить качество присоединения проводников к автоматическим выключателям (протяжка сжимов аппаратов защиты).

Замер сопротивления изоляции петли «фаза – нуль» осуществляется с самой дальней точки измеряемой кабельной линии, то есть проверяется кабельная линия от автоматического выключателя до наиболее удалённой точки присоединения к кабельной линии. Если нет возможности определить визуально место окончания кабельной линии, то замер проводится по всей длине кабельной линии, по всем точкам присоединения. Измеренное значение сопротивления цепи «фаза – нуль» вносится в тетрадь или фиксируется и запоминается измерительным прибором. Измеренное (расчётное) значение тока однофазного замыкания сопоставляется с диапазоном тока срабатывания расцепителя короткого замыкания. По полученным данным определяется степень надежности срабатывания аппаратов защиты от сверхтоков при замыкании фазного проводника на открытые проводящие части. По расчетной величине этого тока определяется время срабатывания защитного аппарата.

Существует несколько методов измерения петли фаза-ноль:

  • метод падения напряжения в отключенной цепи
  • метод падения напряжения на нагрузочном сопротивлении
  • метод короткого замыкания цепи

Если замер сопротивления цепи «фаза – нуль» показал, что автоматический выключатель, установленный в силовом щите, не способен защитить кабельную линию, то можно попробовать протянуть сжимы на всех точках присоединения электрооборудования к кабельной линии или заменить аппарат защиты на более пониженный номинал (например с 25 А на 20 А), в соответствии с полученными измеренными данными. К этой статье мы прилагаем протокол проверки согласования параметров цепи «фаза – нуль» с характеристиками аппаратов защиты и непрерывности защитных проводников. Постарайтесь уберечь себя и своих близких от предсказуемых последствий.

Пример:

Производили замер петли фаза-ноль в помещении библиотеки. Измеряемая линия питается от сборки ЩС автоматическим выключателем с номинальным током 16 (А) и характеристикой «С». Как я уже говорил, измерение проводим на самой отдаленной точке этой линии, в нашем случае это розетка, расположенная в самом дальнем углу.

Электроснабжение библиотеки выполнено системой заземления TN-C. Поэтому измерение производим в рабочей цепи (фаза — ноль).

Измеренный ток однофазного короткого замыкания, который показал нам прибор, составлял 87 (А).

В данном примере воспользуюсь пунктом из ПТЭЭП. Т.е. ток однофазного замыкания должен быть не менее, чем 1,1 * 16 * 10 = 176 (А). А у нас ток получился 87 (А) — условие не выполняется.

При токе 87(А) электромагнитная защита автоматического выключателя не сработает, а сработает тепловая защита, выдержка времени которой составит несколько секунд (больше, чем 0,4 секунды — ПУЭ). За это время есть большой риск возникновения воспламенения или пожара электропроводки.

Вывод:

В моем примере условие не удовлетворяет требованиям ПТЭЭП и ПУЭ. Поэтому необходимо:

  • увеличить сечение проводов, измеряемой линии (при увеличении сечения провода уменьшается его сопротивление, а значит и увеличится ток однофазного замыкания, который пройдет по нашим условиям)
  • установить автоматический выключатель с меньшим номинальным током (при уменьшении номинала автомата мы тем самым жертвуем мощностью линии)

malahit-irk.ru

Измерение петли фаза-нольЭСИС Электрические системы и сети

Измерение будем проводить в 2 этапа:1. Внешний осмотр

Проводим тщательный внешний осмотр:

2. Измерение петли фаза-ноль

Перед измерением необходимо проверить плотность соединения проводов к аппаратам защиты. Если провода не протянуты — то смысла измерения нет, т.к. полученные показатели получатся не достоверными.

Измерение сопротивления петли фаза-ноль

Цель  — это выяснить соответствие номинального тока аппаратов защиты и сечение проводов измеряемой цепи.

Замер петли фаза-ноль производим на самой удаленной точке измеряемой линии.

Если же проблематично определить самую дальнюю точку линии, то необходимо проводить измерение сопротивления петли фаза-ноль по всем точкам этой линии.

Измеренные величины записываем в блокнот.

 

Методика измерения петли фаза-ноль. Как провести замер?

Существует несколько методов измерения:

  • метод падения напряжения в отключенной цепи

  • метод падения напряжения на нагрузочном сопротивлении

  • метод короткого замыкания цепи

Наша электролаборатория использует для измерения петли фаза-ноль электроизмерительный прибор MZC-300 от фирмы Sonel, который работает по методу падения напряжения на нагрузочном сопротивлении. Этот метод рекомендуется к использованию ГОСТом  50571.16-99 (приложение D1).

Данный метод измерения я считаю более удобным, а главное безопасным. 

Измерение в рабочей цепи А (L1) — N

Измерение в защитной цепи А (L1) — PE

Проверка защиты от замыкания на корпус электрооборудования в системе заземления TN

Проверка защиты от замыкания на корпус электрооборудования в системе заземления TT

Более подробно видах систем заземления читайте в статьях:  TN-C, TN-C-S, TN-S и TT.

Измерение сопротивления петли мы проводим на электроустановке, которая находится под напряжением.

Как пользоваться прибором MZC-300, более подробно, можно узнать в руководстве по эксплуатации данного прибора.

Периодичность проведения измерений

Согласно нормативно-технического документа ПТЭЭП, измерение петли фаза-ноль проводится с определенной периодичностью, установленной системой ППР организации. Система ППР, включающая в себя циклы текущих и капитальных ремонтов электрооборудования,  утверждается техническим руководителем организации.

Для электроустановок во взрывоопасных зонах, не менее 1 раза в 2 года.

Как сделать заключение об измерении петли фаза-ноль?

Выполнив замер петли фаза-ноль по вышеприведенным  схемам, на дисплее прибора отразится величина однофазного тока короткого замыкания.

Это значение сравниваем с током срабатывания расцепителя автоматического выключателя или с плавкой вставкой предохранителя и делаем выводы.

Чтобы сделать правильное и верное заключение необходимо внимательно прочитать выдержки из ПТЭЭП и ПУЭ 7 издания. Я их совместил для Вашего удобства в одну картинку.

(для увеличения нажмите на картинку)

Для более наглядного представления, как сделать правильное заключение при измерении петли Ф-О, приведу Вам пример из личного опыта.

Пример:

Производили замер петли фаза-ноль  в помещении библиотеки. Измеряемая линия питается от силовой сборки ЩС автоматическим выключателем с номинальным током 16 (А) и характеристикой С (подробнее о всех видах характеристиках).

Как я уже говорил в статье, измерение проводим на самой отдаленной точке этой линии, в нашем случае это розетка, расположенная в самом дальнем углу библиотеки.

Электроснабжение библиотеки выполнено системой заземления TN-C. Поэтому измерение производим в рабочей цепи (фаза — ноль).

Измеренный ток однофазного короткого замыкания, который показал нам прибор, составлял 87 (А).

Внимательно читаем информацию, приведенную на картинке выше.

В данном примере воспользуюсь пунктом из ПТЭЭП. Т.е. ток однофазного замыкания должен быть не менее, чем 1,1 * 16 * 10 = 176 (А). А у нас ток получился 87 (А) —  условие не выполняется.

При токе 87 (А) электромагнитная защита автоматического выключателя не сработает, а сработает тепловая защита, выдержка времени которой составит несколько секунд (больше, чем 0,4 секунды — ПУЭ). За это время есть большой риск возникновения воспламенения или пожара электропроводки.

Вывод:

В моем примере условие не удовлетворяет требованиям ПТЭЭП и ПУЭ. Поэтому необходимо:

  • увеличить сечение проводов, измеряемой линии (при увеличении сечения провода уменьшается его сопротивление, а значит и увеличится ток однофазного замыкания, который пройдет по нашим условиям)
  • установить автоматический выключатель с меньшим номинальным током (при уменьшении номинала автомата мы тем самым жертвуем мощностью линии)

Форма протокола измерения петли фаза-ноль

Самым последним этапом измерения петли фаза-ноль является занесение величин измерений в протокол.

(для увеличения нажмите на картинку)

 

(для увеличения нажмите на картинку)

Видео материал:

esistems.ru

Петля фаза нуль методика измерения

Измерение петли «фаза-ноль»

Измерение петли «фаза – ноль» производится во время приемосдаточных испытаний при введении новой электроустановки в эксплуатацию или после ремонта (реконструкции) старой. Проверка состояния защитных коммутационных аппаратов по требованию службы охраны труда также может сопровождаться измерениями сопротивления контура, образующегося при соединении фазного проводника с нулевым.

Почему измерения предпочтительнее расчетов

Расчет этого параметра возможен, но истинное значение будет отличаться от полученного в результате вычислений. Причина в том, что такие факторы, как переходные сопротивления рубильников, контакторов и прочих аппаратов учесть в расчете невозможно. Кроме того, неизвестен точный путь прохождения тока в режиме короткого замыкания, ведь в цепь включено такое оборудование, как контур заземления, различные трубопроводы и металлические конструкции. Измерение сопротивления петли «фаза – ноль» и тока КЗ с помощью специального прибора все эти факторы автоматически учитывает.

Методика измерения петли «фаза – ноль»

Применяются следующие методы измерения: падения напряжения в отключенной цепи, то же – на нагрузочном сопротивлении и метод КЗ. Второй способ реализован в принципе действия прибора производства Sonel типа MZC-300. Методика выполнения измерений таким методом изложена в ГОСТе 50571.16-99. Достоинство этого метода – в простоте и безопасности.

Прежде, чем приступить к основным измерениям, следует испытать сопротивление и непрерывность защитных проводников. Во время проведения измерений прибором MZC-300 следует учитывать, что возможна автоматическая блокировка процесса в следующих случаях:

  1. Напряжение в сети превышает 250 В: прибор в это время издает звуковой продолжительный сигнал, а на дисплее появляется надпись «OFL». В таком случае измерения необходимо прекратить.
  2. При разрыве цепи PE/N на дисплее появится символ в виде двойного тире и будет звучать сигнал после нажатия на кнопку «start». Необходимо быть осторожным: защита от токов КЗ в сети отсутствует.
  3. При снижении напряжения в испытуемой цепи менее 180 В на дисплее загорается символ «U», что сопровождается двумя продолжительными звуковыми сигналами после нажатия на кнопку «start».
  4. В случае перегрева прибора из-за значительных нагрузок появляется на дисплее символ «Т» и звучат два сигнала. В этом случае нужно уменьшить количество операций за единицу времени.

Для проведения измерений соответствующие клеммы прибора подключают к одной из фаз и глухозаземленной нейтрали (в сети с защитным заземлением вместо нейтрали подключают прибор к заземляющему проводнику). При проверке состояния защиты электроустановки от замыкания на корпус прибор MZC-300 подключают к заземляющей клемме корпуса и фазному проводу. Необходимо следить за тем, чтобы контакт был надежным: применять следует проверенные наконечники (если необходимо – заостренные зонды), а место соединения должно быть очищено от окиси.

Во время измерения прибором серии MZC-300 происходит имитация короткого замыкания: ток протекает через резистор с известным сопротивлением (10 Ом) в течении 30 мс. Уменьшенное значение силы тока является одним из параметров, участвующих в образовании результата. Непосредственно перед определением значения такого тока прибор измеряет реальное напряжение в сети. Производится поправка по векторам тока и напряжения, после чего процессор высчитывает полное сопротивление петли КЗ, раскладывая его на реактивную и активную составляющие и угол сдвига фаз, образующийся в измеряемой цепи во время протекания тока КЗ. Диапазон измерения полного сопротивления выбирается прибором автоматически.

Считывание и оформление результата

После измерения результат может быть отображен на дисплее в виде значения полного сопротивления петли КЗ или тока КЗ. Для просмотра и смены режима отображения следует нажать клавишу Z/I. Полное сопротивление отражает дисплей, а значение тока КЗ необходимо вычислять.

После подключения прибора к испытуемой цепи определяется напряжение, после чего нажатием на кнопку «start» включается измерительный режим. Если не действуют факторы, которые могут стать причиной блокировки процесса, на дисплее появляется ожидаемое значение тока КЗ или полного сопротивления. Если необходимо знать значения других параметров (реактивного и активного сопротивления, угол сдвига фаз), следует воспользоваться кнопкой SEL. Предельное значение реактивного, активного и полного сопротивления – 199,9 Ом. При превышении этого предела дисплей отразит символ OFL, если же прибор будет находиться в режиме измерения тока КЗ, отобразится символ UFL, означающий малую величину. При необходимости увеличить диапазон нужно использовать другую модификацию прибора – MZC-ЗОЗЕ: специальная функция RCD позволяет получить результаты до 1999 Ом.

Периодичность проведения измерений сопротивления петли «фаза – ноль» определяется документом ПТЭЭП и системой ППР, которая предусматривает своевременное проведение капитальных и текущих ремонтов электрооборудования. В случае выхода из строя устройств защиты после их ремонта или замены проводятся внеплановые работы по установлению значений параметров цепи «фаза – ноль».

Заключение о результатах измерений выполняется следующим образом. После выполнения всех работ по изложенной выше методике, получаем величину однофазного тока КЗ. Сравниваем результат с током, при котором срабатывает расцепитель выключателя-автомата или с номиналом плавко вставки. Делаем выводы о пригодности оборудования защиты. Все полученные результаты заносятся в протокол установленной формы.

Измерение сопротивления петли «фаза-ноль»

Электролаборатория ГК Эколайф выполняет измерение сопротивления петли «фаза-ноль» на основе действующего Свидетельства о регистрации электролаборатории, с учетом действующих нормативных документов: Правил Устройства Электроустановок, Правил Технической Эксплуатации Электроустановок Потребителей, ГОСТ и других.

Договор на услуги электолаборатории

Наша компания работает с юридическими и физическими лицами. Мы заключаем договор на услуги электролаборатории, который является документом, четко определяющим стоимость и сроки выполнения работ. Заранее обговоренные условия снижают риски для обеих сторон, а также обеспечивают выгоду сделки для продавца и покупателя.
Подписание актов выполненных работ и приема-передачи оборудования означает успешное окончание работ. Мы предоставляем полный пакет документов, в том числе накладные, акты, счета-фактуры и кассовые чеки при оплате наличными, акты пуско-наладки, параметры настройки системы.

Выезд инженера для расчета стоимости работ производится бесплатно

Все слышали фразу “Человек быстро привыкает к хорошему”. Но всегда ли мы её осознаём? Вспомните ситуацию, когда человек сидит за компьютером или смотрит телевизор, и происходит отключение электроэнергии. Многие раздосадованные люди в этот момент решают, что если уж отдохнуть не получилось, то нужно пойти что-нибудь сделать полезного. И достают пылесос или пытаются включить стиральную машину, забывая, что и эти приборы работают от электричества!

Именно для того, что подобные отключения были более редкими, а система электроснабжения оставалась надёжной, необходимо проведение технического обслуживания и профилактических работ. И в данной статье пойдёт речь об очень важном исследовании, которое является обязательным в составе Технического отчёта электротехнической лаборатории.

Необходимость проведения замера петли “фаза-ноль”

Конечно же, деятельность любой электролаборатории направлена на предупреждение аварийных ситуаций в работе электроустановок всех типов. Проверка параметров цепи «фаза–ноль» – не исключение. Но для того чтобы понять, на предупреждение каких именно негативных последствий направлено данное измерение, нужно знать конечную цель этого измерения.
Ни для кого не секрет, что жилы одного кабеля ни в коем случае нельзя замыкать. Но если это произошло, то произойдёт очень красочное и яркое зрелище, под названием “короткое замыкание” (или сокращённо “К.З.”). Это информация так же известна всем со школьной скамьи из уроков физики. А вот что мало кто помнит или не знает вообще, так это о том факте, что при коротком замыкании происходит резкий скачок тока, в результате которого жилы кабеля невероятно сильно нагреваются, в доли секунды плавят и воспламеняют изоляцию. А если основание, по которому проложен кабель, горючее, то вероятность возникновения пожара неминуема.

Именно поэтому в электроустановках используют автоматические устройства защитного отключения, такие как автоматические или дифференциальные выключатели, устройства защитного отключения (УЗО), плавкие вставки и т.п. Их назначение – вовремя прекратить подачу электричества в линию с коротким замыканием. И, говоря “вовремя”, имеются в виду доли секунды, ведь докрасна нагретый кабель и салют из искр способны спровоцировать пожар в очень короткий промежуток времени.

Из всего вышеизложенного напрашивается очевидный вывод: для того, чтобы избежать разрушающих последствий короткого замыкания, необходимо рассчитать и установить нужное по характеристикам устройство защиты. Собственно, ради этого и проводится проверка параметров цепи «фаза – нуль».

Периодичность испытаний петли фаза ноль

Электричество, энергоносители и энергопотребители – вещи динамические, потому что зависят от множества условий, параметров и характеристик. Конечно, никто не говорит о резких и глобальных изменениях, но некоторые колебания электрической сети, безусловно, присущи. Именно поэтому за состоянием элементов электроустановок необходимо постоянно следить и проводить периодические испытания их составляющих.

Для наглядности можно рассмотреть вот такой пример. Подавляющее большинство людей думают, что в каждой бытовой розетке используется напряжение ровно 220 вольт. В действительности, напряжение может быть различным даже в соседних зданиях. Более того, ГОСТами это предусмотрено: допустимое отклонение +/- 5%, предельное отклонение +/- 10% от номинальных 220 или 230 вольт. Следовательно, если замер напряжения в сети 220В показывает параметр, находящийся в диапазоне от 198 до 242 вольт, то это норма. А если в качестве номинального используется напряжение 230В, то верхний порог может достигать 253 вольт, и это так же будет нормой. Нормой, с предельным отклонением, но всё же нормой!
Получается, что максимально допустимая вилка разницы напряжения в сети, в зависимости от номинальных 220 или 230 вольт, может составлять 44 или 46 вольт (от -10% до + 10%) соответственно. Серьёзный перепад напряжения, не правда ли. И подобные перепады, безусловно, не лучшим образом влияют на электроустановки и систему электроснабжения в целом. А если забежать немного вперёд и учесть, что ток короткого замыкания является отношением напряжения цепи к полному сопротивлению её проводников, то можно смело заявить, что величина напряжения напрямую влияет на величину тока короткого замыкания, и чем выше напряжение, тем ток при коротком замыкании будет больше.

Приведённая в данном примере вариантность параметра сети лишь частность. Таких примеров можно назвать бесконечное множество. Причин, влияющих на возникновение подобных примеров, много. В этом списке источники энергоснабжения (электроснабжающие подстанции, промежуточные трансформаторы), качество и состояние электрических проводников и электроустановок, количество потребителей и т.д. Главное – нужно понимать, что состояние этих “причин” не статично, оно постоянно изменяется. Ведь может же в сети измениться количество потребителей? Конечно, может! Следовательно, напряжение в сети хоть немного да изменится. А значит и ток короткого замыкания тоже изменится. Это и является основанием для проведения периодических проверок как отдельных цепей сети, так и электроустановки в целом.

Отметим, что “Правилами Устройства Электроустановок” (ПУЭ ), а так же “Правилами Технической Эксплуатации Электроустановок Потребителей” (ПТЭЭП ), проведение проверки параметров петли “фаза-ноль” регламентировано не реже одного раза в три года. Для электроустановок, расположенных в опасных зонах, не реже одного раза в два года .

Помимо периодических проверок, замеры петли “фаза-ноль” в обязательном порядке необходимо проводить после монтажа электроустановки, а также после проведения капитального её ремонта .

Суть и методика проведения проверки сопротивления петли фаза ноль

Если кратко, то суть процесса заключается в определении тока короткого замыкания на отдельно взятой линии сети, и сопоставление этого параметра с установленным на той же линии автоматическим устройством защиты. Если перефразировать, то измерение призвано выявить, верно ли подобраны автоматические выключатели по токовременным характеристикам.

А раз измерение так или иначе сводится к характеристикам автоматических устройств защиты, то стоит немного рассказать и о них.
Вообще, устройства защиты, будь то автоматический выключатель, диффавтомат, УЗО или любой другой – устройство довольно простое. И характеристик оно имеет не так уж и много. Но так как в рамках данной статьи нам интересны лишь время-токовые характеристики, то остановимся именно на них.
Любой автоматический выключатель имеет на своей лицевой стороне маркировку. Среди прочих характеристик, там указаны торговая марка, номинальное напряжение, ток и частота сети, для которой этот автомат предназначен, и прочее. Так же, в обязательном порядке маркировка содержит информацию о время-токовой характеристике отключения устройства. Маркируется эта характеристика указанием латинской буквы B, C, D или К (для однофазных автоматов). Следом за этой буквой следует цифра, обозначающая номинальный ток автоматического выключателя. Выглядеть эта аббревиатура может, например, так: “В16”, “С32” или “D50”. Но так как нас интересует время и токовая величина срабатывания автомата при коротком замыкании, остановимся именно на них.

Что же обозначают буквы B, C, D и К? В этих буквах заключен очень простой смысл, а именно: при каком кратковременном превышении номинального тока автомат сработает (отключится). За основу этого параметра принят, как уже стало понятно, номинальный ток, а показатель превышения измеряется в кратном его увеличении.

Параметры кратности тока, соответствующие этим буквам, следующие:

• тип «B» – отключение автоматического устройства защиты произойдёт, если ток короткого замыкания будет превышать номинальный ток в 3 – 5 раз;
• тип «С» – такой автомат сработает при кратковременном скачке номинального тока в 5 – 10 раз
• тип «D» и «К» – автоматические выключатели этого типа будут эффективны, если номинальный ток увеличится в 10 – 14-ти кратном размере от номинала.

По времени срабатывания в зоне токов короткого замыкания автоматические выключатели подразделяются на:

• селективные – с отключением автоматического выключателя с выдержкой времени,
• нормальные (с временем срабатывания 0,02-1 секунды)
• быстродействующие (с временем срабатывания менее 0,005 секунды).

Теперь, зная параметры защитных устройств на каждой ветке электрической сети, остаётся сопоставить их с данными самой сети. Но, в отличие от автоматических выключателей, показатели сети не статичны и могут претерпевать изменения в процессе эксплуатации. Поэтому и необходимо с определённой периодичностью проводить проверку этих параметров с помощью измерения характеристик петли “фаза-ноль”.

Саму процедуру проведения проверки параметров цепи “фаза-ноль” можно разделить на три этапа.

• Проведение визуального осмотра;
• Непосредственное проведение измерений;
• Подведение итогов.

1 этап. Проведение визуального осмотра электроустановки

Во время осмотра, помимо исследования электроустановки, изучения документации и схем, проверки кабельных трасс и корпусов электрооборудования на предмет повреждений, проводят протяжку кабельных соединений в устройствах защиты. Проще говоря – затягивают болты на кабельных клеммах автоматических выключателях. Это крайне важное действие, без которого полученные результаты измерений могут быть просто неверными.

2 этап. Проведение измерений петли фаза ноль

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки.

Полученные данные обрабатывают и с помощью формул определяют нужный параметр. В последние годы именно этот метод завоевал наибольшую популярность.

В сущности, само по себе измерение достаточно примитивно. Оно заключается в определении точных показателей напряжения в сети и сопротивления измеряемых проводников – “фазы” с “нулём”, или “фазы” с “землёй” – в зависимости от того, какая именно петля подвергается испытаниям. После подключения щупов прибора к клеммам, прибор автоматически выдаёт на экране показатель напряжения сети, а затем измеряет сопротивление одновременно на проверяемой линии и обмотке трансформатора. Оба значения сопротивления суммируются и получается величина сопротивления, которая будет необходима при дальнейших расчётах.

Для измерений выбирают самые дальние точки линий сети. Если такую точку определить сложно, то проводят измерения по всей линии. Под “точками” понимаются розетки, а так же оборудование, имеющее металлический корпус (станки, двигатели, светильники и т.д.)

После того, как получены оба значения – напряжение и сопротивление сети – можно переходить к расчётам, которые покажут ток короткого замыкания, и помогут определить, правильно ли установлены аппараты защиты.

3 этап. Проведение расчетов и составление протокола испытания

Составление протокола – это просто запись результатов проведения испытаний, и на нём мы остановимся позже. Сейчас же необходимо рассказать о проведении расчётов.

Ток короткого замыкания отражается в следующей зависимости:

где: Iкз – ток короткого замыкания; Uо – фазное напряжение; Rфо – полное сопротивление цепи.

На примере данный расчёт будет выглядеть следующим образом.
Предположим, что измерительный прибор выдал напряжение 225 вольт и полное сопротивление цепи 0,85 Ом. Автоматический выключатель, установленный для защиты этой цепи, имеет маркировку C32.

Итак, для начала нужно определить токовые рамки, в которых установленный автомат будет эффективен. Его маркировка С32 говорит о том, что это защитное устройство рассчитано на номинальное напряжение в 32 ампера, и относится к типу “С”, что означает его эффективность проявляется при кратности тока короткого замыкания в пределах от 5 до 10 от номинального. Пятикратное умножение номинального тока дают нам 160 ампер, а десятикратное – 320. То есть, ток короткого замыкания должен быть в пределах от 160 до 320 ампер. Формула данного условия будет выглядеть вот так:

160А ≤ Iкз ≤ 320А

Теперь вычисляем непосредственно величину тока короткого замыкания. Исходные данные для этого расчёта – напряжение и полное сопротивление цепи – берём из результатов измерений.
Подставляем эти цифры в формулу и получаем следующее:

Iкз=225 В / 0,85 Ом=264,7 А

То есть, если в данной цепи произойдёт короткое замыкание, то при этом физическом явлении ток в цепи будет равен 264,7 ампера. Но в нашем примере автоматический выключатель успеет вовремя отреагировать, так как ток короткого замыкания находится как раз в промежутке от 160 до 320 ампер, то есть, в “пределах его юрисдикции”

Приведённый пример достаточно примитивен, но он наглядно показывает процесс исследования. На практике он может быть намного сложнее, в зависимости от того какая цепь сети подвергается замерам. Более того, трёхфазные сети так же подлежат проведению измерений, ведь они тоже попадают в область “электроустановки до 1000В”, для которых, собственно, проверка параметров петли “фаза-ноль” актуальна.

Оборудование для проведения замера петли “фаза-ноль”

В сущности, для того, чтобы получить данные для расчёта величины тока короткого замыкания достаточно будет обычного вольтметра и омметра. Но прибор, который делает все необходимые измерения из одной точки, безусловно, гораздо удобнее.

Как уже упоминалось выше, оборудование для проведения испытаний может быть двух типов: работающее без нагрузки в сети, и работающее, когда сеть находится под напряжением. Такая разновидность обусловлена принципом работы приборов. Помимо этого, измерительное оборудование можно разделить на приборы полного цикла, сразу же вычисляющие ток короткого замыкания цепи, и приборы, измеряющие параметры, необходимые для расчёта тока К.З. на бумаге.

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

• Измеритель М-417. Проверенный годами и надежный прибор для измерения сопротивления цепи фаза-ноль без снятия питания. Используют для замеров параметра методом падения напряжения. При использовании этого устройства можно провести испытание цепи с напряжением 380 В с глухозаземленной нейтралью. Он обеспечит размыкание измерительной цепи за 0,3 с. Недостатком является необходимость калибровки перед началом работы.

• Измеритель MZC-300. Устройство нового поколения, построенное на базе микропроцессора. Использует метод измерения падения напряжения при подключении известного сопротивления (10 Ом). Напряжение 180-250 В, время замера 0,03 с. Подключают прибор к сети в дальней точке, нажимают кнопку старт. Результат выводится на цифровой дисплей, рассчитанный с помощью процессора.

• Измеритель ИФН-200. Выполняет много функций, в том числе, и измерение петли фаза-ноль. Напряжение 180-250 В. Для подключения к сети есть соответствующие разъемы. Готов к работе через 10 с. Подключаемое сопротивление 10 Ом. При сопротивлении цепи более 1 кОм измерение проводиться не будут – сработает защита. Энергонезависимая память сохраняет 35 последних вычислений.

Результаты измерений петли фаза ноль и возможные последствия

Как уже стало ясно, данное измерение имеет ряд особенностей.

Во-первых, “проверка параметров цепи «фаза – нуль» и непрерывности защитных проводников” (именно такое полное название имеет данное исследование) проводится, как правило, под нагрузкой. То есть, для проведения замеров не требуется отключение электроэнергии. Более того, без электричества в проводниках данный замер будет выполнить попросту невозможно, потому как для расчёта конечных данных требуются параметры напряжения сети и сопротивления жил кабелей.

Во-вторых, измерения проводят на проводниках, а результаты сопоставляют с установленными устройствами защитного отключения. Для данного замера это правильно и логично, но в сравнении, например, с измерением сопротивления изоляции или металлосвязью заземления, где проводимые измерения относятся к испытуемым элементам, данная процедура – исключение.

В третьих, в отличие от прочих испытаний, проводимых электротехническими лабораториями, проверка параметров цепи «фаза – нуль» не требует имитации реальной ситуации. Например, методика проверки автоматических выключателей заключается в их “прогрузке”, то есть, подачи на них электрической нагрузки с целью выявления параметров его срабатывания (отключения). Для проверки сопротивления изоляции кабелей, их так же подвергают воздействию электричества с определёнными параметрами. В случае же с измерениями параметров цепи “фаза-ноль”, электроустановка просто работает в штатном режиме, и этого более чем достаточно.

Эти особенности накладывают очень большую ответственность на электротехническую лабораторию в части точности и скрупулёзности проведения данной проверки. Не смотря на кажущуюся простоту всего процесса, он таит в себе очень много нюансов, которые способны повлиять на конечный результат. А если конечный результат будет неверным, то последствия ошибки могут быть колоссальными.

Для подтверждения этих слов можно привести самую простую ситуацию, которая, собственно, чаще всего и происходит, если расчёты не верны либо измерения были проведены с нарушениями. Вспомните пример, который был приведён для расчёта. Расчётный ток короткого замыкания цепи фаза-ноль составил 264,7 ампера, при установленном автоматическом выключателе С32. А теперь предположим, что по каким-то причинам для проверяемой ветки было выбрано устройство защиты с характеристикой D или К. Это автоматически переносит функциональные рамки данного автомата в пределы 320 – 448 ампер. То есть, при коротком замыкании этот автоматический выключатель не защитит линию. Следовательно, жилы проводов будут греться, изоляция кабелей будет плавиться и гореть, а автомат будет оставаться в положении “Включено” больше положенного времени. Для таких ситуаций производители предусматривают в защитных устройствах ещё и тепловую защиту, которая призвана разрывать цепь в случае, если электромагнитный расцепитель не сработал.

Если же рассмотреть обратную ситуацию, когда ток короткого замыкания превышает рамки функциональной эффективности автоматического выключателя, то в этом случае электромагнитный расцепитель, безусловно, сработает в положенное временное окно, и линия будет отключена.

Но есть ещё одна крайне неприятная ситуация, при которой может выгореть не только линия, но и само защитное устройство. В очень редких случаях ток короткого замыкания может превышать номинальный в сотни раз! Например, он может составлять 3000, 5000 или даже 10000 ампер. Не смотря на то, что такая ситуация кажется фантастичной, она вполне реальна и объясняется так: при коротком замыкании, когда сопротивление цепи равно нулю, сила тока стремится к бесконечности. В этот момент трансформатор подстанции выдаёт в цепь максимальный ток который он только может выдать.

Что же происходит в этот момент с проводниками и защитными устройствами? Не секрет, что ток создает вокруг проводника магнитное поле. Таким образом, очень большой ток может создать вокруг проводника замкнутых контактов автомата такое магнитное поле, которое препятствует их размыканию (силы пружины автомата недостаточно для разрыва контактов, слипшихся под действием сильного магнитного поля). Для защиты от таких случаев, для всех автоматических выключателей существует такой параметр как “предельно отключаемый ток”. Маркируется он на лицевой стороне автомата в виде цифры, обведённой в прямоугольную рамку.
Таким образом цифра (например 4500А) означает, что автомат сможет разорвать цепь, через которую течет ток 4500А. А вот если ток будет 5000А, то автомат не сможет разорвать цепь. Следовательно, становится понятно, что автоматы с цифрой 6000А более надежны, чем автоматы с цифрой 4500А.

Величина предельного тока в цепи так же можно измерить приборами, но в протоколе она не отражается, потому что данный параметр важен на стадии проектирования и монтажа электроустановки.

Оглядываясь на всё вышесказанное, можно уверенно сказать, что проверка параметров петли “фаза-ноль” должна проводиться только профессионалами своего дела, и только после тщательной предварительной подготовки. В противном случае, результаты измерений окажутся неверными, и в случае чрезвычайной ситуации ущерб, понесённый в результате совершённой ошибки, может оказаться невосполнимым.

Протокол проверки согласования параметров цепи «фаза – нуль»

Результаты измерений заносятся в Протокол проверки согласования параметров цепи «фаза – нуль», образец которого можно увидеть ниже:

Образцы протоколов электроиспытаний ЭТЛ Эколайф

Как измерить сопротивление петли фаза-ноль?

08.07.2016 нет комментариев 11 690 просмотров

Со временем эксплуатации линии электроснабжения в них происходят изменения, которые невозможно проконтролировать визуально или установить их с помощью математических расчетов. Для стабильной и бесперебойной работы электрооборудования необходимо периодически делать замеры определенных параметров. Одним из них является измерение петли фаза-ноль, которое делают при помощи специальных приборов. Если фазный провод замкнуть на нулевой в точке потребления, то между фазным и нулевым проводником создается контур, который и является петлей фаза-ноль. В нее входят: трансформатор, рубильники, выключатели, пускатели – все коммутационное оборудование. Ниже мы расскажем читателям Сам Электрик. как измерить сопротивление петли, предоставив существующие методики и оборудование.

Периодичность и назначение замеров

Для надежной работы электросети необходимо периодически проводить проверку силового кабеля и оборудования. Перед сдачей объекта в эксплуатацию, после капитального и текущего ремонта электросетей, после проведения пуско-наладочных работ, а также по графику, установленном руководителем предприятия проводят эти испытания. Измерения делают по следующим основным параметрам:

  • сопротивление изоляции;
  • сопротивление петли фаза-ноль;
  • параметры заземления;
  • параметры автоматических выключателей.

Основной задачей измерения параметра петли фаза-ноль является защита электрооборудования и кабелей от перегрузок, возникающих в процессе эксплуатации. Повышенное сопротивление может привести к перегреву линии, и как следствие, к пожару. Большое влияние на качество кабеля, воздушной линии оказывает окружающая среда. Температура, влажность, агрессивная среда, время суток – все это оказывает влияние на состояние сети.

В цепь для проведения замеров включают контакты автоматической защиты, рубильники, контакторы, а также проводники подачи напряжения к электроустановкам. Этими проводниками могут быть силовые кабели, подающие фазу и ноль, или воздушные линии, выполняющие эту же функцию. При наличии защитного заземления — фазный проводник и провод заземления. Такая цепь имеет определенное сопротивление.

Полное сопротивление петли фаза-ноль можно рассчитать с помощью формул, которые будут учитывать сечение проводников, их материал, протяженность линии, хотя точность расчетов будет небольшой. Более точный результат можно получить, измерив физическую цепь с имеющимися устройствами.

В случае использование в сети устройства защитного отключения (УЗО), его при измерении необходимо отключить. Параметры УЗО рассчитаны так, что при прохождении больших токов оно произведет отключение сети, что не даст достоверных результатов.

Обзор методик

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

  1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
  2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
  3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки. Полученные данные обрабатывают и с помощью формул определяют нужный параметр.

Основной методикой такого испытания стало измерение падения напряжения при подключении нагрузочного сопротивления. Этот метод стал основным, ввиду его простоты использования и возможности дальнейших расчетов, которые нужно провести для получения дальнейших результатов. При измерении петли фаза-ноль в пределах одного здания, нагрузочное сопротивление включают на самом дальнем участке цепи, максимально удаленном от места подачи питания. Подключение приборов проводят к хорошо очищенным контактам, что нужно для достоверности замеров.

Сначала проводят измерение напряжения без нагрузки, после подключения амперметра с нагрузкой замеры повторяют. По полученным данным делают расчет сопротивления цепи фаза-ноль. Используя готовое, предназначенное для такой работы устройство, можно сразу по шкале получить нужное сопротивление.

После проведения измерения составляют протокол, в который заносят все нужные величины. Протокол должен быть стандартной формы. В него также вносят данные об измерительных приборах, которые были использованы. В конце протокола подводят итог о соответствии (несоответствии) данного участка нормативно-технической документации. Образец заполнения протокола выглядит следующим образом:

Какие приборы используют?

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

  • М-417. Проверенный годами и надежный прибор для измерения сопротивления цепи фаза-ноль без снятия питания. Используют для замеров параметра методом падения напряжения. При использовании этого устройства можно провести испытание цепи с напряжением 380 В с глухозаземленной нейтралью. Он обеспечит размыкание измерительной цепи за 0,3 с. Недостатком является необходимость калибровки перед началом работы.
  • MZC-300. Устройство нового поколения, построенное на базе микропроцессора. Использует метод измерения падения напряжения при подключении известного сопротивления (10 Ом). Напряжение 180-250 В, время замера 0,03 с. Подключают прибор к сети в дальней точке, нажимают кнопку старт. Результат выводится на цифровой дисплей, рассчитанный с помощью процессора.
  • Измеритель ИФН-200. Выполняет много функций, в том числе, и измерение петли фаза-ноль. Напряжение 180-250 В. Для подключения к сети есть соответствующие разъемы. Готов к работе через 10 с. Подключаемое сопротивление 10 Ом. При сопротивлении цепи более 1 кОм измерение проводиться не будут – сработает защита. Энергонезависимая память сохраняет 35 последних вычислений.

О том, как измерить сопротивление петли фаза-ноль с помощью приборов, вы можете узнать, просмотрев данные видео примеры:

Как пользоваться MZC-300

Для использования вышеперечисленных методик необходимо привлекать только обученный персонал. Неправильное проведение замеров может привести к неверным конечным данным или к выходу из строя существующей системы электроснабжения. Хуже всего – это может привести к травмированию работников. Надеемся, теперь вы знаете, для чего нужно измерение петли фаза-ноль, а также какие методики и приборы для этого можно использовать.

Рекомендуем также прочитать:

Как пользоваться MZC-300

Источники: http://tokzamer.ru/uslugi/izmerenie-petli-faza-nol, http://vnt24.ru/izmerenie-faza-nol, http://samelectrik.ru/kak-izmerit-soprotivlenie-petli-faza-nol.html

electricremont.ru

Измерение сопротивления петли фаза-ноль | Элкомэлектро

О компании » Электролаборатория » Виды измерений » Измерение сопротивления петли фаза-ноль

Проведение данного замера регламентируется Правилами Технической Эксплуатации Электроустановок Потребителя (ПТЭЭП) в таблице 28, пункт 28.4 и проводится через каждые два года (ПТЭЭП п. 2.7.16), и если у Вас передвижная электроустановка, то после каждой перестановки электрооборудования и монтажа нового, в электроустановках до 1000 Вольт, перед его включением (ПТЭЭП п. 2.7.17).

Вполне очевидно, что при наличии неполадок в цепи обычное короткое замыкания может привести не только к поломке бытовой техники, но и возникновению пожароопасных ситуаций. Испытание петли фаза-ноль с последующим вычислением тока короткого замыкания позволяет сделать вывод о правильности выбора аппарата защиты. Сопротивление цепи путём не хитрых вычислений переводится в ток короткого замыкания, который может возникнуть в случае аварии. Уровень тока короткого замыкания должна быть больше уставок автоматических выключателей, только при соблюдении данного условия сработает защита и проводка будет защищена!

Наша электролаборатория проводит измерение сопротивления петли «фаза-нуль» с выдачей технического отчёта установленного образца. Наш - офис находится в Москве.

Обязательный и необходимый комплекс лабораторных замеров и исследований, которые производятся при первичном подключении, текущей эксплуатации или после окончания капитального ремонта является измерение петли фаза нуль. Полученный результат в обязательном порядке фиксируется в техническом отчёте и является основанием для получения заключения о безопасности электроустановки.

Ни один объект не может быть допущен к эксплуатации, если на нем не было сделано измерение петли фаза нуль. Всем организациям и предприятиям следует регулярно проводить работы подобного плана, так как это один из обязательных параметров проверки и контроля состояния электрооборудования. Отдельные частные лица могут самостоятельно проводить данный замер для избегания неприятных последствий, в профилактических целях или же в случае возникновения неполадок домашней электросети.

Такой вид электроизмерительных работ проводится для установления соответствия электросети всем требованиям безопасности в случае аварийных ситуаций. Специалисты нашей лаборатории при помощи специальных инструментов осуществляют проверку срабатывания автоматической защиты, кроме того они рассчитывают полное сопротивление, которое при коротком однофазном замыкании оказывает петля фаза-нуль. Показания должны соответствовать ПУЭ п. 7.3.139 и 1.7.79.

Мы проводим измерения в соответствии с методикой измерения петли фаза-ноль. Данная методика подразумевает использование вольтметра и амперметра. Ситуация короткого однофазного замыкания создается искусственно и в этот момент наши специалисты проводят все требуемые вычисления. Однако, такой способ считается устаревшим и не таким эффективным, поскольку требует больших временных затрат для проведения и отключения электросети.

Наши инженеры проводят измерение петли фазы ноль, используя прибор MZC-300. Этот высокоточный прибор предназначен специально для проведения электроизмерительных работ электроустановок. Измерение должно проводиться в условиях строгой точности. С помощью высокоточного прибора MZC-300 можно в короткий срок осуществить все требуемые измерения с возможными минимальными погрешностями.

Полученные данные зависят от времени суток, температуры, влажности. Максимально достоверные данные о состоянии сети можно получить лишь в том случае, когда проверка проводки проводится в условиях максимально приближенных к эксплуатационным. Затем эти данные переносятся в протокол измерения петли фаза ноль. В этом случае не приходится отключать электрозащитные установки и электроснабжение, все измерительные работы осуществляются под напряжением, в рабочем режиме.

Проверку петли фаза нуль стоит проводить в соответствии с техническим регламентом электротехнических измерений с учетом особенностей электроустановок и требованиям безопасности во время электроизмерительных работ.

www.megaomm.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о