Плавный пуск для болгарки: Болгарки и УШМ с плавным пуском

Содержание

Плавный пуск электродвигателя своими руками: для болгарки, электроинструмента

У всех кто пользуется болгаркой не один год, она ломалась. Поначалу каждый мастер пытался отремонтировать шлифовальную машинку сверкающую искрами самостоятельно, надеясь, что она заработает после замены щёток. Обычно после такой попытки, сломанный инструмент остается лежать на полке с прогоревшими обмотками. А на замену покупается новая болгарка.

Дрели, шуруповёрты, перфораторы, фрезеры в обязательном порядке оборудованы регулятором набора оборотов. Некоторые так называемые калибровочные шлифмашинки также снабжаются регулятором, а обычные болгарки имеют только кнопку включения.

Маломощные болгарки производители не усложняют дополнительными схемами преднамеренно, ведь такой электроинструмент должен стоить дешево. Понятно конечно, что срок службы недорого инструмента всегда короче, чем у более дорогого профессионального.

Самую простую болгарку можно модернизировать, так что у неё перестанут повреждаться редуктор и обмоточные провода якоря. Эти неприятности преимущественно происходят при резком, другими словами, ударном пуске болгарки.

Вся модернизация заключается всего лишь в сборке электронной схемы и закреплении её в коробке. В отдельном коробке, потому что в ручке шлифмашинки очень мало места.

Проверенная, рабочая схема выложена ниже. Она первоначально предназначалась для регулировки накала ламп, то есть для работы на активную нагрузку. Её главное достоинство ? простота.

  1. Изюминкой устройства плавного пуска, принципиальную схему которого вы видите, является микросхема К1182ПМ1Р. Эта микросхема узкоспециализированная, отечественного производства.
  2. Время разгона можно увеличить, выбрав конденсатор С3 большей емкости. Во время заряжания этого конденсатора, электродвигатель набирает обороты до максимума.
  3. Не нужно ставить взамен резистора R1 переменное сопротивление. Резистор сопротивлением 68 кОм оптимально подобран для этой схемы. При такой настройке можно плавно запустить болгарку мощностью от 600 до 1500 Вт.
  4. Если собираетесь собрать регулятор мощности, тогда нужно заменить резистор R1 переменным сопротивлением. Сопротивление в 100 кОм, и больше, не занижает напряжение на выходе. Замкнув ножки микросхемы накоротко, можно вовсе выключить подключенную болгарку.
  5. Вставив в силовую цепь семистор VS1 типа ТС-122-25, то есть на 25А, можно плавно запускать практически любую доступную в продаже шлифмашинку, мощностью от 600 до 2700 Вт. И остается большой запас по мощности на случай заклинивания шлифмашинки. Для подключения болгарок мощностью до 1500 Вт, достаточно импортных семисторов BT139, BT140. Эти менее мощные электронные ключи дешевле.

Семистор в приведенной выше схеме полностью не открывается, он отрезает около 15В сетевого напряжения. Такое падения напряжения никак не сказывается на работе болгарки. Но при нагреве семистора, обороты подключенного инструмента сильно снижаются. Эта проблема решается установкой радиатора.

У этой простой схемы есть ещё один недостаток – несовместимость её с установленным в инструмент регулятором оборотов.

Собранную схему нужно запрятать в коробок из пластмассы. Корпус из изоляционного материала важен, ведь нужно обезопасить себя от сетевого напряжения. В магазине электротоваров можно купить распределительную коробку.

К коробке прикручивается розетка и подключается кабель с вилкой, что делает эту конструкцию внешне похожей на удлинитель.

Если позволяет опыт и есть желание, можно собрать более сложную схему плавного пуска. Приведенная ниже принципиальная схема является стандартной для модуля XS–12. Этот модуль устанавливается в электроинструмент при заводском производстве.

Если нужно менять обороты подключенного электродвигателя, тогда схема усложняется: устанавливается подстроечный, на 100 кОм, и регулировочный резистор на 50 кОм. А можно просто и грубо внедрить переменник на 470 кОм между резистором 47 кОм и диодом.

Параллельно конденсатору С2 желательно подсоединить резистор сопротивлением 1 МОм (на приведенной ниже схеме он не показан).

Напряжение питания микросхемы LM358 находится в пределах от 5 до 35В. Напряжение в цепи питания не превышает 25В. Поэтому можно обойтись и без дополнительно стабилитрона DZ.

Какую бы вы схему плавного пуска ни собрали, никогда не включайте подключенный к ней инструмент под нагрузкой. Любой плавный пуск можно сжечь, если торопиться. Подождите пока болгарка раскрутиться, а затем работайте.

181 Плавный пуск до 2,5 кВт — Выключатели и кнопки

Статус :

в наличии

Купить за 1 клик

Товар с указанными характеристиками отсутствует

Плавный пуск для УШМ, дисковых пил до 2,5 кВт


Специальное предложение на ЗАПЧАСТИ

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Купить за 1 клик

Плавный пуск болгарки на доступных деталях


Люди, часто пользующиеся электроинструментом иногда сталкиваются со следующей проблемой: двигатель будь то болгарки, циркулярной пилы, рубанка или другого оборудования стартует очень резко. Такой резкий старт таит в себе множество неприятностей: во-первый, присутствует высокий пусковой ток, который не лучшим образом сказывается на проводке, во-вторых, резкий старт двигателя быстро изнашивает механические части инструмента, в-третьих, снижается удобство использования, при пуске болгарку приходится крепко удерживать, она так и норовит вырваться из рук. В дорогих моделях уже встроена система плавного пуска, которая легко справляется со всеми этими неприятностями. Но что делать если этой системы нет? Выход есть – собрать схему плавного пуска самому. Кроме того, использовать её можно будет с лампочками накаливания, ведь чаще всего они перегорают именно в момент включения. Плавный пуск заметно снизит возможности лампочки быстро перегореть.

Схема



В интернете часто встречается схема плавного пуска, построенная на достаточно редкой отечественной микросхеме К1182ПМ1Р, достать которую сейчас не всегда легко. Именно поэтому я предлагаю к сборке не менее эффективную схему, ключевым звеном которой является доступная микросхема TL072, вместо неё также можно ставить LM358. Время, за которое двигатель набирает полные обороты задаётся конденсатором С1. Чем больше его ёмкость, тем больше времени понадобиться для разгона, самый оптимальный вариант – 2,2 мкФ. Конденсаторы С1 и С2 должны быть рассчитаны на напряжение как минимум 50 вольт. Конденсатор С5 – как минимум 400 вольт. Резистор R11 будет рассеивать приличное количество тепла, поэтому его мощность должна быть как минимум 1 Ватт. В схеме можно применить любые маломощные транзисторы, Т1, Т2, Т4 имеют n-p-n структуру, можно использовать BC457 или отечественные КТ3102, Т4 имеет структуру p-n-p, на его место подойдут BC557 или КТ3107. Т5 – любой подходящий по мощности и напряжению семистор, например, BTA12 или ТС-122.

Изготовление плавного пуска


Схема собирается на печатной плате размерами 45 х 35 мм, плата разведена как можно компактней, чтобы её можно было встроить внутрь корпуса инструмента, который требует плавного пуска. Провода питания лучше впаять напрямую в плату, но если мощность нагрузки небольшая, то можно установить клеммники, как я и сделал. Плата выполняется методом ЛУТ, фотографии процесса представлены ниже.
Скачать плату:




Дорожки желательно залудить перед впаиванием деталей, так улучшиться их проводимость. Микросхему можно установить в панельку, тогда её можно будет без проблем снять с платы. Сначала запаиваются резисторы, диоды, мелкие конденсаторы, а уже впоследствии самые крупные компоненты. После завершения сборки платы её обязательно нужно проверить на правильность монтажа, прозвонить дорожки, отмыть оставшийся флюс.


Первый запуск и испытания


После того, как плата полностью готова, можно проверять её на работоспособность. Первым делом, нужно найти маломощную лампочку на 5-10 ватт и через неё включить в плату в сеть 220 вольт. Т.е. плата и лампочка подключаются в сеть последовательно, а выход OUT остаётся неподключенным. Если на плате ничего не сгорело, а лампочка не зажглась, можно включать схему напрямую в сеть. Эту же маломощную лампочку можно подключить к выходу OUT для проверки. При подключении она должна плавно набрать яркость до максимума. Если схема работает исправно, можно подключать более мощные электроприборы. При продолжительной работе семистор, возможно, будет слегка нагреваться – в этом нет ничего страшного. При наличии свободного места его не помешает установить на радиатор.
На плате в процессе работы присутствует опасное сетевое напряжение, поэтому необходимо соблюдать меры предосторожности. Ни в коем случае нельзя прикасаться к деталям платы, когда она подключена к сети. Перед включением убедиться, что плата надёжна закреплена и на неё не попадут металлические предметы, способные привести к короткому замыканию. Для надёжности рекомендуется залить плату лаком или эпоксидной смолой, тогда ей не будет страшна даже влага. Успешной сборки!

Смотрите видео работы


как выбрать устройство для УШМ с регулировкой оборотов? Как подключить своими руками?

Болгарка или угловая шлифовальная машина является очень полезным инструментом в хозяйстве при работах с различными поверхностями.

Такой инструмент кардинально облегчает многие утомительные процессы. С его помощью можно обработать, отшлифовать или обрезать металлические, деревянные, каменные или пластиковые материалы. Большинство современных болгарок изначально оснащены функцией «плавного пуска». В чём польза данной функции?

Особенности и назначение

Для чего же нужна функция плавного пуска? Причина в том, что при включении болгарки на её двигатель резко подаётся большое напряжение. Это крайне негативно влияет на электронику инструмента, а также изнашивает проводку. Именно резкие скачки напряжения чаще всего и выводят болгарку из строя. К тому же при резком запуске довольно сложно удержать инструмент в руках, потому что его начинает трясти и вести в сторону. Все это может привести не только к поломке инструмента, но и к травмам. Именно поэтому большинство производителей снабдили свои модели функцией плавного запуска и регулировкой оборотов.

Функция регулировки оборотов полезна тем, что такой болгаркой можно выполнять различные виды работ. Скорость вращения диска подбирается в зависимости от того, что необходимо сделать УШМ – отшлифовать, отполировать или обрезать материал. Скорость вращения дисков может сказываться на качестве резки поверхности. Например, для твердых поверхностей необходима большая скорость вращения диска, а для более мягких наоборот – низкая скорость. Работы по шлифовке очень трудновыполнимы без регулятора скорости вращения круга.

Крайне важно помнить о безопасности, работая с болгаркой. Это травмоопасный прибор, поэтому халатность в обращении с ним недопустима. Необходимо работать в защитной маске, перчатках и крепко держать шлифовальную машину двумя руками, чтобы он не соскальзывал с обрабатываемой поверхности.

Устройство плавного пуска

На современных шлифовальных машинах функция плавного пуска уже установлена, но некоторые мастера самостоятельно снабжают свои болгарки устройством плавного пуска. В принципе, поставить ограничитель не так уж и сложно.

Можно приобрести уже готовые приборы для плавного пуска, а можно изготовить такой прибор самостоятельно. Ниже представлена одна из самых известных схем устройства плавного запуска инструмента.

Итак, для изготовления системы плавного пуска понадобятся:

  • микросхема – КР1182ПМ1;
  • R1 – 470 Ом R2 – 68;
  • C1 и C2 – 1 микрофарад – 10 вольт;
  • C3 – 47 микрофарад – 10 вольт.

Суть работы такого аппарата заключается в следующих характеристиках.

  • Когда прибор включается, то напряжение из сети начинает поступать на микросхему (DA1).
  • Затем управляющий конденсатор начинает постепенно заряжаться. После чего прибор доходит до нужного показателя напряжения. По этой причине тиристоры открываются в микросхеме с небольшим запаздыванием. Период такого запаздывания зависит от времени, которое необходимо, чтобы конденсатор полностью зарядился.
  • Симистор VS1 будет открываться тоже постепенно. Это происходит потому, что он тоже находится под управлением тиристоров.

Данные процессы осуществляются периодами, которые постепенно становятся меньше. И по этой причине напряжение, которое подается на двигатель болгарки, вырастает не скачками, а постепенно. Благодаря этому болгарка включается плавно.

Емкость конденсатора C2 напрямую влияет на время, за которое двигатель полностью начинает работать. Конденсатор, который имеет ёмкость в 47 мкФ, запускает прибор примерно за 2-3 секунды. А в тот момент, когда болгарка выключается, разряд конденсатора C1 осуществляется с помощью резистора R1 на 60 кОМ. Это происходит примерно за то же время, что и включение. Затем инструмент можно запускать снова для дальнейшей работы.

Данный блок вполне можно подключать к любому устройству, который рассчитан на напряжение в 220 В. Основой данного устройства является микросхема и симистор. Главное, чтобы минимальная сила тока симистора равнялась 25 А, а максимальное его напряжение составляло бы 400 В. Такая схема собирается на печатной плате. Плата должна быть разведена как можно компактней.

Советы по выбору

Как правильно выбрать УШМ? Для этого стоит воспользоваться несколькими основными критериями.

Для выбора подходящего инструмента стоит определиться с конкретным видом работ, которые предстоит выполнять данным инструментом. Болгарки могут быть разных видов: сетевые, с аккумуляторами, бензиновые и пневматические.

Сетевые модели, пожалуй, распространены более всего. Такие болгарки работают от домашней сети, то есть – от простой розетки. Такие модели инструмента обладают высокой мощностью, компактностью и высокой скоростью вращения режущих дисков.

Но ограничение в работе с такой болгаркой связано с зависимостью от электросети. Например, при работе на улице не всегда поблизости есть розетка и приходится пользоваться различными удлинителями.

Аккумуляторные приборы лишены данного минуса. Они имеют специальное крепление для блоков питания, которые заряжаются от электросети. После зарядки работать таким инструментом можно без всяких проводов. Обычно такие болгарки имеют компактные размеры и небольшие диаметры режущих дисков. Как правило, стоят такие модели дороже стандартных инструментов. Также период их работы ограничен емкостью блока питания.

Бензиновые модели болгарок встречаются нечасто. Такие приборы отличаются крупными габаритами, ведь им необходим бак для топлива, а также двигатель внутреннего сгорания. Среди плюсов стоит выделить высокую мощность данных моделей, широкий спектр выбора дисков и автономность. К отрицательным аспектам относится их вес и объемность, высокий уровень шума и, конечно, дополнительные затраты на топливо для работы прибора.

Пневматические модели УШМ часто используются в производственных целях и очень редко для бытовых работ. Это необычные болгарки, которые работают от потока сжатого воздуха, нуждаются в специальном компрессоре. У таких моделей полностью исключена проблема перегревания, а период работы может быть ограничен только лишь человеческим фактором. Также такие модели являются самыми легкими и бесшумными.

Для несложных работ по обработке и шлифовке поверхностей подойдут легкие модели шлифовальных машин с небольшим диаметром режущего круга. Для работ по резке прочных материалов стоит подбирать более мощное и, соответственно, громоздкое оборудование с большим диаметром дисков. Диаметры дисков могут быть от 125 (минимальный размер) до 230 (максимальный размер) мм – то есть диапазон размеров довольно широкий. Универсальным диаметром режущего диска является 180 мм. Таким кругом можно и обрабатывать поверхности, и резать материал.

При выборе диска стоит провести внимательный визуальный осмотр. Даже небольшие повреждения и сколы могут привести к крайне печальным последствиям. К слову, почти 90% несчастных случаев при работе с болгаркой происходит по вине дефекта на режущих дисках.

Также важным критерием выбора является удобство работы. Болгарка должна быть снабжена удобными ручками, не должна выскальзывать из ладони и иметь большой вес. Многие болгарки имеют электронное реле для защиты от скачков напряжения и перегрузок. Это полезная функция, поэтому стоит выбирать инструмент с таким предохранителем.

Рекомендуется выбирать модели с функцией плавного запуска. Это поможет инструменту прослужить гораздо большее время, да и пользоваться болгаркой с такой функцией гораздо удобнее и безопаснее.

Как подключить?

Если необходимо подключить функцию плавного пуска к болгарке своими руками, то сделать это нужно через переходник. Входные контакты проводника необходимо подключить к блоку выпрямителя. Важную роль при этом играет правильное определение нулевой фазы. Контакты устройства закрепляются с помощью паяльной лампы. Для того чтобы проверить работоспособность устройства необходимо использовать специальный тестер.

Помимо прочего, регулятор оборотов шлифмашины реально разместить сразу в розетке. От неё и будет работать инструмент. Для подключения необходима распределительная коробка, розетка и обычный сетевой кабель. В распределительной коробке необходимо сделать отверстие (можно просверлить), чтобы вставить в него регулятор переменного тока. Плата помещается внутрь коробки, а розетка крепится на ней. Данный регулятор применим не только для шлифовальной машины, но и для любого прибора, который будет подключаться к данной розетке.

Важно помнить, что эти работы связаны с высоким напряжением. Поэтому крайне важно соблюдать технику безопасности во избежание несчастных случаев.

Итак, выше было рассмотрено, для каких именно целей в болгарках имеется функция плавного пуска и регулятор оборотов режущего круга. Обычно в современные инструменты данные функции уже встроены, но при их отсутствии при большом желании можно установить их и подключить самостоятельно.

О том, как сделать плавный пуск для болгарки, смотрите в видео ниже.

Углошлифовальная машина (болгарка), плавный пуск, 230 мм, 6000 об/мин, 2300 Вт, ЗУБР Зубр

Машина для любых строительных и ремонтных работ. Использование мощного двигателя и диска большого диаметра дает гарантию высокой производительности

-Мощная и производительная модель в линейке ЗУБР с сопоставимыми профессиональным моделям характеристиками для домашнего мастера;
-Специально разработанный корпус редуктора для улучшения теплоотвода и улучшения прочности самого нагруженного узла;
-Система плавного пуска позволяет включать мощный двигатель без рывка и пусковой перегрузки;
-Пылезащищенный выключатель (степень защиты IP5X) — надежная защита основного узла;
-Поворотные голова и основная рукоятка для более комфортной работы даже в сложных условиях;
-Удобная блокировка шпинделя для простой смены диска;
-Фирменная дополнительная рукоятка, устанавливаемая в 2 положениях;
-Широкий эргономичный выключатель с пылезащитой, блокировкой непреднамеренного включения, а также фиксацией во включенном положении;
-Специальная конструкция щеткодержателя, предотвращающая повреждение коллектора при полном износе щеток;
-Быстрый доступ к щеткам для замены;
-Фланцы из разного материала предотвращают чрезмерное затягивание диска при работе;

-Мощность: 2300 Вт
-Диаметр диска: 230 мм
-Посадочный диаметр: 22,2 мм
-Число оборотов: 6000 об/мин
-Электронная регулировка оборотов: нет
-Резьба шпинделя: М14
-Плавный пуск: есть
-Поддержание постоянных оборотов под нагрузкой: нет
-Защита от перегрузки: нет
-Отключение питания при заклинивании диска: нет
-Защита от непреднамеренного пуска: есть
-Регулировка положения кожуха без инструмента: нет
-Защита от повреждения коллектора: есть
-Фиксация кнопки включения: есть
-Дополнительная рукоятка: есть
-Антивибрационная основная рукоятка: нет
-Поворотная основная рукоятка: есть
-Поворотная голова: есть
-Суперфланец: есть
-Быстрозажимная гайка sds: нет
-Длина кабеля: 2 м
-Напряжение: 230/50 В/Гц
-Габариты: 56x17x12. 5 см
-Масса изделия: 5,5 кг
-Масса в упаковке: 6 кг

-Углошлифовальная машина, 1 шт;
-Кожух защитный, 1 шт;
-Рукоятка дополнительная, 1 шт;
-Ключ специальный, 1 шт;
-Ключ имбусовый, 1 шт;
-Руководство по эксплуатации, 1 шт;

cxema.org — Плавный пуск и регулировка оборотов болгарки

Плавный пуск и регулировка оборотов болгарки

Недостатком небольших дешевых болгарок является отсутствие плавного пуска и регулировки оборотов. Каждый, кто включал мощный электроприбор в сеть, замечал как в этот момент падает яркость сетевого освещения. Это происходит из-за того, что мощные электроприборы в момент запуска потребляют огромный ток, соответственно, проседает напряжение в сети. Сам инструмент может выйти из строя, особенно китайский с ненадежными обмотками.

Система мягкого пуска защитит и сеть, и инструмент. Также не будет сильной отдачи (толчка) в момент включения. А регулятор оборотов позволит долго работать без перегрузки инструмента.

Представленная схема срисована с промышленного образца, устанавливаемая на дорогие приборы. Ее можно использовать не только для болгарки, но и для дрели, фрезерного станка и др., где стоит коллекторный двигатель. Для асинхронных двигателей схема не подойдет, там требуется частотный преобразователь.

Сначала нарисовал печатную плату для системы плавного пуска, без компонентов для регулировки оборотов. Это сделано специально, т.к. в любом случае регулятор надо выводить проводами. Имея схему каждый сам разберется что куда подключить.

В схеме регулирующим элементом является сдвоенный операционный усилитель LM358, через транзистор VD1 управляющий силовым симистором BTA20-600. Я не достал его в магазине и поставил BTA28 (более мощный). Для инструмента до 1кВт подойдет любой симистор с напряжением более 600В и током 10-12А. Т.к. схема имеет мягкий старт, то пусковые токи не спалят такой симистор. В ходе работы симистор нагревается и его следует установить на радиатор.

Известно явление самоиндукции, которое наблюдается при размыкании цепи с индуктивной нагрузкой. В нашей схеме цепь R1-C1 гасит самоиндукцию при выключении болгарки и защищает симистор от пробоя. R1 от 47 до 68 Ом, мощностью 1-2Вт. Конденсатор пленочный на 400В.

Резистор R2 обеспечивает ограничение тока для низковольтной части цепи управления. Сама эта часть является и нагрузкой, и в какой-то мере, стабилизирующим звеном. Благодаря этому после резистора можно не стабилизировать питание. Хотя есть вариант такой же схемы с дополнительным стабилитроном. Я его не поставил, т.к. напряжение питания микросхемы, итак, в пределах нормы.

Возможные замены маломощных транзисторов указаны под схемой.

Подстройку регулятора делают с помощью многооборотного резистора R14, а основную регулировку резистором R5. Схема не дает регулировку мощности от 0, а только от 30 до 100%. Если же нужен более простой мощный регулятор от 0, то можно собрать вариант проверенный годами. Правда для болгарки получение минимальной мощности бессмысленно.

Проверяем работоспособность схемы подключив лампочку на 220В мощностью 40-60Вт. Если яркость регулируется, то отключив от сети проверяем на ощупь симистор на тепловыделение. Он должен оставаться холодным. Далее подключаем плату к болгарке и проверяем плавность пуска и регулировку оборотов без нагрузки. Если все в порядке переходим к тестированию под нагрузкой.

Так дешевая болгарка превратилась в инструмент среднего уровня.

Компоненты для сборки

  • LM358 можно купить тут
  • S9014 можно купить тут
  • S9015 можно купить тут
  • Набор резисторов можно купить тут
  • BTA20-600 можно купить тут

Плавный пуск для болгарки схема подключения

Очень удобная функция, особенно в больших инструментах. Дело в том, что УШМ без плавного пуска включаются резко и иногда случается так, что находясь в не очень удобном положении, можно и не удержать инструмент. К тому же, можно нанести себе травму, или повредить обрабатываемый материал.

Чаще всего эта функция встречается на болгарках с диаметром диска 180 и 230 мм.

Плюсы плавного пуска:

При плавном пуске вы сможете избежать резких толчков инструмента.
Электричество в инструмент поступает плавно, что продлевает срок жизни УШМ.
Комфорт при работе.

Делаем переноску с плавным пуском для электроинструмента

Если вы часто пользуетесь электроинструментом, то наверняка пользовались УШМ (Болгаркой) с плавным пуском и без. Согласитесь, электроинструмент с плавным набором оборотов гораздо приятнее в эксплуатации, да и служит он дольше обычного. В этом материале я расскажу и покажу как можно доработать обычную переноску, чтобы электроинструмент, включенный через нее, был с плавным пуском.

Почему плавный пуск лучше

Прежде чем приступить к самому процессу переделки, хочу сказать пару слов о пользе плавного пуска. Итак, плавный пуск позволяет:
1. Меньше изнашиваться шестерням механизма, ведь при старте не происходит первоначального удара по ним.

yandex.ru
2. Отсутствует бросок тока, что благотворно сказывается на работоспособности всей вашей питающей сети.
3. В электроинструменте с плавным пуском реже выходят из строя обмотки статора и ротора.
4. При плавном пуске электроинструмент не вырывается из ваших рук, что с точки зрения безопасности хорошо.
Итак плюсы плавного пуска очевидны, теперь давайте перейдем к самой доработке переноски.

Для того, чтобы выполнить эту работу нам с вами понадобится:
Блок KRRQD12A, переноска (про то, как собрать качественную переноску написано на канале), розетка внешней установки, паяльник с припоем, небольшой кусок провода ПВС 3*2,5, канцелярский нож, термоусадка (или изолента), кусок фанеры и час свободного времени.

Что такое блок KRRQD12A

Самым главным элементов во всей нашей конструкции является блок плавного пуска KRRQD12A, который как раз и предназначен для модернизации электроинструмента. Данный блок рассчитан на рабочий ток 12 ампер, что идеально вписывается в ампераж наших розеток (16 А).
Примечание. В продаже также имеется KRRQD20A (рассчитанный на 20 Ампер), который внешне ничем не отличим от блока на 12 Ампер, но я не рекомендую его для установки в розетку, так как это может привести к перегреву контактов розетки из-за превышения ампеража.

Итак, теперь разбираем нашу переноску и осматриваем внутренности:
Как видно в этой переноске контакты закреплены на винтовой зажим, а чтобы не запихивать под один зажим два провода, я решил припаять провода к площадкам на контактных губках

После этого в корпусе переноски проделываем аккуратное отверстие для нашего нового провода и ее можно закрывать.
Далее берем розетку внешней установки, располагаем ее рядом с закрепленной переноской.
Затем крепим наш блок KRRQD12A согласно следующей схеме:

yandex.ru
То есть блок подключается последовательным образом. Место соединения провода от переноски с блоком пропаиваем и изолируем с помощью термоусадки.

Далее просто подключаем розетку и аккуратно размещаем блок KRRQD12A в корпусе следующим образом:

Теперь просто аккуратно закрываем крышки.

Все, можно процесс нашей с вами модернизации считать оконченным. Теперь осталось все проверить на работоспособность:

У всех кто пользуется болгаркой не один год, она ломалась. Поначалу каждый мастер пытался отремонтировать шлифовальную машинку сверкающую искрами самостоятельно, надеясь, что она заработает после замены щёток. Обычно после такой попытки, сломанный инструмент остается лежать на полке с прогоревшими обмотками. А на замену покупается новая болгарка.

Дрели, шуруповёрты, перфораторы, фрезеры в обязательном порядке оборудованы регулятором набора оборотов. Некоторые так называемые калибровочные шлифмашинки также снабжаются регулятором, а обычные болгарки имеют только кнопку включения.

Маломощные болгарки производители не усложняют дополнительными схемами преднамеренно, ведь такой электроинструмент должен стоить дешево. Понятно конечно, что срок службы недорого инструмента всегда короче, чем у более дорогого профессионального.

Самую простую болгарку можно модернизировать, так что у неё перестанут повреждаться редуктор и обмоточные провода якоря. Эти неприятности преимущественно происходят при резком, другими словами, ударном пуске болгарки.

Вся модернизация заключается всего лишь в сборке электронной схемы и закреплении её в коробке. В отдельном коробке, потому что в ручке шлифмашинки очень мало места.

Проверенная, рабочая схема выложена ниже. Она первоначально предназначалась для регулировки накала ламп, то есть для работы на активную нагрузку. Её главное достоинство ? простота.

  1. Изюминкой устройства плавного пуска, принципиальную схему которого вы видите, является микросхема К1182ПМ1Р. Эта микросхема узкоспециализированная, отечественного производства.
  2. Время разгона можно увеличить, выбрав конденсатор С3 большей емкости. Во время заряжания этого конденсатора, электродвигатель набирает обороты до максимума.
  3. Не нужно ставить взамен резистора R1 переменное сопротивление. Резистор сопротивлением 68 кОм оптимально подобран для этой схемы. При такой настройке можно плавно запустить болгарку мощностью от 600 до 1500 Вт.
  4. Если собираетесь собрать регулятор мощности, тогда нужно заменить резистор R1 переменным сопротивлением. Сопротивление в 100 кОм, и больше, не занижает напряжение на выходе. Замкнув ножки микросхемы накоротко, можно вовсе выключить подключенную болгарку.
  5. Вставив в силовую цепь семистор VS1 типа ТС-122-25, то есть на 25А, можно плавно запускать практически любую доступную в продаже шлифмашинку, мощностью от 600 до 2700 Вт. И остается большой запас по мощности на случай заклинивания шлифмашинки. Для подключения болгарок мощностью до 1500 Вт, достаточно импортных семисторов BT139, BT140. Эти менее мощные электронные ключи дешевле.

Семистор в приведенной выше схеме полностью не открывается, он отрезает около 15В сетевого напряжения. Такое падения напряжения никак не сказывается на работе болгарки. Но при нагреве семистора, обороты подключенного инструмента сильно снижаются. Эта проблема решается установкой радиатора.

У этой простой схемы есть ещё один недостаток – несовместимость её с установленным в инструмент регулятором оборотов.

Собранную схему нужно запрятать в коробок из пластмассы. Корпус из изоляционного материала важен, ведь нужно обезопасить себя от сетевого напряжения. В магазине электротоваров можно купить распределительную коробку.

К коробке прикручивается розетка и подключается кабель с вилкой, что делает эту конструкцию внешне похожей на удлинитель.

Если позволяет опыт и есть желание, можно собрать более сложную схему плавного пуска. Приведенная ниже принципиальная схема является стандартной для модуля XS–12. Этот модуль устанавливается в электроинструмент при заводском производстве.

Если нужно менять обороты подключенного электродвигателя, тогда схема усложняется: устанавливается подстроечный, на 100 кОм, и регулировочный резистор на 50 кОм. А можно просто и грубо внедрить переменник на 470 кОм между резистором 47 кОм и диодом.

Параллельно конденсатору С2 желательно подсоединить резистор сопротивлением 1 МОм (на приведенной ниже схеме он не показан).

Напряжение питания микросхемы LM358 находится в пределах от 5 до 35В. Напряжение в цепи питания не превышает 25В. Поэтому можно обойтись и без дополнительно стабилитрона DZ.

Какую бы вы схему плавного пуска ни собрали, никогда не включайте подключенный к ней инструмент под нагрузкой. Любой плавный пуск можно сжечь, если торопиться. Подождите пока болгарка раскрутиться, а затем работайте.

Многие электроинструменты выходят из строя из-за износа мотора. У современных моделей болгарок имеется устройство плавного пуска. За счет него они способы долго проработать. Принцип работы элемента строится на изменении рабочей частоты. Для того чтобы более подробно узнать об устройстве пуска, стоит рассмотреть схему стандартной модели.

Устройство плавного пуска

Стандартная схема плавного пуска болгарки состоит из симистора, блока выпрямления и набора конденсаторов. Для увеличения рабочей частоты используются резисторы, которые пропускают ток в одном направлении. Защита пускателя осуществляется благодаря компактному фильтру. Номинальное напряжение у моделей поддерживается невысокое. Однако в данном случае многое зависит от предельной мощности мотора, который установлен в болгарке.

Как подключать модель?

Подключение плавного пуска болгарки осуществляется через переходник. Входные его контакты соединяются с блоком выпрямителя. При этом важно определить нулевую фазу в устройстве. Для закрепления контактов потребуется паяльная лампа. Проверить работоспособность пускателя можно через тестер. В первую очередь определяется отрицательное сопротивление. При установке пускателя важно помнить о пороговом напряжении, которое выдерживает устройство.

Схема устройства для болгарки с симистором на 10 А

Схема плавного пуска болгарки, своими руками изготовленного, предполагает применение контактных резисторов. Коэффициент полярности у модификаций, как правило, не превышает 55 %. Многие модели производятся с блокираторами. За защиту устройства отвечает проводной фильтр. Для пропускания тока используются трансиверы низкой частоты. Процесс понижения порогового напряжения осуществляется на транзисторе. Симистор в данном случае выступает стабилизатором. При подключении модели выходное сопротивление при перегрузке 10 А должно составлять около 55 Ом. Обкладки для пускателей подходят на полупроводниковой основе. В некоторых случаях устанавливаются магнитные трансиверы. Они хорошо справляются с малыми оборотами и могут поддерживать номинальную частоту.

Модель для болгарок с симистором на 15 А

Плавный пуск для болгарки с симисторами на 15 А является универсальным и часто встречается у моделей невысокой мощности. Отличие устройств заключается в низкой проводимости. Схема (устройство) плавного пуска болгарки предполагает применение трансиверов контактного типа, которые работают при частоте 40 Гц. У многих моделей используются компараторы. Данные элементы устанавливаются с фильтрами. Номинальное напряжение у пускателей стартует от 200 В.

Пускатели для болгарок с симистором на 20 А

Устройства с симисторами на 20 А подходят для профессиональных болгарок. У многих моделей применяются контакторные резисторы. В первую очередь они способны работать при высокой частоте. Максимальная температура пускателей равняется 55 градусам. У большинства моделей хорошо защищен корпус. Стандартная схема устройства предполагает применение трех контакторов емкостью от 30 пФ. Эксперты говорят о том, что устройства выделяются своей проводимостью.

Минимальная частота у пускателей составляет 35 Гц. Работать они способны в сети постоянного тока. Подключение модификаций осуществляется через переходники. Для моторов на 200 Вт хорошо подходят такие устройства. Фильтры довольно часто устанавливаются с триодами. Показатель чувствительности у них равняется не более 300 мВ. Довольно часто встречаются проводные компараторы с системой защиты. Если рассматривать импортные модели, то у них имеется интегральный преобразователь, который устанавливается с изоляторами. Проводимость тока обеспечивается на отметке 5 мк. При сопротивлении 40 Ом модель способна стабильно поддерживать большие обороты.

Модели на болгарку 600 Вт

Для болгарок на 600 Вт применяются пускатели с контактными симисторами, у которых перегрузка не превышает 10 А. Также стоит отметить, что есть много устройств с обкладками. Они выделяются защищенностью и не боятся повышенной температуры. Минимальная частота для болгарок на 600 Вт равняется 30 Гц. При этом сопротивление зависит от установленного триода. Если он применяется линейного типа, то вышеуказанный параметр не превышает 50 Ом.

Если говорить про дуплексные триоды, то сопротивление при высоких оборотах может доходить до 80 Ом. Очень редко у моделей встречаются стабилизаторы, которые работают от компараторов. Чаще всего они крепятся сразу на модули. Некоторые модификации делаются с проводными транзисторами. У них минимальная частота стартует от 5 Гц. Они боятся перегрузок, но способны поддерживать большие обороты при напряжении 220 В.

Устройства для болгарок на 800 Вт

Болгарки на 800 Вт работают с пускателями низкой частоты. Симисторы довольно часто применяются на 15 А. Если говорить про схему моделей, то стоит отметить, что у них используются расширительные транзисторы, у которых пропускная способность тока стартует от 45 мк. Конденсаторы используются с фильтрами и без них, а емкость у элементов равняется не более 3 пФ. Также стоит отметить, что пускатели отличаются по чувствительности.

Если рассматривать профессиональные болгарки, то для них подходят модификации на 400 мВ. При этом проводимость тока может быть низкой. Также существуют устройства с переменными транзисторами. Они быстро прогреваются, но не способны поддерживать большие обороты болгарки, а проводимость тока у них составляет около 4 мк. Если говорить про другие параметры, то номинальное напряжение стартует от 230 В. Минимальная частота у моделей с широкополосными симисторами составляет 55 Гц.

Пускатели для болгарок 1000 Вт

Пускатели для данных болгарок производятся на симисторах с перегрузкой 20 А. Стандартная схема устройства включает в себя триод, обкладку стабилизатора и три транзистора. Блок выпрямителя чаще всего устанавливается на проводной основе. Конденсаторы могут использоваться как с фильтром, так и без него. Минимальная частота обычной модели равняется 30 ГЦ. При сопротивлении 40 Ом пускатели способны поддерживать большие перегрузки. Однако могут возникнуть проблемы при низких оборотах болгарки.

Как сделать пускатель с симистора ТС-122-25?

Сделать с симистором ТС-122-25 плавный пуск для болгарки своими руками довольно просто. В первую очередь рекомендуется заготовить контакторный резистор. Конденсаторы потребуются однополюсного типа. Всего в пускатель устанавливаются три элемента. Емкость одного конденсатора не должна превышать 5 пФ. Для повышения рабочей частоты припаивается контактор на обкладке. Некоторые эксперты говорят о том, что повысить проводимость можно благодаря фильтрам.

Блок выпрямителя используется с проводимостью от 50 мк. Он способен выдерживать большие перегрузки и сможет обеспечивать высокие обороты. Далее, чтобы собрать плавный пуск на болгарку своими руками, устанавливается тиристор. В конце работы модель подключается через переходник.

Сборка модели с симисторами серии VS1

Собрать на симисторе VS1 плавный пуск для болгарки своими руками можно при помощи нескольких блоков выпрямителя. Конденсаторы для устройства подходят линейного типа с емкостью от 40 пФ. Начинать сборку модификации стоит с пайки резисторов. Конденсаторы устанавливаются в последовательном порядке между изоляторами. Номинальное напряжение у качественного пускателя равняется 200 В.

Далее, чтобы сделать плавный пуск для болгарки своими руками, берется заготовленный симистор и припаивается в начале цепи. Минимальная рабочая частота у него должна составлять 30 Гц. При этом тестер обязан показывать значение 50 Ом. Если возникают проблемы с перегревом конденсаторов, то нужно использовать дипольные фильтры.

Модель для болгарок с регулятором КР1182ПМ1

Чтобы собрать с регулятором КР1182ПМ1 плавный пуск для болгарки своими руками, берется контактный тиристор и блок выпрямителя. Триод целесообразнее применять на два фильтра. Также стоит отметить, что для сборки пускателя потребуется три конденсатора с емкостью не менее 40 пФ.

Показатель чувствительности у элементов обязан составлять 300 мВ. Эксперты говорят о том, что симистор можно устанавливать за обкладкой. Также надо помнить, что пороговое напряжение не должно опускаться ниже 200 В. В противном случае модель не сможет работать при пониженных оборотах болгарки.

Плавный запуск электроинструмента своими руками. Схема плавного пуска электродвигателя болгарки своими руками


Люди, часто использующие электроинструмент, иногда сталкиваются со следующей проблемой: двигатель, будь то шлифовальный станок, циркулярная пила, строгальный станок или другое оборудование, запускается очень резко. Такой резкий запуск чреват массой неприятностей: во-первых, большой пусковой ток, что не лучшим образом сказывается на проводке, во-вторых, резкий запуск двигателя быстро изнашивает механические части инструмента. , в-третьих, снижается удобство использования, при запуске болгарки приходится крепко держаться, она просто стремится вырваться из рук.В дорогих моделях уже встроена система плавного пуска, которая легко справляется со всеми этими неприятностями. Но что, если этой системы не существует? Выход есть — собрать схему плавного пуска самостоятельно. К тому же его можно будет использовать с лампами накаливания, ведь чаще всего они перегорают именно в момент включения. Плавный запуск значительно снижает способность лампочки быстро перегорать.

Схема

В Интернете часто встречается схема плавного пуска, построенная на довольно редкой отечественной микросхеме К1182ПМ1Р, которую сейчас не всегда легко достать.Поэтому предлагаю для сборки не менее эффективную схему, ключевым звеном которой является имеющаяся микросхема TL072; вместо него также можно поставить LM358. Время, в течение которого двигатель набирает полную скорость, устанавливается конденсатором C1. Чем больше его емкость, тем больше времени потребуется на разгон, оптимальный вариант — 2,2 мкФ. Конденсаторы C1 и C2 должны быть рассчитаны минимум на 50 вольт. Конденсатор С5 не менее 400 вольт. Резистор R11 будет рассеивать приличное количество тепла, поэтому он должен быть не менее 1 Вт.В схеме можно использовать любые маломощные транзисторы, Т1, Т2, Т4 имеют структуру n-p-n, можно использовать BC457 или отечественный КТ3102, T4 имеет p-n-p структуру, на его месте подойдет BC557 или КТ3107. Т5 — любой полуистор, подходящий по мощности и напряжению, например БТА12 или ТС-122.

Выполнение плавного пуска

Схема собрана на печатной плате размером 45 х 35 мм, плата разложена максимально компактно, чтобы ее можно было встроить в корпус инструмента, требующего плавного пуска.Провода питания лучше припаять прямо к плате, но если мощность нагрузки небольшая, то можно установить клеммники, как это сделал я. Плата изготовлена ​​методом ЛУТ, фото процесса представлены ниже.
Скачать плату:

(Скачиваний: 1139)


Дорожки желательно покрыть лужением перед пайкой деталей, чтобы улучшить их проводимость. Микросхему можно установить в розетку, после чего без проблем вынуть ее из платы.Сначала припаиваются резисторы, диоды, малогабаритные конденсаторы, а уж потом уже самые большие комплектующие. После завершения сборки платы в обязательном порядке необходимо проверить ее правильность установки, прозвонить дорожки, промыть оставшийся флюс.

Первый запуск и тесты

После того, как плата будет полностью готова, вы можете проверить ее на работоспособность. В первую очередь нужно найти лампочку малой мощности на 5-10 Вт и через нее подключить к сети 220 вольт. Те. плата и лампа подключаются к сети последовательно, а выход OUT остается неподключенным.Если на плате ничего не перегорело, а лампочка не загорелась, можно подключить схему напрямую в сеть. Такую же маломощную лампочку можно подключить к выходу OUT для тестирования. При подключении он должен плавно набирать яркость на максимум. Если схема исправна, можно подключать более мощные электроприборы. При длительной эксплуатации семиэтажка может немного нагреться — в этом нет ничего страшного. При наличии свободного места не помешает установить на радиатор.
Во время работы на плате присутствует опасное сетевое напряжение, поэтому необходимо принять меры предосторожности. Ни при каких обстоятельствах нельзя прикасаться к частям платы, когда она подключена к сети. Перед включением убедитесь, что плата надежно закреплена и на нее не могут попасть металлические предметы, которые могут привести к короткому замыканию. Для надежности рекомендуется залить доску лаком или эпоксидной смолой, тогда ей не будет страшна даже влага. Удачной сборки!

Плавный запуск асинхронного двигателя всегда является сложной задачей, потому что для запуска асинхронного двигателя требуется большой ток и крутящий момент, что может привести к сгоранию обмотки электродвигателя.Инженеры постоянно предлагают и внедряют интересные технические решения для преодоления этой проблемы, например, использование схемы переключения, автотрансформатора и т. Д.

В настоящее время такие методы используются в различных промышленных установках для бесперебойной работы электродвигателей.

Принцип работы асинхронного электродвигателя известен из физики, вся суть которого заключается в использовании разности частот вращения магнитных полей статора и ротора.Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Двигатель работает на полной скорости, и значение крутящего момента также увеличивается вслед за током. В результате обмотка агрегата может выйти из строя из-за перегрева.

Таким образом, возникает необходимость в установке устройства плавного пуска. Устройства плавного пуска для трехфазных асинхронных двигателей защищают агрегаты от начального высокого тока и крутящего момента, возникающих из-за эффекта скольжения во время работы асинхронного двигателя.

Преимущества использования схемы с устройством плавного пуска (УПП):

  1. снижение пускового тока;
  2. снижение затрат на электроэнергию;
  3. повышенной эффективности;
  4. относительно невысокая стоимость;
  5. достигает максимальной скорости, не влияя на агрегат.

Как плавно завести двигатель?

Существует пять основных методов плавного пуска.

  • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления к цепи ротора, как показано.

  • Включив в схему автоматический трансформатор, можно поддерживать пусковой ток и крутящий момент за счет снижения начального напряжения. См. Картинку ниже.

  • Прямой пуск — это самый простой и дешевый способ, поскольку асинхронный двигатель подключается непосредственно к источнику питания.
  • Соединения по особой конфигурации обмоток — метод применим для двигателей, предназначенных для работы в нормальных условиях.

  • Использование SCP является наиболее продвинутым из всех перечисленных методов. Здесь полупроводниковые устройства, такие как тиристоры или тиристоры, которые регулируют скорость асинхронного двигателя, успешно заменяют механические компоненты.

Регулятор оборотов коллекторного двигателя

Большинство схем бытовых приборов и электроинструментов создано на базе коллекторного электродвигателя 220 В. Такой спрос объясняется его универсальностью.Блоки могут питаться от постоянного или переменного напряжения. Преимущество схемы связано с обеспечением эффективного пускового момента.

Чтобы добиться более плавного пуска и иметь возможность регулировать скорость, используются регуляторы скорости.

Пуск электродвигателя своими руками можно произвести, например, таким способом.

С недавнего времени использование асинхронного двигателя стало очень распространенным благодаря его простоте, надежности и невысокой цене. Это стало причиной его широкого использования в промышленности.Чтобы улучшить его характеристики и продлить срок его службы, существует большое количество различных устройств, способных регулировать, запускать или защищать двигатель. Об одном из них я расскажу в этой статье.

Это устройство представляет собой устройство плавного пуска для электродвигателя (сокращенно устройство плавного пуска), иначе называемое устройством плавного пуска, несмотря на то, что это имя может использоваться с любым устройством, способным обеспечить плавный пуск двигателя.

Устройство плавного пуска асинхронных двигателей современного типа заменяет все предыдущие методы, такие как пуск методом «переключение звезда-треугольник» или пуск с помощью реостата.Необходимо учитывать, что этот метод стоит недешево, поэтому его использование должно быть оправдано. Само собой разумеется, что стоимость устройства сильно зависит от необходимой мощности, пусковой функциональности и защитных свойств и составляет от 2 до 10 тысяч рублей, а иногда и больше.

Принцип действия

При пуске двигателя появляется значительный пусковой момент (из-за необходимости преодолевать момент нагрузки на валу).

Для создания этого момента двигатели забирают из сети большое количество энергии, что является одной из проблем запуска — падение напряжения.

Этот фактор может плохо сказаться на других потребителях энергии в этой сети. Еще один неприятный фактор — возможность выхода из строя механических частей привода из-за резкого рывка при запуске.

Значительные пусковые токи создают еще одну проблему при запуске. Такие токи, протекая через обмотки двигателя, выделяют много тепла, создавая риск повреждения изоляции обмотки и выхода двигателя из строя в результате замыкания цепи.

Для избавления от всех подобных проявлений негативного характера при запуске двигателя используется устройство плавного пуска, позволяющее снизить пусковые токи, в результате чего падение напряжения и, как следствие, нагрев обмотки значительно уменьшены.

За счет уменьшения пусковых токов мы уменьшаем пусковой момент, в результате чего происходит смягчение ударов при пуске и, как следствие, сохранение механических частей привода. Очень весомым плюсом устройства плавного пуска следует считать то, что при трогании нет рывков, а ускорение происходит плавно.

По внешнему виду такое устройство представляет собой прямоугольный модуль средних размеров, имеющий контакты, к которым подключаются электродвигатель и цепи управления. Некоторые из этих устройств имеют ЖК-экран, индикаторы и кнопки, позволяющие устанавливать различные режимы запуска, снимать показания, ограничивать ток и т. Д. Кроме того, устройства оснащены сетевым разъемом, с помощью которого они осуществляют его программирование и данные. обмен.

Хотя эти устройства называются устройствами плавного пуска электродвигателя, они позволяют им выполнять не только запуск, но и остановку двигателя. Кроме того, они обладают всеми видами защитных функций, такими как, например, защита от короткого замыкания, тепловая защита, контроль обрыва фазы, пусковых токов и изменений напряжения питания.Кроме того, в устройствах есть память, в которой фиксируются возникающие ошибки. Следовательно, используя сетевой разъем, вы можете их прочитать и расшифровать.

Реализация плавного пуска двигателей с использованием этих устройств происходит путем медленного повышения напряжения (при плавном ускорении двигателя) и уменьшения пусковых токов. Параметры, которые в этом случае подлежат настройке, — это, как правило, первичное напряжение, время разгона и время остановки. Слишком маленькое первичное напряжение нецелесообразно, потому что в то же время значительно снижается пусковой крутящий момент, по этой причине он установлен в пределах 0.3-0,6 от номинала.
Вначале напряжение быстро повышается до заданного пускового напряжения, после чего в течение заданного времени разгона оно медленно увеличивается до номинального значения. Двигатель в это время плавно, но быстро разгоняется до необходимой скорости.

Сейчас такие устройства выпускают многие предприятия (в основном зарубежные). У них много функций, и их можно программировать. Однако при всем этом у них есть один большой недостаток — довольно высокая стоимость. Но есть возможность создать такое устройство своими руками, тогда оно будет стоить существенно дешевле.

Устройство плавного пуска электродвигателя своими руками

Приведу одну из возможных схем такого устройства. Основой для построения такого устройства может быть стабилизатор мощности фазного типа, выполненный в виде микросхемы КР1182ПМ1. В данной схеме их три (каждая фаза своя). Схема представлена ​​на рисунке ниже.

Эта схема предназначена для работы с двигателем 380 В * 50 Гц. Обмотки двигателя соединены звездой и подключены к выходным цепям схемы (они обозначены L11, L2, L3).Общая точка обмоток двигателя цепляется за нейтральный вывод линии (N). Выходные цепи выполнены на встречно-параллельных парах импортных тиристоров, обладающих достаточно высокими характеристиками при невысокой цене.

Цепь получает питание после включения главного выключателя g1. Но двигатель еще не запустился. Причина тому — обесточенные обмотки реле k1-k3, в результате чего выводы 3 и 6 микросхем оказываются зашунтированными своими нормально замкнутыми контактами (через сопротивления r1-r3).В результате конденсаторы С1-С3 не заряжаются, и микросхемы не генерируют управляющие импульсы.

Цепь запускается включением тумблера sa1. Это приводит к подаче на обмотки реле напряжения 12 вольт, что, в свою очередь, дает возможность заряжать конденсаторы и, как следствие, увеличивать угол открытия тиристоров. Таким образом достигается плавный рост напряжения на обмотках двигателя. Когда конденсаторы полностью заряжены, тиристоры открываются на больший угол, чем будет достигнута номинальная частота вращения двигателя.

Для выключения двигателя достаточно разомкнуть контакты sa1, в результате чего реле отключатся и процесс пойдет в обратном направлении, обеспечивая торможение двигателя.

Пишите комментарии, дополнения к статье, может я что то упустил. Загляните, буду рад, если вы найдете еще что-нибудь полезное на моем сайте. Всего наилучшего.

Многие электроинструменты выходят из строя из-за износа двигателя. Современные модели болгарок имеют устройство плавного пуска. Благодаря ему у них есть возможность работать долгое время.Принцип работы элемента основан на изменении рабочей частоты. Для того, чтобы больше узнать о лаунчере, стоит рассмотреть схему стандартной модели.

Устройство плавного пуска

Стандартная болгарская схема плавного пуска состоит из симистора, выпрямителя и набора конденсаторов. Для увеличения рабочей частоты используются резисторы, пропускающие ток в одном направлении. Стартер защищен компактным фильтром. low поддерживается для моделей.Однако в этом случае многое зависит от максимальной мощности мотора, который установлен в болгарке.

Как подключить модель?

Подключение плавного пуска болгарки осуществляется через переходник. Его входные контакты подключены к выпрямительному блоку. Важно определить нулевую фазу в приборе. Для исправления контактов потребуется Проверить работоспособность стартера через тестер. В первую очередь определяется отрицательное сопротивление.При установке стартера важно помнить о пороговом напряжении, которое может выдержать устройство.

Схема устройства болгарки с симистором на 10 А

Схема плавного пуска болгарки, сделанного вручную, предполагает использование контактных резисторов. Коэффициент полярности модификаций, как правило, не превышает 55%. Многие модели выпускаются с блокираторами. Проводной фильтр отвечает за защиту устройства. Для передачи тока используются низкочастотные трансиверы.Процесс понижения порогового напряжения осуществляется на транзисторе. Симистор в этом случае действует как стабилизатор. При подключении модели выходное сопротивление при перегрузке 10 А должно быть около 55 Ом. Крышки стартеров изготовлены из полупроводников. В некоторых случаях устанавливаются магнитные трансиверы. Они хорошо справляются с низкими оборотами и могут поддерживать номинальную частоту.

Модель для шлифовальных машин с симистором 15 А

Плавный пуск болгарки с симисторами 15 А универсален и часто встречается в моделях малой мощности.Отличие приборов — низкая проводимость. Схема (устройство) мягкого пуска болгарки предполагает использование приемопередатчиков контактного типа, работающих на частоте 40 Гц. Многие модели используют компараторы. Эти элементы устанавливаются с фильтрами. Номинальное напряжение стартеров начинается от 200 В.

Стартеры для шлифовальных машин с симистором 20 А

Устройства с симистором 20 А подходят для профессиональных шлифовальных машин. Во многих моделях используются контакторные резисторы. В первую очередь они способны работать на высоких частотах.Максимальная температура стартера — 55 градусов. Большинство моделей имеют хорошо защищенный корпус. Стандартная схема устройства предполагает использование трех контакторов емкостью 30 пФ. Эксперты отмечают, что устройства отличаются своей проводимостью.

Минимальная частота для пускателей 35 Гц. Они способны работать в сети постоянного тока. Модификации подключаются через переходники. Такие устройства хорошо подходят для моторов мощностью 200 Вт. Фильтры часто устанавливаются с триодами. Их индекс чувствительности не более 300 мВ.Проводные компараторы с системой защиты встречаются довольно часто. Если рассматривать импортные модели, то в них есть встроенный преобразователь с изоляторами. Токопроводимость составляет около 5 микрон. При сопротивлении 40 Ом модель способна стабильно поддерживать высокие обороты.

Модели для болгарки 600 Вт

Для болгарки мощностью 600 Вт используются стартеры с контактными симисторами, у которых перегрузка не превышает 10 А. Также стоит отметить, что существует множество устройств с пластинами.Они отличаются своей безопасностью и не боятся высоких температур. Минимальная частота для болгарки мощностью 600 Вт — 30 Гц. В этом случае сопротивление зависит от установленного триода. Если он используется линейного типа, то указанный выше параметр не превышает 50 Ом.

Если говорить о дуплексных триодах, то сопротивление на высоких оборотах может доходить до 80 Ом. Очень редко в моделях есть стабилизаторы, работающие от компараторов. Чаще всего они крепятся непосредственно к модулям.Некоторые модификации сделаны на проводных транзисторах. Их минимальная частота начинается от 5 Гц. Боятся перегрузок, но способны поддерживать высокую скорость на

Аппараты для болгарки 800 Вт

Болгарки на 800 Вт работают с низкочастотными стартерами. Довольно часто используются симисторы на 15 А. Если говорить о модельной схеме, то стоит отметить, что в них используются расширительные транзисторы, у которых допустимая нагрузка по току начинается от 45 мкм. Конденсаторы используются с фильтрами и без них, а емкость элементов не более 3 пФ.Также стоит отметить, что стартеры различаются по чувствительности.

Если рассматривать профессиональные болгарки, то для них подходят модификации на 400 мВ. В этом случае токопроводимость может быть низкой. Также есть устройства с регулируемыми транзисторами. Они быстро нагреваются, но поддерживать высокую скорость болгарки не в состоянии, а их проводимость по току составляет около 4 мкм. Если говорить о других параметрах, то номинальное напряжение начинается от 230 В. Минимальная частота для моделей с широкополосными симисторами — 55 Гц.

Стартеры для болгарки 1000 Вт

Стартеры для этих болгарок производятся на симисторах с перегрузкой 20 А. В штатную схему устройства входят триод, пластина стабилизатора и три транзистора. Выпрямительный блок чаще всего устанавливается на проводной основе. Конденсаторы можно использовать с фильтром или без него. Минимальная частота обычной модели — 30 Гц. При сопротивлении 40 Ом пускатели способны выдерживать большие перегрузки. Однако проблемы могут возникнуть на малых оборотах болгарки.

Как сделать стартер из симистора ТС-122-25?

Сделать плавный пуск болгарки своими руками с симистором ТС-122-25 достаточно просто. В первую очередь рекомендуется подготовить контакторный резистор. Конденсаторы потребуют однополюсного типа. Всего в стартере установлено три элемента. Емкость одного конденсатора не должна превышать 5 пФ. Для увеличения рабочей частоты к пластине припаивается контактор. Некоторые эксперты говорят, что фильтры могут улучшить проводимость.

Используется выпрямительный блок с проводимостью 50 мкм. Он способен выдерживать большие перегрузки и сможет обеспечить высокие обороты. Далее, чтобы собрать на болгарке своими руками плавный пуск, устанавливается тиристор. По окончании работы модель подключается через переходник.

Сборка модели с симисторами серии VS1

Собрать плавный пуск болгарки на симисторе VS1 можно своими руками с помощью нескольких выпрямительных блоков. Конденсаторы для устройства подходят линейного типа емкостью 40 пФ. Начать сборку модификации стоит с пайки резисторов. Конденсаторы устанавливаются последовательно между изоляторами. Номинальное напряжение качественного стартера — 200 В.

Далее, чтобы сделать плавный пуск болгарки своими руками, в начале схемы берется подготовленный симистор и припаивается. Его минимальная рабочая частота должна составлять 30 Гц. В этом случае тестер должен показать значение 50 Ом.Если возникают проблемы с перегревом конденсаторов, следует использовать дипольные фильтры.

Модель для болгарки с регулятором КР1182ПМ1

Для сборки мягкого пуска болгарки своими руками с регулятором КР1182ПМ1 берутся контактный тиристор и выпрямительный блок. Для двух фильтров целесообразнее использовать триод. Также стоит отметить, что для сборки стартера требуется три конденсатора емкостью не менее 40 пФ.

Индекс чувствительности элементов должен составлять 300 мВ.Специалисты говорят, что симистор можно установить за крышкой. Также следует помнить, что пороговое напряжение не должно опускаться ниже 200 В. В противном случае модель не сможет работать на пониженных оборотах болгарки.

Связан с высокими динамическими нагрузками. Из-за массы рабочего диска силы инерции действуют на ось редуктора в начале вращения. Это влечет за собой некоторые отрицательные моменты:

  1. Осевые нагрузки при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;
  2. ВАЖНО! При запуске болгарки всегда держите инструмент обеими руками и будьте готовы держать его.Несоблюдение этого может привести к травме. Это предупреждение особенно актуально для тяжелых алмазных или стальных лезвий.

  3. При резкой подаче рабочего напряжения на двигатель возникает перегрузка по току, которая проходит после набора номинальной скорости;
  4. В результате изнашиваются щетки и перегреваются обе обмотки электродвигателя. При многократном включении и выключении электроинструмента перегрев может привести к расплавлению изоляции обмоток и вызвать короткое замыкание с последующим дорогостоящим ремонтом.

  5. Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни угловой шлифовальной машины;
  6. В некоторых случаях зубья могут сломаться, а редуктор заклинить.

  7. Перегрузки, которые воспринимает рабочий диск, могут вывести его из строя при запуске двигателя.
  8. Следовательно, необходима защитная крышка.

ВАЖНО! При запуске болгарки открытый сектор кожуха должен быть направлен в сторону, противоположную оператору.

Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже.Хорошо видны все элементы, испытывающие перегрузку при резком старте.

Схематический чертеж расположения рабочих органов и систем управления в измельчителе

Чтобы уменьшить вредное воздействие резкого пуска, производители выпускают болгарки с регулировкой скорости и плавным пуском.

Регулятор скорости расположен на рукоятке инструмента

Но таким устройством оснащены только модели средней и высокой ценовой категории. Многие домашние мастера приобретают угловые шлифовальные машины без регулятора и замедляющего пусковую скорость.Особенно это касается мощных образцов с диаметром отрезного диска более 200 мм. Такую болгарку не только сложно держать в руках при запуске, но и изнашиваются механические и электрические детали намного быстрее.
Выход один — самому настроить плавный запуск болгарки. Есть уже готовые заводские устройства с регулятором оборотов и замедлением запуска двигателя при запуске.

Готовое устройство плавного пуска

Такие блоки устанавливаются внутрь корпуса, если есть свободное место.Однако большинство пользователей угловых шлифовальных машин предпочитают самостоятельно составлять схему плавного пуска болгарки и подключать ее к обрыву питающего кабеля.

Как сделать схему плавного пуска угловой шлифовальной машины своими руками

Популярная схема реализована на базе микросхемы управления фазой КР118ПМ1, а силовая часть выполнена на симисторах. Такой прибор достаточно прост в установке, не требует дополнительной регулировки после сборки, а значит, его может изготовить мастер без профильного образования, достаточно уметь держать в руках паяльник.

Электрическая схема регулировки плавного пуска болгарки

Предлагаемый агрегат может быть подключен к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельного снятия кнопки включения не требуется, доработанный электроинструмент включается штатным ключом. Схема может быть установлена ​​как внутри корпуса болгарки, так и в разрыв питающего кабеля в отдельном корпусе.

Самый практичный способ — подключить устройство плавного пуска к розетке, которая подает питание на инструмент.Вход (разъем XP1) запитан от сети 220 вольт. Розетка (разъем XS1) подключается к одноразовой розетке, в которую вставляется вилка угловой шлифовальной машины.

При замкнутой кнопке пуска болгарки напряжение на микросхему DA1 поступает по общей цепи питания. На управляющем конденсаторе происходит плавное повышение напряжения. По мере зарядки достигает своего рабочего значения. Благодаря этому тиристоры в микросхеме открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора.Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

Посмотрите видео с подробным объяснением, как сделать и какую схему применить

В каждом полупериоде напряжения переменного тока задержка уменьшается в арифметической прогрессии, что приводит к плавному увеличению напряжения на входе в электроинструмент. Этот эффект определяет плавный запуск двигателя болгарки. Следовательно, скорость вращения диска увеличивается постепенно, и вал коробки передач не испытывает инерционных ударов.

Время разгона до рабочего значения определяется емкостью конденсатора C2. Значение 47 мкФ обеспечивает плавный старт за 2 секунды. При такой задержке не возникает особого дискомфорта при начале работы с инструментом, и в то же время сам электроинструмент не подвергается чрезмерным нагрузкам при резком запуске.

После выключения угловой шлифовальной машины конденсатор С2 разряжается сопротивлением резистора R1. При номинальном значении 68 кОм время разряда составляет 3 секунды.После этого устройство плавного пуска готово к новому циклу запуска кофемолки.
С небольшой модификацией схему можно модернизировать до регулятора оборотов двигателя. Для этого резистор R1 заменяют на переменный резистор. Регулируя сопротивление, мы контролируем мощность двигателя, изменяя его скорость.

Таким образом, в одном корпусе можно сделать регулятор оборотов двигателя и устройство плавного пуска для электроинструмента.

Остальные детали схемы работают следующим образом:

  • Резистор R2 регулирует величину тока, протекающего через управляющий вход симистора VS1;
  • Конденсаторы С1 и С2 — это управляющие компоненты микросхемы КР118ПМ1, используемой в типовой схеме переключения.

Для простоты и компактности монтажа резисторы и конденсаторы припаяны непосредственно к ножкам микросхемы.

Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

Благодаря плавному запуску шлифовального станка ток не превышает номинального рабочего значения для выбранного электроинструмента. На аварийные случаи, например, заклинивание диска болгарки, необходим запас тока.Поэтому номинал в амперах следует увеличить вдвое.

Номиналы радиодеталей, используемых в предлагаемой электрической схеме, проверены на угловой шлифовальной машине мощностью 2 кВт. Запас мощности до 5 кВт, это связано с особенностями работы микросхемы КР118ПМ1.
Рабочая схема, неоднократно выполненная домашними мастерами.

Угловая шлифовальная машина | Резка, шлифование, фрезерование

Углошлифовальная машина

Угловые шлифовальные машины Metabo для любого применения


Все больше и больше компаний в сфере металлообработки и промышленности полагаются на угловые шлифовальные машины Metabo. Мощные машины с перегрузочной способностью стали жизненно важными в повседневной работе. Они хорошо справляются с резкой или приданием шероховатости металлу, с алмазными отрезными кругами можно резать даже камень и бетон. Угловые шлифовальные машины Metabo доступны для дисков любого диаметра в различных версиях для работы от сети с номинальной потребляемой мощностью от 750 до 2600 Вт. В качестве альтернативы Metabo предлагает множество мощных аккумуляторных угловых шлифовальных машин с диаметром диска до 230 мм. Для компаний, работающих со сжатым воздухом, есть две угловые шлифовальные машины для дисков 125 мм.Критерий входа для угловых шлифовальных машин — диаметр диска. Откройте для себя угловые шлифовальные машины Metabo Ø4-1 / 2–6 дюймов в диапазоне до 150 мм или угловые шлифовальные машины диаметром 7–9 дюймов в диапазоне диаметров диска от 180 до 230 мм. Все модели оснащены защитным кожухом, зажимным комплектом и боковой ручкой.

Специалист по нержавеющей стали и острым углам


Угловые шлифовальные машины с плоской головкой только начинают работать, если что-то не так. Специалист с особенно зубчатой ​​головкой может заточить до узких углов до 39 ° ((при диаметре 150 мм).Поэтому он идеально подходит для удаления ржавчины, лака или сварочного шлама с узких рамных конструкций и при работе в ограниченном пространстве. Есть угловые шлифовальные машины с плоской головкой как с кабелем, так и аккумуляторные для работы независимо от электросети. Некоторые угловые шлифовальные машины разработаны специально для обработки нержавеющей стали. Крутящий момент бедра и уменьшенный диапазон скоростей, адаптированный для нержавеющей стали, обеспечивают холодное шлифование без синего обесцвечивания. Эти специалисты имеют в своем названии слово Inox и доступны в различных версиях, в том числе в виде угловых шлифовальных машин Inox с плоской головкой.

Безопасность с угловыми шлифовальными машинами Metabo


Работа с угловыми шлифовальными машинами небезопасна. Большие силы и постоянная вибрация могут привести к потере управления. С помощью наших функций безопасности мы хотим предотвратить и разрешить безопасную работу. У угловых шлифовальных машин с функцией «мертвого человека» (P в обозначении) двигатель отключается сразу после отпускания переключателя. Если встроена дополнительная тормозная система (B в обозначении), диск останавливается в течение 2-3 секунд после выключения.Когда диск застревает в материале, крутящий момент отдачи может поразить пользователя с полной силой. Эта отдача значительно снижается благодаря автоматической предохранительной муфте Metabo S или электронному защитному отключению (в зависимости от модели). Для угловых шлифовальных машин с автобалансиром (A в обозначении) дисбаланс на дисках сбалансирован для работы с особенно низким уровнем вибрации и утомляемости. Дополнительные функции безопасности — это защита от повторного пуска от непреднамеренного пуска после отключения электроэнергии и плавный пуск для плавного пуска.В некоторые угловые шлифовальные машины встроены все эти функции безопасности
, что обеспечивает максимальную безопасность пользователя.

Правильный диск имеет значение


Metabo предлагает широкий ассортимент отрезных и шлифовальных дисков для любой области применения. В зависимости от требований существует несколько классов качества для всех соответствующих диаметров: от базового качества с хорошей резкой и съемом материала до высшего качества с очень высокой производительностью резания и максимальным сроком службы инструмента. Для резки бетона и камня используются алмазные отрезные диски Metabo.Даже здесь есть классы качества для всех требований во всех необходимых диаметрах. Другие аксессуары для резки и шлифования, такие как чашечные круги, лепестковые диски, волокна и чистящие полотна, а также щетки из стальной проволоки для очистки, удаления заусенцев и ржавчины, а также специальные аксессуары для обработки нержавеющей стали можно найти в ассортименте принадлежностей Metabo. для угловых шлифовальных машин.

Купить Макита | MAK / GA9040S | Угловая шлифовальная машина 230 мм (9 «)

Описание

Об этом товаре — MAK / GA9040S

  • Двигатель для тяжелых условий эксплуатации с постоянной номинальной мощностью 2600 Вт.
  • Исключительная долговечность. Превосходная защита от пыли. Механически обработанный конический редуктор. Повышенная термостойкость.
  • Задняя ручка с низким уровнем вибрации и мягким захватом для большего комфорта и контроля.
  • Поворотную заднюю ручку
  • можно расположить так, чтобы она соответствовала большинству операций резки и шлифования.
  • Защищает заготовку от царапин. Большой резиновый упор для инструмента.
  • Заднюю ручку можно поворачивать на каждые 90 градусов.

Позиция В комплекте с MAK / GA9040S

Ключ для стопорной гайки 35, ручка (инструмент не поставляется с вдавленным центральным колесом).

Технические характеристики MAK / GA9040S

Постоянная мощность Вход 2,600 Вт
Вместимость Колесо с опущенным центром:
280 мм (9 ″)
Скорость холостого хода 6600 об / мин
Размеры 511 мм x 249 мм x 140 мм
(Д x Ш x В) (20-1 / 8 ″ x 9-3 / 4 ″ x 5-1 / 2 ″)
Резьба шпинделя DIN тип
Масса нетто 6. 7 кг (14,8 фунта)
Шнур питания 2,5 м (8,2 фута)

Общие сведения: Угловая шлифовальная машина , также известная как боковая шлифовальная машина или дисковая шлифовальная машина , представляет собой ручной электроинструмент, используемый для шлифования (абразивной резки) и полировки. Хотя изначально они были разработаны как инструменты для жестких абразивных дисков, наличие сменного источника питания стимулировало их использование с широким спектром фрез и насадок.Угловые шлифовальные машины можно использовать для удаления излишков материала с детали. Есть много разных типов дисков, которые используются для различных материалов и задач. Угловая шлифовальная машина имеет большие подшипники для противодействия боковым силам, возникающим во время резки, в отличие от дрели, где сила является осевой.

Также обратите внимание на угловые шлифовальные машины от Makita.

Новые широкоугольные шлифовальные машины Metabo с тормозами Предварительный просмотр [7 «и 9»]

Новые большие угловые шлифовальные машины Metabo оснащены механическими тормозами, которые останавливают колесо в течение 2-1 / 2 ″ секунд после отпускания спускового крючка. Metabo первой выпустила большие угловые шлифовальные машины с предохранительным тормозом. Эти новые широкоформатные шлифовальные машины доступны в 7-дюймовых и 9-дюймовых моделях. Две 7-дюймовые модели и одна 9-дюймовая модель произведены в Германии.

Эта новая линейка шлифовальных машин будет включать в себя 15-амперные двигатели с высоким крутящим моментом и электронной защитой от перегрузки. Светодиодный предупредительный световой сигнал предупреждает пользователя о перегрузке, уменьшая неисправность двигателя и продлевая срок службы инструмента. 7-дюймовые модели будут иметь скорость холостого хода 8 500 об / мин, а 9-дюймовая модель — 6600 об / мин.Metabo включает в себя рукоятку с гашением вибрации MVT, которая способствует эргономике при резке и шлифовании.

Угловые шлифовальные машины Metabo с предохранительным тормозом

Если вы занимаетесь какой-либо отраслью, включая металлообработку, то, вероятно, знаете, что Metabo производит одни из лучших угловых шлифовальных машин. Они представили первую предохранительную муфту еще в 1960-х годах, которая предотвращает разлет лезвия. Некоторые из тех же технологий используются и сегодня.

«Безопасность — неотъемлемая часть философии Metabo, поэтому внедрение этих больших шлифовальных машин с предохранительными тормозами было естественным прогрессом.Они дополняют нашу линейку безопасных шлифовальных машин размером 4-1 / 2 дюйма, 5 дюймов и 6 дюймов, проводных и беспроводных », — сказал Терри Тюрк, старший менеджер по продукции Metabo.

Другие видеообзоры Metabo: видеообзор Metabo Beveler

Портативная машина для снятия фрезерования стальных листов Metabo — Видеообзор KFM 16-15 F

В дополнение к механическому предохранительному тормозу эти новые широкоугольные шлифовальные машины Metabo также включают в себя неблокирующий подрулевой переключатель и электронное сцепление. Регулируемый без инструментов защитный кожух позволяет пользователю за секунды сместить его в оптимальное положение. Все три шлифовальных станка также оснащены технологией плавного пуска для увеличения скорости шлифовального круга.

Новые модели шлифовальных машин Metabo

  • 7 ”WEPB 24-180
  • 7-дюймовый компактный WEPB 19-180 RT DS (модель с защитой от падения)
  • 9 дюймов WEPB 24-230 MVT

Для получения дополнительной информации посетите Metabo USA.

Выбор между устройствами плавного пуска и частотно-регулируемыми приводами

Двигатели часто требуют большого количества энергии при быстром разгоне до полной скорости.Использование устройств плавного пуска и преобразователей частоты снижает пусковые токи и ограничивает крутящий момент, защищая ценное оборудование и продлевая срок службы двигателя за счет уменьшения нагрева двигателя, вызываемого частыми запусками и остановками.

Выбор между устройством плавного пуска и преобразователем частоты (AFD) часто зависит от области применения, системных требований и стоимости как при первоначальном запуске, так и в течение жизненного цикла системы.

Устройства плавного пуска

Устройство плавного пуска — это твердотельное устройство, которое защищает электродвигатели переменного тока (AC) от повреждений, вызванных внезапными притоками мощности, путем ограничения большого начального броска тока, связанного с запуском двигателя.Они обеспечивают плавный подъем до полной скорости и используются только при запуске (и остановке, если есть). Увеличение начального напряжения на двигателе приводит к постепенному запуску. Устройства плавного пуска также известны как устройства плавного пуска с пониженным напряжением (RVSS).

Устройства плавного пуска

используются в приложениях, к которым предъявляются следующие требования:

  • Управление скоростью и крутящим моментом при запуске (и остановке, если она оборудована плавным остановом)
  • Снижение больших пусковых токов при запуске с большим двигателем
  • Мягкий запуск механической системы для снятия скачков крутящего момента и напряжения при нормальном запуске (например, конвейеры, системы с ременным приводом, шестерни и насосы)
  • Насосы, устраняющие скачки давления в трубопроводных системах при резком изменении направления жидкости

Как работает устройство плавного пуска?

Электрические устройства плавного пуска временно снижают входное напряжение или ток за счет уменьшения крутящего момента. В некоторых устройствах плавного пуска могут использоваться твердотельные устройства для управления током. Они могут контролировать от одной до трех фаз, тогда как трехфазное управление обычно дает лучшие результаты.

В большинстве устройств плавного пуска используется серия кремниевых выпрямителей (SCR) для снижения напряжения (см. Рисунок 1). В нормальном состоянии «выключено» тиристоры ограничивают ток, но в нормальном состоянии «включено» тиристоры пропускают ток. SCR включаются во время разгона, а байпасные контакторы включаются после достижения максимальной скорости.Это помогает значительно снизить нагрев двигателя и продлить срок службы систем.

Рис. 1. Схема устройства плавного пуска (изображения и графика любезно предоставлены Eaton Drives)

Преимущества выбора устройства плавного пуска Устройства плавного пуска

часто являются более экономичным выбором для приложений, требующих управления скоростью и крутящим моментом только во время запуска двигателя. Кроме того, они часто являются идеальным решением для приложений, требующих свободного места, поскольку обычно занимают меньше места, чем преобразователи частоты.

Поскольку в устройствах плавного пуска при нормальной работе используются тиристоры, выделяется меньше тепла. Это значительно повысит надежность всей системы и сохранит функциональность.

Кроме того, устройства плавного пуска могут иметь преимущество алгоритма насоса, чтобы помочь устранить эффект гидравлического удара за счет использования S-образной кривой для запуска и остановки насоса. Это может продлить срок службы насосной системы.

Приводы с регулируемой частотой

AFD — это устройство управления двигателем, которое защищает и регулирует скорость асинхронного двигателя переменного тока.Преобразователь частоты может управлять скоростью двигателя во время цикла пуска и останова, а также в течение всего рабочего цикла.

Преобразователи частоты

используются в приложениях, в том числе в тех, которые требуют полного контроля скорости, имеют цель экономии энергии или требуют индивидуального управления.

Как работают преобразователи частоты? Преобразователи частоты

преобразуют входную мощность в источник регулируемой частоты и напряжения для управления скоростью асинхронных двигателей переменного тока. Частота мощности, подаваемой на двигатель переменного тока, определяет скорость двигателя на основе следующего уравнения:
N = 120 x f x p
N = скорость (об / мин)
f = частота (Гц)
p = количество полюсов двигателя

Например, четырехполюсный двигатель работает на частоте 60 Гц (Гц).Эти значения можно вставить в формулу для расчета скорости:
N = 120 x 60 x 4
N = 1800 (об / мин)

Рисунок 2. Функция преобразователя частоты.

На рисунке 2 показаны компоненты функции преобразователя частоты.

  • Источник переменного тока: поступает от электросети объекта (обычно 480 В, 60 Гц переменного тока)
  • Выпрямитель: преобразует сетевое питание переменного тока в постоянное.
  • Фильтр и шина постоянного тока: работают вместе, чтобы сгладить выпрямленное напряжение постоянного тока и обеспечить чистое питание постоянного тока с низким уровнем пульсаций на инвертор.
  • Инвертор: использует питание постоянного тока от шины постоянного тока и фильтр для инвертирования выходного сигнала, который напоминает мощность синусоидального переменного тока с использованием метода широтно-импульсной модуляции (ШИМ)
  • Широтно-импульсная модуляция: переключает полупроводники инвертора с различной шириной и временами, которые при усреднении создают синусоидальную форму волны, как показано на рисунке 3.
Рисунок 3.Форма волны ШИМ

Преимущества использования преобразователя частоты

Преимущества, обеспечиваемые преобразователями частоты в соответствующих системах, многочисленны:

  • Экономия энергии
  • Снижение пикового потребления энергии
  • Пониженная мощность, когда не требуется
  • Полностью регулируемая скорость (насосы, конвейеры и вентиляторы)
  • Управляемый пуск, остановка и ускорение
  • Динамическое управление крутящим моментом
  • Обеспечивает плавное движение для таких приложений, как лифты и эскалаторы
  • Поддерживает скорость оборудования, что делает приводы идеальными для использования в качестве смесителей, измельчителей и дробилок
  • Обладает универсальностью
  • Обеспечивает самодиагностику и связь
  • Включает в себя функции ПЛК и программное обеспечение
  • Цифровые входы / выходы (DI / DO)
  • Аналоговые входы / выходы (AI / AO)

Экономия энергии Преобразователи частоты

обеспечивают максимальную экономию энергии для вентиляторов и насосов. Метод регулируемого потока изменяет кривую потока и резко снижает требования к мощности.

Центробежное оборудование, такое как вентиляторы, насосы и компрессоры, подчиняется общему набору законов сродства скорости. Законы сродства определяют взаимосвязь между скоростью и набором переменных, включая расход, давление и мощность.

Согласно законам сродства, поток изменяется линейно со скоростью, а давление пропорционально квадрату скорости. Требуемая мощность пропорциональна кубу скорости.Последнее наиболее важно, потому что, если скорость двигателя падает, мощность падает на куб.

В этом примере двигатель работает на 80% номинальной скорости. Это значение можно вставить в формулу закона сродства для расчета мощности на этой новой скорости:
Следовательно, мощность, необходимая для работы вентилятора на скорости 80 процентов, составляет половину номинальной мощности.

Выбор устройств плавного пуска

Выбор устройства плавного пуска или преобразователя частоты часто зависит от вашего приложения. Устройства плавного пуска меньше и дешевле по сравнению с преобразователями частоты в приложениях с большей мощностью. Более крупные преобразователи частоты занимают больше места и обычно дороже устройств плавного пуска.

Хотя преобразователь частоты обычно дороже, он может обеспечить экономию энергии до 50 процентов и большую экономию затрат в течение срока службы оборудования.

Управление скоростью — еще одно преимущество, поскольку оно обеспечивает постоянное время разгона на протяжении всего рабочего цикла двигателя, а не только во время запуска.УЗИ также могут обеспечивать более надежную функциональность, чем предлагают устройства плавного пуска, включая цифровую диагностическую информацию.

Важно отметить, что преобразователь частоты изначально может стоить в два-три раза дороже, чем устройство плавного пуска. Следовательно, если постоянное ускорение и управление крутящим моментом не требуется и ваше приложение требует ограничения тока только во время запуска, устройство плавного пуска может быть лучшим решением с точки зрения затрат.

MAKITA — GA9040S Угловая шлифовальная машина 230 мм (9 дюймов) 2600 Вт, плавный пуск, большой пусковой переключатель

MAKITA — GA9040S Угловая шлифовальная машина 230 мм (9 дюймов) 2600 Вт, плавный пуск, большой пусковой переключатель

  • Мягкий пуск подавляет реакцию на запуск

  • Мощный двигатель 2600 Вт обеспечивает 6000 об / мин для более быстрого удаления материала

  • Спиральные конические шестерни для более плавного вращения и более эффективной передачи энергии

  • Конструкция лабиринта предотвращает попадание мусора в двигатель, подшипники и шестерни, увеличивая срок службы инструмента

  • Зигзагообразный лак защищает катушку якоря от пыли и мусор для увеличения срока службы двигателя

  • Поворотная задняя ручка для повышенного комфорта в различных положениях

  • Боковая ручка с трехпозиционным поглощением вибрации для повышенного комфорта

  • Большая резиновая подставка для инструмента для защиты инструмента и поверхностей от повреждений

  • Защитный кожух колеса «без инструментов» для большего удобства удобная регулировка

  • Кнопка блокировки шпинделя для удобства оператора

  • Крышка колеса защищает оператора от случайного разбрасывания сломанного колеса или заготовки при минимальном движении крышки колеса

  • Щетки с внешним доступом для удобства обслуживания

  • Электронный контроллер обеспечивает плавный пуск, который подавляет реакцию на запуск для плавного пуска и увеличения срока службы редуктора

  • Может быть подключен к системе пылеудаления с дополнительным кожухом пылеуловителя

  • Двойная изоляция

Стандартные аксессуары

  • Ключ для стопорной гайки, боковая рукоятка, крышка колеса (Инструмент не поставляется с вдавленным центральным колесом. )
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Постоянная мощность Потребляемая мощность 2,600 Вт
Диаметр колеса 230 мм (9 дюймов)
Скорость холостого хода (об / мин) 6,600 Уровень шума 101 дБ (A)
Уровень звукового давления 90 дБ (A)
Уровень вибрации Шлифование поверхности: 5,5 м / с² Шлифование диска: 2,5 м / с² или меньше
Размеры (Д x Ш x В) 503x250x140 мм (19-3 / 4 «x9-7 / 8» x5-1 / 2 «)
Вес нетто 6.7 кг (14,8 фунта)

ArminJo / SoftStart: Генерирует управляющий импульс TRIAC для плавного пуска двигателей, используемых в дисковых пилах и других инструментах для самостоятельного изготовления.

Генерирует управляющий импульс TRIAC для плавного пуска двигателей, используемых в дисковых пилах, угловых шлифовальных машинах и других инструментах для дома.

Реализовано и протестировано для AVR-ATtiny85 @ 1MHz



Файлы орла здесь.

  • Вместо 330 Ом на PB0 вы можете использовать серию 120 Ом с 220 Ом с 10 нФ параллельно.
  • Цепь измерения тока требуется только для подключения в режиме адаптера плавного пуска ( LOAD_ON_OFF_DETECTION, включен) для обнаружения отключения питания. В этом случае ток ограничен до 2 А (~ 450 Вт) при использовании диодов 1N4004. Для большей мощности вы можете использовать 1N5004 вместо этого и / или использовать 2 диода параллельно.
  • Дождитесь 8 пересечений нуля прерывания по пересечению нуля для синхронизации времени и проверьте правильность частоты (50 или 60 Гц).
  • Выходной импульс TRIAC и уменьшение задержки импульса с START_PHASE_SHIFT_DEGREES до 0 градусов при каждом пересечении нуля напряжения.Величина уменьшения определяется подстроечным резистором , то есть напряжением на контакте 2.
  • После того, как задержка станет равной нулю, вывести импульсный импульс TRIAC при пересечении нуля линии переменного тока. Мультиимпульс (3 * 250 микросекунд) покроет небольшие задержки перехода тока через ноль.

Режим калибровки вводится, когда значение АЦП от подстроечного резистора меньше, чем 4 .
Этот режим выводит значение счетчика таймера навсегда (при 115200 бод (@ 1 МГц) на выводе 6 / PB1) для регулировки подстроечного резистора 50% рабочего цикла .Оба значения должны быть одинаковыми. Формат вывода: | \ n
Для безопасного считывания этого значения необходимо использовать изолирующий трансформатор.
Я еще не тестировал его, но при использовании двух резисторов по 1 МОм вместо триммера рампы тоже должно работать .

ЗНАЧЕНИЯ ПРЕДОХРАНИТЕЛЯ для встроенной версии , которая требует быстрого запуска , так как плавный запуск должен начинаться при включении питания.

  • Низкий = 0X52 Int RC Osc.8 МГц разделить на 8 (по умолчанию). 14 Clk + 4 мс запуск (для быстрого запуска).
  • Высокий = 0XDC BrowOut при VCC = 4,3 В
  • Расширенный = 0XFF (по умолчанию)

ЗНАЧЕНИЯ ПРЕДОХРАНИТЕЛЯ для подключите адаптер плавного пуска , то есть LOAD_ON_OFF_DETECTION определен, что означает, что питание процессора всегда включено. Вы можете использовать значения по умолчанию или включить дополнительное обнаружение пониженного энергопотребления, например. при 4,3 вольт.

  • Младший = 0X62 (по умолчанию) Int RC Osc. 8 МГц разделить на 8. 14 Clk + запуск 64 мс.
  • Высокий = 0XDC BrowOut при VCC = 4,3 В
  • Расширенный = 0XFF (по умолчанию)

Для настройки программного обеспечения в соответствии с различными требованиями доступны некоторые параметры / макросы компиляции.
Измените его, закомментировав их или добавив, или изменив значения, если применимо. Или определите макрос с параметром компилятора -D для глобальной компиляции (последнее невозможно с Arduino IDE, поэтому рассмотрите возможность использования Sloeber.

Опция По умолчанию Файл Описание
LOAD_ON_OFF_DETECTION включен SoftStart.cpp Если включено, программа не запускается с линейным ускорением во время загрузки, а ожидает прерывания на LoadDetectionInput (вывод 6). Это полезно, если вы хотите встроить адаптер плавного пуска. Он начинает работать только при включении подключенного устройства, например обнаружена нагрузка.
START_PHASE_SHIFT_DEGREES 160 TRIACRamp.h Начальная задержка триггерного импульса TRIAC. Значения от 0 до 180 градусов, но крайности не имеют смысла.
TRIAC_PULSE_WIDTH_MICROS 250 TRIACRamp. h Длина триггерного импульса — 100 мкс для моей схемы слишком мало.
TRIAC_PULSE_NUMBERS 250 TRIACRamp.h Количество нескольких запускающих импульсов, если задержка меньше, чем общее время нескольких импульсов. Это позволяет избежать мерцания при малых нагрузках.
TRIAC_PULSE_BREAK_MICROS 400 TRIACRamp.h Длительность перерыва между (множественными) импульсами запуска.

Изменение параметров компиляции с помощью Arduino IDE

Сначала используйте Sketch> Show Sketch Folder (Ctrl + K) .
Если вы еще не сохранили пример как свой собственный набросок, то вы сразу попадаете в нужную папку библиотеки.
В противном случае вам нужно перейти в папку параллельных библиотек и выбрать библиотеку, к которой вы хотите получить доступ.
В обоих случаях файлы библиотеки находятся в каталоге src .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *