Полевой транзистор как проверить: Как проверить полевой транзистор — Diodnik

Содержание

Как проверить полевой транзистор на исправность

Для проверки полевого транзистора понадобятся мультиметр и источник питания 9-12 вольт. Проверяться будет полевой транзистор n-типа IRF740. Расположение выводов и иные параметры на IRF740 можно посмотреть в datasheet.

Для проверки транзисторов черный щуп подключается к гнезду “COM” мультиметра, красный – к гнезду “V/ Ω”. Мультиметр включается в режим проверки полупроводников.

Пинцетом или перемычкой замкните кратковременно исток и затвор транзистора. Потенциалы затвора и истока уравняются, транзистор будет гарантированно закрыт.

Присоедините красный щуп мультиметра к истоку, черный к стоку. Если транзистор исправен, мультиметр покажет падение напряжения на паразитном диоде (этот диод образуется при изготовлении транзистора).

Присоедините красный щуп мультиметра к стоку, черный к истоку. Если транзистор исправен, мультиметр покажет отсутствие замыкания и утечки.

Соедините минус источника питания (9-12 вольт) с истоком транзистора, на секунду присоедините плюс источника питания к затвору транзистора, при этом исправный транзистор откроется.

Далее присоедините красный щуп мультиметра к истоку, черный к стоку. Если транзистор исправен, мультиметр покажет короткое замыкание.

Присоедините красный щуп мультиметра к стоку, черный к истоку. Если транзистор исправен, мультиметр покажет короткое замыкание.

Для проверки полевых транзисторов n-типа можно собрать несложную схему. При нажатии кнопки лампочка загорается, при отпускании тухнет.

В этом видео показано как проверить полевой транзистор мультиметром:

Для проверки исправности полевого транзистора можно воспользоваться любым цифровым мультиметром с функцией «прозвонки» диодов. Данная функция работает таким образом, что позволяет измерить прямое падение напряжения на p-n-переходе, которое и будет отображено на дисплее мультиметра в ходе тестирования.

В процессе данной проверки мультиметр способен пропустить через проверяемую цепь ток в пределах нескольких миллиампер, и если падение напряжения окажется при этом слишком малым, то в случае наличия у прибора функции звукового оповещения, он запищит. А поскольку в любом полевом транзисторе присутствуют p-n-переходы, то можно рассчитывать на вполне адекватный результат.

Прежде чем проверять полевой транзистор на исправность, замкните на секунду фольгой все его выводы чтобы снять статический заряд, чтобы разрядить все его переходные емкости, включая емкость затвор-исток.

Проверка встроенного обратного диода

Практически в любом современном полевом транзисторе, за исключением специальных их типов, параллельно цепи сток-исток включен внутренний «защитный» диод.

Наличие этого диода внутри полевика обусловлено особенностями технологии производства мощных транзисторов. Иногда он мешает, считается паразитным, однако в большинстве полевых транзисторов без него, как части цельной структуры электронного компонента, не обойтись. Следовательно, в исправном полевом транзисторе данный диод тоже должен быть исправным. В n-канальном полевом транзисторе данный диод включен катодом к стоку, анодом — к истоку, а в p-канальном — анодом к стоку, катодом — к истоку.

Включите мультиметр в режим «прозвонки» диодов. Если полевой транзистор является n-канальным, то красный щуп мультиметра приложите к его истоку (source), а черный — к стоку (drain).

Обычно сток находится посередине и соединен с проводящей подложкой транзистора, а истоком является правый вывод (уточните это в datasheet). В случае если внутренний диод исправен, на дисплее мультиметра отобразится прямое падение напряжения на нем – в районе 0,4-0,7 вольт. Если теперь положение щупов изменить на противоположное, то прибор покажет бесконечность. Если все так, значит внутренний диод исправен.

Проверка цепи сток-исток

Полевой транзистор управляется электрическим полем затвора. И если емкость затвор-исток зарядить, то проводимость в направлении сток-исток увеличится.

Итак, если транзистор является n-канальным, приложите черный щуп к затвору (gate), а красный — к истоку, и через секунду измените расположение щупов на противоположное — красный к затвору, а черный — к истоку. Так мы сначала наверняка разрядили затвор, а после — зарядили его. Затвор обычно слева, а исток — справа (см. datasheet).

Теперь красный щуп переместите с затвора — на сток, а черный пусть останется на истоке. Если транзистор исправен, то как только вы переместите красный щуп с затвора на сток, мультиметр покажет что на стоке есть падение напряжения (не бесконечное, но может увеличиваться) — это значит, что транзистор перешел в проводящее состояние.

Теперь красный щуп на исток, а черный — на затвор (разряжаем затвор противоположной полярностью), после чего снова красный щуп на сток, а черный — на исток. Прибор должен показать бесконечность — транзистор закрылся. Для p-канального полевого транзистора щупы просто меняются местами.

Если прибор запищит

Если на этапе проверки сток-исток прибор запищит, это может быть вполне нормальным, ведь у современных полевых транзисторов сопротивление сток-исток в открытом состоянии бывает очень маленьким. Главное — чтобы не было звона затвор-исток и сток-исток, особенно в тот момент когда затвор заряжен противоположной полярностью. Как вариант, можно соединить затвор с истоком и в таком положении прозвонить сток-исток (для n-канального красный на сток, черный — на исток), прибор должен показать бесконечность.

Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.

С чего начать?

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

  1. Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
  2. Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
  3. Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
  4. Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
  5. Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.

Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A – 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Как проверить однопереходной транзистор

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.

Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Как проверить транзистор мультиметром, не выпаивая их схемы?

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Как проверить полевые транзисторы. Как проверить полевой транзистор с управляющим P-N переходом

Полевые транзисторы — полупроводниковые приборы, в которых управление переходными процессами, а также величиной выходного тока осуществляется изменением величины электрического поля. Существует два вида данных устройств: с (в свою очередь делятся на транзисторы со встроенным каналом и с индукционным каналом) и с управляемым переходом. Полевые транзисторы благодаря своим уникальным характеристикам находят широкое применение в радиоэлектронной аппаратуре: блоках питания, телевизорах, компьютерах и др.

При ремонте такой техники наверняка каждый начинающий радиолюбитель сталкивался с таким вопросом: как проверить полевой транзистор? Чаще всего с проверкой таких элементов можно столкнуться при ремонте импульсных блоков питания. В этой статье мы подробно расскажем, как это правильно сделать.

Как проверить полевой транзистор омметром

В первую очередь, чтобы приступить к проверке полевого транзистора, необходимо разобраться с его «цоколевкой», то есть с расположением выводов. На сегодняшний день существует множество различных исполнений таких элементов, соответственно, расположение электродов у них отличается. Часто можно встретить полупроводниковые транзисторы с подписанными контактами. Для маркировки используют латинские литеры G, D, S. Если же подписи нет, то необходимо воспользоваться справочной литературой.

Итак, разобравшись с маркировкой контактов, рассмотрим, как проверить полевой транзистор. Следующим шагом будет принятие необходимых мер безопасности, потому что полевые приборы очень чувствительны к статическому напряжению, и чтобы предотвратить выход из строя такого элемента, необходимо организовать заземление. Чтобы снять с себя накопленный статический заряд, обычно надевают на запястье антистатический заземляющий браслет.

Не следует также забывать, что хранить полевые транзисторы необходимо с замкнутыми выводами. Сняв статическое напряжение, можно переходить к процедуре проверки. Для этого понадобится простой омметр. У исправного элемента между всеми выводами сопротивление должно стремиться к бесконечности, но при этом существуют некоторые исключения. Сейчас мы рассмотрим, как проверить полевой транзистор n-типа.

Прикладываем положительный щуп прибора к электроду затвора (G), а отрицательный щуп к контакту истока (S). В этот момент начинает заряжаться емкость затвора и элемент открывается. При измерении сопротивления между истоком и стоком (D) омметр покажет некоторую величину сопротивления. В разных типах транзисторов эта величина различна. Если закоротить выводы транзистора, то сопротивление между стоком и истоком снова будет стремиться к бесконечности. Если этого не произошло, значит, транзистор неисправен.

Если вы спросите, как проверить полевой транзистор P-типа, то ответ прост: повторяем вышеописанную процедуру, только меняем полярность. Не следует также забывать, что современные мощные полевые транзисторы между истоком и стоком имеют встроенный диод, соответственно «прозванивается» он только в одну сторону.

Проверка полевого транзистора мультиметром

При наличии прибора «мультиметра», можно проверить полевой транзистор. Для этого выставляем в режим «прозвонки» диодов и вводим полевой элемент в режим насыщения. Если транзистор N-типа, то минусовым щупом касаемся стока, а плюсовым — затвора. Исправный транзистор в таком случае открывается. Переносим плюсовой щуп, не отрывая минусового, на исток, и мультиметр показывает какое-то значение сопротивления. После этого запираем транзистор: не отрывая щупа от истока, минусовым касаемся затвора и возвращаем на сток. Транзистор заперт, и сопротивление стремится к бесконечности.


Многие радиолюбители спрашивают: «Как проверить полевой транзистор, не выпаивая?» Сразу ответим, что стопроцентного способа не существует. Для этого используют мультиметр с колодкой HFE, но этот метод часто дает сбой, и можно потратить много времени впустую.

Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).


Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.


Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

  1. Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
  2. Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
  3. Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
  4. Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
  5. Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.


Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.


Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.


Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A – 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Как проверить однопереходной транзистор

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.


Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Как проверить транзистор мультиметром, не выпаивая их схемы?

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Такие полупроводниковые элементы, как транзисторы, являются неотъемлемой частью практически всех электронных схем — от радиоприемников до системных плат сверхсложных вычислительных центров. Проверка этого элемента на работоспособность — операция, которую обязан уметь выполнять любой человек, так или иначе занимающийся ремонтом электронных плат, будь он профессиональный ремонтник или любитель.

Для осуществления этой операции можно применять специальный тестер транзисторов, но если его нет под рукой, или в его надежности есть сомнения, можно воспользоваться самым обыкновенным мультиметром. Даже те модели, которые не имеют специального гнезда для проверки биполярных или полевых транзисторов, могут быть использованы для точной проверки. Для этого мультиметр выставляется в режим максимального сопротивления, либо «прозвонки», если таковой есть.

Общий алгоритм проверки

Как проверить транзистор мультиметром? В общем и целом алгоритм выглядит так:

Дальнейшие действия по проверке будут зависеть от того, какого типа элемент требуется проверить. В основном в электронике применяются полупроводниковые элементы двух видов — биполярный и полевой.

Биполярный

Как проверить биполярный транзистор мультиметром? В первую очередь нужно выяснить, к какому из двух подтипов — npn или pnp он относится. Для этого вспомним, что же вообще такое биполярный транзистор.

Это полупроводниковый элемент, в котором реализован так называемый npn или pnp переход. N-p-n — это переход «электрон — дырка — электрон», p-n-p, соответственно, наоборот, «дырка — электрон — дырка». Конструктивно он состоит из трех частей — эмиттера, коллектора и базы. Фактически биполярник — это два сопряженных обыкновенных диода, у которых база является общей точкой соединения.

На схеме pnp транзистор отличается от своего npn-собрата направлением стрелки в круге — стрелки эмиттерного перехода. У схемы p-n-p она направлена к базе, у n-p-n — наоборот.

Эту разницу нужно знать для проверки биполярного транзистора. Pnp-схема открывается приложением к базе отрицательного напряжения, npn — положительного. Но перед этим необходимо выяснить, какой из контактов проверяемого транзистора является базой, какой эмиттером, а какой коллектором.

Обратите внимание, что определить описанным ниже способом, какой из контактов — база, а какие — эмиттер и коллектор, можно только у исправного элемента. Сам по себе факт прохождения транзистором этой проверки говорит о том, что он, скорее всего, исправен.

Инструкция здесь может быть следующая:

  1. красный (плюсовой) щуп подключается к первому попавшемуся выводу, например левому, черным (минусовым) поочередно касаются центрального и правого. Фиксируют значение «1» на центральном, и 816 Ом, например, на правом;
  2. красный щуп мультиметра закорачивают с центральным контактом, черный — поочередно с боковыми. Прибор выдает «1» на левом и какое-либо значение, допустим, 807 — на правом;
  3. при контакте красного щупа мультиметра с правым выводом, а черного — с левым и центральным получаем в обоих случаях «1». Это означает, что база определена — это и есть правый контакт транзистора. А сам транзистор — pnp-типа.

В принципе, этого достаточно, чтобы сказать, что транзистор исправен. Теперь, чтобы проверить его структуру и конкретное расположение эмиттера и коллектора, закорачиваем черный (минусовой) щуп мультиметра с базой, а красный — по очереди с левым и центральным контактом.


Тот контакт, что дает меньшую величину сопротивления, будет коллекторным (в нашем случае 807 Ом). Тот, что большую — 816 Ом — является эмиттерным.

Проверка транзистора npn типа происходит так же, только к базе прикладывается плюсовой контакт.

Это способ проверки p-n переходов между базой и коллектором и базой и эмиттером. Показания мультиметра могут быть разными, в зависимости от типа транзистора, но всегда будут лежать в пределах 500-1200 Ом. Для завершения испытания коснитесь щупами эмиттера и коллектора. Исправный элемент при этом будет выдавать бесконечно большое сопротивление вне зависимости от своего типа, как бы вы ни меняли полярность. Если значение на экране отличается от «1» — один из переходов пробит, деталь непригодна к работе.

Проверка без выпаивания

Если у вас нет уверенности, что проверять нужно именно этот транзистор, измерить его параметры можно и на плате, не выпаивая. Но при этом мультиметр должен показывать значения в пределах 500-1200 Ом. Если они измеряются единицами или даже десятками Ом — схема зашунтирована низкоомными резисторами. Для точной проверки транзистор придется выпаять.

Полевой

Полевой, он же — mosfet транзистор отличается от биполярного тем, что в нем может протекать либо только положительный заряд, либо только отрицательный («дырка» или электрон). Его контакты имеют иное значение — затвор, сток, исток.


Как проверить полевой транзистор мультиметром? Методика проверки почти та же, что и в предыдущем случае, но предварительно, во избежание выхода элемента из строя, необходимо снять с себя заряд статического электричества, так как полевик очень чувствителен к статике. Используйте антистатический браслет либо просто коснитесь рукой заземленного металлического элемента, например корпуса приборного шкафа.

Полевики всегда имеют небольшую проводимость между стоком и истоком, которая выявляется на экране мультиметра как сопротивление порядка 400-700 Ом. Если поменять полярность, сопротивление незначительно изменится, возрастет или упадет на 40-60 Ом. Перед этим необходимо закоротить исток и сток между собой, чтобы «обнулить» емкости переходов.

Если при проверке с помощью мультиметра между истоком и стоком обнаруживается бесконечно большое сопротивление, полевой транзистор неисправен.
Между истоком и затвором либо стоком и затвором также будет обнаруживаться проводимость, но только в одну сторону. Плюс, приложенный к затвору, а минус — к истоку, вызовет открытие перехода и, соответственно, значение на экране в границах 400-700 Ом. Обратная схема — плюс к истоку, минус к затвору — у исправного полевика даст «1», то есть. очень большое сопротивление.

Проверка линии сток-затвор проходит аналогично. Если же линия исток-затвор или сток-затвор имеет проводимость в обе стороны, это значит, что полевой транзистор пробит.

В заключение надо сказать несколько слов о составном типе. Составной транзистор — это элемент, соединяющий в себе два обычных биполярных транзистора (иногда три и более). Проверка мультиметром производится аналогично методологии для простого «биполярника».

Инструкция

Проверить полевой транзистор, когда он впаян в электронную схему не получится, поэтому перед проверкой выпаяйте его. Осмотрите корпус. Если на корпусе есть дырка от расплавления кристалла, то проверять транзистор нет смысла. Если же корпус целый, то можно приступать к проверке.

Подавляющее большинство мощных полевых транзисторов имеют структуру MOS-FET и n-канал с изолированным затвором. Реже встречаются с p-каналом, в основном в оконечных каскадах звуковых усилителей. Разные структуры полевых транзисторов требуют разных способов их проверки.

Выпаяв транзистор, дайте ему остыть.

Положите транзистор на сухой лист бумаги. Вставьте провода омметра красный в плюсовой разъем, а черный в минусовой. Установите предел измерений на 1кОм. Сопротивление канала открытого транзистора зависит от приложенного напряжения к затвору относительно истока, поэтому в процессе работы с транзистором, вы можете установить более удобный для вас предел измерения. Подключение электродов внутри корпуса показано на фото.

Коснитесь черным щупом электрода «исток» транзистора, а красным прикоснитесь к электроду «сток». Если прибор покажет короткое замыкание, уберите щупы и соедините все три электрода плоской отверткой. Цель – разрядить емкостный переход затвора, возможно, он был заряжен. После этого повторите измерение сопротивления канала. Если прибор по-прежнему показывает короткое замыкание, значит, транзистор неисправен и подлежит замене.

Если прибор показал сопротивление близкое к бесконечности, то проверьте переход затвора. Она проверяется аналогично переходу канала. Коснитесь любым щупом электрода «исток» транзистора, а другим прикоснитесь к электроду «затвор». Сопротивление должно быть бесконечно большим. Изолированный затвор электрически не связан с каналом транзистора и любое обнаруженное сопротивление в этой цепи говорит о неисправности транзистора.

Методика проверки полностью исправного транзистора выглядит так: Прикоснитесь черным щупом омметра к электроду «исток» транзистора, коснитесь красным щупом электрода «затвор». Сопротивление должно быть бесконечно большим, затем, не замыкая «затвор» на другие электроды, коснитесь красным щупом электрода «сток». Прибор покажет маленькое сопротивление на этом участке. Величина этого сопротивления зависит от напряжения между щупами омметра. Теперь коснитесь красным щупом электрода «исток», повторите вышеописанную процедуру. Сопротивление канала будет очень большое, близкое к бесконечности. Способ проверки MOS-FET транзистора с p-каналом отличается тем, что при измерениях надо поменять между собой красный и черный щупы омметра.

Отказ системы, в которой используется одновременно множество электромагнитных реле , может быть вызван неисправностью всего одного из них. Не допустить такой ситуации можно лишь путем их регулярной проверки.

Инструкция

Независимо от способа проверки реле , на время его испытания обязательно подключите параллельно его обмотке диод типа 1N4007 в обратной полярности. Такой же диод желательно установить и в схему, где оно работает постоянно, если только по алгоритму ее работы на обмотку не подается по очереди напряжение различной полярности. Извлечение реле и установку его в устройство производите тогда, когда последнее обесточено.

Если необходимо провести проверку реле в статическом режиме, просто подавайте на его обмотку напряжение, равное минимальному напряжению срабатывания. Когда оно подано, должны гарантированно размыкаться все нормально замкнутые контакты и замыкаться все нормально разомкнутые. При снятия напряжения с обмотки ситуация должны меняться на противоположную в отношении всех контактных групп. Для проверки состояния контактов используйте обычный омметр или даже пробник с батарейкой и лампочкой.

Проверку реле в динамическом режиме осуществляйте при помощи обычного мультивибратора на двух транзисторах. Подключите его в качестве нагрузки одного из транзисторов. Меняя номиналы частотозадающих элементов, сделайте частоту срабатывания реле близкой к предельной для него (она указана в документации). Чтобы проверить ту или иную контактную группу, подайте на нее напряжение через лампочку или мощный резистор таким образом, чтобы ток через нее не превышал предельный. Параллельно группе подключите осциллограф. Убедитесь по изображению на его экране, что в срабатывании контактов отсутствуют перебои. Проверьте таким образом поочередно все группы. Не держите реле в таком режиме слишком долго, поскольку при быстром срабатывании оно изнашивается.

В случае выявления неисправности реле дальнейшие действия осуществляйте в зависимости от его типа. Если оно допускает регулировку контактов, осуществите таковую, если же нет, замените реле целиком. В случае, если неправильно функционирует только одна контактная группа, просто задействуйте вместо нее другую либо переставьте реле в такой узел, где она не задействована.

Видео по теме

Некоторые модели тестеров оснащены встроенными измерителями коэффициента усиления маломощных транзисторов . Если же вы таким прибором не обладаете, то исправность транзисторов можно проверить обычным тестером в режиме омметра, либо же при помощи цифрового тестера в режиме проверки диодов.

Инструкция

Для проверки биполярных транзисторов присоедините один щуп мультиметра подключите к базе транзистора, второй щуп подносите поочередно к эмиттеру и коллектору, потом поменяйте щупы местами повторите те же действия. Обратите внимание, что внутри электродов многих цифровых либо же мощных транзисторов могут располагаться защитные диоды между коллектором и эмиттером и встроенные резисторы между базой и эмиттером или в цепи базы, если вы этого не знаете, то по ошибке можете посчитать этот элемент неисправным.

При проверке полевых транзисторов учитывайте тот факт, что они бывают самых разнообразных видов. К примеру, проверка транзисторов , имеющих затвор на основе запорного слоя p-n-перехода, осуществляется так. Возьмите обычный стрелочный омметр или цифровой (второй более удобный).

Измерьте сопротивление между стоком и истоком, оно должно иметь небольшую величину и быть приблизительно равным в обоих направлениях. Теперь измерьте прямое и обратное сопротивление перехода, для этого подключите щупы к затвору и стоку (либо истоку). Если транзистор исправен, сопротивление будет разным в обоих направлениях.

Когда проверяете сопротивление между стоком и истоком, снимите заряд с затвора, для этого в течение пар секунд замкните его с истоком, если этого не сделать – вы получите неповторяющийся результат. Большинство маломощных полевых транзисторов крайне чувствительно к статике. Потому перед тем, как взять транзистор в руки, убедитесь, что на вашем теле не осталось зарядов. Чтобы освободиться от них, коснитесь рукой любого заземленного прибора (подойдет батарея отопления). Мощные полевые транзисторы чаще всего оснащены защитой от статики, но даже несмотря на это защита при работе с ними также не повредит.

Красивое и романтичное название полевого цветка иван-да-марья связано с древними славянскими легендами о запретной и нерушимой любви. Этот цветок собирали в числе прочих в купальскую ночь и использовали для различных обрядов.

Какой полевой цветок называют Иван-да-Марья

На самом деле этим именем называют несколько совершенно различных растений, относящихся к разным семействам. Поэтому довольно сложно сказать точно, какой именно цветок звали так наши предки. Во всяком случае, известно, что это название носит двухцветный цветок, обычно желтый с фиолетовым.

Чаще всего иваном-да-марьей называют растение, известное в ботанике как марьянник дубравный – однолетнее дикорастущее растение, отличающееся ярко-желтыми цветками с фиолетовыми прицветниками. Другие названия этого растения – иванова трава, брат с сестрой.

Иногда иваном-да-марьей зовут также фиалку трехцветную (анютины глазки) или луговой шалфей, реже – барвинок малый.

Легенды об Иване-да-Марье

Наиболее распространенная версия легенды, объясняющей название цветка, связана с именем Ивана Купалы.

Родились когда-то в одной семье близнецы – мальчик и девочка, Купала и Кострома. Когда они были еще маленькими детьми, Купалу унесла в далекие края птица Сирин. Спустя много лет молодой человек плыл по реке на лодке, странствуя в незнакомых землях. Тем часом мимо его лодки проплывал девичий венок. Купала подобрал его, а сойдя на берег, встретил и его хозяйку – красавицу Кострому. Молодые люди всем сердцем полюбили друг друга. Они поженились по славянскому обычаю. И лишь потом, придя в родную деревню, узнали о том, что приходятся друг другу родными братом и сестрой.

Согласно одной из версий легенды, боги покарали Кострому и Купалу за их запретную любовь, обратив их в цветок. По другой версии, несчастные влюбленные сами попросили об этом богов, чтобы никогда не разлучаться.

Еще один вариант предания рассказывает о том, что Кострома, не вынеся позора, пошла топиться в реке и превратилась в русалку, мару.

Самая жестокая легенда повествует о сестре, которая попыталась соблазнить своего брата, за что и была им убита. Перед смертью же она попросила посадить этот цветок на ее могиле.

Более «мягкая» история – о брате и сестре, которые жили на берегу реки. Однажды сестру заманили русалки и превратили в мару, жену водяного. Тогда ее брат собрал полынь-траву и с ее помощью одолел водяного.

Символика растения

Иван-да-марья – один из главных символов праздника Ивана Купалы, знак нерушимой любви.

Кроме того, считается, что желтый цвет символизирует огонь, а фиолетовый – воду (росу). Таким образом, иван-да-марья – символ единения противоположностей, знак огня и воды.

Видео по теме

Источники:

  • как проверить полевые транзисторы
Содержание:

В радиоэлектронике и электротехнике транзисторы относятся к одним из основных элементов, без которых не будет работать ни одна схема. Среди них, наиболее широкое распространение получили полевые транзисторы, управляемые электрическим полем. Само электрическое поле возникает под действием напряжения, следовательно, каждый полевой транзистор является полупроводниковым прибором, управляемым напряжением. Наиболее часто применяются элементы с изолированным затвором. В процессе эксплуатации радиоэлектронных устройств и оборудования довольно часто возникает необходимость проверить полевой транзистор мультиметром, не нарушая общей схемы и не выпаивая его. Кроме того, на результаты проверки оказывает влияние модификация этих устройств, которые технологически разделяются на п- или р-канальные.

Устройство и принцип действия полевых транзисторов

Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.

К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод — затвор выполняет функцию регулировки поперечного сечения канала.

Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.

Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.


Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка — полупроводниковая пластина, имеющая относительно высокое . В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод — исток и сток. Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.

Проверка мультиметром

Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.


Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток — Drain, исток — Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.

Проверку можно выполнить с помощью , но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.


Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки — стоку D, а положительным красным щупом — вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.

Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.

Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.

Как проверить МДП полевой транзистор с помощью мультиметра

Проверяем на работоспособность полевой транзистор структуры металл-диэлектрик-полупроводник (МДП, МОП, MOSFET, GIFET, MISFET).

Необходимое оборудование: мультиметр, цифровой или аналоговый, с возможностью проверки диодов.

N-канальный МДП полевой транзистор с индуцированным переходом:

  • Gate = Затвор
  • Drain = Сток
  • Source = Исток

P-канальный МДП полевой транзистор с индуцированным переходом:

  • Затвор = Gate
  • Исток = Source
  • Сток = Drain

 

 

Внимание: проверка полевых транзисторов с p-n переходом (J-FET, JFET, JUGFET)  будет  описана в другой статье.

Наиболее распространённая цоколёвка МДП транзисторов:

Описываемая здесь последовательность действий лучше всего подходит для проверки МДП транзисторов средней и большой мощности, или — всех, что предназначены для крепления на радиатор.

 

Ограничения

  • При работе с малосигнальными МДП транзисторами требуется быть предельно осторожным относительно статического электричества, чтобы не поубивать их во время такой проверки.
  • МДП транзисторы, работающие в режиме обеднения (со встроенным каналом), надо проверять несколько иначе. Полезность данной статьи сей факт никак не уменьшает, и вот почему: вероятность того, что у вас окажется такой девайс, стремится к бесконечно малой величине. Если же вы справились-таки раздобыть Depletion Mode MOSFET — вам эта статья уж и подавно не нужна 😉
  • В случае, если вам повезло стать обладателем раритетного МДП устройства без структурного диода, то, соответственно, описанная ниже проверка структурного диода смысла не имеет.
  • Возможно, напряжения на щупах мультиметра не хватит для надёжного открытия транзистора. Тогда можно взять 9-вольтовую батарейку «крона» с последовательно включенным резистором не менее 1КОм и использовать этот источник для заряда затвора.

Проверяем

1) Затвор должен быть изолирован от других выводов
  • а) Подключаем чёрный «-» щуп мультиметра к выводу стока (фланец) или выводу истока, красным «+» щупом касаемся вывода затвора: прибор показывает разрыв цепи. Отсоединяем щупы в обратном порядке: сначала от затвора, потом от истока или стока. Следим, чтобы больше ничего не дотрагивалось до вывода затвора.
  • б) Подсоединяем красный щуп мультиметра к выводу стока или истока, чёрный — к затвору: прибор показывает разрыв цепи. Отсоединяем щуп сначала от затвора.

Разряжаем ёмкость затвора: берём транзистор за фланец крепления радиатора (вывод стока), если такового нет, то сначала дотрагиваемся до вывода стока или истока, потом нежно обнимаем все три ножки 🙂

 

2) Проверяем структурный диод.

Для этого проверяем на исправность диод, что между стоком и истоком, так же, как мы бы прозванивали обычный кремниевый диод.

  • а) В прямом включении падение как на обычном кремниевом диоде: мультиметр должен показать падение напряжения в диапазоне приблизительно от 0.4 до 0.7 Вольт.
  • б) В обратном включении — диод заперт.

3) Заряжаем ёмкость затвора — канал открыт.

Для n-канальных МДП транзисторов (а таковых подавляющее большинство):

  • n-а) Подключаем чёрный щуп мультиметра к выводу истока, красным щупом касаемся вывода затвора.

В случае p-канального МДП транзистора полярность соответственно меняем на обратную.

  • p-а)  Подключаем красный щуп мультиметра к выводу истока, чёрным щупом касаемся вывода затвора.
  • б) Замеряем падение на (при-)открытом канале.

Для этого щуп, только что коснувшийся затвора, переносим на сток. Прибор должен показать небольшое падение напряжения, или даже короткое замыкание, некоторые приборы при этом радостно пищат. Заряд с затвора исправного транзистора стекает исключительно медленно — канал должен оставаться открытым довольно долго.

 

4) Разряжаем затвор.

Для этого можно держась за фланец или вывод истока коснуться затвора. Можно это сделать пальцами, можно проводом, а можно повторить процедуру заряда ёмкости затвора, но приложив обратную полярность напряжения.

  • n) Для n-канальных МДП: Подключаем чёрный щуп мультиметра к выводу истока, красным щупом касаемся вывода стока.
  • p)  Для p-канальных МДП: Подключаем красный щуп мультиметра к выводу истока, чёрным щупом касаемся вывода затвора.

Убеждаемся, что канал закрыт: измеренное сопротивление или падение напряжения должно стремиться к бесконечности (помним о наличии структурного диода).

 

Возможные сюрпризы

Подавляющее большинство неисправностей МДП транзисторов так или иначе связано с пробоем изолятора затвора. Проявляться это может как вполне измеримой утечкой в цепи затвора, так и в постоянно открытым или наоборот закрытым состоянии канала, без малейшего намёка на пробой собственно затвора.

Разрушение кристалла при перегрузках часто сопровождается таким фейерверком, что ничего мерять там уже и не надо.

К сожалению, бывают ещё и скрытые дефекты, деградация качества прибора, вызванные пробоем и никак не проявляющиеся в тестах, описанных в данной статье. Недавно я сам попался на такой дефект при работе с маленькими полевиками (2n7002). Что тут можно посоветовать:

  1. Соблюдаем строжайшую антистатическую дисциплину
  2. Измеряем характеристики транзистора. В моём случае из-за скрытого пробоя лишь увеличилось пороговое напряжение отпирания транзистора.

 

Как позвонить полевой транзистор. Как простым омметром проверить полевой транзистор. Как проверить полевой транзистор мультиметром

Современные электронные мультиметры имеют специализированные коннекторы для проверки различных радиодеталей, включая транзисторы.

Это удобно, однако, проверка не совсем корректная. Радиолюбители со стажем помнят, как проверить транзистор тестером со стрелочной индикацией. Техника проверки на цифровых приборах не изменилась. Для точного определения состояния полупроводникового прибора, каждые его элемент тестируется отдельно.

Этикетки безопасности — весь набор деструктивных меток, способных выделять уничтожение печати стандартным или определенным клиентом текстом. Доступны в широком диапазоне размеров, таких как: толщина — 1 мм, 2 мм, 3 мм и ширина 6 мм, 9 мм, 12 мм, 25 мм. Этикетки с высокой термостойкостью — целый ряд высокотемпературных ярлыков, изготовленных из специальных материалов, используемых для идентификации компонентов в процессе производства. Стандартные и интеллектуальные этикетки — в качестве полного поставщика услуг мы можем предоставить этикетки любой формы, цвета, материала для любой технологии.

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы . Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами.
Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

У нас есть необходимые материалы, и технология, которую мы используем для маркировки этикеток, позволяет нам запускать как можно больше или несколько ярлыков, и, что наиболее важно, как бы сложно это ни было. Это то, что мы делаем лучше всего. Метка часто является частью, которая остается видимой и представляет собой интерфейс между их производителем и клиентом, который в них нуждается. Это кажется банальным, но это ярлык, который продает продукт и через который производитель находится в конечном продукте.

Но это не определяет качество этого ярлыка вообще. Метка должна использоваться практически для той цели, для которой она была изготовлена. Чтобы полностью удовлетворить эти требования, этикетки должны придерживаться различных поверхностей: алюминия, картона, стекла, стали, пластика и многих других. Выбор ярлыка, который вам нужен, очень важен.

Так называемый «прямой» (см. фото)


С обратным переходом, как изображено на фото


Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром — видео.

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

С помощью мультиметра можно определить назначение выводов.

Важно! Это правило работает лишь в случае с исправным транзистором. Впрочем, если деталь неисправна, вам незачем определять названия контактов.

Мультиметр выставляем в режим измерения сопротивления, предел шкалы – 2000 Ом. Выводы прибора – красный плюс, черный минус. Транзистор располагаем любым удобным способом, выводу условно определяем как «левый», «средний», «правый».

Определение базы

Красный щуп на левый контакт , замеряем сопротивление на среднем и правом выводах. В нашем случае это значение «бесконечность» (на индикаторе «1»), и 816 Ом (типичное сопротивление исправного p-n перехода при прямом подключении). Фиксируем результат измерений.

Красный щуп на середину , производим замер левого и правого контактов. С «бесконечностью» все понятно, обращаем внимание на то, что вторая пара показала результат, отличный от первого измерения. Это нормально, эмиттерный и коллекторный переходы имеют разное сопротивление. Об этом позже.

Красный щуп на правый контакт , производим замеры оставшихся комбинаций. В обоих случаях получаем единичку, то есть «бесконечное» сопротивление.

При таком раскладе, база находится на правом выводе. Этих данных недостаточно для пользования деталью. У производителей нет единого стандарта по расположению эмиттера и коллектора, поэтому определяем выводы самостоятельно.

Определение остальных выводов

Черный щуп на «базу», меряем сопротивление переходов. Одна ножка показала 807 Ом (это коллекторный переход), вторая – 816 Ом (эмиттерный переход).

Важно! Эти значения сопротивления не являются константой, в зависимости от производителя и мощности транзистора величина может незначительно отклоняться. Главное правило – сопротивление коллектора относительно базы меньше, чем сопротивление эмиттера.

Точно таким же способом производится проверка исправности биполярного транзистора. В ходе определения контактов, мы заодно проверили исправность детали. Если вам известно расположение выводов – проверяете переходы «база-эмиттер» и «база коллектор», меняя полярность щупов.

При прямом подключении – вы увидите значения, аналогичные предыдущим замерам. При обратном – сопротивление должно быть бесконечным. Если это не так – переходы относительно базы неисправны.
Последняя проверка – переход «эмиттер-коллектор». В обоих направлениях исправная деталь покажет бесконечное сопротивление.


Если в ходе тестирования вы получили именно такие результаты – ваш биполярный транзистор исправен.

Как проверить транзистор мультиметром не выпаивая

Прежде всего, проверьте расположение на монтажной плате остальных радиодеталей, относительно выводов транзистора. Иногда переходы шунтируются резисторами с небольшим сопротивлением.

Если при замерах переходов, сопротивление будет измеряться десятками Ом – транзистор придется выпаивать. Если шунтов нет – см. методику, описанную выше, проверить транзистор на плате не получится.

Как проверить полевой транзистор мультиметром

Полупроводниковые транзисторы – MOSFET (на слэнге радиолюбителей – «мосфеты»), имеют несколько иное расположение p-n переходов. Название выводов также отличается: «сток», «исток», «затвор». Тем не менее, методика проверки прекрасно моделируется диодными аналогиями.


Принципиальное отличие – канал между «истоком» и «стоком» в состоянии покоя имеет небольшую проводимость с фиксированным сопротивлением. Когда «мосфет» получает запирающее напряжение на «затворе», этот переход закрывается. При проверке он принимается открытым (в случае, если транзистор исправен).

Проверить полевой транзистор с помощью тестера можно по такой же методике, что и биполярный. Прибор в положение «измерение сопротивления» с пределом 2000 Ом.

Сопротивление по линии «исток» «сток» проверяется в обе стороны. Значение должно быть в пределах 400-700 Ом, и немного отличаться при смене полярности.


Линия «исток» «затвор» должна иметь проводимость с аналогичным сопротивлением, но только в одном направлении. Такая же ситуация при проверке «сток» «затвор».

Проверить полевой транзистор мультиметром не выпаивая из схемы можно, если нет шунтирующих деталей. Определить их наличие можно визуально. Однако, «мосфеты» обычно окружены т.н. обвесом из управляющих элементов. Поэтому их проверку лучше проводить отдельно от схемы.
P.S.
Если ваш прибор стрелочный – проверка производится также точно.
Метод проверки полевого транзистора от Чип и Дип — видео

В современной электронной аппаратуре все чаще находят применение полевые транзисторы. Разработчики используют их в блоках питания телевизоров, мониторов, видеомагнитофонов и другой аппаратуре. При проведении ремонта мастер сталкивается с необходимостью проверки исправности мощных полевых транзисторов. В статье автор рассказывает, как произвести проверку полевого транзистора с помощью обычного омметра.

Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания телевизоров, мониторов, видеомагнитофонов и другой радиоэлектронной аппаратуры.

При ремонте аппаратов, в которых применены полевые транзисторы, у ремонтников очень часто возникает задача проверки целостности и работоспособности этих транзисторов. Чаще всего приходится иметь дело с вышедшими из строя мощными полевыми транзисторами импульсных блоков питания.

Расположение выводов полевых транзисторов (Gate — Drain — Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S). Если такой маркировки нет, то желательно воспользоваться справочными данными.

Чтобы предотвратить выход из строя транзистора во время проверки, очень важно при проверке полевых транзисторов соблюдать правила безопасности. Дело в том, что полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет. Также следует помнить, что при хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой.

При проверке ПТ чаще всего пользуются обычным омметром. У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения. Если при проверке приложить положительный щуп тестового прибора к затвору (G) транзистора n-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед “прозвонкой” канала “сток-исток” замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод, поэтому канал “сток-исток” при проверке ведет себя как обычный диод. Для того чтобы избежть досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Убедиться в наличии диода достаточно просто. Нужно поменять местами щупы тестера, и он должен показать бесконечное сопротивление между стоком и истоком. Если этого не произошло, то, скорее всего, транзистор пробит. В остальном проверка транзистора не отличается от приведенной выше. Таким образом, имея под рукой обычный омметр, можно легко и быстро проверить мощный полевой транзистор.

Как проверить мультиметром транзистор: испытание различных типов устройств

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Статья по теме:

Электрический мультиметр: тестер для различных электротехнических измерений
Тестер для измерения электротехнических показателей. Использование прибора для автомобиля и в быту. Принцип измерения электрических характеристик.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.

Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Как проверять на исправность полевые транзисторы без тестера | Электронные схемы

как проверять полевые транзисторы

Полевые транзисторы можно проверять на исправность очень простым способом,которому не нужны мультиметр или тестер.Проверять буду два вида полевых транзисторов: с изолированным затвором и с затвором на основе p-n перехода.

Проверка мосфета с изолированным затвором.У таких транзисторов между затвором и истоком есть конденсатор,его емкость указывают в даташитах как Ciss input.У транзистора irf3205 емкость этого конденсатора равна около 3247 пФ.Если начать заряжать этот конденсатор,транзистор постепенно начнет открываться и сопротивление канала сток-исток начнет уменьшаться,и лампа накаливания начнет светить.

как проверять мосфеты с помощью лампочки и источника питания

Подключаем плюс к лампе и цепляем лампу на сток,минус цепляем на исток,питание 10 Вольт.Вначале лампа не светит.

заряжаю входную емкость полевого mosfet транзистора

Далее касаемся пальцем затвора и стока,конденсатор заряжается и лампа светит.

проверка на исправность полевых транзисторов без мультиметра

Чтобы выключить лампочку,касаемся пальцем затвора и истока.Конденсатор будет разряжен и лампа не светит.Вот и вся проверка.Если не разрядить конденсатор,то лампа будет светить пока этот конденсатор не разрядиться.

Проверяю полевой транзистор с затвором на p-n переходе.Таким транзистором является КП103. Берем светодиод и подключаем анодом к стоку а катодом к минус питания.Плюс питания цепляем на исток,питание 5 Вольт.Светодиод будет светить.

как проверить полевой транзистор с затвором на p-n переходе

Теперь кратковременно касаемся пальцем только до затвора и светодиод погаснет примерно на одну секунду если убрать палец.Если есть такая реакция,значит транзистор исправен.

транзистор кп103 чует проводку в стене и другие источники помех

Затворы таких транзисторов очень чувствительны к различным источникам помех,такие как фон 50 Гц или высоковольтные разряды.На транзисторе кп103 изготавливают детекторы для поиска проводки в стене.Но надо учесть,что затворы также чувствительны к статике,поэтому желательно перед касанием дотронуться пальцем до заземления или до батареи центрального отопления.Таким способом нельзя проверять транзисторы типа кп350,кп305. Для их проверки уже нужен мультиметр или тестер

AVR-STM-C++: Как мультиметром проверить MOSFET

Как проверить полевой транзистор мультиметром?
Исходя из особенностей конструкции полевых транзисторов способ проверки отличается от способа проверки биполярных транзисторов. Тем не менее есть один надежный способ проверки.
Транзистор должен быть выпаян, на распаяном транзисторе в большинстве случаев этот способ не сработает за счет обвязки (окружающих деталей). Мультиметр ставим на режим прозвонки диодов.
Сам полевой транзистор может содержать в себе встроенный диод, он будет между Drain и Source. Поэтому для начала ищем даташит на наш полевик — чтобы точно знать с чем имеем дело.
Для примера возьмем MOSFET IRLZ44N. Из даташита на него мы узнаем где у него какие ноги. IRLZ44N цоколевка
Из этого же даташита мы видим, что есть диод, а это значит, что между Drain и Source мы увидим вместо бесконечного сопротивления — некое падение напряжения.

Итак, ставим черный щуп на Drain, красный на Gate. Прибор должен показать бесконечное сопротивление, тоесть показатели просто не поменяются. Меняем щупы местами — картина та же. Переставляем красный с Drain на Source, потом меняем местами (Красный на Gate, черный на Source) — показания меняться не должны. Gate, он же затвор, отделен от Drain и Source, если звониться в какую-либо сторону — затвор пробит, мосфет неисправен.


Теперь нам надо прозвонить Drain и Source, но для начала коротим все ноги щупом — дабы те напряжения, которые мы ему передали при прозвонке, уравнять. Ставим черный щуп на Drain, красный — на Source. Тут мы должны увидеть тот самый диод — тоесть падение напряжения. Меняем щупы местами — бесконечное сопротивление, как и в случае с Gate. Если видим что-то иное — коротим ноги щупом и повторяем замер. Если результат не бесконечное сопротивление — наш полевой транзистор вышел из строя.
Дальше ставим черный щуп на Source, красным касаемся Gate и ставим после этого на Drain. MOSFET должен открыться, тоесть показать низкое сопротивление. Так как напряжение, которым мы открыли полевой транзистор — низкое, то и сопротивление транзистора будет велико.
По сути Gate-Source — это конденсатор, который мы только что зарядили. Пока он заряжен — полевой транзистор открыт.
Если ваш мосфет ведет себя не так — скорей всего он вышел из строя.
Такой способ проверки полевых транзисторов поможет проверить фактически все широко распространенные MOSFET-транзисторы.

Основы полевых транзисторов

Дэвид Херрес

Полевой транзистор (FET) по некоторым характеристикам напоминает биполярный транзистор, но его внутренняя работа заметно отличается. Вместо базы, эмиттера и коллектора у полевых транзисторов есть вентили, источники и стоки. Большая разница в том, что полевой транзистор замечает изменения уровня напряжения на своем входе. Входной ток полевого транзистора бесконечно мал. Следовательно, входной импеданс полевого транзистора довольно высок, порядка 100 МОм. Любой каскад, цепь или устройство, которое подключается к входу, даже если его выходное сопротивление велико, будет видеть только небольшую нагрузку.Это явное преимущество во многих приложениях. Полевой транзистор практически невидим для вышестоящих схем.

полевых транзисторов идентифицируются по материалу в области их несущего заряд канала. P-канальный полевой транзистор можно определить по его направленной наружу стрелке. N-канальный полевой транзистор можно определить по направленной внутрь стрелке.

Благодаря своим преимуществам перед транзисторами с биполярным переходом, полевые транзисторы доминировали на рынке трехпроводных транзисторов в течение нескольких лет в двадцатом веке, пока они, в свою очередь, не были вытеснены устройством с еще большим входным сопротивлением, металлооксидным полупроводниковым полевым транзистором. (МОП-транзистор).Здесь «металл» относится к материалу затвора, но это название стало неправильным, потому что затворы MOSFET теперь часто представляют собой слой поликремния (поликристаллического кремния).

В настоящее время в эксплуатации находится очень много полевых транзисторов, и они полезны в некоторых приложениях, где для согласования требуется определенное полное сопротивление. В отличие от транзистора с биполярным переходом, который содержит переходы, из которых носители заряда либо собираются, либо удаляются, полевой транзистор содержит узкий канал, который проходит на небольшом расстоянии между истоком и стоком.Электростатический заряд, который создается за пределами канала, либо расширяет, либо сжимает канал в поперечном направлении, изменяя величину тока, протекающего между истоком и стоком.

Как и в других транзисторах, выходной участок представляет собой резистор. Сопротивление меняется, часто с очень высокой скоростью. Выходная цепь состоит из истока и стока. По всей этой цепи, включая внешнюю проводку, в соответствии с токовым законом Кирхгофа количество электронов, проходящих через любую точку в данный момент, постоянно.

Символы полевого транзистора

Полевой транзистор подпадает под одну из двух категорий: режим истощения и режим улучшения, в зависимости от того, находится ли он во включенном или выключенном состоянии, когда напряжение, измеренное между затвором и истоком, равно нулю. Устройство в режиме улучшения выключено, когда это напряжение равно нулю, тогда как версия в режиме истощения включена в этот момент.

Более конкретно, полевые МОП-транзисторы с расширенным режимом работы характеризуются падением напряжения на оксиде, создающим проводящий канал между контактами истока и стока за счет полевого эффекта.Термин «режим улучшения» относится к увеличению проводимости с увеличением поля, которое добавляет носители в канал, также называемый инверсионным слоем.

Если канал содержит электроны, устройство называется nMOSFET или nMOS транзистором. Если канал содержит дыры, он называется pMOSFET или pMOS транзистором. МОП-транзисторы в режиме истощения встречаются реже, чем устройства в режиме улучшения. Их канал состоит из носителей в поверхностном слое примесей, противоположного типу подложки.Проводимость канала падает при приложении поля, истощающего носители из этого поверхностного слоя.

Тестирование транзисторов по доступной цене и образцы Лиссажу

Полевой транзистор (FET) в той или иной форме в значительной степени вытеснил более ранние биполярные переходные транзисторы (BJT). Оба могут выполнять усиление, генерацию и переключение, но методы их получения совершенно разные, как и входное и выходное сопротивление.

Во-первых, давайте вернемся к BJT.Он содержит три слоя легированного полупроводника, следовательно, два перехода. В наиболее распространенной конфигурации BJT состоит из двух слоев N-типа со слоем P-типа между ними, поэтому он называется NPN-транзистором. Менее используемый PNP работает так же, но с обратной полярностью. Каждый слой имеет прочно закрепленный грифель.

Наиболее распространенная конфигурация BJT представляет собой усилитель тока, в котором небольшой ток, приложенный к базе, управляет большим током, который протекает между коллектором и эмиттером.Биполярный транзистор NPN-типа соответствует следующим основным принципам: во-первых, коллектор положителен по отношению к эмиттеру. Во-вторых, схемы база-эмиттер и база-коллектор работают как отдельные диоды. При работе переход база-эмиттер смещен в прямом направлении, поэтому он проводит. Переход база-коллектор имеет обратное смещение, поэтому он не проводит ток. Однако ток течет между этими двумя точками из-за действия транзистора.

В полевом транзисторе количество тока через канал, соединяющий исток и сток, регулируется изменениями электрического поля, присутствующего на затворе.Поскольку полевой транзистор имеет затвор с незначительной массой, связанное с ним электрическое поле сопровождается током, близким к нулю. Как следствие, входной импеданс полевого транзистора высокий, поэтому предыдущий каскад не загружен заметно.

Как и BJT, полевые транзисторы бывают двух разновидностей с противоположной полярностью: полевые транзисторы с N-каналом, в которых проводимость осуществляется электронами, и полевые транзисторы с P-каналом, в которых проводимость осуществляется через дырки. Дырка — это просто отсутствие электрона, но ее можно рассматривать как положительную частицу, несущую заряд.Кроме того, мы должны знать, что полевые транзисторы могут иметь два типа затворов. Существуют полевые транзисторы с переходом (JFET) и полевые транзисторы из оксида металла и полупроводника (MOSFET). Кроме того, существуют полевые транзисторы в режиме истощения и режима улучшения с двумя различными типами легирования канала.

N-канальный МОП-транзистор с улучшенным режимом является предпочтительным полупроводником в большом количестве схем. Обычно сток является положительным по отношению к истоку, так же как в BJT коллектор более положительный, чем эмиттер. Когда затвор (аналогично базе) более положительный, чем исток, ток течет от стока к истоку.Это делает возможным усиление, колебание и переключение.

И так же, как BJT существуют как устройства NPN и PNP, MOSFET выпускаются в версиях с N-каналом и P-каналом. Однако носителями заряда в полевом МОП-транзисторе с P-каналом являются дырки с меньшей подвижностью, чем у электронов, что снижает их возможности. По этой причине более широко используется N-канальный MOSFET.

Затвор полевого МОП-транзистора надежно изолирован от канала исток-сток. Стеклянный слой, который не пропускает ток через затвор независимо от электрического состояния устройства, тем не менее, прозрачен для электрического поля, излучаемого затвором, так же как стекло, электрический изолятор, является почти идеальной средой для света.

Обратной стороной является то, что полевые МОП-транзисторы мгновенно разрушаются любым небольшим статическим электричеством, которое может возникнуть при обращении с ними. МОП-транзисторы обычно поставляются в антистатической упаковке, часто с закороченными выводами для предотвращения разницы статического заряда. Техники носят заземленные антистатические браслеты при работе с этими устройствами или печатными платами, содержащими их.

N-канальные полевые МОП-транзисторы не проводят ток с нулевым или отрицательным смещением затвора. Они становятся проводящими, когда затвор становится более положительным, чем источник.Следовательно, они являются устройствами режима улучшения. Если, однако, в процессе изготовления канал легируется таким образом, что он проводит с нулевым смещением затвора, полевой транзистор является устройством в режиме обеднения. Поскольку полевые транзисторы JFET имеют поведение диодов затвор-канал, они работают только при обратном смещении, поэтому они существуют только в режиме истощения. МОП-транзистор может существовать в любом режиме, потому что затвор действительно изолирован от канала. Однако большинство полевых МОП-транзисторов выполнено в режиме улучшения.

Подводя итог, можно сказать, что полевые транзисторы JFET являются устройствами режима истощения, а полевые МОП-транзисторы — в основном устройствами режима улучшения.Оба подвида доступны в моделях с N-каналом и P-каналом.

Интересное качество полевого МОП-транзистора связано с его высокой емкостью затвора, которая, в свою очередь, является результатом чрезвычайно тонкого стеклянного изолирующего барьера с его высокой диэлектрической проницаемостью. Это уникальное поведение среди активных устройств состоит в том, что после включения оно остается в этом состоянии даже при отключении входной цепи! Это связано с емкостью затвор-канал в сочетании с высоким входным сопротивлением, которое может превышать 10 14 Ом.

Функциональные полевые МОП-транзисторы

всегда демонстрируют это удержание заряда, и это поведение можно использовать для проверки устройства с помощью мультиметра в режиме проверки диодов. Во-первых, прикоснитесь к хорошо заземленной металлической поверхности, чтобы снять статический заряд, который может разрушить тестируемое устройство.

Затем начните с подключения канала через исток или сток к отрицательному выводу мультиметра. (Во время этого теста держите полевой МОП-транзистор, удерживая его за корпус или язычок.) Затем прикоснитесь к плюсовому проводу измерителя к затвору.Затем подключите положительный вывод к источнику. Если устройство в порядке, ожидайте увидеть низкие показания. Измеритель будет заряжать полевой МОП-транзистор, и он должен оставаться заряженным в течение как минимум часа, если только он не разряжается намеренно, как в следующей части этого теста.

Не снимая счетчика, как указано выше, коснитесь пальцем затвора и стока или затвора и истока. Это разрядит полевой МОП-транзистор, и теперь показание измерителя будет высоким, что указывает на то, что устройство не проводит ток и исправно.

Устройства, прошедшие тесты мультиметром, не будут иметь некоторых распространенных режимов отказа полевого МОП-транзистора, но тест не является абсолютно окончательным.

Лабораторный прибор для проверки транзисторов выполняет настоящие динамические испытания. Он подает сигнал и напряжение смещения на входы и анализирует выход. Будьте готовы заплатить высокую цену за этот инструмент.

Осциллограф в режиме запуска XY отображает шаблоны Лиссажу, которые можно использовать для определения состояния транзистора. Эти тесты проводятся с использованием осьминога, что устраняет проблемы, связанные с тестированием компонентов, находящихся на печатной плате.Для проведения точного теста мультиметром все провода, кроме одного, должны быть отключены. Эта процедура включает операции пайки / демонтажа, которые могут повредить чувствительный МОП-транзистор из-за нагрева и циркулирующих токов. (Даже самые лучшие методы пайки проблематичны с современными компонентами меньшего размера и плотностью платы.)

Осьминог создает узор Лиссажу, который показывает состояние тестируемого компонента.

Этих проблем можно избежать с помощью осьминога, который можно собрать в полевых условиях с помощью 6.Преобразователь накаливания 3 В и три резистора. Смастерить осьминога несложно. Единственный компонент, стоимость которого превышает доллар, — это трансформатор накаливания 6,3 В, который можно восстановить из старого лампового оборудования. Металлический корпус (обязательно заземлите его!), Световой индикатор и выключатель завершат проект. Старый аналоговый осциллограф с вертикальными и горизонтальными входами, доступный на аукционах по цене менее 100 долларов, станет основой для ценного прибора для тестирования транзисторов.

Интерпретация паттернов Лиссажу требует умеренного обучения.Для работы с этим прибором, созданным пользователем, подключите вертикальный выход осьминога к вертикальному входу осциллографа, а горизонтальный выход осьминога к горизонтальному входу осциллографа. Если компонент является частью печатной платы, отключите питание и снимите оставшееся напряжение. Если печатная плата или шасси заземлены, подключите черный измерительный провод к заземленной клемме или проводу компонента.

Красный и черный выводы осьминога могут быть подключены к клеммам компонентов, и отображаются следующие шаблоны:

Типичные узоры Лиссажу.Хорошее соединение отображается как прямой угол. Большие углы указывают на плохую работу соединения. 120 ° сомнительно, а 150 ° не работает.

Хороший способ почувствовать, как использовать этот прибор для оценки транзисторов (и множества других компонентов), — это попробовать его на известных хороших и плохих устройствах и зарисовать результирующие паттерны Лиссажу.

Тестирование полевого транзистора — тест на утечку и отказ

Советы по тестированию полевого транзистора — Тестовый полевой элемент с аналоговым мультиметром

Правильный способ проверки МОП-транзистора — использовать аналоговый мультиметр.Стенд Mosfet для области металлооксидных полупроводников транзистор с эффектом или мы просто назвали его фет. Импульсный источник питания и многие другие схемы используют в качестве части схемы транзисторы. Отказ МОП-транзистора и утечка в цепи довольно велики, и вам нужно знать, как точно проверить Это.

Измерительные компоненты с двумя выводами, например, резисторы, конденсаторы и диоды намного проще, чем измерить транзистор и фет, у которых есть три ножки.Многие мастера по ремонту электроники испытывают трудности особенно проверяя компоненты трех отведений. Сначала найдите распиновку затвора, стока и истока из книги по замене полупроводников или поиск по его таблице данных из поисковой системы.

Если у вас есть перекрестная ссылка или диаграмма для каждого контакта mosfet, затем используйте аналоговый мультиметр, настроенный на диапазон 10 кОм, чтобы проверить его. Предполагая, что вы тестируете N-канальный MOSFET, установите черный щуп к сливному штифту.

Коснитесь штифта затвора красным щупом, чтобы разрядить внутреннюю емкость в MOSFET. Теперь переместите красный зонд к контакту истока, в то время как черный зонд все еще касается дренажного штифта. Используйте свой правый палец и коснитесь затвора и сливного штифта вместе, и вы заметите, что стрелка аналогового мультиметра переместится вперед к центральному диапазону измерителя. шкала.

Коснитесь пальцем заслонки и сливного штифта.

Поднимая красный щуп с вывода источника и снова вставляя на исходном штифте, указатель по-прежнему останется в середине шкалы измерителя. Чтобы разрядить его, нужно поднять красный зонд и прикоснуться к всего один раз на штифте ворот. Это в конечном итоге снова разрядит внутреннюю емкость.

В это время используйте красный щуп, чтобы снова коснуться вывода источника, указатель вообще не пинает, потому что вы уже разрядили его, коснувшись штифта затвора.Это хорошая характеристика МОП-транзистора. нужно потренироваться больше, взяв немного фета со скамьи или из отделения для компонентов. Как только вы узнаете секреты, протестируйте другой MOSFET это так же просто, как проверка диода.


Если вы заметили, что весь результат, который вы измерили, упал в сторону нуля и не разрядится, тогда фет считается закороченным и требует замены. Тестирование полевого транзистора Fet с каналом P происходит так же, как и при проверке N канал фет.Что вы делаете, так это переключите полярность датчика при проверке P-канала. Некоторые аналоговые мультиметры имеют диапазон 100 кОм, Этот тип измерителя не может действительно тестировать фет из-за отсутствия батареи на 9 В внутри мультиметра. У этого типа измерителя не будет достаточно мощности для срабатывания МОП-транзистора. Убедитесь, что вы используете глюкометр с переключатель диапазона 10 кОм.

Типичные номера деталей MOSFET с N каналом: 2SK791, K1118, IRF634, IRF. Номер детали 740 и P-канального транзистора: J307, J516, IRF 9620 и т. Д.Вы также можете получить тестер mosfet на рынке и один из Известным брендом является портативный супер-крикетный транзистор sencore tf46 и тестер фет. Вы можете сделать ставку на Ebay.

Sencore TF46 Тестер транзисторов и полевых транзисторов


Какие методы тестирования и типы транзисторов?

Аннотация

Транзистор — это полупроводниковое устройство, которое обычно используется в усилителях или переключателях с электронным управлением.Это основной строительный блок, который регулирует работу компьютеров, сотовых телефонов и всех других современных электронных схем. Благодаря быстрому времени отклика и высокой точности транзисторы могут использоваться для множества цифровых и аналоговых функций, включая усиление, переключение, регулировку напряжения, модуляцию сигнала и генераторы.

Строго говоря, под транзистором понимаются все отдельные компоненты на основе полупроводниковых материалов, включая диоды (два вывода), транзисторы, полевые транзисторы, тиристоры (последние три имеют три вывода).

Трехполюсные транзисторы в основном делятся на две категории: биполярные транзисторы (BJT), и полевые транзисторы (, FET, , ), . Три вывода биполярного транзистора — это эмиттер, база и коллектор, состоящие из полупроводников N-типа и P-типа; Три вывода полевого транзистора — это исток, затвор и сток.

Транзисторы — Введение, история, типы, уравнения

Каталог

I Метод классификации транзисторов

Транзисторы можно классифицировать по:

● Материал

Транзисторы можно разделить на кремниевые транзисторы и германиевые транзисторы на основе полупроводниковых материалов.В зависимости от полярности, два типа транзисторов можно разделить на германиевый транзистор типа NPN, германиевый транзистор PNP, кремниевый транзистор типа NPN и кремниевый транзистор типа PNP.

Производственный процесс

Существуют транзисторы диффузного типа, транзисторы из сплава и транзисторы планарного типа в зависимости от процесса изготовления транзисторов.

● Текущая мощность

Транзисторы

можно разделить на три группы: транзисторы малой мощности, транзисторы средней мощности и транзисторы большой мощности в зависимости от их текущей емкости.

● Рабочая частота

По рабочей частоте бывают низкочастотные транзисторы, высокочастотные транзисторы и сверхвысокочастотные транзисторы.

● Структура пакета

В свете структуры корпуса транзисторы можно разделить на транзисторы в металлической упаковке, транзисторы в пластиковой упаковке, транзисторы в стеклянной упаковке, транзисторы для поверхностного монтажа и транзисторы в керамической упаковке.

Функционирование и использование Транзисторы

можно разделить на малошумящие транзисторы усилителя, средние и высокочастотные транзисторы усилителя, транзисторы усилителя низкой частоты, переключающие транзисторы, транзисторы Дарлингтона, высоковольтные транзисторы, полосовые транзисторы, демпфирующие транзисторы, микроволновые транзисторы, фототранзисторы, и магнитные транзисторы.

II Типовые типы транзисторов

Полупроводниковый транзистор — это полупроводниковое устройство, которое обычно содержит два PN-перехода внутри и три извлекающих электрода снаружи. Строго говоря, под транзистором понимаются все отдельные компоненты на основе полупроводниковых материалов, включая диоды (два вывода), транзисторы, полевые транзисторы, тиристоры (последние три имеют три вывода).

Трехполюсные транзисторы в основном делятся на две категории: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET).Три вывода биполярного транзистора — это эмиттер, база и коллектор, состоящие из полупроводников N-типа и P-типа; Три вывода полевого транзистора — это исток, затвор и сток. Ниже в основном обсуждаются биполярные транзисторы, полевые транзисторы и некоторые другие типичные типы транзисторов.

1. Биполярные переходные транзисторы (БЮТ)

Bipolar Junction Transistor (BJT) — это устройство, которое объединяет два PN перехода посредством определенного процесса.Здесь «биполярный» означает, что и электронов , и дырок участвуют в движении одновременно, когда они работают. Есть две комбинированные структуры: PNP и NPN. Снаружи выведены три полюса: коллектор, эмиттер и база. Коллектор выводится из области коллектора, эмиттер выводится из области эмиттера, а база выводится из области базы (в середине.

Условное обозначение PNP (a) , расположение (b), Условное обозначение NPN (c) , расположение (d)

Эффект усиления BJT в основном зависит от передачи эмиттерного тока из области базы в область коллектора.Для обеспечения этого процесса передачи должны быть выполнены два условия:

Внутренние условия

Концентрация примеси в эмиттерной области должна быть намного больше, чем в базовой области, а толщина базовой области должна быть небольшой.

Внешние условия

Эмиттерный переход должен быть смещен в прямом направлении, а коллекторный переход — в обратном.

2. Полевые транзисторы

Полевые транзисторы — это транзисторы, которые работают по принципу полевого эффекта полупроводников.Существует два основных типа полевых транзисторов: Junction FET (JFET) и Metal-Oxide Semiconductor FET (MOSFET) .

Обозначение соединительной цепи полевого транзистора

Эффект поля используется для изменения направления или величины приложенного электрического поля, перпендикулярного поверхности полупроводника, для управления плотностью или типом основных носителей в проводящем слое (канале) полупроводника.Ток в канале модулируется напряжением, а рабочие токи исходят от основных носителей заряда в полупроводнике.

В отличие от BJT, в процессе проводимости участвует только один вид носителей (основные носители) полевого транзистора, поэтому его также называют униполярным транзистором.

Преимущества полевых транзисторов:

○ высокое входное сопротивление

○ низкий уровень шума

○ верхний предел частоты

○ низкое энергопотребление

○ простой производственный процесс

○ хорошие температурные характеристики

Эти особенности делают их широко используемыми в различных схемах усилителей, цифровых схемах, схемах СВЧ и т. Д.Полевые транзисторы на основе кремния металл-оксид-полупроводник (MOSFET) и полевые транзисторы на основе металл-полупроводник (MESFET) на основе GaAs являются двумя наиболее важными полевыми транзисторами, которые, соответственно, являются основными устройствами крупномасштабных МОП-транзисторов. интегральные схемы и сверхбыстрые интегральные схемы MES.

3. Другие типичные типы транзисторов

Гигантские транзисторы (GTR)

Гигантский транзистор — это своего рода биполярный транзистор, который может выдерживать высокое напряжение и большой ток, поэтому его также можно назвать power BJT .

Его характеристики:

○ высокое сопротивление

○ большой ток

○ хорошие коммутационные характеристики

○ сложная приводная схема и большая приводная мощность

Принцип работы GTR такой же, как у обычных биполярных транзисторов.

Фототранзисторы

Фототранзистор — это тип фотоэлектрического устройства, состоящего из трехконтактного устройства, такого как биполярный транзистор или полевой транзистор.Свет поглощается в активной области устройства, производя фотогенерируемые носители, которые усиливаются внутренним механизмом и генерируют усиление фототока. Поскольку фототранзистор работает с тремя выводами, легко добиться электрического управления или синхронизации.

Схема и детализация фототранзистора

Существует два основных типа фототранзисторов: биполярные фототранзисторы и полевые фототранзисторы .Биполярные фототранзисторы обычно имеют высокий коэффициент усиления, но скорость невысока. Для биполярных фототранзисторов GaAs-GaAlAs его коэффициент усиления может быть больше 1000, а время отклика больше наносекунд. Фототранзисторы такого типа часто используются для оптических детекторов или оптических усилителей. Фототранзистор с полевым эффектом имеет быструю скорость отклика (около 50 пикосекунд), но его светочувствительная площадь и коэффициент усиления невелики, что часто используется в качестве высокоскоростного фотодетектора.

Время отклика планарных оптоэлектронных устройств составляет десятки пикосекунд, что делает их пригодными для оптоэлектронной интеграции.

Транзисторы статической индукции

Транзистор статической индукции (SIT) на самом деле является переходным полевым транзистором. Для маломощного SIT, используемого для обработки информации, если мы изменим его горизонтальную проводящую структуру на вертикальную проводящую структуру, он может быть преобразован в устройство SIT высокой мощности.

Рабочая частота SIT эквивалентна или даже выше, чем у силовых полевых МОП-транзисторов, а его мощность больше, чем у силовых полевых МОП-транзисторов.Следовательно, он подходит для высокочастотных и высокомощных приложений , таких как оборудование радиолокационной связи, ультразвуковое усиление мощности, усиление мощности импульса и высокочастотный индукционный нагрев.

Однако SIT включается, когда на затвор не подается сигнал, и выключается, когда затвор применяется с отрицательным смещением, что неудобно в использовании. Кроме того, большое сопротивление SIT в открытом состоянии увеличивает потери, поэтому он не получил широкого распространения в большинстве силового электронного оборудования.

Одноэлектронные транзисторы

Одноэлектронные транзисторы могут записывать сигналы с одним или несколькими электронами.

С развитием техники травления полупроводников уровень интеграции крупномасштабных интегральных схем становится все выше и выше. В настоящее время каждая ячейка общей памяти содержит 200 000 электронов, в то время как каждая ячейка памяти одноэлектронного транзистора содержит только один или небольшое количество электронов, что может значительно снизить энергопотребление и повысить уровень интеграции интегральных схем.

Принципиальная схема одноэлектронного транзистора

В 1989 году J.H. Ф. Скотт Томас и его партнеры обнаружили в ходе эксперимента кулоновскую блокаду . На испытании они попытались сделать металлический электрод с небольшой площадью на двумерном электронном газе на границе раздела гетероперехода с модуляцией, чтобы можно было сформировать квантовую точку с малой емкостью (10 ~ 15 фарас). в электронном газе.При подаче напряжения через устройство не будет протекать ток, пока напряжение не станет достаточно большим, чтобы вызвать изменение заряда электрона. Следовательно, соотношение тока и напряжения не линейное, а ступенчатое. В этом эксперименте впервые в истории вручную контролировалось движение электрона, что обеспечило экспериментальную основу для производства одноэлектронных транзисторов.

Чтобы повысить рабочую температуру одноэлектронного транзистора, размер квантовой точки должен быть менее 10 нанометров, что является актуальной проблемой для лабораторий во всем мире.

III Как тестировать транзисторы

Транзисторы в схеме в основном включают кристаллические диоды, кварцевые транзисторы, тиристоры и полевые транзисторы, среди которых чаще всего используются кристаллические транзисторы и диоды. Так как же правильно судить о качестве диодов и транзисторов?

1. Обнаружение кристаллических диодов

Производительность: хорошо или плохо

Во-первых, следует судить о том, что материал кристаллического диода — кремний или германий.Используйте один мультиметр, чтобы измерить его прямое сопротивление, и другой мультиметр, чтобы измерить падение напряжения. Обычно прямое падение напряжения германиевой трубки составляет 0,1-0,3 В, а кремниевой трубки — 0,6-0,7 В.

Кроме того, разница между прямым и обратным сопротивлением диодов должна быть как можно большей. Если прямое сопротивление кристаллического диода составляет от сотен до тысяч Ом, а обратное сопротивление составляет десятки тысяч Ом или более, то его можно рассматривать как хороший диод.

Электрод: положительный или отрицательный

Также можно определять положительный и отрицательный электроды диода одновременно. Когда измеренное сопротивление составляет несколько сотен или несколько тысяч Ом, его следует определять как прямое сопротивление диода. В это время отрицательный измерительный провод подключается к отрицательному электроду, а положительный измерительный провод подключается к положительному электроду.Кроме того, если прямое и обратное сопротивление бесконечно, это означает внутреннее отключение; если прямое и обратное сопротивление равны нулю, что указывает на короткое замыкание.

2. Методика испытаний кристаллических транзисторов

Тестирование способности к усилению

Кристаллический транзистор в основном используется для усиления, так как же нам судить о его способности усиления?

Сначала установите шестеренку мультиметра на R × 100 или R × 1K .Когда мы измеряем трубку NPN, положительный измерительный провод подключается к эмиттеру, а отрицательный измерительный провод подключается к коллектору. Измеренное сопротивление обычно должно быть больше нескольких тысяч Ом.

Затем последовательно подключите резистор 100 кОм между базой и коллектором. В это время значение сопротивления, измеренное мультиметром, должно быть значительно уменьшено. Чем больше изменение, тем сильнее усилительная способность транзистора. Если изменение небольшое или даже отсутствует, это означает, что транзистор имеет слабую способность усиления или ее отсутствие.


● Судейские электроды

Найдите базу

Сначала подключите красный измерительный провод к любому из контактов и используйте черную измерительную ручку, чтобы соответственно измерить два других контакта.

Чтобы проверить, можно ли измерить два малых сопротивления , в противном случае подключите черный тестовый провод к одному контакту и соедините красный тестовый провод с другими контактами для измерения, пока не будут получены два небольших сопротивления.

Когда обнаружены два малых сопротивления, фиксированный измерительный провод, используемый в этот момент, является базой. Если фиксированная контрольная ручка черного цвета, это транзистор NPN-типа; если фиксированный измерительный провод красный, трубка представляет собой транзистор типа PNP.

Примечание. Измерение германиевой трубки составляет R × 100, а для кремниевой трубки — R × 1k.

○ Определить эмиттер и коллектор

Используйте мультиметр для измерения сопротивления двух полюсов, кроме основного электрода.Замените измерительный провод и снова измерьте его.

Если это германиевая трубка, для оценки используется меньшее сопротивление. Когда достигается меньшее сопротивление, для транзистора PNP черный измерительный провод подключается к эмиттеру, а красный — к коллектору. Если это тип NPN, черный измерительный провод подключается к коллектору, а красный измерительный провод подключается к эмиттеру.

Если это кремниевый транзистор, используется большее сопротивление. Для типа PNP черный провод подключается к эмиттеру, а красный измерительный провод подключается к коллектору.Что касается транзистора NPN, черный и красный щупы подключены соответственно к коллектору и эмиттеру.

Кроме того, мы также могли измерить прямое сопротивление двух PN-переходов по отдельности. Один с большим прямым сопротивлением — это эмиттер, а другой — коллектор.

IV Darlington T ransistor Метод испытаний

1. Обнаружение обычного транзистора Дарлингтона

Во внутренней структуре обычного транзистора Дарлингтона два или более коллектора транзисторов соединены вместе, и между базой и эмиттером имеется несколько эмиттерных переходов.

● Тестирование прямого и обратного сопротивления

Для измерения используется мультиметр R × 1 кОм или R × 10 кОм.

Обычно прямое сопротивление между коллектором и базой аналогично значению коллектора обычных кремниевых транзисторов, которое составляет 3-10 кОм, а значение обратного сопротивления бесконечно. Значение прямого сопротивления между эмиттером и базой в 2–3 раза больше, чем между коллектором и базой, а значение обратного сопротивления также бесконечно.

Теоретически положительное и отрицательное сопротивление между коллектором и эмиттером должно быть близко к на бесконечность . Если значение положительного и обратного сопротивления между коллектором и эмиттером транзистора Дарлингтона близко к нулю или значение между базой и эмиттером или между базой и коллектором равно нулю, это указывает на то, что лампа сломалась. И если прямое и обратное сопротивление между базой и эмиттером или между базой и коллектором измерено как бесконечное, это означает, что имеется разомкнутая цепь.

Примечание : когда мы измеряем трубку NPN, черный измерительный провод подключается к основанию; при обнаружении трубки PNP черный измерительный провод подключается к коллектору.

Базовая конфигурация транзистора Дарлингтона

2. Обнаружение мощного транзистора Дарлингтона

Основанный на обычных транзисторах Дарлингтона, высокомощный Дарлингтон имеет схему защиты, состоящую из диода свободного хода и резистора утечки, которые могут влиять на данные измерения.

● Метод обнаружения 1

Используйте диапазон мультиметра R × 1 кОм или R × 10 кОм для измерения прямого и обратного сопротивления коллекторного перехода Дарлингтона (между коллектором и базой). В нормальных условиях, когда основание трубки NPN подсоединено к черному щупу, значение прямого сопротивления должно быть небольшим, в пределах от 1 до 10 кОм, а обратное сопротивление должно быть близким к бесконечности. Если измеренные значения прямого и обратного сопротивления очень малы или бесконечны, это означает, что трубка была замкнута накоротко или повреждена обрывом цепи.

● Метод обнаружения 2

Используйте шестерню мультиметра R × 100 Ом для измерения прямого и обратного сопротивления между эмиттером и базой. Нормальные значения составляют от нескольких сотен Ом до нескольких тысяч Ом. если измеренное сопротивление равно 0 или бесконечно, тестируемая трубка повреждена.

● Метод обнаружения 3

R × l кОм или R × 10 кОм мультиметра используется для измерения прямого и обратного сопротивления между эмиттером и коллектором.Обычно значение прямого сопротивления должно составлять 5-15 кОм, а значение обратного сопротивления должно быть бесконечным, в противном случае коллектор и эмиттер (или диоды) сломаны или имеется разрыв цепи.

Примечание : когда мы измеряем трубку NPN, черный измерительный провод подключается к эмиттеру, а красный измерительный провод подключается к коллектору; когда мы измеряем трубку PNP, черный измерительный провод подключается к коллектору, а красный измерительный провод подключается к эмиттеру.

Заключение

В этом отрывке, во-первых, мы узнали об общем методе классификации и основных типичных типах из транзисторов .Затем был представлен метод тестирования для кристаллических диодов и кварцевых транзисторов, который включает средства для оценки характеристик и определения электродов. И напоследок обсудим методы обнаружения обычного и мощного транзистора Дарлингтона s . Надеюсь, эта статья будет вам полезна!

Рекомендовано Статьи:

Знакомство с TFT-дисплеями

Обзор биполярных транзисторов

Устройство и принцип работы полевых транзисторов

10.2: Измерение основных транспортных свойств полевых транзисторов

Типичные характеристики V-I полевых транзисторов

Развертка напряжения — отличный способ узнать об устройстве. На рисунке \ (\ PageIndex {10} \) показан типичный график развертки напряжения сток-исток при различных напряжениях затвор-исток при измерении тока стока, ID для n-канального JFET. Характеристики V-I имеют четыре различных региона. Анализ этих областей может предоставить важную информацию о характеристиках устройства, таких как напряжение отсечки, VP, усиление прозрачности, gm, сопротивление канала сток-исток, RDS и рассеиваемая мощность, PD.

Рисунок адаптирован из Electronic Tutorials (www.electronic-tutorials.ws).
Омическая область (линейная область)

Эта область ограничена VDS

\ [R_ {DS} \ = \ \ frac {\ Delta V_ {DS}} {\ Delta I_ {D}} \ = \ \ frac {1} {g_ {m}} \ label {1} ​​\]

\ [g_m \ = \ \ frac {\ Delta I_ {D}} {\ Delta V_ {DS}} \ = \ \ frac {1} {R_ {DS}} \ label {2} \]

Область насыщенности

Это область, в которой JFET полностью включен. Максимальный ток протекает для данного напряжения затвор-исток. В этой области ток стока можно смоделировать с помощью \ ref {3}, где ID — ток стока, IDSS — максимальный ток, VGS — напряжение затвор-исток, а VP — напряжение отсечки.Решение для напряжения отсечки приводит к \ ref {4}.

\ [I_ {D} \ = \ I_ {DSS} (1 \ — \ frac {V_ {GS}} {V_ {P}}) \ label {3} \]

\ [V_ {P} \ = \ 1 \ — \ \ frac {V_ {GS}} {\ sqrt {\ frac {I_D} {I_ {DSS}}}} \ label {4} \]

Область разбивки

Эта область характеризуется резким увеличением тока. Подаваемое напряжение сток-исток превышает предел сопротивления полупроводникового канала, в результате чего транзистор выходит из строя и протекает неконтролируемый ток.

Область отсечения (Cutoff Region)

В этой области напряжения затвор-исток достаточно, чтобы ограничить поток через канал, по сути, отсекая ток стока.{2} / R_ {DS} \ label {5} \]

V-I характеристики p-канального JFET ведут себя аналогично, за исключением того, что напряжения меняются местами. В частности, точка отсечки достигается, когда напряжение затвор-исток увеличивается в положительном направлении, а область насыщения достигается, когда напряжение сток-исток увеличивается в отрицательном направлении.

Типичные характеристики V-I полевых МОП-транзисторов

На рисунке \ (\ PageIndex {11} \) показан типичный график развертки напряжения сток-исток при различных напряжениях затвор-исток при измерении тока стока, I D для идеального n-канального полевого МОП-транзистора.Подобно JFET, V-I характеристики MOSFET имеют отдельные области, которые предоставляют ценную информацию о транспортных свойствах устройства.

Рисунок адаптирован из Electronic Tutorials (www.electronic-tutorials.ws).
Омическая область (линейная область)

n-канальный усовершенствованный МОП-транзистор ведет себя линейно, действуя как переменный резистор, когда напряжение затвор-исток превышает пороговое напряжение, а напряжение сток-исток больше, чем напряжение затвор-исток. В этой области ток стока можно смоделировать с помощью \ ref {6}, где ID — ток стока, VGS — напряжение затвор-исток, VT — пороговое напряжение, VDS — напряжение сток-исток, а k — геометрическое коэффициент, описываемый как \ ref {7}, где µ n — эффективная подвижность носителей заряда, C OX — емкость оксида затвора, W — ширина канала, а L — длина канала.{2} \ label {8} \]

Решение для порогового напряжения VT приводит к \ ref {9}.

\ [V_ {T} \ = \ V_ {GS} \ — \ \ sqrt {\ frac {I_ {D}} {k}} \ label {9} \]

Область отсечения (Cutoff Region)

Когда напряжение затвор-исток, VGS, ниже порогового напряжения VT, носители заряда в канале недоступны, «перекрывая» поток заряда. Рассеяние мощности для полевых МОП-транзисторов также можно решить с помощью уравнения 6 в любой области, как в случае полевого транзистора.

FET V-I Сводка

Типичные ВАХ для всего семейства полевых транзисторов, показанных на рисунке \ (\ PageIndex {11} \), показаны на рисунке \ (\ PageIndex {12} \).

Рисунок \ (\ PageIndex {12} \) График ВАХ для различных типов полевых транзисторов. По материалам P. Horowitz и W. Hill, в Art of Electronics, Cambridge University Press, New York, 2 nd Edn., 1994.

Из рисунка \ (\ PageIndex {12} \) видно, как схемы легирования, которые приводят к усилению и истощению, смещены вдоль оси VGS. Кроме того, из графика можно определить состояние ВКЛ или ВЫКЛ для данного напряжения затвор-исток, где (+) положительно, (0) равно нулю, а (-) отрицательно, как показано в Таблице \ (\ PageIndex {1} \).

Таблица \ (\ PageIndex {1} \): состояние ВКЛ / ВЫКЛ для различных полевых транзисторов при заданном напряжении затвор-исток, где (-) — отрицательное напряжение, а (+) — положительное напряжение.
Полевой транзистор Тип В GS = (-) В GS = 0 В GS = (+)
n-канальный JFET ВЫКЛ. НА НА
p-канал JFET НА НА ВЫКЛ.
N-канальный MOSFET с истощением ВЫКЛ. НА НА
MOSFET с истощением p-канала НА НА ВЫКЛ.
n-канальный MOSFET расширения ВЫК ВЫКЛ. НА
MOSFET с расширением p-канала НА НА ВЫКЛ.

Тестовые структуры полевых транзисторов для исследования изоляции между полосками в кремниевых полосковых детекторах

В будущих экспериментах на LHC сегментированные кремниевые сенсоры для трекинга и калориметрии [1], [2], [3] должны выдерживать жесткие условия эксплуатации. радиационные среды предстоящей модернизации высокой светимости.Датчики, изготовленные на подложке типа p с высоким сопротивлением, оказались более радиационно-стойкими, чем датчики, использующие подложку типа n [4], [5], [6]. Для сегментированных датчиков n -на- p положительные заряды в вышележащем оксиде вызывают образование слоя накопления электронов на границе между электродами n , что нарушает изоляцию электродов. Обычно высоколегированный имплант p вводится в виде полос между электродами ( p -стоп) или в виде однородного слоя по всей пластине ( p -спрей), чтобы прервать слой накопления электронов. P Концентрация легирования, глубина имплантации и геометрия определяют достигаемое сопротивление между электродами n .

В кремниевых микрополосковых датчиках сопротивление между полосками измеряется путем подачи постоянного напряжения на одну полоску и измерения тока на соседней полоске [7]. Типичные значения сопротивления составляют порядка 100 ГОм. Следовательно, измерения межполоскового сопротивления требуют точных установок измерения тока с низким уровнем шума, на которые сильно влияют паразитные токи.В частности, что касается крупномасштабного серийного производства датчиков, желательны быстрые и простые альтернативы для определения качества изоляции полосы.

В этой статье мы исследуем тестовые структуры полевого транзистора металл-оксид-полупроводник (MOSFET) для определения качества изоляции полоски и межполоскового сопротивления. Возможность использования полевых МОП-транзисторов для определения концентрации легирования p -stop и p -spray и глубины имплантации была показана ранее [8], [9]. Однако удовлетворительная связь параметров измерения полевого МОП-транзистора с межполосковым сопротивлением датчика еще не продемонстрирована.Мы сравниваем измерения тока и напряжения в линейной области тестовых структур цилиндрических полевых МОП-транзисторов с измерениями межполоскового сопротивления микрополосковых датчиков на тех же пластинах, чтобы связать пороговое напряжение полевого МОП-транзистора с межполосковым сопротивлением датчика. Вафли быть произведены Infineon Technologies [10] на с высоким удельным сопротивлением (≳1kΩcm) р типа кремния с различными п и р -spray имплантаций в дополнении к р -stop выделения полосы, в результате чего разные номинальные значения межполоскового сопротивления для разных пластин.Мы представляем сравнительное моделирование TCAD, чтобы подтвердить измеренное соотношение порогового напряжения MOSFET и межполоскового сопротивления датчиков.

Чувствительные датчики на полевых транзисторах с атомарно тонкими нанолистами черного фосфора

Полевые транзисторы с атомарно тонким черным фосфором (BP) обладают прекрасным потенциалом для применения в датчиках. Однако коммерческое масштабирование датчиков PFET все еще находится на начальной стадии из-за различных технических проблем, таких как утомительное изготовление, низкий процент отклика, вызванный быстрым окислением, неидеальный выход отклика (пики / двунаправленные) и большой разброс устройств из-за плохого контроль толщины слоя среди устройств.Были предприняты попытки решить эти проблемы. Во-первых, разработана теоретическая модель зависимости процента отклика от количества слоев, чтобы показать роль атомарно тонкого БП для улучшения отклика. Метод отслаивания выбранной области с отслеживанием положения был разработан для быстрого получения тонких слоев БП с узким распределением (~ 1–7 слоев), что позволяет использовать превосходный контроль затвора над каналом PFET. Типичное соотношение тока включения / выключения находится в диапазоне ∼300–500. Модифицированные цистеином Al 2 O 3 -закрытые датчики PFET показывают высокие отклики (∼30–900%) в широком диапазоне обнаружения (∼1–400 ppb) ионов свинца в воде с типичным время отклика ∼10–30 с.Предлагается стратегия минимизации отклонений устройства путем соотнесения отношения включения / выключения полевых транзисторов с параметрами чувствительности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *