Полупроводниковые диоды это: 1.2. Полупроводниковые диоды

Содержание

Полупроводниковый диод

Полупроводниковый диод — это полупроводниковый элемент, пропускающий ток только в одном направлении. Принцип работы диода основан на свойствах проводимости полупроводников, а именно на электронно-дырочном переходе.

На принципиальной электрической схеме диоды изображаются следующим образом:

 

Диоды изготавливают в основном методами сплавления и методом диффузии. Метод сплавления заключается в сплавлении пластин p и n – типов, а метод диффузии состоит во внедрении примесных атомов в полупроводниковую пластину. Благодаря этим способам изготавливаются большие площади p – n переходов – до 1000 мм2. А чем больше площадь перехода, тем больший ток можно через него пропускать.

Существуют также точечные (высокочастотные) диоды, площадь их p – n перехода меньше 0,1 мм2. Такие диоды изготавливаются с помощью соединения металлической иглы с полупроводником. Применяются точечные диоды в аппаратуре сверхвысоких частот при значении тока 10-20 мА.

Основные виды полупроводниковых диодов по функциональному назначению: выпрямительные, стабилитроны, импульсные, светодиоды, фотодиоды и т.д.

Выпрямительными называют полупроводниковые диоды, предназначенные для преобразования переменного тока в постоянный. Такие диоды изготавливают методами сплавки и диффузии, для того чтобы создать большую площадь p-n перехода, так как через них протекают большие токи. Сам процесс выпрямления переменного тока заключается в свойстве диода хорошо проводить ток в одном направлении и практически не проводить его в другом.

Ниже изображена схема простейшего однополупериодного выпрямителя. Работает он следующим образом: положительный полупериод напряжения Uвх, диод V пропускает практически без изменения, и напряжение Ur практически равно Uвх. Но в момент времени, когда полупериод напряжения отрицательный, диод включен в обратном направлении и все напряжение Uвх падает на диоде, а напряжение на резисторе практически равно нулю

 

 На рисунке схематично изображен график напряжения на резисторе.

 

Стабилитронами (опорными диодами) называются полупроводниковые диоды предназначенные для стабилизации постоянного напряжения. Для стабилизации напряжения в стабилитронах используют обратную ветвь вольт-амперной характеристики в области электрического пробоя, для этого их включают в обратном направлении. При изменении тока протекающего через стабилитрон от значения Iстmin до Iстmax напряжение на нем почти не изменяется.

 

Стабилитроны стабилизируют напряжение от 3,5 В, а для стабилизации меньшего напряжения используют стабисторы. В стабисторах используют прямую ветвь вольт-амперной характеристики, поэтому их включают в прямом направлении.

Импульсным называется диод, который предназначен для работы в импульсных схемах. В прямом направлении импульсный диод хорошо проводит электрический ток. При обратном включении такого диода, обратный ток в нем резко увеличивается, а через короткий промежуток времени исчезает. Таким образом получается электрический импульс.

 

  • Просмотров:
  • Полупроводниковые диоды — Пособие по электротехнике

                Полупроводниковым диодом называется электро преобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющим два вывода.

                Структура полупроводникового диода с электронно-дырочным переходом и его условное графическое обозначение приведены на рис. 2.2.

    Рис. 2.2. Схема структуры полупроводникового диода (а)

    и его графическое обозначение (б)

                Буквами  p  и  n  обозначены слои полупроводника с проводимостями соответственно 

    p-типа  и  n-типа. В контактирующих слоях полупроводника (область pn-перехода на рис. 2.2) имеет место диффузия дырок из слоя p в слой n, причиной которой является то, что их концентрация в слое p значительно больше их концентрации в слое n. В итоге в приграничных областях слоя p и слоя n возникает так называемый обедненный слой, в котором мала концентрация подвижных носителей заряда (электронов и дырок). Обедненный слой имеет большое удельное сопротивление.

                Ионы примесей обедненного слоя не компенсированы дырками или электронами. В совокупности ионы образуют некомпенсированные объемные заряды, создающие электрическое поле с напряженностью Е. Это поле препятствует переходу дырок из слоя p в слой n и переходу электронов из слоя

    n в слой p. Оно создает так называемый дрейфовый поток подвижных носителей заряда, перемещающий дырки из слоя n в слой p и электроны из слоя p в слой n. Таким образом, в зависимости от полярности проходящего через диод тока, проводимость диода существенно изменяется, приводя к изменению величину проходящего тока.

                Основные характеристики полупроводникового диода представляются его вольт-амперной характеристикой (ВАХ). Вольт-амперная характеристика – это зависимость тока i, протекающего через диод, от напряжения u, приложенного к диоду. Вольт-амперной характеристикой называют и график этой зависимости (рис. 2.3).

    Рис. 2.3. Вольт-амперная характеристика и основные параметры полупроводникового диода

    Диоды обычно характеризуются следующими параметрами (рис. 2.3):

    1.     обратный ток при некоторой величине обратного напряжения  Iобр, мкА

    ;

    2.     падение напряжения на диоде при некотором значении прямого тока через диод Uпр, в;

    3.     емкость диода при подаче на него обратного напряжения некоторой величины С, пФ;

    4.     диапазон частот, в котором возможна работа без снижения  выпрямленного тока fгр, кГц;

    5.     рабочий диапазон температур.

                Техническими условиями задаются обычно максимальные (или минимальные) значения параметров для диодов каждого типа.

                Так, например, задается максимально возможное значение обратного тока, прямого падения напряжения и емкости диода. Диапазон частот задается минимальным значением граничной частоты  fгр. Это значит, что параметры всех диодов не превышает (а в случае частоты – не ниже) заданного техническими условиями значения. Общий вид диодов показан на рис 2.4.

    Рис. 2.4. Конструкция диодов малой мощности (а) и средней мощности (б)

    Полупроводниковые диоды

    Полупроводниковый диод — это полупроводниковый прибор с одним электрическим переходом и двумя омическими контактами (омическим называют контакт металла с полупроводником, не обладающий выпрямляющим свойством), к которым присоединяются два вывода для подключения к внешней цепи.

    Наиболее часто для создания диода применяются:

    1. Электронно-дырочный переход, т.е. контакт полупроводниковых материалов с разным типом проводимости р и n-типа.

    Эти переходы получают:

    — методом диффузии атомов из внешней среды при высокой температуре.

    — методами ионного внедрения при бомбардировке полупроводникового кристалла пучком ионов примеси, ускоренных электрическим полем.

    — вплавлением в полупроводник металла или сплава металлов, содержащих необходимые примеси.

    — эпитаксиальное наращивание на поверхности кристалла тонкого слоя примесного полупроводника с противоположным типом проводимости. Причем эта пленка полностью повторяет кристаллическую структуру подложки и образует с ней единый монокристалл.

    2. Иногда используют контакты между областями с разной концентрацией примесей одного типа. Такие переходы называются электронно-электронными (n+n) или дырочно-дырочными (p+p), + означает более высокую концентрацию примеси.

    3. Для решения определенных задач при преобразовании сигнала используют контакт металл-полупроводник, который обычно формируется вакуумным напылением тонкой металлической пленки на очищенную поверхность полупроводника. В зависимости от соотношения величины работы выхода электронов из металла и полупроводника, знаком и плотностью поверхностного заряда на границе раздела, а также типом проводимости полупроводника и концентрации примеси, возникает омический контакт или выпрямляющий контакт. Омический контакт (с малым сопротивление) используют для формирования внешних выводов от полупроводниковых областей, подвода и отвода токов и напряжений. Выпрямляющий контакт – диод Шоттки работает аналогично контакту полупроводников с разным типом проводимости, однако имеет более высокое быстродействие за счет отсутствия инжекции неосновных носителей заряда (отсутствует диффузионная емкость).

    4. Гетеропереходы. Это структура, образованная двумя полупроводниками с разной шириной запрещенной зоны. Кристаллические структуры должны быть одинаковыми. Гетеропереходы часто используются в светодиодах и фотодиодах. Типичными гетеропереходы создаются на основе AlGaAs – GaAs, GaAsP – GaP, InP – GaInAs. Такой переход может существовать при разных типах проводимости n и p. И с одним типом проводимости n

    +n или p+p. Гетеропереходы позволяют создать СВЧ транзисторы и широко используются в свехскоростных цифровых интегральных схемах.

    Классификация и условные графические обозначения диодов.

    Полупроводниковые диоды можно разделить по следующим признакам:

    1. по назначению: выпрямительные, высокочастотные и сверхвысокочастотные (ВЧ- и СВЧ- диоды), импульсные, полупроводниковые стабилитроны (опорные диоды), туннельные, обращенные, варикапы и др. ;

    2. по конструктивно – технологическим особенностям: плоскостные и точечные;

    3. по типу исходного материала: германиевые, кремниевые, арсенидо — галлиевые и др.

    Классификация и условные графические обозначения диодов представлены на рис. 1:

    Рис. 1 Классификация и условное обозначение полупроводниковых диодов.

    Точечные диоды. Такие диоды имеют очень малую площадь электрического перехода. Линейные размеры, определяющие ее, меньше ширины р-n-перехода.

    В точечном диоде используется пластинка германия или кремния с электропроводностью n- типа (рис. 2), толщиной 0,1…0,6мм и площадью 0,5…1,5 мм2; с пластинкой соприкасается заостренная проволочка (игла) с нанесенной на нее примесью. При этом из иглы в основной полупроводник диффундируют примеси, которые создают область с другим типом электропроводности. Таким образом, около иглы образуется миниатюрный р-n- переход полусферической формы.

    Рис.2. Точечный диод

    Для изготовления германиевых точечных диодов к пластинке германия приваривают проволочку из вольфрама, покрытого индием. Индий является для германия акцептором. Полученная область германия р- типа является эмиттерной.

    Для изготовления кремниевых точечных диодов используется кремний n- типа и проволочка, покрытая алюминием, который служит акцептором для кремния.

    Корпус точечных диодов герметичный. Он представляет собой керамический или стеклянный баллон 2, покрытый черной светонепроницаемой краской (во избежание проникновения света, так как кванты света могут вызвать генерацию носителей заряда вблизи р-д-перехода, а следовательно, увеличить обратный ток диода).

    Благодаря малой площади р-n-перехода емкость точечных диодов очень незначительна и составляет десятые доли пикофарады. Поэтому точечные диоды используют на высоких (порядка сотен мегагерц) и сверхвысоких частотах. Их применяют в основном для выпрямления переменного тока высокой частоты (выпрямительные диоды высокочастотные) и в импульсных схемах (импульсные диоды).

    Так как площадь p-n-перехода точечного диода мала, то прямой ток через переход должен быть небольшим (10—20 мА) из-за малой мощности (~10 мВт), рассеиваемой переходом. Поэтому точечные диоды можно использовать для выпрямления только малых переменных токов.

    Плоскостные диоды. Плоскостные диоды имеют плоский электрический переход, линейные размеры которого, определяющие его площадь, значительно больше ширины p-n-перехода.

    В плоскостных диодах р-n переход образуется двумя полупроводниками с различными типами электропроводности, причем площадь перехода у различных типов диодов лежит в пределах от сотых долей квадратного миллиметра до нескольких десятков квадратных сантиметров (силовые диоды).

    Плоскостные диоды изготовляются методами сплавления (вплавления) или диффузии (рис. 3).

    Рис. 3. Сплавной плоскостной диод (а), диффузионный диод (б).

    В пластинку германия n — типа вплавляют при температуре около 500°С каплю индия (рис. 3, а) которая, сплавляясь с германием, образует слой германия р — типа. Область с электропроводностью р — типа имеет более высокую концентрацию примеси, нежели основная пластинка, и поэтому является эмиттером. К основной пластинке германия и к индию припаивают выводные проволочки, обычно из никеля. Если за исходный материал взят германий р — типа, то в него вплавляют сурьму и тогда получается эмиттерная область n — типа.

    Диффузионный метод изготовления р-n перехода основан на том, что атомы примеси диффундируют в основной полупроводник (рис. 3, б). Для создания р — слоя используют диффузию акцепторного элемента (бора или алюминия для кремния, индия для германия) через поверхность исходного материала.

    Плоскостные диоды используются для работы на частотах до 10 кГц. Ограничение по частоте связано с большой барьерной емкостью р-n-перехода (до десятков пикофарад).

    Плоскостные диоды, как и точечные, могут быть выполнены с контактом металл — полупроводник. Емкость электрического перехода таких диодов небольшая, время перезарядки емкости, следовательно, мало, поэтому их используют для работы в импульсных режимах (сверхскоростные импульсные диоды). Плоскостные диоды бывают малой мощности (до 1 Вт), средней мощности (на токи до 1 А, напряжение до 600 В) и мощные (на токи до 2000 А).

    Германий или кремний. Двумя широко используемыми материалами для диодов являются германий и кремний. В то время как оба (германиевый диод и кремниевый диод) выполняют аналогичные функции, между ними имеются определенные различия, которые необходимо принимать во внимание, прежде чем разрабатывать ту или иную электронную схему с применением диодов.

    При повышении температуры растет собственная электропроводность полупроводника (увеличивается генерация пар носителей заряда электрон-дырка), растет ток насыщения и растет вероятность пробоя p-n перехода.

    Максимально допустимая температура перехода тем больше, чем шире запрещенная зона полупроводника. Так для германиевых диодов допустимый интервал температур окружающей среды лежит в пределах (-60о +70о), а для кремниевых в пределах (-60о +125о),. При понижении температуры увеличивается сопротивление диода как прямое, так и обратное, а также появляется вероятность механических повреждений кристалла из-за увеличивающейся хрупкости.

    Кремниевые диоды, в результате того, что Si имеет большую ширину запрещенной зоны, имеют во много раз меньшие обратные токи, но большее прямое падение напряжения, т.е. при равной мощности, отдаваемой в нагрузку, потеря энергии у кремниевых диодов будет больше. Кремниевые диоды имеют большие обратные напряжения и большие плотности тока в прямом направлении.

    Кремниевые диоды имеют прямое смещение напряжения 0.7 В. Как только разность напряжений между анодом и катодом достигает 0.7В, диод открывается. Когда разность напряжений падает менее 0.7В, диод прекращает проводить электрический ток. Германиевые диоды имеют напряжение смещения 0.3 вольта. Большие падения напряжения при прохождении прямого тока через кремниевые диоды по сравнению с прямым падение напряжения на германиевых диодах связаны с большей высотой потенциального барьера р-n- переходов, сформированных в кремнии. С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера.

    При подаче на полупроводниковый диод обратного напряжения в нем возникает незначительный обратный ток, обусловленный движением не основных носителей заряда через р-n переход. При повышении температуры р-n перехода число не основных носителей заряда увеличивается за счет перехода части электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает. В случае приложения к диоду обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости. Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейшей рост тока и, наконец, тепловой пробой р-n-перехода.

    Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7…0,8) Uпроб. В некотором интервале температур для германиевых диодов пробой чаще всего бывает тепловым (ширина запрещенной зоны Ge невелика), а для кремниевых диодов – электрическим (лавинным или туннельным). Это определяет значения Uпроб при заданной температуре. При комнатной температуре значения Uпроб для германиевых диодов обычно не превышают 100 — 400В, а для кремниевых -1000 — 1500В

    Поскольку кремний является относительно простым и недорогим для получения и обработки материалом, кремниевые диоды более распространены, чем германиевые диоды. Германий – это редкий материал, который обычно встречается с медными, свинцовыми или серебряными отложениями. Из-за своей редкости германий дороже, из-за чего германиевые диоды встречаются реже кремниевых диодов, к тому же в некоторых случаях они могут быть дороже.

    Германиевые диоды лучше всего использовать в маломощных электрических цепях. Более низкое напряжение прямого смещения приводит к меньшим потерям мощности и делает схему более эффективной по электрическим характеристикам. Германиевые диоды также подходят для прецизионных цепей, где колебания напряжения должны быть сведены к минимуму. Однако германиевые диоды можно гораздо легче вывести из строя, чем кремниевые диоды.

    Кремниевые диоды являются превосходными диодами общего назначения и могут использоваться практически во всех электрических цепях, где требуется диод. Кремниевые диоды более долговечны, чем германиевые диоды, и их намного легче получить. Как уже было написано выше, германиевые диоды подходят для прецизионных цепей, но если не существует особых требований к германиевому диоду, обычно предпочтительнее использовать кремниевые диоды при проектировании схемы.

    Выпрямительные диоды. Выпрямительные диоды применяются для преобразования переменного тока в ток одного направления (выпрямление переменного тока). Используются в схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.

    В связи с применением выпрямительных диодов к их характеристикам и параметрам предъявляются следующие требования:

    а) малый обратный ток Ioбр;

    б) большое обратное напряжение;

    в) большой прямой ток;

    г) малое падение напряжения при протекании прямого тока.

    Для того, чтобы обеспечить эти требования, выпрямительные диоды выполняются из полупроводниковых материалов с большой шириной запрещенной зоны, что уменьшает обратный ток, и большим удельным сопротивлением, что увеличивает допустимое обратное напряжение. Для получения в прямом направлении больших токов и малых падений напряжения следует увеличивать площадь p-n перехода и уменьшать толщину базы.

    Выпрямительные диоды изготавливаются из германия (Ge) и кремния (Si) с большим удельным сопротивлением, причем Si является наиболее перспективным материалом.

    а б

    Рис.4. Вольтамперные характеристики выпрямительных диодов из германия (а) и кремния (б) и их изменения в зависимости от температуры.

    Кремниевые диоды. В результате того, что Si имеет большую ширину запрещенной зоны, имеют во много раз меньшие обратные токи, но большее прямое падение напряжения, т.е. при равной мощности, отдаваемой в нагрузку, потеря энергии у кремниевых диодов будет больше. Кремниевые диоды имеют большие обратные напряжения и большие плотности тока в прямом направлении.

    Количество неосновных носителей заряда определяется температурой и поэтому ход обратной ветви вольтамперной характеристики сильно зависит от температуры, причем эта зависимость резко выражена для германиевых диодов. Величина напряжения пробоя тоже зависит от температуры. Эта зависимость определяется видом пробоя p-n перехода. При электрическом пробое за счет ударной ионизации Uпроб возрастает при повышении температуры. Это объясняется тем, что при повышении температуры увеличиваются тепловые колебания решетки, уменьшается длина свободного пробега носителей заряда и для того, чтобы носитель заряда приобрел энергию достаточную для ионизации валентных связей, надо повысить напряженность поля, т.е. увеличить приложенное к p-n переходу обратное напряжение.

    Выпрямительные диоды используются в схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.

    В ряде мощных преобразовательных установок требования к среднему значению прямого тока, обратного напряжения превышают номинальное значение параметров существующих диодов. В этих случаях задача решается параллельным или последовательным соединением диодов.

    Параллельное соединение диодов применяют в том случае, когда нужно получить прямой ток, больший предельного тока одного диода.

    Последовательное соединение диодов применяют для увеличения суммарного допустимого обратного напряжения. При воздействии обратного напряжения через диоды, включенные последовательно, протекает одинаковый обратный ток Iобр.

    Полупроводниковые диоды

    Полупроводниковый диод — это полупроводниковый прибор с одним электронно-дырочным переходом (основная часть) и двумя выводами. Примеры внешнего вида диодов приведены на рис. 1.

    Рис. 1. Полупроводниковые диоды.

    По конструкции полупроводниковые диоды могут быть плоскостными и точечными. Устройство плоскостного диода показано на рис. 2. К кристаллодержателю припаивается пластинка полупроводника n-типа. Кристалложержатель – это металлическое основание плоскостного диода. Сверху в пластинку полупроводника вплавляется капля трёхвалентного металла, обычно индия. Атомы индия диффундируют (проникают) в полупроводниковую пластинку и образуют у её поверхности слой р-типа. Между слоями р- и n-типов образуется электронно-дырочный переход (ЭДП). К кристаллодержателю и индию припаиваются проводники, которые служат выводами диода. Для предохранения диода от механических повреждений, попадания света, пыли и влаги на полупроводник, его помещают в герметичный корпус.

    На рис. 2 позиция 1 – это вывод р-области, позиция 2 – вывод n-области.

    Рис. 2. Устройство плоскостного диода.

    Точечный полупроводниковый диод состоит из пластинки полупроводника n-типа и заострённой пружинки из вольфрама или фосфористой бронзы диаметром около 0,1 мм. Через прижатую к полупроводниковой пластинке пружинку пропускают электрический ток большой силы, в результате чего металлическая пружинка сваривается с полупроводниковой пластинкой, образуя под своим остриём р-область. Между р-областью и полупроводником n-типа возникает электронно-дырочный переход.

    На рис. 3 приведены условные графические обозначения (УГО) различных диодов. Острая вершина треугольника в УГО указывает на направление протекания прямого тока через диод. То есть для того, чтобы диод пропускал ток, включать его нужно так, чтобы на основание треугольника подавался «плюс» (или на прямолинейный отрезок подавался «минус»). Если включить диод в обратном направлении, то он не будет пропускать ток (потому и называется полупроводником – пропускает ток только в одном направлении). Пример включения диода показан на рис. 4. Пример применения диода можно увидеть на рис. 5.

    Рис. 3. Условное графическое обозначение (УГО) диодов.

    р-область диода (то есть вывод, на который в прямом направлении подаётся «плюс») носит название анод. Противоположный вод называется катод.

    Рис. 4. Включение диода.


    ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ Параметры и характеристики

    Диоды – полупроводники, которые пропускают ток в одном направлении. Выводы диода называют анодом А и катодом К

    Если приложено положительное напряжение UAK > 0, то диод работает в прямом направлении. При отрицательном напряжении UAK < 0, диод заперт. Обратный ток всегда на несколько порядков меньше, чем прямой.

    Режим работы диода определяется его вольт-амперной характеристикой (ВАХ) I = f(UAK). Типовая характеристика диода представлена на рис. 4.2. Прямой ток резко возрастает при малых положительных напряжениях UAK. Однако он не должен превышать определенного максимального значения Iмакс, так как иначе произойдет перегрев и диод выйдет из строя. Приближенно ход характеристики может быть описан значениями прямого напряжения UПР при токах порядка 0,1Iмакс. Для германия UПР находится в пределах от 0,2 по 0,4 В, для кремния от 0,5 до 0,8 В. Таким падением напряжения можно пренебречь, и тогда диод можно рассматривать как проводник, пропускающий ток только в одном направлении.

    Для диодов общего назначения обратный ток очень мал и составляет нано- и микроамперы. Его, как правило, можно не принимать во внимание до тех пор, пока напряжение на диоде не достигнет напряжения пробоя. Для диодов общего назначения это напряжение составляет десятки и сотни вольт.  Обратный ток при напряжениях |UAK| > UОБР.макс возрастает до значений, соизмеримых с прямым током. Обычные диоды в этой области не могут работать, так как в них происходит локальный перегрев, приводящий к выходу диодов из строя. Все полупроводниковые приборы можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды, как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n переходов: явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

    Рис.4.2. ВАХ диода 

    Выпрямительные диоды обычно характеризуют набором статических и динамических параметров. К статическим параметрам диода относятся:

    • падение напряжения UПРна диоде при некотором значении прямого тока;
    • обратный ток IОБР при некотором значении обратного напряжения;
    • среднее значение прямого тока IПР.СР.;
    • максимальное значение обратного напряжения UОБР.

            К динамическим параметрам диода относятся его временные или частотные характеристики. К таким параметрам относятся:

    • время восстановленияtВОС обратного напряжения;
    • время нарастания прямого тока IНАР;
    • предельная частота без снижения режимов диода fмакс.

     Статические параметры можно установить по вольт-амперной характеристике диода. Время обратного восстановления диода tВОСявляется основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Переключение диода из проводящего состояния в закрытое происходит не мгновенно, так как при этом p-n переход должен освободиться от накопленного заряда. Эффект накопления заряда можно пояснить на примере простого выпрямителя. В качестве входного напряжения используется напряжение прямоугольной формы. Когда входное напряжение UВХположительно, диод открывается и выходное напряжение равно прямому напряжению на диоде. Когда UВХотрицательно, диод закрывается и IД = IОБР. Из рис.4.3 видно, что это происходит по истечении времени восстановления tВОС, которое тем больше, чем больше прямой ток p-n перехода. По существу, происходит рассасывание зарядов на границе p-n перехода (т.е. разряд эквивалентной емкости). 

    Рис. 4.3. Импульсный режим работы диода 

    Обычно значение времени накопления для маломощных диодов составляет 10 – 100 нс. Для мощных диодов эта величина находится в диапазоне микросекунд. Период колебаний входного напряжения должен быть больше времени накопления, в противном случае теряются выпрямительные свойства диода.

     

    Полупроводниковые диоды — типы, принцип работы

    Полупроводниковый диод — это электронный прибор, выполненный на основе полупроводникового кристалла.

    Стоит заметить, что технологий изготовления диодов достаточно много, но рассмотрение принципа работы полупроводникового диода на молекулярно — электронном уровне целью данной статьи не является.

    Дело в том, что для большинства практических целей достаточно знать основные параметры, назначение, общие принципы действия различных типов диодов, схемы подключения.

    Области применения полупроводниковых диодов весьма разнообразны, ниже я их конспективно перечислю, а вопросы применения наиболее распространенных типов полупроводниковых диодов подробно рассмотрю на соответствующих страницах.

    Выпрямительные диоды обладают высоким сопротивлением при обратном включении и низким — при прямом, то есть хорошо проводят ток только в одном направлении.

    Высокочастотные и импульсные диоды имеют схожий принцип действия с предыдущим типом полупроводниковых приборов, однако, за счет малой собственной емкости могут работать на высоких частотах, что, собственно, следует из их названия.

    Стабилитроны — при определенных значениях обратного напряжения обратный ток стабилитрона резко увеличивается, что позволяет использовать их как стабилизатор напряжения.

    Светодиоды (LED диоды) преобразуют электрическую энергию в световую, широко используются как индикаторы и осветительные устройства (см., например, светодиодная лента).

    Фотодиоды преобразуют оптическое излучение в электрический заряд. Могут использоваться как источники электроэнергии (солнечные батареи), кроме того, совместно со светодиодами применяются в пультах дистанционного управления, а также могут обеспечивать гальваническую развязку в электронных схемах.

    Варикапы обладают зависимостью своей емкости от приложенного напряжения. Являются своего рода электронно управляемыми конденсаторами переменной емкости.

    © 2012-2020 г. Все права защищены.

    Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


    способ изготовления диода и применение

     

    Контакт двух полупроводников n- и p- типов называют p-n-переходом или n-p –переходом. В результате контакта между полупроводниками начинается диффузия. Некоторая часть электронов переходит к дыркам, а некоторая часть дырок переходит на сторону электронов.

    В результате чего полупроводники заряжаются: n- положительно, а p – отрицательно. После того, как электрическое поле, которое будет возникать в зоне перехода, начнет препятствовать перемещению электронов и дырок, диффузия прекратится.

    При подключении pn-перехода в прямом направлении он будет пропускать через себя ток. Если же подключить pn-переход в обратном направлении, то он не будет практически пропускать ток.

    На следующем графике показаны вольт-амперные характеристики прямого и обратного подключения pn-перехода.

    рисунок

    Изготовление полупроводникового диода

    Сплошной линией нарисована вольт-амперная характеристика прямого подключения pn-перехода, а пунктирной – обратного подключения.
    Из графика видно, что pn-переход по отношению к току несимметричен, так как в прямом направлении сопротивление перехода намного меньше, чем в обратном.

    Свойства pn-перехода широко используются для выпрямления электрического тока. Для этого на основе pn-перехода изготавливают полупроводниковый диод.

    Обычно для изготовления полупроводниковых диодов используют германий, кремний, селен и ряд других веществ. Рассмотрим подробнее процесс создания pn-перехода, используя германий с полупроводимостью n-типа.

    Такой переход не удастся получить путем механического соединения двух полупроводников с разными типами проводимости. Это невозможно ,потому что при этом между полупроводниками получается слишком большой зазор.

    А нам необходимо, чтобы толщина pn-перехода должна быть не больше межатомных расстояний. Во избежание этого, в одну из поверхностей образца вплавляют индий. 

    Для создания полупроводникового диода полупроводник с примесью p-типа, в котором содержатся атомы индия, нагревают до высокой температуры. Пары примесей n-типа осаждаются на поверхности кристалла. Далее вследствие диффузии они внедряются в сам кристалл.

    На поверхности кристалла, у которого проводимость p-типа, образуется область с проводимостью n-типа. На следующем рисунке схематично показано как это выглядит.

    рисунок

    Для того, чтобы исключить воздействие воздуха и света на кристалл, его помещают в герметичный металлический корпус. На принципиальных электрических схемах, диод обозначают с помощью следующего специального значка.

    рисунок

    Полупроводниковые выпрямители обладают очень высокой надежностью и долгим сроком службы. Основным их недостатком является то, что они могут работать лишь в небольшом интервале температур: от -70 до 125 градусов.

    Нужна помощь в учебе?



    Предыдущая тема: Электрический ток через контакт полупроводников р и п типов: вольт-амперная характеристика
    Следующая тема:&nbsp&nbsp&nbspТермисторы и фоторезисторы: общее понятие, область применения

    Полупроводниковый диод | Определение полупроводникового диода на Dictionary.

    com

    Если вы читаете это, поблагодарите полупроводниковый диод .

    Полупроводниковые диоды используются во всех видах современной электроники, включая процессоры в телефонах и компьютерах. Эта концепция была впервые открыта немецким физиком Фердинандом Брауном в 1874 году, но не получила широкого распространения до появления радио в начале 1900-х годов. Первыми коммерческими полупроводниковыми диодами были устройства, известные как кристаллические детекторы , запатентованные в 1906 году американским инженером-электриком Гринлифом У.Pickard, который продавал их для радиоприложений. В наиболее распространенном типе кристаллического детектора использовалась тонкая пружинящая металлическая проволока, от которой и произошло его популярное название: детектор кошачьих усов .

    Среди простейших полупроводниковых устройств есть те, которые известны как p-n переход диоды . В большинстве случаев они сделаны из кремния, хотя также используется германий. Сам по себе кремний не очень хорошо проводит, но его проводимость можно улучшить, добавив другие элементы.В зависимости от того, что вы добавляете в кремний, он может стать либо материалом p-типа, который имеет положительный заряд, либо материалом n-типа, который имеет отрицательный заряд. Чтобы создать диод, смешивают материал p-типа и материал n-типа. P-тип — это анод , а n-тип — это катод .

    На стыке, где встречаются два материала, они нейтрализуют друг друга, и область вокруг стыка не имеет заряда. Электрический ток не может пройти через него.Если вы добавите положительный электрический ток к положительному концу и отрицательный к отрицательному концу, соединение станет меньше, и электричество может течь через соединение. Но если вы перевернете это, перекресток станет больше, и ток не сможет пройти. Таким образом, электричество может проводиться только в одном направлении, и создается диод.

    Еще одним основным типом диодов является термоэмиссионный диод . Возможно, вы знаете их лучше как вакуумные лампы . В вакуумных трубках используются стеклянные трубки для создания вакуума, окружающего крошечный провод, который нагревает катод и высвобождает электроны.Затем анод притягивает электроны, что означает, что ток идет в этом направлении. Хотя этот тип диодов был распространен в ранних электрических приложениях, сегодня он в значительной степени заменен полупроводниковыми.

    Полупроводниковые диоды используются повсюду вокруг нас во многих, многих электронных устройствах, на которые мы полагаемся в современной жизни. Например, диоды используются в устройствах защиты от перенапряжения (которые предохраняют все виды устройств от перегрева). Эти типы диодов открываются только при слишком высоком напряжении и выпускают лишнее, чтобы защитить ваше устройство от получения слишком большого количества электроэнергии.

    Что такое диод и для чего он нужен?

    ОСНОВНЫЕ ЗНАНИЯ — ДИОД Что такое диод и для чего он используется?

    Автор / Редактор: Люк Джеймс / Erika Granath

    Диод может быть самым простым из всех полупроводниковых компонентов, однако он выполняет множество важных функций, включая управление потоком электрического тока. Вот краткий обзор простого диода и того, для чего он обычно используется.

    Связанные компании

    Диод — это устройство, которое позволяет току течь в одном направлении, но не в другом. Это достигается за счет встроенного электрического поля.

    (Bild: Public Domain)

    Диод — это устройство, которое позволяет току течь в одном направлении, но не в другом. Это достигается за счет встроенного электрического поля. Хотя самые ранние диоды состояли из раскаленных проволок, проходящих через середину металлического цилиндра, который сам находился внутри стеклянной вакуумной трубки, современные диоды являются полупроводниковыми диодами. Как следует из названия, они сделаны из полупроводниковых материалов, в основном из легированного кремния.

    Проведение электрического тока в одном направлении

    ВАХ (зависимость тока от напряжения) диода с p – n переходом.

    (Bild: CC BY-SA 4.0)

    Несмотря на то, что диоды являются не более чем простыми двухконтактными полупроводниковыми приборами, они жизненно важны для современной электроники.
    Некоторые из их наиболее распространенных приложений включают преобразование переменного тока в постоянный, изоляцию сигналов от источника питания и микширование сигналов.У диода две «стороны», и каждая сторона легирована по-разному. Одна сторона — это «сторона p», она имеет положительный заряд.
    Другая сторона — это «n-сторона», она имеет отрицательный заряд. Обе эти стороны наслоены вместе, образуя так называемое «n-p соединение», где они встречаются.

    Когда отрицательный заряд прикладывается к n-стороне и положительный к p-стороне, электроны «перепрыгивают» через этот переход, и ток течет только в одном направлении. Это свойство сердечника диода; обычный ток течет от положительной стороны к отрицательной только в этом направлении.В то же время электроны текут в одном направлении только с отрицательной стороны на положительную. Это связано с тем, что электроны заряжены отрицательно и притягиваются к положительному полюсу батареи.

    Для чего используются диоды?

    Диоды — чрезвычайно полезные компоненты и широко используются в современной технике.

    Светодиоды (LED)

    Возможно, наиболее широко известное современное применение диодов — это светодиоды. В них используется особый вид легирования, так что, когда электрон пересекает n-p переход, испускается фотон, который создает свет.Это связано с тем, что светодиоды светятся при наличии положительного напряжения. Тип легирования может быть изменен так, что может излучаться свет любой частоты (цвета), от инфракрасного до ультрафиолетового.

    Преобразование мощности

    Хотя светодиоды могут быть наиболее широко известным приложением для обычного человека, наиболее распространенным применением на сегодняшний день является использование диодов для преобразования мощности переменного тока в мощность постоянного тока. Используя диоды, можно создавать различные типы выпрямительных схем, самые простые из которых — это полуволновые, полнополупериодные выпрямители с центральным ответвлением и полные мостовые выпрямители.Они чрезвычайно важны в источниках питания для электроники — например, в зарядном устройстве портативного компьютера — где переменный ток, исходящий от источника питания, должен быть преобразован в постоянный ток, который затем может быть сохранен.

    Защита от перенапряжения

    Чувствительные электронные устройства должны быть защищены от скачков напряжения, и диод идеально подходит для этого. При использовании в качестве устройств защиты по напряжению диоды не проводят ток, однако они немедленно замыкают любой всплеск высокого напряжения, отправляя его на землю, где он не может повредить чувствительные интегральные схемы.Для этого разработаны специальные диоды, известные как «ограничители переходных напряжений». Они могут справляться с большими скачками мощности в течение коротких периодов времени, которые обычно могут повредить чувствительные компоненты.

    (ID: 46381408)

    Введение в диоды и выпрямители | Диоды и выпрямители

    Все о диодах

    Диод представляет собой электрическое устройство, позволяющее току , проходить через него в одном направлении с гораздо большей легкостью, чем в другом.Наиболее распространенным типом диодов в современной схемотехнике является полупроводниковый диод , хотя существуют и другие диодные технологии. Полупроводниковые диоды обозначены на схематических диаграммах, таких как рисунок ниже. Термин «диод» обычно зарезервирован для малосигнальных устройств, I ≤ 1 A. Термин выпрямитель используется для силовых устройств, I> 1 A.

    Схематический символ полупроводникового диода: стрелки указывают направление тока.

    При включении в простую схему «батарея-лампа» диод пропускает или предотвращает прохождение тока через лампу, в зависимости от полярности приложенного напряжения. (рисунок ниже)

    Работа диода: а) ток разрешен; диод смещен в прямом направлении. (b) Текущий поток запрещен; диод имеет обратное смещение.

    Когда полярность батареи такова, что ток может течь через диод, диод называется с прямым смещением . И наоборот, когда батарея находится «в обратном направлении» и диод блокирует ток, говорят, что диод имеет обратное смещение . Диод можно рассматривать как переключатель: «замкнут» при прямом смещении и «разомкнут» при обратном смещении.

    Направление стрелки символа диода указывает направление тока в обычном потоке. Это соглашение справедливо для всех полупроводников, на схемах которых есть «наконечники стрел». Обратное верно, когда используется поток электронов, когда направление тока направлено против «стрелки».

    Гидравлический обратный клапан Аналогия

    Поведение диода аналогично поведению гидравлического устройства, называемого обратным клапаном . Обратный клапан позволяет жидкости проходить через него только в одном направлении, как показано на рисунке ниже.

    Аналогия с гидравлическим обратным клапаном: (a) Допустимый ток. (b) Текущий поток запрещен.

    Обратные клапаны — это, по сути, устройства, работающие под давлением: они открываются и пропускают поток, если давление на них имеет правильную «полярность» для открытия задвижки (в показанной аналогии давление жидкости справа больше, чем слева). Если давление имеет противоположную «полярность», перепад давления на обратном клапане закроется и будет удерживать заслонку, так что потока не будет.

    Как и обратные клапаны, диоды, по сути, представляют собой устройства, работающие от давления (напряжения). Существенная разница между прямым и обратным смещением заключается в полярности падения напряжения на диоде. Давайте подробнее рассмотрим простую схему батарея-диод-лампа, показанную ранее, на этот раз исследуя падение напряжения на различных компонентах на рисунке ниже.

    Измерения напряжения диодной цепи: (a) Прямое смещение. (b) Обратное смещение.

    Конфигурация диода прямого смещения

    Диод с прямым смещением проводит ток и понижает на нем небольшое напряжение, в результате чего большая часть напряжения батареи падает на лампе.Если полярность батареи меняется на противоположную, диод становится смещенным в обратном направлении и сбрасывает все напряжения батареи, не оставляя лампе ничего. Если мы считаем диод самодействующим переключателем (замкнутым в режиме прямого смещения и разомкнутым в режиме обратного смещения), такое поведение имеет смысл. Наиболее существенное различие заключается в том, что диод при проводке падает намного больше напряжения, чем средний механический переключатель (0,7 вольт против десятков милливольт).

    Это падение напряжения прямого смещения, проявляемое диодом, связано с действием области обеднения, образованной P-N переходом под влиянием приложенного напряжения.Если на полупроводниковый диод не подается напряжение, вокруг области P-N-перехода существует тонкая обедненная область, предотвращающая протекание тока. (Рисунок ниже (а)) Область обеднения почти лишена доступных носителей заряда и действует как изолятор:

    Изображения диодов: модель PN-перехода, схематическое обозначение, физическая часть.

    Схематическое обозначение диода показано на рисунке выше (b), так что анод (указывающий конец) соответствует полупроводнику P-типа в точке (a).Катодный стержень, не указывающий конец, в точке (b) соответствует материалу N-типа в точке (a). Также обратите внимание, что катодная полоса на физической части (c) соответствует катоду на символе.

    Конфигурация диода обратного смещения

    Если напряжение обратного смещения приложено к переходу P-N, эта область истощения расширяется, дополнительно сопротивляясь любому току через нее. (Рисунок ниже)

    Область истощения расширяется с обратным смещением.

    прямое напряжение

    И наоборот, если напряжение прямого смещения приложено к переходу P-N, область обеднения сжимается, становясь тоньше.Диод становится менее резистентным к проходящему через него току. Для того, чтобы через диод шел устойчивый ток; тем не менее, область истощения должна быть полностью сжата под действием приложенного напряжения. Для этого требуется определенное минимальное напряжение, называемое прямым напряжением , как показано на рисунке ниже.

    Увеличение прямого смещения от (a) до (b) уменьшает толщину обедненной области.

    Для кремниевых диодов типичное прямое напряжение составляет 0,7 В, номинальное.Для германиевых диодов прямое напряжение составляет всего 0,3 вольта. Химическая составляющая P-N перехода, составляющего диод, определяет его номинальное значение прямого напряжения, поэтому кремниевые и германиевые диоды имеют такие разные прямые напряжения. Прямое падение напряжения остается примерно постоянным для широкого диапазона токов диодов, а это означает, что падение напряжения на диоде не похоже на падение напряжения на резисторе или даже на обычном (замкнутом) переключателе. Для наиболее упрощенного анализа схемы падение напряжения на проводящем диоде можно считать постоянным при номинальном значении и не связанным с величиной тока.

    Диодное уравнение

    На самом деле, прямое падение напряжения более сложное. Уравнение описывает точный ток через диод с учетом падения напряжения на переходе, температуры перехода и нескольких физических констант. Это широко известно как уравнение диода :

    Термин kT / q описывает напряжение, возникающее в переходе P-N из-за действия температуры, и называется термическим напряжением или Vt перехода.При комнатной температуре это примерно 26 милливольт. Зная это и принимая коэффициент «неидеальности» равным 1, мы можем упростить уравнение диода и переписать его как таковое:

    Вам не нужно знать «уравнение диода» для анализа простых диодных цепей. Просто поймите, что напряжение, падающее на токопроводящем диоде , изменяет с величиной тока, проходящего через него, но это изменение довольно мало в широком диапазоне токов. Вот почему во многих учебниках просто говорится, что падение напряжения на проводящем полупроводниковом диоде остается постоянным на уровне 0.7 вольт для кремния и 0,3 вольт для германия.

    Тем не менее, некоторые схемы намеренно используют присущее P-N переходу экспоненциальное соотношение тока / напряжения и, таким образом, могут быть поняты только в контексте этого уравнения. Кроме того, поскольку температура является фактором в уравнении диода, смещенный в прямом направлении P-N переход также может использоваться в качестве устройства измерения температуры и, таким образом, может быть понят, только если у человека есть концептуальное представление об этой математической зависимости.

    Работа с обратным смещением

    Диод с обратным смещением предотвращает прохождение тока через него из-за расширенной области обеднения.На самом деле очень небольшой ток может проходить и проходит через диод с обратным смещением, называемый током утечки , но для большинства целей им можно пренебречь.

    Способность диода выдерживать напряжения обратного смещения ограничена, как и для любого изолятора. Если приложенное напряжение обратного смещения становится слишком большим, диод испытывает состояние, известное как пробой (рисунок ниже), которое обычно является деструктивным.

    Максимальное напряжение обратного смещения диода известно как Peak Inverse Voltage или PIV , и его можно получить у производителя.Как и прямое напряжение, PIV-рейтинг диода зависит от температуры, за исключением того, что PIV увеличивается на с повышением температуры, а уменьшается на , когда диод становится холоднее, что в точности противоположно прямому напряжению.

    Диодная кривая: показывает излом при прямом смещении 0,7 В для Si и обратный пробой.

    Обычно рейтинг PIV обычного «выпрямительного» диода составляет не менее 50 В при комнатной температуре. Диоды с рейтингом PIV в несколько тысяч вольт доступны по скромным ценам.

    ОБЗОР:

    • Диод — это электрический компонент, действующий как односторонний клапан для тока.
    • Когда напряжение подается на диод таким образом, что диод пропускает ток, говорят, что диод смещен в прямом направлении .
    • Когда напряжение подается на диод таким образом, что диод запрещает ток, говорят, что диод имеет обратное смещение .
    • Напряжение, падающее на проводящий диод с прямым смещением, называется прямым напряжением .Прямое напряжение диода изменяется незначительно при изменении прямого тока и температуры и фиксируется химическим составом P-N перехода.
    • Кремниевые диоды
    • имеют прямое напряжение примерно 0,7 В.
    • Германиевые диоды
    • имеют прямое напряжение примерно 0,3 В.
    • Максимальное обратное напряжение смещения, которое диод может выдержать без «пробоя», называется номинальным значением пикового обратного напряжения или PIV .

    СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

    Введение в диоды

    • Раздел 2.0 Введение в диоды.
    • • Обозначения диодных цепей.
    • • Ток через диоды.
    • • Конструкция диодов.
    • • PN-переход.
    • • Прямое и обратное смещение.
    • • Характеристики диода.
    • Раздел 2.1 Кремниевые выпрямители.
    • • Маркировка полярности.
    • • Параметры выпрямителя.
    • Раздел 2.2 Диоды Шоттки.
    • • Конструкция диода Шоттки.
    • • Потенциал соединения Шоттки.
    • • Высокоскоростное переключение.
    • • Выпрямители мощности Шоттки.
    • • Ограничения по току Шоттки.
    • • Защита от перенапряжения.
    • Раздел 2.3 Малосигнальные диоды.
    • • Конструкция малосигнального диода.
    • • Формирование волны.
    • • Обрезка.
    • • Зажим / восстановление постоянного тока.
    • • Приложения HF.
    • • Защитные диоды.
    • Раздел 2.4 Стабилитроны.
    • • Конструкция стабилитрона.
    • • Обозначения схем Зенера.
    • • Эффект Зенера.
    • • Эффект лавины.
    • • Практичные стабилитроны.
    • Раздел 2.5 Светодиоды.
    • • Работа светодиода.
    • • Излучение света.
    • • Цвета светодиодов.
    • • Расчеты цепей светодиодов.
    • • Светодиодные матрицы.
    • • Тестирование светодиодов.
    • Раздел 2.6 Лазерные диоды.
    • • Лазерный луч.
    • • Основы атома.
    • • Конструкция лазерного диода.
    • • Лазерная накачка.
    • • Управление лазерным диодом.
    • • Лазерные модули.
    • • Лазерная оптика.
    • • Классы лазерных диодов.
    • Раздел 2.7 Фотодиоды.
    • • Основы фотодиодов.
    • • Приложения.
    • • Конструкция лазерного диода.
    • • Лазерная накачка.
    • • Управление лазерным диодом.
    • • Лазерные модули.
    • • Лазерная оптика.
    • • Классы лазерных диодов.
    • Раздел 2.8 Проверка диодов.
    • • Неисправности диодов.
    • • Проверка диодов с помощью омметра.
    • • Определение соединений диодов.
    • • Выявление неисправных диодов.
    • Раздел 2.9 Тест по диодам.
    • • Проверьте свои знания о диодах.

    Рисунок 2.0.1. Диоды

    Введение

    Диоды — одни из самых простых, но наиболее полезных из всех полупроводниковых устройств. Многие типы диодов используются в широком спектре приложений.Выпрямительные диоды — жизненно важный компонент в источниках питания, где они используются для преобразования сетевого напряжения переменного тока в постоянное. Стабилитроны используются для стабилизации напряжения, предотвращения нежелательных изменений в подаче постоянного тока в цепи и для подачи точных опорных напряжений для многих схем. Диоды также можно использовать для предотвращения катастрофического повреждения оборудования с батарейным питанием, когда батареи подключены с неправильной полярностью.

    Сигнальные диоды также широко используются при обработке сигналов в электронном оборудовании; они используются для получения аудио- и видеосигналов из передаваемых радиочастотных сигналов (демодуляция), а также могут использоваться для формирования и изменения форм сигналов переменного тока (ограничение, ограничение и восстановление постоянного тока).Диоды также встроены во многие цифровые интегральные схемы, чтобы защитить их от опасных скачков напряжения.

    Рис. 2.0.2 Обозначения диодных цепей

    Светодиоды

    излучают многоцветный свет в очень широком спектре оборудования от простых индикаторных ламп до огромных и сложных видеодисплеев. Фотодиоды также производят электрический ток из света.

    Диоды изготавливаются из полупроводниковых материалов, в основном кремния, с добавлением различных соединений (комбинации более чем одного элемента) и металлов в зависимости от функции диода.Ранние типы полупроводниковых диодов были сделаны из селена и германия, но эти типы диодов были почти полностью заменены более современными конструкциями кремния.

    На рис. 2.0.1 показаны следующие диоды с общим проводом на концах:

    1. Три силовых выпрямителя (мостовой выпрямитель для работы с сетевым (линейным) напряжением и два выпрямительных диода сетевого напряжения).

    2. Точечный диод (в стеклянной капсуле) и диод Шоттки.

    3. Кремниевый малосигнальный диод.

    4. Стабилитроны в корпусе из стекла или черной смолы.

    5. Подборка светодиодов. Против часовой стрелки от красного: желтый и зеленый светодиоды, инфракрасный фотодиод, теплый белый светодиод 5 мм и синий светодиод высокой яркости 10 мм.

    Обозначения диодных цепей

    Диод — это односторонний провод. Он имеет два вывода: анод или положительный вывод и катод или отрицательный вывод. В идеале диод будет пропускать ток, когда его анод сделан более положительным, чем его катод, но предотвращать протекание тока, когда его анод более отрицательный, чем его катод.В условных обозначениях схем, показанных на рис. 2.0.2, катод показан в виде стержня, а анод — в виде треугольника. На некоторых принципиальных схемах анод диода может также обозначаться буквой «а», а катод — буквой «к».

    В каком направлении течет диодный ток?

    Обратите внимание на рис. 2.0.2, что обычный ток течет от положительной (анодной) клеммы к отрицательной (катодной) клемме, хотя движение электронов (электронный поток) происходит в противоположном направлении, от катода к аноду.

    Конструкция кремниевого диода

    Рис. 2.0.3 Кремниевый планарный диод

    Современные кремниевые диоды обычно производятся с использованием одной из различных версий планарного процесса, который также используется для изготовления транзисторов и интегральных схем. Многослойная конструкция, используемая в методах Silicon Planar, дает ряд преимуществ, таких как предсказуемые характеристики и надежность, а также является преимуществом для массового производства.

    Упрощенный планарный кремниевый диод показан на рис. 2.0.3. Использование этого процесса для кремниевых диодов позволяет получить два слоя кремния с различным легированием, которые образуют «PN переход». Нелегированный или «собственный» кремний имеет решеточную структуру из атомов, каждый из которых имеет четыре валентных электрона, но кремний P-типа и кремний N-типа легируют путем добавления относительно очень небольшого количества материала, имеющего атомную структуру с тремя валентными электронами (например, бор или алюминий), чтобы получить P-тип, или пять валентных электронов (например, мышьяк или фосфор), чтобы получить кремний N-типа.Эти легированные версии кремния известны как «примесный» кремний. Кремний P-типа теперь имеет нехватку валентных электронов в своей структуре, что также можно рассматривать как избыток «дырок» или носителей положительного заряда, тогда как слой N-типа легирован атомами, имеющими пять электронов в его валентной оболочке и поэтому имеет избыток электронов, которые являются носителями отрицательного заряда.

    Диод PN переход

    Рис. 2.0.4 Слой истощения диода

    Когда кремний P- и N-типа объединяются во время производства, создается переход, где встречаются материалы P-типа и N-типа, и отверстия, расположенные рядом с переходом в кремнии P-типа, притягиваются к отрицательно заряженному материалу N-типа на другой стороне. перехода.Кроме того, электроны, расположенные рядом с переходом в кремнии N-типа, притягиваются к положительно заряженному кремнию P-типа. Следовательно, вдоль перехода между кремнием P- и N-типа создается небольшой естественный потенциал между полупроводниковым материалом P и N с отрицательно заряженными электронами, которые теперь находятся на стороне P-типа перехода, и положительно заряженными дырками на стороне N. соединение. Этот слой носителей заряда противоположной полярности накапливается до тех пор, пока его не станет достаточно, чтобы предотвратить свободное движение любых других дырок или электронов.Из-за этого естественного электрического потенциала на переходе между слоями P и N в PN-переходе образовался очень тонкий слой, который теперь обеднен носителями заряда и поэтому называется обедненным слоем. Поэтому, когда диод подключен к цепи, ток не может течь между анодом и катодом, пока анод не станет более положительным, чем катод, с помощью прямого потенциала или напряжения (V F ), по крайней мере, достаточного для преодоления естественного обратного потенциала соединение.Это значение зависит в основном от материалов, из которых сделаны слои P и N диода, и от количества используемого легирования. Различные типы диодов имеют естественный обратный потенциал в диапазоне примерно от 0,1 В до 2 или 3 В. Кремниевые диоды с PN переходом имеют потенциал перехода от 0,6 В до 0,7 В

    Диод прямой проводимости

    Рис. 2.0.5 Диод вперед


    Проводимость

    Когда напряжение, приложенное к аноду, становится более положительным, чем на катоде, на величину, превышающую потенциал обедненного слоя, начинается прямая проводимость от анода к обычному катоду, как показано на рис.2.0.5.

    Когда напряжение, приложенное между анодом и катодом, увеличивается, прямой ток сначала увеличивается медленно, поскольку носители заряда начинают пересекать обедненный слой, а затем быстро возрастает примерно по экспоненте. Следовательно, сопротивление диода, когда он «включен» или проводит в режиме «прямого смещения», не равно нулю, а очень мало. Поскольку прямая проводимость увеличивается после преодоления потенциала истощения по примерно следующей экспоненциальной кривой, прямое сопротивление (V / I) незначительно изменяется в зависимости от приложенного напряжения.

    Диод с обратным смещением

    Рис. 2.0.6 Обратный диод


    Смещенный

    Когда диод смещен в обратном направлении (анод подключен к отрицательному напряжению, а катод — к положительному), как показано на рис. 2.0.6, положительные отверстия притягиваются к отрицательному напряжению на аноде и от перехода. Точно так же отрицательные электроны притягиваются от перехода к положительному напряжению, приложенному к катоду. Это действие оставляет большую площадь на стыке без каких-либо носителей заряда (положительных дырок или отрицательных электронов) по мере расширения обедненного слоя. Поскольку область перехода теперь обеднена носителями заряда, она действует как изолятор, и по мере того, как более высокие напряжения применяются с обратной полярностью, обедненный слой становится еще шире, чем больше носителей заряда удаляется от перехода. Диод не будет проводить при приложенном обратном напряжении (обратном смещении), за исключением очень небольшого «обратного тока утечки» (I R ), который в кремниевых диодах обычно меньше 25 нА. Однако, если приложенное напряжение достигает значения, называемого «обратным напряжением пробоя» (V RRM ), ток в обратном направлении резко возрастает до точки, где, если ток не ограничен каким-либо образом, диод будет разрушен.

    Вольт-амперные характеристики диода

    Рис 2.0.7. Типичный диод I / V


    Характеристика

    Работа диодов, описанная выше, также может быть описана специальным графиком, называемым «характеристической кривой». Эти графики показывают взаимосвязь между фактическими токами и напряжениями, связанными с различными клеммами устройства. Понимание этих графиков помогает понять, как работает устройство.

    Для диодов характеристическая кривая называется ВАХ, потому что она показывает взаимосвязь между напряжением, приложенным между анодом и катодом, и результирующим током, протекающим через диод.Типичная ВАХ показана на рис. 2.0.7.

    Оси графика показывают как положительные, так и отрицательные значения и поэтому пересекаются в центре. Пересечение имеет нулевое значение как для тока (ось Y), так и для напряжения (ось X). Оси + I и + V (верхняя правая область графика) показывают круто возрастающий ток после области начального нулевого тока. Это прямая проводимость диода, когда анод положительный, а катод отрицательный. Первоначально ток не течет, пока приложенное напряжение не превысит потенциал прямого перехода.После этого ток резко возрастает примерно по экспоненте.

    Оси -V и -I показывают состояние обратного смещения (нижняя левая область графика). Здесь можно увидеть, что очень небольшой ток утечки увеличивается с увеличением обратного напряжения. Однако, как только достигается обратное напряжение пробоя, обратный ток (-I) резко возрастает.

    Начало страницы

    Термоэмиссионные и полупроводниковые диоды

    Диоды — это небольшие электрические устройства, которые используются для передачи электрического тока в одном направлении и для предотвращения движения встречного тока в противоположном.У них есть два вывода, каждый с электродом — один электрод заряжен положительно, а другой — отрицательно. Способность диода передавать ток только в одном направлении также называется выпрямляющим свойством. Когда диод пропускает ток в одном направлении, это называется состоянием прямого смещения; состояние обратного смещения возникает, когда диод блокирует движение тока в противоположном направлении. Однако способность диода быть однонаправленной зависит от типа диода и используемой технологии.Различные типы диодов, такие как термоэлектронные и различные типы полупроводниковых диодов, используют разные технологии для передачи тока.

    Термоэлектронные диоды, также называемые вакуумными трубками, представляют собой диоды, которые закрывают электроды в стеклянном вакууме — ранние модели выглядели как миниатюрные лампочки. Нить накала нагревателя используется для передачи тепла, которое вызывает тепловую эмиссию электронов в вакууме и нагревает катод. В этом случае анод становится положительным и притягивает электроны, передавая ток в одном направлении.Поскольку анод не будет выпускать электроны даже при понижении температуры, электроны могут двигаться только в одном направлении, и процесс не может изменить направление.

    Хотя термоэлектронные диоды были распространенной ранней формой диодов, большинство современных диодов являются полупроводниковыми диодами определенного типа. Такие материалы, как кремний и германий, часто используются, потому что в них нет свободных электронов, а это означает, что они не могут легко передавать электричество и, как правило, служат изоляторами. Однако путем легирования этих материалов их химические свойства могут быть изменены.При легировании кремния есть два типа примесей, которые могут быть добавлены для превращения кремния в полупроводящий материал: N-тип и P-тип.

    Примесь N-типа представляет собой фосфор или мышьяк. Каждый из них имеет пять внешних электронов, тогда как кремний имеет четыре, поэтому лишнему электрону фосфора или мышьяка не с чем связываться. Вместо этого дополнительный электрон служит средством передачи энергии. Только небольшое количество фосфора или мышьяка необходимо, чтобы генерировать достаточно свободных электронов для передачи тока через кремний.Поскольку электроны несут отрицательный заряд, этот тип примеси известен как N-тип.

    При легировании P-типа используется одна из двух различных примесей: бор или галлий. Каждая из этих примесей имеет только три внешних электрона, поэтому при добавлении к кремнию они образуют дырки, в которых отсутствует электрон, а также положительный заряд. Положительный заряд позволяет бору или галлию принимать соседние электроны, что, по сути, выталкивает дырку внутри решетки электронов. Наличие дырок — это то, что обеспечивает передачу токов и движение электронов, что делает кремний, легированный P-типом, проводящим материалом.Название P-type происходит от положительного заряда материала. Легирование как N-типа, так и P-типа превращает кремний в проводник, но не в очень прочный — поэтому легированный кремний называется полупроводником.

    Кремний P-типа и N-типа используются вместе в полупроводниковых диодах. Чтобы создать диод P-N, кремниевый материал P-типа составляет анод и передает ток на катод N-типа. Из-за зарядов и свойств материалов ток не может передаваться в обратном направлении.В других типах полупроводниковых диодов для создания одного контакта используется металл, а в качестве другого контакта используется полупроводник P-типа или N-типа. При использовании в условиях обратного смещения блокирует большую часть тока. При использовании в режиме прямого смещения передается достаточно напряжения для запуска диода и может начаться передача электронов.

    Что такое диод? | Fluke

    Диод — это полупроводниковое устройство, которое, по сути, действует как односторонний переключатель тока.Это позволяет току легко течь в одном направлении, но сильно ограничивает протекание тока в противоположном направлении.

    Диоды также известны как выпрямители , потому что они преобразуют переменный ток (ac) в пульсирующий постоянный ток (dc). Диоды классифицируются в соответствии с их типом, напряжением и допустимым током.

    Диоды имеют полярность, определяемую анодом (положительный вывод) и катодом (отрицательный вывод). Большинство диодов пропускают ток только тогда, когда на анод подается положительное напряжение.На этом рисунке показаны различные конфигурации диодов:

    Диоды доступны в различных конфигурациях. Слева: металлический корпус, крепление на шпильке, пластиковый корпус с лентой, пластиковый корпус с фаской, стеклянный корпус.

    Когда диод пропускает ток, он смещен в прямом направлении . Когда диод имеет обратное смещение , он действует как изолятор и не пропускает ток.

    Странно, но факт: стрелка символа диода указывает против направления потока электронов.Причина: инженеры придумали символ, а их схемы показывают ток, текущий от положительной (+) стороны источника напряжения к отрицательной (-). То же самое соглашение используется для символов полупроводников, которые включают стрелки — стрелка указывает в разрешенном направлении «обычного» потока и против разрешенного направления потока электронов.

    Испытательный диод диода цифрового мультиметра создает небольшое напряжение между измерительными выводами, достаточное для прямого смещения диодного перехода. Нормальное падение напряжения равно 0.От 5 В до 0,8 В. Смещенное в прямом направлении сопротивление хорошего диода должно находиться в диапазоне от 1000 Ом до 10 Ом. При обратном смещении на дисплее цифрового мультиметра будет отображаться OL (что указывает на очень высокое сопротивление).

    Диодам присваиваются номинальные значения тока. Если номинальное значение превышено и диод выходит из строя, он может закоротить, и либо а) позволить току течь в обоих направлениях, или б) остановить ток в любом направлении.

    Артикул: Принципы цифрового мультиметра, автор Glen A.Мазур, американское техническое издательство.

    Что такое диоды и для чего они используются?

    Простейший полупроводниковый компонент — диод — выполняет множество полезных функций, связанных с его основной целью — управлять направлением потока электрического тока. Диоды позволяют току течь через них только в одном направлении.

    Идеально эффективные диоды выглядят как разомкнутые цепи с отрицательным напряжением, а в остальном они выглядят как короткие замыкания.Но поскольку диоды допускают некоторую неэффективность, их отношение тока к напряжению нелинейно. Таким образом, вам нужно обратиться к таблице данных диода, чтобы увидеть график кривой прямого напряжения любого данного диода относительно его прямого тока, чтобы вы могли выбрать правильный диод для вашего конкретного проекта.

    Тим Ридли / Getty Images

    Применение диодов

    Несмотря на то, что это простые двухконтактные полупроводниковые устройства, диоды жизненно важны в современной электронике. Некоторые из типичных применений диодов включают:

    • Выпрямление напряжения, например преобразование переменного тока в постоянное
    • Изоляция сигналов от источника питания
    • Управление размером сигнала
    • Смешивание сигналов

    Преобразователь мощности

    Одним из важных применений диодов является преобразование мощности переменного тока в мощность постоянного тока.Один или четыре диода преобразуют бытовую мощность 110 В в постоянный ток, образуя половинный (один диод) или двухполупериодный (четыре диода) выпрямитель . Диод пропускает через себя только половину сигнала переменного тока. Когда этот импульс напряжения заряжает конденсатор, выходное напряжение представляется постоянным напряжением постоянного тока с небольшими колебаниями напряжения. Использование двухполупериодного выпрямителя делает этот процесс еще более эффективным за счет направления импульсов переменного тока таким образом, чтобы как положительная, так и отрицательная половина входной синусоидальной волны рассматривались только как положительные импульсы, эффективно удваивая частоту входных импульсов на конденсатор, что помогает держать его заряженным и обеспечивать более стабильное напряжение.

    Диоды и конденсаторы создают разные умножители напряжения, чтобы взять небольшое переменное напряжение и умножить его, чтобы получить очень высокое выходное напряжение. При правильной конфигурации конденсаторов и диодов возможны выходы как переменного, так и постоянного тока.

    Демодуляция сигналов

    Чаще всего диоды используются для удаления отрицательной составляющей сигнала переменного тока. Поскольку отрицательная часть сигнала переменного тока обычно идентична положительной половине, очень мало информации теряется в этом процессе ее удаления, что приводит к более эффективной обработке сигнала.

    Демодуляция сигнала обычно используется в радиоприемниках как часть системы фильтрации, чтобы помочь выделить радиосигнал из несущей волны.

    Защита от перенапряжения

    Диоды также хорошо работают в качестве защитных устройств для чувствительных электронных компонентов. При использовании в качестве устройств защиты по напряжению диоды не проводят ток в нормальных условиях эксплуатации, но немедленно замыкают любые выбросы высокого напряжения на землю, где они не могут повредить интегральную схему.Специализированные диоды, называемые ограничителями переходного напряжения , разработаны специально для защиты от перенапряжения и могут выдерживать очень большие скачки напряжения в течение коротких периодов времени, типичные характеристики скачков напряжения или поражения электрическим током, которые обычно могут повредить компоненты и сократить срок службы электронного устройства. продукт.

    Точно так же диод может регулировать напряжение, выступая в качестве ограничителя или ограничителя — специальной цели, которая ограничивает напряжение, которое может проходить через него в определенной точке.

    Текущее рулевое управление

    Основное применение диодов — управлять током и следить за тем, чтобы он течет только в правильном направлении. Одной из областей, в которой способность диодов к управлению током используется с хорошим эффектом, является переключение с мощности, поступающей от источника питания, на мощность, работающую от батареи. Когда устройство подключено и заряжается — например, сотовый телефон или источник бесперебойного питания — устройство должно потреблять энергию только от внешнего источника питания, а не от батареи, а пока устройство подключено к сети, батарея должна потреблять энергию. и подзарядка.Как только источник питания будет удален, батарея должна запитать устройство, чтобы пользователь не заметил прерывания.

    Хороший пример токового управления — защита от обратного тока . Рассмотрим, например, вашу машину. Когда ваша батарея умирает и дружелюбный прохожий предлагает помочь с перемычками, если вы перепутаете порядок красных и черных кабелей, вы не поджарите электрическую систему вашего автомобиля, потому что диоды, расположенные рядом с батареей, блокируют ток в неправильном направлении.

    Логические ворота

    Компьютеры работают в двоичном формате — это бесконечное море нулей и единиц. Деревья двоичных решений в вычислениях основаны на логических вентилях, включаемых диодами, которые контролируют, включен ли переключатель («1») или выключен («0»). Хотя в современных процессорах используются сотни миллионов диодов, они функционально такие же, как диоды, которые вы покупаете в магазине электроники, только гораздо меньше по размеру.

    Диоды и свет

    Светодиодный фонарик — это просто фонарик, свечение которого происходит от светодиода.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *