Полупроводник — это… Что такое Полупроводник?
Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности на сегодняшний деньПолупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.
В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.
Механизм электрической проводимости
Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10 −19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Дырка
Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.
Обычно подвижность дырок в полупроводнике ниже подвижности электронов.
Энергетические зоны
Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.
Подвижность
Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов примесиПодвижностью называют коэффициент пропорциональности между дрейфовой скоростью носителей тока и величиной приложенного электрического поля
При этом, вообще говоря, подвижность является тензором:
Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда, вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.
Размерность подвижности — м²/(В·с).
Собственная плотность
При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:
где:
- — Постоянная Планка
- — масса электрона
- — температура;
- — уровень проводимой зоны
- — уровень Ферми;
Также, плотность дырок полупроводника связана с температурой следующим соотношением:
где:
- — Постоянная Планка;
- — масса дырки;
- — температура;
- — уровень Ферми;
- — уровень валентной зоны.
Собственная плотность связана с и следующим соотношением:
Виды полупроводников
По характеру проводимости
Собственная проводимость
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Проводимость связана с подвижностью частиц следующим соотношением:
где — удельное сопротивление, — подвижность электронов, — подвижность дырок, — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).
Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:
Примесная проводимость
Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.
По виду проводимости
Электронные полупроводники (n-типа)
Полупроводник n-типа Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.Проводимость N-полупроводников приблизительно равна:
Дырочные полупроводники (р-типа)
Полупроводник p-типаТермин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.
Проводимость p-полупроводников приблизительно равна:
Использование в радиотехнике
Полупроводниковый диод
Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.
Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:
где — термодинамическое напряжение, — концентрация электронов, — концентрация дырок, — собственная концентрация[2].
В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.
Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.
Транзистор
Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.
Биполярный транзистор используют для усиления электрического тока.
Типы полупроводников в периодической системе элементов
В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:
- одноэлементные полупроводники IV группы периодической системы элементов,
- сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.
Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.
Группа | IIB | IIIA | IVA | VA | VIA |
Период | |||||
2 | 5 B | 6 C | 7 N | ||
3 | 13 Al | 14 Si | 15 P | 16 S | |
4 | 30 Zn | 31 Ga | 32 Ge | 33 As | 34 Se |
5 | 48 Cd | 49 In | 50 Sn | 51 Sb | 52 Te |
6 | 80 Hg |
Физические свойства и применение
Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).
Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.
Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).
В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.
Легирование
Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.
Методы получения
Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.
Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.
Оптика полупроводников
Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где — ширина запрещённой зоны, — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.
Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.
Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.
Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.
При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.
При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.
Список полупроводников
Полупроводниковые соединения делят на несколько типов:
- простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
- в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV
Широкое применние получили следующие соединения:
- AIIIBV
- InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
- AIIBV
- AIIBVI
- ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
- AIVBVI
- PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe
а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).
На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.
Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах
Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.
Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.
Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.
Параметры | AlSb | GaSb | InSb | AlAs | GaAs | InAs |
---|---|---|---|---|---|---|
Температура плавления, К | 1333 | 998 | 798 | 1873 | 1553 | 1218 |
Постоянная решётки, Å | 6,14 | 6,09 | 6,47 | 5,66 | 5,69 | 6,06 |
Ширина запрещённой зоны ΔE, эВ | 0,52 | 0,7 | 0,18 | 2,2 | 1,32 | 0,35 |
Диэлектрическая проницаемость ε | 8,4 | 14,0 | 15,9 | — | — | — |
Подвижность, см²/(В·с): | ||||||
электронов | 50 | 5000 | 60 000 | — | 4000 | 3400[3] |
дырок | 150 | 1000 | 4000 | — | 400 | 460[3] |
Показатель преломления света, n | 3,0 | 3,7 | 4,1 | — | 3,2 | 3,2 |
Линейный коэффициент теплового расширения, K-1 | — | 6,9·10-6 | 5,5·10-6 | 5,7·10-6 | 5,3·10-6 | — |
Группа IV
- собственные полупроводники
- составной полупроводник
Группа III-V
- 2-х компонентные полупроводники
- Антимонид алюминия, AlSb
- Арсенид алюминия, AlAs
- Нитрид алюминия, AlN
- Фосфид алюминия, AlP
- Нитрид бора, BN
- Фосфид бора, BP
- Арсенид бора, BAs
- Антимонид галлия, GaSb
- Арсенид галлия, GaAs
- Нитрид галлия, GaN
- Фосфид галлия, GaP
- Антимонид индия, InSb
- Арсенид индия, InAs
- Нитрид индия, InN
- фосфид индия, InP
- 3-х компонентные полупроводники
- AlxGa1-xAs
- InGaAs, InxGa1-xAs
- InGaP
- AlInAs
- AlInSb
- GaAsN
- GaAsP
- AlGaN
- AlGaP
- InGaN
- InAsSb
- InGaSb
- 4-х компонентные полупроводники
- AlGaInP, InAlGaP, InGaAlP, AlInGaP
- AlGaAsP
- InGaAsP
- AlInAsP
- AlGaAsN
- InGaAsN
- InAlAsN
- GaAsSbN
- 5-ти компонентные полупроводники
Группа II-VI
- 2-х компонентные полупроводники
- 3-х компонентные полупроводники
- CdZnTe, CZT
- HgCdTe
- HgZnTe
- HgZnSe
Группа I-VII
- 2-х компонентные полупроводники
Группа IV-VI
- 2-х компонентные полупроводники
- 3-х компонентные полупроводники
Группа V-VI
- 2-х компонентные полупроводники
Группа II—V
- 2-х компонентные полупроводники
Другие
- Разные оксиды
Органические полупроводники
Магнитные полупроводники
См. также
Примечания
- ↑ Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4
- ↑ Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
- ↑ 1 2 Индия арсенид // Химическая энциклопедия
Литература
- Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
- Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.
Ссылки
dic.academic.ru
ПОЛУПРОВОДНИКИ • Большая российская энциклопедия
ПОЛУПРОВОДНИКИ́, вещества, характеризующиеся электрич. проводимостью $σ$, промежуточной между проводимостью хороших проводников, напр. металлов ($σ≈10^4-10^6$ Ом–1·см–1), и хороших диэлектриков ($σ≈10^{–12}-10^{–10}$ Ом–1·см–1) (проводимость указана при комнатной темп-ре). Характерной особенностью П. является сильная зависимость их проводимости от темп-ры, причём в достаточно широком интервале температур проводимость П., в отличие от металлов, экспоненциально увеличивается с ростом темп-ры $T$: $$σ=σ_0\exp(–ℰ_a/kT).\tag{*}$$ Здесь $k$ – постоянная Больцмана, $ℰ_a$ – энергия активации электронов в П., которая может меняться от нескольких мэВ до нескольких эВ, $σ_0$ – коэф. пропорциональности, который также зависит от темп-ры, но эта зависимость более слабая, чем экспоненциальная. С повышением темп-ры тепловое движение разрывает часть химич. связей в атомах П. и электроны, число которых пропорционально $\exp(–ℰ_a/kT)$, становятся свободными и участвуют в электрич. проводимости. Энергия, необходимая для того, чтобы разорвать химич. связь и сделать валентный электрон свободным, называется энергией активации.
П. и диэлектрики относят к одному классу материалов; различие между ними является скорее количественным, чем качественным. Проводимость диэлектриков также имеет активационный характер, однако $ℰ_a$ для них составляет 10 эВ и более, поэтому собств. проводимость диэлектриков могла бы стать существенной только при очень высоких темп-рах, при которых уже наступают структурные изменения вещества. В связи с этим термин «П.» часто понимают в узком смысле как совокупность веществ, полупроводниковые свойства которых ярко выражены при комнатной темп-ре (300 К).
Химич. связи могут быть разорваны не только тепловым движением, но и разл. внешними воздействиями: электромагнитным излучением, потоком быстрых частиц, деформацией, сильным электрич. и магнитным полями и др. Поэтому для П. характерна высокая чувствительность проводимости к внешним воздействиям, а также к концентрации структурных дефектов и примесей.
Классификация полупроводников
По агрегатному состоянию П. делятся на твёрдые и жидкие (см. Жидкие полупроводники), по внутр. структуре – на кристаллич. и аморфные (см. Аморфные и стеклообразные полупроводники), по химич. составу – на неорганические и органические. Наиболее широко изучены и используются в полупроводниковой электронике кристаллич. неорганич. П. К ним относятся:
– элементарные П. – элементы IV группы короткой формы периодич. системы химич. элементов – углерод С (графит, алмаз, графен, нанотрубки), германий Ge и кремний Si (базовый элемент большинства интегральных схем в микроэлектронике), элементы VI группы – селен Se и теллур Te, а также их соединения, напр. карбид кремния SiC, образующий слоистые структуры, и непрерывный ряд твёрдых растворов SixGe1–x;
– соединения AIIIBV, где А=Al, Ga, In; В=N, Р, As, Sb, напр. GaAs, AlAs, InAs, InSb, GaN, GaP и др.
– соединения AIIBVI, где А=Zn, Cd, Hg; B=S, Se, Te, напр. ZnTe, ZnSe, ZnO, ZnS, CdTe, CdS, HgTe и др.;
– соединения элементов I и V групп с элементами VI группы, напр. PbS, PbSe, PbTe, Bi2Se3, Bi2Te3,Cu2O и др.;
– тройные и четверные твёрдые растворы на основе соединений A III B V и A II B VI , напр. GaxAl1–xAs, GaxAl1–xN, CdxHg1–xTe, CdxMn1–xTe, GaxIn1–xAsyP1–y и др.
Примеры аморфных и стеклообразных П.: аморфный гидрированный кремний a-Si:H, аморфные Ge, Se, Te, многокомпонентные стеклообразные сплавы халькогенидов на основе S, Se, Te.
К органическим П. относятся: ряд органич. красителей, ароматич. соединения (нафталин, антрацен и др.), полимеры с сопряжёнными связями, некоторые природные пигменты. Органич. П. существуют в виде монокристаллов, поликристаллич. или аморфных порошков и плёнок. Достоинство органич. П. – относит. дешевизна их произ-ва и механич. гибкость. Они применяются как светочувствит. материалы для фотоэлементов и ПЗС-матриц; на их основе созданы светоизлучающие диоды, в т. ч. для гибких экранов и мониторов.
Большинство изученных П. находятся в кристаллич. состоянии. Свойства таких П. в значит. мере определяются их химич. составом и симметрией кристаллич. решётки. Атомы кремния, обладая четырьмя валентными электронами, образуют кубич. кристаллич. решётку типа алмаза с ковалентной связью атомов (кристаллографич. класс $m\bar 3m$, или $O_h$). Такую же кристаллич. решётку имеют германий и серое олово. В GaAs каждый атом образует 4 валентные связи с ближайшими соседями, в результате чего получается кристаллич. решётка, подобная решётке алмаза, в которой ближайшими соседями катиона Ga являются анионы As и наоборот. За счёт частичного перераспределения электронов атомы Ga и As оказываются разноимённо заряженными и связи между атомами становятся частично ионными. Кристаллич. решётка GaAs не обладает центром инверсии, поэтому в таких П. возникают эффекты, отсутствующие в центросимметричных полупроводниковых структурах, напр. пьезоэлектричество (см. Пьезоэлектрики), генерация 2-й оптич. гармоники, фотогальванические эффекты. Структурой, подобной арсениду галлия, обладают InAs, InP, ZnTe, ZnSe и др.
Чистые и структурно совершенные П. получают в результате кристаллизации из расплава или раствора. Для создания тонких полупроводниковых плёнок применяют метод эпитаксии из жидкой или газовой фазы.
Электроны и дырки в полупроводниках
В твёрдом теле волновые функции валентных электронов соседних атомов перекрываются, их валентные электроны обобществляются и возникает устойчивая химич. (ковалентная) связь. На каждую связь между атомами приходится по два электрона, и распределение электронной плотности в пространстве оказывается жёстко фиксированным. Проводимость П. появляется, если разорвать связи между некоторыми атомами, напр., тепловым или оптич. воздействием, передав небольшой части валентных электронов дополнит. энергию и переведя их на вакантные (пустые) электронные орбитали, расположенные выше по энергии. Такие электроны могут свободно передвигаться по кристаллу, переходя с одного атома на другой, и переносить отрицат. электрич. заряд. Разорванная связь с недостатком электрона (дырка) также может перемещаться по кристаллу за счёт перехода на неё электрона из соседней связи. Поскольку разорванная связь означает наличие локального положительного электрич. заряда, дырки переносят положительный заряд. Дырки, как и электроны, могут перемещаться на значит. расстояния в периодич. потенциале кристалла без рассеяния.
В идеальных кристаллах, не содержащих дефектов и примесей, электроны и дырки всегда появляются па́рами в силу сохранения электрич. заряда, однако подвижности электронов и дырок, как правило, различны. В легированных П. концентрации свободных электронов и дырок могут различаться на неск. порядков, так что электропроводность осуществляется практически полностью носителями заряда одного типа.
Чередование разрешённых и запрещённых энергетических зон в кристаллических полупроводниках. Заполнение разрешённых зон: (а) при абсолютном нуле температуры; (б) при отличной от нуля температуре. Чёрны…
Последовательное и строгое описание состояний носителей заряда и их движения в кристаллах можно сделать в рамках зонной теории. Осн. состояние кристалла при темп-ре 0 К формируется за счёт последовательного заполнения электронами наинизших энергетич. состояний. Согласно принципу Паули, в каждом состоянии с определённым значением спина может находиться только один электрон. В зависимости от кристаллич. структуры и от числа электронов в каждом из атомов, составляющих кристалл, возможны два случая: 1) электроны полностью заполняют неск. нижних разрешённых зон, а все верхние зоны остаются пустыми; 2) одна из разрешённых зон заполнена частично. В первом случае распределение электронной плотности в кристалле фиксировано, электроны не могут участвовать в проводимости и кристалл является П. или диэлектриком. Во втором случае часть электронов в пределах частично заполненной зоны может свободно перемещаться по кристаллу3 и кристалл является металлом. В П. и диэлектриках верхняя полностью заполненная разрешённая зона энергий называется валентной зоной, нижняя пустая зона – зоной проводимости. Энергетич. интервал между дном (минимумом энергии) зоны проводимости и потолком (максимумом энергии) валентной зоны называется шириной запрещённой зоны $ℰ_g$. Различие между П. и диэлектриками чисто количественное: условно считают, что вещества с $ℰ_g<2$ эВ являются П., а с $ℰ_g>2$ эВ – диэлектриками. При отличной от нуля темп-ре тепловое движение перераспределяет электроны по энергии: часть электронов «забрасывается» из валентной зоны в зону проводимости. При этом появляются свободные носители заряда – электроны в зоне проводимости и дырки в валентной зоне (рис.). Количество свободных электронов и дырок экспоненциально зависит от темп-ры, поэтому температурная зависимость проводимости П. определяется формулой ( * ).
В широком классе П. ширина энергетич. зон значительно превышает тепловую энергию при комнатной темп-ре (0,025 эВ), поэтому носители заряда заполняют состояния только вблизи экстремумов разрешённых зон, т. е. вблизи дна зоны проводимости и потолка валентной зоны. Зависимость энергии от квазиимпульса вблизи экстремума часто оказывается квадратичной, и можно ввести представление об эффективной массе носителей заряда, которая зависит от номера разрешённой зоны и направления квазиимпульса. В некоторых П. одному значению энергии отвечает неск. экстремумов в первой зоне Бриллюэна и носители заряда распределены по эквивалентным «долинам» (окрестностям экстремумов). Такие П. называют многодолинными.
Примеси и дефекты в полупроводниках
Электрич. проводимость П. может быть обусловлена как электронами собственных атомов данного вещества (собственная проводимость), так и электронами и дырками примесных атомов (примесная проводимость). Процесс внедрения примесей в П. для получения необходимых физич. свойств называется легированием полупроводников. Поскольку энергия связи носителей заряда в примесных атомах составляет от нескольких мэВ до нескольких десятков мэВ, именно примесная проводимость объясняет экспоненциальный рост концентрации свободных носителей заряда в большинстве П. в интервале температур вблизи комнатной.
Примеси в П. обычно вводят в процессе роста структуры, они могут быть донорами или акцепторами, т. е. поставщиками электронов или дырок. Если, напр., в германий Ge или кремний Si (элементы IV группы) ввести примесные атомы элементов V группы (As, P), то 4 внешних электрона этих атомов образуют устойчивую связь с четырьмя соседними атомами решётки, а пятый электрон окажется несвязанным и будет удерживаться около примесного атома только за счёт кулоновского взаимодействия, ослабленного диэлектрич. поляризацией среды. Такой примесный атом является донором и легко ионизуется при комнатной темп-ре. Акцептор возникает, напр., при введении в Ge или Si элементов III группы (Ga, Al). В этом случае для образования всех четырёх связей с ближайшими атомами требуется дополнит. электрон, который берётся из внутр. оболочек атомов, так что примесный атом оказывается заряжен отрицательно. Электронейтральность восстанавливается за счёт того, что внутр. незаполненная орбиталь распределяется вблизи соседних атомов решётки, расположенных от примесного на расстояниях, превосходящих межатомное расстояние. Наличие доноров или акцепторов приводит соответственно к проводимости n- или р-типа.
П., в которых могут одновременно существовать акцепторные и донорные примеси, называются компенсированными. Компенсация примесей приводит к тому, что часть электронов от доноров переходит к акцепторам, и в результате возникает значит. концентрация ионов, которые эффективно влияют на проводимость полупроводников.
Амплитуда волновой функции электронов или дырок, локализованных на примесных атомах, составляет 1–10 нм. Это означает, что при концентрации примесных атомов ок. 1018 см–3 волновые функции электронов и дырок соседних атомов начинают перекрываться, носители заряда могут переходить от иона к иону и П. становится вырожденным (см. Вырожденные полупроводники). Такие П. называются сильнолегироваными. Из-за сильного экранирования кулоновского притяжения носители заряда в них оказываются свободными даже при таких низких темп-рах, при которых была невозможна термич. активация электрона или дырки из изолированного атома.
В отсутствие внешнего электрич. поля или освещения концентрация свободных носителей заряда называется равновесной и определяется шириной запрещённой зоны П., эффективными массами носителей заряда, концентрацией примесей и энергией связи примесных носителей заряда.
Наряду с примесями, источниками носителей заряда могут быть и разл. дефекты структуры, напр. вакансии (отсутствие одного из атомов решётки), межузельные атомы, а также недостаток или избыток атомов одного из компонентов в полупроводниковых соединениях (отклонения от стехиометрич. состава).
Электрические свойства полупроводников
Во внешнем электрич. поле на носители заряда в твёрдом теле действует сила, которая изменяет их скорость и приводит к направленному движению. Под действием силы носители заряда должны ускоряться, однако в кристаллах вследствие взаимодействия электронов с дефектами, колебаниями решётки и т. д. возникает сила трения, которая уравновешивает силу, действующую со стороны поля. В результате носители заряда движутся с постоянной средней (дрейфовой) скоростью $v_{др}$, зависящей от напряжённости $E$ электрич. поля. Можно ввести понятие подвижности носителей заряда $μ=v_{др}/E$. Действие силы трения означает, что в электрич. поле носитель заряда испытывает свободное ускорение только в промежутке времени $Δt$ между двумя актами рассеяния, так что $v_{др}=eEτ/m$ ($m$ – эффективная масса носителя, $e$ – его заряд, $τ$ – время релаксации, за которое свободный носитель заряда в отсутствие поля теряет свой направленный квазиимпульс). Обычно $τ$ не зависит от величины внешнего поля и определяется тепловым хаотич. движением носителей заряда в твёрдом теле, так что скорость теплового движения на неск. порядков превосходит $v_{др}$. Так, напр., для типичных П. при $T=300$ К в весьма сильном электрич. поле ($E$=3·104 В/м) скорость $v_{др}$ составляет 10–100 м/с, а величина ср. тепловой скорости – 105–106 м/с.
Величины $τ$ и $μ$ зависят от типа проводимости, химич. состава П., темп-ры, концентрации дефектов и примесей. При темп-рах ниже темп-ры кипения жидкого азота (77 К) подвижность $μ$ возрастает с ростом темп-ры, а при темп-рах выше 77 К – уменьшается, проходя через максимум вблизи 100 К. Такая зависимость $μ(T)$ объясняется наличием двух осн. причин рассеяния носителей заряда – на заряженных примесях и фононах. При низких темп-рах, когда примесные атомы ионизованы, рассеяние на них превосходит рассеяние на фононах, поскольку равновесных фононов мало. С увеличением темп-ры ср. энергия носителей возрастает, эффективность рассеяния уменьшается, время между столкновениями и подвижность возрастают. При темп-рах ок. 100 К резко возрастает концентрация равновесных фононов и взаимодействие с ними ограничивает подвижность, вследствие этого с увеличением темп-ры подвижность уменьшается. При $T$=300 К характерные значения $τ$ для П. лежат в интервале 10–13–10–12 с, а $μ$ – в интервале 102–10–2 м/с. При меньших значениях подвижности длина свободного пробега (произведение ср. скорости теплового движения на время $τ$) становится меньше расстояния между атомами и говорить о свободном движении носителей заряда нельзя. Возникает прыжковая проводимость, которая обусловлена перескоками носителей заряда в пространстве от одного иона к другому (реализуется в органических полупроводниках).
Направленному движению носителей заряда во внешнем электрич. поле препятствует их тепловое хаотич. движение. Если в результате приложения электрич. поля носители собираются у границы образца и их концентрация зависит от координат, то хаотич. движение приводит к выравниванию концентрации и носители переходят из области пространства с большей концентрацией в область, где их концентрация меньше. Такой процесс называется диффузией носителей заряда и определяется коэф. диффузии $D$. В условиях равновесия полный поток носителей заряда отсутствует, так что диффузионный поток полностью компенсирует поток частиц во внешнем поле. Это означает, что коэф. диффузии связан с подвижностью. Для невырожденных носителей $D=kTμ/e$ (соотношение Эйнштейна). Для типичных П. при комнатной темп-ре величина $D$ составляет 10–3–10–2 м2/с. Для неравновесных носителей заряда, напр. в случае инжекции в электронно-дырочном переходе (см. p–n-Переход), вводится понятие диффузионной длины $L_D$, которая определяет уменьшение числа носителей в процессе диффузии за счёт их рекомбинации: $L_D=\sqrt{D\tau_0}$, где $τ_0$ – время жизни неосновных носителей.
Наложение внешнего магнитного поля изменяет условия протекания электрич. тока в П. и приводит к гальваномагнитным явлениям, которые наиболее сильно проявляются в магнитных полупроводниках и полумагнитных полупроводниках. В П. для исследований и практич. применений наиболее часто магнитное поле прикладывают перпендикулярно электрич. полю, в этом случае имеют место Холла эффект и Шубникова – де Хааза эффект, классич. магнитосопротивление, слабая локализация носителей заряда, а в двумерных структурах – квантовый эффект Холла и дробный квантовый эффект Холла. В магнитном поле на заряженные частицы действует сила Лоренца, они начинают вращаться в плоскости, перпендикулярной направлению магнитного поля, с циклотронной частотой $ω_с$ и сохраняют свою скорость вдоль магнитного поля. В зависимости от величины произведения $ω_сτ$ различают классические слабые ($ω_сτ≪1$), классические ($ω_сτ>1$) и квантующие ($ωсτ≫1$ и $\hbar ω_с≫kT$) магнитные поля, где $\hbar$ – постоянная Планка.
В магнитных полях, когда $ω_сτ∼1$, движение носителей заряда можно описывать классич. уравнениями Ньютона, в этом случае имеет место эффект Холла, состоящий в возникновении дополнит. электрич. поля, перпендикулярного внешним электрич. и магнитному полям. Это дополнит. поле компенсирует поток частиц, вызванный совместным действием приложенных электрич. и магнитного полей, и зависит от величины магнитного поля и концентрации свободных носителей заряда, а его направление определяется знаком заряда, поэтому эффект Холла используется для определения знака и концентрации носителей заряда.
В более сильных полях, когда $ω_сτ≫1$, но характерная энергия носителей заряда значительно превосходит $\hbar ω_с$, необходимо учитывать квантование носителей заряда во внешнем магнитном поле, в результате плотность состояний как функция обратного поля приобретает вид острых, периодически расположенных пиков. При увеличении магнитного поля эти пики начинают пересекать уровень химич. потенциала электронного газа, в результате в квантующем магнитном поле сопротивление осциллирует.
В двумерных полупроводниковых структурах при $ω_сτ≫1$ и $\hbar ω_с≫kT$ возникает квантовый эффект Холла, состоящий в появлении ступенек на зависимости поперечного сопротивления от магнитного поля. Высота ступенек с большой точностью равняется кванту удельного сопротивления $h/e^2$. Значение продольного сопротивления обращается в нуль в магнитных полях, отвечающих ступенькам на зависимости поперечного сопротивления от магнитного поля и пикам между ступеньками. Такое поведение объясняется особенностями движения носителей заряда в сильном магнитном поле в условиях действия случайных электрич. и деформационных полей, имеющих разл. пространственный масштаб. При ещё большем магнитном поле имеет место дробный квантовый эффект Холла, проявляющийся в дополнит. расщеплении ступенек. Однако квантовый характер носителей заряда может проявляться и в слабых магнитных полях. Оказалось, что при низких темп-рах в П. и металлах наблюдается небольшое (ок. 1–5% от общего) изменение проводимости, пропорциональное квадрату магнитного поля. Этот эффект объясняется явлением слабой локализации, состоящим в увеличении сопротивления проводящих материалов за счёт усиления рассеяния назад при диффузионном движении частиц.
Оптические свойства полупроводников
Зонная структура кристаллов проявляется в свойствах пропускания, отражения и поглощения полупроводниками электромагнитного излучения. Наиболее очевидно существование запрещённой зоны следует из того, что излучение с энергией кванта, меньшей ширины запрещённой зоны $ℰ_g$ чистого П., не поглощается. Поглощение начинается только тогда, когда энергия кванта превысит $ℰ_g$. Для П. типа GaAs при низких темп-рах длина волны, на которой интенсивность падающего излучения уменьшается в $e$ раз, приблизительно равна 0,1 мкм. При таком поглощении кванта света в П. возникают электрон и дырка и имеет место закон сохранения квазиимпульса. Обычно импульс света значительно меньше квазиимпульсов носителей заряда, и при оптич. переходе электрона из валентной зоны в зону проводимости квазиимпульс не изменяется, так что в момент рождения электрон и дырка имеют противоположные квазиимпульсы. Такие переходы называются прямыми; они происходят в т. н. прямозонных П. (GaAs, InSb, Te, SiC), в которых потолок валентной зоны и дно зоны проводимости расположены в одной точке зоны Бриллюэна.
Электронные переходы со значит. изменением квазиимпульса происходят в т. н. непрямозонных П. (Ge, Si, AlAs, GaP), у которых вершина валентной зоны и дно зоны проводимости разнесены в пространстве квазиимпульсов на величину порядка $π/d$, где $d$ – межатомное расстояние в кристаллич. решётке. В этом случае для выполнения закона сохранения квазиимпульса необходимо участие третьей частицы, в качестве которой может выступать либо примесный атом, либо фонон. Типичная длина поглощения для непрямых переходов составляет 1–10 мкм.
В спектре поглощения П. присутствуют широкие энергетич. полосы, что указывает на то, что электроны в валентных зонах связаны слабо и легко поляризуются под действием электрич. поля. Это означает, что П. характеризуются относительно большой диэлектрич. проницаемостью $ε$, напр. в Ge $ε=16$, в GaAs $ε=11$, в PbTe $ε=30$. Благодаря большим значениям $ε$ кулоновское взаимодействие электронов и дырок друг с другом или с заряженными примесями сильно подавлено, если они находятся друг от друга на расстоянии, превышающем размеры элементарной ячейки. Это и позволяет во многих случаях рассматривать движение каждого носителя заряда независимо от других. Если бы кулоновское взаимодействие не ослаблялось, то примесные ионы могли бы связывать носители заряда в устойчивые, локализованные в пространстве образования с энергией ок. 10 эВ. В этом случае при темп-рах ок. 300 К тепловое движение практически не могло бы разорвать эти связи, создать свободные носители заряда и привести к заметной электропроводности. Такое связывание имеет место в П. и диэлектриках, но из-за ослабления кулоновского взаимодействия и относительно малых эффективных масс электронов и дырок (ок. 0,1–0,5 от массы свободного электрона) энергия связи таких образований (экситонов) составляет 1–50 мэВ, что много меньше энергии ионизации атомов. Экситоны легко ионизуются при темп-рах выше темп-ры жидкого азота и, т. о., не препятствуют образованию свободных носителей. Тем не менее при низких темп-рах образование экситонов приводит к поглощению в чистых П. электромагнитного излучения с энергией кванта, меньшей $ℰ_g$ на величину энергии связи экситона.
Прозрачность П. в узкой области частот вблизи края собств. поглощения изменяется под действием внешних (электрич., магнитного и др.) полей. Электрич. поле, ускоряя электрон, может в процессе оптич. перехода передать ему небольшую дополнит. энергию, в результате чего прямые оптич. переходы из валентной зоны в зону проводимости происходят под действием квантов света с энергией, меньшей $ℰ_g$ (Келдыша – Франца эффект).
В однородном магнитном поле закон сохранения квазиимпульса приводит к сохранению кругового движения электронов и дырок после поглощения излучения. В результате зависимость коэф. поглощения от частоты падающего излучения принимает вид узких пиков. Кроме собств. поглощения (за счёт прямых или непрямых переходов), в П. имеет место поглощение света свободными носителями, связанное с их переходами в пределах одной разрешённой зоны. Их вклад в общее поглощение мал, поскольку число свободных носителей заряда в П. малó по сравнению с полным числом валентных электронов, и для их реализации требуется участие третьей частицы – примеси или фонона. Кроме того, в нелегированных П. со значит. долей ионной связи наблюдается поглощение далёкого ИК-излучения за счёт возбуждения колебаний решётки – фононов.
Спектр фотолюминесценции П. сосредоточен в узкой области вблизи ширины запрещённой зоны. Вклад в фотолюминесценцию П. могут вносить разл. механизмы излучательной рекомбинации: зона – зона, зона – примесь, донор – акцептор, с участием фонона, излучение свободных, связанных или локализованных экситонов, экситон-поляритонная, биэкситонная рекомбинации. В нелегированных структурах с квантовыми ямами низкотемпературная фотолюминесценция обусловлена излучательной рекомбинацией экситонов, локализованных на шероховатостях поверхности и флуктуациях состава.
Оптич. свойства твёрдых растворов П. можно менять в широких пределах, подбирая химич. состав раствора, что обусловливает их широкое применение в приборах оптоэлектроники, в первую очередь в качестве рабочих материалов лазеров, свето- и фотодиодов, солнечных элементов, детекторов излучения.
Полупроводниковые гетеро- и наноструктуры
Совр. физика П. – это, прежде всего, физика полупроводниковых гетероструктур и наноструктур. В последних возникает ряд новых физич. явлений, которые невозможны в объёмных П., напр. квантовые целочисленный и дробный эффекты Холла. В наноструктурах движение свободных носителей заряда ограничено в одном или нескольких направлениях, что приводит к размерным эффектам, кардинально изменяющим энергетич. спектры носителей заряда, а также фононов и др. квазичастиц. Важную роль в наноструктурах играют гетерограницы, поскольку в системах малого размера отношение площади поверхности к внутр. объёму структуры является большим. Наиболее совершенные полупроводниковые наноструктуры получают методами молекулярно-пучковой эпитаксии и газофазной эпитаксии из металлоорганич. соединений.
В нач. 21 в. сложилась устойчивая терминология низкоразмерной физики П. Систематика начинается с одиночного гетероперехода между двумя композиционными материалами – полупроводниками A и B. Один или оба материала могут быть твёрдыми растворами (примеры гетеропар A/B: GaAs/Al1–xGaxAs, ZnSe/BeTe). По определению, в гетеропереходах первого типа запрещённая зона $ℰ_g$ одного из композиц. материалов лежит внутри запрещённой зоны др. материала. В этом случае потенциальные ямы для электронов или дырок расположены в одном и том же слое. В гетеропереходах второго типа дно зоны проводимости ниже в одном, а потолок валентной зоны выше в другом П. Для указанных гетеропар запрещённые зоны перекрываются. Имеются также гетеропереходы второго типа (напр., InAs/GaSb), у которых запрещённые зоны не перекрываются и дно зоны проводимости одного П. лежит ниже потолка валентной зоны другого П. К третьему типу относят гетеропереходы, в которых один из слоёв является бесщелевым П., напр. в паре HgTe/CdTe. Двойной гетеропереход B/A/B первого типа представляет собой структуру с одиночной квантовой ямой, если $ℰ^A_g<ℰ^B_g$, или структуру с одиночным барьером, если $ℰ^A_g>ℰ^B_g$.
К полупроводниковым наноструктурам относят квантовые ямы, квантовые проволоки, квантовые точки. В квантовой яме движение свободного носителя заряда (электрона или дырки) ограничено в одном из направлений. В результате возникает пространственное квантование и энергетич. спектр по одному из квантовых чисел из непрерывного становится дискретным – каждая трёхмерная энергетич. электронная зона превращается в серию двумерных подзон размерного квантования. Естеств. развитием однобарьерной структуры являются двух- и мультибарьерные структуры, на основе которых создаются резонансно-барьерные приборы. От одиночной квантовой ямы переходят к структуре с двумя или тремя квантовыми ямами и структурам с целым набором изолированных квантовых ям. По мере того как барьеры становятся тоньше, туннелирование носителей заряда из одной ямы в другую становится заметнее, и электронные состояния в подзонах размерного квантования изолированных ям трансформируются в трёхмерные минизонные состояния. В результате периодич. структура изолированных квантовых ям, или толстобарьерная сверхрешётка, превращается в тонкобарьерную сверхрешётку, или просто сверхрешётку. Полупроводниковая сверхрешётка используется для создания квантовых каскадных лазеров, излучение которых возникает при переходе электронов между слоями структуры.
Кроме структур с квантовыми ямами, существуют и др. двумерные системы, напр. графен и структура металл – диэлектрик – полупроводник (МДП-структура), которая используется в микроэлектронике в виде полевого МДП-транзистора.
В одномерных системах – квантовых проволоках – движение носителей заряда свободно только в одном направлении (напр., в углеродной нанотрубке, получаемой свёртыванием графеновой полоски и закреплением её противоположных сторон). Др. пример такой структуры – квантовая яма, выращенная на сколе, содержащем перпендикулярную ему квантовую яму. Квантовая механика допускает формирование одномерных электронных состояний на стыке двух таких ям.
В квантовых точках движение носителей заряда ограничено во всех трёх направлениях, напр. в нанокристаллах CdSe, выращенных в стеклянной матрице, и в эпитаксиальных квантовых точках GaAs/InAs, выращенных по механизму Странски – Крастанова.
Широкое применение получили полупроводниковые лазеры на квантовых ямах и массивах квантовых точек. В структуре с двойным ограничением стимулированное излучение выходит из торца, перпендикулярно направлению роста. Квантовый микрорезонатор, т. е. квантовые ямы или квантовые точки, выращенные в активной области оптич. микрорезонатора, используется для создания вертикально излучающих лазеров.
Возможность в широких пределах управлять физич. свойствами П. приводит к их многочисленным и разнообразным применениям (см. Полупроводниковые материалы).
bigenc.ru
Что такое полупроводник?
Полупроводник — это кристаллический материал, который проводит электричество не столь хорошо, как металлы, но и не столь плохо, как большинство изоляторов. В общем случае электроны полупроводников крепко привязаны к своим ядрам. Однако, если в полупроводник, например, в кремний, ввести несколько атомов сурьмы, имеющей «избыток» электронов, то в этом случае свободные электроны сурьмы помогут кремнию переносить отрицательный заряд.
При замене нескольких атомов полупроводника индием, который легко присоединяет к себе дополнительные электроны, в полупроводнике образуются не занятые электронами «свободные места», или, как говорят физики, «дырки»; которые переносят положительный заряд.
Такие свойства полупроводников привели к их широкому использованию в транзисторах — устройствах для усиления тока, его блокирования или пропускания только в одном направлении. В типичном NPN транзисторе, слой полупроводника с положительной (Р) проводимостью (основание), расположен между двумя слоями полупроводника с отрицательной (N) проводимостью (эмиттером и коллектором). Когда слабый сигнал, например, от интеркома (аппарата селекторной связи), проходит через основание NPN транзистора, эмиссия электронов этот сигнал усиливает.
Строение полупроводников
Полупроводники N-типа содержат избыточное количество электронов, переносящих отрицательный заряд. Полупроводники Р-типа испытывают нехватку электронов, но зато имеют избыток дырок (вакантных мест для электронов), которые переносят положительный заряд.
Отличительные признаки полупроводников
В отличие от проводников, имеющих много свободных электронов, и изоляторов, практически их не имеющих, полупроводники содержат небольшое количество свободных электронов и так называемые дырки (белый кружочек) — вакантные места, оставленные свободными электронами. И дырки и электроны проводят электрический ток.
NPN транзистор
PNP транзистор
Дырки перемещаются от положительного эмиттера (+) к отрицательному основанию (N-слою) и далее через положительный коллектор к отрицательной клемме (-), усиливая электрический ток.
Что такое диод?
В одну сторону да, в другую — нет. Входной сигнал диода показывает переменный ток; из правого графика видно, что через диод проходит только постоянный ток.
Когда отрицательно заряженные электроны (голубые шарики) и положительно заряженные дырки (розовые шарики) расходятся от стыка слоев кремния N-типа и Р-типа в диоде, электрический ток прерывается. На нижнем рисунке справа электроны и дырки перемещаются к стыку, и в результате диод проводит ток только в одном направлении, превращая переменный ток в постоянный.
information-technology.ru
Свойства полупроводниковых материалов: применение полупроводников
Полупроводники это вещества, которые обладают промежуточными свойствами проводников и диэлектриков в отношении удельной проводимости. Сопротивление полупроводников характеризуется следующими особенностями:
- Сильная выраженная зависимость от количества и состава примесей в веществе;
- Повышение температуры вызывает уменьшение сопротивления.
Полупроводниковые элементы
Важно! При температуре, стремящейся к абсолютному нулю, все полупроводники становятся диэлектриками.
Механизм электрической проводимости
Проводимость таких материалов, как полупроводники, имеет иной характер, чем у обычных проводников. Главное условие возникновения тока в материалах – наличие достаточного количества свободных электронов. Кристаллическая структура полупроводниковых материалов характеризуется ковалентными химическими связями, когда каждый электрон ядра связан с двумя рядом стоящими атомами.
Электроны веществ участвуют в переносе заряда при получении некоторой энергии. Работа энергии для полупроводников имеет значение порядка единиц электрон-вольт (эВ). У проводников это значение меньше, у диэлектриков, соответственно, больше.
Дырка
Важная особенность рассматриваемых материалов – они могут обладать особым типом проводимости – дырочной. В электронной оболочке атома в момент отрыва и ухода электрона образуется свободное место, которое принято именовать дыркой. Соответственно, дырка имеет положительный заряд, направление движения противоположно потоку электронов.
Обратите внимание! Подвижность электронов выше, чем у дырок.
Электронная и дырочная проводимость
Энергетические зоны
Все вещества характеризуются энергетическими зонами электронов оболочки атома. Таких зон три:
- Зона проводимости;
- Запрещенная зона;
- Зона валентности.
Название запрещенной зоны говорит о том, что электрон находиться в ней не может. Поэтому для возникновения тока электрон должен переместиться в зону проводимости из стабильной валентной зоны. Чем шире запрещенная зона, тем свойства материала приближаются к диэлектрикам.
Энергетические зоны
Подвижность
При воздействии электрического поля в материалах начинается движение носителей заряда. В рассматриваемом случае это электроны и дырки. Зависимость между скоростью движения и величиной напряженности электрического поля при отсутствии влияния нагрева называется подвижностью. Рост числа взаимных столкновений является причиной того, что при увеличении концентрации подвижность падает.
Собственная плотность
Наличие запрещенной зоны не служит препятствием к образованию собственных носителей заряда. Плотность электронов и дырок определяется сложной зависимостью, которая показывает, что собственная плотность заряженных частиц растет при увеличении температуры.
Виды полупроводников
Множество веществ, к которым можно отнести полупроводники, классифицируется по величине и характеру проводимости.
По характеру проводимости
В силу того, используется чистое вещество либо, в которое внесены примеси, проводимость может иметь различный характер.
Собственная проводимость
В силу разных причин в чистых материалах могут появляться свободные электроны и дырки. В результате образуется собственная проводимость.
Важно! Собственная проводимость характеризуется равной концентрацией дырок и электронов.
Собственная проводимость германия
Примесная проводимость
Большая часть полупроводников, образованных четырехвалентными атомами, имеет собственную проводимость. При целенаправленном внесении примесей веществ третьей или пятой валентности получаются кристаллы, обладающие примесной проводимостью, в которых количество дырок и электронов прямо зависит от типа и количества примесных атомов на единицу объема чистого вещества.
По виду проводимости
Выше было рассмотрено, что в полупроводниках в процессе переноса заряда участвуют не только «традиционные» электроны, но и условные положительные заряды – дырки. Поэтому полупроводниковые материалы имеют два типа проводимости.
Электронные полупроводники (n-типа)
Присутствие в четырехвалентном веществе пятивалентной примеси приводит к тому, что пятый электрон примеси вынужден переместиться на более высокую орбиту, в результате чего на его освобождение требуется небольшое количество энергии.
Такие примесные полупроводники называют веществами n-типа, от слова «negative» – отрицательный. Примеси в данном случае называют донорными, так как они способствуют появлению в веществе свободных электронов.
Дырочные полупроводники (р-типа)
При добавлении трехвалентной примеси возникает противоположная ситуация, когда в кристаллической решетке четырехвалентного материала примесь забирает недостающий электрон, а в основном веществе образуется дырка. Такие примеси именуют акцепторными, а примесный полупроводник, соответственно, называется p-типа, поскольку «positive» – положительный.
Использование в радиотехнике
Каждый специалист, техник, обладающий познаниями в электронике, знает, что абсолютно вся современная электроника основана на применении полупроводниковых элементов. Любой аналоговый или цифровой (дискретный) прибор имеет в своей основе схемы, построенные с применением диодов и транзисторов.
Полупроводниковый диод
Одно из первых устройств, использующих свойства полупроводимости, – это полупроводниковый диод. Конструкция заключается в соединении пары полупроводников с разными типами проводимости.
В результате физических процессов движения электронов и дырок на границе веществ возникает электрическое поле, и образуется так называемый p-n переход.
P-n переход
P-n переход обладает свойством односторонней проводимости, то есть ток через диод возникает только при подключении p-области (анода) к полюсу источника напряжения, а n-области (катода) – к минусу.
Вольт-амперная характеристика диода
В обратной полярности ток также имеется, но его величина, по сравнению с прямым, намного меньше. Стабилитрон – вид диода, основная область его работы находится на обратной ветви характеристики. Параметр p-n перехода подобран таким образом, что в узкой области обратного тока напряжение на стабилитроне практически не меняется.
Первый диод – детектор, использовался еще в то время, когда теория полупроводников находилась в зачаточном состоянии.
Разнообразные диоды
Транзистор
Транзистор, или, как раннее его называли, триод, имеет две области из материала с одинаковой проводимостью и тонкую область полупроводника с другой. Принцип работы транзистора заключается в том, что малый ток в тонкой области, называемой базой, может управлять гораздо большим током через другие области, соответственно, коллектор и эмиттер.
В зависимости от схемы включения, транзистор может иметь различное назначение: как усилительный, генераторный и преобразовательный полупроводниковый элемент.
Применение полупроводников не ограничивается вышеперечисленными областями. Существуют изделия с тремя и более p-n переходами или вообще без них. Варистор – резистор с сопротивлением, зависящим от величины протекающего тока, тоже полупроводниковый элемент.
Виды транзисторов
Типы полупроводников в периодической системе элементов
В периодической таблице химэлементов полупроводники сосредоточены в периодах со 2-го по 6-й. Их делят на такие типы:
- Одноэлементные. Собственный полупроводник обычно принадлежит IV группе, реже используются элементы из других групп;
- Сложные – двух и более элементные.
Обратите внимание! Свойства полупроводниковых материалов характеризуются тем, что при увеличении номера группы ширина запрещенной зоны уменьшается.
Физические свойства и применение
Сильная зависимость собственной проводимости от значения температуры является основным физическим свойством полупроводников. Главным образом это выражается тем, что при температуре, близкой к абсолютному нулю, наблюдается полное отсутствие свободных носителей.
Некоторые вещества обладают оптическими свойствами. К примеру, простой чистый кремний используется в производстве солнечных батарей, сложные соединения, в особенности, арсенид галлия, применяются для изготовления светодиодов. Полупроводниковый лазер имеет малые габариты и высокие технические параметры, что позволило воплотить в жизнь оптоволоконные средства коммуникации.
Полупроводниковый лазер
Легирование
Характеристика полупроводника в сильной степени зависит от его чистоты. Выращивая в особых условиях сверхчистые монокристаллы вещества, необходимые свойства придают при помощи легирования (введения в состав донорных или акцепторных примесей).
Методы получения
Для выращивания монокристаллов высокой чистоты используют два метода:
- Метод Чохральского, при котором монокристалл выращивают из расплава вещества;
- Зонная плавка, когда очистка образца производится путем расплавления небольшого участка с постепенным продвижением зоны расплава подвижной индукционной катушкой.
Также физики используют методики химического и физического осаждения, которые позволяют создавать тонкие слои вещества вплоть до слоев в одну молекулу толщиной.
Зонная плавка
Оптика полупроводников
Многие полупроводники обладают оптическими свойствами, в частности, фотопроводимостью, то есть свойством изменения электрического сопротивления под воздействием электромагнитного излучения.
В оптоэлектронике наиболее часто используются такие материалы, которые поглощают излучение в том случае, когда ширина запрещенной зоны меньше энергии кванта. Основной материал оптоэлектроники – арсенид галлия.
Список полупроводников
Полупроводники примеры которых будут рассмотрены ниже, нашли самое широкое распространение. Группы обозначаются буквами с указанием валентности. Первый материал обозначается буквой «А», второй – буквой «В». Для упрощения буквенные символы иногда опускают, оставляя только валентное число. Далее приведен краткий перечень распространенных материалов.
Группа IV
- Германий;
- Кремний;
- Карбид кремния.
Группа III-V
Арсенид, фосфид, нитрид индия и галлия. Также сюда входит трехкомпонентный полупроводник арсенид галлия-индия.
Группа II-VI
Селенид, сульфид, теллурид цинка и кадмия.
Группа I-VII
Единственное вещество – хлорид мели.
Группа IV-VI
Сульфид, теллурид свинца и олова.
Группа V-VI
Висмута теллурид.
Группа II-V
- Фосфид цинка;
- Антимонид олова.
Другие
- Сульфид олова;
- Оксид меди;
- Железный оксид.
Органические полупроводники
Некоторые органические соединения также обладают полупроводниковыми свойствами:
- Органические красители;
- Ароматические соединения;
- Полимеры;
- Пигменты.
Магнитные полупроводники
Некоторые полупроводниковые материалы обладают свойствами ферромагнетиков, что позволяет создавать устройства с новыми областями применения.
Прошло то время, когда полупроводниковая техника была дорога и нетехнологична, по сравнению с электровакуумным оборудованием. В настоящее время вся электро,- и радиотехника базируется на монолитных полупроводниковых компонентах. Такие устройства имеют высокую надежность и стабильность параметров.
Видео
amperof.ru
Полупроводники — Википедия
Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности сегодня.Полупроводники́ — материалы, по удельной проводимости занимающие промежуточное место между проводниками и диэлектриками, и отличающиеся от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводников является увеличение электрической проводимости с ростом температуры[1].
Полупроводниками являются кристаллические вещества, ширина запрещённой зоны которых составляет порядка электрон-вольта (эВ). Например, алмаз можно отнести к широкозонным полупроводникам (около 7 эВ), а арсенид индия — к узкозонным (0,35 эВ). К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.).
Атом другого химического элемента в чистой кристаллической решётке (например, атом фосфора, бора и т. д. в кристалле кремния) называется примесью. В зависимости от того, отдаёт ли примесной атом электрон в кристалл (в вышеприведённом примере – фосфор) или захватывает его (бор), примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.
Механизм электрической проводимости
Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,04·10−19 Дж), и отдельные электроны получают энергию для отрыва от ядра. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное электрическое сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Дырка
Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Этот процесс обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.
Обычно подвижность дырок в полупроводнике ниже подвижности электронов.
Энергетические зоны
Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.
Подвижность
Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов легирующих примесейПодвижностью μ{\displaystyle \mu } называют коэффициент пропорциональности между дрейфовой скоростью v→{\displaystyle {\vec {v}}} носителей тока и величиной приложенного электрического поля E→{\displaystyle {\vec {E}}}:
- v→=μE→.{\displaystyle {\vec {v}}=\mu {\vec {E}}.}
При этом, вообще говоря, подвижность является тензором:
- vα=μαβEβ.{\displaystyle \ v_{\alpha }=\mu _{\alpha \beta }E_{\beta }.}
Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.
Размерность подвижности — м²/(В·с) в СИ или см/(В·с)в системе СГС.
Собственная плотность
При термодинамическом равновесии, концентрация электронов полупроводника связана с температурой следующим соотношением:
- n¯=2h4(2πmkT)3/2e−EC−EFkT{\displaystyle {\bar {n}}={\frac {2}{h^{3}}}(2\pi mkT)^{3/2}e^{-{\frac {E_{C}-E_{F}}{kT}}}}
где:
- h{\displaystyle h} — Постоянная Планка;
- m{\displaystyle m} — масса электрона;
- T{\displaystyle T} — абсолютная температура;
- EC{\displaystyle E_{C}} — уровень зоны проводимости;
- EF{\displaystyle E_{F}} — уровень Ферми.
Также, концентрация дырок полупроводника связана с температурой следующим соотношением:
- p¯=2h4(2πmkT)3/2e−EF−EVkT{\displaystyle {\bar {p}}={\frac {2}{h^{3}}}(2\pi mkT)^{3/2}e^{-{\frac {E_{F}-E_{V}}{kT}}}}
где:
- h{\displaystyle h} — Постоянная Планка.
- m{\displaystyle m} — эффективная масса дырки;
- T{\displaystyle T} — абсолютная температура;
- EF{\displaystyle E_{F}} — уровень Ферми;
- EV{\displaystyle E_{V}} — уровень валентной зоны.
Собственная концентрация ni{\displaystyle n_{i}} связана с n¯{\displaystyle {\bar {n}}} и p¯{\displaystyle {\bar {p}}} следующим соотношением:
- n¯p¯=ni2{\displaystyle {\bar {n}}{\bar {p}}=n_{i}^{2}}
Виды полупроводников
По характеру проводимости
Собственная проводимость
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Проводимость связана с подвижностью частиц следующим соотношением:
- σ=1ρ=q(Nnμn+Npμp){\displaystyle \sigma ={\frac {1}{\rho }}=q(N_{\rm {n}}\mu _{\rm {n}}+N_{\rm {p}}\mu _{\rm {p}})}
где ρ{\displaystyle \rho } — удельное сопротивление, μn{\displaystyle \mu _{\rm {n}}} — подвижность электронов, μp{\displaystyle \mu _{\rm {p}}} — подвижность дырок, Nn,p{\displaystyle N_{n,p}} — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).
Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:
- σ=1ρ=qN(μn+μp){\displaystyle \sigma ={\frac {1}{\rho }}=qN(\mu _{\rm {n}}+\mu _{\rm {p}})}
Примесная проводимость
Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.
По виду проводимости
Электронные полупроводники (n-типа)
Полупроводник n-типаТермин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.
Проводимость N-полупроводников приблизительно равна:
- σ≈qNnμn{\displaystyle \sigma \approx qN_{\rm {n}}\mu _{\rm {n}}}
Дырочные полупроводники (р-типа)
Полупроводник p-типаТермин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.
Проводимость p-полупроводников приблизительно равна:
- σ≈qNpμp{\displaystyle \sigma \approx qN_{\rm {p}}\mu _{\rm {p}}}
Использование в радиотехнике
Полупроводниковый диод
Схема полупроводникового кремниевого диода. Ниже приведено его символическое изображение на электрических принципиальных схемах.Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.
Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:
- φ=VTln(NnNpni2){\displaystyle \varphi =V_{\rm {T}}\ln \left({\frac {N_{\rm {n}}N_{\rm {p}}}{n_{\rm {i}}^{2}}}\right)}
где VT{\displaystyle V_{\rm {T}}} — термодинамическое напряжение, Nn{\displaystyle N_{\rm {n}}} — концентрация электронов, Np{\displaystyle N_{\rm {p}}} — концентрация дырок, ni{\displaystyle n_{\rm {i}}} — собственная концентрация[2].
В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость, диод пропускает максимальный электрический ток).При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость, диод сопротивляется пропусканию электрического тока). Обратный ток полупроводникового диода близок к нулю, но не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.
Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.
Транзистор
Структура биполярного n-p-n транзистора.Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода.
Типы полупроводников в периодической системе элементов
В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:
- одноэлементные полупроводники IV группы периодической системы элементов,
- сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.
Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.
Группа | IIB | IIIA | IVA | VA | VIA |
Период | |||||
2 | 5 B | 6 C | 7 N | ||
3 | 13 Al | 14 Si | 15 P | 16 S | |
4 | 30 Zn | 31 Ga | 32 Ge | 33 As | 34 Se |
5 | 48 Cd | 49 In | 50 Sn | 51 Sb | 52 Te |
6 | 80 Hg |
Физические свойства и применение
Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех, ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).
Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.
Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).
В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.
Легирование
Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.
Методы получения
Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.
Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.
Оптика полупроводников
Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот ω<Eg/ℏ{\displaystyle \omega <E_{g}/\hbar } , где Eg{\displaystyle E_{g}} — ширина запрещённой зоны, ℏ{\displaystyle \hbar } — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.
Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона 2π/λ{\displaystyle 2\pi /\lambda }, где λ{\displaystyle \lambda } — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.
Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.
Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.
При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.
При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.
Список полупроводников
Полупроводниковые соединения делят на несколько типов:
- простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
- в группу сложных полупроводниковых материалов входят химические соединения из двух, трёх и более химических элементов. Полупроводниковые материалы из двух элементов называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV
Широкое применение получили следующие соединения:
- AIIIBV
- InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
- AIIBV
- AIIBVI
- ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
- AIVBVI
- PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe
а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).
На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.
Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах
Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.
Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.
Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.
Параметры | AlSb | GaSb | InSb | AlAs | GaAs | InAs |
---|---|---|---|---|---|---|
Температура плавления, К | 1333 | 998 | 798 | 1873 | 1553 | 1218 |
Постоянная решётки, Å | 6,14 | 6,09 | 6,47 | 5,66 | 5,69 | 6,06 |
Ширина запрещённой зоны ΔE, эВ | 0,52 | 0,7 | 0,18 | 2,2 | 1,32 | 0,35 |
Диэлектрическая проницаемость ε | 8,4 | 14,0 | 15,9 | — | — | — |
Подвижность, см²/(В·с): | ||||||
электронов | 50 | 5000 | 60 000 | — | 4000 | 34000[3] |
дырок | 150 | 1000 | 4000 | — | 400 | 460[3] |
Показатель преломления света, n | 3,0 | 3,7 | 4,1 | — | 3,2 | 3,2 |
Линейный коэффициент теплового расширения, K-1 | — | 6,9·10-6 | 5,5·10-6 | 5,7·10-6 | 5,3·10-6 | — |
Группа IV
- собственные полупроводники
- составной полупроводник
Группа III-V
- 2-компонентные полупроводники
- 3-компонентные полупроводники
- 4-компонентные полупроводники
- 5-компонентные полупроводники
Группа II-VI
- 2-компонентные полупроводники
- 3-компонентные полупроводники
Группа I-VII
- 2-компонентные полупроводники
Группа IV-VI
- 2-компонентные полупроводники
- 3-компонентные полупроводники
Группа V-VI
- 2-компонентные полупроводники
Группа II—V
- 2-компонентные полупроводники
Другие
- Разные оксиды
Органические полупроводники
Магнитные полупроводники
См. также
Примечания
- ↑ Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4.
- ↑ Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
- ↑ 1 2 Индия арсенид // Химическая энциклопедия
Литература
- Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
- Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.
- Киреев П. С. Физика полупроводников. — М., Высшая школа, 1975. — Тираж 30000 экз. — 584 с.
Ссылки
wikipedia.green
Полупроводник — это… Что такое Полупроводник?
Полупроводник (Semiconductor) — это
Полупроводники долгое время не привлекали особого внимания ученых и инженеров. Одним из первых начал систематические исследования физических свойств полупроводников выдающийся советский физик Абрам Федорович Иоффе. Он выяснил что полупроводники — особый класс кристаллов со многими замечательными свойствами:
1. С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается.
2. Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводниковых приборов: диодов, транзисторов, тиристоров и др.
3. Контакты различных полупроводников в определенных условиях при освещении или нагревании являются источниками фото — э. д. с. или, соответственно, термо — э. д. с.
Строение полупроводников и принцип их действия.
Как было уже сказано, полупроводники представляют собой особый класс кристаллов. Валентные электроны образуют правильные ковалентные связи. Такой идеальный полупроводник совершенно не проводит электрического тока (при отсутствии освещения и радиационного облучения).
Так же как и в непроводниках электроны в полупроводниках связаны с атомами, однако данная связь очень непрочная. При повышении температуры ( T>0 K), освещении или облучении электронные связи могут разрываться, что приведет к отрыву электрона от атома. Такой электрон является носителем тока. Чем выше температура полупроводника, тем выше концентрация электронов проводимости, следовательно, тем меньше удельное сопротивление. Таким образом, уменьшение сопротивления полупроводников при нагревании обусловлено увеличением концентрации носителей тока в нем.
В отличии от проводников носителями тока в полупроводниковых веществах могут быть не только электроны, но и «дырки». При потере электрона одним из атомов полупроводника на его орбите остается пустое место-«дырка» при воздействии электрическим поле на кристалл «дырка » как положительный заряд перемещается в сторону вектора E, что фактически происходит благодаря разрыву одних связей и восстановление других. «Дырку» условно можно считать частицей, несущей положительный заряд.
Механизм проведения электрического тока полупроводниками
Электропроводность полупроводников: — обеспечивается свободными электронами и дарками; — остается постоянной в пределах области температур, специфической для каждого вида полупроводников, и увеличивается с повышением температуры; — зависит от примесей; — увеличивается под действием света и с возрастанием напряженности электрического поля.
В зависимости от того, отдаёт ли атом примеси электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства изоляторов.
Полупроводники характеризуются как свойствами проводников, так и диэлектриков. Так как, образуя кристаллы, атомы полупроводников устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1, 76*10-19Дж против 11, 2*10-19Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0, 4*10-19Дж), и отдельные атомы получают энергию для отрыва электрона от атома. В процессе повышения температуры количество свободных электронов возрастает — удельное сопротивление падает. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1, 5 — 2 эВ.
Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешел электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение позитивно заряженного атома без перемещения самого атома. Этот процесс назвали «дыркой».
Виды полупроводников
По характеру проводимости
— Собственная проводимость
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
— Примесная проводимость
Для создания полупроводниковых механизмов используют кристаллы с примесной проводимостью. Такие кристаллы изготовляются с помощью внесения смесей с атомами трехвалентного или пятивалентного химического элемента.
По виду проводимости
— Электронные полупроводники (n-типа)
Этот вид полупроводников имеет примесную природу. В четырехвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.
— «Дырочные полупроводники (р-типа)»
Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырехвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, Индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвертым атомом кремния у атома Индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники p-типа, называются акцепторными.
Использование полупроводников в электродинамике
Полупроводниковый диод
Полупроводниковый диод состоит из двух типов полупроводников — дырчатого и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В. В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт. Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.
Транзистор
Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором.
Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор. Биполярный транзистор используют для усиления электрического тока.
Типы полупроводников в периодической системе элементов
В нижеследующей таблице представлена информация о большом количестве полупроводниковых соединений. Их делят на несколько типов: одноэлементные полупроводники IV группы периодической системы элементов, сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно. Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.
Физические свойства и применения
Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).
Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.
Собственный полупроводник при температуре абсолютного ноля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).
В связи с тем, что технологи могут получать очень чистые вещества встаёт вопрос о новом эталоне для числа Авогадро.
Наиболее важные для техники полупроводниковые приборы — диоды, транзисторы, тиристоры основаны на использовании замечательных материалов с электронной или дырочной проводимостью.
Широкое применение полупроводников началось сравнительно недавно, а сейчас они получили очень широкое применение. Они преобразуют свтовую и тепловую энергию в электрическую и, наоборот, с помощью электроэнергии создают тепло и холод. Полупроводниковые приборы можно встретить в обычном радиоприемнике и в квантовом генераторе — лазере, в крошечной атомной батарее и в микропроцессорах.
Инженеры не могут обходиться без полупровдниковых выпрямителей,
переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить надежность.
Легирование
Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксирован уровень Ферми в середине запрещённой зоны.
Методы получения
Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.
Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.
Оптика полупроводников
Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где Eg — ширина запрещённой зоны, — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.
Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона 2π / λ, где λ — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.
Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.
Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.
При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.
При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решетки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.
Список полупроводников
Группа IV
собственные полупроводники
Углерод, C
Кремний, Si
Кремний, Ge
Cерое олово, α-Sn
составной полупроводник
Карбид кремния, SiC
Кремний-германий, SiGe
Группа III-V
2-х компонентные полупроводники
Антимонид алюминия, AlSb
Арсенид алюминия, AlAs
Нитрид алюминия, AlN
Фосфид алюминия, AlP
Нитрид бора, BN
Фосфид бора, BP
Арсенид бора, BAs
Антимонид галлия, GaSb
Арсенид галлия, GaAs
Нитрид галлия, GaN
Фосфид галлия, Gap
Антимонид Индия, InSb
Арсенид Индия, InAs
Нитрид Индия, InN
фосфид Индия, InP
3-х компонентные полупроводники
AlxGa1-xAs
InGaAs, InxGa1-xAs
InGaP
AlInAs
AlInSb
GaAsN
GaAsP
AlGaN
AlGaP
InGaN
InAsSb
InGaSb
4-х компонентные полупроводники
AlGaInP, InAlGaP, InGaAlP, AlInGaP
AlGaAsP
InGaAsP
AlInAsP
AlGaAsN
InGaAsN
InAlAsN
GaAsSbN
5-ти компонентные полупроводники
GaInNAsSb
GaInAsSbP
Группа II-VI
2-х компонентные полупроводники
Селенид кадмия, CdSe
Сульфид кадмия, CdS
Теллурид кадмия, CdTe
Оксид цинка, ZnO
Селенид цинка, ZnSe
Сульфид цинка, ZnS
Теллурид цинка, ZnTe
3-х компонентные полупроводники
CdZnTe, CZT
HgCdTe
HgZnTe
HgZnSe
Группа I-VII
2-х компонентные полупроводники
Хлорид купрума, CuCl
Группа IV-VI
2-х компонентные полупроводники
Селенид свинца, PbSe
Сульфид свинца, PbS
Теллурид свинца, PbTe
Сульфид олова, SnS
Теллурид олова, SnTe
3-х компонентные полупроводники
PbSnTe
Tl2SnTe5
Tl2GeTe5
Группа V-VI
2-х компонентные полупроводники
Теллурид висмута, Bi2Te3
Группа II-V
2-х компонентные полупроводники
Фосфид кадмия, Cd3P2
Арсенид кадмия, Cd3As2
Антимонид кадмия, Cd3Sb2
Фосфид цинка, Zn3P2
Арсенид цинка, Zn3As2
Антимонид цинка, Zn3Sb2
Другие
CInGaSe
Силицид платины, PtSi
Иодид висмута(III), BiI3
Иодид ртути(II), HgI2
Бромид таллия(I), TlBr
Иодид меди(II), PbI2
Дисульфид молибдена, MoS2
Селенид галлия, GaSe
Сульфид олова(II), SnS
Сульфид висмута, Bi2S3
Разные оксиды
Диоксид титана, TiO2
Оксид меди(I), Cu2O
Оксид меди(II), CuO
Диоксид урана, UO2
Триоксид урана, UO3
Органические полупроводники
Тетрацен
Пентацен
Акридон
Перинон
Флавантрон
Индантрон
Индол
Alq3
Магнитные полупроводники
Ферромагнетики
Оксид европия, EuO
Сульфид европия, EuS
CdCr2Se4
GaMnAs
Pb1-xSnxTe легированный Mn2+
GaAs легированный Mn2+
ZnO легированный Co2+
Антиферромагнетики
Теллурид европия, EuTe
Селенид европия, EuSe
Оксид никеля, NiO
Технологии обработки полупроводников
Наряду с сотрудничеством отдела исследования и развития организации Atotech с институтом CNSE (США) по разработке новых технологий (разработок) медных покрытий для внутренней проводки микросхем, внедряется передовой метод, основанный на электролитическом и химическом осаждении металла для различных применений в горизонтальной вейферной сборке.
Передовая технология сборки
Финишная обработка контактных площадок
Нанесение покрытия через трафарет
3D сборка
Передовая технология сборки Atotech подкрепляется международной компанией и структурой логистики фирмы с огромным ноу-хау в области электронной индустрии в целом с нашими филиалами в более 30 странах. Мы можем предложить полупроводниковой отрасли наши технологии химической обработки, опыт электролитического производства, а также глобально действующую структуру поддержки. Метод передовой сборки основан на металлизации межслойных переходов, произведенной химическим или электролитическим путем для различных применений в горизонтальной вейферной сборке.
Требования миниатюризации в межслойных технологиях и, соответственно, более высокий ввод/вывод, а также возросшие электрические нагрузки на тракт сигнала требуют инновативные процессы сборки вейферов. Включение электроосажденной купрума в процесс сборки полупроводниковых вейферов, как, например, перераспределяющего слоя (RDL) или медного контактного столбика, имеет следующие преимущества:
Применение малого шага,
Эффективная передача сигнала
Тепловая стабильность
Более того, для экономически эффективного производства полупроводниковых устройств химический процесс обеспечивает меньшее осаждение металла. Уникальная технология Atotech по химической универсальной финишной обработке контактных площадок может применяться в двух главных областях использования, в качестве диффузионного барьера для соединения шин на алюминиевых и медных контактных площадках и как паяемое финишное покрытие для перевернутого кристалла. Основные преимущества:
Исключительная антикоррозийная устойчивость осажденного металла
Высокая надежность паяных соединений
Улучшенная надежность соединения шин для высокотемпературных применений
Источники
ru.wikipedia.org ВикипедиЯ – свободная энциклопедия
glossary.ru Голоссарий. РУ
atotech.com АвтоТех
radiopartal.tut.su Радиопортал
Энциклопедия инвестора. 2013.
investments.academic.ru
Типы полупроводников. Свойства, практическое применение.
Здравствуйте, дорогие друзья. В этой статье речь пойдет о полупроводниках. Мы рассмотрим типы полупроводников, их свойства и практическое применение.
Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.
По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.
Самым известным полупроводником является кремний (Si). Но, кроме него, есть много других. Примером могут служить такие природные полупроводниковые материалы, как цинковая обманка (ZnS), куприт (Cu2O), галенит (PbS) и многие другие. Семейство полупроводников, включая полупроводники, синтезированные в лабораториях, представляет собой один из наиболее разносторонних классов материалов, известных человеку.
Характеристика полупроводников
Из 104 элементов таблицы Менделеева 79 являются металлами, 25 – неметаллами, из которых 13 химических элементов обладают полупроводниковыми свойствами и 12 – диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.
Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.
Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие органические соединения, например полиацетилен (СН)n, – полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La2CuO4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La1-xSrx)2CuO4.
Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника — от 0 до 3 эВ. Металлы и полуметаллы – это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs – 1,5 эВ. GaN, материал для оптоэлектронных приборов в синей области, имеет запрещённую зону шириной 3,5 эВ.
Типы полупроводников, энергетический зазор
Валентные орбитали атомов в кристаллической решётке разделены на две группы энергетических уровней – свободную зону, расположенную на высшем уровне и определяющую электропроводность полупроводников, и валентную зону, расположенную ниже. Эти уровни, в зависимости от симметрии решётки кристалла и состава атомов, могут пересекаться или располагаться на расстоянии друг от друга. В последнем случае между зонами возникает энергетический разрыв или, другими словами, запрещённая зона.
Расположение и заполнение уровней определяет электропроводные свойства вещества. По этому признаку вещества делят на проводники, изоляторы и полупроводники. Ширина запрещённой зоны полупроводника варьируется в пределах 0,01–3 эВ, энергетический зазор диэлектрика превышает 3 эВ. Металлы из-за перекрытия уровней энергетических разрывов не имеют.
Полупроводники и диэлектрики, в противовес металлам, имеют заполненную электронами валентную зону, а ближайшая свободная зона, или зона проводимости, отгорожена от валентной энергетическим разрывом – участком запрещённых энергий электронов.
Типы полупроводников, ширина запрещенной зоны
В диэлектриках тепловой энергии либо незначительного электрического поля недостаточно для совершения скачка через этот промежуток, электроны в зону проводимости не попадают. Они не способны передвигаться по кристаллической решётке и становиться переносчиками электрического тока.
Чтобы возбудить электропроводимость, электрону на валентном уровне нужно придать энергию, которой бы хватило для преодоления энергетического разрыва. Лишь при поглощении количества энергии, не меньшего, чем величина энергетического зазора, электрон перейдёт из валентного уровня на уровень проводимости.
В том случае, если ширина энергетического разрыва превышает 4 эВ, возбуждение проводимости полупроводника облучением либо нагреванием практически невозможно – энергия возбуждения электронов при температуре плавления оказывается недостаточной для прыжка через зону энергетического разрыва. При нагреве кристалл расплавится до возникновения электронной проводимости. К таким веществам относится кварц (dE = 5,2 эВ), алмаз (dE = 5,1 эВ), многие соли.
Примесная и собственная проводимость полупроводников
Чистые полупроводниковые кристаллы имеют собственную проводимость. Такие полупроводники именуются собственными. Собственный полупроводник содержит равное число дырок и свободных электронов. При нагреве собственная проводимость полупроводников возрастает. При постоянной температуре возникает состояние динамического равновесия количества образующихся электронно-дырочных пар и количества рекомбинирующих электронов и дырок, которые остаются постоянными при данных условиях.
Наличие примесей оказывает значительное влияние на электропроводность полупроводников. Добавление их позволяет намного увеличить количество свободных электронов при небольшом числе дырок и увеличить количество дырок при небольшом числе электронов на уровне проводимости.
Примесные полупроводники – это проводники, обладающие примесной проводимостью. Примеси, которые с лёгкостью отдают электроны, называются донорными. Донорными примесями могут быть химические элементы с атомами, валентные уровни которых содержат большее количество электронов, чем атомы базового вещества. Например, фосфор и висмут – это донорные примеси кремния.
Энергия, необходимая для прыжка электрона в область проводимости, носит название энергии активизации. Примесным полупроводникам необходимо намного меньше ее, чем основному веществу. При небольшом нагреве либо освещении освобождаются преимущественно электроны атомов примесных полупроводников. Место покинувшего атом электрона занимает дырка. Но рекомбинации электронов в дырки практически не происходит. Дырочная проводимость донора незначительна. Это происходит потому, что малое количество атомов примеси не позволяет свободным электронам часто приближаться к дырке и занимать её. Электроны находятся около дырок, но не способны их заполнить по причине недостаточного энергетического уровня.
Типы полупроводников, собственная проводимость
Незначительная добавка донорной примеси на несколько порядков увеличивает число электронов проводимости по сравнению с количеством свободных электронов в собственном полупроводнике. Электроны здесь – основные переносчики зарядов атомов примесных полупроводников. Эти вещества относят к полупроводникам n-типа.
Примеси, которые связывают электроны полупроводника, увеличивая в нём количество дырок, называют акцепторными. Акцепторными примесями служат химические элементы с меньшим числом электронов на валентном уровне, чем у базового полупроводника. Бор, галлий, индий – акцепторные примеси для кремния.
Одноэлементные полупроводники
Самым распространённым полупроводником является, конечно, кремний. Вместе с германием он стал прототипом широкого класса полупроводников, обладающих подобными структурами кристалла.
Структура кристаллов Si и Ge та же, что у алмаза и α-олова. В ней каждый атом окружают 4 ближайших атома, которые образуют тетраэдр. Такая координация называется четырехкратной. Кристаллы с тетрадрической связью стали базовыми для электронной промышленности и играют ключевую роль в современной технологии. Некоторые элементы V и VI группы таблицы Менделеева также являются полупроводниками. Примеры полупроводников этого типа – фосфор (Р), сера (S), селен (Se) и теллур (Те). В этих полупроводниках атомы могут иметь трехкратную (Р), двухкратную (S, Se, Те) или четырехкратную координацию. В результате подобные элементы могут существовать в нескольких различных кристаллических структурах, а также быть получены в виде стекла. Например, Se выращивался в моноклинной и тригональной кристаллических структурах или в виде стекла (которое можно также считать полимером).
Типы полупроводников, кремний
- Алмаз обладает отличной термической проводимостью, превосходными механическими и оптическими характеристиками, высокой механической прочностью. Ширина энергетического разрыва — dE = 5,47 эВ.
- Кремний – полупроводник, используемый в солнечных батареях, а в аморфной форме – в тонкоплёночных солнечных батареях. Является наиболее используемым полупроводником в фотоэлементах, прост в производстве, обладает хорошими электрическими и механическими качествами. dE = 1,12 эВ.
- Германий – полупроводник, используемый в гамма-спектроскопии, высокоэффективных фотоэлементах. Использовался в первых диодах и транзисторах. Требует меньше очистки, чем кремний. dE = 0,67 эВ.
- Селен – полупроводник, который применяется в селеновых выпрямителях, обладающих высокой радиационной устойчивостью и способностью к самовосстановлению.
Двухэлементные соединения
Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают свойства веществ 4 группы. Переход от 4 группы элементов к соединениям 3–4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа – антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.
Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути – полупроводник без энергетического зазора, полуметалл, подобно α-олову.
Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2– 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1–7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Нитрид галлия — соединение 3-5 групп с широким энергетическим зазором, нашёл применение в полупроводниковых лазерах и светодиодах, работающих в голубой части спектра.
Типы полупроводников, полупроводниковые материалы
- GaAs, арсенид галлия – второй по востребованности после кремния полупроводник, обычно используемый в качестве подложки для других проводников, например, GaInNAs и InGaAs, в ИК-сетодиодах, высокочастотных микросхемах и транзисторах, высокоэффективных фотоэлементах, лазерных диодах, детекторах ядерного излечения. dE = 1,43 эВ, что позволяет повысить мощность приборов по сравнению с кремнием. Хрупок, содержит больше примесей, сложен в изготовлении.
- ZnS, сульфид цинка – цинковая соль сероводородной кислоты с диапазоном запрещённой зоны 3,54 и 3,91 эВ, используется в лазерах и в качестве люминофора.
- SnS, сульфид олова – полупроводник, используемый в фоторезисторах и фотодиодах, dE= 1,3 и 10 эВ.
Типы полупроводников, оксиды
Оксиды металлов преимущественно являются прекрасными изоляторами, но есть и исключения. Примеры полупроводников этого типа – оксид никеля, оксид меди, оксид кобальта, двуокись меди, оксид железа, оксид европия, оксид цинка. Так как двуокись меди существует в виде минерала куприта, её свойства усиленно исследовались. Процедура выращивания полупроводников этого типа еще не совсем понятна, поэтому их применение пока ограничено. Исключение составляет оксид цинка (ZnO), соединение 2—6 групп, применяемый в качестве преобразователя и в производстве клеящих лент и пластырей.
Положение кардинально изменилось после того, как во многих соединениях меди с кислородом была открыта сверхпроводимость. Первым высокотемпературным сверхпроводником, открытым Мюллером и Беднорцем, стало соединение, основанное на полупроводнике La2CuO4 с энергетическим зазором 2 эВ. Замещая трёхвалентный лантан двухвалентным барием или стронцием, в полупроводник вводятся переносчики заряда дырки. Достижение необходимой концентрации дырок превращает La2CuO4 в сверхпроводник. В данное время наибольшая температура перехода в сверхпроводящее состояние принадлежит соединению HgBaCa2Cu3O8. При высоком давлении её значение составляет 134 К.
ZnO, оксид цинка, используется в варисторах, голубых светодиодах, датчиках газа, биологических сенсорах, покрытиях окон для отражения инфракрасного света, как проводник в ЖК-дисплеях и солнечных батареях. dE=3.37 эВ.
Слоистые кристаллы
Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым строением кристалла. В слоях действуют ковалентные связи значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов – интеркаляцией.
Типы полупроводников, слоистые кристаллы
MoS2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.
Органические полупроводники
Примеры полупроводников на основе органических соединений – нафталин, полиацетилен (Ch3)n, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида –С=С–С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки – тоже полупроводниками.
- Фуллерен имеет структуру в виде выпуклого замкнутого многогранника из чётного количества атомов углеорода. А легирование фуллерена С60 щелочным металлом превращает его в сверхпроводник.
- Графен образован одноатомным слоем углерода, соединённого в двумерную гексагональную решётку. Обладает рекордной теплопроводностью и подвижностью электронов, высокой жёсткостью
- Нанотрубки представляют собой свернутые в трубку пластины графита, имеющие несколько нанометров в диаметре. Эти формы углерода имеют большую перспективу в наноэлектронике. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.
Магнитные полупроводники
Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа – сульфид европия, селенид европия и твёрдые растворы, подобные Cd1-xMnxTe. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники – это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации. Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения.
Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn0,7Ca0,3O3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.
Разнообразие полупроводниковых материалов
Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-52 (AgGaS2) и 2-4-52 (ZnSiP2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3–5 и 2–6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As2Se3), – полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.
Видео, типы полупроводников
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
powercoup.by