Потери в проводах: Потери напряжения в кабеле, как их рассчитать

Содержание

Расчет напряжения, потери напряжения (страница 1)

1. Как скажется на потере напряжения в двухпроводной линии длиной l=200 м замена медных проводов с площадью поперечного сечения на алюминиевые того же сечения, если ток в линии I=100 A?

Решение:
Потеря напряжения в проводах линии прямо пропорциональна току и сопротивлению линии. Ток в линии предполагается в обоих случаях одинаковым. Следовательно, на изменение потери напряжения может повлиять только изменение электрического сопротивления линии в результате замены медных проводов алюминиевыми. Так как длина линии и сечение проводов остаются прежними, то необходимо сравнить величины удельных сопротивлений алюминия и меди:

Таким образом, при алюминиевых проводах потеря напряжения будет в 1,65 раза больше. Чтобы знать числовое значение потери напряжения, следует определить электрические сопротивления проводов.
При медных проводах

При алюминиевых проводах

Потери напряжения:

  • при медных проводах


  • при алюминиевых проводах


2. Вольтметр присоединен к зажимам генератора, имеющего внутреннее сопротивление 0,2 Ом. При холостом ходе генератора показание вольтметра 232 В.
Определить показания вольтметра при нагружении генератора токами 20, 40, 50 и 100 А, считая э.д.с. и внутреннее сопротивление постоянными.

Решение:
Показание вольтметра, присоединенного к зажимам генератора, не нагруженного током, равно его э. д. с; следовательно, Е = 232 В. Напряжение между зажимами источника меньше этой э.д.с. на величину внутренних потерь , т. е.

Подставив числовые значения в это выражение, вычислим искомые показания вольтметра по табл. 3.
Таким образом, если не регулировать э.д.с. источника, то по мере нагружения генератора током напряжение между его зажимами будет уменьшаться.
Это может привести к заметному уменьшению светового потока электрических ламп.

 

Таблица 3

232

232

232

232

20

40

50

100

0,2

0,2

0,2

0,2

228

224

222

212

 

3. При токе 2 А напряжение между зажимами аккумулятора было равно 2,1 В, а при токе 4 А оно стало равно 2 В.
Определить э. д. с. источника, внутреннее сопротивление и ток короткого замыкания.
Примечание: Э.д.с. и внутреннее сопротивление источника не зависят от тока нагрузки.

Решение:
На основании закона Ома сопротивление внешней цепи равно:

  • в первом случае


  • во втором случае


На основании закона Ома для всей цепи э.д.с. равна:

  • в первом случае


  • во втором случае


или

Вычтя уравнение (3) из уравнения (2), получим

Подставив в уравнение (3), найдем

Ток короткого замыкания источника ограничивается лишь внутренним сопротивлением и равен

Такой ток опасен для пластин аккумулятора типа СК-1 емкостью , допускающего ток 18,5 а при одночасовой работе.

4. Двухпроводная линия, соединяющая приемники энергии со станцией, выполнена алюминиевыми проводами сечением и имеет длину l=50 м. Мощность приемников энергии, имеющих номинальное напряжение , изменяется во время работы и принимает значения 1,1; 5,5; 11,0; 0; 2,75 кВт.
Как должно изменяться напряжение на станции, чтобы обеспечить номинальное напряжение приемников?

Решение:
Сопротивление одного провода линии

Сопротивление двухпроводной линии

Суммарный ток приемников энергии, проходящий в проводах линии, в первом случае

Потеря напряжения в линии

Напряжение в начале линии

 

Аналогичное вычисление проведем для всех случаев и данные впишем в табл. 5.
Следовательно, в результате потери напряжения в линии, изменяющейся пропорционально току, приходится регулировать напряжение в начале линии. Напротив, неизменное напряжение в начале линии приведет к заметным колебаниям напряжения в конце линии при включении и отключении приемников энергии. Это отражается на световом потоке электрических ламп и скорости вращения электродвигателей.

Таблица 5

0,28

0,28

0,28

0,28

0,28

220

220

220

220

220

1100

5500

11000

0

2750

5

25

50

0

12,5

1,4

7

14

0

3,5

221,4

227

234

220

223,5

 

5. Э.д.с. аккумуляторной батареи составляла 20 В в начале зарядки при токе 10 А и повысилась до 26 В в конце зарядки при токе 1 А.
Как изменится напряжение, приложенное к батарее, если внутреннее сопротивление ее равно 1 Ом и принимается постоянным?

Решение:
Приложенное к батарее напряжение должно при зарядке уравновешивать направленную встречно э.д.с. и покрывать потери напряжения во внутреннем сопротивлении батареи. Следовательно,

Если заряжающий источник имеет напряжение больше, чем , то последовательно с батареей следует включить реостат для компенсации избытка напряжения, причем сопротивление реостата приходится увеличивать ввиду уменьшения тока к концу зарядки батареи.

6. Батарея составлена из четырех первичных элементов с разными э.д.с. и различными внутренними сопротивлениями (рис. 12).
Выяснить условия наиболее благоприятного взаимосоединения источников, если соединение «групповое».

Решение:

В каждой группе источники соединены последовательно, причем зажим «+» одного источника соединен с зажимом «—» другого источника. Поэтому в пределах каждой группы имеем сложение э.д.с, например в 1-й группе, во 2-й группе.
Одноименные зажимы группы соединяем между собой. При обходе контура батареи направление двух э.д.с, например , совпадают с направлением обхода, а направления э.д.с. противоположны направлению обхода. Поэтому получаем алгебраическую сумму э.д.с.

Такой контур существует и при холостом ходе батареи, когда к полюсам батареи не присоединена нагрузка. Чтобы при холостом ходе не было тока в контуре батареи, нужно алгебраическую сумму э.д.с. приравнять нулю, т. е. необходимо равенство сумм э.д.с. той и другой групп:

Допустим, что это условие выполнено. Чтобы при нагрузке ток внешней цепи распределялся между группами батареи поровну, требуется равенство сопротивлений групп, т. е. В этом случае при обходе контура батареи получим


где , т. е. токи групп равны друг другу и составляют половину тока нагрузки.

Влияние длины и сечения кабеля на потери по напряжению

Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:

U = I·R,

из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.

При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.

Почему падает напряжение и как это зависит от длины и сечения проводников

Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.

Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:

  • удельного сопротивления материала – ρ;
  • длины отрезка проводника – l;
  • площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.

Все четыре параметра связывает следующее соотношение:

R = ρ·l/S,

очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.

Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).

Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.

Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.

Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.

Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.

Смотрите также другие статьи :

Классификация помещений по степени опасности

К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.

Подробнее…

Что такое гармоники в электричестве

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал.

Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Подробнее…

Калькулятор расчета потерь напряжения

С помощью данного калькулятора можно вычислить потери напряжения (мощности) и подобрать необходимое поперечное сечения кабеля.

Для этого необходимо знать рабочее напряжение, протекающий ток и длину кабеля. Ниже приведен пример расчета.

Расcчитать

Мощность, Вт:

 

Напряжение с учетом потерь, В:

 

Потери напряжения, В:

 

или

 

Потери мощности, Вт:

 

Мощность с учетом потерь, Вт:

 


Сброс

* Общая длина кабелей плюса и минуса
Удельное сопротивление меди в формулах 0,0175 Ом*мм2/м (при 20 Со)

 

Для примера подберем сечение кабеля от солнечных батарей до контроллера на примере солнечной электростанции для дома, состоящую из следующих компонентов:

  1. Монокристаллическая солнечная батарея Suoyang SY-200WM — 4 шт.
    ;
  2. Контроллер заряда ITracer IT6415ND — 1 шт.;
  3. Инвертор PI 2000Вт/12В (чистый синус) — 1 шт.;
  4. Гелевый аккумулятор 200Ач — 2 шт.

Итак, напряжение в точке максимальной мощности у монокристаллической солнечной батареи Suoyang SY-200WM составляет 37,2В, а ток в максимальной мощности 5,38А, именно эти значения мы будем использовать в расчетах. Но для начала нам нужно определиться, как соединить между собой солнечные батареи.

В состав нашего комплекта входит контроллер заряда Epsolar на 60А, с функцией поиска максимальной мощности (MPPT). Максимальное входное напряжение от солнечных батарей в данный контроллер составляет 150В, а выходное напряжение на аккумулятор будет составлять

12/24/36 или 48В, автоматически в зависимости от напряжения аккумулятора, который мы подключили. В нашем случае это два 12 вольтовых гелевых аккумулятора Delta 12-200, соединенных параллельно.  

Имея четыре солнечные батареи SY-200 и выше описанный контроллер мы можем подключить солнечные батареи двумя способами:

1. Параллельное соединение (все четыре штуки параллельно между собой). При этом напряжение у нас останется 37,2В, а максимальный ток от солнечных батарей составит 5,38А * 4 = 21,52А

.

2. Последовательно – параллельное соединение (две последовательных цепочки по две штуки). При этом напряжение будет составлять 37,2В * 2=74,4В, а ток 5,38 * 2 = 10,76А.

Нужно понимать, что

мощность в двух случаях будет ОДИНАКОВАЯ. Разность только в токе и напряжении — в первом случае у нас больше ток, но меньше напряжение, а во втором – наоборот. Если мы подключим все четыре солнечные батареи последовательно, то напряжение будет выше, чем допустимое максимальное входное напряжение контроллера заряда, которое составляет 150В, более того нужно учитывать температурный коэффициент и напряжение холостого хода, но сейчас не об этом.

Сечение кабеля подбирается по току, чем больше ток – тем больше сечение!

Подставим в калькулятор расчета потерь напряжения данные первого способа подключения (параллельно все четыре штуки), расстояние от солнечных батарей до контроллера примем равным 15 метров (15 плюс и 15 минус), соответственно общая длина кабеля составит

30 метров, сечение кабеля возьмем равным 6мм²:

  • Напряжение: 37,2В
  • Сечение кабеля: 6мм²
  • Длина: 30м
  • Максимальный ток: 21,52А

Получаем потери напряжения и мощности более 5% (потери напряжения: 1,88В, потери мощности: 40,45Вт).

Подставим второй способ подключения (Две последовательных цепочки по две штуки):

  • Напряжение: 74,4В
  • Сечение кабеля: 6мм²
  • Длина: 30м
  • Максимальный ток: 10,76А

Получаем куда лучший результат, благодаря увеличенному напряжению и меньшему току: потери напряжения и мощности 1,26% (потери напряжения: 0,94В, потери мощности: 10,11Вт)

Выводы: Как видно, благодаря возможности

увеличения напряжения, путем последовательно – параллельного соединения солнечных батарей, нам удалось уменьшить ток и при использовании кабеля одного и того же сечения уменьшить потери в нем в 4 раза!

Читайте также:

Расчет сечения кабеля (провода)

 

 

Потеря напряжения в проводах линий электропередач

     Передача электроэнергии на расстояния выполняется с помощью линии электропередач (ЛЭП), которые делятся на воздушные и кабельные. При передаче энергии часть ее расходуется на нагрев проводов, образование

электромагнитных полей. Эти потери электроэнергии нужно толковать как технологические потери электроэнергии на ее передачу, а не как в других отраслях — потери от брака, когда нарушается технологический процесс. В основном электроэнергию в одного потребителя передают по двум одинаковым по параметрам ЛЭП для обеспечения надежности сетей. То есть, когда аварийно отключится одна из ЛЭП второй останется питать потребитель.

     ЛЭП состоят из проводов, которые в свою очередь изготавливаются из проводников, в основном из меди или алюминия. Все материалы, даже проводники, имеют сопротивление. При передаче электроэнергии по проводам длиной более 10 м сопротивлением провода пренебрегать нельзя, так как ток в них вызывает заметное падение напряжения согласно закону Ома.

 

С целью экономии энергии и обеспечения незначительного колебания напряжения на зажимах приемника при изменении сопротивления или тока приемника потеря напряжения должна быть невелика при сравнении с номинальным напряжением приемника. Ток потребителя (или нагрузки) при различных сопротивлениях приемника изменяется от нуля до наибольшего своего значения. Потеря напряжения при этом тоже колеблется от нуля до своего максимального значения.

 

В электрических сетях напряжением до 20 кВ отклонения напряжения на зажимах потребителей в нормальном режиме не должны превышать ± 5%, а в аварийном — ± 10%.

     Отклонение напряжения нежелательны как в сторону увеличения так и в сторону уменьшения по отношению к номинальной напряжения. При больших отклонениях напряжения наблюдается потерь мощности и энергии, изменяются нагрузки потребителей, ухудшается качество продукции, возможно браковки продукции, сокращение срока работы элементов сети и оборудование, нарушение нормальной деятельности устройств автоматики и релейной защиты, что может привести к авариям и отключениям потребителей. Например, для ламп накаливания при освещенность возрастает на 40%, а срок работы уменьшается в 3 раза, при освещенность уменьшается на 30%, а срок работы увеличивается в 2 раза, но уменьшается производительность труда и ухудшается состояние и здоровье человека.

     В случае если сеть имеет несколько приемников, присоединенных к разным городам линии, потерю напряжения во всей сети определяется как сумма потерь напряжения на отдельных ее участках:

     Под наибольшей потерей напряжения понимают потерю напряжения на пути от источника питания до наиболее удаленного потребителя электроэнергии сети одного класса напряжения. Причем определяют наибольшую потерю напряжения как в нормальном режиме работы электросети, так и в аварийном (например, при отключении одного ЛЭП из двух параллельных). Расчетные наибольшие потери напряжений должны быть меньше наиболее допустимые, как в нормальном, так и в аварийном режиме.


Расчет потери напряжения в электропроводке

08 Март 2013 Программы для электриков

Здравствуйте дорогие читатели Цешка.ру! Итак, сегодня на повестке дня вопрос- как рассчитать сечение провода по допустимой потере напряжения.

И поможет нам в этом конечно же программа для электриков которая так и называется- “Электрик”.

Я уже рассказывал где бесплатно скачать программу “Электрик” и как в ней работать, читайте ЗДЕСЬ и ЗДЕСЬ.

Для тех кто не знает зачем делать расчет по потере напряжения- напомню, что при большой длине провода происходит падение напряжения на этом участке и до нагрузки может “дойти” совсем мало если неправильно выбрать сечение провода.

Далее я покажу это на примере.

Обычно организации, которые делают капитальный ремонт квартир , обязательно смотрят на состояние электропроводки да и вообще всего электрооборудования и при производстве ремонта меняют ветхие и устаревшие провода, автоматы ну и т.д.

При этом надо правильно выбрать сечение новой проводки не только по условиям нагрева, но и по допустимой потере напряжения.

Представим такую ситуацию. Вам предстоит ремонт квартиры ну или если у вас дом- то дома.

Вы делаете ремонт электропроводки в доме и решили провести отдельный провод розетки в комнату. Но эта комната дальняя и длина провода получается порядка 30 метров до последней розетки.

Вы знаете что ничего мощного в розетки включать никогда не будете, максимум что можете включить- это утюг, телевизор, компьютер что в сумме набегает не более 3кВт и ток при такой мощности I=P/U=3000/220=13,64 А или если округлим то 14 ампер.

Согласно ПУЭ для такого тОка подходит сечение по меди в 1,5 кв.мм. Правда изоляция провода при этом будет около 60 гр.С при температуре в помещении +25, но правила допускают такую нагрузку:

А сейчас давайте посмотрим что нам скажет программа “Электрик” в нашем случае, мы узнаем сколько вольт “потеряется” на 30м провода и сколько “дойдет” до розетки.

Итак, открываем программу “Электрик” и нас интересует кнопка под названием “Потери”, жмем на нее:

Открывается вот такое окошко, где надо поставить точку на “Потери напряжения”:

В следующем открывшемся окне жмем на кнопку “Кабельные линии и другие провода”:

Ну и в очередном окне указываем необходимые параметры, перечисляю сверху- вниз:

Найти- Потери в %

Материал проводника- медные

Задано:

3- Мощность Р,кВт

220- Напряжение U, В (тут ставим то напряжение какое у вас в месте подключения провода)

4- Допустимые потери,% (в нашем примере это значение не важно, можете ставить тоже 4):

Далее выбираем сечение провода, в нашем случае- 1,5кв.мм:

Далее надо выбрать индуктивное сопротивление, тут особо заморачиваться не надо, просто жмем на кнопку “Выбрать Xo” и в открывшемся окне нажимаем на значение “Кабель с виниловой или полихлорвинил изоляцией”:

Далее вносим значение косинуса фи, я выставил 0,85 так как у нас не чисто активная нагрузка и следующее значение вносим- длину провода 30м:

На этом все, сейчас можно узнать и результат, для этого жмем на кнопку “Расчет”:

И сейчас видим результат- целых 10 вольт напряжения “теряется” на участке медного провода сечением 1,5 кв.мм длиной 30 метров!

То есть на включенной нагрузке в 3 кВт будет уже не 220 вольт, а только 210. Для интереса можно посчитать сколько вольт “потеряется” если провод будет сечением 2,5 кв.мм:

Как видите- уже меньше, падение напряжения на участке длиной 30м составит уже всего 6 вольт.

Так же можно и наоборот узнать- какое надо сечение провода если вы знаете необходимое значение потери напряжения, для этого вверху окошка надо поставить точку на “Сечение в мм кв.” и внести нужные значения- я их обвел красным на картинке:

Вот таким образом можно с помощью программы “Электрик” определить не только значение падения напряжения на электропроводке но и узнать необходимое сечение для правильного выбора проводов при монтаже электропроводки.

Надеюсь эта информация вам поможет и не раз пригодится.

Буду рад вашим комментариям, если есть какие то технические вопросы- то прошу задавать их на форуме, именно там я отвечаю на вопросы- ФОРУМ.

Подписывайтесь на мой видеоканал на Ютубе!

Смотрите еще много видео по электрике для дома!

Теги: программа электрик

Определение потерь напряжения и мощности в проводах линии и электропередачи доклад по технологии

Определение потерь напряжения и мощности в проводах линии и электропередачи Лабораторная работа Цель 1. Выяснить какое влияние оказывает нагрузка линии и сопротивление её проводов на напряжение приемника. 2. Определить мощность потерь в проводах и КПД линии электропередачи. Теоретическое обоснование Каждый приёмник электрической энергии рассчитан на определённое номинальное напряжение. Так как приёмники могут находиться на значительных расстояниях от питающих их электростанций, то потери напряжения в проводах имеют важное значение. Допустимые потери напряжения в проводах для различных установок не одинаковы, но не превышают 4-6% номинального напряжения. На рис. приведена схема электрической цепи, состоящая из источника электрической энергии, приёмника и длинных соединительных проводов. При прохождении по цепи электрического тока I показания вольтметра U1, включённого в начале линий, больше показаний вольтметра U2, включённого в конце линий. Уменьшение напряжения в линии по мере удаления от источника вызвано потерями напряжения в проводах линии Ui=U1-U2 и численно равно падению напряжения. Согласно закону Ома, падение напряжения в проводах линии равно произведению тока в ней на сопротивление проводов: Uii=I*R тогда Ui=U1-U2= Uii= — сопротивление проводов линии. Мощность потерь в линии можно определить двумя способами: Pi= Ui*I=(U1-U2)*I или Pii=I*R Уменьшить потери напряжения и потери мощности в линии электропередачи можно уменьшая силу тока в проводах либо увеличивая сечение проводов с целью уменьшения их сопротивления. Силу тока в проводах можно уменьшить увеличивая напряжение в начале линии. КПД линии электропередачи определяется отношением мощности, отдаваемой электроприёмнику, к мощности, поступающей в линию, или отношением напряжения в конце линии к напряжению в её начале: Схема передачи электрической энергии: Приборы и оборудование Два вольтметра и амперметр электромагнитной системы, ламповый реостат, двухполюсный автоматический выключатель, соединительного провода. Порядок выполнения работы Ознакомиться с приборами и оборудованием, предназначенными для выполнения лабораторной работы, записать их технические характеристики. Подать в цепь напряжение. Изменяя нагрузку с помощью лампового реостата, при трёх её значениях записать показания приборов в таблице. Вычислить потери двумя способами: 1. Как разность напряжений в конце и начале линий. 2. Как произведение силы тока на сопротивление проводов. Определить мощность потерь в линии и КПД. Результаты вычислений занести в таблицу. Таблица изменения числа потребителей: Изменяем напряжение в начале и конце линий. Данные наблюдений Результаты вычислений Лампы, Вт U1 U2 I U Pвх Рвых Р % 40 150 149 0,13 1 19,5 19,4 0,1 99,3 60 148 146 0,2 2 29,6 29,2 0,4 98,6 100 150 148 0,3 2 45 44,4 0,6 98,7 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Вывод На основе проведённого опыта выяснили, что факторами, влияющими на потери в линиях являются: протяжённость линий; сечение проводника; состав материала и количество потребителей. Чем больше потребителей, тем меньше КПД. . Уменьшить потери напряжения и потери мощности в линии электропередачи можно уменьшая силу тока в проводах либо увеличивая сечение проводов с целью уменьшения их сопротивления. Ответы на контрольные вопросы Разность напряжений в начале и конце линий равна падению напряжения в проводах и называется потерей напряжения. U=IR Сопротивление проводов зависит от материала из которого они изготовлены, площади поперечного сечения и длины этих проводов.

Допустимая потеря напряжения в линии 10 кв. Потеря напряжения

В распределительных сетях 0,4 кВ существует проблема, связанная со значительными перекосами напряжений по фазам: на нагруженных фазах напряжение падает до 200…208 В, а на менее нагруженных за счет смещения «нуля» может возрастать до 240 В и более. Повышенное напряжение может привести к выходу из строя электрических приборов и оборудования потребителей. Асимметрия напряжений возникает из-за разного падения напряжения в проводах линии при перекосах фазных токов, вызванных неравномерным распределением однофазных нагрузок. При этом в нулевом проводе четырехпроводной линии появляется ток, равный геометрической сумме фазных токов. В некоторых случаях (например, при отключении нагрузки одной или двух фаз) по нулевому проводу может протекать ток, равный фазному току нагрузки. Это приводит к дополнительным потерям в ЛЭП (линии электропередач) 0,4 кВ, распределительных трансформаторах 10/0,4 кВ и, соответственно, в высоковольтных сетях.

Подобная ситуация характерна для многих сельских районов и может возникнуть в жилых многоквартирных домах, где практически не реально равномерно распределить нагрузку по фазам питания, в результате чего в нулевом проводе появляются достаточно большие токи, что приводит к дополнительным потерям в проводниках групповых и питающих линий и вызывает необходимость увеличения сечение нулевого рабочего провода до уровня фазных.

Перекосы напряжений сильно сказываются на работе оборудования [Л.1]. Так небольшая асиметрия напряжения (например, до 2%) на зажимах асинхронного двигателя приводит к значительному увеличению потерь мощности (до 33% в статоре и 12% в роторе), что в свою очередь, вызывает дополнительный нагрев обмоток и снижает срок службы их изоляции (на 10,8%), а при перекосах в 5% общие потери возрастают в 1,5 раза и, соответственно, растет потребляемый ток. Причем, дополнительные потери, обусловленные несиметрией напряжений, не зависят от нагрузки двигателя.

При увеличении напряжения на лампах накаливания до 5% световой поток увеличивается на 20%, а срок службы сокращается в два раза.

На трансформаторных подстанциях 10/0,4 кВ, как правило, установлены трансформаторы со схемой соединений У/У н. Уменьшить потери и симметрировать напряжение в ЛЭП 10 кВ возможно, применив со схемой соединений Y/Zjj или A/Zjj, или (выпускаемый УП МЭТЗ им. В.И. Козлова), но такая замена связана с большими финансовыми затратами и не компенсирует дополнительные потери в ЛЭП 0,4 кВ.

Для компенсации перекоса напряжений целесообразно перераспределить токи нагрузки по фазам, выровняв их значения.

Необходимость ограничения тока нулевого провода вызвана еще и тем, что в распределительных сетях 0,4 кВ, выполненных кабелем, сечение нулевого провода обычно принимается на ступень меньше сечения фазного провода.

В целях уменьшения потерь электроэнергии в сетях 0,4 кВ за счет перераспределения токов по фазам, ограничения тока в нулевом проводе и снижения перекосов напряжений, предлагается использовать трехфазный симметрирующий автотрансформатор, устанавливая его в конце ЛЭП, в узлах нагрузки. При этом, если на линии 0,4 кВ до узла нагрузки произойдет короткое замыкание одной из фаз на нулевой провод (что в сожалению не редко бывает на воздушных ЛЭП в сельских районах), потребители за установленным автотрансформатором будут защищены от больших перенапряжений.

Автотрансформатор трехфазный, сухой, симметрирующий (сокращенно — АТС-С) содержит трехстержневой магнитопровод, первичные обмотки W 1 размещенные на всех трех стержнях, соединенные в звезду с нейтралью и подключаются к сетевому напряжению, компенсационная обмотка W K выполнена в виде открытого треугольника (некоторые авторы называют его разомкнутым [Л.3]) и включена последовательно с нагрузкой.

Основные электрические схемы автотрансформатора представлены на рис.1…4.

На рис.1 представлена электрическая схема автотрансформатора с компенсационной обмоткой, когда секции этой обмотки, выполненные на каждой фазе, соединены в классический открытый треугольник и подключены к нейтрали сети, и к нагрузке.

На рис.2 представлена электрическая схема автотрансформатора с компенсационной обмоткой, выполненной в виде витков из проводникового материала, лежащих поверх обмоток всех трех фаз автотрансформатора, образуя открытый треугольник. Применение этой схемы, по сравнению с предыдущей, позволяет не только уменьшить расход обмоточного провода дополнительной обмотки, но и габаритную мощность автотрансформатора за счет освобождения окна магнитопровода и уменьшения межосевого расстояния между первичными обмотками.

Эти схемы применимы в тех случаях, когда нулевой провод нагрузки не имеет жесткой связи с заземлением и во всех случаях в пятипроводной системе с РЕ- и N-проводниками.

На рис.3 представлена электрическая схема автотрансформатора с компенсационными обмотками, выполненными в виде фазных обмоток соединенных в открытые треугольники, включенные согласно к фазным обмоткам автотрансформатора.

Конструктивно схема, представленная на рис.4, может быть выполнена аналогично схеме рис.2, т.е. фазные компенсационные обмотки выполнены поверх обмоток всех трех фаз автотрансформатора и включены в разрыв фазных проводов сети со стороны нагрузки.


Данные схемы могут использоваться, в том числе, когда нейтраль нагрузки глухо заземлена, т. е. когда нет возможности включить компенсационную обмотку автотрансформатора в разрыв нулевого провода между нагрузкой и сетью, или когда нулевой провод нагрузки по требованиям безопасности должен быть «жестко» заземлен.

При асимметрии токов нагрузки и, соответственно, токов в компенсационных обмотках, магнитные потоки, создаваемые этими обмотками в магнитопроводе автотрансформатора, будут геометрически складываться. В стержнях магнитопровода будут возникать направленные в одну сторону во всех фазах автотрансформатора потоки нулевой последовательности. Эти магнитные потоки, создают э.д.с. нулевой последовательности и, соответственно, токи I 01 в первичной обмотке пропорционально коэффициенту трансформации к тр (обратно пропорционально соотношению числа витков W1/Wk).

Подключение обмотки W K выбрано таким образом, чтобы фазные токи автотрансформатора векторно вычитались из фазного тока линии наиболее нагруженной фазы и добавлялись к токам менее нагруженных фаз. Такое перераспределение приводит к более симметричному распределению токов по фазам в ЛЭП, выравниванию падений напряжения в проводах линии и, следовательно, к симметрированию напряжения на нагрузке, а так же к уменьшению тока нулевого провода и потерь в линии электропередач, и силовых распределительных трансформаторах, обеспечивая экономию электроэнергии.

Максимальная компенсация тока в нулевом проводе выполняется при равенстве ампервитков (магнитодвижущей силы) рабочей I 01 -W 1 и компенсационной I 02 -W K обмоток, т.е. при I 01 -W 1 =3I 02 -W K , или W K =W 1 /3. При этом габаритная мощность автотрансформатора Р ат, в зависимости от схемы подключения компенсационных обмоток, может быть в 3 раза меньше потребляемой мощности нагрузки Р н.

Для ограничения тока нулевого провода до уровня допустимого для ЛЭП, число витков компенсационной обмотки может быть соответственно уменьшено: например, для ограничения тока нулевого провода на уровне 1/3 фазного, должно быть скомпенсировано 2/3 его величины, следовательно, W K =W 1 /4,5.). Потери в фазных проводах, соответственно, составят -40 2 -0,34=544 Вт, 30 2 -0,34=3 06 Вт, 10 2 -0,34=34 Вт, в нулевом проводе -26,5 -0,54=379 Вт, суммарные потери в линии — 1263 Вт.

Применение АТС-С позволит перераспределить токи в линии. При коэффициенте трансформации 1/3 одна треть тока нулевого провода векторно вычитается из токов нагруженных фаз и прибавляется к току менее нагруженной фазы. Токи, соответственно, станут

Равными 33,8, 29,6 и 18,6 А, при этом ток нулевого провода (учитывая некоторую асимметрию магнитной системы автотрансформатора) может составлять до 10% среднего фазного тока т.е. 2,7 А.

При таком перераспределении токов суммарные потери в линии составят (33,82+29,62+18,62)·0,34+2,72·0,54 = 805Вт.

Таким образом, установка автотрансформатора АТС-С позволяет снизить потери в ЛЭП-0,4 кВ на 36 %.

Очевидно, что уменьшение падения напряжения в проводах линии пропорционально изменению тока по фазам, существенно выравнивает напряжение в узле нагрузки, в первую очередь за счет смещения «нуля».

Увеличение коэффициента трансформации выше 1/3 для трехфазных нагрузок не целесообразно и, несмотря на более равномерное перераспределение токов по фазам, приводит к увеличению потерь в ЛЭП за счет более существенного увеличения тока нулевого провода, а так же потребует больших затрат на материалы.

Относительное значение мощности автотрансформатора АТС-С составит – S*ат= k·Sн, где: Sн – мощность нагрузки; k – коэффициент в зависимости от схемы автотрансформатора и коэффициента трансформации (kтр), представленный в таблице 1.

Таблица 1 значения коэффициента к

Схема, рис. 1 2 3 4
ктр= 1/3 0,58 0,33 0,90 0,55
ктр = 1/4,5 0,38 0,22 0,66 0,33

Если гарантированно известен максимальный ток, протекающий в нулевом проводе нагрузки, то габаритная мощность автотрансформатора по схеме рис.1 может быть рассчитана, исходя из этого тока — Б ат = 1 02 -и л /л/3, а по схеме рис.2 — Б ат = 1 02 -и л /3 и для выше приведенного примера трехфазной несимметричной нагрузки составит, соответственно, 8,3 и 4,8 кВ-А.

Наиболее эффективным является установка автотрансформатора непосредственно у потребителя, в точке разветвления трехфазной линии в однофазные, например на вводе дачного кооператива, где практически невозможно выровнять нагрузку по фазам. В жилых многоквартирных домах установка АТС-С на ответвлениях к каждому стояку, питающему квартиры жилых домов, позволяет симметрировать напряжение, и снизить потери в трехфазных групповых и питающих линиях распределительной сети. На малых промышленных предприятиях он может применяться для питания однофазных нагрузок большой мощности: сварочных трансформаторов, выпрямителей, водонагревателей и т. д.

В настоящее время все большее применение находят статические преобразователи (выпрямители, тиристорные регуляторы, высокочастотные преобразователи), газоразрядные осветительные устройства с электромагнитными и электронными балластами, электродвигатели переменного тока с регулируемой скоростью вращения и т.д. Указанные устройства, а также сварочные трансформаторы, специальные медицинские и другие приборы могут генерировать высшие гармоники тока в системе электропитания. Например, однофазные выпрямители могут генерировать все нечетные гармоники, а трехфазные все, не кратные трем, что отражено на рис. 6 [Л.2].

Гармоники тока, создаваемые нелинейными нагрузками, могут представлять собой серьезные проблемы для систем электропитания. Гармонические составляющие представляют собой токи с частотами, кратными основной частоте источника питания. Высшие гармоники тока, накладываемые на основную гармонику, приводят к искажению формы тока. В свою очередь, искажения тока влияют на форму напряжения в системе электропитания, вызывая недопустимые воздействия на нагрузки системы. Увеличение общего действующего значения тока при наличии высших гармонических составляющих в системе может привести к перегреву всего оборудования распределенной сети. При несинусоидальных токах возрастают потери в трансформаторах, главным образом за счет потерь на вихревые токи, что требует увеличения их установочной мощности. Как правило, для ограничения гармоник в этих случаях устанавливаются высокочастотные фильтры, состоящие из сетевых реакторов и конденсаторов.

К достоинствам АТС-С следует отнести то, что они обладают способностью фильтрации токов высших гармоник, кратных трем (т.е. 3, 9, 15 и т.д.), ограничивая их протекание как из сети к нагрузке, так и наоборот. Этим самым повышается качество сети и снижаются колебания напряжения.

Как уже указывалось выше, электромагнитные балластные пускорегулирующие аппараты (ПРА) газоразрядных ламп генерируют высшие гармоники. Так, в токах натриевых ламп ДНаТ, широко используемых для целей уличного освещения, третья гармоника является превалирующей и, в зависимости от мощности лампы и типа ПРА, составляет до 5% и более (по [Л.4] третья гармоника допускается до 17,5%). Токи третьих гармоник совпадают по фазе и арифметически складываются в нулевом проводе трехфазной сети, создавая ощутимые добавочные потери, что вынуждает выполнять сечение нулевых рабочих проводников трехфазных питающих и групповых линий, равным фазному.

В этой ситуации применение АТС-С позволяет уменьшить сечение нулевых проводников, как минимум, в два раза и решить три задачи: компенсировать потери от третьей гармоники, обеспечить перевод системы освещения на «ночной режим» (одна или две фазы распределительной сети отключаются в ночные часы), перераспределяя нагрузку на три фазы; и выйти на энергосберегающий режим, выполнив отводы на автотрансформаторе для понижения напряжения. Для решения только первой задачи можно применить автотрансформатор минимальной мощности, рассчитанный на ток нулевого провода (суммарный ток третьей гармоники).

При необходимости компенсировать 5, 7 или 11 гармоники можно воспользоваться схемами рис.3 или 4. В этом случае затраты на сетевые реакторы могут быть уменьшены, т.к. компенсационные обмотки, обладая повышенным индуктивным сопротивлением для высокочастотных гармоник, могут выполнять роль сетевого реактора и, в совокупности с конденсаторами, образовывать фильтр высших гармоник. Конденсаторы подключаются между точками соединения в открытые треугольники секций компенсационных обмоток и нулевым проводом, и могу образовывать одно (см. рис.7), двух или трехступенчатый фильтр для разных частот. Величину индуктивности
секции компенсационной обмотки с достаточной достоверностью можно определить из номинальных параметров — номинального тока и коэффициента трансформации. Например, при номинальном токе I н =25А и коэффициенте трансформации kтр=1/3 напряжение секции
будет U сек =Uф к тр =220/3=73В, сопротивление Z сек =Uсек/Iном=73/25=2,9Ом (пренебрегая малым активным сопротивлением обмотки) считаем индуктивным, и тогда индуктивность секции

Lсек =Z сек /w=2,9/314-10 =9,2мГн. При этом надо учитывать нелинейный характер сопротивления: с уменьшением нагрузки сопротивление возрастает.

При заказе автотрансформатора возможность подключения конденсаторов должна быть оговорена в заявке на изготовление.

Частным случаем является симметрирующий автотрансформатор, целенаправленно предназначенный для питания однофазной нагрузки (см. рис.8 и 9). Для большей симметрии токов по фазам коэффициент трансформации можно сделать больше, чем 1/3, с некоторым увеличением тока нулевого провода.


Рассмотрим это на примере. На вводе трехфазной сети установлен автоматический выключатель, рассчитанный на длительно допустимый ток 25 А. Требуется подключить сварочный трансформатор мощностью 10 кВА (напряжение сети 220 В, ток сварки 160 А, напряжение холостого хода 60 В, ПВ 60%). Потребляемый сварочным трансформатором ток составит 10-1000/220=45,5 А, а с учетом ПВ эквивалентный ток будет 45,5-//0,6=35,2 А, что в 1,4 раза превышает допустимый. Конечно, можно применить обычный автотрансформатор 380/220 В, выполненный на базе трансформатора ОСМР-6,3 (мощностью 6,3 кВА), в этом случае нагрузка будет перераспределена только на две фазы (линейный ток — 20,3 А), но можно применить симметрирующий автотрансформатор (см. схему рис.9) с коэффициентом трансформации 1/2, преобразующий однофазную нагрузку в трехфазную и выровнять нагрузку по всем фазам, снизив ток в сети до 17,6 А, при этом ток в нейтрали, при отсутствии других нагрузок так же будет 17,6 А.

В этом случае автотрансформатор можно изготовить на базе трансформатора ТСР-6,3. Можно также использовать симметрирующий автотрансформатор с коэффициентом трансформации 1/3, ограничив ток в рабочей фазе длительно допустимым для автоматических выключателей — током 23,4А, при этом в двух других фазах будет протекать ток 11,8А при отсутствии тока в нулевом проводе.

Автотрансформатор может быть сделан на базе трансформатора ТСР-2,5.

Снижение потерь в сети по сравнению с прямым включением приведено в таблице 2.

Таблица 2

Автотрансформатор На базе ОСМР-6,3 Симметрирующий АТС-С
Коэффициент трансформации 1/1,73 1/3 1/2

Учитывая, что сварочный трансформатор генерирует высокочастотные гармоники, в том числе кратные трем, предпочтение следует отдавать симметрирующему автотрансформатору.

Проведенные испытания автотрансформаторов АТС-С в лаборатории УП МЭТЗ им. В.И. Козлова показали положительные результаты и полностью подтвердили свою эффективность (см. Приложение 1 «Результаты испытаний автотрансформатора АТС-С-25»).

Планируется разработка серии автотрансформаторов от 25 до 100 кВА как в открытом исполнении IP00, так и в защитных кожухах исполнений IP21 для установки под навесом и IP54 для установки на открытом воздухе, в том числе непосредственно на опорах ЛЭП 0,4кВ. В автотрансформаторах, при необходимости, в целях повышения или понижения напряжения, может быть предусмотрена возможность переключений регулировочных отводов при его монтаже.

В настоящее время заводом принимаются индивидуальные заказы на автотрансформаторы АТС-С мощностью до 100 кВА.

Приложение 1

Результаты испытаний автотрансформатора АТС-С-25

На примере четырехпроводной ЛЭП-0,4кВ

Длина линии, м 300
Провод алюминиевый сечением, мм² фазы — 25 нуля — 10
Сопротивление провода, Ом фазы — 0,34 нуля — 0,86
Сопротивление нагрузки (активное), Ом Фаза: А-5,99 В-5,83 С-5,59
Режим нагрузки без автотрансформатора 3х-ф 2х-ф 1о-ф
Линейные токи нагрузки, А
фаза А 36,5 36,5 36,5
фаза В 37,5 37,5 0,0
фаза С 39,0 0,0 0,0
в нулевом провода N 2,2 37,0 36,5
фаза А 456 456 456
фаза В 481 481 0
520 0 0
в нулевом провода «N» 4 1172 1140
ИТОГО 1461 2109 1596
Режим нагрузки с автотрансформатором 3х-ф 2х-ф 1о-ф
Линейные токи до АТС-С, А
фаза А 36,0 32,5 27,3
фаза В 36,0 34,1 9,3
фаза С 39,0 9,0 8,4
в нулевом проводе «n» 3,8 11,0 11
Потери мощности в линии, Вт
фаза А 443 361 255
фаза В 443 398 30
фаза С 520 28 24
в нулевом проводе N 12 103 103
ИТОГО в линии 1419 890 412
с учетом потерь в АТС-С
сопротивление фазной обмотки, Ом 0,2443
сопротивление компенсирующей обмотки, Ом 0,038
Токи фазной обмотки АТС-С, А
фаза А 0,4 8,1 8,9
фаза В 1,4 9,2 9,3
фаза С 1,3 8,9 8
Потери мощности в обмотках АТС-С, Вт
фаза А 0,04 16,03 19,35
фаза В 0,48 20,68 21,13
фаза С 0,41 19,35 15,64
в нулевом проводе N 0,18 52,09 50,67
Потери холостого хола АТС-С, Вт 50
ИТОГО в АТС-С 51,1 158,1 156,8
ИТОГО 1470,1 1048,2 568,8
Экономия электроэнергии, Вт -8,7 1061 1027

Лекция № 10

Расчет местных сетей (сетей напряжением ) по потере

напряжения

    Допустимые потери напряжения в линиях местных сетей.

    Допущения, положенные в основу расчета местных сетей.

    Определение наибольшей потери напряжения.

    Частные случаи расчета местных сетей.

    Потеря напряжения в ЛЭП с равномерно распределенной нагрузкой.

К местным сетям относятся сети номинальным напряжение 6 – 35 кВ. Местные сети по протяженности значительно превосходят протяженность сетей районного значения. Расход проводникового материала и изоляционных материалов значительно превосходят их потребность в сетях районного значения. Это обстоятельство требует ответственно подходить к проектированию сетей местного значения.

Передача электроэнергии от источников питания к электроприемникам сопровождается потерей напряжения в линиях и трансформаторах. Поэтому напряжение у потребителей не сохраняет постоянного значения.

Различают отклонения и колебания напряжения.

Отклонения напряжения обусловлены медленно протекающими процессами изменения нагрузок в отдельных элементах сети, изменением режимов напряжения на источниках питания. В результате таких изменений напряжения в отдельных точках сети меняется по величине, отклоняясь от номинального значения.

Колебания напряжения – это быстро протекающие (со скоростью не менее 1% в минуту) кратковременные изменения напряжения. Возникают при резких нарушениях нормального режима работы при резких включениях или отключениях мощных потребителей, коротких замыканиях.

Отклонения напряжения выражаются в процентах по отношению к номинальному напряжению сети


Колебания напряжения рассчитываются следующим образом:


где

наибольшее и наименьшее значения напряжения в одной и той же точке сети.

Чтобы обеспечить нормальную работу электроприемников, на их шинах необходимо поддерживать напряжение, близкое к номинальному.

ГОСТ устанавливает следующие допустимые отклонения в нормальном режиме работы:

В послеаварийных режимах допускается дополнительное понижение напряжения на 5% к указанным величинам.

Чтобы обеспечить должный уровень напряжения на шинах электроприемников, применяют следующие меры:


При коэффициенте трансформации

фактическое напряжение на шинах низкого напряжения будет ближе к номинальному:


    Обмотки трансформаторов снабжаются ответвлениями, которые позволяют менять коэффициент трансформации в некоторых пределах. Напряжение, в узлах схемы, расположенных ближе к источнику питания обычно выше номинального, а в удаленных – ниже номинального. Чтобы на вторичной стороне трансформаторов, включенных в этих узлах, получить напряжение требуемого уровня, необходимо подобрать ответвления в обмотках трансформаторов. В узлах с повышенным уровнем напряжения устанавливаются коэффициенты трансформации выше номинального, а в узлах с пониженным уровнем напряжения коэффициенты трансформации трансформаторов устанавливаются ниже номинальных.

    Схему сети, номинальное напряжения, сечения проводов выбирают таким образом, чтобы потеря напряжения не превышала допустимого значения.

Допустимая потеря напряжения устанавливается с некоторой степенью точности, исходя из нормированных значений отклонений напряжения на шинах электроприемников:

    для сетей напряжением 220 – 380 В на всем протяжении от источника питания до последнего электроприемника от 5 – 6,5%;

    для питающей сети напряжением 6 – 35 кВ – от 6 до 8% в нормальном режиме; от 10 до 12 % в послеаварийном режиме;

    для сельских сетей напряжением 6 – 35 кВ –до 10 % в нормальном режиме.

Эти значения допустимой потери напряжения подобраны таким образом, чтобы при надлежащем регулировании напряжения в сети удовлетворялись требования ПУЭ в отношении отклонений напряжений на шинах электроприемников.

Допущения, положенные в основу расчета местных сетей

При расчете сетей напряжением до 35 кВ включительно принимаются следующие допущения:

    не учитывается зарядная мощность ЛЭП;

    не учитывается индуктивное сопротивление кабельных ЛЭП;

    не учитываются потери мощности в стали трансформаторов. Потери мощности в стали трансформаторов учитываются лишь при подсчете потерь активной мощности и электроэнергии во всей сети;

    при расчете потоков мощности не учитываются потери мощности, т.е. мощность в начале участка равна мощности в конце участка;

    не учитывается поперечная составляющая падения напряжения. Это значит, что не учитывается сдвиг напряжения по фазе между узлами схемы;

    расчет потерь напряжения ведется по номинальному напряжению, а не по реальному напряжению в узлах сети.

Определение наибольшей потери напряжения

С учетом допущений, принятых при расчете местных сетей, напряжение в любом i -м узле сети рассчитывается по упрощенной формуле:

где

соответственно активная и реактивная мощности, протекающие по участкуj ;


соответственно активное и индуктивное сопротивления участка j .

Неучет потери мощности в местных сетях позволяет рассчитывать потери напряжения либо по мощностям участков, либо по мощностям нагрузок.

Если расчет ведется по мощностям участков, то учитываются активное и реактивное сопротивления этих же участков. Если расчет ведется по мощности нагрузок, то необходимо учитывать суммарные активные и реактивные сопротивления от ИП до узла подключения нагрузки. Применительно к рис. 10.2 имеем:



.

В неразветвленной сети наибольшая потеря напряжения – это потеря напряжения от ИП до конечной точки сети.

В разветвленной сети наибольшая потеря напряжения определяется следующим образом:

    рассчитывается потеря напряжения от ИП до каждой конечной точки;

    среди этих потерь выбирается наибольшая. Ее величина не должна превышать допустимую потерю напряжения для данной сети.

Частные случаи расчета местных сетей

На практике встречаются следующие частные случаи расчета местных сетей (формулы приведены для расчета по мощностям участков):

    ЛЭП по всей длине выполнена проводами одного сечения одинаково рас-положенными


    ЛЭП по всей длине выполнена проводами одного сечения одинаково рас-положенными. Нагрузки имеют одинаковый cosφ


    ЛЭП, питающие чисто активные нагрузки (Q = 0, cosφ =1), или кабельные ЛЭП напряжением до 10 кВ (Х =0)

Методы арифметического подсчета воздушных электронных сетей с проводами из различных материалов по потере напряжения. Допустимую потерю напряжения в электронной сети определяют по вероятно разрешенным отклонениям напряжения у потенциальных пользователей. Поэтому рассмотрению запроса для ответа об отклонениях напряжения уделено значительный интерес.

Для всякого приемника электрической энергии возможны конкретные падения вольтажа. К примеру, неодновременные силовые агрегаты в стандартных нормах допустимое отклонение аномалий напряжения ±5%. Это обозначает следовательно, что в курьезном инциденте если номинальное вольтажа предоставленного электрического двигателя составит 380 В, из этого вольтажа U»доп = 1,05 Uн = 380 х 1,05 = 399 В и U»доп = 0,95 Uн = 380 х 0,95 = 361 В нужно исходить из его наиболее вероятно дозволительными индикаторами вольтажа. Конечно же, что все буферные вольтажи, вмещенные среди обозначениями 361 и 399 В, еще будут довольствовать покупающего пользователя и скомпонуют некий диапазон, тот или иной без вариантов можно прозвать диапазоном желаемых напряжений.

Допустимая потеря напряжения в линии


Пользователи электронной энергетической активности трудовую загрузку делают нормально, когда на их зажимы подается то напряжение, опираясь на математический подсчет изготовленного электрического прибора либо аппарата. При передаче электрической энергии по линиям часть вольтажа пропадает на противодействие самих линий и в итоге под самый конец полосы, т. е. у покупающего пользователя, вольтажа выходит падение, чем в начале линии. Падение вольтажа у покупающего пользователя, если сравнивать с обыденным, отражается на работе приемника тока, хоть силовая либо световая нагрузка.

Из-за чего при подсчете каждый полосы электропередачи отличия вольтажа не обязаны превосходить с большой вероятностью возможных норм, сети, общепризнанные выбором электрической загрузки и подсчитанные на подогрев, в главном, измеряют по потере, падении вольтажа.

Падением вольтажа ΔU именуют разность вольтажа на начале линии и на ее конце. ΔU принято предопределять в условно сравнительных единицах измерения — по отношению к обозначенному вольтажу.
При пользовании встречного урегулирования вольтажа есть возможность усилить вероятно допустимую потерю напряжения. К сожалению, район внедрения его имеет ограничения. Большинство деревенских пользователей запитано от шин подстанций энергетической системы своего района, индустриальных либо коммунальных электрических установок. При этом может быть электроэнергия от подстанций напряжением 35/10 либо 110/35 кВ.

Потерю напряжения на линиях воздушных рядов вычисляют методикой для наибольшей возможной нагрузки. Поскольку потеря напряжения примерно равно увеличена нагрузке при наименьше возможной потребляемой мощи, на линиях деревенской воздушной сети она имеет наибольшее значение 25%.

Допустимая потеря напряжения ПУЭ

ПУЭ – это главный документ, подсчитывающий запросы к разнообразным формам электрического оборудования. Точность реализации запросов ПУЭ гарантирует безошибочность и защищенность работы электрических установок.

Запросы ПУЭ непременны для всех учреждений безотносительно от формальной собственности и организационно правовых форм, равно как для частных предпринимателей и физических лиц, работающими проектировщиками, сборкой, настройкой и использования электрических установок.


ПУЭ 7-го издания

Уровни и контроль вольтажа, возмещения реактивной мощи:

  • Пункт 1.2.22. Для электросетей надлежит оговорить инженерные процедуры по гарантии свойств электроэнергии в соотношении с запросом ГОСТ 13109
  • Пункт 1.2.23. Установка корректировки вольтажа обязана создать стабилизацию вольтажа на шинах вольтажом 3-20 кВ подстанций и электростанций, где тот или иной подключены электрораспределительный сети, в диапазоне не менее 105 %, обозначенного в промежуток максимальных нагрузок и не более 100%, обозначенного в промежуток минимальных нагрузок этих же сетей. Неточность от упомянутого уровней вольтажа обязана быть оправданной
  • Пункт 1.2.24. Альтернативность и позиционирование аппаратов возмещения реактивной мощности в электросетях делается от безысходности снабжения нужной пропускной возможности сети в нормальных и после аварийных порядках при удержании нужных уровней вольтажа и резервов выносливости.

Рассмотрение допустимых падений напряжения в электрической сети.

Цель лекции:

Ознакомление с расчетами нагрузки отдельных ветвей сети.

Допустимые падения напряжения

При любом потреблении из электрической сети происходит возникновение электрического тока. Он при своем прохождении вызывает на этих проводках падения напряжения, следовательно, напряжение, подведенное к электроприемнику не равно напряжению на клеммах источника питания, а оно ниже. Для отдельных частей электрической проводки в то же время предписаны различные падения напряжения.

Для падения напряжения от источника питания к месту потребления можно исходить из предписанных отклонений напряжения (IEC 60 038), которые должны находиться в пределах + 6 % и  10 % от номинального значения (с 2003 года данные пределы должны быть ). Это означает, что общее падение напряжения от источника питания к самому месту потребления может составлять до 16 %.

В самой электрической инсталляции здания (т. е. внутри объекта) согласно IEC 60 634-5-52 рекомендовано, чтобы падение напряжения между началом инсталляции и эксплуатируемым оборудованием пользователя не было больше 4 % номинального напряжения инсталляции. Эта рекомендация в некоторой степени противоречит требованиям других национальных стандартов (например, CSN 33 2130 в Чешской Республике).

Можно допустить, что с учетом выполнения остальных требований при расчете параметров проводки могут возникнуть в некотором отрезке падения больше, чем указано выше, если в проводке от шкафа присоединения до самого электроприемника не будут превышены следующие падения: у осветительных выводов 4 %; у выводов для плит и отопительных приборов (стиральные машины) 6 %; у штепсельных розеток и остальных выводов 8 %.

«Правила устройств электроустановок» (ПУЭ) устанавливают наибольшие длительные допустимые нагрузки (силы тока в амперах) для изолированных проводов. Кабелей и голых проводов, которые приведены в виде таблицы. Таблицы эти составлены на основании теоретических расчетов и результатов непосредственных испытаний проводов и кабелей на нагревание.

Максимально допустимые по условиям нагрева нагрузки для проводов и кабелей с алюминиевыми жилами при одинаковым геометрическом сечении и одинаковом периметре с медными проводниками следует принимать равным 77% нагрузок для соответствующих медных проводников. Для силовых сетей допустимая длительная потеря напряжения не должна превышать 5%, а для сетей освещения 2,5% номинального.

Видно, что при суммировании всех допустимых падений напряжения (в распределительной сети и в электрической инсталляции) можем попасть на сам предел работоспособности некоторых приборов и оборудования. Например, у реле и контакторов гарантирована их функция от 85 % номинального напряжения и выше, у электродвигателей это, начиная с 90 % номинального напряжения. Поэтому необходимо руководствоваться выше указанной рекомендацией (падение напряжения до 4 %), приведенной в IEC 60 634-5-52.

Отмечаем, что требования национальных стандартов не касаются падений напряжения на некоторой части проводки, а требования, насколько напряжение может упасть по отношению к номинальному напряжению. На клеммах трансформатора может быть, например, напряжение равное 110 % номинального напряжения, от них потом падения напряжения могут быть 15 %, или же 13 %. Значит, у проектировщика определенное свободный простор, каким образом распределить падения напряжения в этих случаях от источника к электроприемнику.

Необходимо сказать, каким образом падения напряжения рассчитываются, или же, как они суммируются. Что касается чисто активных нагрузок, какими являются электрическое тепловое электрооборудование, и небольших сечений проводки, ситуация простая. Падения напряжения — это произведения токов и сопротивлений проводки, которые можно простым способом суммировать. В том случае, если речь идет об электрооборудовании, например, двигателях, характер потребления которых активный и индуктивный, и об общем импедансе Z проводки, состоящем из реальной составляющей (активное сопротивление) R и мнимой составляющей (индуктивное сопротивление) X, то данные комплексные величины взаимно умножаются. Результатом этого произведения опять является комплексная величина, значит комплексное падение напряжения. Она описывает падения напряжения в реальной и мнимой оси координат. Абсолютные значения этих падений напряжения на отдельных частях проводки от источника к электроприемнику поэтому не должны суммироваться стандартным способом, а должны суммироваться опять только как комплексные величины (т. е. реальные и мнимые составляющие отдельно).

Поэтому не должно удивлять то, что суммы абсолютных значений падений напряжения часто не являются точной суммой их абсолютных значений на отдельных, связанных друг с другом проводках.

Расчет нагрузки отдельных ветвей сети

Токовые нагрузки отдельных ветвей невозможно суммировать просто как арифметическую сумму абсолютных значений токов, а нужно суммировать отдельно реальные и мнимые составляющие. При соблюдении этих правил можно определить нагрузку при любой конфигурации сети. Аналогичные правила соблюдаются и при расчете токов короткого замыкания. И при коротком замыкании вычисления выполняются с импедансом сети, выраженным в комплексной форме.

Влияние нагрузки на ток короткого замыкания.

Нагрузка может оказывать существенное влияние на токи короткого замыкания. На рисунке 1 приведены простейшие схемы включения нагрузки. Характер нагрузок и соотношения их разные (асинхронные и синхронные двигатели, бытовая нагрузка, освещение), величина меняется в разные дни года, время суток, для различной сменности работ предприятий. Определить действительное значение нагрузки и увеличение ее сопротивления в момент короткого замыкания практически невозможно.

Условно считается, что сопротивление нагрузки постоянно по и величину , определенную по (1).

В нормальном режиме сопротивление нагрузки определяется по соотношению:

, (1)

где U – расчетное напряжение, равное вторичному напряжению питающего трансформатора;

I н и S н – ток и мощность нагрузки.

Мощность нагрузки принимается в зависимости от числа питающих трансформаторов. При одном трансформаторе мощность нагрузки принимается равной мощности трансформатора. При двух одинаковых трансформаторах мощность нагрузки принимается равной 0,65-0,7 мощности одного трансформатора. При аварийном отключении одного из двух трансформаторов всю нагрузку должен принять оставшийся в работе трансформатор. Нагрузка его при этом составит 130-140 % номинальной мощности.

Рисунок 1 — Распределение тока с учетом нагрузки, подключенной

к линии (а) и к шинам (б)

Из рисунка 1 видно, что при удаленном КЗ, когда напряжение на шинах снижается не до нуля, полный ток , проходящий через трансформатор, состоит из тока, ответвляющегося в нагрузку , и тока в месте короткого замыкания . Для схемы на рисунке 1,а полный ток КЗ определится по соотношению:

, (2)

а для схемы на рисунке 1 б – по соотношению:

, (3)

В действительности сопротивления имеют разные соотно- шения х/r и вычислять токи по формулам (2) и (3) следовало бы в комплексной форме. Но для большинства сетей отношение z и L нагрузки и линий близки, мало по сравнению с , и для упрощения расчетов уравнения (2) и (3) решаются в полных сопротивлениях z. Такое допущение тем более оправдано, что действительная нагрузка в момент КЗ неизвестна.

Полный ток делится на две части: часть тока , идущая к месту КЗ в схеме на рисунке 1,а, определяется:

, (4)

а для схемы на рисунке 1,б – по формуле:

, (5)

Из выражения (5) видно, что при z с = 0 ток к месту КЗ составляет , то есть нагрузка не влияет на значение тока короткого замыкания, если она подключена к шинам бесконечной мощности.

Общие сведения о потерях в фотоэлектрической системе, часть 2: Проводка, соединения и доступность системы

Как подрядчик по солнечной энергии, одно из ключевых обещаний, которые вы должны выполнить для своих клиентов, заключается в том, что ваша солнечная установка будет производить прогнозируемое количество энергии.

Тем не менее, существует множество факторов, которые влияют на то, сколько ваша система будет производить — от физических характеристик выбранных вами компонентов до проектирования системы и решений по установке. Понимание факторов, которые могут снизить выработку энергии вашей солнечной установкой, и степени их воздействия является ключом к точной оценке производства.

В сегодняшней статье мы исследуем потери в проводке, подключении и доступности системы.

Об этой серии

В этой серии мы приводим обзор различных причин потерь энергии в солнечных фотоэлектрических системах. В каждой статье на основе настроек моделирования производительности Aurora объясняются конкретные типы системных потерь, а также обсуждается, почему они влияют на производительность системы.

Для пользователей Aurora в этой серии будут представлены советы по повышению точности моделирования производительности путем обмена подтвержденными исследованиями рекомендациями о том, какие значения вводить в настройки моделирования для различных типов потерь.Хотя Aurora предоставляет значения по умолчанию для этих полей, которые подходят для большинства случаев использования, в этой серии также будут выделены случаи, в которых вы, возможно, захотите использовать разные значения в зависимости от специфики вашего дизайна. (Чтобы получить краткую информацию о системных потерях и о том, как настроить параметры учетной записи в Aurora, см. Справочный центр Aurora.)

Это руководство по выбору лучших значений потерь поможет вам дать вашим клиентам наиболее точную оценку того, сколько их система будет производить и сколько они могут сэкономить, используя солнечную энергию.

Потери в проводке солнечной фотоэлектрической системы

Предлагаемые значения:

  • 2% для большинства систем
  • 1% при использовании более толстой проволоки или очень коротких участков

Чтобы понять потери в проводке, давайте сначала рассмотрим простые схемы.

Как работают фотоэлектрические схемы

Фотоэлектрические модули

действуют как источник напряжения, повышающий напряжение постоянного тока на двух его выводах.

Последовательное соединение фотоэлектрических модулей суммирует напряжения, доводя систему до более высокого напряжения, которое обычно ограничивается 600 В в США и 1000 В в ЕС.Когда система подключена к инвертору, ток начинает течь из-за разницы напряжений в системе.

Причины потерь в фотоэлектрической проводке

В схемах несколько компонентов, включая резисторы, могут вызвать падение напряжения. Сами провода имеют небольшое внутреннее сопротивление, величина которого будет зависеть от калибра (толщины) провода, а также его длины. Установщики могут взвесить компромисс между более толстым сечением провода, который снижает резистивные потери, с повышенной стоимостью.

Национальный электротехнический кодекс (NEC) определяет минимальный калибр проводов в зависимости от напряжения и силы тока, чтобы предотвратить возгорание электрических цепей.

Однако NEC не устанавливает ограничений на потери в проводе. Исследование NREL «Параметры производительности для систем, подключенных к сети» является широко цитируемым источником факторов потерь, и они предполагают потери в 2% для проводки постоянного тока. В системах с более короткими проводами между модулями и инвертором или с более толстыми проводами потери могут составлять около 1%.

Потери подключения PV

Рекомендуемое значение: 0,5%

Что такое фотоэлектрический соединитель?

Соединители

PV имеют несколько применений в фотоэлектрической системе. Они преимущественно помогают соединять модули последовательными цепочками. Они также подключают модули к устройствам на уровне модулей в системах, использующих микроинверторы.

Что вызывает потери в фотоэлектрических подключениях?

Потери в соединении отражают резистивные потери в соединителях проводки и диодах. Большинство солнечных панелей содержат обходные диоды, которые позволяют другим модулям на шнуре обходить панель, которая затемнена или плохо работает.

Эти компоненты имеют небольшое падение напряжения, вызванное внутренним сопротивлением материала и дефектами контактной поверхности. Исследование NREL показало, что потери для этих компонентов составляют 0,5%.

Обратите внимание, что хотя добавление оптимизаторов постоянного тока к массиву удвоит количество соединений, дополнительные потери в соединениях отражаются в потерях компонентов оптимизатора постоянного тока.

Доступность фотоэлектрической системы

Предлагаемые значения:

  • 3% для большинства систем
  • Начиная с 0.5%, если ожидается, что система оповещения или O&M предотвратят простои

«Доступность системы» — это общая величина потерь. Он предназначен для фиксации событий, которые полностью выводят из строя систему, включая отключение или сбои инвертора, отключение сети или другие действия, которые отключают фотоэлектрическую систему и не позволяют ей производить электроэнергию для дома. Точные сроки и продолжительность таких отключений непредсказуемы, поэтому отраслевой подход заключается в моделировании их как плоских процентных потерь, распределенных на весь набор часов.

Как Aurora работает с доступностью системы

Aurora устанавливает значение по умолчанию 3%, то же самое, что используется PVWatts. В случаях, когда настроена система эксплуатации и технического обслуживания или оповещения о неисправностях, потеря доступности может составлять всего 0,5%.

Использование программного обеспечения для солнечных батарей для моделирования PV-проводки и потерь при подключении

Программное обеспечение

, такое как Aurora, которое имитирует электрические характеристики в цепях вашей солнечной фотоэлектрической установки, предлагает значительное преимущество для точной оценки производства солнечной энергии вашим клиентом.Однако понимание коэффициентов потерь в системе, чтобы вы могли адаптировать эти процентные потери к специфике вашей конструкции, предлагает дополнительный уровень точности. В будущих статьях мы объясним другие типы потерь фотоэлектрических систем, включая загрязнение, снег и деградацию из-за возраста.

Возникли проблемы с точной оценкой потерь в системе? Аврора может помочь. Подпишитесь на нашу бесплатную демоверсию, чтобы узнать больше.

Эта статья является частью серии статей Aurora о потерях в фотоэлектрической системе. В каждой статье объясняются конкретные типы системных потерь, взятые из настроек моделирования производительности Aurora, и обсуждается, почему они влияют на производительность системы.

    1. Общие сведения о потерях в фотоэлектрической системе, часть 1: паспортная табличка, несоответствие и потери LID
    2. Общие сведения о потерях в фотоэлектрической системе, часть 2: Проводка, соединения и доступность системы
    3. Общие сведения о потерях в фотоэлектрической системе, часть 3: Загрязнение, снег, деградация системы
    4. Общие сведения о потерях в фотоэлектрической системе, часть 4: наклон и ориентация, модификатор угла падения, условия окружающей среды, потери и ограничения инвертора

Эндрю Гонг

Эндрю Гонг — инженер-исследователь в Авроре.Ранее он работал над двумя проектами Solar Decathlon и получил степень магистра наук. из Стэнфорда и Б.С. из Калифорнийского технологического института.

Разработка проекта> Потери массива и системы> Потери в омической проводке массива

Определение

Омическое сопротивление цепи электропроводки вызывает потери (ELoss = Rw · I²) между мощностью, доступной от модулей, и мощностью на клеммах подгруппы.

Соответствующим параметром для моделирования является значение Rw, которое представляет собой эквивалентное сопротивление проводов, как «видно» на входе глобального субматрица (т.е.е. набор входов MPPT, определенных в этом подмассиве). Вы должны определить одно значение Rw для каждого подмассива в вашей системе.

Оценка первого этапа: процент от STC

Оценка значения Rw будет сильно зависеть от структуры подмассива.

Однако PVsyst предоставляет удобный способ определения значения по умолчанию, которое будет использоваться на первых этапах исследования фотоэлектрической системы.

Мы указываем коэффициент потерь мощности по отношению к мощности STC.

Мы можем рассматривать эквивалентное «сопротивление» рабочей точки STC: RarraySTC = Vmp / Imp (at STC) [Ом].

Тогда доля потерь в проводке = Rw / RarraySTC (отношение или процент).

В PVsyst мы выбрали начальное значение по умолчанию 1,5% (при STC) для этой обычной потери. Это значение по умолчанию может быть изменено в скрытых параметрах («Коэффициент потерь сопротивления проводки по умолчанию в STC») для инициализации любого нового проекта / варианта.

Потери при моделировании

Омические потери зависят от тока массива квадратично: Ploss = Rw · Iarray².

Теперь, если массив не работает на STC, доля потерь в проводке станет:

Ploss / Parray = Rw * Iarray² / (Varray * Iarray) = Rw * Iarray / Varray.

т.е. пропорционально Iarray. Это означает, что при половинной освещенности (половине тока) доля потерь в проводке будет равна половине и т. Д. Следовательно, потери энергии в проводке должны оцениваться в каждый час моделирования и накапливаться в единицах энергии.

Окончательный результат омических потерь в проводке (в процентах), как показано на диаграмме потерь, будет взят из этого почасового баланса энергии. Обычно это порядка 60% доли потерь, указанной для STC.

Окончательный расчет: оценка сопротивления

На последних этапах проекта эквивалентное сопротивление проводки обычно следует рассчитывать в соответствии с реальной длиной и сечением проложенных проводов.

Программа предлагает специальный инструмент, предназначенный для оптимизации диаметров проволоки на каждом этапе сборки.

Объединение струн в распределительную коробку

Пытаемся оценить эквивалентное сопротивление Rstrbox N струн на входе в распределительную коробку.
Токи в каждой цепочке идентичны: Istring = Ibox / Nstr
Мы определяем полное сопротивление проводов Rwirestot = Sum (длины проводов) [м] * Удельное сопротивление [Ом] м]
и среднее сопротивление каждой струны Rwstring = Rwirestot / Nstr

Теперь общая потеря мощности этих цепей будет суммой потерь мощности блока: Ploss = Rwirestot * Istring² = Rwstring * Nstr * Istring² = Rwstring / Nstr * Ibox²

Наконец, мы можем определить Rstrbox = Rwstring / Nstr

Следовательно, эквивалентное сопротивление всех параллельных струн — это среднее удельное сопротивление каждой струны, деленное на количество струн.

Будьте осторожны: этот расчет — основанный на потерях энергии — действителен независимо от разницы в длине разных струн. Эквивалентное сопротивление — это не сопротивления каждой отдельной струны, рассчитанные как параллельные сопротивления.

Комбинированные соединительные коробки ко входу субматрицы (инверторы)

Если все распределительные коробки идентичны (одинаковое количество строк), мы можем применить точно такой же расчет к цепям между распределительными коробками и входами инвертора:

Если мы определим Rwbox как среднее сопротивление проводов от одной коробки до входа инвертора (сумма двух проводов):

Сопротивление проводов цепи для нескольких коробок RwArray = Rwbox / Nbox
Теперь наш окончательный результат, т.е.е. общий вклад цепей + сопротивлений соединения коробки будет равен сумме
Rw = R (общий массив) = (RstrBox + Rwbox) / Nbox
Ограничения: этот расчет действительно для одинаковых коробок, т. е. одинаковое количество струн на каждой распределительной коробке (но с возможной разной длиной проводов).

Если различия не слишком важны, этот расчет остается вполне удовлетворительным, поскольку он применяется к коррекции потерь в проводке порядка 1% от выхода (неопределенности второго порядка).Строгий расчет потребует учета различных токов в каждой распределительной коробке.

Добавление ступеней: возможные комбинированные коробки

Вы можете добавить дополнительные ступени (распределительные коробки, собранные на комбинированных коробках), используя те же методы. Именно это доступно в инструменте оптимизации.

Падение напряжения

Многие инженеры обычно думают об омических потерях как о падении напряжения.

Это не может быть определено с помощью фотоэлектрической матрицы, так как на кривой ВАХ ток тесно связан с напряжением.При выборе Pmpp уменьшение напряжения увеличивает ток.

Следовательно, мы можем определить потери в проводке только в терминах потери мощности.

Расчет

Есть два способа оценки омических потерь мощности в проводах:

Если нам нужна только мощность MPP, мы можем напрямую определить потери Pw (потери) = Rw * Impp².
Если нам нужна другая рабочая точка на кривой I / V, мы должны пересчитать кривую I / V из модели с одним диодом, добавив Rw к Rserie фотоэлектрических модулей .

Мы проверили, что результаты обоих методов очень близки друг к другу.

.

Разработка проекта> Потери в решетке и системе> Оптимизация потерь в проводке

Цель этого инструмента — выбрать и оптимизировать диаметры проводов в массиве с учетом заранее заданного предела потерь. Это также позволит вычислить полное эквивалентное сопротивление подмассива, которое будет использоваться в симуляции.

Принципы расчета эквивалентного сопротивления см. В разделе Омические потери в проводке массива

.

Схема подключения

Сначала взгляните на обычную схему подключения массива, нажав кнопку «Схема». Это идентифицирует различные части схем по цветам:

— «цепочка» соединений между всеми модулями цепочки, вплоть до монтажной коробки (обычно находится рядом с массивом).

— Связь между этими коробками и системой (инвертор, аккумулятор,…),

— Необязательно, при выборе «Группы параллельной строки», соединение между блоками групп и возможными объединяющими блоками.

Определите провода

Во-вторых, вы должны указать среднюю длину провода для каждой категории цепи (средняя полная длина каждой цепи, т. Е. От минусового до плюсового полюса для каждой петли).

Программа показывает номинальный ток и сопротивление одной ветви, а также их вклад в сопротивление всего массива (как видно из соединений массива). Он предлагает список стандартных сечений проводов, начиная с наименьшего провода, совместимого с фактическим током контура.

Кнопка «провод» позволяет увидеть стандартные свойства проводов (диаметр, максимальный ток, удельное сопротивление), а также, в конечном итоге, их цену, которую вы можете определить, чтобы оптимизировать стоимость проводки. Максимальные токи проводов указаны в Европейских нормах для изолированных проводов, установленных в открытых или вентилируемых монтажных каналах (CEI 364-5-523, 1983)

Наконец, вы можете указать максимальный убыток:

либо в процентах (при MPP) при работе при MPP,
, либо как падение напряжения при работе при фиксированном напряжении.

Затем программа оптимизирует участки провода, соответствующие этим требованиям, либо минимизируя массу меди, либо стоимость проводки при условии, что вы определили цены на провод в диалоговом окне «Провод».

Устранение неполадок и тестирование затухания (вносимых потерь)

В стандартах теперь используется термин «вносимые потери», а не «затухание».

Электрические сигналы, передаваемые по каналу связи, теряют часть своей энергии при прохождении по каналу. Вносимые потери измеряют количество энергии, которое теряется при поступлении сигнала на принимающий конец кабельной линии.Измерение вносимых потерь позволяет количественно оценить влияние сопротивления кабельной линии на передачу электрических сигналов.

Характеристики вносимых потерь в линии связи изменяются в зависимости от частоты передаваемого сигнала; например более высокочастотные сигналы испытывают гораздо большее сопротивление. Другими словами, ссылки показывают больше вносимых потерь для более высокочастотных сигналов. Поэтому вносимые потери следует измерять в соответствующем диапазоне частот.Например, если вы проверяете вносимые потери канала категории 5e, необходимо проверить вносимые потери для сигналов в диапазоне от 1 МГц до 100 МГц. Для линий категории 8 диапазон частот составляет от 1 до 2000 МГц. Вносимые потери также довольно линейно растут с увеличением длины ссылки. Другими словами, если звено «А» вдвое длиннее звена «В», а все остальные характеристики такие же, вносимые потери для звена «А» окажутся вдвое выше, чем вносимые потери для звена «Б. »

Вносимые потери выражаются в децибелах или дБ.Децибел — это логарифмическое выражение отношения выходного напряжения (напряжения сигнала, полученного на конце линии связи) к входному напряжению (напряжение, подаваемое в кабель передатчиком).

Интерпретация результатов

Вносимые потери в кабеле во многом зависят от калибра провода, используемого при создании пар. Провода 24 калибра будут иметь меньшие вносимые потери, чем провода 26 калибра (более тонкие) той же длины. Кроме того, у многожильных кабелей вносимые потери на 20-50% больше, чем у одножильных медных проводников.Оборудование для полевых испытаний сообщит о наихудших значениях вносимых потерь и запаса, где запас — это разница между измеренными вносимыми потерями и максимальными вносимыми потерями, разрешенными выбранным стандартом. Следовательно, запас в 4 дБ лучше, чем 1 дБ.

Рекомендации по поиску и устранению неисправностей

Чрезмерная длина — наиболее частая причина отсутствия вносимых потерь. Исправление звеньев, в которых не удалось внести вносимые потери, обычно включает уменьшение длины кабельной разводки за счет устранения провисания кабельной трассы.

Чрезмерные вносимые потери также могут быть вызваны плохо заделанными разъемами / штекерами. Плохое соединение может привести к значительным вносимым потерям. Чтобы понять эту причину, сравните вносимые потери на четырех парах. Если только одна или две пары имеют высокие вносимые потери, это указывает на проблему с установкой. Если все пары имеют слишком большие вносимые потери, проверьте, нет ли лишней длины. Однако примеси в медном кабеле также могут вызывать сбои вносимых потерь; опять же, это обычно происходит только с одной парой.

Продолжительное воздействие воды или чрезмерное использование смазок для кабелей на водной основе также может увеличить вносимые потери и ухудшить характеристики кабелей. Если кабелям дать просохнуть в течение достаточного времени после чрезмерного воздействия воды, характеристики вносимых потерь обычно возвращаются к норме. Чтобы избежать проблем, убедитесь, что вода не попадает в трубопроводы, и следуйте инструкциям производителя по выбору правильного количества смазки для кабелей.

Температура также влияет на вносимые потери в некоторых кабелях.Диэлектрические материалы, которые образуют изоляцию проводника и оболочку кабеля, поглощают часть передаваемого сигнала при его распространении по проводу. Особенно это касается кабелей, содержащих ПВХ. Материал ПВХ содержит атом хлора, который электрически активен и образует диполи в изоляционных материалах. Эти диполи колеблются в ответ на электромагнитные поля, окружающие провода, и чем больше они вибрируют, тем больше энергии теряется из сигнала. Повышение температуры усугубляет проблему, облегчая вибрацию диполей внутри изоляции.Это приводит к увеличению потерь с температурой.

По этой причине органы стандартизации обычно устанавливают требования к вносимым затуханиям с поправкой на 20C. Кабели, работающие при экстремальных температурах, могут подвергаться дополнительным вносимым потерям, и там, где это вероятно, при проектировании кабельной системы это следует учитывать. Возможно, вы не сможете пробежать максимальные 90 метров (295 футов), определенные стандартами. Большинство консультантов стараются держать спуск на глубине менее 80 метров (262 фута), чтобы обеспечить запас прочности.Это, конечно, не всегда возможно, когда пространство ограничено, а количество телекоммуникационных комнат должно быть сведено к минимуму. Из ANSI / TIA-568-C.2, приложение G:

Некоторые полевые тестеры имеют настройку температуры, которая позволяет вам регулировать линию «годен / не годен» вносимые потери. Это не разрешено стандартами. Вы не можете сделать это ни в одном из полевых тестеров Fluke Networks.

Потери в проводнике — обзор

16.4.1.1 Эффекты распространения

Подобно каналу беспроводной связи, эффекты распространения сигнала для канала линии электропередачи можно разделить на потери в тракте, затенение и эффекты многолучевого распространения.

Pathloss описывает потери при распространении по линиям электропередачи из-за резистивных потерь в проводнике и диэлектрических потерь изоляционного материала. Эти эффекты количественно выражаются (эффективными) параметрами проводимости [100]. Поскольку потери зависят от частоты, что для резистивных потерь известно как скин-эффект, потери в тракте передачи изменяются с частотой. В частности, канал ЛЭП имеет низкочастотную характеристику.

Термин затенение обычно не используется для описания эффектов распространения для PLC.Однако есть некоторое сходство с «логнормальным затенением», которое часто наблюдается в беспроводной связи. Чтобы убедиться в этом, рассмотрим прямой путь прохождения сигнала между передатчиком и приемником ПЛК в сети линий электропередач, показанный на рис. 16.8. В каждой точке разрыва импеданса, изображенной отводами линии и обозначенной буквами от A до G на рис. 16.8, передаваемый сигнал подвергается отражению. На пути передачи к приемнику это учитывается путем умножения амплитуды сигнала на коэффициент передачи t x .В примере на рис. 16.8 коэффициент усиления прямого пути составляет t Tx − Rx, 1 = t A × t B × ⋯ × t F . Мы можем рассматривать коэффициенты передачи t x как случайные величины, с разными сетями линий электропередач или разными состояниями одной и той же сети как случайные события. Тогда тот факт, что t Tx-Rx, 1 является произведением этих случайных величин, приводит к логнормальному распределению t Tx-Rx, 1 и, следовательно, к понятию логнормального затенения.

Рис. 16.8. Иллюстрация распространения сигнала в сети ЛЭП.

Конечно, часть отраженного сигнала в конечном итоге достигает приемника через (бесконечно) множество непрямых путей [101]. Но прежде чем обсуждать это, отметим, что еще один фактор, который можно рассматривать как часть потерь в тракте передачи или затенения, — это наличие трансформаторов, которые могут вызывать значительное ослабление сигнала в зависимости от частоты сигнала и состояния трансформатора. Комбинированный эффект того, что мы назвали потерями в тракте и затенением, часто называют потерями в тракте канала линии электропередачи, и его значение для каждого расстояния сильно зависит от области сети (ВН, СН, НН) и типа кабеля / провода.Типичные значения приведены в [9, Таблица II], которые варьируются от 0,01–0,09 дБ / км (HV) до 1,5–3 дБ / км (LV) для PLC на частоте 100 кГц и от 2–4 дБ / км (HV). ) до 160–200 дБ / км (НН) для ПЛК на частоте 10 МГц, что также демонстрирует поведение фильтра нижних частот канала линии электропередачи.

Многолучевое распространение вызвано теми же неоднородностями, упомянутыми выше, когда сегменты линии электропередачи и подключенные нагрузки с разными импедансами вызывают отражения сигнала. Эффект представлен коэффициентами отражения r x , где | r x | ≤ 1 и t x = 1 + r x .Например, на рис. 16.8 показан непрямой тракт с одним отражением на неоднородности G. Компоненты сигнала от разных трактов накладываются друг на друга в приемнике. Поскольку каждое усиление тракта может быть аппроксимировано логнормально распределенным, было высказано мнение, что сумма выигрыша также распределена логнормально [102]. Если разница в длине пути достаточно велика по сравнению с длиной волны сигнала PLC, или, другими словами, сигнал PLC достаточно BB, канал линии электропередачи становится частотно-избирательным из-за многолучевого распространения.Отметим, что из-за низкочастотной характеристики канала линии электропередачи общий CIR будет выглядеть как суперпозиция относительно плавных и затухающих импульсов.

Наконец, канал линии электропередачи довольно уникален тем, что на него влияет работа элементов электросети, или «нагрузок». Во-первых, канал может резко меняться при включении и выключении нагрузок, а также при подключении и отключении от сети. Во-вторых, высокочастотные свойства нагрузок, а именно их полное сопротивление, изменяются в зависимости от мгновенного значения сетевого напряжения переменного тока.Следовательно, импедансы нагрузки периодически меняются во времени, причем период равен полной или половине длины сетевого цикла [103]. В этом случае общий канал линии электропередачи представлен линейной периодически изменяющейся во времени системой (LPTV).

Потери трансформатора:

Потери трансформатора:

Потеря меди

Всякий раз, когда в проводнике течет ток, рассеивается мощность. в сопротивлении проводника в виде тепла.Количество мощности рассеивается проводником

прямо пропорционально сопротивлению провода, а к квадрату проходящего через него тока. Чем больше значение сопротивление или ток, тем больше

рассеиваемая мощность. Первичная и вторичная обмотки Трансформаторы обычно изготавливают из медной проволоки с низким сопротивлением.

Сопротивление данной обмотки является функцией диаметр проволоки и ее длина.Потери меди можно минимизировать, используя проволока нужного диаметра. Большой

Для сильноточных обмоток требуется провод диаметром

, тогда как Для слаботочных обмоток можно использовать проволоку малого диаметра.

Вихретоковые потери

Сердечник трансформатора обычно состоит из тип ферромагнетика, потому что он хороший проводник магнитных линий потока.

Когда первичная обмотка трансформатора с железным сердечником возбуждаемое источником переменного тока, флуктуирующее магнитное поле произведено.Это магнитное поле режет

проводящий материал сердечника и индуцирует в нем напряжение. В индуцированное напряжение вызывает прохождение случайных токов через сердечник, которые рассеивает мощность в виде

тепло. Эти нежелательные токи называются вихревыми токами. Вихревой ток, произведенный из-за

к резистивной природе сердечника и, следовательно, Вихревой текущий убыток пропорционален

кв. Тока в обмотке.

Чтобы минимизировать потери из-за вихревых токов, Сердечники трансформатора ЛАМИНИРОВАНЫ. Поскольку тонкие изолированные листы не обеспечить легкий путь для тока,

Значительно уменьшены вихретоковые потери.

Гистерезис потери

Когда магнитное поле проходит через сердечник, сердечник материал намагничивается. Чтобы стать намагниченными, домены внутри сердечника должны выровняться

с внешним полем.Если направление поля перевернутые, домены должны повернуться так, чтобы их полюса были выровнены с новым направление внешнего поля.

Силовые трансформаторы обычно работают от 60 Гц или Переменный ток 400 Гц. Каждый крошечный домен должен дважды перестроиться во время каждый цикл, или всего 120

раза в секунду при использовании переменного тока 60 Гц. В энергия, используемая для поворота каждого домена, рассеивается в виде тепла внутри железного сердечника.Эта потеря называется

ПОТЕРЯ ГИСТЕРЕЗИСА, может рассматриваться как результат молекулярное трение. Потери на гистерезис могут быть уменьшены до небольшого значения за счет надлежащего выбор основных материалов.

Схема проводов

и потери напряжения в Ом на фут (без покрытия)

Используйте эту таблицу для получения точных данных. Используйте таблицы напряжения для быстрой справки.

Чтобы найти падение напряжения: Ом на фут X Длина провода X Гидроампер

Пример: 200 футов.6 калибр. Медный провод (передача 100 футов) на 8 А

200 X 0,000491 X 8 = падение напряжения 0,786 вольт

Чтобы найти напряжение гидросистемы: прибавьте падение напряжения к напряжению батареи

12,6 +0,786 = 13,346 В

Чтобы найти% потерь в проводе сверху: Падение напряжения сверху / гидро напряжение

0,786 / 13,346 = 0,0589

5,89% от общей протяженности проводов, две жилы, каждая жилка — половина.

Инспекторы по электротехнике хотели бы видеть 2% или менее потерь напряжения на проводник. Гидроэлектростанция с постоянным магнитом — это динамический источник энергии, который работает не только для двигателей и других типов генерирующего оборудования. Правило 2% не имеет отношения к оборудованию. Большинство доступных проводников рассчитаны на повышение температуры от 2000 вольт до 75 C. Мы можем легко потратить 20% энергии, вырабатываемой в каждом проводе, на некоторые из этих длинных проводов и все равно не обнаружить никакого повышения температуры при таких низких напряжениях.Это приведет к падению КПД на 36%, что явно неприемлемо, за исключением самых длинных участков провода. Иногда речь идет о том, что возможно, а не о том, что было бы правильно. Как правило, я редко проектирую систему с потерями более 10% в проводе, потому что обычно есть другой вариант. Вы можете либо нагреть провод, либо зарядить аккумулятор. Изучите производство при более высоком напряжении и используйте понижающий трансформатор / выпрямитель, чтобы снизить затраты на провод.

Пример 10% потерь: Hydro 12 А @ 13.86 вольт = 166,32 ватта

Аккумулятор 12 А при 12,6 В = 151,2 Вт

Пример потерь 2%: Hydro 12,94 А при 12,853… В = 166,32 Вт

Аккумулятор 12,94 А при 12,6 В = 163 Вт

Довольно часто эффективность гидросистемы также увеличивается, обеспечивая еще один небольшой выигрыш.

12 В постоянного тока

В следующей таблице показано максимальное расстояние передачи при использовании медного провода с учетом общего падения напряжения 2 В. Это дает чуть менее 7% потерь на проводник или чуть менее 14% общих потерь напряжения на расстоянии передачи.Это мой личный предел для 12-вольтовой системы, которая, естественно, неэффективна из-за низкого напряжения. В таблице также предполагается, что напряжение аккумулятора составляет примерно 12,6, а гидро напряжение будет примерно 14,6 при указанном уровне мощности. Для 2% потерь на проводник расстояние передачи будет 30% от числа в столбце.

24 В постоянного тока

В следующей таблице показано максимальное расстояние передачи с использованием медного провода с учетом общего падения напряжения 2,8 В. Это дает 5% потерь на проводник или 10% общих потерь на расстоянии передачи.В таблице также предполагается, что напряжение аккумулятора составляет прибл. 25,2, а гидравлическое напряжение 28,0 на указанном уровне мощности. 2% потерь в проводнике — это 40% от числа в столбике.

32 В постоянного тока

До сих пор используется в ограниченных количествах, используемое оборудование в основном представляет собой остатки морской промышленности. Это также был старый стандарт для сельской электрификации и телеграфа до 1950-х годов и военных приложений до Второй мировой войны в США. Эта диаграмма показана для размещения никель-железных батарей в системе 24 В для более точного определения размеров проводки гидросистемы, которая становится все более востребованной. популярность.Лично меня не волнует эффективность никель-железных аккумуляторов, и я рекомендую вам разобраться в проблеме, прежде чем внедрять их. Прочтите раздел о железно-никелевых батареях для получения дополнительной информации. В следующей таблице показано максимальное расстояние передачи при использовании медного провода при общем падении напряжения 3,32 В. Это дает 5% потерь на проводник или 10% потерь на расстоянии передачи. В таблице также предполагается, что напряжение аккумуляторной батареи составляет приблизительно 33,2, а гидравлическое напряжение составляет 36,52 при указанном уровне мощности.2% потерь в проводнике — это 40% от числа в столбике.

48 В постоянного тока

В следующей таблице показано максимальное расстояние передачи при использовании медного провода с учетом общего падения напряжения 5,6 В. Это дает 5% потерь на проводник или 10% общих потерь напряжения на расстоянии передачи. В таблице также предполагается, что напряжение аккумулятора составляет приблизительно 50,4, а напряжение гидросистемы составляет 56,0 при указанном уровне мощности. Потери в проводе 2% составляют 40% указанного расстояния.

62 В постоянного тока

Эта таблица предназначена для определения максимального расстояния прокладки гидропровода в системе никель-железных аккумуляторов с номинальным напряжением 48 В с использованием медного провода, предполагая 6.Общее падение 2 вольт. Это дает 5% потерь на проводник или 10% общих потерь напряжения на расстоянии передачи. В таблице также предполагается, что напряжение аккумулятора составляет прибл. 62,0, а гидравлическое напряжение 68,2 на указанном уровне мощности. Потери в проводе 2% составляют 40% указанного расстояния. Прочтите раздел о железно-никелевых батареях для получения дополнительной информации. Таблица также полезна как одно из напряжений, обычно обнаруживаемых контроллерами MPPT.

75 В постоянного тока

Эта таблица предназначена исключительно для расчета максимального расстояния, на которое проходит гидропровод при напряжении, обычно обнаруживаемом некоторыми контроллерами MPPT, использующими медный провод, при условии 7.Общее падение 5 вольт. Это дает 5% потерь на проводник или 10% общих потерь напряжения на расстоянии передачи. Таблица построена так, чтобы отображать 75 вольт на контроллере и 82,5 на гидросистеме. Эту таблицу можно использовать при любом напряжении, если масштабировать числа в процентах. Это также включает в себя количество ватт. Увеличение напряжения на 10% приведет к увеличению расстояния на 10% и наоборот. Падение напряжения также изменяется пропорционально. Потери 2% на проводник составляют 40% расстояния в колонне. Прочтите раздел о контроллерах MPPT

120 В постоянного тока

В следующей таблице показано максимальное расстояние передачи с использованием медного провода при условии 9.Общее падение 6 вольт. Система 120 В постоянного тока широко используется во всем мире, но фактически запрещена в США. Страх и непонимание со стороны людей, которым доверено чрезмерно защищать нас? Довольно глупая идея, учитывая, что они позволяют солнечным системам работать с напряжением около 1000 В постоянного тока. В таблице предполагаются потери 4% на проводник или 8% общих потерь напряжения. 2% — это 50% от указанного расстояния. В этой таблице также показано наивысшее напряжение MPPT, которое обычно встречается у Midnight 250. Мы также можем построить понижающее значение TR / rect. блока с более высокого напряжения до 120 В постоянного тока, чтобы помочь снизить затраты на провод.

Передача постоянного тока по сравнению с передачей переменного тока

Самым большим преувеличением, когда-либо сказанным в мире электротехники и повторяемым до тех пор, пока не будет принято как факт, могло быть следующее: «Переменный ток движется дальше, чем постоянный ток» ……… ну… хорошо. Реактивная емкость может изменить эффективные потери в проводах в некоторых трехфазных цепях переменного тока, что применимо к некоторым из наших трехфазных блоков с дикими модулями PM, но в остальном…

НЕТ

По правде говоря, должно быть примерно следующее: при определенных обстоятельствах переменный ток проходит немного дальше, чем постоянный ток, и его проще и экономичнее преобразовать в полезную мощность переменного и постоянного тока в точке использования.Переменный ток чаще встречается на более высоких уровнях напряжения, и его легче производить на этих уровнях напряжения.

Расчет однофазного переменного тока на проводник

Ватт / Вольт = Ампер, а затем, Ампер / Коэффициент мощности = ток на проводник

1400 Вт / 200 В = 7 А, 7 А / 0,85 PF = 0,824 А

Однако в большинстве случаев коэффициент мощности равен или близок к 1,0.

Однофазный переменный ток 120 В

Для использования с нашей PM 1032 hydro мощностью до 800 Вт либо с прямым резистивным нагревом нагрузки, либо с лампами накаливания при фиксированной нагрузке и объёме воды, либо с блоком выпрямителя с понижающим трансформатором для зарядки аккумулятора.Они менее эффективны, чем наши трехфазные модели, но делают возможной двухпроводную передачу. Эту таблицу также можно использовать для определения размеров обычных гидропроводов переменного тока при 120 В 60 Гц. В таблице предполагается, что проводники выполнены из меди, и допускаются потери 4% на проводник или 8% потерь на расстоянии передачи. 2% потери составляют 50% от указанного расстояния. Для правильной работы генераторы переменного тока с внутренним регулированием должны находиться в пределах 2% диапазона.

Однофазный 240 В переменного тока

То же, что и выше, за исключением 240 вольт.4X расстояние или 4X мощность 120 вольт

480 В, однофазный

То же, что и выше, за исключением 480 вольт. 4X расстояние или 4X мощность 240 вольт

Расчет трехфазного переменного тока на проводник
Вт / линейное напряжение X 0,667 = ток на проводник. Диапазон составляет от 0,61 до 0,71 в зависимости от напора и объема источника воды и результирующей рабочей частоты (PF). Существует так много переменных, связанных с дикой частотой, а математика не проста, поэтому это руководство предназначено для того, чтобы показать только наиболее вероятные расстояния.Площадки с напором менее 50 футов должны быть уменьшены примерно на 3%.

—– Осторожно—-

Высоковольтные турбины следует устанавливать внутри подходящего сухого и надежного сооружения из соображений безопасности. Мы не несем ответственности за ненадлежащее использование наших продуктов.

3 фазы, 120 В, 3 провода

Эта таблица предназначена для использования с нашими не исправленными версиями моделей PM 1800 и PM 2500 для передачи на большие расстояния, которые являются трехфазными. Частотный диапазон определяется напором и громкостью, но обычно составляет от 50 до 150 Гц.Напряжение также будет зависеть от состояния заряда аккумулятора после TR / rect. Ед. изм. Диапазон напряжения обычно составляет от 80 до 120 В переменного тока между фазами. Большинство из них будут иметь линейный ток около 100 В переменного тока, и эта таблица построена на этом предположении. Трехфазное напряжение 120 вольт — это необычно, но на некоторых объектах не соблюдаются минимальные значения вращения для получения более высокого напряжения. В таблице предполагается, что проводники выполнены из меди и из ПВХ. В таблице также предполагаются потери 4% на проводник или 8% общих потерь напряжения для расстояния передачи при указанном уровне мощности.При выборе кабеля для обычных генераторов переменного тока расстояния могут быть увеличены на 20% в зависимости от типа генератора, чтобы обеспечить более высокое рабочее напряжение. Потери в проводе 2% составляют 50% указанного расстояния.

, 3 фазы, 240 В переменного тока, 3 провода

Аналогично приведенному выше напряжению 120 В, за исключением 240 В переменного тока. Диапазон напряжения обычно составляет от 160 до 240 В переменного тока между фазами. Большинство из них будут иметь межфазное напряжение около 200 В переменного тока. Все остальные предположения такие же. Обрыв цепи на этих турбинах может составлять 350-400 В переменного тока.Потери 2% на проводник составляют 50% расстояния стола.

4X расстояние или 4X мощность 120 вольт

, 3 фазы, 480 В переменного тока, 3 провода

Подобно 240 единицам выше, за исключением 480 вольт. Диапазон напряжения обычно составляет от 320 до 480 В переменного тока между фазами. Большинство из них будет около 400 В переменного тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *