Применение электронного электрического ветра для получения электричества – преимущества и недостатки ветряных электростанций

Содержание

преимущества и недостатки ветряных электростанций

Виды ветряной энергии

Рост потребления энергоресурсов ускоряется с каждым годом. Появление новых устройств, бытовой техники, компьютерного оборудования способствуют повышению потребностей населения и вынуждает к увеличению мощностей централизованных линий. Их состояние, и так достаточно ветхое, от таких нагрузок становится еще более плачевным. Изношенность электросетей в некоторых регионах достигает 70-80 %, что заставляет задуматься о завтрашнем дне.

С другой стороны, имеется немало регионов, куда линии электропередач д сих пор не проведены. Это отдаленные районы Крайнего Севера, труднодоступные горные населенные пункты и т.д. Надеяться на скорую электрификацию таких мест не приходится, так как важных промышленных или оборонных объектов там нет, а вести линию «в никуда» нерационально, она никогда не окупится.

Выходом из складывающейся ситуации может стать использование альтернативных методов производства электроэнергии. Рассмотрим один из наиболее перспективных вариантов.

Воздушный поток

По сути, энергия ветра одна — кинетическая. Воздушный поток обладает огромной мощью, действие которой можно наблюдать на видео или фотографиях последствий ураганов или просто шквальных порывов. Гораздо больше существует устройств, так или иначе использующих ветряную энергию для выполнения какой-нибудь работы, производства электрического тока и прочих нужд. Так, насосы, действующие от ветряка, известны с незапамятных времен, а современные ветроэлектростанции обеспечивают электрической энергией целые страны и регионы.

Особенностью энергии ветра является ее доступность. Для создания гидроэлектростанции необходимо найти подходящий по рельефу участок русла реки, построить запруду, которая затопит большую площадь полезной поверхности земли. Страдают и исчезают пахотные земли, нарушается естественный ареал обитания животных, изменяется климат в регионе.

Для атомной энергетики надо получить ядерное топливо, построить АЭС, все время ее работы существует ощутимый риск возникновения аварии, угрожающей крупной катастрофой. Использование ветра практически безопасно, не имеет отрицательного воздействия на природу или человека.

Противники ветроэнергетики декларируют различные проблемы, создаваемые использованием ВЭС, но фактов, подтверждающих эти проблемы, не привели ни разу. Практика же опровергает все домыслы относительно вреда от ветростанций, подтверждая лишь полезные свойства.

История использования

Начало использования ветра человеком уходит корнями в далекое прошлое. Прежде всего, это мореплавание. Изобретение паруса намного облегчило навигацию и позволило добираться до места назначения гораздо быстрее. В 200 гг до н.э. в Персии уже существовали ветряные мельницы для изготовления муки.

Первая ветроэлектростанция была выстроена в Дании в XIX веке. Место появления первой станции не случайно, так как в Дании издавна использовались ветряные мельницы, а обычных на то время возможностей для производства электричества при помощи гидростанций не было. Западная Европа является одним из лидеров в развитии ветроэнергетики, хотя с ней весьма сильно конкурируют Китай и Индия.

В России ветровые установки не распространены в должной степени, так как обилие рек способствует развитию гидроэнергетики. Учитывая более высокую производительность ГЭС, это вполне оправдано, но в последнее время интерес к энергии ветра проявляется с новой силой.

Применение энергии ветра: виды, история использования и современные способы производства

Применение энергии ветра: виды, история использования и современные способы производства

Ресурсы энергии солнца и ветра на Земле

Альтернативные источники, к которым относятся солнечная и ветровая энергия, обладают огромным потенциалом. Их количество практически неисчерпаемо, во всяком случае при нынешнем уровне технических возможностей. Особенностями этих видов является периодический характер пользования — для солнца характерен перерыв в ночное время, а ветровые потока не имеют определенной системы и движутся хаотично.

Исключением являются прибрежные регионы, где направление потока изменяет только знак — либо с моря на сушу, либо наоборот. В остальном оба источника бесконечны. Ветер не теряет своей энергии даже при использовании больших станций, состоящих из сотни и более установок, что выгодно отличает его от тех же углеводородов, которые сгорают, загрязняя атмосферу и убывают при этом.

Количество солнечной энергии, доступной на поверхности Земли, во многом зависит от климата и состояния атмосферы в регионе. Районы с обычно затянутым тучами небом в этом отношении бесперспективны. То же касается и регионов со слабыми ветрами в отношении ветроэлектростанций. При этом, энергия ветра доступна в любое время дня и ночи, что делает ее позиции несколько более предпочтительными.

Какие преимущества имеет энергия ветра?

Ветер — абсолютно бесплатный источник энергии. Его не надо добывать, производить или приобретать. В этом состоит его основное преимущество, с которым нельзя спорить или опровергнуть. Кроме этого, есть и другие, не менее привлекательные качества:

  • экологическая чистота
  • доступность в любой точке земного шара
  • неиссякаемость
  • возможность использования как в промышленных масштабах, так и в индивидуальном порядке
  • простота и надежность оборудования, нужного для производства энергии

Возможность самостоятельного изготовления ветряка из подручных материалов на своем садовом участке или в частном доме отличает этот источник от любого другого. Для самостоятельной сборки требуется некоторый опыт и навык работы со слесарным инструментом и хотя бы базовые познания в электротехнике. В настоящее время получить любую необходимую информацию — не проблема, поэтому задача создания своего собственного ветрогенератора многократно упростилась.

Недостатки ветряных электростанций

К основным недостаткам относят нестабильность воздушных потоков. Даже в прибрежных регионах с преобладающими бризами, имеющими относительно ровные параметры, случаются отклонения от обычных значений, а в континентальных регионах, с их особенностями климата, перепадами среднесуточных температур и влажности, движение воздушных масс имеет сложную и зачастую неожиданную систему. Кроме того, к недостаткам ВЭС принято относить:

  • шум от работы установок
  • мерцание от вращающихся лопастей
  • вибрации, отрицательно воздействующие на мелких животных и, отчасти, на людей
  • высокие инвестиционные расходы
  • относительно короткий срок службы, не всегда обеспечивающий окупаемость проекта
  • дороговизна электроэнергии

Некоторые из этих недостатков можно смело отнести к домыслам, например, высокий уровень шума или вибраций. Но относительно дороговизны и неокупаемости проектов — факт, спорить с которым нет смысла. Расходы на создание ветростанций обычно берутся на себя государствами, особенно если рассматривается крупный проект, способный в корне изменить энергообеспеченность страны, либо, если станция невелика, покрываются из частных инвестиций.

Следует отметить, что стоимость относительно небольших проектов на несколько порядков ниже, чем у гигантов энергетики, что намного увеличивает рентабельность вложений и способствует достаточно быстрой окупаемости.

Современные способы производства электричества из энергии ветра

На сегодня самым распространенным способом преобразования энергии потоков ветра является использование ветрогенераторов. Это устройства, преобразующие энергию потока во вращательное движение, передающееся на генератор, который производит электрический ток. С генератора производится заряд аккумуляторной батареи, которая, разряжаясь, через инвертор питает потребителей.

Примечательно, что все разнообразие конструкций и типов ветряков практически никак не сказывается на состоянии электроники — ее состав, начиная с генератора, одинаков для всех видов установок и различается только по мощности.

Все разнообразие конструкций относится лишь к вращающейся крыльчатке. Здесь имеются разные варианты конструкции:

  • горизонтальные
  • вертикальные

Наименования этих групп означают расположение оси вращения ротора. Горизонтальные конструкции несколько эффективнее, что стало причиной использования их в крупных ветротурбинах. Вертикальные устройства, в свою очередь, более приспособлены к обслуживанию небольших частных хозяйств, домов, линий освещения или водоснабжения.

Возросший интерес к ветроэнергетическим установкам послужил толчком к росту разработок различных вариантов конструкции ветряка. Основным направлением поисков конструкторов является оптимальный вариант крыльчатки, способный вращаться при слабом ветре. Это актуально для условий России, так как преобладающие ветра в нашей стране относятся к слабым и, в меньшей степени, средним.

Помимо роторных установок рассматриваются и другие конструкции. Например, голландские конструкторы разработали ветряк, работающий на каплях воды. Они переносят заряд с одного электрода на другой, повышая его потенциал. Разработка совершенно новая, никаких характеристик в свободном доступе пока не имеется, но интерес к такой конструкции весьма высок.

Применение энергии ветра: виды, история использования и современные способы производства

Применение энергии ветра: виды, история использования и современные способы производства

Как сделать ветряную электростанцию?

Создание ветряной электростанции является сложным и затратным процессом. Необходимо установить большое количество ветряков и объединить их в единую энергосистему с общей производительностью. Это требует больших усилий по техническому, юридическому и финансовому сопровождению проекта, понадобятся тщательные предварительные разведочные работы, отвечающие на все вопросы эксплуатационного характера:

  • преобладающая скорость ветра
  • климатические условия, возможность ураганных ветров
  • состав почв, стабильность, несущая способность
  • особенности рельефа местности

Эти показатели дают почву для расчетов эффективности и возможности строительства станции в данном регионе. Использование ветроэлектростанций не создает проблем для сельского хозяйства, площади сокращаются только на размеры основания несущих мачт. Работа установок имеет достаточно плавный характер и не вредит окружающим людям или животным. Для местностей, не имеющих других вариантов, ветроэнергетические установки являются оптимальным выходом из положения.

Рекомендуемые товары

energo.house

Как получают и где используют энергию ветра

Преобразование энергии ветра в электрическую или механическую силу стало основной задачей в современном обществе.  Для того чтобы получать энергию ветра, человечество изобрело огромное количество технических средств. Учёные по всему миру пытаются создать нечто новое, что поможет увеличить объемы, получаемой энергии из воздушных масс. Но, каким образом происходит добыча механической или электрической энергии из потоков воздуха?

Как получить энергию ветра

Что-то подобное вы могли изучать на уроках физики в школе, сейчас мы постараемся объяснить вам, как получают энергию ветра в современной науке.

В каких странах данная отрасль развита наиболее сильно?

Каждая страна в любой точке земного шара старается идти в ногу со временем, и не отставить от общего прогресса. Это провоцирует создание новых технологий, способствующих скорейшему развитию всего человечества.

Добыча энергии альтернативными способами не остается в стороне, а, так как сила ветра считается неиссякаемой, ей уделяется отдельное внимание ученых.

Энергия ветра добывается при помощи специальных ветрогенераторов, которые напоминают по своему виду ветреную мельницу. Однако не обязательно. В Соединённых Штатах Америки уже давно используется ветрогенераторы, которые по своему строению напоминают спираль. Данная форма была адаптировано для городских условий, используется для снабжения электричеством каждого небоскрёба в частности.

Энергия ветра

Государство в Европе, которое преуспело в разработки ветрогенераторов больше всего – это Дании. 42 % всей электроэнергии добываемой на территории Дани приходится на ветряные электростанции. Этому способствует уникальные климатические условия этой страны. Так как побережье государства омывается Северным морем, на территории страны постоянно дуют сильные ветра. Это способствует постоянному развитию процедуры переработки силы ветра в электрическую и механическую энергии. Для добычи электроэнергии датчане используют ветрогенераторы, которые достигают 260 м в высоту.

Строение такого генератора довольно простое, настолько простое, что даже не опытный электрик сможет собрать его дома. Длина лопасти такого генераторов составляет 80 м. Он способен обеспечить электричеством до 2000 домов. Учитывая то, что население Дании составляет менее 6 миллионов человек, обеспечить все жилые и нежилые постройки альтернативными источниками питания – не составляет особого труда для государства.

В среднем в Евросоюзе процент электричества добываемого при помощи ветрогенераторов равен семи.  Давайте более подробно разберём, каким образом работает ветряная электростанция.

Принцип работы ветряной электростанции

Существует два вида ветрогенераторов, которые отличаются друг от друга направленностью вращения:

  1. вертикальные;
  2. горизонтальные.

Также их можно разделять по количеству глупостей, однако это не играет особой роли добычи электроэнергии при помощи ветра. Данный факт становится важным только в том случае, если объемы добываемого электричества должны быть очень большими. Например, если вы хотите снабдить ветрогенератором небольшой частный дом, тем самым автоматизировать его, сделать независимым от центрального электроснабжения, вам понадобится более мелкий прибор. Он будет иметь не три лопасти, как мы привыкли видеть обычно на больших образцах, а больше.

Однако, получение энергии из ветра возможно именно из-за глупостей. Металл, из которого они будут изготовлены, напрямую влияет на объем вырабатываемого электричества.

Принцип работы ветряной электростанции

В классической ветряной электростанции, большую роль, чем лопасти, играет, непосредственно, электрогенератор и числовое программное устройство. Именно эти приборы позволяют преобразовывать полученную кинетическую энергию в электрическую или механическую.

Но, небольшим устройством, без которого работа всей ветряной электростанции стало бы невозможной, является датчик направления ветра, также именуемый анимоментром. Его неисправная работа может привести к поломке всей ветряной электростанции, или снизить количество добываемый электроэнергии до минимума. Все объясняется банально и просто. Если устройство не будет знать, откуда дует ветер, то не сможет работать. Направленность лопастей навстречу ветру обязательна для нормального функционирования всего механизма.

После того как лопасти начали вращаться, электро генератор преобразовывает механическое вращение в электрическую энергию, и направляет в аккумуляторы или сразу в сеть.

Отраслей, где используется энергия ветра, с каждым днём становится все больше. Причиной тому есть возможность преобразования силы ветра, как в электрическую, так и в механическую энергию.

Берегите энергию, и пользуйтесь ей правильно!

altenergiya.ru

Энергия ветра: преимущества, недостатки, перспективы развития

Энергия ветра

Ветер – это не просто сложное физическое явление. В современном мире он используется как источник энергии и представляет собой экономически ценный продукт. Ветроэнергетика в мире становится всё более востребованной, над развитием этой отрасли работают учёные различных специальностей.

Насколько велик потенциал ветроэнергетики? Какими достоинствами и недостатками она обладает? Где применяется? Пришло время ответить на эти вопросы.

С чего всё начиналось

Ветряки Существует общераспространённое заблуждение, что ветроэнергетика зародилась лишь в XVII–XIX столетиях. Однако на самом деле ветер как источник энергии активно использовался представителями древних цивилизаций. Вот несколько красноречивых примеров из истории:

  1. Уже в III–II веках до н. э. жители Месопотамии изобрели первые прототипы ветряных мельниц для размола зерна. Лопасти таких устройств, вращаясь под действием ветра, приводили в движение массивный жернов. Он, в свою очередь, растирал зерно в муку. Так энергия ветра позволила сэкономить силы и время нескольких сотен рабочих.
  2. В Древнем Египте ветряные мельницы появились примерно в тот же период.
  3. В Древнем Китае с помощью ветра производилась откачка водных масс с рисовых полей.
  4. В XII веке технологии, базирующиеся на использовании воздушных потоков, стали распространяться по Европе.

Долгое время ветряная энергетика не могла похвалиться хорошими результатами. Она немного облегчала жизнь и работу человека, но не могла послужить на благо всего человечества.

И только в XX веке технический прогресс коснулся этой отрасли. Учёные начали разрабатывать оборудование, позволяющее преобразовывать энергию воздушных потоков в электроэнергию.

Востребованность

Сегодня энергия ветра используется человеком всё активнее.

По состоянию на 2015 год ветроэнергетика занимает в общем энергобалансе:

  • Дании – 42%;
  • Португалии – 27%;
  • Испании – 20%;
  • Германии – 8,6%.

Перечисленные страны являются лидерами по получению электроэнергии из ветра. К данному списку стремятся примкнуть Индия, США, Китай.

Ведущие государства мира строят планы по увеличению количества ветропарков. В Китае и некоторых странах ЕС принимаются законы об использовании возобновляемых источников энергии и повышении мощностей. Всё это способствует развитию ветроэнергетики.

Применение

Парк ветряков

Использование энергии ветра является одним из самых перспективных направлений в современной энергетике. Наглядное сравнение: потенциал ветра более чем в 100 раз превышает потенциал всех рек Земли.

Ветропарки бывают:

  1. Крупные.Обеспечивают электричеством города и промышленные предприятия.
  2. Небольшие.
  3. Вырабатывают электроэнергию для удалённых жилых районов, частных ферм.

Набирает популярность офшорное строительство: ветроустановки возводятся прямо на воде, в 10–12 км от береговой линии океана. Такие парки приносят больше прибыли, чем традиционные. Связано это с тем, что скорость ветра над океаном в несколько раз выше, чем на суше.

Достоинства

Энергия ветра

Ветровая энергетика обладает рядом значимых преимуществ, таких как:

  1. Общедоступность.
    Ветер – возобновляемое «сырьё». Он будет существовать, пока есть солнце.
  2. Безопасность для природы и человека.
    Как и все альтернативные источники энергии, ветер экологически безопасен. Оборудование, преобразующее ветряную энергию, не создаёт выбросов в атмосферу, не является источником вредного излучения. Пути накопления, передачи и использования энергии ветра – экологичные. Производственная техника безопасна для человека, пока он использует её по прямому назначению, соблюдая при этом все правила безопасности.
  3. Успешная конкурентоспособность.Ветряная энергия – хорошая альтернатива атомной. Эти отрасли борются за первенство в возобновляемой энергетике. Но АЭС несут серьёзную угрозу для человечества. В то же время ещё не зарегистрирован ни один случай неисправности ветряного энергокомплекса, сопровождающийся массовой смертностью рабочих и простых жителей.
  4. Обеспечение людей большим количеством рабочих мест.Статистика зафиксировала, что уже в 2015 году отрасль обслуживает 1 млн человек. Развитие ветроэнергетики всё ещё продолжается, поэтому данная сфера народного хозяйства ежегодно предоставляет людям тысячи рабочих мест по всему миру. Это повышает процент занятости населения и благотворно влияет на экономику отдельного региона, всей страны и целого мира.
  5. Лёгкость в работе и управлении.Оборудование требует лишь периодических ТО. Ремонт турбин или их замена – задача средней сложности. Хорошо обученные специалисты без труда обеспечивают работу ветрогенераторов, их исправность. Для этого нужны лишь базовые навыки.
  6. Перспективность.Ветроэнергетика находится только на середине своего пути. Потенциал данной отрасли не раскрыт на все 100%, а значит – всё ещё впереди. Современные научно-технические открытия позволят повысить эффективность ветровой энергетики, сделать ее более прибыльной.
  7. Экономическая выгода.Любое предприятие в начале своей работы требует больших вложений. И в отрасли ветроэнергетики расходы на оборудование стабильны, в то время как цены на электроэнергию увеличиваются. Следовательно, доходы производства постоянно растут.

Все эти характеристики способствуют развитию и глобализации ветроэнергетики.

Недостатки

Ветроэнергетика не имеет каких-либо серьёзных недостатков, но и в этом аспекте есть проблемы:

  1. Высокий стартовый капитал.Запустить такой бизнес очень сложно, ведь закупка и монтаж оборудования требуют больших инвестиций.
  2. Выбор территории.Не все регионы Земли подходят для строительства ветроэнергетических комплексов. Подбор местности осуществляется на основе высокоточных расчётов.
      При этом учитываются:
    • количество ветреных дней;
    • скорость воздушных потоков;
    • частота их изменения;
    • прочее.
  3. Отсутствие точных прогнозов.Невозможно точно предсказать, что характеристики ветра в данной местности останутся стабильными на 10/20/100 лет. Сложно рассчитать, какое количество энергии будут вырабатывать ветрогенераторы.

Люди не могут «приручить» ветер, поэтому говорить о стабильности в работе ветрокомплексов невозможно. Впрочем, это относится ко всем возобновляемым источникам энергии.

Ложные теории

Противники ветроэнергетики придумывают различные лжетеории:

  1. Шум, создаваемый ветрогенераторами, вредит экосистеме.Ветряные станции и правда издают шум, однако на расстоянии 30–40 метров он уже воспринимается как фон (естественный уровень шума), поэтому никакого ущерба экологии не наносит.
  2. Ветрогенераторы убивают птиц.Да, это действительно так. Однако от ветряных станций умирает столько же птиц, сколько от высоковольтных сетей и автомобилей.
  3. Вблизи ветряных комплексов портится сигнал ТВ. Оборудование никак не влияет на качество сигнала спутникового, цифрового и аналогового ТВ.

Основная задача таких выдумок – привлечение большего количества людей на сторону традиционной энергетики, которая является более прибыльной для современных предпринимателей.

Заключение

Резкий скачок в развитии ветроэнергетики сделал жизнь человека проще. Энергия ветра используется на крупных промышленных предприятиях и в маленьких сельскохозяйственных комплексах. Именно эта отрасль энергетики является самой востребованной и перспективной.

'; blockSettingArray[0]["setting_type"] = 6; blockSettingArray[0]["elementPlace"] = 2; blockSettingArray[1] = []; blockSettingArray[1]["minSymbols"] = 0; blockSettingArray[1]["minHeaders"] = 0; blockSettingArray[1]["text"] = '

'; blockSettingArray[1]["setting_type"] = 6; blockSettingArray[1]["elementPlace"] = 0; blockSettingArray[3] = []; blockSettingArray[3]["minSymbols"] = 1000; blockSettingArray[3]["minHeaders"] = 0; blockSettingArray[3]["text"] = '

ekoenergia.ru

Атмосферное электричество своими руками, тест

Привет всем любителям получать электричество бесплатно! Сегодня мы поговорим о видах свободной энергии. А именно о атмосферном электричестве и радиоволнах.

Атмосферное электричество уже давно делает ученых весьма беспокойными. Каждый хочет найти источник внутренней и свободной энергии. Сегодня мы собираемся показать, как собирать минимум несколько ватт энергии.

Я протянул провод и прикрепил его к этой мачте, чтобы использовать атмосферное электричество. Теперь мы собираемся сделать тест.

Протянул провод до проводов ЛЭП

Позвольте мне подключить его к мобильному телефону. И он заряжается ))

Провод служит не только для использования атмосферного электричества, но он также подходит для длинных волн. Например, телебашни, мачты и так далее. Их длинный список.

Самодельная зарядка телефона

Теперь я расскажу вам, что такое атмосферное электричество. Ученые вдохновленные идеей преобразования энергии Теслы (статической электрической энергии, атмосферы в непрерывный ток низкого напряжения)

Провели всеобъемлющее исследования Земли и верхних слоев атмосферы. И пришли к выводу, что есть разность потенциалов между атмосферой и поверхностью Земли. Около 300 000 вольт.

исследования Земли и верхних слоев атмосферы

Поверхность Земли заряжена отрицательно, а ионосфера заряжена положительно. Напряжение в облаках
может быть до 120-150 вольт на квадратный метр в сухую погоду. Но напряжение снижается, когда мы достигаем Поверхности Земли.

Никола Тесла

Мы можем назвать это нашим конденсатором земли, который несет 300 киловольт. Как и любой конденсатор, он может иметь утечку.
Около 1 800 ампер. Эксперименты по обнаружению электрического заряда в воздухе проводились с 19-го
века. Экспериментальные баллоны с водородом были подняты до высоты 300 метров. Они получили некоторые
важные результаты. 1.8 ампер тока и 400 вольт. Это 17. 5 ампер в день.

Может быть, воздушные шары, которые были подняты, помогли получить такие результаты. Они были сделаны из алюминиевых листов.

воздушные шары из алюминиевых листов

Конверты этих шаров были сделаны из внутренних алюминиевых ребер, а его поверхность была покрыта
иглы металлические точки. Все контактные элементы были изготовлены из алюминия с препаратом радия в качестве ионизатора.

Конечно, наш подход о котором мы поговорим дальше намного проще, а высота намного ниже.
Мы решили использовать уникальную технологию )) и просто вбили обгоревший ранее при пожаре столб в цементную основу, а еще прикрепили все это к изолятору.

Закрепили столб

Ионизирующий слой меняется. Это зависит от времени года, времени дня и погоды. Его эффект также меняется.

Это вызывает напряжение которого вполне достаточно, чтобы что-нибудь запитать.

Напряжение

Мы вытащили провод и заземлили стальной стержень. Попробуем применить ток к нему.

Это действительно низкий ток. Этого вполне достаточно, но только для неоновых ламп накаливания.

Давайте попробуем применить его к обычной лампе, если близко посмотреть, вы можете видеть, что лампа светит, хоть и очень слабо, но светит.

Лампочка горит

В случае, если вы изолируете один патрон и подключите провод к другому патрону, он включается.

С помощью этого устройства (фото ниже) мы увеличили электрический ток в 1000 раз. Я изучал
много схем и наконец остановился на трансформаторе. Это обратный трансформатор. ТВС 110 ЛК и разрядник.

Когда он искрится, он превращает напряжение в короткие импульсы. В результате высокочастотный трансформатор понижает напряжение.

ТВС 110 ЛК и разрядник

Я узнал это экспериментально. Он подает 4-5 вольт. Однако все это работает довольно плохо, потому что сама установка вызывает сбои. Тем не менее это работает.

Вам понравилась статья?

Напишите в комментариях о том, что вы хотели бы, чтобы мы сделали в наших следующих статьях.
Как сделать мощный генератор энергии ветра, как получить энергию от Солнца или как использовать Землю в
разность потенциалов?

alter220.ru

3 способа получить электричество из земли своими руками

Зачем добывать электричество из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы.  В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Как получить электроэнергию из земли

Поскольку в почве есть и электричество, и электролиты, то её можно рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Кроме того, наши электрифицированные жилища концентрируют в среде вокруг себя и то электричество, которое «стекает» чрез заземление. Этим нельзя не воспользоваться. 

Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

Таким образом, для подключения потребителей электроэнергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут усовершенствовать и получить ток большего напряжения.

 получить электроэнергию из земли

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

получить электроэнергию из земли

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

Способ 3 — Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

получить электроэнергию из земли 

Выводы

  1. Изучая данный вопрос я понял, что современная промышленность не выпускает готовых устройства для получения электричества из земли, но это можно сделать и из подручного материала.
  2. Однако следует учесть, что эксперименты с электричеством опасны. Лучше если вы все же привлечёте специалиста, хотя бы на заключительной стадии оценки уровня безопасности системы.

otlad.ru

Бесплатное электричество для освещения | Мастер-класс своими руками

Бесплатное электричество для освещения
Идея получения бесплатного электричества использую разность потенциалов между нулем сети и землей.
Небольшая оговорка: этот способ получения энергии работает на 100 процентов. Это не обман, никакой не понятный аппарат черпающий электричество с эфира, никакой-то чудо прибор на магнитиках и т.п.
Мы будем использовать разность напряжения между нулем сети 220 В и заземлением.
Если говорить простым языком, то от электростанции до потребителей идут провода – ноль и три фазы. Так как провода имеют свое сопротивлении, следовательно, на них будет и «просадка» напряжения. Вот это напряжение мы и будем ловить. Этот потенциал так же создает перекос фаз.

Это законно?


Да, за это не наказывают электросети, так как мы не будем задействовать фазу. И фактически это не воровство.

Электрические счетчики будут учитывать эту энергию?


Все зависит от типа электросчетчика. Бывают счётчики с одним шунтом (с одним измерительным элементом) – самые распространённые и двух шунтовые (с двумя измерительными элементами). Одно шунтовые как раз не учитываю ноль – так как измерительный шунт у них расположен на фазе.

Сколько электричества можно получить?


Все зависит от количества абонентов в сети и мощности всей проводки. Обычно это где-то 3-10 вольт. Если подключить повышающий трансформатор, то можно зажечь светодиодную лампу. Напряжение после повышающего трансформатора порядка 100-220 В.

Схема


Бесплатное электричество для освещения
Трансформатор любой от радиоприемника, магнитофона и т.п. Желательно на низкое напряжение 3-9 Вольт вторичной обмотки.
Учтите, что все манипуляции вы используете на свой страх и риск.

Меры предосторожности


Обязательно в цепь между нулем и трансформатором поставьте предохранитель или автоматический выключатель ампер на 5-10. Это нужно для того, чтобы вся конструкция не выгорела, если вдруг поменяют фазу с нулем. Вероятность этого события конечно ничтожно мала, но нужно быть готовым ко всему. Скорее большая вероятность того, что ноль оборвется – а это бывает сплошь и рядом. И автомат вас обязательно спасет.
Даже при работе с нулем обязательно отключайте сеть. Ну и даже бесплатный свет не стоит оставлять без присмотра.

sdelaysam-svoimirukami.ru

Принцип действия и устройство ветрогенератора (общие понятия)

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема генератора для ветряка

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Устройство и конструкция ветрогенератора, а также узлов

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

классический ветрогенератор

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

схема увеличения мощности и емкости ветрогенератора

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

tcip.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о