Принципиальную схему: Схемы электрические принципиальные | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ

Содержание

Схемы электрические принципиальные | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ

6.5.1 Схема электрическая принципиальная (код Э3) – схема, определяющая полный состав элементов и связей между ними и дающая детальное представление о принципах работы изделия.

6.5.2 На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии заданных электрических процессов, все электрические связи между ними, а также электрические элементы, которыми заканчиваются входные и выходные цепи.

На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям.

6.5.3 Схемы выполняют для изделий, находящихся в отключенном состоянии.

В обоснованных случаях допускается отдельные элементы схемы изображать в рабочем положении с указанием на поле схемы режима, для которого изображены эти элементы.

6.5.4 Элементы и устройства, УГО которых установлены в стандартах ЕСКД, изображают на схеме в виде этих УГО.

Элементы или устройства, используемые в изделии частично, допускается изображать неполностью, ограничиваясь изображением только используемых частей или элементов.

6.5.5 Элементы и устройства изображают на схемах совмещенным или разнесенным способом.

При совмещенном способе составные части элементов или устройств изображают в непосредственной близости друг к другу. При разнесенном способе составные части элементов и устройств изображают на схемах в разных местах таким образом, чтобы отдельные цепи изделия были изображены наиболее наглядно. Разнесенным способом допускается изображать все и отдельные элементы или устройства схемы.

Пример выполнения устройств совмещенным и разнесенным способами в соответствии с рисунком 6.16.

совмещенный способ          разнесенный способ Рисунок 6.16 – Пример изображения элементов совмещенным и разнесенным способом

6. 5.6 При оформлении схем, с целью повышения наглядности, рекомендуется использовать строчный способ изображения элементов (устройств), при котором УГО элементов или их составных частей, входящих в одну цепь, изображают последовательно друг за другом по горизонтальной или вертикальной прямой, а отдельные цепи – рядом, образуя параллельные (горизонтальные или вертикальные) строки.

При оформлении схемы строчным способом допускается нумеровать строки арабскими цифрами в соответствии с рисунком 6.17.

Рисунок 6.17 – Пример выполнение схем строчным способом

6.5.7 При изображении элементов (устройств) разнесенным способом допускается на свободном поле схемы помещать УГО элементов (устройств), выполненных совмещенным способом. В данном случае элементы (устройства), используемые в изделии частично, изображают полностью с указанием как использованных, так и неиспользованных частей (элементов).

Выводы (контакты) неиспользованных частей (элементов) изображают короче, чем выводы (контакты) неиспользованных частей (элементов) в соответствии с рисунком 6. 18.

Рисунок 6.18 – Изображение выводов (контактов) использованных и неиспользованных частей

6.5.8 Схемы выполняют в многолинейном или однолинейном изображении. При многолинейном изображении каждую цепь изображают отдельной линией, а элементы, содержащиеся в этих цепях, – отдельными УГО в соответствии с рисунком 6.19.

При однолинейном изображении цепи, выполняющие идентичные функции, изображают одной линией, а одинаковые элементы этих цепей – одним УГО в соответствии с рисунком 6.19.

многолинейное изображение      однолинейное изображение Рисунок 6.19 – Пример выполнения многолинейного и однолинейного изображения цепи

6.5.9 При необходимости на схеме допускается обозначать электрические цепи по правилам установленным ГОСТ 2.709 – 89 или другим НД, действующим в отрасли.

6.5.10 В случае изображения на схеме различных функциональных цепей, для повышения удобства чтения, допускается эти цепи различать по толщине линий. На одной схеме рекомендуется применять не более трех размеров линий по толщине, при этом на поле схемы при необходимости помещают соответствующие пояснения.

6.5.11 Для упрощения схемы допускается несколько электрически не связанных линий связи сливать в линию групповой связи, но при подходе к контактам (элементам) каждую линию связи изображают отдельной линией.

При слиянии линий связи каждую линию помечают в месте слияния, а при необходимости, и на обоих концах условными обозначениями (цифрами, буквами или их сочетанием) или обозначениями, установленными ГОСТ 2.709 – 89. Линии связи, сливаемые в линию групповой связи, как правило, не должны иметь разветвлений, т.е. всякий условный номер должен встречаться на линии групповой связи два раза. При необходимости разветвлений их количество указывается после порядкового номера линии через дробную черту в соответствии с рисунком 6.20.

Рисунок 6.20 – Пример изображения разветвлений цепей

6.5.12 Каждый элемент и (или) устройство, имеющее самостоятельную принципиальную схему и рассматриваемое как элемент, входящие в изделие и изображенные на схеме, должны иметь позиционное буквенно-цифровое обозначение в соответствии с ГОСТ 2. 710 – 81.

Устройствам, не имеющим самостоятельных принципиальных схем, и функциональным группам рекомендуется также присваивать обозначения в соответствии с ГОСТ 2.710 – 81.

6.5.13 Позиционные обозначения элементам следует присваивать в пределах изделия. Порядковые номера элементам следует присваивать, начиная с единицы, в пределах группы элементов, которым на схеме присвоено одинаковое буквенное позиционное обозначение, например, С1, С2, С3 и т.д. Буквенные коды элементов схем электрических приведены в приложении Л.

Порядковые номера должны быть присвоены в соответствии с последовательностью расположения элементов на схеме сверху вниз в направлении слева направо.

В технически обоснованных случаях допускается изменять последовательность присвоения порядковых номеров в зависимости от размещения элементов или функциональной последовательности процесса передачи сигналов (информации).

При внесении изменений в схему (корректировке схемы) последовательность присвоения порядковых номеров может быть нарушена.

6.5.14

Позиционные обозначения проставляются на схеме рядом с УГО элементов с правой стороны или над ними.

При изображении на схеме элемента разнесенным способом позиционное обозначение проставляют около каждой составной части в соответствии с рисунком 6.16.

6.5.15 Если в состав изделия входят устройства, не имеющие самостоятельных принципиальных схем, то на схемах таких изделий допускается позиционные обозначения элементам устройств присваивать в пределах каждого устройства.

Если в состав изделия входит несколько одинаковых устройств, то позиционные обозначения элементам устройств следует присваивать в пределах этих устройств.

Порядковые номера элементам следует присваивать по правилам, установленным в 6.5.13 данного пособия.

6.5.16 На схеме изделия, в состав которого входят функциональные группы, позиционные обозначения элементам присваивают в соответствии с 6.5.13, при этом вначале присваивают позиционные обозначения элементам, не входящим в функциональные группы, а затем элементам, входящим в функциональные группы.

6.5.17 Если в изделии имеется несколько одинаковых функциональных групп, то позиционные обозначения элементов, присвоенные в одной из этих групп, следует повторять во всех последующих группах.

Обозначение функциональной группы, указывают около изображения функциональной группы сверху или справа. Пример выполнения данного правила в соответствии с рисунком 6.21.

Рисунок 6.21 – Изображение на схеме одинаковых функциональных групп

Допускается одинаковые функциональные группы изображать по правилам приведенным в 6.2.3.8.

6.5.18 Если поле схемы разбито на зоны или схема выполнена строчным способом, то справа от позиционного обозначения или под ним допускается указывать в круглых скобках обозначения зон и номера строк, в которых изображены все составные части данного элемента или устройства в соответствии с рисунком 6.22.

6.5.19 Для повышения удобства чтения схемы допускается раздельно изображенные части элементов соединять линией механической связи, указываю щей на принадлежность их к одному элементу. Позиционные обозначения элементов в этом случае проставляют у одного или у обоих концов линии механической связи.

6.5.20 При изображении отдельных элементов устройств в разных местах в позиционные обозначения этих элементов должно быть включено позиционное обозначение устройства, в которое они входят по типу

=А2 – С6

Данное обозначение означает конденсатор С6, входящий в устройство А2.

Рисунок 6.22 – Пример простановки позиционных обозначений при разбиении схемы на зоны или выполнении схемы строчным способом

6.5.21 При разнесенном способе изображения функциональной группы в состав позиционных обозначений элементов, входящих в эту группу, должно быть включено обозначение функциональной группы по типу

≠T1 — R4

Данное обозначение означает резистор R4, входящий в функциональную группу Т1.

6.5.22 При однолинейном изображении около одного УГО, заменяющего несколько УГО одинаковых элементов (устройств), указывают позиционные обозначения всех этих элементов (устройств) в соответствии с рисунком 6. 19.

Если одинаковые элементы (устройства) находятся не во всех цепях, изображенных однолинейно, то справа от позиционного обозначения или под ним в квадратных скобках указывают обозначения цепей, в которых находятся эти элементы (устройства) в соответствии с рисунком 6.23.

Рисунок 6.23 – Позиционное обозначение одинаковых элементов при однолинейном изображении, если элементы находятся не во всех цепях

6.5.23 На принципиальной схеме должны быть однозначно определены все элементы и устройства, входящие в состав изделия и показанные на схеме.

Данные об элементах и устройствах должны быть записаны в перечень элементов. Связь перечня элементов с УГО элементов и устройств должна осуществляться через позиционные обозначения.

В технически обоснованных случаях допускается все сведения об элементах и устройствах помещать около УГО.

6.5.24 При сложном вхождении, например, когда в устройство, не имеющее самостоятельной принципиальной схемы, входит одно или несколько устройств, имеющих самостоятельные принципиальные схемы, и (или) функциональных групп, или если в функциональную группу входит одно или несколько устройств и т. д., то в перечне элементов в графе «Наименование» перед наименованием устройств, не имеющих самостоятельных принципиальных схем, и функциональных групп допускается проставлять порядковые номера (т.е. подобно обозначению разделов, подразделов и т. д. текстового документа) в пределах всей схемы изделия в соответствии с рисунком 6.24.

Поз.
обозн.
НаименованиеКол.Примечание
    
С1…С3Конденсатор К10-17а-Н90-0,22мкФ  
 ОЖ0.460.10 ТТУ3 
    
 Резисторы С2-33Н ОЖ0.467.093 ТУ  
 Резисторы С2-29В ОЖ0.467.099 ТУ  
R1…R4С2-33Н-0,5-3,3 кОм±5%-А-В-В4 
R5С2-33Н-0,5-10 кОм±5%-А-В-В1 
R6С2-29В-0,5-8,98 Ом±5%-1,0-Б1 
    
А21. Субблок 21-С. ХХХХ.ХХХХХХ.0511 
    
R1…R3Резистор С2-33Н-0,5-3,3 кОм±5%-А-В-В  
 ОЖ0.467.093 ТУ3 
    
Р11.1 Сумматор  
    
С1, С2Конденсатор К10-17а-Н90-0,22мкФ  
 ОЖ0.460.10 ТТУ2 
V1…V4   
 Диод 2Д510А ТТ3.362.096 ТУ4 
    
А3…А52. Субблок АТС. ХХХХ.ХХХХХХ.0123 
    
Рисунок 6. 24 – Пример выполнения перечня элементов

6.5.25 При необходимости указания около УГО номиналов резисторов и конденсаторов их показывают в соответствии с рисунком 6.25 при этом допускается применять упрощенный способ обозначения единиц измерений.

Для резисторов:
— от 0 до 999 Ом – без указания единиц измерения;
— от 1·103 до 999·103 Ом – в килоомах с обозначением единиц измерения строчной буквой «к»;
— от 1·106 до 999·106 Ом – в мегаомах с обозначением единиц измерения прописной буквой «М»;
— свыше 1·109 Ом – в гигаомах с обозначением единиц измерения прописной буквой «Г»

Для конденсаторов6
— от 0 до 9999·10-12 Ф – в пикофарадах без указания единиц измерения;
— от 1·10-8 до 9999·10-6 Ф – в микрофарадах с обозначением единиц измерения строчными буквами «мк».

6.5.26 Для обеспечения однозначности выполнения электрического монтажа, на схеме необходимо указывать обозначения выводов (контактов) элементов (устройств), нанесенные на изделие или установленные в их документации.

Если в конструкции элемента (устройства) и в его документации обозначения выводов (контактов) не указаны, то допускается условно присваивать им обозначения на схеме, повторяя их в соответствующих конструкторских документах (чертеже, электромонтажном чертеже и т. д.).

При условном присвоении обозначений выводам (контактам) на поле схемы должны быть помещены соответствующие пояснения.

При изображении на схеме нескольких одинаковых элементов (устройств) обозначения выводов (контактов) допускается показывать на одном из них.

При разнесенном способе изображения одинаковых элементов (устройств) обозначения выводов (контактов) необходимо показывать на каждой составной части элемента (устройства).

Для отличия на схеме обозначений выводов (контактов) от других обозначений (например обозначений цепей и т.п.) допускается записывать обозначения выводов (контактов) с квалифицирующим символом в соответствии с ГОСТ 2.710-81.

Рисунок 6.25 – Обозначение номиналов резисторов и конденсаторов

6. 5.27 Если элемент на схеме показывают разнесенным способом, то поясняющую надпись помещают около одной составной части или на поле схемы около изображения элемента, выполненного совмещенным способом.

6.5.28 Для удобства чтения схемы рекомендуют указывать характеристики входных и выходных цепей изделия (напряжение, сопротивление и т.п.), а также контролируемые параметры на гнездах и т.п. Вместо характеристик или параметров входных и выходных цепей допускается приводить наименования цепей или контролируемых величин.

6.5.29 Если заведомо известно (например, по техническому заданию), что изделие предназначено для работы только в одном конкретном изделии, то на схеме допускается указывать адреса внешних соединений входных и выходных цепей.

Указанный адрес должен обеспечивать однозначность присоединения. Например, если выходной контакт изделия должен быть соединен с шестым контактом второго соединителя устройств А3, то адрес будет записан следующим образом:

=А3 – Х2:6

При обеспечении однозначности присоединения допускается указывать адрес в общем виде, например, «Коллектор прибора КИУ».

6.5.30 Характеристики входных и выходных цепей изделия, а также адреса их внешних подключений рекомендуется записывать в таблицы, помещаемые взамен УГО входных и выходных элементов – соединителей, плат и т. д. в соответствии с рисунком 6.26.

Каждой таблице присваивается позиционное обозначение элемента, взамен УГО которого она помещена. Над таблицей допускается указывать УГО контакта – гнезда или штыря.

Для удобства построения схемы допускается таблицы выполнять разнесенным способом.

Порядок расположения контактов в таблице определяется удобством выполнения схемы.

Допускается помещать таблицы с характеристиками цепей около УГО входных и выходных элементов в соответствии с рисунком 6.27.

Рисунок 6.26 – Пример изображения элемента внешнего подключения

Конт.ЦепьАдрес
1Δf=0,3…3кГц; RH=600=A1-X1:1
2Uвых=0,5 В; RH=600 Ом=A1-X1:2
3Uвых=+60В; RH=500 Ом=A1-X1:3
4Uвых=+20В;=A1-X1:4
Рисунок 6. 27 – Пример таблицы с характеристиками цепей при наличии на схеме УГО входных и выходных элементов

Аналогичные таблицы рекомендуется помещать на линиях, изображающих входные и выходные цепи при условии, что эти цепи не заканчиваются соединителями. В данном случае таблицам позиционное обозначение не присваивают.

Допускается при необходимости вводить в таблицы другие дополнительные графы, а при отсутствии характеристик цепей или адресов не приводить графы с этими данными. В графе «Конт.» допускается проставлять через запятую последовательные номера нескольких контактов при условии, что они соединены между собой.

6.5.31 Для изображения многоконтактных соединителей допускается применять УГО, не показывающие отдельные контакты. В данном случае сведения о соединении контактов приводят одним из следующих способов:
— около УГО соединителей, на свободном поле схемы или на последующих листах схемы помещают таблицы с указанием адреса соединения. Если таблица расположена на свободном поле схемы или на последующих листах схемы, то над таблицей проставляют позиционное обозначение соединителя. Пример выполнения данного правила в соответствии с рисунками 6.28 и 6.29;
— соединения с контактами соединителя показывают разнесенным способом в соответствии с рисунком 6.30.

X2 Рисунок 6.28 – Пример таблицы помещаемой на свободном поле схемы   Рисунок 6.29 – Пример таблицы, помещаемой около УГО соединителя   Рисунок 6.30 – Разнесенный способ изображения соединения с контактами соединителя

В графах таблиц приводят следующие данные:
— в графе «Конт.» – номера контактов соединителя строго в порядке возрастания;
— в графе «Адрес» – обозначение цепи и (или) позиционное обозначение элементов, соединенных с контактами;
— в графе «Цепь» – характеристику цепи;
— в графе «Адрес внешний» – адрес внешнего соединения.

При изображении соединения с контактами соединителя разнесенным способом (в соответствии с рисунком 6.30), точки соединенные штриховой линией с соединителем, означают соединения с соответствующими контактами данного соединителя. Характеристики цепей при необходимости помещают на свободном поле схемы над продолжением линий связи в со-ответствии с рисунком 6.30.

6.5.32 При изображении на схеме элементов, параметры которых подбирают при регулировании, около позиционных обозначений этих элементов на схеме и в перечне элементов проставляют звездочки (например, С5*), а на поле схемы помещают сноску: «*Подбирают при регулировании».

В данном случае в перечень элементов записывают элементы, параметры которых наиболее близки к теоретическим, а предельные значения параметров элементов приводят в графе «Примечание».

Если при регулировании параметра подбирают элементы различных типов, то эти элементы перечисляют в технических требованиях на поле схемы, а в графах перечня элементов приводят следующие данные:
— в графе «Наименование» – наименование элемента и параметр наиболее близкий к теоретическому;
— в графе «Примечание» – ссылку на соответствующий пункт технических требований и предельные значения параметров при подборе.

6.5.33 При изображении устройства в виде прямоугольника допускается в прямоугольнике взамен УГО входных и выходных элементов помещать таблицы с характеристиками входных и выходных цепей в соответствии с рисунком 6.31, а вне прямоугольника – таблицы с указанием адресов внешних присоединений в соответствии с рисунком 6.32. При необходимости допускается в таблицы вводить дополнительные графы.

Рисунок 6.31 – Пример изображения устройства   Рисунок 6.32 – Пример изображения устройства

Каждой таблице в данном случае присваивают позиционное обозначение элемента, взамен УГО которого она помещена.

Взамен слова «Конт.» в таблице допускается помещать УГО контакта соединителя (гнездо или вилка) в соответствии с рисунками 6.31 и 6.32.

6.5.32 На поле схемы при необходимости допускается приводить указания о марках, сечениях и расцветках проводов и кабелей (многожильных проводов), для выполнения соединения элементов, а также указания о специфических требованиях к электрическому монтажу конкретного изделия, например требования о взаимном расположении отдельных цепей.

6.5.33 Буквенные коды элементов схем электрических приведены в приложении Л. Примеры выполнения схем электрических принципиальных приведены в приложении М. Условные графические обозначения наиболее употребляемых элементов приведены в приложении Н. Условные графические обозначения наиболее употребляемых устройств связи приведены в приложении П.

Принципиальные схемы электрических цепей — Вольтик.ру

При разработке электрических/электронных устройств без электрических схем не перейти к созданию этих устройств (кроме самых простых).

 Схема электрической цепи – графическое представление всех её элементов, их параметров и соединений между ними. Условные обозначения на схемах стандартизированы ЕСКД (Единая Система Конструкторской Документации).

 Схемы электрических цепей по своему назначению делятся на несколько типов. Чаще всего используются принципиальные и монтажные схемы. Принципиальные схемы дают наиболее полное представление о работе и составе устройства, а монтажные схемы используются при проведении монтажных работ. Принципиальная схема, в отличие от монтажной схемы не показывает физическое расположение элементов относительно друг друга. На рисунке внизу можно увидеть отдельные элементы, пример простой принципиальной электрической схемы и направление тока в них.

На электрически заряженные частицы в цепи воздействуют не только силы электрической природы, но и при определённых условиях силы, обусловленные воздействием сторонних процессов, таких как, например, химические реакции, тепловые процессы и прочее. В результате этого в цепях образуется ЭДС (электродвижущая сила). То есть, ЭДС характеризует работу сил неэлектрического происхождения. В международной системе единиц ЭДС измеряется в вольтах, так же как и напряжение.

 Ниже приведены условные обозначения самых распространённых радиоэлементов на принципиальных схемах.

Рисовать принципиальные схемы можно как от руки (удобно в небольших проектах), так и с помощью специализированного программного обеспечения, например, Proteus VSM. Proteus позволяет собрать принципиальную схему и эмулировать её работу, если схема содержит микроконтроллер  – отладить его прошивку. Его бесплатная версия не позволяет сохранять файлы.

Также можно рекомендовать полностью бесплатную программу Fritzing, помимо создания принципиальных схем имеющую возможность создавать монтажные схемы. Однако, эмулировать работу цепи она не умеет. Fritzing предназначена в первую очередь для создания схем с использованием Arduino.

Как читать принципиальные схемы?

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО. Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика. Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора.

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n. Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните…

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт».

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT, BA, C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1; постоянные резисторы R1, R2, R3, R4; выключатель питания SA1, электролитические конденсаторы С1, С2; конденсатор постоянной ёмкости С3; высокоомный динамик BA1; биполярные транзисторы VT1, VT2 структуры n-p-n. Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.

Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор, то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой *. Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2*. При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5*), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод. В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому «-» выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем «общий провод» или «корпус» указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и «земля». «Земля» — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите «Далее«…

Далее

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Изобразите Принципиальную Электрическую Схему — tokzamer.ru

Вершина треугольника всегда показывает направление тока при открытом диоде, то есть от плюса к минусу: Биполярный транзистор на схемах имеет такой вид: где вывод с изображением стрелки является эмиттером, основание — базой, а третий вывод — коллектором.


Для правильного чтения принципиальной схемы необходимо, прежде всего, ознакомиться с условными обозначениями всех ее составных частей. Чем толще линия — тем сильнее ток, проходящий по этому участку цепи.

На схемах подключения обозначают контуры станка или установки, основные элементы — двигатели, аппараты находящиеся на самом станке путевые выключатели, датчики, электромагниты , шкафы и пульты управления, а также электрические проводки, которые это все связывают.
Что такое принципиальная электрическая схема [РадиолюбительTV 20]

Простейшими из них являются диоды с р-п-переходом и односторонней проводимостью. На принципиальных схемах кроме схем радиоэлектроники и вычислительной техники допускается обозначать электрические цепи по ГОСТ 2.

Фрагмент рабочего окна приложения GADSTAR Express Программа состоит из центрального модуля, в которых входит несколько приложений позволяющих разработать схему, создать для нее плату и подготовить пакет технической документации.

И это не мудрено: помимо, собственно проигрывания пластинок, это устройство могло записывать музыку с пластинок на магнитофон, а также писать звук с внешнего подключаемого микрофона.

Обозначение контактов допускается записывать с квалифицирующим символом по ГОСТ 2.

В основном использовался в радиорубках организаций и предприятий для приема радиостанций АМ диапазона, а также станций ЧВ и УКВ диапазонов.

Как читать электрическую схему РЗА.

Виды электрических схем

А так, разобравшись по структурной схеме из каких отдельных блоков состоит устройство, как эти блоки между собой взаимодействуют, поняв по функциональной схеме как работают конкретные блоки и элементы устройства и обратившись уже затем к проблемной части на принципиальной схеме, можно быстро решить любую возникшую проблему. Для проверки щелкаем первой клавишей выключателя, лампа горит. Каждая линия связи в месте слияния и разветвления обозначена последовательными номерами, что позволяет легко читать схему.

Рекомендуется перед тем как читать принципиальные электрические схемы, внимательно ознакомиться со всеми элементами. Таким образом, схема становится удобной для чтения слева направо: Токопроводящие дорожки провод, либо другой проводник для коммутации элементов — выполняются в виде полос различной толщины.

При необходимости применяют не стандартизированные условные графические обозначения.

Помимо платной версии предусмотрены две бесплатных реализации Demo и Viewer. Что же такое электрическая принципиальная схема и зачем она нужна?

Катушка контактора К1 получает питание, и контактор, сработав, подключает своими замыкающими контактами электродвигатель к сети. Остальные виды схем имеет смысл рассматривать после того, как будут изучены электрические компоненты, и обучение подойдет к этапу проектирования сложных устройств и систем, тогда другие виды схем будут иметь смысл.

Вот ее пример: Полный вариант схемы по электрике изображается в элементном или развернутом виде. При помощи условных графических обозначений изображены все элементы каждого прямоугольника.

Таблицы входных и выходных цепей могут быть выполнены разнесенным способом см.
КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть

Читайте также: Пуэ прокладка кабеля в земле

Обозначения в электрических схемах

Ниже изображена принципиальная электрическая схема dt digital: Электрофон ВЕГА стерео Этот аппарат выпускался с года Бердским радиозаводом, и был незыблемой мечтой любой семьи. Цепи маркируют независимо от нумерации входных и выходных элементов машин, аппаратов, приборов.

Очень часто в паспортах станков схемы соединения и подключения показывают отдельно. Установка рукоятки командоконтроллера в нулевое положение приводит к отключению всех контакторов и двигателя от сети. Это были огромные листы бумаги формата А2 или даже А1, на которых указывались абсолютно все составляющие телевизора.

Возле буквенных обозначений расположены еще и цифры.

Это помогает различить между собой детали с индивидуальными базовыми свойствами и характеристиками. На них можно изобразить точное положение элементов, их соединение, характеристики установок. Подробнее про этот вид схем читайте здесь: Что такое монтажные схемы и где они применяются Кроме электрических принципиальных и монтажных распространены структурные и функциональные схемы.

В таком случае рекомендуется использовать строчный способ нанесения: все элементы, входящие в одну цепь, изображаются в одну строку один за одним, по горизонтали , а разные цепи — в разных строках. Допускается, если это не вызовет ошибочного подключения, обозначать фазы буквами А, В, С.


Платформа TurboCAD может использоваться для решения многих задач Отличительные особенности — тонкая настройка интерфейса под пользователя. Нужно знать, как читать и собирать схему. Элементы записывают по группам видам в алфавитном порядке буквенных позиционных обозначений, располагая по возрастанию порядковых номеров в пределах каждой группы, а при цифровых обозначениях — в порядке возрастания. Существуют замкнутые пути движения тока, охватывающие сразу несколько ветвей и называемые контурами электрических цепей. Номер присваивают сверху вниз в направлении слева направо.

Диод на изображениях выполняется в виде треугольника, упирающегося вершиной в вертикальную черту. Они отображают электрооборудование, подключенное ко всем трем фазам.

При наличии на схеме элементов, не входящих в устройства функциональные группы , заполнение перечня начинают с записи этих элементов. Например, в каждом биполярном транзисторе имеется минимум три вывода — база, коллектор и эмиттер. Плавкие предохранители изображаются в виде прямоугольника с отводами. Цепью сигнализации называется электрическая цепь с устройствами, приводящими в действие сигнальные устройства.
Что такое звезда и треугольник в трансформаторе?

Платные приложения

Катушка контактора К1 получает питание, и контактор, сработав, подключает своими замыкающими контактами электродвигатель к сети. Наличие такой схемы существенно облегчало процесс ремонта.

Давайте исходя из описанных выше правил попробуем составить простейшую принципиальную схему, состоящую из трех элементов: источника аккумуляторная батарея , приемника лампа накаливания и выключателя.

Поэтому, если Вы являетесь правообладателем исключительных прав на любой материал, предоставленный на ресурсе, то сообщите нам через контакты и мы моментально примем все действия для удаления Вашего материала. Силовые цепи обозначены в соответствии с ГОСТ 2. Могут быть однополюсными и многополюсными.

При необходимости допускается изменять последовательность присвоения порядковых номеров в зависимости от размещения элементов в изделии, направления прохождения сигналов или функциональной последовательности процесса. Давайте исходя из описанных выше правил попробуем составить простейшую принципиальную схему, состоящую из трех элементов: источника аккумуляторная батарея , приемника лампа накаливания и выключателя. На принципиальных схемах не указываются второстепенные элементы, которые не выполняют основных функций.

Рекомендуем: Правила прокладки кабелей в земле пуэ

Поиск по сайту

Составляющие третьей группы обеспечивают передачу электричества от одних элементов к другим, то есть, от источника питания — к электроприемникам. Схемы обычно дополняются различными диаграммами и таблицами переключения контактов, которые поясняют порядок срабатывания сложных элементов, например многопозиционных переключателей, временными диаграммами, показывающими последовательность срабатывания катушек реле. Таким образом, схема становится удобной для чтения слева направо: Токопроводящие дорожки провод, либо другой проводник для коммутации элементов — выполняются в виде полос различной толщины.

Онлайн библиотека компонентов насчитывает более 36 тыс. У автоматических выключателей на изображении указывается тип расцепителя. Позиционные обозначения проставляют на схеме рядом с условными графическими обозначениями элементов и или устройств с правой стороны или над ними. Катушка контактора теряет питание, и он отключает электродвигатель от сети. От него пойдут 2 провода на 2 цепи.

Способы управления зависят от многих факторов типа двигателя, мощности, требований к эксплуатации. Форматы листов схем выбирают в соответствии с требованиями, установленными ГОСТ 2. Из всех видов схем при проектировании электротехнической аппаратуры наибольшее распространение имеют электрические схемы различных типов, прежде всего, электрические принципиальные схемы, основные правила выполнения чертежей которых излагаются в настоящих методических указаниях.

По другому такие схемы в народе называют монтажные. Сегодня мы рассмотрим электрические принципиальные схемы и основные правила их составления. Все элементы на принципиальных схемах имеют буквенно-цифровые обозначения, которые выполняются согласно ГОСТ. Условные графические обозначения элементов на схеме в положении, в котором они приведены в соответствующих стандартах, или повернутыми на угол, кратный 90о, если в соответствующих стандартах отсутствуют специальные указания.
Черчение электрических схем по ГОСТ в Visio

Программа для создания принципиальной электрической схемы на Mac Windows и Linux

Программа для создания принципиальной электрической схемы на Mac Windows и Linux

Программа для создания принципиальной электрической схемы — Edraw предоставляет вам быструю, эффективную и умную платформу, которая позволяет каждому,даже новичкам быстро создавать принципиальные электрические схемы с профессиональным внешним видом. Это кросс-платформенная программа, и она работает на Mac и Windows. Вы можете использовать его как альтернатива Visio для создания принципиальной электрической схемы, но его цена на много дешевле, чем Visio.

Векторные символы для схем

У нас есть 20 коллекций и более 800 электрических символов и элементов в программе, которые охватывают практически все распространенные компоненты для принципиальной электрической схемы. Вы можете найти полные списки резисторов, полупроводников, конденсаторов, переключателей и реле, источников, батарей и т.д. Эти символы изменяемые. Вы можете изменить форматы по вашему желанию.

Как создать принципиальную электрическую схему

Создать принципиальную электрическую схему при помощью готовых символов и изменить её в нужный Формат через 1 нажатии. Edraw позволяет вам легко закончить схему путем перетаскивания встроенных элементов. Это является быстрым, простым и надежным способом.Благодаря простому интерфейсу и удобным функциям программы, даже новичок сможет создать принципиальную схему в течение нескольких минут.

Встроенные примеры принципиальной электрической схемы

Перед созданием схемы, многие люди хотят смотреть некоторе хорошие примеры. Наша программа также включает в себя примеры, которые вы можете использовать в качестве исходных шаблонов. Мы также рекомендуем пользователям поделиться своими отличными дизайнами в разделе электрических схем нашего сообщества.

Ваша лучшая программа для создания принципиальной электрической схемы на Mac Windows и Linux!

Получите удовольствие от создания принципиальной электрической схемы с полнофункциональной программой. Вы будете удивлены её изобильными символами и шаблонами! Вы будете изумлены её лёгкой работой! Вы будете довольны её услугой и ценой! Попробуйте её именно сегодня!

Как прочитать электрическую принципиальную схему?

Для чтения принципиальных схем необходимо знать алгоритм функционирования схемы, понимать принцип действия, аппаратов, электрооборудования на базе которых построена принципиальная схема.

Принципиальная электрическая схема — первый рабочий документ, на основании разрабатывают схемы автоматики, релейной защиты, управления и прочие

1. Чтение принципиальной схемы всегда начинают с общего ознакомления с нею и перечнем элементов, находят на схеме каждый из них, читают все примечания и пояснения.

2. Выявляют по схеме напряжения, коммутационные аппараты и их нормальное нерабочее положение, а также другие устройства. Определяют по надписям на схеме их типы и виды, их назначение

3. Знакомятся с системой электропитания для выявления причин нарушения питания; определения очередности, в которой следует на схему подавать питание; оценки последствий отключений выключателей в нормальном и аварийном режиме.

4. Изучают всевозможные цепи питания каждого электроприемника: электродвигателя, РУ, силового щита, линии электропередач и пр.

Очень важно подчеркнуть, что если не придерживаться при чтении схемы определенной целенаправленности, то можно затратить много времени, ничего не решив.

Итак, изучая выбранный электроприемник, надо проследить все возможные его цепи питания от источника.

Учебный материал 2.

Вопрос 2.Условные графические и буквенные обозначения

 

Лист с заданием 2.

Напишите названия аппаратов и их буквенное обозначение

Вопрос 3.Схемы принципиальные электрические ТП 6(10)/0,4 кВ

Рис. 3.2.1. Схема принципиальная электрическая трехлинейная однотрансформаторного ТП.

Вопросы по схеме:

1. перечислите основные элементы схемы

2. назовите линии связи аппаратов и устройств

3. назовите источники питания

4. назовите электропиемники

5. назовите первичное напряжение трансформатора

6. назовите возможное вторичное напряжение

7. сколько разрядников установлено на подстанции

8. сколько предохранителей установлено на подстанции

9. сколько автоматов устоновлено на подстанции

10. опишите принцип работы схемы (нужно рассказать как питаются линии №1-n, линия освещения в нормальном и аварийном режиме)

Вариант описания работы схемы:РУ 6(10) кВ трансформаторной подстанции состоит из разъединителя на входе марки РЛНД с заземляющим ножом со стороны ТП, разрядников FV1-FV3, выключателя нагрузки QW1 с ззаземляющим ножом со стороны трансформатора и предохранителями FU1-FU3.

РУ-0,4 кВ состоит их трех фазных и одной нулевой рабочей шины, автоматических воздушных выключателей Q1-Qn, разрядников FV4-FV6, контактора освещения КМ1, трансформаторов тока ТА1-ТА3

Разъединитель коммутирует только бестоковые цепи при осуществлении обслуживания и ремонтов подстанции.

Разрядники защищают оборудование подстанции от атмосферных перенапряжений, вызванных грозой.

Выключатель нагрузки с предохранителями коммутирует токовые цепи высокого напряжения ТП в нормальном и аварийных режимах; автоматические воздушные выключатели коммутируют токовые цепи низкого напряжения ТП в нормальном и аварийных режимах.

Для учета электрической энергии в РУ-0,4 кВ установлен счетчик электрической энергии РI 1, подключаемый на ввод в РУ после Q1 через трансформаторы тока ТА1-ТА3.

Линия освещения подключается на шины 0,4 кВ через автомат и контактор, для возможности автоматического управления освещением.

Электрическая связь между аппаратами ТП осуществляется со стороны ВН шинами различного профиля; со стороны НН- от трансформатора до распределительных шин: или токопроводом, или шинами; от распределительных шин до ЭП- кабельными выходами.

Нуль трансформатора соединен с нулевой распределительной шиной, для возможности получения фазного напряжения.

Рис. 3.2.2. Схема принципиальная электрическая трехлинейная двухтрансформаторного ТП.

Вопросы по схеме:

1. перечислите основные элементы схемы и укажите их количество

2. назовите линии связи аппаратов и устройств

3. назовите источники питания

4. назовите электропиемники

5. назовите первичное напряжение трансформатора

6. назовите возможное вторичное напряжение

7. опишите принцип работы схемы

 

Рис. 3.2.3. Схема принципиальная электрическая трехлинейная однотрансформаторного ТП.

Вопросы по схеме:

1. сравните рисунок 3.2.1 и 3.2.3

2. перечислите основные элементы схемы РУ высшего напряжения и назовите их количество

3. перечислите основные элементы схемы РУ низшего напряжения и назовите их количество

4. назовите источники питания

5. назовите электропиемники

6. назовите первичное напряжение трансформатора

7. назовите возможное вторичное напряжение

8. опишите принцип работы схемы

 

 

Рис. 3.2.4. Схема принципиальная электрическая трехлинейная однотрансформаторного ТП.

Вопросы по схеме:

1. изучите все обозначения и надписи на схеме

2. перечислите основные элементы схемы, назовите их количество

3. расшифруйте абривиатуру

4. назовите источники питания

5. назовите электропиемники

6. назовите первичное напряжение трансформатора

7. назовите возможное вторичное напряжение

8. попытайтесь понять как работает управление уличным освещением

9. опишите принцип работы схемы

 

 

 

Рис. 3.2.5. Схема принципиальная электрическая однолинейная двухтрансформаторного ТП.

Вопросы по схеме:

1. -изучите все обозначения и надписи на схеме

2. -перечислите основные элементы схемы РУ ВН

3. -перечислите основные элементы схемы РУ НН

4. -каково назначение QS7. QS8?

5. -что обозначает линия соединяющая рабочие ножи и ножи заземления QS

6. -для чего нужен QF3?

7. -назовите первичное напряжение трансформатора

8. -назовите возможное вторичное напряжение

9. -сколько отходящих линий можно присоединить к ТП

10. -в чем разница между трехлинейной и однолинейной схемой

11. -опишите принцип работы схемы

 

 

Рис. 3.2.5. Схема принципиальная электрическая трансформаторной подстанции.

Лист с заданием 3.

1. Составьте план в соответствии с которым будете описывать работу схемы рис.3.2.5

2. Опишите работу схемы рис 3.2.5.

Учебный материал 3.

Вопрос 3. . Схемы принципиальные электрические 35-330/6 (10) кВ

 

Рис. 3.2.6. Схема принципиальная электрическая РУ-35 кВ.

Задание;

1. Сколько блоков содержит РУ?

2. Изучите все надписи и найдите их на схеме

3. Перечислите все оборудование и аппараты, назовите их количество и назначение

4. Опишите схему

 

Рис. 3.2.7. Схема принципиальная электрическая КРУ-6(10) кВ.

Вопросы по схеме:

1. изучите все обозначения и надписи на схеме

2. перечислите основные элементы схемы и назовите их количество

3. найдите распределительные шины

4. сколько секций содержат шины?

5. назовите источники питания

6. назовите назначение каждой ячейки

7. Что такое секция?

8. Что такое камера?

9.что такое ячейка?

Задание: ЧТО ЭТО?

А ЭТО???

Лист с заданием 4. «Проверка степени усвоения изученной информации»

Опишите работу схемы

 

Рис. 3.2.8. Схема принципиальная электрическая РУ-35 кВ двухтрансформаторной ТП

 

Домашнее задание

1.Составить схему однотрансформаторной подстанции с учетом следующих данных: источник питания: воздушная линия 110 кВ. Электроприемники: 2 электродвигателя с номинальным напряжением 10 кВ, две отходящие ВЛ-10.

Литература

1.Конюхова Е.А.Электроснабжение объектов.-М.:Издательство «Мастерство», 2002

Гл. 6

Терминологический словарь

Выключатель- приспособление для выключения и включения электрического тока(сл. Ушакова)

Заземляющий нож-контакт аппарата соединенный с землей

Камера-изолированное помещение специального назначения

Отходящая линия-ВЛ или КЛ присоединенная к ТП-переносит электрическую энергию потребителю

Ограничитель перенапряжений-дополнительные, повышенные напряжения, вызванные прямым попаданием молнии в ЭУ или частыми коммутациями отводит в землю

Предохранитель-отключает повышенный ток путем перегорания плавкой вставки

Разъединитель- коммутационный аппарат, предназначенный для включения и отключения участков электрической сети свыше напряжением1 кВ, находящихся без напряжения.

Секция-часть какого-либо устройства, например часть шин РУ

Трансформатор тока- измерительный трансформатор электрический, предназначенный для подключения через него токовых цепей стандартных измерительных приборов и устройств автоматического управления и контроля.

Трансформатор напряжения- измерительный трансформатор электрический, предназначенный длячерез него цепей напряжения стандартных измерительных приборов и устройств автоматического управления и контроля.

Шина- медная, алюминиевая, реже стальная полоса, служащая для распределения электрической энергии

Ячейка-небольшой (минимальный) элемент РУ

 

 

Занятие 21

 

Составить электрическую схему онлайн. Как читать принципиальные схемы

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО . Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика . Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора .

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n . Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните…

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт» .

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT , BA , C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1 ; постоянные резисторы R1 , R2 , R3 , R4 ; выключатель питания SA1 , электролитические конденсаторы С1 , С2 ; конденсатор постоянной ёмкости С3 ; высокоомный динамик BA1 ; биполярные транзисторы VT1 , VT2 структуры n-p-n . Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.


Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор , то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой * . Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2* . При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5* ), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод . В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому «-» выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем «общий провод» или «корпус» указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и «земля». «Земля » — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите «Далее «…

Инструкция

При изучении принципиальной схемы определите полюсы электрической цепи и установите направление тока – от «плюса» к «минусу». Выявите составляющие схемы: контакты, резисторы, диоды, конденсаторы и прочие элементы, входящие в цепь. Если схема содержит несколько цепей, читать их следует по одной, рассматривая каждую последовательно.

Вначале чтения схемы определите все включенные в цепь системы электропитания. Найдите источник энергии, реле, электромагниты, если они предусмотрены. Определите вид всех источников, используемый ток (постоянный или переменный), его фазу или полярность.

При изучении схемы вам нужно иметь представление о работе каждого элемента цепи отдельно, начиная с простейших составляющих. Резистор — пассивный элемент электрической цепи и предназначен, как правило, для рассеивания мощности, падения напряжения. На схемах он используется для обозначения функции сопротивления и отображается в виде прямоугольника. Конденсатор же, наоборот, накапливает электрическую энергию переменного тока, его знак – две параллельные линии .

Ознакомьтесь со всеми пояснениями и примечаниями , данными на схеме. При наличии в устройстве электродвигателей или иных электроприемников проведите их анализ. Рассмотрите все цепи данных элементов от одного полюса источника питания к другому. Заметьте в этих цепях расположение резисторов, диодов, конденсаторов и других составляющих схемы. Сделайте вывод о практическом значении каждого элемента схемы и о нарушении работы электроустройства при блокировке или отсутствии какой-либо из частей его цепи.

Уточните расположение защитных приборов: реле максимального тока, предохранителей и автоматических регуляторов, а также элементов коммутации. На принципиальной схеме электроустройства могут быть обозначены надписи, указывающие на зоны защиты каждого из элементов, найдите их и сопоставьте с другими данными цепи.

Основное назначение принципиальной электронной схемы в том, чтобы с достаточной наглядностью и полнотой отразить взаимные связи между отдельными элементами прибора (устройства). Принципиальная схема служит для изучения систем автоматизации, производства электронного оборудования и его правильной эксплуатации. Умение читать подобные схемы позволяет уяснить принцип действия системы и внести в нее при необходимости дополнения, уточнения или изменения.

Инструкция

Начните чтение принципиальной схемы с общего ознакомления с ней и с перечнем элементов, входящих в структуру изделия . Найдите на схеме каждый из элементов, уясните их взаимное расположение. Ознакомьтесь также со всеми пояснениями и примечаниями, которые прилагаются к электронной схеме.

Определите по схеме систему электропитания, обмотки магнитных пускателей, реле и электромагнитов (при их наличии). Отыщите все источники питания и определите род тока по каждому из них, параметры напряжения , фазировку (в цепях переменного тока) и полярность (в цепях постоянного тока). Сопоставьте полученные данные с номинальными данными аппаратуры, указанными в технической документации.

Отыщите по схеме коммутационные элементы и аппараты защиты. К ним относятся предохранители, автоматы, реле максимального тока и так далее. По надписям на принципиальной схеме, примечаниям и таблицам, прилагаемым к схеме, определите зону защиты каждого из этих элементов.

Изучите цепи электроприемников (электрического двигателя, обмоток магнитного пускателя и т.д.). Начните целенаправленный анализ с основного электроприемника, которым обычно является электрический двигатель (при его наличии в изделии). Проследите все цепи этого элемента от одного полюса к другому. Отметьте для себя все контакты, резисторы и диоды, входящие в цепь электроприемника.

Оцените назначение каждого из рассматриваемых элементов. При этом удобно исходить из предположения, что данный элемент (резистор, диод, конденсатор) в схеме отсутствует, задав вопрос: «К каким последствиям приведет удаление из схемы данного элемента?»

Читая электронную схему, всегда исходите из цели, которая перед вами стоит. Обычно изучение принципиальной схемы преследует цель выявления ошибок в монтаже, определения возможных причин отказа устройства, установления элементов, которые могут стать причиной сбоев в системе.

Если вам в руки попались листы с непонятыми чёрточками, ромбиками и другими письменами, которые человеку неосведомлённому напоминают египетские скрижали, готовьтесь — это электрические схемы.

Отметим, что подобные вещи редко попадают в руки к людям неосведомлённым. Для того чтобы научиться читать электрические схемы, мало просто разобраться. Как минимум вам нужно приобрести, или скачать из сети книгу по микросхематехнике. Как вариант можно позвать человека знающего, чтобы он рассказал хотя бы о назначении основных узлов и часто встречающихся обозначений.

Куда легче иметь дело с принципиальными схемами. Однако этот тип схем даёт представление только о принципе работы, а не о конкретном варианте прокладки и местонахождении тех или иных элементов.

Основные элементы распознать можно просто.


  1. Все провода обозначены просто линиями.

  2. Точки соединения обозначают точками .

  3. Небольшие прямоугольники, это резисторы.

  4. Круг с крестиком, это лампочки или светодиоды.

  5. Круг и внутри его ещё один, чаще всего обозначает двигатель.

  6. Ключи, это места где линия провода размыкается и как бы отклоняется в сторону.

  7. Реле изображают прямоугольниками с п-образным рисунком.

В целом электрическая грамота довольно сложна и имеет сложную специфику. Даже, если вы разберётесь во всех элементах и принципах их нанесения на схему, читать электрические схемы будет всё также сложно. Основная задача, не просто понять , что изображено на схеме, а как все эти элементы взаимодействуют между собой. К сожалению, чтение схем привязано не только к микросхематехнике, но и к электрике в целом. Кроме того, каждая схема имеет направленность в зависимости от того схема чего лежит перед вами.

Видео по теме

Когда сдаем анализы и получаем на руки бумажку с результатами, мы все пытаемся понять, что же скрывается за этими цифрами. И нам ничего непонятно. Зато стоит лечащему врачу посмотреть на результат, как ему сразу становится все понятно. И он объявляет: «Вы здоровы» или «Вы больны». Но научиться самостоятельно «читать» анализы несложно.

Инструкция

На выписке рядом с получившимся значением находится значение нормы . Смотрим укладывается ли наш результат в эти рамки. Если укладывается, значит , вы здоровы. Если же у вас в организме идет воспалительный процесс, то будут повышены лейкоциты или показатель скорости оседания эритроцитов (СОЭ). При анемии будет снижен показатель гемоглобина и эритроцитов. Если повышаются тромбоциты — это признак заболеваний крови . А если в организме больше 5% эозонофилов, это значит, что у больного аллергия.

Но может быть так, что результат будет в рамках нормы, но находится либо ближе к первому значению, либо ко второму. И тогда это означает , что чего-то в вашем организме либо по нижней границе нормы слегка не хватает, либо по верхней границе перебор. Именно эти показатели можно корректировать, чтобы не допустить развития заболевания.

Параметры общего анализа мочи могут указывать на урологические заболевания (об этом вам сообщат повышенные лейкоциты в анализе). К таким относятся: пиелонефрит, цистит, нефрит, почечная недостаточность.
Появление глюкозы в анализе говорит о наличии сахарного диабета.

По цвету мочи, если она темного цвета , похожего на густозаваренный чай, можно определить заболевания печени. Ведь именно «лишний» билирубин окрашивает мочу в такой цвет. На мочекаменную болезнь в анализе мочи указывает появившийся кальций . А кровь в моче может говорить о наличии опухоли мочевого пузыря.

Видео по теме

Принципиальная электрическая схема устройства предназначена для полного и наглядного отражения связей между элементами прибора. Ее можно также использовать при изучении автоматизированных систем управления. Без умения разбираться в электрических схемах невозможно уяснить принцип действия того или иного устройства и внести в него требуемые изменения.

Инструкция

Ознакомьтесь со схемой и прилагающимся к ней перечнем элементов, составляющих структуру технической системы. Отыщите на схематичном изображении каждый из компонентов, отметьте для себя их взаимное расположение. Если к схеме прилагаются текстовые пояснения, также изучите их.

Начните изучение схемы и определения системы электропитания. Она включает источник энергии, обмотки магнитных пускателей, реле и электромагнитов, если таковые предусмотрены схемой. По каждому источнику питания определите его вид, род используемого тока, фазировку или полярность (в зависимости от того, используется ли в устройстве переменный или постоянный ток). Проверьте, соответствуют ли парамерты электронных приборов номинальным данным, указанным в техническом описании устройства.

Определите, где расположены элементы коммутации и защитные приборы. Речь идет об реле максимального тока, предохранителях и автоматических регуляторах. Используя надписи на электрической схеме, найдите зоны защиты каждого из таких элементов.

При наличии в устройстве электроприемников, например, электродвигателя, обмоток пускателя и так далее, проведите их анализ . Проследите все цепи указанных элементов от одного полюса источника питания к другому . Отметьте расположение в этих цепях диодов и резисторов.

Каждый из элементов цепи имеет свое предназначение, которое вам надлежит установить. Исходите при этом из предположения, что тот или иной резистор, конденсатор или диод в схеме отсутствует. К каким последствиям это приведет? Такое условное последовательное исключение элементов из схемы поможет вам установить функцию каждого отдельного прибора.

Изучая принципиальную схему , всегда помните о том, какова цель, стоящая перед вами. Чаще всего чтение схемы требуется для уяснения назначения всего устройства, внесения в его работу усовершенствований. Нередко принципиальная схема позволяет выявить ошибки в монтаже и установить возможные причины неисправности электрического прибора вследствие выхода из строя его элементов.

В связи с активным внедрением на предприятиях систем автоматизации широко распространены схемы, включающие электрические приводы. Процесс монтажа и наладки электроустановок требует умения разбираться в принципиальных и монтажных схемах устройств. Для этого необходим навык и определенная практика.

Инструкция

Уясните для себя общие принципы построения цепей, включающих в себя электроустановку. Основу системы составляет какой -либо механизм (станок, двигатель, пускорегулирующая аппаратура и так далее). Для условного изображения элементов системы используют различные виды схем: гидравлические, пневматические , кинематические, электрические и комбинированные. Для лучшего понимания электрической схемы изучите все остальные варианты изображений, прилагаемых к ней.

Новички, которые пытаются самостоятельно собрать какие-то электронные схемы и приборы, сталкиваются с самым первым в своей новой деятельности вопросе, как читать электрические схемы? Вопрос, на самом деле серьезный, ведь прежде, чем собрать схему, ее необходимо как-то обозначить на бумаге. Или найти готовый вариант для воплощения в жизнь. То есть, чтение электрических схем – основная задача любого радиолюбителя или электрика.

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО.

Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента. Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.


И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает). Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.


Заключение по теме

Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.

Похожие записи:

«Как читать электрические схемы?». Пожалуй, это самый часто задаваемый вопрос в рунете. Если для того, чтобы научиться читать и писать, мы изучали азбуку, то здесь почти то же самое. Чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш ГОСТ-вариант обозначения радиоэлементов.

Ладно, ближе к делу. Давайте рассмотрим простенькую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Итак, вроде бы определились с задачей этой схемы. Прямые линии — это проводочки, по которым будет бежать электрический ток . Их задача — соединять радиоэлементы.

Точка, где соединяются три и более проводочков, называется узлом . Можно сказать, в этом месте проводочки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводочков

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте проводочки не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R — это значит резистор . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер «2». В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 КилоОм. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды — это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А — это различные устройства (например, усилители)

В — преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

С — конденсаторы

D — схемы интегральные и различные модули

E — разные элементы, которые не попадают ни в одну группу

F — разрядники, предохранители, защитные устройства

H — устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

U — преобразователи электрических величин в электрические, устройства связи

V — полупроводниковые приборы

W — линии и элементы сверхвысокой частоты, антенны

X — контактные соединения

Y — механические устройства с электромагнитным приводом

Z — оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD — детектор ионизирующих излучений

BE — сельсин-приемник

BL — фотоэлемент

BQ — пьезоэлемент

BR — датчик частоты вращения

BS — звукосниматель

BV — датчик скорости

BA — громкоговоритель

BB — магнитострикционный элемент

BK — тепловой датчик

BM — микрофон

BP — датчик давления

BC — сельсин датчик

DA — схема интегральная аналоговая

DD — схема интегральная цифровая, логический элемент

DS — устройство хранения информации

DT — устройство задержки

EL — лампа осветительная

EK — нагревательный элемент

FA — элемент защиты по току мгновенного действия

FP — элемент защиты по току инерционнго действия

FU — плавкий предохранитель

FV — элемент защиты по напряжению

GB — батарея

HG — символьный индикатор

HL — прибор световой сигнализации

HA — прибор звуковой сигнализации

KV — реле напряжения

KA — реле токовое

KK — реле электротепловое

KM — магнитный пускатель

KT — реле времени

PC — счетчик импульсов

PF — частотомер

PI — счетчик активной энергии

PR — омметр

PS — регистрирующий прибор

PV — вольтметр

PW — ваттметр

PA — амперметр

PK — счетчик реактивной энергии

PT — часы

QF

QS — разъединитель

RK — терморезистор

RP — потенциометр

RS — шунт измерительный

RU — варистор

SA — выключатель или переключатель

SB — выключатель кнопочный

SF — выключатель автоматический

SK — выключатели, срабатывающие от температуры

SL — выключатели, срабатывающие от уровня

SP — выключатели, срабатывающие от давления

SQ — выключатели, срабатывающие от положения

SR — выключатели, срабатывающие от частоты вращения

TV — трансформатор напряжения

TA — трансформатор тока

UB — модулятор

UI — дискриминатор

UR — демодулятор

UZ — преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD — диод , стабилитрон

VL — прибор электровакуумный

VS — тиристор

VT — транзистор

WA — антенна

WT — фазовращатель

WU — аттенюатор

XA — токосъемник, скользящий контакт

XP — штырь

XS — гнездо

XT — разборное соединение

XW — высокочастотный соединитель

YA — электромагнит

YB — тормоз с электромагнитным приводом

YC — муфта с электромагнитным приводом

YH — электромагнитная плита

ZQ — кварцевый фильтр

Ну а теперь самое интересное: графическое обозначение радиоэлементов.

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы постоянные

а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

Тензорезисторы

Варистор

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности

а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации

а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с различными группами коммутационных контактов (коммутационные контакты могут быть разнесены в схеме от катушки реле)

Предохранители

а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры

Биполярный транзистор

Однопереходный транзистор

Полевой транзистор с управляющим P-N переходом

Какое значение имеет принципиальная схема? — Mvorganizing.org

Какое значение имеет принципиальная схема?

Схематические диаграммы используются для описания высокого уровня функционирования системы или процесса. Они упрощают и облегчают общение, визуализируя отношения между объектами системы и делая их более очевидными. Если вы разрабатываете систему или пытаетесь понять ее, ее диаграмма, безусловно, поможет.

Для чего нужна схема?

Основная цель принципиальной схемы — выделить элементы схемы и то, как их функции соотносятся друг с другом.Схемы — это чрезвычайно ценный инструмент для поиска и устранения неисправностей, который определяет, какие компоненты включены последовательно или параллельно, и как они соединяются друг с другом.

Какова цель викторины по схематическим диаграммам?

Принципиальная схема показывает электрическую взаимосвязь между компонентами в цепи, в то время как электрическая схема показывает, как компоненты фактически подключены. Основная функция схемы подключения — показать.

Почему электронные схемы важны?

1: Электрические схемы необходимы для быстрого поиска неисправностей.Заводы все больше полагаются на автоматизацию, в то время как хороших электриков, готовых выполнять техническое обслуживание, становится очень мало. Противоположные тенденции должны заставить каждую отрасль безотлагательно уделять внимание вопросам обучения и повышения квалификации.

Какова основная функция диаграмм в электронике?

Чертеж, предназначенный для изображения физического расположения проводов и компонентов, которые они соединяют, называется «иллюстрацией», «компоновкой» или «физическим дизайном». Принципиальные схемы используются для проектирования (схемотехническое проектирование), строительства (например, разводки печатных плат) и обслуживания электрического и электронного оборудования.

Что представляет собой электрическая схема, поясняемая схемой?

Электрическая цепь — это путь или линия, по которой протекает электрический ток. Путь можно замкнуть (соединить с обоих концов), образуя петлю. Это также может быть разомкнутая цепь, в которой поток электронов прерывается из-за разрыва пути. Обрыв цепи не позволяет протекать электрическому току.

Что такое простое определение электрической схемы?

Электрическая цепь, путь для передачи электрического тока.Электрическая цепь включает в себя устройство, которое передает энергию заряженным частицам, составляющим ток, например аккумулятор или генератор; устройства, использующие ток, такие как лампы, электродвигатели или компьютеры; и соединительные провода или линии передачи.

Что такое схема?

Цепь — это замкнутый контур, в котором могут перемещаться электроны. Источник электричества, такой как батарея, обеспечивает электрическую энергию в цепи. Пока цепь не замкнута, то есть не совершает полный круг обратно к источнику электричества, никакие электроны не будут двигаться.

Какие 3 компонента схемы?

Каждая цепь состоит из трех основных компонентов:

    ,
  • — токопроводящий «путь», такой как провод или отпечатки на печатной плате;
  • «источник» электроэнергии, такой как аккумулятор или бытовая розетка, и
  • «нагрузка», для работы которой требуется электроэнергия, например лампа.

Какие 4 части цепи?

Каждая электрическая цепь, независимо от того, где она находится или насколько она велика или мала, состоит из четырех основных частей: источника энергии (переменного или постоянного тока), проводника (провода), электрической нагрузки (устройства) и, по крайней мере, одного контроллера. (выключатель).Визуализируйте, что происходит, когда вы включаете свет в комнате.

Какие два основных типа цепей?

Мы можем изготовить цепи двух типов: последовательные и параллельные. Компоненты в цепи соединяются проводами. Если ответвлений нет, то это последовательная цепь. Если есть ответвления, это параллельная цепь.

Какие 5 компонентов электричества?

Ниже вы найдете информацию о наиболее распространенных электрических компонентах:

  • Резисторы.Самый первый компонент, о котором вы должны знать, — это резистор.
  • Конденсаторы.
  • Светоизлучающий диод (LED)
  • Транзисторы.
  • Катушки индуктивности.
  • Интегральная схема (ИС)

Каков основной принцип электричества?

Ток прямо пропорционален напряжению, обратно пропорционален сопротивлению. Одним из наиболее распространенных электрических измерений, которые вы будете использовать, является ватт, единица электрической мощности: Вт (Вт) = E (Вольт) x I (Амперы).Количество электрического заряда измеряется в кулонах.

Из каких частей состоит электрическая система?

Введение. Электрические системы, также называемые цепями или сетями, спроектированы как комбинации трех основных компонентов: резистора, конденсатора и катушки индуктивности. Они соответственно определяются сопротивлением, емкостью и индуктивностью, которые обычно считаются свойствами с сосредоточенными параметрами.

Как получить знания в области электротехники?

Выберите несколько приятелей и сформируйте группу диалога, затем выберите тему для обсуждения, это может помочь вам развеять ваши сомнения по поводу этой темы.Сосредоточьтесь на своих основных темах, таких как теория машин, силовая система, манипулирование системой. Потому что вам приходится иметь дело с этими темами в своей экспертной карьере.

Что такое электрические навыки?

Список навыков в области электротехники

  • Схемотехника.
  • Применить теорию и анализ линейных систем.
  • Разработать электрические схемы.
  • Сбор и анализ данных.
  • Создание и эксплуатация компьютерных систем.
  • Подготовить оперативные планы.
  • Обслуживание электронного оборудования.
  • Непосредственные строительные работы и ремонт оборудования.

Каковы основные вопросы собеседования для инженера-электрика?

20 Вопросы и ответы на собеседовании по электротехнике

  • Что происходит, когда два положительно заряженных материала помещаются вместе?
  • Что относится к электрону на внешней орбите?
  • Определите термины «Емкость» и «Индуктивность»?
  • Укажите, в чем разница между генератором и генератором переменного тока?
  • Укажите, какие кабели используются для передачи данных?

Нужно ли инженерам-электрикам знать программирование?

Чтобы ответить на ваш вопрос, это зависит от типа EE, но для большинства рабочих мест EE требуется знание как минимум 1/2 языков.Нет. Вы не увидите блестящего гламурного мира программного обеспечения, но есть множество работ без кода EE.

Полезен ли Python для инженеров-электриков?

При разработке оборудования и написании тестовой прошивки вы также можете использовать Python для настройки тестового сервера с REST API для подключения. Как профессиональный инженер-электрик, вы, вероятно, в какой-то момент будете вовлечены в производство, и возможность автоматизировать испытания для производства чрезвычайно полезна.

Какой язык программирования наиболее полезен для инженеров-электриков?

C / C ++

Хорошо ли платят инженерам-электрикам?

По данным BLS, средняя годовая заработная плата инженера-электрика по стране составляет 101 600 долларов, что примерно вдвое превышает среднюю годовую зарплату для всех профессий — 51 960 долларов.В самом высокооплачиваемом штате средняя зарплата инженера-электрика всего на 8000 долларов выше, чем в среднем по США.

Как я могу стать успешным инженером-электриком?

«У самых успешных инженеров-электриков есть три основные черты…»

  1. Долгосрочная приверженность своему делу. Все успешные инженеры разделяют черту долгосрочной приверженности своей карьере.
  2. Постоянный поиск возможностей для быстрого роста.
  3. Технологическое видение следующего десятилетия.

Какая работа лучше всего для инженера-электрика?

Вот список пяти лучших профессий, которые вы могли бы сделать после получения диплома в области электротехники, а также тип работы и описание должности.

  • Главный инженер-электрик.
  • Проектировщик распределения электроэнергии.
  • Инженер-электрик в аэрокосмической отрасли.
  • Инженер-электрик.
  • Инженер по управлению электрооборудованием.

Какая работа лучше всего подходит для студентов EEE?

Параметры работы

  • Консультант по акустике.
  • Аэрокосмический инженер.
  • Радиотехник.
  • Техник по САПР.
  • Инженер КИПиА.
  • Инженер-конструктор.
  • Инженер-электрик.
  • Инженер-электронщик.

Каковы возможности трудоустройства инженеров-электриков?

Возможности трудоустройства для инженера-электрика

  • Инженерные услуги.
  • Электроэнергетические установки.
  • Индийские железные дороги.
  • Аэрокосмическая промышленность.
  • Автомобильная промышленность.
  • Управление аэропортов Индии.
  • Организации по передаче и распределению электроэнергии.
  • Государственное управление электромонтажных работ.

Какие государственные экзамены для инженеров-электриков?

  • ВОРОТА. Экзамен Graduate Aptitude Test in Engineering (GATE) является одним из самых конкурентоспособных экзаменов в Индии.
  • Экзамен по RBI Grade B.
  • БП.
  • RRB.
  • SSC JE.
  • UPSC (IES)
  • ISRO / BARC.
  • Частный сектор.

Какой государственный экзамен лучше?

Институт отбора банковского персонала проводит этот экзамен для приема на работу кандидатов на должность испытателя в различных банках частного и государственного сектора…. 10 лучших государственных экзаменов в Индии

  • Индийская административная служба (IAS)
  • Дипломатическая служба Индии (IFS)
  • Полицейская служба Индии (IPS)
Схемы

— обзор

3.4.2.2 Установка системы обработки

Принципиальная схема системы FIB показана на рис. 3.4.9, в которой использовались две линзы, т.е. верхняя и нижняя линзы. После первого уточнения ионного пучка через распылительную апертуру ионный пучок далее фокусируется в первой электростатической линзе. Следовательно, верхняя линза, известная как конденсатор, коллимирует расходящиеся ионные пучки от источника в параллельные пучки. Затем сфокусированные ионные пучки проходят через масс-сепаратор. Он позволяет пропускать только необходимое количество ионов с фиксированным отношением массы к заряду.Первый октополь регулирует стигматизм луча. Ниже находится длинная и тонкая дрейфовая трубка. Функция дрейфовой трубки заключается в удалении ионов, не направленных вертикально. Ток пучка можно изменять в пределах от 1,5 нА до 1 пА, используя механизм переменной апертуры. Для чернового фрезерования и получения изображений с высоким разрешением тяжелый и тонкий пучок можно формировать с различным диапазоном тока пучка. Заглушением дефлектора и проема достигается гашение луча. Второй октополь используется для сканирования луча по заготовке по заранее спланированной схеме.Ниже расположена нижняя линза с коротким фокусным расстоянием. Эта нижняя линза известна как линза объектива, которая помогает улучшить фокусировку, чтобы уменьшить конечный размер пятна ионного луча до размера нм на рабочем расстоянии. Рабочее расстояние — это зазор между нижней линзой и поверхностью заготовки, то есть подложкой. Электростатический отражатель луча расположен под линзой объектива, который контролирует конечные точки приземления ионов на заготовку. Многоканальная пластина (MCP) также размещается над целевой заготовкой для наблюдения за состоянием рабочей поверхности путем приема и регистрации вторичной электронной эмиссии во время обработки.

Рис. 3.4.9. Принципиальная схема настройки системы FIB.

Сопло, показанное на рис. 3.4.9, используется для подачи газа к месту посадки для индуцированного FIB осаждения на поверхности образца, как обсуждалось ранее. Следовательно, для некоторых конкретных применений удаление металла путем напыления и осаждения также может происходить одновременно. Установка FIB помещается в камеру из нержавеющей стали, где поддерживается низкое давление 10 — 7 Торр. Вакуумная среда увеличит длину свободного пробега ионов, а сила ионного пучка не уменьшится из-за взаимодействия с молекулами газа и другими частицами в камере.

Рабочая подложка установлена ​​на станке с ЧПУ в нижней части камеры обработки. Сцена движется в направлениях X, Y и Z, а также может вращаться в плоскости X-Y и наклоняться в плоскости X-Z с помощью различных двигателей. Таким образом, сложная форма может быть обработана на подложке с использованием комбинированных движений различных осей с подходящими угловыми движениями, которые обеспечивают достаточную степень свободы. С помощью передовых технологий компьютерного управления и графики становится возможным формировать материалы для изготовления сложных трехмерных структур с высоким разрешением.

Все операции, например, загрузка и выгрузка заготовки, перемещение столика, управление подачей газа, управление системой вакуумирования и манипулирование конфигурациями ионного пучка, выполняются с помощью сложного программного обеспечения, для которого основное Фрейм-компьютер сопряжен с системой FIB.

Этот тип системы FIB с двумя линзами обычно дает энергию ионов в диапазоне от 50 до 250 кэВ. Следует отметить, что распределение энергии внутри пятна сильно неравномерно; обычно его интенсивность близка к гауссовскому профилю.Таким образом, вырабатываемая энергия имеет минимальную полную ширину на половине максимального диаметра (FWHM) пучка вплоть до 50 нм и может использоваться как для распыления, так и для имплантации [15, 16]. FWHM — это расстояние между точками на профиле интенсивности, при котором интенсивность достигает половины своего максимального значения.

Также используется система FIB с одной линзой, которая обеспечивает получение ионов относительно низкой энергии в диапазоне от 10 до 50 кэВ. В данном случае источником ионов является LMIS, откуда ионы извлекаются и проходят через устройство ограничения пучка к электростатической линзе.Система FIB с одной линзой не имеет объектива или нижней линзы. Однако для управления конечным размером луча он использует апертуру ограничения луча, которая расположена между электродом вывода и электростатической линзой, и она может регулировать диаметр от 10 до 100 мкм. Электростатическая линза используется для фокусировки, а также для уменьшения ионного пучка до размеров, намного меньших диаметра апертуры. Он также имеет отражатель луча, расположенный над заготовкой. В этой низкоэнергетической системе IBM обычно используются частицы тяжелых ионов, такие как ионы галлия, для повышения эффективности распыления.

Однолинзовая система IBM с надлежащим контролем тока и размера луча может использоваться для изготовления высокоточной микроструктуры с размером элемента до 10 нм. Система IBM с одной линзой обычно используется для проведения исследований в области микропроизводства, что обеспечивает производство в небольших количествах. Система с двумя линзами может работать с различными ионами и обеспечивает высокую производительность. Однако это намного дороже по сравнению с системой IBM с одной линзой. Двухлинзовая система IBM применяется в промышленности как для обработки, так и для имплантации.

Электронные схемы — что вам нужно знать

Электронные схемы подобны рецептам для электроники. Они говорят вам, какие ингредиенты использовать и как их смешивать. Но вместо текста для объяснения рецепта используется рисунок.

Их еще называют принципиальными схемами. Прочтите, как читать схемы здесь.

Для чего вы их используете?

Их используют почти так же, как рецепты еды. Это способ объяснить, как достичь определенного результата.Поэтому, когда вы хотите построить что-то с электроникой, вы найдете схематическую диаграмму или создадите ее для того, что хотите построить.

Когда у вас есть электронные схемы того, что вы хотите построить, остальное — это просто следование рецепту.

Как они работают?

Принципиальная схема показывает, какие компоненты используются и как они связаны.

Они состоят из электронных символов, которые представляют каждый из используемых компонентов. Символы соединены линиями, показывающими, как соединять компоненты.

Как они помогают мне создавать электронные схемы?

Когда у вас есть схемы, вам не нужно знать какую-либо теорию электроники. (Но немного базовой электроники может быть очень полезным)

Все, что вам нужно сделать, это изучить несколько практических навыков, таких как проектирование печатной платы, где сделать плату и как паять.

Хотите начать разработку собственных печатных плат? Ознакомьтесь с моим руководством по KiCad: создайте свою первую печатную плату

Как найти электронные схемы?

Когда я только начинал заниматься электроникой, я вообще не знал никакой теории электроники.Я начал с некоторых простых схем, которые мой отец нарисовал для меня на листе бумаги, содержащих реле и конденсаторы, чтобы заставить свет мигать.

Я соединил компоненты, используя провода и старую бывшую в употреблении печатную плату, в которой просверлил отверстия. Я был в экстазе, когда заставил ее работать! И я подсел. Мне нужно было больше схем.

Я начал искать в Интернете и обнаружил, что вы можете найти схемы для всех видов цепей. Когда я понял это, я словно нашел секретное сокровище! Теперь я располагал информацией о том, как создавать электронные схемы для всех типов устройств.

Так что, если вы хотите найти электронные схемы для проекта, просто погуглите. Я почти уверен, что вы найдете большинство из того, что ищете.

Вот несколько страниц с бесплатными электронными схемами, которые мне нравятся.

Создавайте собственные схемы соединений

Многие люди спрашивают меня: «Как мне взять идею, которая у меня в голове, и превратить ее в схему?». Поэтому я написал статью о том, как создать собственную схему с нуля.

Но я бы также порекомендовал вам проверить Создание принципиальных схем для обзора процесса.

Или начните читать о делителе напряжения, законе Ома, теореме Тевенина или законах Кирхгофа.

Цифровая электроника:

Дополнительная литература

Когда вы нашли или создали схемы для своего проекта, вы готовы к следующему шагу:

различных применений пластин принципиальных схем

Схематические диаграммы — это визуальные представления различных частей системы. Они предоставляют фактическое расположение деталей, их точное расположение и то, как все работает.Вместо использования реалистичных изображений используются символы, чтобы показать различные части и их связи. Чтобы эффективно передать детали этих систем, они могут быть необходимы сотруднику или потребителю, и схематические диаграммы стали необходимыми. Это идеальный способ показать детали систем, которые помогут в эксплуатации и обслуживании оборудования и даже в планировании ремонта.

Сегодня компании знают, насколько ценны эти пластины и что они принесут большую пользу не только своим клиентам, но и им самим.Они часто прикрепляют эти пластины к важному оборудованию или деталям различных продуктов. Они намерены показать подробные принципиальные схемы, которые важны для любой системы электропроводки. Это информативные данные, которые помогут любому, кто их рассматривает, проактивный подход, позволяющий избежать ошибок в работе и несчастных случаев.

Принципиальные схемы

не ограничиваются принципиальной схемой, на самом деле существуют различные приложения. Вот несколько примеров:

Гражданское строительство — Принципиальные схемы в гражданском строительстве используются для передачи инженерных и архитектурных проектов строительного проекта.К ним относятся планы площадки, схемы зданий и журналы скважин. Они используют символы для обозначения границ собственности, местоположения инженерных сетей, строительных материалов и проездов и многих других.

Химическая инженерия — В отличие от других приложений, которые сосредоточены на продуктах, схематические диаграммы химической инженерии связаны с процессами. Некоторыми примерами являются схемы технологического процесса (PFD), схемы трубопроводов и КИП (P & ID) и компоновки завода. Они используют эти диаграммы для построения визуального представления химического процесса, показывая детали используемых химикатов, химического оборудования и оборудования.

Автомобильная промышленность — Эти схемы используются для понимания автомобильной проводки, которая приведет к более быстрому обнаружению неисправностей, а также поможет в решении сложных проблем автомобиля. Обычно они находятся рядом с двигателем или под капотом. Они также могут показать вам, какие предохранители подключены к различным электронным частям автомобиля.

Транспорт — Еще одно важное применение схематических диаграмм — это карта общественного транспорта.На нем показан маршрут некоторых видов транспорта, например скоростного транспорта, трамваев и поездов. Его основная функция — помогать пассажирам, особенно тем, кто не знаком с маршрутами или транспортной системой. Общие символы, которые можно увидеть на схемах железных дорог, относятся к линиям, станциям и пересадочным пунктам. Эти таблички можно найти в местах, видимых пассажирам, например, на стенах станций или рядом с панелями управления поездов или трамваев.

Схема

— Испанский перевод — Linguee

Приложение 2 contai ns a принципиальная схема i n t его внимание.

daccess-ods.un.org

En el anexo 2 se

[…] puede c на sulta r u n diagrama esquemtico al r espe ct o.

daccess-ods.un.org

На следующем рисунке — это a принципиальная схема o f t Соединения, которые можно получить на разъеме X400.

comau.it

En la siguiente figura s e esquematizan l as conexiones que se pueden realizar en el conector X400.

comau.it

На основании этих выводов Министерство

[…]

Environment сформулировало краткое проектное предложение по экологически безопасным отходам

[…] управление, включая ng a принципиальная схема .

daccess-ods.un.org

En funcin de esas results, el Ministerio de Medio Ambiente formul una

[…]

breve propuesta de proyecto para la gestin ecolgicamente racional de los

[…] Остатки, к e inc lu a un diagrama esquemtico .

daccess-ods.un.org

Принципиальная схема o f s парковые дорожки.

beru.com

Rep re sent aci n esquemtica d e la s vas de c hi spa.

beru.com

Принципиальная схема o f t Различные стадии процесса […]

гальваническое цинкование.

surface.metrohm.com

Rep re senta ci n esquemtica d e l as di st intas […]

etapas del procso de galvanizado.

surface.metrohm.com

Во время нормальной работы рукоятка должна располагаться над одной камерой / стороной

[…] фильтр (s e e принципиальная схема o n t he back page).

johnson-pump.com

Mientras el filterro est trabajando la maneta de la vlvula ha

[…]

de estar posicionada por encima de una de las cmaras / uno de los lados

[…] del filter ro (ver el esquema de la l ti ma pgina).

johnson-pump.com

T h i s принципиальная схема s h ow s соотношение […]

между цветом звезды и температурой ее поверхности.

astroex.org

E s te диаграмма esquemtico mu est ra la r elacin […]

entre el color de una estrella y su temperatura superficial.

astroex.org

Рис . 4 : Принципиальная схема : h или горизонтальная установка

gd-elmorietschle.com

F иг. 4 : Diagrama esquemtico : i nst alaci n горизонтальный

gd-elmorietschle.com

Данные в памяти данных или y , схематическая диаграмма

dtco.vdo.com

Данные на мне moria основной del tacgrafo, представитель cin esquemtica

dtco.vdo.es

Всегда требуется опция C4G-RPSK (для C4G-RCCx PW) или C4G-ABSK (для C4G-ABPW), к которой могут быть подключены другие опции,

[…]

выбран по установке

[…] требования (s e e Принципиальная схема o f s olution с […]

цепей управления, управляемых блоком управления C4G).

комау.это

Запросить набор опций C4G-RPSK (para C4G-RCCx PW) или C4G-ABSK (para C4G-ABPW) в соответствии с выбранными комбинированными опциями, очередью сена

[…]

escoger de acuerdo con la exigencia de la

[…] instalacin (v ase Esquema de p ri ncipio de la […]

раствора для управления грузом Unidad de Control C4G).

comau.it

Принципиальная схема o f a фиксированный железобетон […] Платформа

в Северном море.

munichre.com

Repr es enta cin esquemtica de u na plataforma […]

из Hormign Armado fija instalada en el Mar del Norte.

munichre.com

Принципиальная схема .

sommer-torantriebe.at

Диаграмма и Аламбрадо .

sommer-torantriebe.at

Евангелизационная миссио n: a схематическая диаграмма .

lasalle.org

L a misi n de la evan ge lizaci n : una ilustracin esquemtica .

lasalle.org

Принципиальная схема o f t Зоны разъемов […]

из двух сплавов с различным пределом текучести 0,2% в МПа в зависимости от жевательной нагрузки в N.

ivoclarvivadent.com

Diagrama esquemtico de l as reas d e los […]

conectores de dos aleaciones con differentes lmites de elasticidad de 0,2% в МПа,

[…]

зависит от мастикатора карги на №

ivoclarvivadent.co

Принципиальная схема o f t he Зерно пшеницы

mostproject.org

Diagrama Esquemtico de l G run o de Tr igo

mostproject.org

РИСУНОК 7 .2 b : Принципиальная схема t o s как установить колышки […]

и стромальные капилляры, которые на виде с торца выглядят как точки

screening.iarc.пт

[…]

y los capilares estrmicos que, vistos desde arriba, parecen punteados.

screening.iarc.fr

Принципиальная схема o f t Процесс дыхания […]

— вид сбоку

Sennheiser.com

Diagrama esquemtico del pr oceso d e респирацин […]

— вид сбоку

sennheiser.com

T h e принципиальная схема o n t he противоположная страница […]

можно использовать для грубого расчета практической производительности фрезерования, чтобы получить

[…] Ожидается

для разных приложений.

wirtgen.de

E l siguie nte esquema le ayu dar a realizar […]

un clculo aproximado del rendimiento de fresado que se ha de esperar en la prctica.

wirtgen.de

Группа контрольных точек (TP, см.

[…]

Рисунок 6-19) предусмотрены на контроллере для поиска неисправностей

[…] электрические цепи (s e e принципиальная схема , s ec ция 7).

container.carrier.com

El controlador inclusive un grupo de puntos de prueba

[…]

(TP, vea Figura 6-19), для решения проблемы Fallas de los circuitos

[…] elc tr icos (ve a e l diagrama esquemtico, s ecc in 7 ) .

container.carrier.com

Рисунок 16 sho ws a принципиальная схема o f P N поколение для […]

пакетный сигнал.

itu.int

La Рис. 16 m uestr a u n diagrama esquemtico de l a ge ne racin […]

-дель-ПН для печати в rfaga.

itu.int

Принципиальная схема o f h поток пятиокиси фосфора […]

метод работает

sartorius-mechatronics.com

Схема l pri ncipi o de trabajo […]

del mtodo del pentxido de fsforo

sartorius-mechatronics.com

Принципиальная схема m a y поможет в визуализации […]

, как использовать PIC на практике.

iisd.org

U n diagrama esquemtico pu ede ser t il al […]

visualizar cmo opera el CIP en la prctica.

iisd.org

Рисунок 26

[…] ниже giv es a принципиальная схема o f t he ссылки […]

между основными «макроэкономическими ценами» и различными компонентами продовольственной системы.

daccess-ods.un.org

E n el grfico ante rior s e esquematizan los vnculos […]

Entre los Principales «Precios macroeconmicos» и los components del sistema alimentario.

daccess-ods.un.org

6.4.2 Описание типа / дизайна исследования, которое будет проводиться

[…]

(например, двойной слепой, плацебо-контролируемый,

[…] параллельное исполнение) a nd a принципиальная схема o f t rial design, процедуры […]

и этапы.

eassertiva.com.br

6.4.2 Una descripcin del tipoiso de estudio que se va a conducir (por ejemplo,

[…]

двухместный номер ciego, контроль над

[…] плацебо, па ра лело ) у ун диаграмма esquemtico де л д iseo , процедур […]

у этапас де эстудио.

eassertiva.com.br

Принципиальная схема s h ow В онлайн-приложении […]

с фиксированными форсунками

tib-chemicals.com

Rep re senta ci n esquemtica d e u n rec ub rimiento […]

en lnea con toberas montadas fijas

tib-chemicals.com

Принцип работы рециркуляционной установки Аналогично установкам приточного и возвратного воздуха, отработанный воздух всасывается под подоконник и также подается.

[…]

через фильтр класса G 4 для защиты последующего блока рекуперации тепла и вентилятора от

[…] загрязнение (s e e принципиальная схема 2 ) .

trox.es

El aire de retorno es aspirado al igual que en las unidades de impulsin y retorno, de debajo

[…]

del alfizar de la ventana y pasa a travs de un filter clase G4, para proteger de

[…] Suciedad al v en tilad или (ve r esquema 2 ) .

trox.es

Эннеаграмма — это a принципиальная схема o f p erpetual motion, […]

, то есть машины вечного движения.

giurfa.com

El ene ag rama es un diagram esquemtico d el movim ie nto perpetuo, […]

es decir de una mquina de movimiento eterno.

giurfa.com

Это руководство содержит ns a принципиальная схема o f a 12zone Main Frame.

polimold.com.br

Este manual c ontie ne un diagram esquemtico de un gabinete de […]

12 зон (стр. 9).

polimold.com.br

Что такое принципиальная схема? (с рисунком)

Принципиальная схема — это упрощенное представление системы. Такие схемы часто не масштабируются и используют символы, а не реалистичные изображения. Их цель — объяснить, как устроена система и как она работает.

Есть много примеров схематических диаграмм, которые встречаются ежедневно.Чаще всего схематическая диаграмма встречается в крупных городах как карта метро. Во всем мире владельцы автомобилей и мотоциклов используют инструкции по эксплуатации, в значительной степени зависящие от таких схем, для ремонта своих транспортных средств. Схемы также используются для иллюстрации химических процессов, проводки, водопровода и электронных схем.

Принципиальные схемы

работают, потому что они предоставляют лаконичную иллюстрацию того, как работает система.Использование пробелов подчеркивает организацию системы, а не тратит пространство ненужной информацией. Обычно они нереалистичны, потому что взаимосвязи компонентов легче понять. Хорошая схематическая диаграмма разметит элементы, содержащиеся внутри, таким образом сохраняя функции и соединения отдельно друг от друга. Он также использует точные значения и количества, которые, если они необходимы, отмечены на диаграмме; из-за использования символов на схеме они часто сопровождаются ключом.

Есть и другие правила для принципиальной схемы. Взяв, например, схему электронных схем, есть соглашения, которым обычно следуют.Многие диаграммы различных схем будут включать в себя заданную систему символов. Сохраняя единообразие символов, пользователи получат больше знаний о схемах.

В принципиальной схеме провода иногда соединяются друг с другом, а иногда перекрываются.Для того, чтобы различать их, используется круглая черная точка, обозначающая соединение. Если два провода пересекаются на схеме и точки нет, то можно с уверенностью предположить, что они не соединяются.

Кроме того, если между компонентом и соединением имеется короткий провод, масштаб вывода будет преувеличен.Это дает мозгу дополнительное пространство для интерпретации. Благодаря этому разделение компонента и соединения становится более четким.

Для облегчения понимания и устранения неполадок символы, используемые на схематической диаграмме, обычно бывают горизонтальными или вертикальными.Использование последовательного угла наклона добавляет чувство порядка к диаграмме, что также помогает мозгу интерпретировать систему. Это не абсолютный закон схематики; Если в схеме действительно нужны всевозможные углы, их все равно следует использовать.

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.ПРОДУКТЫ}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *