Принципы построения электрических схем: Принципы построения схем и условные обозначения

Содержание

Принципы построения схем и условные обозначения

Категория:

   Электрооборудование строительных машин

Публикация:

   Принципы построения схем и условные обозначения

Читать далее:



Принципы построения схем и условные обозначения

В электрических схемах различают цепи главного тока и вспомогательные. К первым относятся силовые цепи двигателей, сварочных трансформаторов и других электроприемников. Они вычерчиваются утолщенными линиями.

К вспомогательным цепям относятся цепи управления, защиты, блокировки и сигнализации. Они обычно изображаются тонкими линиями. Все коммутирующие устройства (выключатели, контакты и блок-контакты контакторов и др.) на схемах изображаются, как правило, в отключенном положении, т. е. при отсутствии тока во всех цепях схемы и внешних принудительных сил, воздействующих на подвижные контакты. В соответствии с этим все участвующие в схеме контакты подразделяются на замыкающие (з. к.), размыкающие (р. к.) и переключающие (п.к.).

При составлении схемы или ознакомлении с ее работой необходимо иметь в виду, что при обтекании током обмотки (включении в сеть) какого-либо аппарата или реле все управляемые ими контакты изменяют свое положение.

Рекламные предложения на основе ваших интересов:

Контакты реле, выключателей, кнопок рекомендуется изображать исходя из условий, что сила, действующая на подвижной контакт, для срабатывания должна иметь направления (на схеме) сверху вниз при горизонтальном изображении цепей схемы и слева направо при вертикальном изображении цепей схемы. В схемах управления всем элементам одного аппарата присваивают один и тот же номер и одинаковые буквенные обозначения. Так, например, катушка линейного контактора, его силовые и блокировочные контакты должны быть обозначены одной и той же буквой Л.

.Изучая работу электрической схемы, необходимо проследить за прохождением тока в отдельных цепях начиная от одного полюса источника тока через ряд элементов схемы до другого полюса. Для облегчения ознакомления с работой схемы они изображаются определенным образом: обычно между двумя параллельными линиями различной полярности (расположенными вертикально) наносятся все последовательно обтекаемые током элементы отдельных цепей (располагаемые горизонтально).

Рекламные предложения:


Читать далее: Принципы автоматического управления

Категория: — Электрооборудование строительных машин

Главная → Справочник → Статьи → Форум


Виды схем, принципы их построения

Электрическая схема — это чертеж, на котором упрощенно и наглядно изображены связи между отдельными элементами электрической цепи, выполненный с применением условных графических обозначений и позволяющий понять принцип действия устройств. В отличие от машиностроительных и строительных чертежей электрические схемы выполняют без соблюдения масштаба.

В зависимости от назначения электрические схемы разделяют на монтажные, принципиальные и некоторые другие. Далее будут рассмотрены в основном принципиальные схемы.

Монтажные схемы — это рабочие чертежи, по которым выполняют монтаж. Оборудование электроподвижного состава обычно комплектуют на отдельных панелях, в отдельных блоках, ящиках. Каждое такое устройство имеет свою схему — рабочий чертеж. На монтажных схемах оборудование показывают так, как оно расположено в действительности на вагонах с полной маркировкой.

На принципиальной электрической схеме условными графическими обозначениями показывают только основные элементы оборудования — тяговые двигатели, пускотормозные реостаты, контак торы и др. Эти схемы составляют так, чтобы можно было получить ясное представление о том, по каким электрическим цепям и через какие элементы оборудования проходит электрический ток от источника к потребителю. Поэтому на таких схемах не показывают второстепенные элементы (переходные зажимы, промежуточные провода и пр.), которые могут затруднить понимание схемы и сделать ее ненаглядной.

Для того чтобы принципиальная схема была более простой и наглядной, оборудование, аппараты и приборы располагают на ней в том порядке, в каком они электрически соединены, без учета действительного размещения их на вагоне и механической связи друг с другом. Поэтому, например, контакты одного аппарата могут располагаться на схеме в различных местах. Все соединительные провода изображают по возможности прямыми линия ми кратчайшей длины.

Различают следующие принципиальные электрические схемы Вагона:

силовых цепей, включающих в себя тяговые двигатели и аппараты переключения режимов их работы, через которые проходит Тот же ток, что и через тяговые двигатели;

цепей управления, включающих в себя устройства и аппараты, Которыми осуществляют включения и переключения силовых аппа ратов, а также лампы сигнализации о состоянии силовой цепи ц положении аппаратов;

вспомогательных цепей, в которые включены аккумуляторная батарея, мотор-компрессор, лампы освещения, сигнальные фары печи отопления, аппараты управления раздвижными дверями ц другие вспомогательные аппараты.

Ясному представлению о работе подвижного состава, умелой его эксплуатации, быстрому устранению неисправностей во многом способствует умение разбираться в электрических схемах или, как говорят, читать их. Прочитать электрическую схему вагона -! значит, проследить по каким путям ток поступает к тяговым двигателям и другим аппаратам. Для этого необходимо знать, какое положение занимают контакты аппаратов, осуществляющих переключения отдельных цепей, так как в зависимости от положения этих контактов (замкнуты они или разомкнуты) некоторые электрические цепи находятся под током, а другие обесточены.

Все контакты реле и контакторов обычно изображают в состоянии, в котором они находятся при нулевом положении главной рукоятки и положении «Вперед» реверсивной рукоятки контроллера машиниста. В соответствии с этим все блокировочные и силовые контакты аппаратов, производящие соединения проводов электрической цепи, подразделяют на размыкающие, т. е. замкнутые при нормальном положении аппарата (при отсутствии тока или внешних сил), и замыкающие, т.е. разомкнутые при этом же положении аппарата.

Нормальным считают для индивидуальных контакторов положение отключенное, для групповых переключателей — положение последовательного соединения тяговых двигателей в тяговом режиме (ПС), для реверсора — положение «Вперед».

При чтении электрической схемы прежде всего определяют пути прохождения тока. При этом отправной точкой в схемах постоянного тока принято считать положительный полюс источника питания, а конечной- его отрицательный полюс. Необходимо также ¦ иметь ясное представление о том, как устроены аппараты и машины, включенные в цепь.

Правила выполнения схем определяются государственными стандартами.

Контрольные вопросы 1. Чем отличаются электрические схемы вагонов от машиностроитель’ ных и строительных чертежей?

2. В чем разница принципиальных и монтажных электрических схем?

3. Каково назначение принципиальных схем силовых, вспомогатеЛЬ’ ных цепей и цепей управления?

4. Какое положение на принципиальных схемах принято считать нормальным: для индивидуальных контакторов, переключателей положений, реверсоров?

5. Какие контакты электрических аппаратов называются замыкающими, а какие — размыкающими?

6. С чего начинают чтение электрической схемы?

⇐Радиооборудование | Электропоезда метрополитена | Условные графические и буквенные обозначения⇒

Правила построения электрических схем | БЛОГ ЭЛЕКТРОМЕХАНИКА

Электрическая схема — это графическое изображение связей между электрическими элементами установки, позволяющее понять принцип действия электротехнического устройства. Условным графическим изображением показывают электрические элементы схемы устройства, на которых происходит получение, преобразование и управление электроэнергией. Элементами схемы являются: обмотки электрических машин, катушки контакторов и реле, контакты электрических аппаратов, резисторы и др. Электрические связи на схемах показывают провода и кабели электротехнической установки.

В зависимости от назначения схемы подразделяются на структурные, функциональные, принципиальные (полные), схемы соединений (монтажные). В упрощенных однолинейных схемах провода или связи изображают одной линией. При помощи отрезков, пересекающих эти линии под углом 45°, указывают число проводов или число токопроводящих жил кабеля.

Структурные схемы позволяют иметь упрощенное изображение основных элементов в виде прямоугольников и линии связи между элементами. Внутри прямоугольников вписывают наименование элементов, а также основные параметры (мощность, напряжение), позволяющие создать общее представление об установке.

Функциональные схемы являются дальнейшим развитием структурных схем и служат для более углубленного ознакомления с электроустановками. При помощи условных графических обозначений изображены все элементы каждого прямоугольника. Связи между отдельными элементами конкретизируются и расшифровываются. Функциональные схемы имеют подробную характеристику всех элементов.

Принципиальные схемы изображают все электрические элементы и связи между ними для пояснения принципов работы электрифицированной установки. Все элементы вычерчивают в отключенном положении. Каждый элемент, входящий в схему, должен иметь буквенно-цифровое обозначение по государственному стандарту.

Все элементы электрических схем разделены на виды, каждому из которых присвоен буквенный код в виде заглавной латинской буквы, являющийся обязательным в обозначении. Для уточнения вида элемента к первой букве кода может добавляться вторая буква, образуя двухбуквенный код. После одно- или двухбуквенного кода ставится номер элемента в виде одной или нескольких цифр. Вид и номер элемента являются обязательной частью обозначения.

Цифры порядковых номеров, которые указывают на нумерацию одинаковых элементов, должны быть выполнены одним размером шрифта с буквенными обозначениями элемента. Например, на схеме имеется два контактора с двумя и тремя контактами. Электромагнитные катушки контакторов обозначаются К1, К2, их контакты К 1.1, К 1.2 и К2.1, К2.2, К2.3.

В принципиальных схемах условные графические обозначения элементов устройств выполняют совмещенным или разнесенным способом. При совмещенном способе электрические элементы устройства размещают на схеме с учетом их конструкционных связей (например, втягивающие катушки контактора рядом с графическим изображением его контактов). При разнесенном способе условные графические изображения электрических элементов устройства располагают в разных местах схемы, не принимая во внимание конструктивного исполнения этого устройства. Элементы на схеме располагают с учетом прохождения по ним тока. Цепи токов в разнесенной схеме размещают параллельно одна под другой, образуя строчный способ выполнения схемы. Для облегчения чтения схемы при строчном способе рекомендуется параллельные цепи (строки) нумеровать. В зависимости от назначения цепей на принципиальных схемах выделяют: силовую цепь, цепи управления, сигнализации, возбуждения, электрических измерений.

Силовой цепью называется электрическая цепь с устройствами, вырабатывающими, передающими и распределяющими электрическую энергию, а также преобразующими ее в энергию другого вида или в электрическую энергию с другими параметрами. Силовая цепь содержит элементы, по которым протекают токи якоря машины постоянного тока, статора и ротора асинхронной машины и т.д.

Цепью управления называется электрическая цепь с устройствами, назначение которых состоит в приведении в действие электрооборудования и отдельных электротехнических устройств или в изменении значений их параметров.

Цепью сигнализации называется электрическая цепь с устройствами, приводящими в действие сигнальные устройства.

Цепь возбуждения — электрическая цепь, содержащая обычно параллельную обмотку возбуждения.

Цепь электрических измерений — электрическая цепь с электроизмерительными приборами.

Электрические схемы раскрывают способы управления электродвигателем, которые слагаются из следующих этапов: пуска, изменения частоты вращения, реверса, торможения и выключения. Пуск двигателя, например, может быть прямым, т. е. непосредственным включением его в сеть, или происходить по заданному режиму.

В береговых установках, где мощность питающей сети во много раз превышает мощность включаемого электродвигателя, можно непосредственно включать электродвигатели больших мощностей, нежели в судовых условиях, где мощности электростанций ограничены.

Способы управления зависят от многих факторов (типа двигателя, мощности, требований к эксплуатации). Поэтому в судовом электроприводе применяется большое число разнообразных систем управления. Основными из них являются контроллерная, реостатная, контакторная, Г — Д, с использованием управляемых магнитных усилителей и др.

В зависимости от условий эксплуатации используют ручную, дистанционную и автоматическую системы управления двигателем.

При ручной системе все этапы управления могут значительно отличаться от расчетных, особенно при переходных режимах электродвигателя. Для ручных операций по управлению двигателями всегда требуется больше времени, чем при наличии автоматизации, и производительность выполняемых работ всегда меньше. Ручные системы на современных судах встречаются редко.

При дистанционной системе управление двигателем может осуществляться автоматически, с помощью релейно-контактной аппаратуры, однако сигнал для включения элементов автоматического управления подается вручную с помощью кнопочных командоаппаратов или командоконтроллеров.

Схемы прямого пуска двигателей постоянного и переменного тока с контакторным управлением показаны на рис. 3.1. Цепь управления для обоих электродвигателей строится одинаково и включается к выводам X1 и Х2. Отличие состоит в том, что для управления электродвигателем постоянного тока (рис. 3.1, а) применяется контактор постоянного тока с двумя замыкающими главными контактами, а для управления асинхронным двигателем (рис. 3.1, б) — трехполюсный контактор переменного тока.

Включение электродвигателей осуществляется нажатием на кнопочный выключатель «Пуск» S2 (рис. 3.1, в). Катушка контактора К1 получает питание, и контактор, сработав, подключает своими замыкающими контактами электродвигатель к сети. Если кнопочный выключатель S2 отпустить, то его замыкающий контакт разомкнётся. Однако двигатель остается включенным, так как питание катушки контактора сохраняется через вспомогательный контакт К1.3, шунтирующий контакт S2. Для отключения электродвигателя необходимо нажать кнопочный выключатель «Стоп» S1. Катушка контактора теряет питание, и он отключает электродвигатель от сети.

При выключении питающего напряжения вследствие значительной индуктивности параллельной обмотки возбуждения в ней возникают значительные э. д. с. самоиндукции и перенапряжения, которые могут привести к повреждению изоляции обмотки. Для уменьшения перенапряжений параллельно этой обмотке подключают разрядный (гасящий) резистор R. Во избежание лишних потерь энергии в разрядном резисторе последовательно с ним иногда включают полупроводниковый вентиль V. При выключении цепи возбуждения создается замкнутый контур, замедляющий уменьшение тока в обмотке возбуждения, способствующий снижению э. д. с. самоиндукции и перенапряжения в ней.

Рис. 3.1. Схемы прямого пуска двигателя с контакторным управлением.


На рис. 3.2 приведены принципиальные схемы управления электродвигателями постоянного и переменного тока, которые обеспечивают изменение направления их вращения (реверс).

Рис. 3.2. Схемы пуска и реверсирования двигателей с контакторным управлением.


В зависимости от того, какая будет нажата кнопка, сработает контактор К1 или К2, и двигатель начнет вращаться в ту или иную сторону.

Реверсирование двигателя постоянного тока (рис. 3.2, а) осуществляется изменением направления тока в обмотке якоря, а асинхронного двигателя (3.2, б) — переключением двух фаз.

Весьма важным в реверсивных электроприводах является исключение возможности одновременного включения контакторов К1 и К2, так как это приводит к короткому замыканию силовой сети главными контактами. Такое явление может возникнуть вследствие, например, одновременного нажатия на кнопочный выключатель «Пуск вперед» и «Пуск назад» (S2 и S3) или нажатия на кнопочный выключатель S2 (S3) в то время, когда главные контакты контакторов приварились. Для устранения этого явления в цепях управления предусматривают специальные блокировки. В схеме на рис. 3.2, в блокирование осуществляется применением кнопок с замыкающими и размыкающими контактами. При одновременном нажатии на обе кнопки цепи катушек обоих контакторов оказываются разомкнутыми и ни один контактор сработать не сможет. При сваривании контактов силовой цепи у одного из контакторов предпочтительным является блокирование с помощью размыкающих вспомогательных контактов К1.3 и К2.3 (рис. 3.2, г). В ответственных электроприводах, помимо электрического блокирования, применяют механическое, которое исключает возможность втягивания якоря одного контактора, если втянут якорь другого.

Управление электродвигателем в электроприводах грузовых механизмов осуществляется при помощи контроллеров.

Контроллерная система позволяет иметь все виды управления электродвигателями: пуск, регулирование частоты вращения, реверс, торможение, остановку и, кроме того, защиту двигателей от перегрузки и понижения или исчезновения напряжения в питающей сети. Защита осуществляется с помощью релейно-контактной аппаратуры.

В двигателях постоянного тока частоту вращения регулируют с помощью резисторов, установленных в цепи якоря. Для получения малой частоты вращения дополнительно включается еще один резистор параллельно цепи якоря.

Реверсирование достигается переключением тока в цепи якоря двигателя. Электрическое торможение осуществляется всеми тремя способами: рекуперативным, электродинамическим и противотоком.

Наряду с силовыми контроллерами применяются командоконтроллеры в контакторных схемах управления грузоподъемных механизмов (лебедки, краны). Все разновидности систем контроллерного управления, как правило, характеризуются ступенчатым регулированием режимов работы электродвигателя.

Электрическая схема с применением командоконтроллера для управления электродвигателями трехфазного асинхронного и постоянного тока приведена на рис. 3.3.

Рис. 3.3. Управление двигателем с помощью командоконтроллера.


Рукоятка командоконтроллера имеет семь положений: нулевое и по три положения «Вперед» и «Назад». Точками на соответствующих положениях помечают, какие контакты командоконтроллера замкнуты. Так, например, если рукоятка командоконтроллера установлена на первое положение «Вперед», то замкнется контакт 1-2 и включится катушка контактора К1. Якорь (ротор) двигателя начнет вращаться «Вперед» с малой частотой вращения, так как в цепь включены ступени реостатов R1 и R2.

Перемещение рукоятки командоконтроллера в том же направлении на следующие положения (второе и третье) приведет к последовательному замыканию контактов 5-6 и 7-8 и срабатыванию контакторов К3 и К4, к выключению ступеней реостатов и Я2 и последовательному увеличению угловой скорости двигателя.

При перемещении рукоятки командоконтроллера «Назад» от нулевого положения вместо контакта 1-2 замкнется контакт 3-4, сработает контактор К2 и включит двигатель на обратное направление вращения. Второе и третье положения командоконтроллера дадут ту же угловую скорость, что и в направлении «Вперед». Установка рукоятки командоконтроллера в нулевое положение приводит к отключению всех контакторов и двигателя от сети.

Размыкающими контактами К 1.2 и К2.2 осуществляется блокирование, устраняющее включение обоих контакторов при сваривании их контактов или контактов командоконтроллера.

Схемы соединений (монтажные) изображают расположение составных частей электрифицированного устройства в деталях с указанием метода прокладки проводов и кабелей. Схемы соединений входят в состав технической документации судна и являются документом, по которому выполняют монтаж установки, а также эксплуатацию и ремонт. Схемы учитывают технологию монтажа электрических аппаратов и приборов, а также возможность прокладки кабельных трасс по судну с учетом требований регистра. Чертежи панелей с размещенными на них аппаратами и приборами изображают в масштабе. Монтажная схема содержит схемы внутренних соединений, на которых указаны все соединения внутри отдельных сборочных единиц, и схемы внешних соединений, на которых показывают прокладку кабельных трасс по судну между отдельными сборочными единицами. Для возможности контроля схемы все электрические выводы аппаратов и концы токопроводящих жил проводов должны иметь маркировку (цифру или букву).

Методические указания по чтению электрических схем заключаются в рекомендациях по принятому порядку последовательности изучения электрифицированной установки. Чтение электрической схемы следует начинать с ее типа и вида по названию из углового штампа. Затем следует ознакомиться со схемой силовой цепи, начиная с источника тока. Схемы управления надо изучать поэлементно.

При наличии цепей с элементами электроники необходимо изучить работу отдельных электронных элементов, обратив внимание на прохождение электрических зарядов через полупроводниковые элементы. Следует помнить, что питание основных цепей в электронных устройствах принято однопроводное, поэтому окончание электрических цепей показано присоединением к корпусу аппарата.

В судовой документации на каждый электропривод имеются принципиальная схема со спецификацией и пояснительной запиской и схемы электрических соединений (монтажные).

Принципы построения электрических сетей | Справка

Рационально построенная электрическая сеть должна обеспечивать нормативные уровни надежности электроснабжения потребителей, нормированное качество электроэнергии, электробезопасность элементов сети, минимальные затраты на их обслуживание и ремонт. Кроме того, при построении электросети должны быть учтены перспективный рост электрических нагрузок и возможность ее автоматизации.
Анализ различных принципов построения электрических сетей, используемых в системах электроснабжения городов, промышленных предприятий, не только в нашей стране, но и за рубежом показал, что ряд широко распространенных электрических схем без внесения в них существенных изменений, учитывающих специфику сельскохозяйственных потребителей, неприемлем для электроснабжения сельских потребителей.
Наиболее эффективен для электрических сетей напряжением 10 кВ, сооружаемых в средней полосе европейской части Российской Федерации, магистральный принцип построения, характеризующийся петлевой схемой с ответвлением. Для осуществления перехода от радиальной схемы построения сети к магистральной на BЛ 10 кВ выделяется главное направление (магистраль) — от шин одной подстанции до шин другой подстанции. На магистрали устанавливают устройство автоматического включения резерва, секционирующие аппараты и ликвидируют лишние перемычки. Магистральная BЛ 10 кВ должна иметь только один источник питания, при этом сокращается количество нерезервируемых ответвлений, которые сводятся в узлы. В этих узлах удобно создавать пункты управления близлежащим участком сети. Такими пунктами могут служить опорные трансформаторные подстанции (ОТП) 10/0,4 кВ, подсоединяемые в рассечку магистрали и имеющие развитое распределительное устройство 10 кВ или распределительные пункты (РП). Последние в дальнейшем могут быть использованы как распредустройства 10 кВ понизительной подстанции 35(110)/10 кВ.
В ОТП и РП размещают устройства автоматического секционирования или резервирования, ячейки отходящих линий 10 кВ. От шин РУ 10 кВ ОТП или РП целесообразно обеспечивать электроэнергией потребителей, расположенных от них на расстоянии не более 2…2,5 км. Кроме того, в ОТП или РП устанавливают аппаратуру автоматики, телемеханики, приборы определения расстояний до места повреждения, что дает возможность осуществлять комплексную автоматизацию сельских электрических сетей.
При переходе от радиального к магистральному принципу построения электрических сетей 10 кВ с ОТП и РП, оснащенными дорогостоящей аппаратурой, возникает необходимость в координации уровней электроснабжения сельских потребителей как при одиночных отказах, так и при массовых авариях. Одиночные отказы могут быть вызваны повреждениями элементов сети. Отрицательные последствия этих отказов можно свести к минимуму путем резервирования, секционирования электрических сетей и применения в них средств автоматики и телемеханики. Массовые аварии, как правило, сопровождаются большим количеством повреждений воздушных линий, происходящих в одно время и расположенных в одной зоне. Следует отметить, что на ближайшем этапе развития сельских электросетей повсеместный переход на кабельные линии 10 кВ не ожидается, поэтому для повышения надежности воздушных линий электропередачи следует увеличить их механическую прочность.
С этой целью усиливают конструкции опор магистральных линий. Магистральные BЛ 10 кВ, подходящие к узлам нагрузки, где в перспективе намечается сооружение разукрупняющей подстанции 35(110)/10 кВ, рекомендуется строить в габаритах 35/110 кВ с подвесной изоляцией и сталеалюминевыми проводами сечением не менее 95 мм2. На других магистральных линиях применяют опоры с повышенной механической прочностью (изгибающий момент поперек линий составляет 50…60 кН*м) и усиленными проводами марок АС, АЖ. Для увеличения механической прочности опор BЛ 10 кВ, а также для адаптации линий к изменяющимся электрическим нагрузкам применяют провод одного сечения (не менее 50 мм2).
Электрическая сеть 10 кВ, выполненная по указанному принципу, удовлетворяет условиям рационального построения сети. Взаимная увязка технических решений, используемых в сетях 10 и 35 (110) кВ, достигается тем, что сеть 35 (110) кВ строится таким образом, чтобы имелась возможность осуществить резервное электроснабжение любого потребителя от независимого источника, при этом обеспечение нормативных требований, предъявляемых к надежности электроснабжения потребителей, осуществляется в сети 10 кВ.
Внедрение магистрального принципа построения сельских сетей потребует увеличения капиталовложений на их строительство на 25…30%. Однако эти затраты быстро окупятся за счет повышения надежности электроснабжения сельских потребителей.
Наиболее перспективным способом повышения надежности работы схемы ВЛ-ТП можно считать внедрение защищенных изоляцией проводов на ВЛ-0,4 и 6-10 кВ соответственно марок АМКА и АХ,SAX и SAXKA. Этот перспективный способ надо использовать не только при строительстве, но и при ремонте ВЛ (замена неизолированных проводов на защищенные изоляцией).

Разборка Электрических Схем — tokzamer.ru

Они бывают: Структурными. Различаются по величине тока стабилизации Iстаб и напряжения стабилизации Uстаб.


Трансформаторы используются повсеместно, либо в сетевом 50 гц , либо в импульсном десятки кГц исполнении. С назначением схемы в нашем примере мы определились, теперь едем дальше.

До скорых встреч! Рассмотрим основные элементы и принципы построения принципиальных электрических схем.
Как читать электрическую схему РЗА.

Несмотря на стандартизацию, существует огромное количество отличий и разнообразия правил построения электросхем, выпускаемых различными производителями, проектно-конструкторскими отделами.

Дело в том, то не всегда те или иные детали могут использоваться в привычной роли.

Схемы не всегда читают слева направо и сверху вниз, лучше идти от источника питания.

Читайте также:.

Для обслуживания, ремонта, монтажа или наладки оборудования необходимо понимать как алгоритм его работы, так и принцип действия.

РАЗБОР ПРОСТОЙ СХЕМЫ — Читаем электрические схемы 2 ЧАСТЬ

Назначение

На наличие соединения указывает точка в месте пересечения или примыкания. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение.

То есть, существуют некоторые позиции, которые сразу же можно опознать.

Поэтому и УГО транзисторов разной структуры несколько отличаются. На этом настройка режима транзистора VT1 считается завершённой.

Пересекающиеся линии не соединены между собой.

В данном случае нельзя разделить цепи питания либо нужно иначе составлять схему и т.

Определяют по надписям на схеме, таблицам или примечаниям уставки аппаратов и, наконец, оценивают зону защиты каждого из них.

Примерную мощность электронного устройства, исходя из номиналов компонентов силовых цепей.
Лекция по электротехнике 1.1 — Схемы электрической цепи

Статья по теме: Смета на монтаж электропроводки

Обозначение линий связи на электрических схемах

Что делает это устройство, для чего оно предназначено.

На сегодня пожалуй всё, еще один ужасно скучный урок на этом закончен.

Если взять реальный электролитический конденсатор , то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. Данная схема приведена в качестве примера, чтобы наглядно показать, как имея перед собой графическое изображение проекта, определить его слабые стороны. На рисунке ниже приведена типовая схема электрической проводки.

Таким образом, схемотехника неразрывно связана с изучением материальной части электрического оборудования. Это достаточно простые элементы.

Это справедливо, как для радиоламп, так и для современных микросхем. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента. Начнем изучение с простейшего — схемы настольной лампы.


Знакомиться с ними будем по мере необходимости, чтобы сразу не забивать голову лишней, пока не нужной информацией. Каков вывод из всего этого длинного повествования о налаживании работы схемы? Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Взгляните на схему, возможно, вы увидите новые для себя изображения. В технической документации он называется корпусом.

Обычный прямоугольник, внутри которого может указываться его мощность В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты. Лампа будет светить нормально, но резистор сгорит, так как выделяемая в нем мощность примерно вдвое выше номинальной; ж выявить аппараты, подверженные действию коммутационных перенапряжений, и оценить меры защиты от них например, гасящие контуры ; з выявить приборы, на работу которых могут оказывать недопустимое влияние смежные цепи, и оценить средства защиты от влияний; и выявить возможные ложные цепи как в нормальных режимах, так и во время переходных процессов, например перезаряд конденсаторов, поступление в чувствительный электроприемник энергии, освободившейся при отключении индуктивности, и т.

Идем дальше, в качестве следующего примера рассмотрим это место: Какой-то пока непонятный нам значок и его буквенно-цифровое обозначение. Технологический персонал, по телефону, подает заявку на сборку или разборку электрической схемы технологического оборудования инженеру- энергетику ОЭГ ТПВЭиУГ с указанием времени, причины, должности и фамилии подающего заявку. Назначение Начнем с базисной основы. В качестве обоснования таких требований приведем для примера монтажную схему базовой платы коротковолнового трансивера.
Монтажные схемы и маркировка электрических цепей

Как научиться читать принципиальные схемы

Рекомендуемая толщина линий связи — 0.

При этом обе линии одновременно запитывают как освещение, так и розетки для подключения электроприборов. Начнем изучение с простейшего — схемы настольной лампы.

Также мощность резистора на схеме и на его изображении может и не указываться.

Чтение схем Зависит от их построения и целей использования. Изображают эти устройства следующих образом: Измерительные приборы Наиболее часто на электрических схемах встречаются обозначения амперметра, вольтметра, или обобщенное обозначение измерительного прибора. Вот таким образом я нашел цоколевку транзистора КТ Для этого нужно сперва ознакомиться с принципом работы элементов, а как читать схемы электроники я расскажу в этой статье на примерах популярных устройств для начинающих.

Популярное

В итоге вновь придется возвращаться к чтению принципиальной схемы, чтобы выявить, какая в ней допущена ошибка или что в конкретном случае не соответствует правильной принципиальной схеме например, многоконтактное программное реле присоединено правильно, но установленная при настройке длительность или очередность переключения контактов не соответствует заданию. Назначение Начнем с базисной основы. Сопоставить обозначения элементов на электросхеме с перечнем элементов.

Знание графических обозначений, как алфавит для чтения книг, является основным условием чтения схем. Так как все полупроводниковые приборы в этой конкретной схеме двунаправленные, регулировка осуществляется по обеим полуволнам синусоиды. В общем случае принципиальные схемы содержат: 1 условные изображения принципа действия того или иного функционального узла системы автоматизации; 2 поясняющие надписи; 3 части отдельных элементов приборов, электрических аппаратов данной схемы, используемые в других схемах, а также элементы устройств из других схем; 4 диаграммы переключений контактов многопозиционных устройств; 5 перечень используемых в данной схеме приборов, аппаратуры; 6 перечень чертежей, относящихся к данной схеме, общие пояснения и примечания. Таким образом, схемотехника неразрывно связана с изучением материальной части электрического оборудования.

Порядок разработки монтажной электрической схемы

Именно поэтому стандарт предписывает изображать схемы в предположении, что питание отключено, а аппараты и их части например, якоря реле не подвержены принудительным воздействиям. Рассмотрим основные элементы и принципы построения принципиальных электрических схем. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Второй незнакомый элемент на схеме — это конденсатор, здесь используется для сглаживания пульсаций выпрямленного напряжения. Таким образом, в зависимости от выполняемой работы чтение принципиальной схемы преследует разные цели. Симистор VS1 — основной силовой элемент цепи, справа внизу дана его распиновка из даташита, 3 вывод — управляющий. Монтажные схемы Выше была рассмотрена принципиальная схема. Сигнальные лампы 2-HL1… 2-HL4.
Как читать электрические схемы

Принципы построения схем распределительных электрических сетей — Студопедия

Схемы питающих сетей напряжением 10 (6) кВ определяются, в основном, требованиями надежности и предельно возможными загрузками линий в нормальных и послеаварийных режимах.

Две питающие линии обычно работают раздельно. Распределительный пункт выполняют в виде двух секций, между которыми выключатель нормально отключен и на нем предусматривают автоматический ввод резерва. Взамен одной из питающих линий иногда целесообразно сооружать резервные перемычки между РП .

Распределительные сети 10 (6) кВ в зависимости от требуемой степени надежности строят по следующим схемам:

а) радиальным – без резервирования, в которых при повреждении элемента сети происходит полное погашение;

б) замкнутым – работающие в разомкнутом режиме, в которых при аварийных отключениях восстановление электроснабжения осуществляют вручную после отыскания и отключения поврежденного участка;

в) разомкнутым – с автоматическим вводом резерва (АВР) для всех нуждающихся в этом потребителей.

Распределительные сети могут подключаться как непосредственно к центрам питания ЦП, так и к распределительным пунктам (РП).


Сельские электрические сети характеризуются охватом большой территории с малыми плотностями нагрузок. Основная система применяемых напряжений – 110/35/10/0,38 кВ. Все большее распространение получает система 110/10/0,38 кВ.

Для повышения надежности электроснабжения в нерезервированной радиальной сети устанавливают секционирующие устройства, в качестве которых могут применяться выключатели (реклоузеры), выключатели нагрузки и разъединители. В этом случае при возникновении локальных повреждений в сети секционирующие устройства обеспечивают возможность отключения только части сети, содержащей повреждение. Если в качестве секционирующего устройства служит выключатель (реклоузер), то локализация повреждения может быть осуществлена автоматически.

На современном этапе развития сельских сетей в большинстве случаев применяются резервированные схемы. Это кольцевые схемы либо схемы с питанием от нескольких источников питания.

Схемы электрических сетей до 1000 В сооружают четырехпроводными с нулевым проводом и глухим заземлением нейтрали. Нулевой провод используется одновременно для протекания токов несимметричных нагрузок и подключения к нему частей электроустановок, подлежащих заземлению.

От нее возможны трехпроводные трехфазные ответвления для питания трехфазных электроприемников, трехпроводные двухфазные ответвления с нулевым проводом и двухпроводные однофазные ответвления для питания однофазных электроприемников. При необходимости могут быть выполнены двухпроводные ответвления от двух фазных проводов.


В сельских сетях нулевой провод воздушных линий часто используется одновременно и для уличного освещения. Для этого, кроме четырех проводов магистральной линии, прокладывают один фазный провод уличного освещения. При большой нагрузке уличного освещения для соблюдения симметрии выполняют не один, а два или три провода уличного освещения и светильники подключают к разным фазам и нулевому проводу.

Схемы сетей напряжением до 1000 В выбирают в зависимости от мощности отдельных приемников, их количества, распределения по территории, требуемой степени надежности.

К схемам электрических сетей предъявляются следующие требования:

· обеспечение необходимой надежности электроснабжения электроприемников и электробезопасности;

· обеспечение нормируемого качества напряжения

· максимальное использование существующих сетей;

· обеспечение максимального охвата территории;

· обеспечение оптимальных уровней токов КЗ;

· обеспечение возможности выбора релейных защит и автоматики;

· создание возможности построения сети из унифицированных элементов;

· обеспечение условий охраны окружающей среды.


Сельские электрические сети охватывают множество потребителей относительно малой мощности, расположенных на значительной территории, характеризуются большой протяженностью и разветвленностью. Большинство потребителей относится ко второй и третьей категории надежности. Такие сети выполняют, как правило, воздушными, подключенными по петлевой схеме или по радиальной схеме с установкой на линиях переключательных пунктов, позволяющих в случае аварии подключать часть потребителей к неповрежденной линии. Повышения надежности электроснабжения можно достичь с помощью схем, предусматривающих приближение сетей более высокого напряжения (до 110 кВ) к сельским потребителям.

Обоснование решений по схеме и техническим параметрам электрических сетей должно производиться исходя из обеспечения необходимого уровня надежности с наименьшими капитальными вложениями.

Общие принципы построения сетей до 1 кВ, разработка схем

 

 

    Развитие и построение распредсетей до 1кВ взаимосвязано с технологическим присоединением новых потребителей и ростом существующих нагрузок.

    Электрические сети необходимо строить по радиальному принципу, как правило, в полнофазном исполнении.

    Для ответвлений к потребителям, не допускающих перерыва в электроснабжении, нужно устанавливать устройства АВР непосредственно на вводе 0,4 кВ.

    Воздушные линии должны выполняться только с применением СИП одного сечения по всей длине линии (без учета линейных ответвлений).

    В городах и населенных пунктах рекомендуется прокладывать линии электропередачи ЛЭП-0,4 кВ в кабельном исполнении, при этом допускается, как исключение, прокладка ответвлений кабелем или СИП (с изолированной нулевой жилой и с материалом не распространяющим горение) по стенам зданий и сооружений. Не допускается прокладка магистралей по стенам зданий и сооружениям.

    Не разрешается реконструкция и новое строительство ВЛ 0,4 кВ с применением неизолированных проводов.

    Длина ВЛ (КЛ) 0,4 кВ не должна, как правило, превышать 0,5 км от центра питания до наиболее удаленной точки и 2 км суммарной длины ВЛ 0,4 кВ с учетом отходящих ответвлений, отпаек.

    При присоединениях объектов распределенной (малой) генерации до 5 кВт не разрешается их работа в параллельном режиме.

    Сокращение общей протяжённости распределительных сетей напряжением 0,4 кВ должно осуществляться, как правило, посредством применения СТП 6/0,4 кВ или сети напряжением 0,95 кВ с использованием индивидуальных однофазных 0,55/0,23 кВ или трехфазных 0,95/0,4 кВ ТП. Выбор способа реконструкции должен осуществляться на основах технико-экономического обоснований с учетом выполнения требований по электробезопасности и перспективы развития, роста нагрузки и подключения новых потребителей.

    Строительство распределительной электрической сети 0,95 кВ с индивидуальными трансформаторными подстанциями необходимо рассматривать:

– в случае большой удаленности небольших (до 25 кВт) одиночных нагрузок (например, деревни с большими участками, фермерские хозяйства,), когда строительство электросети 0,4 кВ невозможно, в связи с высоким отклонением напряжения и строительство линии 6(10,20) кВ и ТП 6(10,20)/0,4 кВ экономически нецелесообразно;

– в случае, когда строительство сети 6(10, 20) кВ невозможно;

– в случае, когда отсутствует возможность контроля существующих линий 0,4 кВ.

 

Построение электрических сетей

    Электросети должны строиться с учетом максимальной приближённости питающих центров к потребителям.

    В существующих распределительных сетях с воздушными линиями, в которых качество электроэнергии не удовлетворяет требованиям действующей нормативной документации, для повышения качества электроэнергии на основании проведённого обследования параметров электросети и экономической целесообразности можно применять следующих технических мероприятий:

– использование средств регулирования напряжения и компенсации реактивной мощности;

– разукрупнение электросети до 1 кВ путём построения разветвлённой распределительной сети 0,4кВ с небольшими длинами;

– замена одноцепных линий 0,4 кВ на многоцепные;

– выравнивание нагрузок по фазам путём перераспределения нагрузок однофазных потребителей;

– увеличением сечения проводов существующей ВЛ;

– увеличение мощности существующей ТП;

– перевод существующей сети 0,4 кВ на напряжение 0,95 кВ.

 

Надёжность электроснабжения потребителей

Надёжность электроснабжения потребителей должна обеспечиваться с учётом:

– наличия достаточной установленной мощности и требуемой пропускной способности электросетей;

– применения резервного и аварийного мобильного источника электроэнергии для электроснабжения особой группы электроприёмников первой категории.

Определение категории электроприёмников дано в ПУЭ-7.

    В зависимости от требований потребителя к уровню надёжности электроснабжения электроприёмников резервное или аварийное питание необходимо оборудовать системой аварийного пуска при отключении основного источника электроснабжения.

    Схема электроснабжения в крупных городах должна обеспечивать минимальное время восстановления электроснабжения потребителей при возникновении аварийных режимов за счёт применения сетевого резервирования, использования АВР.

    При высокой насыщенности нагрузки у потребителя или группы потребителей рекомендуют применять прямые кабельные вводы непосредственно от трансформаторных подстанций до вводных устройств потребителя, с АВР непосредственно у потребителя.

    Для электроснабжения электроприёмников первой категории в качестве основной схемы для кабельных и воздушных линий нужно использовать двух лучевую схему с двухсторонним электропитанием. Варианты исполнения ВЛ определяются местными условиями. На шинах 10 кВ двух трансформаторных подстанций 10/0,4 кВ или 0,4 кВ необходимо  предусмотреть устройство АВР.

    Подключение к низковольтным распределительным устройствам, питающим электроприёмники 1 категории, потребителей сторонних организаций запрещено.

    Рекомендуют предусмотреть электроснабжение электроприёмников первой категории по сети до 1 кВ от разных трансформаторных подстанций. При этом нужно предусматривать необходимые резервы в пропускной способности элементов системы в зависимости от нагрузок электроприёмников первой категории.

    При проектировании электроснабжения особой группы 1 категории потребителей на стороне 0,4 кВ рекомендуется предусмотреть контактные разъёмы для оперативного подключения мобильных резервных электростанций, которые оборудованы системами учёта электроэнергии.

    Для электроснабжения электроприёмников второй категории следует применять одиночные магистральные линии с двусторонним питанием (петлевые схемы) 6 – 20 кВ и петлевые схемы до 1 кВ – для питания потребителей. При этом линии до 1 кВ в петлевых схемах можно присоединить к одной или разным трансформаторным подстанциям.

    Для электроснабжения электроприёмников третьей категории следует применять радиальные линии к потребителям. При применении воздушных линий для питания электроприёмников третьей категории резервирование линий можно не предусматривать. При применении в сети до 1 кВ кабельных линий должна учитываться возможность использования временных шланговых кабелей.

    Элементами повышения надежности, позволяющими радикально сократить количество и длительность перерывов электроснабжения потребителей, являются реклоузеры.

Реклоузеры 6 (10) кВ должны применяться в качестве:

– пунктов секционирования с односторонним питанием;

– пунктов секционирования с двухсторонним питанием;

– пунктов сетевого АВР;

– пунктов местного резервирования.

 

 

простых схем | Блестящая вики по математике и науке

Для любой простой системы найти V, I или R несложно, если учесть два других фактора, но это усложняется, когда источник питания управляет несколькими устройствами последовательно. Последовательность означает несколько устройств, соединенных встык, причем положительный вывод одного устройства подключен к отрицательному устройству следующего, как набор рождественских гирлянд. Поскольку устройства перетекают друг в друга и заряд сохраняется, любой ток, протекающий в первое устройство, должен вытекать из последнего устройства, т.е.е. ток через все устройства одинаковый. Последовательные устройства похожи на воду, плывущую по реке: река может закручиваться, поворачиваться, сжиматься и расширяться, но количество воды, текущей в любом заданном поперечном сечении в единицу времени, должно быть одинаковым во всех точках вдоль реки, то есть v1A1 = v2A2v_1A_1 = v_2A_2v1 A1 = v2 A2. Если бы это было не так, вода накапливалась бы в точках вдоль реки и выливалась бы из берегов.

Таким образом, в приведенной выше схеме i1 = i2 = i3i_1 = i_2 = i_3i1 = i2 = i3, или поскольку каждый резистор подчиняется закону Ома

I = V1R1 = V2R2 = V3R3.I = \ frac {V_1} {R_1} = \ frac {V_2} {R_2} = \ frac {V_3} {R_3}. I = R1 V1 = R2 V2 = R3 V3.

Теперь левая сторона оранжевой лампочки подключена к положительной клемме батареи, а правая сторона зеленой лампочки подключена к отрицательной клемме батареи, что означает, что сумма напряжения падает на трех резисторы равны по величине падению напряжения на аккумуляторе, т.е.

Vbattery = V1 + V2 + V3.V_ \ text {battery} = V_1 + V_2 + V_3.Vbattery = V1 + V2 + V3.

Это физический принцип.

Следовательно,

Vbattery = V1 + V2 + V3 = IR1 + IR2 + IR3 = I (R1 + R2 + R3) = IReff. \ Begin {выровнено} V_ \ text {батарея} & = V_1 + V_2 + V_3 \\ & = IR_1 + IR_2 + IR_3 \\ & = I \ влево (R_1 + R_2 + R_3 \ вправо) \\ & = IR_ \ text {eff}. \ end {align} Vbattery = V1 + V2 + V3 = IR1 + IR2 + IR3 = I (R1 + R2 + R3) = IReff.

Следовательно, цепь, состоящая из трех последовательно соединенных лампочек, эквивалентна одной лампочке с сопротивлением, равным сумме отдельных сопротивлений.Это доказывает общий результат для резисторов, включенных последовательно.

Резисторы последовательно

Эффективное сопротивление последовательно включенных резисторов R1,…, RNR_1, \ ldots, R_NR1,…, RN равно

.

Reff = ∑iRi.R_ \ text {eff} = \ sum_i R_i.Reff = i∑ Ri.

Хотя последовательное расположение элементов схемы имеет некоторые привлекательные особенности, такие как равномерный ток, простота установки новых батарей и т. Д., Последовательное расположение элементов схемы имеет серьезные недостатки.Во-первых, введение любых новых устройств уменьшает ток, протекающий по цепи, и, таким образом, снижает выходную мощность каждого отдельного устройства. Если несколько устройств подключены последовательно, например, духовка, компьютер и лампа для чтения, затемнение лампы для чтения (за счет увеличения ее сопротивления) означает уменьшение тока в духовке и компьютере. Другой заключается в том, что если один элемент в цепи, например, ваш телевизор, сломается, вся цепь также разорвется, потому что разрыв электрического потенциала больше не поддерживается ни на одном устройстве.Это неудобно для создания надежных схем, в которых нам бы хотелось, чтобы отказы устройств не зависели друг от друга.

Некоторые из этих недостатков можно избежать в архитектуре параллельных цепей.

Как работают электронные компоненты

Электронные гаджеты стали неотъемлемой частью нашей жизни. Они сделали нашу жизнь комфортнее и удобнее. От авиации до медицины и здравоохранения, электронные гаджеты находят широкое применение в современном мире.Фактически, революция в электронике и революция в компьютерах идут рука об руку.

Большинство гаджетов имеют крошечные электронные схемы, которые могут управлять машинами и обрабатывать информацию. Проще говоря, электронные схемы — это линия жизни различных электроприборов. В этом руководстве подробно рассказывается об общих электронных компонентах, используемых в электронных схемах, и о том, как они работают.

В этой статье я дам обзор электронных схем. Затем я предоставлю дополнительную информацию о 7 различных типах компонентов.Для каждого типа я буду обсуждать состав, принцип работы, а также функцию и значение компонента.

  1. Конденсатор
  2. Резистор
  3. Диод
  4. Транзистор
  5. Индуктор
  6. Реле
  7. Кристалл кварца


Обзор электронной схемы

Электронная схема — это структура, которая направляет и управляет электрическим током для выполнения различных функций, включая усиление сигнала, вычисление и передачу данных.Он состоит из нескольких различных компонентов, таких как резисторы, транзисторы, конденсаторы, катушки индуктивности и диоды. Для соединения компонентов друг с другом используются токопроводящие провода или дорожки. Однако цепь считается завершенной, только если она начинается и заканчивается в одной и той же точке, образуя цикл.


Элементы электронной схемы

Сложность и количество компонентов в электронной схеме может изменяться в зависимости от ее применения. Однако простейшая схема состоит из трех элементов, включая токопроводящую дорожку, источник напряжения и нагрузку.

Элемент 1: токопроводящий путь

Электрический ток течет по токопроводящей дорожке. Хотя медные провода используются в простых цепях, они быстро заменяются токопроводящими дорожками. Проводящие дорожки — это не что иное, как медные листы, наклеенные на непроводящую основу. Они часто используются в небольших и сложных схемах, таких как печатные платы (PCB).

Элемент 2: Источник напряжения

Основная функция цепи — обеспечить безопасное прохождение электрического тока через нее.Итак, первый ключевой элемент — это источник напряжения. Это двухконтактное устройство, такое как аккумулятор, генераторы или энергосистемы, которые обеспечивают разность потенциалов (напряжение) между двумя точками в цепи, так что ток может течь через них.

Элемент 3: Нагрузка

Нагрузка — это элемент в цепи, который потребляет мощность для выполнения определенной функции. Лампочка — простейшая нагрузка. Однако сложные схемы имеют разные нагрузки, такие как резисторы, конденсаторы, транзисторы и транзисторы.


Факты об электронных схемах

Факт 1: Обрыв цепи

Как упоминалось ранее, цепь всегда должна образовывать петлю, чтобы через нее протекал ток. Однако, когда дело доходит до разомкнутой цепи, ток не может протекать, поскольку один или несколько компонентов отключены намеренно (с помощью переключателя) или случайно (сломанные части). Другими словами, любая цепь, не образующая петли, является разомкнутой.

Факт 2: Замкнутый контур

Замкнутый контур — это контур, который образует контур без каких-либо прерываний.Таким образом, это полная противоположность разомкнутой цепи. Однако полная цепь, которая не выполняет никаких функций, остается замкнутой цепью. Например, цепь, подключенная к разряженной батарее, может не выполнять никакой работы, но это все еще замкнутая цепь.

Факт 3: Короткое замыкание

В случае короткого замыкания между двумя точками электрической цепи образуется соединение с низким сопротивлением. В результате ток имеет тенденцию течь через это вновь образованное соединение, а не по намеченному пути.Например, если есть прямое соединение между отрицательной и положительной клеммами батареи, ток будет проходить через нее, а не через цепь.

Однако короткое замыкание обычно приводит к серьезным несчастным случаям, так как ток может протекать на опасно высоких уровнях. Следовательно, короткое замыкание может повредить электронное оборудование, вызвать взрыв батарей и даже вызвать пожар в коммерческих и жилых зданиях.

Факт 4: Печатные платы (PCB)

Для большинства электронных устройств требуются сложные электронные схемы.Вот почему разработчикам приходится размещать крошечные электронные компоненты на печатной плате. Он состоит из пластиковой платы с соединительными медными дорожками с одной стороны и множества отверстий для крепления компонентов. Когда макет печатной платы наносится химическим способом на пластиковую плату, она называется печатной платой или печатной платой.

Рисунок 1: Печатная плата . [Источник изображения]
Факт 5: Интегральные схемы (ИС)

Хотя печатные платы могут предложить множество преимуществ, для большинства современных приборов, таких как компьютеры и мобильные телефоны, требуются сложные схемы, состоящие из тысяч и даже миллионов компонентов.Вот тут-то и пригодятся интегральные схемы. Это крошечные электронные схемы, которые могут поместиться внутри небольшого кремниевого чипа. Джек Килби изобрел первую интегральную схему в 1958 году в компании Texas Instruments. Единственная цель ИС — повысить эффективность электронных устройств при уменьшении их размера и стоимости производства. С годами интегральные схемы становились все более сложными по мере развития технологий. Вот почему персональные компьютеры, ноутбуки, мобильные телефоны и другая бытовая электроника с каждым днем ​​становятся все дешевле и лучше.

Рисунок 2: Интегральные схемы. [Источник изображения]

Электронные компоненты

Благодаря современным технологиям, процесс сборки электронных схем был полностью автоматизирован, особенно это касается изготовления микросхем и печатных плат. Количество и расположение компонентов в схеме может варьироваться в зависимости от ее сложности. Однако он построен с использованием небольшого количества стандартных компонентов.

Следующие компоненты используются для создания электронных схем.


Компонент 1: Конденсатор

Конденсаторы

широко используются для построения различных типов электронных схем.Конденсатор — это пассивный двухконтактный электрический компонент, который может электростатически накапливать энергию в электрическом поле. Проще говоря, он работает как небольшая аккумуляторная батарея, накапливающая электричество. Однако, в отличие от аккумулятора, он может заряжаться и разряжаться за доли секунды.

Рисунок 3: Конденсаторы [Источник изображения]
A. Состав Конденсаторы

бывают всех форм и размеров, но обычно они состоят из одинаковых основных компонентов. Между ними уложены два электрических проводника или пластины, разделенные диэлектриком или изолятором.Пластины состоят из проводящего материала, такого как тонкие пленки из металла или алюминиевой фольги. С другой стороны, диэлектрик — это непроводящий материал, такой как стекло, керамика, пластиковая пленка, воздух, бумага или слюда. Вы можете вставить два электрических соединения, выступающих из пластин, чтобы зафиксировать конденсатор в цепи.

B. Как это работает?

Когда вы прикладываете напряжение к двум пластинам или подключаете их к источнику, на изоляторе возникает электрическое поле, в результате чего на одной пластине накапливается положительный заряд, а на другой накапливается отрицательный заряд.Конденсатор продолжает удерживать заряд, даже если вы отключите его от источника. В тот момент, когда вы подключаете его к нагрузке, накопленная энергия перетекает от конденсатора к нагрузке.

Емкость — это количество энергии, хранящейся в конденсаторе. Чем выше емкость, тем больше энергии он может хранить. Увеличить емкость можно, сдвинув пластины ближе друг к другу или увеличив их размер. В качестве альтернативы вы также можете улучшить изоляционные качества, чтобы увеличить емкость.

C. Функция и значение

Хотя конденсаторы выглядят как батареи, они могут выполнять различные типы функций в цепи, такие как блокировка постоянного тока с одновременным пропусканием переменного тока или сглаживание выходного сигнала от источника питания. Они также используются в системах передачи электроэнергии для стабилизации напряжения и потока мощности. Одной из наиболее важных функций конденсатора в системах переменного тока является коррекция коэффициента мощности, без которой вы не сможете обеспечить достаточный пусковой момент для однофазных двигателей.

Фильтры для конденсаторов

Если вы используете микроконтроллер в цепи для запуска определенной программы, вы не хотите, чтобы его напряжение упало, поскольку это приведет к сбросу контроллера. Вот почему дизайнеры используют конденсатор. Он может обеспечить микроконтроллер необходимой мощностью на долю секунды, чтобы избежать перезапуска. Другими словами, он отфильтровывает шумы в линии питания и стабилизирует источник питания.

Применения удерживающего конденсатора

В отличие от батареи, конденсатор быстро разряжается.Вот почему он используется для кратковременного питания цепи. Батареи вашей камеры заряжают конденсатор, прикрепленный к вспышке. Когда вы делаете снимок со вспышкой, конденсатор высвобождает свой заряд за доли секунды, генерируя вспышку света.

Применение конденсатора таймера

В резонансной или зависящей от времени схеме конденсаторы используются вместе с резистором или катушкой индуктивности в качестве элемента синхронизации. Время, необходимое для зарядки и разрядки конденсатора, определяет работу схемы.


Компонент 2: резистор

Резистор — это пассивное двухконтактное электрическое устройство, которое препятствует прохождению тока. Это, наверное, самый простой элемент в электронной схеме. Это также один из наиболее распространенных компонентов, поскольку сопротивление является неотъемлемым элементом почти всех электронных схем. Обычно они имеют цветовую маркировку.

Рисунок 4: Резисторы [Источник изображения]
A. Состав

Резистор — это совсем не модное устройство, потому что сопротивление — это естественное свойство, которым обладают почти все проводники.Итак, конденсатор состоит из медной проволоки, обернутой вокруг изоляционного материала, такого как керамический стержень. Количество витков и толщина медного провода прямо пропорциональны сопротивлению. Чем больше количество витков и чем тоньше провод, тем выше сопротивление.

Также можно встретить резисторы, изготовленные по спирали из углеродной пленки. Отсюда и название резисторы с углеродной пленкой. Они предназначены для схем с низким энергопотреблением, потому что резисторы с углеродной пленкой не так точны, как их аналоги с проволочной обмоткой.Однако они дешевле проводных резисторов. К обоим концам прикреплены клеммы проводов. Поскольку резисторы не учитывают полярность в цепи, ток может протекать в любом направлении. Таким образом, не нужно беспокоиться о том, чтобы прикрепить их вперед или назад.

B. Как это работает?

Резистор может показаться не очень большим. Можно подумать, что он ничего не делает, кроме как потребляет энергию. Однако он выполняет жизненно важную функцию: контролирует напряжение и ток в вашей цепи.Другими словами, резисторы дают вам контроль над конструкцией вашей схемы.

Когда электрический ток начинает течь по проводу, все электроны начинают двигаться в одном направлении. Это похоже на воду, текущую по трубе. По тонкой трубе будет течь меньше воды, потому что у нее меньше места для ее движения.

Точно так же, когда ток проходит через тонкий провод в резисторе, электронам становится все труднее двигаться через него. Короче говоря, количество электронов, проходящих через резистор, уменьшается с увеличением длины и толщины провода.

C. Функция и значение У резисторов

есть множество применений, но три наиболее распространенных — это управление током, деление напряжения и цепи резистор-конденсатор.

Ограничение тока

Если вы не добавите в цепь резисторы, ток будет опасно высоким. Это может привести к перегреву других компонентов и их повреждению. Например, если вы подключите светодиод непосредственно к батарее, он все равно будет работать.Однако через некоторое время светодиод нагреется, как огненный шар. В конечном итоге он сгорит, поскольку светодиоды менее устойчивы к нагреву.

Но, если ввести в схему резистор, он снизит протекание тока до оптимального уровня. Таким образом, вы можете дольше держать светодиод включенным, не перегревая его.

Делительное напряжение Также используются резисторы

для понижения напряжения до нужного уровня. Иногда для определенной части схемы, такой как микроконтроллер, может потребоваться более низкое напряжение, чем для самой схемы.Здесь на помощь приходит резистор.

Допустим, ваша схема работает от аккумулятора 12 В. Однако для микроконтроллера требуется только питание 6 В. Итак, чтобы разделить напряжение пополам, все, что вам нужно сделать, это подключить последовательно два резистора с равным сопротивлением. Проволока между двумя резисторами снизит наполовину напряжение вашей цепи, к которой можно подключить микроконтроллер. Используя соответствующие резисторы, вы можете снизить напряжение в цепи до любого уровня.

Резисторно-конденсаторные цепи Резисторы

также используются в сочетании с конденсаторами для создания интегральных схем, содержащих массивы резистор-конденсатор в одной микросхеме.Их также называют RC-фильтрами или RC-сетями. Они часто используются для подавления электромагнитных помех (EMI) или радиочастотных помех (RFI) в различных инструментах, включая порты ввода / вывода компьютеров и ноутбуков, локальные сети (LAN) и глобальные сети (WAN), среди прочего. Они также используются в станках, распределительных устройствах, контроллерах двигателей, автоматизированном оборудовании, промышленных приборах, лифтах и ​​эскалаторах.


Компонент 3: Диод

Диод — это устройство с двумя выводами, которое позволяет электрическому току течь только в одном направлении.Таким образом, это электронный эквивалент обратного клапана или улицы с односторонним движением. Он обычно используется для преобразования переменного тока (AC) в постоянный ток (DC). Он изготовлен либо из полупроводникового материала (полупроводниковый диод), либо из вакуумной трубки (вакуумный ламповый диод). Однако сегодня большинство диодов изготавливается из полупроводникового материала, особенно из кремния.

Рисунок 5: Диод [Источник изображения]
A. Состав

Как упоминалось ранее, существует два типа диодов: вакуумные диоды и полупроводниковые диоды.Вакуумный диод состоит из двух электродов (катода и анода), помещенных внутри герметичной вакуумной стеклянной трубки. Полупроводниковый диод состоит из полупроводников p-типа и n-типа. Поэтому он известен как диод с p-n переходом. Обычно он изготавливается из кремния, но также можно использовать германий или селен.

B. Как это работает?
Вакуумный диод

Когда катод нагревается нитью накала, в вакууме образуется невидимое облако электронов, называемое пространственным зарядом.Хотя электроны испускаются катодом, отрицательный объемный заряд отталкивает их. Поскольку электроны не могут достичь анода, через цепь не протекает ток. Однако, когда анод становится положительным, объемный заряд исчезает. В результате ток начинает течь от катода к аноду. Таким образом, электрический ток внутри диода течет только от катода к аноду и никогда от анода к катоду.

Соединительный диод P-N

Диод с p-n переходом состоит из кремниевых полупроводников p-типа и n-типа.Полупроводник p-типа обычно легируется бором, оставляя в нем дырки (положительный заряд). С другой стороны, полупроводник n-типа легирован сурьмой, добавляя в него несколько дополнительных электронов (отрицательный заряд). Таким образом, электрический ток может протекать через оба полупроводника.

Когда вы соединяете блоки p-типа и n-типа, лишние электроны n-типа объединяются с дырками p-типа, создавая зону обеднения без каких-либо свободных электронов или дырок. Короче, ток через диод больше не может проходить.

Когда вы подключаете отрицательную клемму батареи к кремнию n-типа, а положительную клемму к p-типу (прямое смещение), ток начинает течь, поскольку электроны и дырки теперь могут перемещаться по переходу. Однако, если вы перевернете клеммы (обратное смещение), ток через диод не будет протекать, потому что дырки и электроны отталкиваются друг от друга, расширяя зону истощения. Таким образом, как и вакуумный диод, переходной диод может пропускать ток только в одном направлении.

С.Функция и значение

Хотя диоды являются одними из простейших компонентов электронной схемы, они находят уникальное применение в различных отраслях промышленности.

Преобразование переменного тока в постоянный

Наиболее распространенным и важным применением диодов является преобразование переменного тока в постоянный. Обычно полуволновой (один диод) или двухполупериодный (четыре диода) выпрямитель используется для преобразования мощности переменного тока в мощность постоянного тока, особенно в бытовых источниках питания. Когда вы пропускаете источник питания переменного тока через диод, через него проходит только половина формы волны переменного тока.Поскольку этот импульс напряжения используется для зарядки конденсатора, он создает устойчивые и непрерывные постоянные токи без каких-либо пульсаций. Различные комбинации диодов и конденсаторов также используются для создания различных типов умножителей напряжения для умножения небольшого переменного напряжения на высокие выходы постоянного тока.

Обходные диоды

Обходные диоды часто используются для защиты солнечных панелей. Когда ток от остальных элементов проходит через поврежденный или пыльный солнечный элемент, это вызывает перегрев.В результате общая выходная мощность снижается, создавая горячие точки. Диоды подключаются параллельно солнечным элементам, чтобы защитить их от проблемы перегрева. Эта простая конструкция ограничивает напряжение на неисправном солнечном элементе, позволяя току проходить через неповрежденные элементы во внешнюю цепь.

Защита от скачков напряжения

Когда источник питания внезапно прерывается, он создает высокое напряжение в большинстве индуктивных нагрузок.Этот неожиданный скачок напряжения может повредить нагрузку. Однако вы можете защитить дорогое оборудование, подключив диод к индуктивным нагрузкам. В зависимости от типа защиты эти диоды известны под разными названиями, включая демпферный диод, обратный диод, подавляющий диод и диод свободного хода, среди других.

Демодуляция сигнала

Они также используются в процессе модуляции сигнала, поскольку диоды могут эффективно удалять отрицательный элемент сигнала переменного тока.Диод выпрямляет несущую волну, превращая ее в постоянный ток. Звуковой сигнал извлекается из несущей волны, этот процесс называется звуковой частотной модуляцией. Вы можете слышать звук после некоторой фильтрации и усиления. Следовательно, в радиоприемниках обычно используются диоды для извлечения сигнала из несущей волны.

Защита от обратного тока

Изменение полярности источника постоянного тока или неправильное подключение батареи может привести к протеканию значительного тока через цепь.Такое обратное подключение может повредить подключенную нагрузку. Вот почему защитный диод включен последовательно с положительной стороной клеммы аккумулятора. В случае правильной полярности диод становится смещенным в прямом направлении, и ток течет по цепи. Однако в случае неправильного подключения он становится смещенным в обратном направлении, блокируя ток. Таким образом, он может защитить ваше оборудование от возможных повреждений.


Компонент 4: Транзистор

Один из важнейших компонентов электронной схемы, транзисторы произвели революцию в области электроники.Эти крошечные полупроводниковые устройства с тремя выводами существуют уже более пяти десятилетий. Их часто используют как усилители и переключающие устройства. Вы можете думать о них как о реле без каких-либо движущихся частей, потому что они могут включать или выключать что-то без какого-либо движения.

Рисунок 6: Транзисторы [Источник изображения]
A. Состав

Вначале германий использовался для создания транзисторов, которые были чрезвычайно чувствительны к температуре. Однако сегодня они изготавливаются из кремния, полупроводникового материала, обнаруженного в песке, потому что кремниевые транзисторы гораздо более устойчивы к температуре и дешевле в производстве.Есть два разных типа биполярных переходных транзисторов (BJT), NPN и PNP. Каждый транзистор имеет три контакта, которые называются базой (b), коллектором (c) и эмиттером (e). NPN и PNP относятся к слоям полупроводникового материала, из которых изготовлен транзистор.

B. Как это работает?

Когда вы помещаете кремниевую пластину p-типа между двумя стержнями n-типа, вы получаете NPN-транзистор. Эмиттер присоединен к одному n-типу, а коллектор — к другому.Основание прикреплено к р-образному типу. Избыточные дырки в кремнии p-типа действуют как барьеры, блокирующие прохождение тока. Однако, если вы приложите положительное напряжение к базе и коллектору и отрицательно зарядите эмиттер, электроны начнут течь от эмиттера к коллектору.

Расположение и количество блоков p-типа и n-типа остаются инвертированными в транзисторе PNP. В этом типе транзистора один n-тип находится между двумя блоками p-типа. Поскольку распределение напряжения отличается, транзистор PNP работает иначе.Транзистор NPN требует положительного напряжения на базу, в то время как PNP требует отрицательного напряжения. Короче говоря, ток должен течь от базы, чтобы включить PNP-транзистор.

C. Функция и значение

Транзисторы функционируют как переключатели и усилители в большинстве электронных схем. Дизайнеры часто используют транзистор в качестве переключателя, потому что, в отличие от простого переключателя, он может превратить небольшой ток в гораздо больший. Хотя вы можете использовать простой переключатель в обычной цепи, для усовершенствованной схемы может потребоваться различное количество токов на разных этапах.

Транзисторы в слуховых аппаратах

Одно из самых известных применений транзисторов — слуховой аппарат. Обычно небольшой микрофон в слуховом аппарате улавливает звуковые волны, преобразовывая их в колеблющиеся электрические импульсы или токи. Когда эти токи проходят через транзистор, они усиливаются. Затем усиленные импульсы проходят через динамик, снова преобразуя их в звуковые волны. Таким образом, вы можете слышать значительно более громкую версию окружающего шума.

Транзисторы в компьютерах и калькуляторах

Все мы знаем, что компьютеры хранят и обрабатывают информацию, используя двоичный язык «ноль» и «единица». Однако большинство людей не знают, что транзисторы играют решающую роль в создании чего-то, что называется логическими вентилями, которые являются основой компьютерных программ. Транзисторы часто соединяются с логическими вентилями, чтобы создать уникальный элемент устройства, называемый триггером. В этой системе транзистор остается включенным, даже если вы уберете ток базы.Теперь он переключается или выключается всякий раз, когда через него проходит новый ток. Таким образом, транзистор может хранить ноль, когда он выключен, или единицу, когда он включен, что является принципом работы компьютеров.

Транзисторы Дарлингтона

Транзистор Дарлингтона состоит из двух соединенных вместе транзисторов с полярным соединением PNP или NPN. Он назван в честь своего изобретателя Сидни Дарлингтона. Единственное назначение транзистора Дарлингтона — обеспечить высокий коэффициент усиления по току при низком базовом токе.Вы можете найти эти транзисторы в приборах, которым требуется высокий коэффициент усиления по току на низкой частоте, таких как регуляторы мощности, драйверы дисплея, контроллеры двигателей, световые и сенсорные датчики, системы сигнализации и усилители звука.

IGBT и MOSFET транзисторы

Биполярные транзисторы с изолированным затвором (IGBT) часто используются в качестве усилителей и переключателей в различных инструментах, включая электромобили, поезда, холодильники, кондиционеры и даже стереосистемы.С другой стороны, полевые транзисторы металл-оксид-полупроводник (MOSFET) обычно используются в интегральных схемах для управления уровнями мощности устройства или для хранения данных.


Компонент 5: Индуктор

Катушка индуктивности, также известная как реактор, представляет собой пассивный компонент цепи, имеющей два вывода. Это устройство хранит энергию в своем магнитном поле, возвращая ее в цепь при необходимости. Было обнаружено, что когда две катушки индуктивности помещаются рядом, не касаясь друг друга, магнитное поле, создаваемое первой катушкой индуктивности, воздействует на вторую катушку индуктивности.Это был решающий прорыв, который привел к изобретению первых трансформаторов.

Рисунок 7: Катушки индуктивности [Источник изображения]
A. Состав

Это, вероятно, простейший компонент, состоящий только из мотка медной проволоки. Индуктивность прямо пропорциональна количеству витков в катушке. Однако иногда катушка наматывается на ферромагнитный материал, такой как железо, слоистое железо и порошковое железо, для увеличения индуктивности. Форма этого сердечника также может увеличить индуктивность.Тороидальные (в форме бублика) сердечники обеспечивают лучшую индуктивность по сравнению с соленоидными (стержневыми) сердечниками на такое же количество витков. К сожалению, индукторы в интегральной схеме сложно соединить, поэтому их обычно заменяют резисторами.

B. Как это работает?

Когда ток проходит по проводу, он создает магнитное поле. Однако уникальная форма индуктора приводит к созданию гораздо более сильного магнитного поля. Это мощное магнитное поле, в свою очередь, сопротивляется переменному току, но пропускает через него постоянный ток.Это магнитное поле также хранит энергию.

Возьмем простую схему, состоящую из батареи, переключателя и лампочки. Лампа будет ярко светиться, как только вы включите выключатель. Добавьте в эту цепь индуктивность. Как только вы включаете выключатель, лампочка переключается с яркой на тусклую. С другой стороны, когда переключатель выключен, он становится очень ярким, всего на долю секунды до полного выключения.

Когда вы включаете переключатель, индуктор начинает использовать электричество для создания магнитного поля, временно блокируя прохождение тока.Но только постоянный ток проходит через индуктор, как только магнитное поле заполнено. Вот почему лампочка переключается с яркой на тусклую. Все это время индуктор накапливает некоторую электрическую энергию в виде магнитного поля. Итак, когда вы выключаете выключатель, магнитное поле поддерживает постоянный ток в катушке. Таким образом, лампочка некоторое время горит ярко перед тем, как погаснуть.

C. Функция и значение

Хотя индукторы полезны, их сложно включить в электронные схемы из-за их размера.Поскольку они более громоздкие по сравнению с другими компонентами, они увеличивают вес и занимают много места. Следовательно, их обычно заменяют резисторами в интегральных схемах (ИС). Тем не менее, индукторы находят широкое применение в промышленности.

Фильтры в настроенных схемах

Одним из наиболее распространенных применений индукторов является выбор желаемой частоты в настроенных схемах. Они широко используются с конденсаторами и резисторами, подключенными параллельно или последовательно, для создания фильтров.Импеданс катушки индуктивности увеличивается с увеличением частоты сигнала. Таким образом, автономная катушка индуктивности может действовать только как фильтр нижних частот. Однако, когда вы объединяете его с конденсатором, вы можете создать режекторный фильтр, потому что сопротивление конденсатора уменьшается с увеличением частоты сигнала. Таким образом, вы можете использовать различные комбинации конденсаторов, катушек индуктивности и резисторов для создания различных типов фильтров. Они присутствуют в большинстве электронных устройств, включая телевизоры, настольные компьютеры и радио.

Дроссели как дроссели

Если через дроссель протекает переменный ток, он создает противоположный ток. Таким образом, он может преобразовывать источник переменного тока в постоянный. Другими словами, он подавляет подачу переменного тока, но позволяет постоянному току проходить через него, отсюда и название «дроссель». Обычно они используются в цепях питания, которым необходимо преобразовать подачу переменного тока в подачу постоянного тока.

Ферритовые бусины

Ферритовый шарик или ферритовый дроссель используется для подавления высокочастотного шума в электронных схемах.Некоторые из распространенных применений ферритовых шариков включают компьютерные кабели, телевизионные кабели и кабели для зарядки мобильных устройств. Эти кабели иногда могут действовать как антенны, взаимодействуя с аудио- и видеовыходами вашего телевизора и компьютера. Таким образом, индукторы используются в ферритовых шариках, чтобы уменьшить такие радиочастотные помехи.

Индукторы в датчиках приближения

Большинство датчиков приближения работают по принципу индуктивности. Индуктивный датчик приближения состоит из четырех частей, включая индуктор или катушку, генератор, схему обнаружения и выходную схему.Осциллятор генерирует флуктуирующее магнитное поле. Когда объект приближается к этому магнитному полю, начинают накапливаться вихревые токи, уменьшая магнитное поле датчика.

Схема обнаружения определяет силу датчика, в то время как выходная схема вызывает соответствующий ответ. Индуктивные датчики приближения, также называемые бесконтактными датчиками, ценятся за их надежность. Они используются на светофорах для определения плотности движения, а также в качестве датчиков парковки легковых и грузовых автомобилей.

Асинхронные двигатели

Асинхронный двигатель, вероятно, является наиболее распространенным примером применения индукторов. Обычно в асинхронном двигателе индукторы устанавливаются в фиксированном положении. Другими словами, им не разрешается выравниваться с близлежащим магнитным полем. Источник питания переменного тока используется для создания вращающегося магнитного поля, которое затем вращает вал. Потребляемая мощность регулирует скорость вращения. Следовательно, асинхронные двигатели часто используются в приложениях с фиксированной скоростью.Асинхронные двигатели очень надежны и прочны, поскольку нет прямого контакта между двигателем и ротором.

Трансформаторы

Как упоминалось ранее, открытие индукторов привело к изобретению трансформаторов, одного из основных компонентов систем передачи энергии. Вы можете создать трансформатор, объединив индукторы общего магнитного поля. Обычно они используются для повышения или понижения напряжения в линиях электропередач до желаемого уровня.

Накопитель энергии

Катушка индуктивности, как и конденсатор, также может накапливать энергию. Однако, в отличие от конденсатора, он может накапливать энергию в течение ограниченного времени. Поскольку энергия хранится в магнитном поле, она схлопывается, как только отключается источник питания. Тем не менее, индукторы функционируют как надежные накопители энергии в импульсных источниках питания, таких как настольные компьютеры.


Компонент 6: реле

Реле — это электромагнитный переключатель, который может размыкать и замыкать цепи электромеханическим или электронным способом.Для работы реле необходим относительно небольшой ток. Обычно они используются для регулирования малых токов в цепи управления. Однако вы также можете использовать реле для управления большими электрическими токами. Реле — это электрический эквивалент рычага. Вы можете включить его небольшим током, чтобы включить (или усилить) другую цепь, использующую большой ток. Реле могут быть либо электромеханическими, либо твердотельными.

Рисунок 8: Реле [Источник изображения]
A. Состав

Электромеханическое реле (ЭМИ) состоит из корпуса, катушки, якоря, пружины и контактов.Рама поддерживает различные части реле. Якорь — это подвижная часть релейного переключателя. Катушка (в основном из медной проволоки), намотанная на металлический стержень, создает магнитное поле, которое перемещает якорь. Контакты — это токопроводящие части, которые размыкают и замыкают цепь.

Твердотельное реле (SSR) состоит из входной цепи, цепи управления и выходной цепи. Входная цепь эквивалентна катушке электромеханического реле. Схема управления действует как связующее устройство между входными и выходными цепями, в то время как выходная цепь выполняет ту же функцию, что и контакты в ЭМИ.Твердотельные реле становятся все более популярными, поскольку они дешевле, быстрее и надежнее электромеханических реле.

B. Как это работает?

Используете ли вы электромеханическое реле или твердотельное реле, это нормально замкнутое (NC) или нормально разомкнутое (NO) реле. В случае реле NC контакты остаются замкнутыми при отсутствии питания. Однако в нормально разомкнутом реле контакты остаются разомкнутыми при отсутствии питания.Короче говоря, всякий раз, когда через реле протекает ток, контакты либо размыкаются, либо замыкаются.

В ЭМИ источник питания возбуждает катушку реле, создавая магнитное поле. Магнитная катушка притягивает металлическую пластину, установленную на якоре. Когда ток прекращается, якорь возвращается в исходное положение под действием пружины. EMR также может иметь один или несколько контактов в одном пакете. Если в цепи используется только один контакт, она называется цепью с одиночным разрывом (SB). С другой стороны, цепь двойного размыкания (DB) идет с буксировочными контактами.Обычно реле с одинарным размыканием используются для управления маломощными устройствами, такими как индикаторные лампы, в то время как контакты с двойным размыканием используются для управления мощными устройствами, такими как соленоиды.

Когда дело доходит до работы SSR, вам необходимо подать напряжение выше, чем указанное напряжение срабатывания реле, чтобы активировать входную цепь. Вы должны подать напряжение ниже установленного минимального напряжения падения реле, чтобы деактивировать входную цепь. Схема управления передает сигнал от входной цепи к выходной цепи.Выходная цепь включает нагрузку или выполняет желаемое действие.

C. Функция и значение

Поскольку они могут управлять сильноточной цепью с помощью слаботочного сигнала, в большинстве процессов управления используются реле в качестве первичных устройств защиты и переключения. Они также могут обнаруживать неисправности и нарушения, возникающие в системах распределения электроэнергии. Типичные приложения включают телекоммуникации, автомобили, системы управления дорожным движением, бытовую технику и компьютеры, среди прочего.

Реле защиты

Защитные реле используются для отключения или отключения цепи при обнаружении каких-либо нарушений. Иногда они также могут подавать сигнал тревоги при обнаружении неисправности. Типы реле защиты зависят от их функции. Например, реле максимального тока предназначено для определения тока, превышающего заданное значение. При обнаружении такого тока реле срабатывает, отключая автоматический выключатель, чтобы защитить оборудование от возможного повреждения.

Дистанционное реле или реле импеданса, с другой стороны, может обнаруживать отклонения в соотношении тока и напряжения, а не контролировать их величину независимо. Он срабатывает, когда отношение V / I падает ниже заданного значения. Обычно защитные реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.

Реле автоматического повторного включения

Реле автоматического повторного включения предназначено для многократного повторного включения автоматического выключателя, который уже отключен с помощью защитного реле.Например, при резком падении напряжения в электрической цепи вашего дома может наблюдаться несколько кратковременных перебоев в подаче электроэнергии. Эти сбои происходят из-за того, что реле повторного включения пытается автоматически включить защитное реле. В случае успеха питание будет восстановлено. В противном случае произойдет полное отключение электроэнергии.

Тепловые реле

Тепловое воздействие электрической энергии — принцип работы теплового реле. Короче говоря, он может обнаруживать повышение температуры окружающей среды и соответственно включать или выключать цепь.Он состоит из биметаллической полосы, которая нагревается при прохождении через нее сверхтока. Нагретая полоса изгибается и замыкает замыкающий контакт, отключая автоматический выключатель. Наиболее распространенное применение теплового реле — защита электродвигателя от перегрузки.


Компонент 7. Кристалл кварца

Кристаллы кварца находят несколько применений в электронной промышленности. Однако в основном они используются в качестве резонаторов в электронных схемах. Кварц — это встречающаяся в природе форма кремния.Однако теперь его производят синтетически, чтобы удовлетворить растущий спрос. Проявляет пьезоэлектрический эффект. Если вы приложите физическое давление к одной стороне, возникающие в результате вибрации создадут переменное напряжение на кристалле. Резонаторы из кварцевого кристалла доступны во многих размерах в зависимости от требуемых применений.

Рисунок 9: Кристалл кварца [Источник изображения]
A. Состав

Как упоминалось ранее, кристаллы кварца либо производятся синтетическим путем, либо встречаются в природе.Их часто используют для создания кварцевых генераторов для создания электрического сигнала с точной частотой. Обычно форма кристаллов кварца гексагональная с пирамидками на концах. Однако для практических целей их разрезают на прямоугольные плиты. К наиболее распространенным типам форматов резки относятся X, Y и AT. Эта плита помещается между двумя металлическими пластинами, называемыми удерживающими пластинами. Внешняя форма кварцевого кристалла или кварцевого генератора может быть цилиндрической, прямоугольной или квадратной.

Б.Как это работает?

Если подать на кристалл переменное напряжение, он вызовет механические колебания. Огранка и размер кристалла кварца определяют резонансную частоту этих колебаний или колебаний. Таким образом, он генерирует постоянный сигнал. Кварцевые генераторы дешевы и просты в изготовлении синтетическим способом. Они доступны в диапазоне от нескольких кГц до нескольких МГц. Поскольку кварцевые генераторы имеют более высокую добротность или добротность, они очень стабильны во времени и температуре.

C. Функция и значение

Исключительно высокая добротность позволяет использовать кристаллы кварца и резонансный элемент в генераторах, а также в фильтрах в электронных схемах. Вы можете найти этот высоконадежный компонент в радиочастотных приложениях, как схемы генератора тактовых импульсов в платах микропроцессоров, а также как элемент синхронизации в цифровых часах.

Кварцевые часы

Проблема традиционных часов с винтовой пружиной заключается в том, что вам нужно периодически заводить катушку.С другой стороны, маятниковые часы зависят от силы тяжести. Таким образом, они по-разному показывают время на разных уровнях моря и высотах из-за изменений силы тяжести. Однако на характеристики кварцевых часов не влияет ни один из этих факторов. Кварцевые часы питаются от батареек. Обычно крошечный кристалл кварца регулирует шестеренки, которые управляют секундной, минутной и часовой стрелками. Поскольку кварцевые часы потребляют очень мало энергии, батарея часто может работать дольше.

Фильтры

Вы также можете использовать кристаллы кварца в электронных схемах в качестве фильтров.Они часто используются для фильтрации нежелательных сигналов в радиоприемниках и микроконтроллерах. Большинство основных фильтров состоят из одного кристалла кварца. Однако усовершенствованные фильтры могут содержать более одного кристалла, чтобы соответствовать требованиям к рабочим характеристикам. Эти кварцевые фильтры намного превосходят фильтры, изготовленные с использованием ЖК-компонентов.


Заключение

От общения с близкими, живущими на разных континентах, до приготовления горячей чашки кофе — электронные устройства затрагивают практически все аспекты нашей жизни.Однако что заставляет эти электронные устройства выполнять, казалось бы, трудоемкие задачи всего за несколько минут? Крошечные электронные схемы — основа всего электронного оборудования. Чтение о различных компонентах электронной схемы поможет вам понять их функции и значение. Поделитесь своими предложениями и мнениями по этому поводу в разделе комментариев ниже.

// Эта статья изначально была опубликована на ICRFQ.

Что такое электрические цепи? | Основные понятия электричества

Вы, возможно, задавались вопросом, как заряды могут непрерывно течь в одинаковом направлении по проводам без использования этих гипотетических Источников и Назначений.Чтобы схема источника и назначения работала, оба должны иметь бесконечную емкость для зарядов, чтобы поддерживать непрерывный поток!

Используя аналогию с мрамором и трубкой из предыдущей страницы о проводниках, изоляторах и потоке электронов, мраморный источник и мраморные приемные ведра должны быть бесконечно большими, чтобы вместить достаточно мрамора для поддержания «потока» мрамора. .

Что такое цепь?

Ответ на этот парадокс можно найти в концепции цепи : бесконечного зацикленного пути для носителей заряда.Если мы возьмем провод или несколько проводов, соединенных встык, и закрутим его так, чтобы он образовал непрерывный путь, у нас есть средства для поддержки равномерного потока заряда, не прибегая к бесконечным источникам и назначениям:

Каждый носитель заряда, движущийся по часовой стрелке в этом контуре, толкает того, что находится перед ним, который толкает тот, который находится перед ним, и так далее, и так далее, точно так же, как хула-хуп, наполненный шариками. Теперь у нас есть возможность поддерживать непрерывный поток заряда в течение неограниченного времени без необходимости в бесконечных запасах и свалках.Все, что нам нужно для поддержания этого потока, — это постоянные средства мотивации для этих носителей заряда, о которых мы поговорим в следующем разделе этой главы, посвященном напряжению и току.

Что означает обрыв цепи?

Непрерывность в цепи так же важна, как и в прямом проводе. Как и в примере с прямым отрезком провода между Источником и Назначением, любой разрыв в этой цепи предотвратит прохождение заряда через нее:

Здесь важно понимать, что не имеет значения, где происходит разрыв .Любое нарушение непрерывности в цепи предотвратит поток заряда по всей цепи. Если не существует непрерывной непрерывной петли из проводящего материала, через которую проходят носители заряда, устойчивый поток просто не может поддерживаться.

ОБЗОР:

  • Схема представляет собой непрерывную петлю из проводящего материала, которая позволяет носителям заряда непрерывно проходить через нее без начала и конца.
  • Если цепь «разорвана», это означает, что ее проводящие элементы больше не образуют законченный путь, и в ней не может происходить непрерывный поток заряда.
  • Местоположение разрыва цепи не имеет отношения к ее неспособности поддерживать непрерывный поток заряда. Любой разрыв , где-нибудь в цепи предотвращает поток носителей заряда по цепи.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Изучите схемы с помощью онлайн-курсов и уроков

Что такое схемы?

Электрические цепи питают все в нашей жизни от компьютеров до светильников в вашем доме. Для проектирования безопасных и эффективных схем требуется знание того, как работают электрические токи, чтобы наши электронные устройства работали без сбоев.Цепи предназначены для использования опасной энергии энергии таким образом, чтобы мы могли доставлять эту энергию в наши дома и на работу, не создавая значительного риска. Если вы собираетесь построить новое здание или привести дом в действие, кто-то должен понимать, как работают эти схемы. Печатные платы питают даже самые маленькие детали наших устройств. Наше понимание электронной схемы позволило нам создавать более быстрые, компактные и эффективные вычислительные устройства, которым не видно конца.

Узнайте о схемах

Электротехника — это развивающаяся дисциплина как в технической, так и в классической области.Создание сложных схем позволяет информатике продвигать компьютерное оборудование до того, что мы можем использовать для наших потребностей в квантовых вычислениях. Эти схемы являются жизненно важной частью того, что движет нашей жизнью от микро до макро, поэтому узнайте немного больше обо всем этом с помощью правильных курсов и сертификатов.

Курсы схемотехники и сертификаты

EdX.org сотрудничает с ведущими учреждениями в этой области, чтобы предложить вам курсы схемотехники. Вы можете узнать об основах схемотехники с серией MIT по схемам.Вы изучите основы схем, включая протекание тока и последовательную цепь, а также такие концепции, как закон Ома. EPFL также предлагает серию курсов по схемотехнике с Electronique. Он также познакомит вас с основами электрических токов. Вся серия X от Массачусетского технологического института по схемам дает вам полный перечень электрических цепей. Вы разберетесь с источниками питания и источниками напряжения. Как только вы поймете принципиальную схему, вы будете готовы начать свою карьеру.

Сделайте карьеру, исследуя схемы

Идете ли вы по традиционному пути электротехники или изучаете компьютерную инженерию, правильные курсы могут помочь вам начать работу.Получите свое понимание анализа цепей и схематических диаграмм на курсах с edX.org и лидерами в этой области. Вы можете изучать как технические, так и традиционные схемы, развивать навыки, которые привлекают работодателей и настраивают вас на захватывающую карьеру. Вы можете построить следующую большую вещь в области компьютеров или продолжить более традиционный путь, поделившись своим опытом в строительных проектах и ​​нормах безопасности. Вам будут предложены курсы, которые научат вас всему, что вам нужно вначале, и настроят вас на долгую стабильную карьеру.

Электрооборудование в строительстве от Construction Knowledge.net

СТРОИТЕЛЬНЫЕ ЗНАНИЯ >> ЭЛЕКТРИЧЕСКИЕ >>

ЭЛЕКТРИЧЕСКАЯ


1. Как я могу понять основы электричества?
2. Каковы основные электрические формулы?
3. В чем разница между постоянным и переменным током?
4. Чем однофазный переменный ток отличается от трехфазного переменного тока?
5.В чем разница между кВт и кВА?
6. Что такое коэффициент мощности?
7. Что мне нужно знать о генераторах?
8. Что я должен знать о трансформаторах?
9. Что я должен знать об измерениях, распределительном устройстве и панелях?
10. Что делают предохранители или автоматические выключатели?
11. Каковы основы электроники?
12. Чем аналоговый отличается от цифрового?
13. Как работает волоконная оптика?
14.Какие документы, являющиеся общественным достоянием, доступны для дальнейшего изучения?
15. Практические хитрости и практические правила в области электротехники Основы:

Как я могу понять основы электричества?


Представьте, что вы стоите с садовым шлангом, готовый пропитать ничего не подозревающий прохожий. Шланг находится под давлением, и вода будет поток через шланг на прохожего, когда вы открываете сопло. Однако перед опрыскиванием вы останавливаетесь и думаете о сходствах. между потоком воды в шланге и электрическим током в проводе.

Вы знаете, что насос, где-то работающий, создает давление воды в шланге, который измеряется в фунтах на квадратный дюйм (psi). Что давление воды переводит воду в состояние «готово к течению». По аналогии, электрический генератор создает электродвижущую силу (ЭДС), которая измеряется в вольтах. Электричество в проводе находится в состоянии «Готово к течению». состоянии и имеет определенное напряжение или ЭДС.

Теперь, если вы откроете сопло этого водяного шланга, ничего не подозревающий прохожий будет залит струей воды.Этот поток воды получает описывается в галлонах в минуту (gpm). Электрический расход составляет определяется как ток (I) и измеряется в амперах. Для мотора чтобы включить или загореться лампочка, должен течь ток.

Третья параллель между водяным шлангом и электрическим проводом касается сопротивления. Если у вас есть несколько сотен футов шланга, намотанного на ваши ноги, через которые должна проходить вода, не будет много воды из шланга, чтобы обрызгать ничего не подозревающего прохожего.Потеря напора в шланг из-за трения значительно уменьшит поток воды и воду давление. Точно так же сопротивление в электрической цепи, либо от длинный провод неправильного размера или электрическое устройство может снизить оба ЭДС. и текущий поток.

Напомним, что ЭДС (электродвижущая сила, измеряемая в вольтах) подобна давление воды (psi), в то время как текущий поток (амперы) подобен воде расход (галлонов в минуту).


Каковы основные электрические формулы?


Чтобы понять электричество, приведенные ниже основные формулы: существенный.


Если вы предпочтете взглянуть на некоторые электрические формулы, разработанные в США. военный. Вот еще один набор:

В чем разница между постоянным и переменным током?


DC означает постоянный ток. Цепь, питаемая от батареи, представляет собой цепь постоянного тока. Большинство электронные устройства работают на постоянном токе. Продолжая аналогию с водой в шланге, цепь постоянного тока имеет все поток воды в одном направлении.Причина, по которой вся электрическая энергия — это не постоянный ток, потому что он не может быть легко передан на большие расстояния или преобразован в другие напряжения. Итак, в первые дни электроэнергетики использовался постоянный ток, но требовалась проводка большого диаметра (дорогая) и местные генераторы (непрактично).

Следовательно, более эффективный вид электроэнергии развит … Переменный ток. Думая о переменном токе, аналогия с водяной шланг больше не работает.В переменном токе ток меняется на противоположный. направление в цепи, текущее сначала в одном направлении, затем в Другие. Это изменение направления потока происходит 60 раз за одну секунду для типичная электрическая мощность переменного тока в Америке. Таким образом, мощность переменного тока называется 60 цикл (или 60 Гц). Нормальная мощность переменного тока в большинстве остальных мир 50 цикл. Количество циклов выбрано как наиболее произвольное. стандарт. Карта, показанная по этой ссылке в Википедии http: //en.wikipedia.org / wiki / Utility_frequency иллюстрирует стандартные напряжения и частоты, выбранные большинством стран мира.

Кроме того, фары и двигатели, как правило, рассчитаны на работу либо на 50 циклов, либо на 60 циклов. Неправильная частота в свете вызывает мерцание и с моторами могут возникнуть более серьезные проблемы. Поймите, что электрические приборы обычно рассчитаны на 60 или 50 циклов питания и будут проблемы с эффективностью или даже безопасностью, если правильный частота не используется.

Мощность переменного тока

стала стандартом во всем мире, главным образом потому, что трансформаторы позволяют переменному току изменять напряжение. Таким образом, коммунальные предприятия могут производят электричество и отправляют его по высоковольтным линиям (скажем, 11000 вольт), затем просто преобразуйте мощность в 120 вольт для нормального использования. Эта способность передавать мощность высокого напряжения по линиям передачи позволяет больше мощности, передаваемой по кабелю меньшего диаметра, и с меньшими затратами. потери передачи, чем позволяет мощность постоянного тока.

Чем однофазный переменный ток отличается от трехфазного переменного тока?


Начнем с простой практической информации: для однофазного питания переменного тока требуется 3 провода: горячий, нейтральный и заземляющий. Три фазы требуется 5 проводов: 3 точки, нейтраль и земля. В трех фазах каждый горячих проводов может замкнуть цепь с нейтралью. Три фазы мощность может нести большую электрическую мощность, чем однофазная. Запуск Двигатель мощностью 10 л.с. (для запуска двигателя может потребоваться в 6 раз больше мощности, чем двигатель) может вызвать мигание однофазной линии или низкий Напряжение.Трехфазная линия может позволить запустить двигатель мощностью 10 л.с. без проблем. Как правило, трехфазные двигатели более компактны и эффективнее, чем однофазные двигатели аналогичного размера, поэтому использование трех фазные двигатели получили широкое распространение. Большие двигатели используются во многих применение: лифты, вентиляторы, нагнетатели, компрессоры, насосы, конвейеры приводы и т. д., поэтому для многих проектов требуется трехфазное электрическое питание.

Чтобы понять трехфазную мощность, подумайте о 60 циклах электричество переменного тока, рассмотренное выше.Каждую 1/60 часть второй имеет направленное изменение тока. Ток течет в одном направлении, а затем обратно в другом направлении. Трехфазная электрическая волна на рисунке ниже показана черная линия (фаза №1), протекающая в одном направление в 0, затем течет в другом направлении на 180 и, наконец, обратный поток в исходном направлении на 360. Красная линия (фаза №2) и синяя линия (фаза 3) начинаются смещения направления в разные времена.Это разделение фаз необходимо учитывать, чтобы получить правильное чередование фаз при подключении асинхронных двигателей. Другими словами, один соединение заставляет двигатель вращаться вперед, другое соединение заставляет его работать назад.

Итак, трехфазная электрическая система имеет 3 проводника, несущие осциллограммы напряжения (показанные выше) со смещением во времени на 120 градусов или 1/3 цикла.

При проектировании трехфазных электрических систем стремятся сбалансировать нагрузка между фазами.В 5-проводной системе 120/208 В два из горячие точки создают цепь 208 вольт, в то время как горячая и нейтраль создают цепь 120 цепь вольт. Один пытается сбалансировать нагрузку (ток), напряжение и сопротивление на каждой из фаз. Конечно идеальной балансировки никогда бывает. Но слишком большой дисбаланс вызывает более высокие эксплуатационные температура, меньший срок службы двигателя и меньшая эффективность.

В чем разница между кВт и кВА?


Электроэнергетические компании предоставляют потребителям вольт-амперы, но выставляют счета их за ватты.Понимание этой концепции поможет вам лучше понимать многие решения, принимаемые владельцами проектов и электрическими инженеры. Поскольку в приведенном выше законе мощности указано, что Вт = Вольт x Ампер, вы можете подумать, что количество вольт-ампер должно быть таким же, как и количество ватт. В конце концов, это то, что утверждает уравнение степенного закона. И это правда, когда нагрузка резистивная, например, электрический нагрев элемент, который использует всю мощность, которая передается ему путем изменения электрическая энергия в тепловую.Мотор или люминесцентный свет, включен с другой стороны, реактивные нагрузки в той части электрической мощности который идет к ним, поглощается, а затем возвращается в цепь без использовался. Реактивная часть нагрузки не рассеивает мощность.

Давайте посмотрим на это по-другому. Пытаясь понять генераторы которые указаны для проекта, вы часто будете видеть их в списке с КВА номера. Так что это значит? Если вы знаете, что у вас будет 100 ампер нагрузки при 208 вольт, вам понадобится трансформатор не менее 20.8 кВА. Если вы установили этот трансформатор и измерил вольты, вы увидите 208 вольт, а амперметр покажет 100 ампер. Но поскольку часть этого тока возвращается в цепь без использования реальная мощность (или киловатт) будет меньше, чем 20,8 кВт. На рисунке ниже показано:

Итак, в нашем примере с генератором, приведенном выше, если коэффициент мощности равен 0,8, то Фактическая потребляемая мощность составит 20,8 кВА x коэффициент мощности 0,8 или 16.6 кВт.

Поскольку мы обсуждаем генераторы, полезно знать, что отрасль стандартный коэффициент мощности, принятый для номинальных генераторов, составляет 0,8. Но реальность того, что генератор действительно будет приводить в действие под нагрузкой, зависит от фактический коэффициент мощности. Чтобы продолжить приведенный выше пример, если вы используете генератор мощностью 16,6 кВт, но работает много небольших асинхронных двигателей. а истинный коэффициент мощности равен 0,6, тогда требуемая полная мощность будет быть 16.6 кВт / 0,6 = 27,7 кВА. Однако правильный вывод, который можно сделать, — это обсуждайте и покупайте генераторы с учетом требований кВА, а не КВТ.


Что такое коэффициент мощности?

На рисунке выше показано, что коэффициент мощности — это число. от 0 до 1,0, что представляет собой соотношение между истинной мощностью (кВт) и полная мощность (кВА). Некоторые типичные коэффициенты мощности показаны ниже:

Различные типы грузов Коэффициент мощности
Электрический резистивный нагрев 1.0
Лампы накаливания 1,0
Лампы накаливания со ступенькой вниз трансформатор от 0,95 до 0,98
Люминесцентное освещение от 0,5 до 0,95
Однофазный асинхронный двигатель до 1 л.с. от 0,55 до 0,75
Однофазный асинхронный двигатель от 1 до 10 л.с. 0.75 до 0,85
Трехфазный асинхронный двигатель от 1 до 10 л.с. от 0,75 до 0,91
Трансформаторы электросварочные от 0,50 до 0,70
Синхронные двигатели от 0,80 до 1,0

Как видите, коэффициенты мощности могут сильно различаться в зависимости от нагрузки. Так почему это важно? Энергетические компании не любят поставлять требования к кажущейся мощности, но платят только за истинную мощность это используется.Таким образом, промышленная установка с низким коэффициентом мощности должна иметь к нему поступает гораздо больше энергии, чем он платит, создавая неэффективность для энергокомпаний. Как вы понимаете, мощность компании склонны ценить эффективность, поэтому обычно выставляют счет промышленный клиент с низким коэффициентом мощности штраф для поощрения их улучшить. Недогруженный асинхронные двигатели часто имеют более низкий коэффициент мощности, поэтому промышленное предприятие может заменить эти двигатели на двигатели меньшей мощности или с синхронные двигатели.


Что мне нужно знать о генераторах?

Я знаю одну вещь, которую я хотел бы знать о дизельных генераторах, — это то, что они необходимо ежедневно проверять уровень масла, если они работают круглосуточно и без выходных. я имел арендовали дизельный генератор мощностью 25 кВА для завода, который мы строили в в глуши. Этот старый генератор просто работал и работал … пока этого не произошло. Когда сервисные ребята вышли и спросили меня, когда я в последний раз проверял масла, я посмотрела на них тупым пустым взглядом.Затем я ответил жалко: «Но ты никогда не говорил мне, что мне нужно проверить масло». Платить Помогите отремонтировать двигатель на генераторе, мне помог запомнить урок.

Если вам необходимо временно установить электричество на стройплощадке, дизель, бензин или генераторы пропана часто решают проблему. Пытаясь определить размер генератора, который вам нужен, также может быть проблемой. Следующая Honda Веб-сайт http://www.hondapowerequipment.com/genwat.asp показывает мощность требования для множества устройств.Большая разница в текущем потреблении для Следует отметить запуск двигателей по сравнению с просто работающими. Я тоже был удивлен сколько энергии потребляют компьютеры.

Сайт для сравнения цен и функций для промышленных генераторов http://www.gopower.com/ показывает доступные варианты. Первое решение касается топлива, используемого для питания генератора; нормальный варианты — дизельное топливо, природный газ или пропан. Решаем, какие предметы будут питание в случае отключения электроэнергии определяет размер генератора, обычно в кВА.Расположение предлагаемого генератора приводит к требуемый тип жилья.

В качестве интересного момента я наткнулся на инструкции по сборке простейший генератор в мире. Вы можете убить время, играя с этим или помочь ребенку с научным проектом или что-то в этом роде вещь. Это простое устройство ясно показывает определение электрического генератор как устройство, преобразующее механическую энергию в электрическую энергия. С другой стороны, двигатель преобразует электрическую энергию в механическая энергия.

Том IV Справочника по электротехнике Министерства энергетики США иллюстрирует компоненты генератора на рисунке ниже.


Что мне нужно знать о трансформаторах?

Трансформатор передает электрическую энергию из одной цепи в другую магнитной муфтой. Другими словами, количество витков на первичной сторона трансформатора создает магнитное поле при прохождении тока через это.Таким образом, вторичная сторона цепи с разное количество обмоток катушки, будут иметь разное напряжение. В современное использование электричества требует очень высокого напряжения, низкого тока потоки перемещаются на большие расстояния между источниками генерации электроэнергии и смысл использования. Практически при любом современном использовании электричества несколько напряжение увеличивается и будет происходить его уменьшение. Поскольку трансформаторы чрезвычайно эффективен, между их входной мощностью и малыми потерями выходная мощность.

На рисунке ниже показан простой трансформатор из Том IV Справочника по электротехнике Министерства энергетики США.

Что я должен знать об измерениях, распределительном устройстве и панелях?

Электроэнергетическая часть большинства зданий будет включать счетчики, распределительные устройства и распределительные щиты. Инспектор строительства должен иметь общее представление о том, что делают эти элементы. Измерение позволяет энергетической компании отслеживать, сколько электроэнергии получает использовал.Наибольшее количество электроэнергии, потребляемой за один раз (Спрос) и коэффициент мощности также важны для зданий, у которых больше индуктивные нагрузки, такие как двигатели.

Тогда в распределительном устройстве потребуется главный выключатель, позволяющий отключить всю электрическую систему. От этого главного выключателя ток течет через панели и субпанели выключателей. Обычно одна линейная диаграмма показывает общую концепцию электрической мощности система и включает в себя приборы учета, распределительное устройство и панели.

Что делают предохранители или автоматические выключатели?

Предохранитель или автоматический выключатель защищает проводку в электрическом цепи от пропускания слишком большого тока. Короткое замыкание, для Например, это могло быть вызвано ошибочным пересечением двух проводов (гвоздь через стену и касание двух проводов), что может вызвать огромный поток тока и начало пожара. Без предохранителей и цепи выключатели, электрические цепи просто воспламенились бы слишком много раз, чтобы электричество считалось безопасной и практичной энергией использовать.Поскольку оборудование выйдет из строя и возникнут проблемы с проводкой, предохранители или автоматические выключатели должны быть включены в цепи для безопасность.

Предохранители

работают по простой концепции, когда ток течет по проводам. он генерирует тепло, чем больше ток, тем больше тепла. Тонкая проволока в предохранителе пропускает через него только определенное количество тока пока он не нагреется и не распадется. Тонкий провод в предохранителе исчез. и ток не может течь по цепи.Когда ток протекал через предохранитель и остальная часть цепи, это была замкнутая цепь, но когда предохранитель перегорает, цепь разрывается. Нет тока в открытом схема. Так что предохранители работают хорошо, но срабатывают только один раз. После провода если предохранитель перегорел, этот предохранитель необходимо вынуть и выбросить, а новый должен быть установлен предохранитель.

Автоматический выключатель выполняет ту же функцию, что и предохранитель, но использует простой переключатель для обнаружения ситуаций перегрузки по току.Следовательно автоматический выключатель может отключиться и повторно включаться многократно. Перейдите по ссылке, чтобы получить немного более подробное объяснение о как работают автоматические выключатели.


Каковы основы электроники?

Какого черта я должен знать? Я планирую и строю здания, чтобы заработать себе на жизнь. Я нашел несколько интересных учебных курсов ВМС США, которые огромное количество полезной информации. Введение в курс следует:

СЕРИЯ УЧЕБНЫХ ЗАВЕДЕНИЙ ПО ЭЛЕКТРОНИКЕ И ВМФ

Учебная серия по электричеству и электронике ВМФ (NEETS) была разработан для использования персоналом в
многие электрические и электронные рейтинги ВМФ.Автор, и по совету, старший
техников в этих рейтингах, эта серия предлагает новичкам фундаментальные электрические и электронные
концепции посредством самообучения. Презентация этой серии не ориентированный на любую конкретную рейтинговую структуру,
но разделен на модули, содержащие связанную информацию, организованную в традиционные пути обучения.
Серия предназначена для предоставления небольшого количества информации, которую можно легко усваивается перед продвижением
далее в более сложный материал.Для студента, только становящегося ознакомился с электричеством или
электронике, настоятельно рекомендуется изучать модули в их предложенная последовательность. Хотя
есть список NEETS по названию модуля, следующее краткое описания дают краткий обзор того, как
отдельные модули соединяются вместе.

Модуль 1, Введение в материю, энергию и постоянный ток вводит курс с краткой историей
электричества и электроники и переходит в характеристики материя, энергия и постоянный ток
(Округ Колумбия).Здесь также описаны некоторые общие меры безопасности и процедуры первой помощи, которые должны быть
общие знания для человека, работающего в области электричества. Соответствующие советы по безопасности расположены по адресу:
. и во всей остальной части серии.

Модуль 2 «Введение в переменный ток и трансформаторы» представляет собой Введение в переменный ток
(переменного тока) и трансформаторов, включая основную теорию переменного тока и основы электромагнетизм, индуктивность,
емкость, импеданс и трансформаторы.

Модуль 3, Введение в защиту цепей, управление и измерения. в том числе автоматические выключатели,
предохранители и ограничители тока, используемые в защите цепей, а также теория и использование счетчиков в качестве электрических
измерительные приборы.

Модуль 4, Введение в электрические проводники, методы электромонтажа и Схематическое чтение, представляет
использование проводов, изоляция, используемая в качестве покрытия проводов, сращивание, заделка разводки, пайки и чтения
электрические схемы.

Модуль 5, Введение в генераторы и двигатели, представляет собой введение. к генераторам и двигателям, и
охватывает использование генераторов и двигателей переменного и постоянного тока при преобразовании электрические и механические
энергии.

Модуль 6, Введение в электронные эмиссионные трубки и источники питания. связывает первые пять модулей
вместе во введении к электронным лампам и ламповой энергии запасы.

Модуль 7, Введение в твердотельные устройства и источники питания аналогичен модулю 6, но находится в
ссылка на твердотельные устройства.

Модуль 8 «Введение в усилители» посвящен усилителям.

Модуль 9, Введение в схемы генерации и формирования волн. обсуждает генерацию волн и
волновые схемы.

Модуль 10, Введение в распространение волн, линии передачи и Антенны представлены
характеристики распространения волн, линий передачи и антенн.

Модуль 11, Принципы микроволн, объясняет микроволновые генераторы, усилители и волноводы.

Модуль 12, Принципы модуляции, обсуждает принципы модуляция.

Модуль 13, Введение в системы счисления и логические схемы представляет основные концепции
системы счисления, булева алгебра и логические схемы, все из которых относятся к цифровым компьютерам.

Модуль 14, Введение в микроэлектронику, посвящен микроэлектронике. техника и миниатюра и
ремонт микроминиатюрных схем.

Модуль 15, Принципы работы синхронизаторов, сервоприводов и гироскопов, предоставляет основные принципы, операции,
функции и применения синхронизирующих, серво и гироскопических механизмов.

Модуль 16, Введение в испытательное оборудование, представляет собой введение в некоторые наиболее часто используемого теста
оборудование и его применение.

Модуль 17, Принципы радиочастотной связи, представляет основы радиочастоты
система связи.

Модуль 18, Принципы работы радара, охватывает основы радара. система.

Модуль 19, Справочник техника, представляет собой удобный справочник часто используемая общая информация,
такие как электрические и электронные формулы, цветовое кодирование и военно-морские данные системы снабжения.

Модуль 20 «Главный глоссарий» представляет собой глоссарий терминов этой серии.

Модуль 21, Методы и практика тестирования, описывает основные методы тестирования. и практики.

Модуль 22, Введение в цифровые компьютеры, представляет собой введение в цифровые компьютеры.

Модуль 23, Магнитная запись, представляет собой введение в использование и обслуживание магнитных регистраторов и
концепции записи на магнитную ленту и диски.

Модуль 24, Введение в оптоволокно, представляет собой введение в оптоволокно. оптика.

Встроенные вопросы вставлены в каждый модуль, за исключением модули 19 и 20, которые составляют
Справочная литература.Если у вас возникнут трудности с ответом на любой из вопросы, повторно изучить применимые
раздел.

Хотя была сделана попытка использовать простой язык, различные технических слов и словосочетаний
обязательно был включен. Конкретные термины определены в Модуле 20, Главный глоссарий.

Чем аналоговый отличается от цифрового?

Чтобы понять аналоговые сигналы, подумайте о микрофоне.Звук давление вашего голоса заставляет элемент в микрофоне вибрировать. Со временем этот элемент перемещается с другой частотой (циклов в второй) и амплитуды (расстояние, на которое он движется, или длина волны). Так что аналог signal — это непрерывный во времени сигнал, имеющий длину волны и частоту. Стилус проигрывателя улавливает вариации канавки, аналогичны реальным звукам. Вот откуда приходит термин «аналог». из. Человеческий слух также работает аналогично, определяя внутренний слух. в реальном времени колебания, которые несут частоту и длину волны звук.

Цифровые сигналы, с другой стороны, представляют собой просто последовательность нулей и единиц. Шаблон этих нулей и единиц (называемый двоичной системой) преобразует аналоговый сигнал (который представляет собой физические свойства звуков) на биты информации, которая может быть сохранена, передана и преобразована обратно в аналоговый сигнал. Точность конвертации (качество звук) зависит от частоты дискретизации (как часто звук преобразуется) и глубина выборки (сколько информации включено в каждый конверсия).Представьте фото низкого качества с дешевого мобильного телефона. камеры, частота дискретизации и глубина невысокие, поэтому качество фото бедный. И наоборот, 5-мегапиксельная цифровая камера обеспечивает чрезвычайно четкое фото.

Еще одно ключевое различие между цифровыми сигналами и аналоговыми сигналами заключается в что цифровые сигналы не работают в реальном времени как аналоговые. Ваше ухо слышит это звуковое давление и преобразует его в аналоговый сигнал. в реальном времени по мере появления звука.Цифровой звук сохраняется в битах информацию и ее необходимо преобразовать обратно в аналоговое реальное время (независимо от того, в изображении или звуке), чтобы иметь смысл для наших аналоговых « я ».

Стандартные часы иллюстрируют принцип по-другому. Как секундная стрелка движется по циферблату, а минутная и часовая стрелки медленно перемещаются, часы действуют как аналоговое устройство. Он работает непрерывно во времени. Таким образом, вы можете посмотреть на аналоговые часы и узнать, что время составляет 1 минуту 37. секунды после 2:00.

Цифровые часы обычно показывают только часы и минуты, меняется с одной минуты на другую. Так делает цифровой часы менее способны показывать точное время, чем аналоговые часы? Нет обязательно. Подумайте о частоте дискретизации и глубине дискретизации. Цифровые часы может быть запрограммирован так, чтобы показывать время с точностью до тысячной или миллионной доли второй. Следует помнить, что ни аналоговые, ни цифровые сигналы по своей сути лучше, просто разные.

Полезны следующие скорости передачи данных:

Медная телефонная линия и модем коммутируемого доступа 30 килобит в секунду
DSO 64 килобит в секунду
ISDN 144 килобит в секунду
DSL 1,5 мегабит в секунду
Линия T1 (= 24 линии DSO) 1.5 мегабит в секунду
Волоконно-оптический кабель, коммерческое применение от 2 до 5 мегабит в секунду
Волоконный кабель, верхний конец до 30 мегабит в секунду
Линия T3 (= 28 линий T1) 43 мегабит в секунду

Как работает волоконная оптика?

С пониманием цифровых сигналов из раздела выше, Волоконная оптика становится довольно легко визуализировать.Подумайте об очень долгом гибкий кусок двухдюймовой гибкой трубы длиной, скажем, милю. Представьте себе внутреннюю часть трубы было полностью зеркально отражено, отражая любой свет, попадающий в стенка трубы. Если вы встанете на один конец этой трубы и светите фонариком в трубу, вы можете включить и выключить свет и дать азбуку Морзе сигналы. Ваш приятель на другом конце трубы мог легко видеть и понимать световые сигналы, проходящие через трубу. Вот как волокно оптический кабель работает.

Кусок оптоволоконного кабеля изготовлен из невероятно чистого стекла, поэтому свет может передаваться на мили без ухудшения качества. Толщина Волоконно-оптическая нить похожа на человеческий волос. Волоконно-оптическое стекло прядь покрывается пластиком, который пропускает весь свет, попадающий в один конец, чтобы выйти из другого конца.

Таким образом, волоконная оптика стала отличным способом передачи цифровых сигналов. В двухпозиционный характер цифровой информации позволяет отправлять сигнал на скорость света.Световой лазер может включать и выключать несколько миллиардов раз в секунду (попробуйте это с фонариком!) и используйте светлые цвета а также передавать миллиарды битов в секунду через индивидуальное волоконно-оптическая прядь. На другом конце пряди световой сигнал преобразуется обратно в цифровой электрический сигнал и, наконец, обратно в аналоговый сигнал.

Волоконно-оптическая линия в настоящее время может передавать сигнал на расстояние около 60 миль до его нужно прочитать и повторно передать в полную силу следующему передающая станция.

Какие документы общественного достояния доступны для Дальнейшее изучение?


ВМС США Электрик-строитель Basic (NAVEDTRA 14026) и Электрик-строитель среднего уровня (NAVEDTRA 14027) оба обеспечивают отличная тренировка для понимания электричества на строительная площадка.

Полное руководство по электротехнике предоставлено в руководстве из 4 частей и дает отличные знания о теория электромонтажных работ. Том I представляет основную теорию электричества и магнетизма, некоторые основные DC схемы. Он называется DOE-HDBK-1011 / 1-92 (ИЮНЬ 1992 г.) и занимает 166 страниц. Том II покрывает большую сложность постоянного тока с конденсаторами, батареями и индукцией моторы. Это 118 страниц под названием DOE-HDBK-1011 / 2-92 (ИЮНЬ 1992). А твердые знания в области питания постоянного тока делают питание переменного тока более понятным. Том III обращается к питанию переменного тока, сначала в теории, а затем в более практической манере.Это называется DOE-HDBK-1011 / 3-92 (ИЮНЬ 1992) — 126 страниц. Ну наконец то, Том IV под названием DOE-HDBK-1011 / 4-92 (ИЮНЬ 1992) содержит 142 страницы. и охватывает двигатели переменного тока, трансформаторы и испытательное оборудование.

Министерство обороны США предоставляет Руководство по электроснабжению и распределению, которое охватывает власть распространение обычно обеспечивается коммунальными предприятиями. Эта 125 страница Справочник официально называется UFC 3-550-03FA (март 2005 г.).

Еще один ресурс, более полезный в дизайне, чем в строительство, это Министерство обороны США Руководство по внутренним электрическим системам. В нем 279 страниц информации. и официально называется UFC 3-520-01 (10 июня 2002 г.).

Министерство обороны США предоставляет Дизайн: Руководство по управлению внутренним и внешним освещением, которое является отличным введение в освещение. Эта 125 страница Справочник официально называется UFC 3-530-01 (август 2006 г.).Этот отличный ресурс показывает освещение в самых разных типах проектов и обеспечивает понимание дизайна и функциональности.

Серия учебных курсов по электричеству и электронике ВМС США, перечислено выше в разделе «Что такое основы электроники»? отлично справляется со всеми основными аспектами электричества и электроника.

Уловки торговли и практические правила для Основы электротехники:

  1. ЭДС (электродвижущая сила, измеряемая в вольтах) похожа на давление воды (psi), в то время как текущий поток (амперы) подобен воде расход (галлонов в минуту).
  2. Согласно степенному закону, Ватты = Амперы x Вольт, но всегда учитывать коэффициент мощности.
  3. Коэффициент мощности — это реальная мощность (в киловаттах), деленная на полная мощность (в киловольтах x амперах) и всегда находится в пределах от 0 до 1.
  4. Аналоговые сигналы непрерывны во времени, имеют частоту и длина волны, цифровые сигналы — это сохраняемые биты.
  5. Что такое волоконная оптика? Представьте себе длинную гибкую трубу с фонариком, светящим в один конец, обозначающим азбуку Морзе.

О программе «Электротехнические технологии» | Инженерные технологии и управление строительством

Программа «Электротехника» (ELET) в UNC Charlotte готовит выпускников программы бакалавриата в области инженерных технологий (BSET) к карьере в широком спектре технологий.

Программа UNC Charlotte ELET включает курсовую работу по следующим направлениям:

  • Линейные схемы (Применение фундаментальных физико-математических инструментов для анализа и проектирования аналоговых (линейных) электрических и электронных систем)
  • Digital Logic and Systems (Применение и проектирование цифровых систем для принятия логических решений, системного управления и цифровой обработки сигналов)
  • Микропроцессоры, микроконтроллеры и встроенные системы (приложения, принципы, технологии, дизайн и интерфейс)
  • Электронные схемы и системы (Приложения и принципы современных электронных устройств, используемых в электронном управлении, связи, потребительских приложениях и управлении энергией)
  • Control Systems (Применение классических и современных систем управления с обратной связью к широкому спектру электрических и механических систем)
  • Power Systems (Передача и моделирование силовых компонентов и систем)

Первые два года обучения в области электротехники сосредоточены на изучении основ математики и естественных наук, а также на развитии письменных и устных коммуникативных навыков.Технологические темы исследования включают цепи постоянного тока (для ознакомления с фундаментальными физическими принципами и прикладной математикой, лежащими в основе поведения всех цепей), цепи переменного тока (для распространения базовой теории цепей на простые зависящие от времени источники и элементы накопления энергии), электронные устройства (знакомит студентов с принципы работы основных полупроводниковых и других устройств), Simulation and Schematic Capture (компьютеризированные или традиционные методы и технологии для создания схем электрических цепей), Digital Logic (знакомит с принципами, математикой и простыми схемами, используемыми в цифровых системах), Computer Приложения (представляет компьютеры как инструменты, используемые для математического анализа и моделирования электрических цепей), Программирование (знакомит с принципами логических процедур решения проблем с использованием широко используемых компьютерных языков) и введение в процесс проектирования.Курсовая работа подчеркивает основы и понимание. Лаборатории используются каждый семестр, чтобы студенты могли «делать», а также «видеть и слышать». Обучение естествознанию и математике, а также письменное и устное общение обеспечивают поддержку текущим занятиям, а также подготовку к последующим техническим курсам.

Третий и четвертый годы программы BSET предоставляют студентам классы, призванные расширить основы, изученные в первые два года. Больше внимания уделяется принципам, а не вводным темам.Компьютерное моделирование, а также более совершенные математические инструменты позволяют рассматривать технологии более глубоко и в более широком диапазоне. Основа разработки программы продолжается в течение младшего года и завершается двухсеместровым Capstone Project, в котором от студента ожидается не только понимание электрических технологий, но и способность планировать проект, выполнять проект и предоставлять письменные и устные отчеты о проекте.

Высшая ступень (младшие и старшие классы) программы электротехнических технологий также предлагается в качестве программы получения степени с частичной занятостью, индивидуального доступа и получения степени BSET для удовлетворения потребностей работающих взрослых.Программа такая же, как и на территории кампуса; содержание, цели и результаты программы идентичны предложениям на территории кампуса. Тем не менее, программа предназначена для удовлетворения академических потребностей лиц, которые в настоящее время имеют степень младшего специалиста по прикладным наукам (AAS) в соответствующей области обучения, но не могут посещать занятия в кампусе. Все курсы немецкого языка доступны онлайн, за исключением обязательных лабораторий, которые необходимо пройти в кампусе летом. Прием открыт для граждан США и нерезидентов, имеющих постоянный U.Только по месту жительства S.

Узнайте больше о программе дистанционного обучения электротехнике.

Конструкция, принцип работы, типы и различия

Контактор — это одна из частей главной электрической цепи, которая может стоять на собственном устройстве управления мощностью или в составе пускателя. Они используются для подключения и отключения линий электропитания, проходящих через линии электропередач, или для многократного установления и прерывания цепей электропитания. Они используются при легких нагрузках, сложном управлении машинами.Они используются с двигателями, трансформаторами, нагревателями. Его можно рассматривать как точку пересечения между цепью управления и цепью питания, потому что она управляется цепью управления, а также управляет цепью между цепью питания и нагрузкой. В этой статье основное внимание уделяется важности контактора и электрического поля.

Что такое контактор?

Определение: Контакторы — это коммутационные устройства с электрическим управлением, которые используются для электрического переключения. Основная работа этого реле аналогична работе реле, но с той лишь разницей, что подрядчики могут пропускать большой ток по сравнению с реле до 12500 А.Они не могут обеспечить защиту от короткого замыкания или перегрузки, но могут разорвать контакт при возбуждении катушки.


Конструкция контактора

Контактор состоит из двух железных сердечников, один из которых закреплен, а другой является подвижной катушкой и представляет собой изолированную медную катушку. Где медная катушка расположена на неподвижном сердечнике. Есть шесть основных контактов для подключения питания, три из которых являются фиксированными, а три других — подвижными. Эти контакты изготовлены из чистой меди, а точки контакта — из специального сплава, выдерживающего высокий пусковой ток и температуру.Пружина, которая расположена между катушкой и подвижным сердечником, вспомогательные контакты могут быть нормально разомкнутыми или замкнутыми. Главные контакты включают и отключают слаботочные нагрузки, такие как катушка контакторов, реле, таймеры и многие другие части схемы управления, подключенные к контактному механизму. Трехфазный источник питания переменного тока, предусмотренный для схемы, показанной ниже,

принципиальная схема-контактор

Он состоит из трех основных частей:

Катушка

Она обеспечивает усилие, необходимое для замыкания контакта.Катушка также называется электромагнитом. Кожух используется для защиты катушки и контактора.

Корпус

Он действует как изолятор и протектор, который защищает цепь от любых электрических контактов, пыли, масла и т. Д. Они изготовлены из различных материалов, таких как нейлон 6, бакелит, термореактивный пластик и т. Д.


Контакты

Основная функция этого состоит в том, что он передает ток к различным частям цепи. Подразделяются на контактные пружины, подмышечные контакты и силовые контакты.Где каждый из контактов выполняет свои функции, что объясняется принципом работы контактора.

блок-схема контактора

Принцип работы контакторов

Электромагнитное поле генерируется всякий раз, когда протекает ток, когда движущиеся катушки притягиваются друг к другу. Сначала через электромагнитную катушку проходит большой ток. Подвижный контакт продвигается вперед движущимся сердечником, в результате сила, создаваемая электромагнитом, удерживает подвижный и неподвижный контакты вместе.

  • При обесточивании катушка контактора под действием силы тяжести или пружина перемещает электромагнитную катушку в исходное положение, и в цепи нет протекания тока.
  • Если контакторы запитаны переменным током, небольшая часть катушки представляет собой заштрихованную катушку, где магнитный поток в сердечнике немного задерживается. Этот эффект слишком средний, так как он предотвращает гудение ядра на удвоенной частоте линии. Существуют внутренние процессы критической точки, обеспечивающие быстрое срабатывание, так что контакторы могут открываться и закрываться очень быстро.
  • Из рисунка питание подается с помощью переключателя, то есть, когда переключатель замкнут, ток течет через катушку контактора и присоединяет подвижный сердечник. Контактор, прикрепленный к подвижному сердечнику, замыкается, и двигатель запускается. Когда переключатель отпускается, электромагнитное напряжение возбуждает пружинное устройство, останавливает подвижную катушку обратно в исходное положение, и питание двигателя прекращается.

Как правильно выбрать замену контактора?

Правильная замена для этого может быть выбрана следующим образом.

  • Во-первых, следует проверить напряжение катушки, которое является напряжением, используемым для включения контактора.
  • Проверка наличия вспомогательных контактов, то есть количества открытых и закрытых узлов, используемых в контакторе.
  • Проверка рейтинга, который указан на нем в виде таблицы.

Концепция подавления дуги возникает всякий раз, когда контакты разомкнуты или замкнуты. Если происходит пробой под большой нагрузкой, образующаяся дуга повреждает контакты. Наряду с этим, если температура высока, дуга выделяет вредные газы, такие как окись углерода, что приводит к сокращению срока службы двигателей.

Типы контакторов

Они классифицируются на основе трех факторов:

  • Используемая нагрузка
  • Текущая емкость и
  • Номинальная мощность.
Ножевой выключатель

Это первый контактор, используемый для управления электродвигателем в конце 1800-х годов. Он состоит из металлической полосы, которая действует как переключатель при подключении и отключении соединения. Но недостатком этого метода является то, что процесс переключения происходит очень быстро, из-за чего в медном материале возникает коррозия, в зависимости от мощности тока размер двигателя увеличивается, что приводит к значительным физическим повреждениям.

ножевой выключатель
Ручной контактор

Недостатки ножевых подрядчиков преодолеваются с помощью ручного контактора. Вот некоторые из них:

  • Выполняемая операция безопасна
  • Они должным образом закрыты для защиты от проблем с внешней средой
  • Размер ручного разъема небольшой
  • Используется только один разрыв
  • Управление переключателями осуществляется с помощью контактора.
ручной контактор

Магнитный контактор

Он работает электромагнитно, то есть им можно управлять дистанционно, меньшего количества тока достаточно для выполнения соединения и удаления соединения.Это самый совершенный контактор.

Различия между контакторами переменного тока и контакторами постоянного тока

Различия между контакторами переменного и постоянного тока заключаются в следующем:

Контакторы переменного тока Контакторы постоянного тока
Они предназначены для контакторов с самообслуживанием. гашение дуги возникает при размыкании контакта. Они специально разработаны для подавления электрического дуги при переключении в цепи постоянного тока.
Они не используют диод обгонной муфты Они используют диод обгонной муфты
Время разделения меньше Время разделения больше, если нагрузка большая, к главному контакту прилагается шунтирующая нагрузка.

Преимущества

Ниже приведены преимущества контактора

  • Быстрое переключение
  • Подходит как для устройств переменного, так и для постоянного тока
  • Простая конструкция.

Недостатки

Ниже приведены недостатки контактора.

  • При отсутствии магнитного поля катушка может гореть.
  • Старение компонентов вызывает коррозию материалов при воздействии влаги.

Применение контакторов

Ниже приводится применение контакторов

Часто задаваемые вопросы

1). В чем разница между реле и контактором?

Основное различие между реле и подрядчиком заключается в том, что

Реле

Контактор

Реле используется для переключения низкого напряжения Оно используется для переключения высокого напряжения

Релейный контактор аналогичен подмышечному контактору.

Есть два типа контакторов вспомогательный и силовой

Размер реле маленький Размер контактора большой
Ремонт не подлежит Можно отремонтировать

2). Для чего используется контактор?

Это выключатель, используемый для переключения нагрузки большой мощности и защиты двигателя от внешних повреждений.

3). Что такое нормально замкнутый контактор?

Нормально замкнутый контактор может быть представлен как NC, что означает, что соединение установлено и цепь нормально включена.

4). Как подключить трехфазный контактор?

Подключение трехфазного контактора выполняется следующим образом.

  • Отключите источник питания
  • Трехцветные фазные провода подключены к трем клеммам T1, T2, T3 машины.
  • Подключите источник питания и пропустите ток. течь.

5). Какой у вас размер контактора?

Это произведение 100% и тока полной нагрузки.

Таким образом, это все о контакторе, это электрический переключатель, используемый в электрических цепях, таких как цепи переключения электродвигателей или цепи емкостного переключения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *