Простейшие электрические схемы: Схемы для начинающих радиолюбителей | Простые и рабочие схемы!

Содержание

Светодиодная акустическая мигалка


В интернете есть множество различных схем светодиодных мигалок – простых, сложных, с микросхемами и без. Но обычным мигающим светодиодом сейчас уже никого не удивишь, поэтому появляется необходимость собрать что-то более продвинутое. Например, акустическую мигалку – микрофон улавливает звук и превращает его во вспышки светодиодов. Схема представлена ниже.

Схема



На схеме присутствует электретный микрофон, который и превращает звуковые колебания в электрические. Найти его можно в сломанных телефонных гарнитурах, либо в магазине радиодеталей. Транзисторы Т1 и Т2 усиливают сигнал таким образом, чтобы его хватило для зажигания светодиодов. Можно применить практически любые маломощные n-p-n транзисторы, например, BC547, КТ315, КТ3102. Светодиоды используются обычные 3-х вольтовые любого цвета, можно поставить две штуки, как указано на схеме, а можно и больше. Конденсатор С1 служит для подавления пульсаций питания, его ёмкость может лежать в пределах 10-100 мкФ. Напряжение питания схемы от 3-х до 5-ти вольт.


Сборка мигалки


Схема собирается на миниатюрной печатной плате размерами 45 х 15 мм, сделать которую можно методом ЛУТ. Печатная плата полностью готова к печати, отзеркаливать её не нужно. Обратите внимание, что плата рассчитана на установку транзисторов BC547, при использовании аналогичных транзисторов с другой цоколевкой придётся поменять местами их выводы на плате. Ниже представлены несколько фотографий процесса изготовления платы.


Дорожки желательно залудить, это защитит медь от окисления и облегчит дальнейшую пайку деталей. В первую очередь на плату устанавливаются мелкие детали – резисторы, транзисторы, а уже затем конденсаторы и светодиоды. Для подключения проводов питания удобнее всего использовать винтовой клеммник. При установке микрофона обязательно нужно соблюдать его полярность – минусовая ножка микрофона соединяется с его металлическим корпусом, её нужно запаять на минус схемы. После завершения сборки с платы нужно смыть остатки флюса и проверить правильность монтажа.


Настройка и испытания


Подаём питание на плату и смотрим за реакцией светодиодов – они должны быть полностью погашены при отсутствии звука. Если светодиоды светятся непрерывно, значит нужно в 1,5 – 2 раза увеличить сопротивление резисторов R2 и R3, до того момента, пока светодиоды не погаснут, в этом заключается единственная настройка схемы. После этого светодиоды будут моментально вспыхивать, если рядом раздаётся любой звук, хлопок, щелчок или даже музыка. При использовании чувствительного микрофона дальность обнаружения звука составляет примерно 6-7 метров. Схема будет прекрасной игрушкой для детей – ведь смотреть, как светодиоды загораются при малейшем звуке довольно увлекательно. Также схему можно использовать для проверки чувствительности электретных микрофонов. Удачной сборки.

Смотрите видео


Детектор скрытой проводки


Довольно часто у жителей многоквартирных домов возникает необходимость закрепить на стене квартиры картину, вешалку, полку или ещё какой-нибудь предмет интерьера. Для этого необходимо отметить точку на стене и пробурить небольшое отверстие перфоратором. Однако всегда есть вероятность попасть в проводку, спрятанную в стене под обоями – в этом случае небольшое обновление интерьера может закончится неизбежным вызовом электриков. Чтобы такого не произошло, можно собрать простой детектор скрытой проводки, который точно покажет, где проходят провода, а где их нет.

Схема



Чувствительным элементом схемы является полевой транзистор КП103, к затвору которого подключается антенна. Можно применять транзистор в любом корпусе и с любым буквенным индексом. Прибор реагирует на провода под напряжением 220 В 50 Гц независимо от того, течёт по ним ток, или нет. Также в схеме используется микросхема К561ЛА7, которая представляет собой 4 логических элемента 2И-НЕ. Её можно заменить импортным аналогом, микросхемой CD4011. Светодиод на схеме загорается тогда, когда антенна оказывается в непосредственной близости от провода под напряжением. В качестве антенны можно использовать отрезок обычного тонкого провода, длиной 5-10 см. Чем больше его длина, тем больше чувствительность прибора. Схема потребляет примерно 10-15 мА, питается напряжением 9 вольт. Для питания подойдёт обычная батарейка Крона. При необходимости, к 10 выводу микросхемы можно подключить любой пьезокерамический излучатель, например, ЗП-3, тогда при обнаружении провода будет раздаваться звук.
Скачать плату можно тут:
1.zip [29,96 Kb] (cкачиваний: 3175)

Сборка детектора


Схема собирается на миниатюрной печатной плате размерами 40 х 30 мм, сделать которую можно методом ЛУТ. Печатная плата полностью готова к печати, отзеркаливать её не нужно. После травления желательно залудить дорожки, это упростит пайку деталей, и медь не будет окисляться.

После изготовления печатной платы можно запаивать детали. Следует быть осторожным, обращаясь с микросхемой – она чувствительна к статике и её легко можно повредить. Поэтому на плату запаиваем панельку под микросхему и помещаем в неё микросхему только после завершения сборки. Также нужно быть внимательным при запаивании транзистора – если он в пластиковом корпусе, то на плату запаиваются только две ножки – сток и исток, и антенна припаивается непосредственно к затвору. Если корпус металлический, все три ножки запаиваются на плату вместе с антенной. Важно не перепутать цоколёвку, иначе прибор не заработает. Провода питания, для удобства, можно сразу припаять к коннектору для Кроны, как я и сделал. После завершения пайки обязательно нужно смыть остатки флюса с платы, иначе может пострадать чувствительность. Желательно также проверить правильность монтажа и соседние дорожки на замыкание.


Испытания детектора


После завершения сборки можно приступать к испытаниям. Берём крону и подключаем её к плате, поставив в разрыв одного из проводов амперметр. Потребление схемы должно составлять 10-15 мА. Если ток норме, можно поднести антенну детектора к любому сетевому проводу и наблюдать, как будет загораться светодиод и пищать пьезоизлучатель, если он установлен. Дальность обнаружения проводки составляет примерно 3-5 см, в зависимости от длины антенны. При этом не следует прикасаться к антенне, от этого заметно падает чувствительность. Прибор не требует никакой настройки и начинает работать сразу после подачи питания. Помимо сетевых проводов, он реагирует также на кабель витую пару. Удачной сборки.


Смотрите видео


На видео наглядно видно, как работает такой детектор. С его помощью удалость достаточно точно определить, где проходят провода от выключателя.

Простые схемы для начинающих радиолюбителей для пайки в домашних условиях

Сделать своими руками простейшие электронные схемы для использования в быту можно, даже не имея глубоких познаний в электронике. На самом деле на бытовом уровне радио – это очень просто. Знания элементарных законов электротехники (Ома, Кирхгофа), общих принципов работы полупроводниковых устройств, навыков чтения схем, умения работать с электрическим паяльником вполне достаточно, чтобы собрать простейшую схему.

Паяльник

Мастерская радиолюбителя

Какой сложности схему ни пришлось бы выполнять, необходимо иметь минимальный набор материалов и инструментов в своей домашней мастерской:

  • Паяльник;
  • Бокорезы;
  • Пинцет;
  • Припой;
  • Флюс;
  • Монтажные платы;
  • Тестер или мультиметр;
  • Материалы и инструменты для изготовления корпуса прибора.

Не следует приобретать для начала дорогие профессиональные инструменты и приборы. Дорогая паяльная станция или цифровой осциллограф мало помогут начинающему радиолюбителю. В начале творческого пути вполне достаточно простейших приборов, на которых и нужно оттачивать опыт и мастерство.

Мультиметр

С чего начинать

Радиосхемы своими руками для дома должны по сложности не превышать того уровня, каким Вы владеете, иначе это будет означать лишь потраченное время и материалы. При недостатке опыта лучше ограничиться простейшими схемами, а по мере накопления навыков усовершенствовать их, заменяя более сложными.

Обычно большинство литературы из области электроника для начинающих радиолюбителей приводит классический пример изготовления простейших приемников. Особенно это относится к классической старой литературе, в которой нет столько принципиальных ошибок по сравнению с современной.

Обратите внимание! Данные схемы были рассчитаны на огромные мощности передающих радиостанций в прошлое время. Сегодня передающие центры используют меньшую мощность для передачи и стараются уйти в диапазон более коротких волн. Не стоит тратить время на попытки сделать рабочий радиоприемник при помощи простейшей схемы.

Радиосхемы для начинающих должны иметь в своем составе максимум пару-тройку активных элементов – транзисторов. Так будет легче разобраться в работе схемы и повысить уровень знаний.

Что можно сделать

Что можно сделать, чтобы и было несложно, и можно было использовать на практике в домашних условиях? Вариантов может быть множество:

  • Квартирный звонок;
  • Переключатель елочных гирлянд;
  • Подсветка для моддинга системного блока компьютера.

Простейший звонок

Важно! Не следует конструировать устройства, работающие от бытовой сети переменного тока, пока нет достаточного опыта. Это опасно и для жизни, и для окружающих.

Довольно несложные схемы имеют усилители для компьютерных колонок, выполненные на специализированных интегральных микросхемах. Устройства, собранные на их основе, содержат минимальное количество элементов и практически не требуют регулировки.

Часто можно встретить схемы, которые нуждаются в элементарных переделках, усовершенствованиях, которые упрощают изготовление и настройку. Но это должен делать опытный мастер с тем расчетом, чтобы итоговый вариант был более доступен новичку.

На чем выполнять конструкцию

Большинство литературы рекомендует выполнять конструирование простых схем на монтажных платах. В настоящее время с этим совсем просто. Существует большое разнообразие монтажных плат с различными конфигурациями посадочных отверстий и печатных дорожек.

Принцип монтажа заключается в том, что детали устанавливаются на плату в свободные места, а затем нужные выводы соединяются между собой перемычками, как указано на принципиальной схеме.

Схема на монтажной плате

При должной аккуратности такая плата может послужить основой для множества схем. Мощность паяльника для пайки не должна превышать 25 Вт, тогда риск перегреть радиоэлементы и печатные проводники будет сведен к минимуму.

Припой должен быть легкоплавким, типа ПОС-60, а в качестве флюса лучше всего использовать чистую сосновую канифоль или ее раствор в этиловом спирте.

Радиолюбители высокой квалификации могут сами разработать рисунок печатной платы и выполнить его на фольгированном материале, на котором затем паять радиоэлементы. Разработанная таким образом конструкция будет иметь оптимальные габариты.

Оформление готовой конструкции

Глядя на творения начинающих и опытных мастеров, можно придти к выводу, что сборка и регулировка устройства не всегда являются самым сложным в процессе конструирования. Порой правильно работающее устройство так и остается набором деталей с припаянными проводами, не закрытое никаким корпусом. В настоящее время уже можно не озадачиваться изготовлением корпуса, потому что в продаже можно встретить всевозможные наборы корпусов любых конфигураций и габаритов.

Унифицированный корпус

Перед тем, как начинать изготовление понравившейся конструкции, следует полностью продумать все этапы выполнения работы: от наличия инструментов и всех радиоэлементов до варианта выполнения корпуса. Совсем неинтересно будет, если в процессе работы выясниться, что не хватает одного из резисторов, а вариантов замены нет. Работу лучше выполнять под руководством опытного радиолюбителя, а, в крайнем случае, периодически контролировать процесс изготовления на каждом из этапов.

Видео

Оцените статью:

Простые схемы для начинающих


Светящийся жук из светодиодной ленты, схема самодельной игрушки

Сейчас уже везде и всюду светодиодные ленты, они легко доступны и представлены в разных вариантах. Вот эта игрушка или предмет для оформления чего-то, просто представляет собой шесть отрезков светодиодной ленты, расположенные симметрично относительно некоего воображаемого тела насекомого, как его …

0 6 0

Оптический музыкальный инструмент на одной микросхеме

Настоящий терменвокс, — это электронный музыкальный инструмент, состоящий из генератора изменяемой и опорной частоты. При этом генератор изменяемой частоты имеет антенну, поднося руки к которой можно изменять его частоты. В результате, частота биений изменяется, и изменяется тон звука …

0 13 0

Звуковая и световая сигнализация для детского снегоката

Очень популярное развлечение у детей и подростков — кататься на снегокатах. Практически, это те же санки, но с рулевой лыжей, более удобным сидением и тормозом. В смысле безопасности, на мой взгляд, это куда лучше более популярных «ватрушек», которые вообще никак не управляются …

0 77 0

Светодиодная цветомузыка на микросхемах BA6137

Эта цветомузыкальная установка выполнена на 15-ти сверхъярких светодиодах,разделенных по 5 на каждый из трех частотных каналов. Светодиоды не просто включаются от превышения входного сигнала некоторого порога, — изменяется число светящихся светодиодов в зависимости от уровня сигнала в частотном …

0 662 0

Простая охранная сигнализация на одном транзисторе, конструкции датчиков

Здесь приводится описание очень простой но достаточно эффективной охранной сигнализации с минимумом деталей. Для дела потребуется: 1. Охранный герконовый датчик, например, ИО-102-2 или СМК-1. Такие датчики самые простейшие, они продаются в магазинах и на различных сайтах в интернете …

0 937 0

Светодиодная фара для велосипеда с питанием от генератора (LT1932)

Схема фары к велосипеду на мощных светодиодах, стабилизатор тока собран на микросхеме LT1932. Обычная велофара питается от генератора, приводимого в движение от велосипедного колеса. Поскольку в схеме велосипедного оборудования никаких аккумуляторов нет, напряжение на выходе такого генератора …

0 1935 0

Схема прожектора на сверхярких светодиодах ( LXLH-LW3C, LT1070)

Используя современные сверхяркие светодиоды белого света можно делать экономичные светильники, по светоотдаче сопоставимые с автомобильной фарой. На рисунке показана схема прожектора, питающегося от автомобильного аккумулятора (через разъем для прикуривателя). Источник света, — батарея из семи …

1 1448 0

Схема двухразрядного автомата случайных чисел (4011, 4026, HDSP-h311H)

Устройство генерирует именно случайные числа, конструкция состоит из, генератора импульсов частотой около 100кГц, кнопки и счетчика с двухразрядным цифровым выходом. Суть работы в том, что импульсы с генератора поступают на вход счетчика через обычную кнопку. Нажал / отпустил, и смотри результат. При такой …

1 1850 1

Светомузыкальный инструмент-игрушка на светодиодах

На идею создания этого светомузыкального инструмента натолкнули красивые разноцветные прозрачные пластмассовые линейки, продававшиеся в магазине канцтоваров. Линейки разных цветов выполнены с раскраской в стиле “неон”, то есть, со световозвращающими торцами …

1 2289 0

Простой светодиодный пробник без батареек

Пробник представляет собой по существу преобразователь кинетического импульса в импульс электрический [1]. Таким преобразователем является электродвигатель от кассетного магнитофона, игрушки. Схема пробника. Если при подключении проверяемой цепи в розетку Х1 и от резкого …

1 2758 0

1 2  3  4  5  … 11 

Радиодетали, электронные блоки и игрушки из китая:

Радиосхемы. — Начинающим

раздел

Этот раздел сделан специально для начинающих радиолюбителей.

То есть для тех кто только начинает заниматься таким увлекательным занятием как радиолюбительство. Все схемы которые находятся в этом разделе очень просты и вас не затруднит изготовить их своими руками.

Сюда вошли не только простые схемы для самостоятельной сборки но и общие сведения про пайку, различные флюсы и припои.
Здесь вы также узнаете как изготовить свое первое изделие: просто как макет, использовать навесной монтаж или изготовить печатную плату.

Ну а если вдруг у Вас возникнут вопросы то мы всегда поможем- подскажем. Для этого Вам всего-лишь нужно зайти к нам на ФОРУМ.

 

Итак:

РАДИОЛЮБИТЕЛЬСКИЕ ТЕХНОЛОГИИ

Припои, флюсы, паяльники
Навесной монтаж
Монтаж на печатной плате
Изготовление печатных плат самостоятельно
Раствор для травления печатных плат из подручных материалов
Самодельный фоторезист
Демонтаж многовыводных элементов
Регулятор мощности паяльника
Простейший способ регулировки температуры жала паяльника
Как правильно паять (видео)
Даже старая техника может еще пригодиться!
Автоматический регулятор температуры паяльника
Терморегулятор для низковольтного паяльника
Практические советы начинающим радиолюбителям
Нанесение надписи на металлическую поверхность
Основные правила при монтаже микросхем
Простые правила пайки
Создание контрольных точек при сборке радиосхем
монтаж мощных радиоэлементов
полезные советы при сборке печатных плат
Проверка радиодеталей осциллографом

Как защитить электрические контакты от загрязнения
Печатная плата без травления
Умная подставка для паяльника

ПРОСТЫЕ СХЕМЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ

Мультивибраторы, мигалки
двухтональный звонок
мелодичный звонок
Мигалки на тиристорах
Несимметричный мультивибратор и его применение
Простейшая светомузыка на светодиодах
Простая мигалка на микросхеме LM3909
Простейший светодиодный индикатор уровня
Светодиодная мигалка с изменяемой частотой
Простейшая пищалка
простой металлодетектор 
Металлоискатель на специализированной микросхеме TDA0161
Простой металлоискатель
Металлоискатель- приставка к радиоприемнику
Звучащий брелок
Игровой автомат для проверки реакции
Индикатор температуры
Электронный термометр

Электронный метроном
Самодельный домофон
Простое переговорное устройство
Акустический выключатель освещения
Акустический выключатель с триггером

Самоблокирующаяся звуковая сигнализация
Простой стабилизированный блок питания
Регулируемые блоки питания
Фотореле- устройство автоматического включения освещения при наступлении темноты
Автомат периодического включения нагрузки
Бестрансформаторный блок питания
Усилитель на лампах от старого телевизора
Простой индикатор мощности
Мигающее сердце на светодиодах
Автомат световых эффектов «блуждающий огонек»
Имитатор звука мотора для игрушек
Имитатор звука дизельного двигателя
Мигающее сердце на таймере 555
Полицейский стробоскоп

Мигалка Солнышко на микросхеме К561ЛА7
Лазерный фототир
Фототир из лазерной указки
Световой телефон из лазерной указки
Простой тестер для диодов и транзисторов
Светодиодная мигалка на 1,5 Вольта
Простой усилитель для наушников
Простой регулятор мощности
Простейший осциллограф своими руками
Простой усилитель с низковольтным питанием
Сенсорный выключатель

Простейший электронный термометр
Простые регуляторы напряжения
Электронная канарейка
Электронный звонок «канарейка»
Электронная кукушка
Имитатор шума прибоя
Имитатор шума дождя
Имитатор птичьего пения
Имитатор кряканья утки
Имитатор полицейской сирены
Имитатор звука выстрела
Имитатор мяуканья кошки
Электронный соловей
Звуковой пробник для проверки транзисторов
Таймер с большим временем выдержки
Простейший кодовый замок
Регулятор яркости для настольного светильника
Реле времени
Таймер на 30 минут
Самодельный сетевой фильтр
Простой радиоприемник 
Автоматическая мормышка
Миниатюрный металлоискатель
Конструкции на двух транзисторах
Микрометр
Акустический телескоп
Простой преобразователь 12- 220 Вольт своими руками
Простейший электромузыкальный инструмент
Переключатель светодиодов
низковольтная мигалка
Пробник «генератор- усилитель»
Простой радиоприемник на двух транзисторах
Лампа дневного света от батареи 12 Вольт
Электронная рулетка
Микросхема КР142ЕН19А- регулируемый стабилизатор напряжения
Простейший искатель скрытой проводки
Игра «кто первый»
Кодовый замок со звуковой сигнализацией неправильного набора
Мультивибратор на полевых транзисторах
Сигнализатор поклевки из китайского будильника
Музыкальный светофон
Бесперебойник для радиоприемника
Сигнализатор отключения напряжения в сети
Индикатор перегрева
Узконаправленный микрофон
Конструкции с сенсорным управлением
Звук от телевизора по радиоканалу
Простой генератор-пробник
Простой светодиодный пробник
Реле времени для электромеханических игрушек
Сенсорное реле времени
Простой автоматический выключатель освещения
Простые конструкции на логической микросхеме К561ЛА7 (К176ЛА7)
Мигающий фонарь
Простой сигнализатор влажности
Реле времени для светильника
Светотелефон- лазер передает звук
Бестрансформаторный источник питания 10 V 0,1 A
Простой электронный замок
Светодиодный пробник для проверки P-N переходов
Светодиодный «ночник»
Простой лабораторный регулируемый источник питания 3- 33 V
Пробник для транзисторов
Сигнализатор «Открыт холодильник»
Мигалка для новогодней гирлянды
Простое акустическое реле для будильника
Самодельный радиобудильник
Простая «поливалка» для комнатных цветов
Простой детектор лжи
Светодиод- индикатор сетевого напряжения

Схемы для начинающих


Конструкции нескольких простых мини-радиоприемников с AM модуляцией. Схемы для начинающих радиолюбителей.

10.05.2021 Читали: 1427


Схема электрическая оригинальной цветомузыки на 220 В — активный УНЧ и 3 цветовых канала.

05.03.2021 Читали: 2071


Еще один транзисторный усилитель с однополярным питанием на 2N3055, на этот раз в классе А. Схема и печатная плата.

13.11.2020 Читали: 3918


Игра Пинг-Понг на Arduino Pro Mini — схема, прошивка и фото самодельной игровой приставки.

25.02.2020 Читали: 2838


Подключение платы с вакуумно-люминесцентным индикатором ИЛМ1-7Л от видеомагнитофона Электроника ВМ-12.

14.02.2020 Читали: 7553


Штормовой детектор на одном транзисторе — схема простейшего регистратора приближения грозы.

27.12.2019 Читали: 8912



  Вашему вниманию представляется сборник оригинальных принципиальных схем различной степени сложности. Профессионалы найдут здесь схемы металлоискателей и устройств на микроконтроллерах, переделку импульсных блоков питания от компьютера в регулируемые лабораторные БП или мощные зарядные устройства. Практические радиосхемы генераторов, преобразователей напряжения, измерительной техники. Любителям ретро, придётся по вкусу подборка схем, посвящённых ламповым усилителям, а сторонники современной элементарной базы, найдут для себя УНЧ на микросхемах TDA, STK и LM. Для начинающих радиолюбителей мы предлагаем простые схемки мигалок, генераторов звуковых эффектов и ФМ радиожучков. Даже серьёзное радиоустройство можно собрать используя минимум деталей, так как современная электроника переходит на специализированные малогабаритные микросхемы. Это увлекательное занятие даёт возможность спаять полезный прибор или интересную электронную игрушку, устройства измерения и автоматики. Радиолюбительское творчество нашло сотни тысяч сторонников во всех странах мира, объединяя талантливых людей и стирая границы. Все размещённые принципиальные электросхемы проверены, о чём свидетельствуют подробные фотографии и видео работы устройств. Мы не публикуем сборники из тысяч схем со всего интернета — лишь испытанные и работоспособные устройства занимают место на нашем сайте. Следует учитывать, что сборка один к одному не гарантирует исправную и надёжную работу электронных приборов. В процессе номиналы радиосхем могут отличаться от тех, что указаны в статьях. Так что приобретайте паяльник, припой, фольгированный стеклотестолит и приступайте к созданию своих, или повторению уже испытанных схем. Если возникают проблемы с поиском радиодеталей, и нужных компонентов нет в продаже в вашем городе вспомните, что на дворе 21-й век, и многие покупки делаются в интернет магазинах, доставка из которых вам на дом будет стоить дешевле, чем вы думаете. А более подробно про сборку и настройку той или иной схемы читайте на нашем форуме по схемотехнике.

Лабораторный БП 0-30 вольт

Драгметаллы в микросхемах

Металлоискатель с дискримом

Ремонт фонарика с АКБ

Восстановление БП ПК ATX

Кодировка SMD деталей

Справочник по диодам

Аналоги стабилитронов

Схемы с пояснениями простых устройств для радиолюбителей. Как читать электрические схемы. Схемы самодельных измерительных приборов

Схемы самодельных измерительных приборов

Схема прибора, разработанная на основе классического мультивибратора, но вместо нагрузочных резисторов в коллекторные цепи мультивибратора включены транзисторы противоположной основным проводимостью.

Хорошо, если в вашей лаборатории есть осциллограф. Ну а если его нет и купить его по тем или иным причинам не представляется возможным, не огорчайтесь. В большинстве случаев его с успехом может заменить логический пробник, позволяющий проконтролировать логические уровни сигналов на входах и выходах цифровых интегральных схем, определить наличие импульсов в контролируемой цепи и отразить полученную информацию в визуальной (свето-цветовой или цифровой) или звуковой (тональными сигналами различной частоты) формах. При налаживании и ремонте конструкций на цифровых интегральных схемах далеко не всегда так уж необходимо знать характеристики импульсов или точные значения уровней напряжения. Поэтому логические пробники облегчают процесс налаживания, даже если есть осциллограф.

Представлена огромная подборка разичных схем генераторов импульсов. Одни из них формируют на выходе одиночный импульс, длительность которого не зависит от длительности запускающего (входного) импульса. Применяются такие генераторы в самых разнообразных целях: имитации входных сигналов цифровых устройств, при проверке работоспособности цифровых интегральных схем, необходимости подачи на какое-то устройство определенного числа импульсов с визуальным контролем процессов и т. д. Другие генерируют пилообразные и прямоугольные импульсы различной частоты, скважности и амплитуды

Ремонт различных узлов и устройств низкочастотной радиоэлектронной аппаратуры и техники можно значительно упростить, если использовать в качестве помощника функциональный генератор, который дает возможность исследовать амплитудно-частотные характеристики любого низкочастотного устройства, переходные процессы и нелинейные характеристики любых аналоговых приборов, а также обладает возможностью генерации импульсов прямоугольной формы и упрощения процесса наладки цифровых схем.

При наладке цифровых устройств обязательно нужен еще один прибор — генератор импульсов. Промышленный генератор — прибор достаточно дорогой и редко бывает в продаже, но его аналог, пусть не такой точный и стабильный, можно собрать из доступных радиоэлементов в домашних условиях

Однако создание звукового генератора, вырабатывающего синусоидальный сигнал, дело непростое и довольно кропотливое, особенно в части налаживания. Дело в том, что любой генератор содержит, по крайней мере, два элемента: усилитель и частотнозависимую цепь, определяющую частоту колебаний. Обычно она включается между выходом и входом усилителя, создавая положительную обратную связь (ПОС). В случае ВЧ-генератора все просто — достаточно усилителя на одном транзисторе и колебательного контура, определяющего частоту. Для диапазона звуковых частот наматывать катушку сложно, да и добротность ее получается низкой. Поэтому в диапазоне звуковых частот используют RC-элементы — резисторы и конденсаторы. Они довольно плохо фильтруют основную гармонику колебаний, и потому синусоидальный сигнал оказывается искаженным, например, ограниченным по пикам. Для устранения искажений применяют цепи стабилизации амплитуды, поддерживающие низкий уровень генерируемого сигнала, когда искажения еще незаметны. Именно создание хорошей стабилизирующей цепи, не искажающей синусоидальный сигнал, и вызывает основные трудности.

Часто, собрав конструкцию, радиолюбитель видит, что устройство не работает. У человека ведь нет органов чувств, позволяющих видеть электрический ток, электромагнитное поле или процессы, происходящие в электронных схемах. Помогают это сделать радиоизмерительные приборы — глаза и уши радиолюбителя.

Поэтому нужно какое-то средство испытания и проверки телефонов и громкоговорителей, усилителей звуковой частоты, различных звукозаписывающих и звуковоспроизводящих устройств. Такое средство — это радиолюбительские схемы генераторов сигналов звуковой частоты, или, говоря проще, звуковой генератор. Традиционно он вырабатывает непрерывный синусоидальный сигнал, частоту и амплитуду которого можно изменять. Это позволяет проверять все каскады УНЧ, находить неисправности, определять коэффициент усиления, снимать амплитудно-частотные характеристики (АЧХ) и много всего другого.

Рассмотрена несложная радиолюбительская самодельная приставка превращающая ваш мультиметр в универсальный прибор проверки стабилитронов и динисторов. Имеются чертежи печатной платы


Радиолюбительская технология. В книге рассказывается о технологии работ радиолюбителя. Даются реко-мендации по обработке материалов, намотке катушек и трансформаторов, монтажу и пайке деталей. Описывается изготовление самодельных деталей элементов конструкций, простейших станков, приспособлений и инструмента.


Цифровая электроника для начинающих. Основы цифровой электроники изложены простым и доступным для начинающих способом — путем создания на макетной плате забавных и познавательных устройств на транзисторах и микросхемах, которые сразу после сборки начинают работать, не требуя пайки, наладки и программирования. Набор необходимых деталей сведен к минимуму как по количеству наименований, так и по стоимости.

По ходу изложения даются вопросы для самопроверки и закрепления материала, а также творческие задания на самостоятельную разработку схем.


Осциллографы. Основные принципы измерений. Осциллографы – незаменимый инструмент для тех, кто проектирует, производит или ремонтирует электронное оборудование. В современном быстро изменяющемся мире специалистам необходимо иметь самое лучшее оборудование для быстрого и точного решения своих насущных, связанных с измерениями задач. Будучи “глазами” инженеров в мир электроники, осциллографы являются ключевым инструментарием при изучении внутренних процессов в электронных схемах.


Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.


Самоделки юного радиолюбителя. В книге описываются имитаторы звуков, искатели скрытой электропроводки, акустические выключатели, автоматы звукового управления моделями, электромузыкальные инструменты, приставки к электрогитарам, цветомузыкальные приставки и другие конструкции, собранные из доступных деталей


Школьная радиостанция ШК-2 — Алексеев С.М. В брошюре описаны два передатчика и два приемника, работающие на диапазонах 28 и 144 М гц, модулятор для анодно-экранной модуляции, блок питания и простые антенны. В ней рассказывается также об организации работы учащихся на коллективной радиостанции, о подготовке операторов, содержании их работы, об исследовательской работе школьников в области распространения КВ и УКВ.


Electronics For Dummies
Build your electronics workbench — and begin creating fun electronics projects right away
Packed with hundreds of colorful diagrams and photographs, this book provides step-by-step instructions for experiments that show you how electronic components work, advice on choosing and using essential tools, and exciting projects you can build in 30 minutes or less. You»ll get charged up as you transform theory into action in chapter after chapter!


Книга состоит из описаний простых конструкций, содержащих электронные компоненты, и экспериментов с ними. Кроме традиционных конструкций, чья логика работы определяется их схемотехникой, добавлены описания изделий, функционально реализующихся с помощью программирования. Тематика изделий — электронные игрушки и сувениры.


Как освоить радиоэлектронику с нуля. Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь этим самоучителем. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы , узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно.


Паять просто — пошаговое руководство для начинающих. Комикс, несмотря на свой формат и объем, в мелких деталях объясняет основные принципы этого процесса, которые совсем не очевидны для людей, ни разу не державших в руках паяльник (как показывает практика, для многих державших тоже). Если вы давно хотели научиться паять сами, или планируете научить этому своих детей, то этот комикс для вас.


Электроника для любознательных. Эта книга написана специально для вас, начинающих увлекательное восхождение к вершинам электроники. Помогает освоению диалог автора книги с новичком. А еще помощниками в овладении знаниями становятся измерительные приборы, макетная плата, книги и ПК.


Энциклопедия юного радиолюбителя. Здесь Вы найдете множество практических схем как отдельных узлов и блоков, так и целых устройств. В разрешении многих вопросов поможет специальный справочник. Пользуясь удобной системой поиска, отыщешь нужный раздел, а к нему как наглядные примеры великолепно выполненные рисунки.


Книга создана специально для начинающих радиолюбителей, или, как еще у нас любят говорить, — «чайников». Она рассказывает об азах электроники и электротехники, необходимых радиолюбителю. Теоретические вопросы рассказываются в очень доступной форме и в объеме, необходимом для практической работы. Книга учит правильно паять, проводить измерения, анализ схем. Но, скорее, это книга о занимательной электронике. Ведь основа книги — радиолюбительские самоделки, доступные начинающему радиолюбителю и полезные в быту.


Это вторая книга из серии изданий, адресованных начинающему радиолюбителю в качестве учебно-практического пособия. В этой книге на более серьезном уровне продолжено знакомство с различными схемами на полупроводниковой и радиовакуумной базе, основами звукотехники, электро и радиоизмерениями. Изложение сопровождается большим количеством иллюстраций и практических схем.

Азбука радиолюбителя. Основное и единственное назначение этой книги — приобщить к радиолюбительскому творчеству ребят, не имеющих об этом ни малейшего представления. Книга построена по принципу `от азов — через знакомство — к пониманию` и может быть рекомендована школьникам средних и старших классов как путеводитель по началам радиотехники.

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Электронная утка
VT1, VT2Биполярный транзистор

КТ361Б

2МП39-МП42, КТ209, КТ502, КТ814В блокнот
HL1, HL2Светодиод

АЛ307Б

2В блокнот
C1100мкФ 10В1В блокнот
C2Конденсатор0.1 мкФ1В блокнот
R1, R2Резистор

100 кОм

2В блокнот
R3Резистор

620 Ом

1В блокнот
BF1Акустический излучательТМ21В блокнот
SA1Геркон1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Имитатор звука подскакивающего металлического шарика
Биполярный транзистор

КТ361Б

1В блокнот
Биполярный транзистор

КТ315Б

1В блокнот
C1Электролитический конденсатор100мкФ 12В1В блокнот
C2Конденсатор0.22 мкФ1В блокнот
Динамическая головкаГД 0.5…1Ватт 8 Ом1В блокнот
GB1Элемент питания9 Вольт1В блокнот
Имитатор звука мотора
Биполярный транзистор

КТ315Б

1В блокнот
Биполярный транзистор

КТ361Б

1В блокнот
C1Электролитический конденсатор15мкФ 6В1В блокнот
R1Переменный резистор470 кОм1В блокнот
R2Резистор

24 кОм

1В блокнот
T1Трансформатор1От любого малогабаритного радиоприемникаВ блокнот
Универсальный имитатор звуков
DD1МикросхемаК176ЛА71К561ЛА7, 564ЛА7В блокнот
Биполярный транзистор

КТ3107К

1КТ3107Л, КТ361ГВ блокнот
C1Конденсатор1 мкФ1В блокнот
C2Конденсатор1000 пФ1В блокнот
R1-R3Резистор

330 кОм

1В блокнот
R4Резистор

10 кОм

1В блокнот
Динамическая головкаГД 0.1…0.5Ватт 8 Ом1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Фонарь-мигалка
VT1, VT2Биполярный транзистор

При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую. И часто бывает, что спаянное устройство, на которое было затрачено много времени, сил и терпения, — не работает, что вызывает только разочарование и отбивает желание у начинающего радиолюбителя заниматься электроникой, так и не ощутив все прелести данной науки. Хотя, как оказывается, схема не заработала из-за допущения сущего пустяковой ошибки. На исправление такой ошибки у более опытного радиолюбителя ушло бы меньше минуты.

В данной статье приведены полезные рекомендации, которые позволят свести к минимуму количество ошибок. Помогут начинающему радиолюбителю собирать различные электронные устройства, которые заработают с первого раза.

Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО . К УГО мы вернемся дальше в этой статье.


Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например или критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.

Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.

По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.

Обозначение источников питания

Любое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках . К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.

В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.

Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.


Гальванический элемент или одна батарейка, неважно «пальчиковая», «мизинчиковая» или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».

Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G .

Однако радиолюбители не всегда придерживаются такой шифровки и часто вместо G пишут букву E , которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.

Иногда вместо изображения источника питания показывают только его клеммы.

Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей . На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB . Вторая буква как раз и обозначает «батарея».

Обозначение проводов и их соединений на схемах

Электрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» — снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.

На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.

Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.

Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.

В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.

Обозначение общего провода

В сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общи й или масса или шасси или земля .

Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля .

Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы p n p структуры.

Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.

Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.

Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.

Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.

Условное графическое обозначение радиодеталей

Основу любого электронного устройства составляют радиодетали. К ним относятся , светодиоды, транзисторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.

Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 . Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R , после которой ставится его порядковый номер, например R 1 , R 2 , R 5 и т. д.

Поскольку важным параметром резистора помимо сопротивления является , то ее значение также указывается в обозначении.

УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.

Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD , а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».

Как читать электрические схемы реально

Давайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 .

Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I , который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I от положительной клеммы GB 1 через резистор R 1 , светодиод VD 1 к отрицательной клемме.

Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.

Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R 1 и светодиод VD 1 .

Если измерить вольтметром напряжение на R 1 и VD 1 , а затем полученные значения сложить, то их сумма будет равна напряжению на GB 1 : V 1 = V 2 + V 3 .

Соберем по данному чертежу реальное устройство.

Добавляем радиодетали

Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB 1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K 1.1 электромагнитного реле K 1 , резистора R 1 и светодиода VD 1 . Далее по чертежу находится кнопка SB 1 .

Третья параллельная ветвь состоит из электромагнитного реле K 1 , шунтированного в обратном направлении диодом VD 2 .

В четвертой ветви имеются нормально разомкнутые контакты K 1.2 и бузер BA 1 .

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB 1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Следующий элемент– это электромагнитное реле K 1 . Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Все контакты, которые соответствуют реле K 1 , обозначаются K 1.1 , K 1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер

Следующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Пассивный бузер – для переменного тока.

Активный бузер – для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K 1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB 1 через K 1.1 , R 1 , VD 1 и возвращается снова к GB 1 .

При нажатии кнопки SB 1 ее контакты замыкаются, и создается путь для протекания тока через катушку K 1 . Когда реле получило питание ее нормально замкнутые контакты K 1.1 размыкаются, а нормально замкнутые контакты K 1.2 замыкаются. В результате гаснет светодиод VD 1 и раздается звук бузера BA 1 .

Теперь вернемся к параметрам электромагнитного реле K 1 . В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS ‑4078‑ DC 5 V . Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB 1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD 2 серии 1 N 4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB 1 . Но если ее размыкает транзистор или тиристор, то VD 2 нужно обязательно устанавливать.

Учимся читать схемы с транзисторами

На данном чертеже мы видим VT 1 и двигатель M 1 . Для определенности будем применять транзистор типа 2 N 2222 , который работает в .

Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для n p n типа; для p n p типа нужно подавать отрицательный потенциал относительно эмиттера.

Кнопка SA 1 с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M 1 постоянного тока.

В исходном состоянии цепь разомкнута контактами SA 1 . При нажатии кнопки SA1 создается несколько путей протеканию тока. Первый путь – «+» GB 1 – контакты SA 1 – резистор R 1 – переход база-эмиттер транзистора VT 1 – «-» GB 1 . Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB 1 SA 1 – катушка реле K 1 – коллектор-эмиттер VT 1 – «-» GB 1 .

Получив питание, реле K 1 замыкает свои разомкнутые контакты K 1.1 в цепи двигателя M 1 . Таким образом, создается третий путь: «+» GB 1 SA 1 K 1.1 M 1 – «-» GB 1 .

Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.

Разобраться в общем подходе к разработке электронных устройств по чертежам, с множеством практических и наглядных примеров поможет мой очень полезный для начинающих курс . Пройдя данный курс, Вы сразу почувствуете, что перешли от новичка на новый уровень.

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик — он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В — четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора — он достигнет первоначального значения.

Нагрузка усилительного каскада — головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации — резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более «чувствительный” по сравнению с однокаскадным — коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 — в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока — коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 — если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем — около 2 мА.

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй — на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй — усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ — при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), — оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада — резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем — HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Он выдает световые сигналы по принципу меньше нормы — норма — больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один — зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение — вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.

10 простых электрических схем со схемами

Повседневная жизнь на Земле практически невозможна без электричества. Все мы, от домов до крупных предприятий, зависим от электричества. Мы знаем, что электрический ток течет по замкнутой цепи. Электрическая цепь представляет собой замкнутый контур, в котором непрерывный электрический ток идет от источника питания к нагрузке. Если вы пытаетесь описать электрическую цепь своему другу или соседу, скорее всего, вам придется провести соединение. Например, если вы хотите объяснить схему освещения, может потребоваться больше времени, чтобы нарисовать лампочку, батарею и провода, потому что разные люди рисуют различные компоненты схемы по-разному, и это может занять много времени, чтобы объяснить.Поэтому лучший способ — научиться показывать простые электрические схемы. В этой статье мы приводим чертежи некоторых простых электрических цепей: цепь освещения переменного тока, цепь зарядки аккумулятора, счетчик энергии, цепь переключателя, цепь кондиционирования воздуха, цепь термопары, цепь освещения постоянного тока, цепь мультиметра, цепь трансформатора тока и цепь однофазного двигателя. .

Цепь переменного тока для лампы

Для лампы нам понадобятся два провода; один — нейтральный провод, а другой — провод под напряжением.Эти два провода подключены от лампы к главной панели питания. Желательно использовать разные цвета для проводов под напряжением и нейтральных проводов. Универсальная практика — использовать красный цвет для проводов под напряжением и черный цвет для нейтрального провода. Для включения и выключения лампы нам понадобится элемент управления, называемый переключателем, который находится в проводе под напряжением между источником питания и лампой. Если переключатель находится в положении ON, электрическая цепь замкнута и лампа светится, а если переключатель находится в положении OFF, он отключит питание лампы.Для безопасной работы эту проводку помещают в коробку, называемую распределительной коробкой. Провод переключателя и провод под напряжением представляют собой одиночный провод; он просто прорезан между ними, чтобы подключить выключатель. Если вы хотите заменить лампу, не забудьте выключить лампу и, если возможно, отключить питание от цепи.

Схема зарядки аккумулятора

Зарядка аккумулятора осуществляется с помощью выпрямителя. Основная функция выпрямителя — преобразование переменного (переменного тока) в постоянный (постоянный).Выпрямитель, показанный на схеме, представляет собой мостовой выпрямитель, который имеет четыре диода, соединенных в виде моста. В цепь добавлено сопротивление, чтобы ограничить ток. Когда питание подается на выпрямитель через понижающий трансформатор, он преобразует источник переменного тока в источник постоянного тока, который поступает в аккумулятор, тем самым заряжая его. Обычно эта схема заключена в блок зарядного устройства батареи или инвертор, и только клеммы выходят из блока зарядного устройства для подсоединения к батарее для зарядки.

Электрическая цепь кондиционирования воздуха

Кондиционирование воздуха — это процесс, при котором воздух нагревается, охлаждается, очищается и циркулирует вместе с контролем его влажности. Электрический аспект переменного тока включает в себя силовое оборудование для двигателей и пускателей для компрессоров и вентиляторов конденсатора. Сопутствующее электрическое оборудование включает электромагнитные клапаны, реле высокого и низкого давления, реле высокой и низкой температуры, а также предохранительные устройства от перегрузки по току, пониженного напряжения и т. Д.

Вентиляторы компрессора и конденсатора приводятся в действие простым трехфазным асинхронным двигателем переменного тока с фиксированной скоростью, каждый со своим стартером и питаемым от распределительного щита. Регулярное электрическое обслуживание и поиск неисправностей двигателя и стартеров включает очистку, проверку соединений, испытания изоляции и т. Д.

Цепь переключателя

Мы задействуем переключатели для освещения, вентиляторов и т. Д. Много раз в день, но обычно мы не пытаемся это сделать. см. соединение внутри переключателя. Функция переключателя состоит в том, чтобы подключить или замкнуть цепь, идущую к нагрузке от источника питания.Он имеет подвижные контакты, которые обычно разомкнуты.

Как показано на схеме, подача питания на нагрузку осуществляется через схему переключения, поэтому подачу питания можно отключить, удерживая переключатель в разомкнутом состоянии.

Схема освещения постоянного тока

Для небольшой светодиодной лампы обычно используется источник постоянного тока (аккумулятор). Эта схема очень проста. Батарея имеет две точки: анодную и катодную. Анод положительный, а катод отрицательный. Лампа имеет два вывода — один положительный, а другой — отрицательный.Положительный вывод лампы соединен с анодом, а отрицательный вывод лампы соединен с катодом батареи. Как только соединение будет установлено, лампа загорится. Для включения или выключения, подключите переключатель (схема выше) между любым одним проводом, который будет отключать или подавать напряжение постоянного тока на светодиодную лампу.

Более простые электрические схемы и простые электрические устройства обсуждаются на следующей странице.

Цепь термопары

Предыдущая страница была посвящена работе нескольких простых электрических цепей, здесь мы продолжим эту тему и изучим некоторые более простые электрические устройства и их утилиты.

Когда соединения, образованные из двух разнородных однородных материалов, подвергаются воздействию разницы температур, возникает ЭДС. Это называется эффектом Зеебека. На рисунке показана термопара, состоящая из двух проводов, одна железная, а другая — из константана, с вольтметром. Этот вольтметр будет измерять генерируемую ЭДС, и ее можно откалибровать для измерения температуры. Разница температур между горячим и холодным спаем создает пропорциональную ей ЭДС.Если температура холодного спая поддерживается постоянной, то ЭДС пропорциональна температуре горячего спая.

Счетчик энергии или счетчик двигателя

Энергия — это общая мощность, потребляемая за определенный промежуток времени. Мощность, потребляемая за определенный период времени, может быть измерена счетчиком двигателя или счетчиком энергии. Счетчики энергии используются на всех линиях электроснабжения каждого дома для измерения мощности, потребляемой как в цепях постоянного, так и переменного тока. Он измеряется в ватт-часах или киловатт-часах.Для цепей постоянного тока счетчиком может быть ампер-час или ватт-час.

Есть алюминиевый диск, который непрерывно вращается при потреблении энергии. Скорость вращения пропорциональна мощности, потребляемой нагрузкой (в ватт-часах). Счетчики энергии имеют катушку давления и катушку тока. Когда напряжение подается на катушку давления, ток течет через катушку и создает магнитный поток, который создает крутящий момент на диске. Ток нагрузки протекает через токовую катушку и создает другой магнитный поток, который оказывает противоположный крутящий момент на алюминиевый диск.Результирующий крутящий момент действует на диск и приводит к вращению диска, которое пропорционально используемой энергии и регистрируется в счетчике энергии.

Схема мультиметра

Мультиметр, вероятно, является одним из самых простых электрических устройств, которые могут измерять сопротивление, токи и напряжение. Это незаменимый прибор, который может использоваться для измерения постоянного и переменного напряжения и токов. Он используется для проверки целостности цепи (по шкале омметра, для измерения протока постоянного тока, постоянного напряжения в цепи, а также для измерения переменного напряжения на трансформаторе питания.Он состоит из гальванометра, последовательно подключенного к сопротивлению. Ток, протекающий в цепи, то есть напряжение в цепи, можно измерить, подключив клеммы мультиметра к цепи. В основном он используется для проверки целостности обмоток двигателя.

Схема трансформатора тока

Трансформатор тока используется для измерения тока в цепи с помощью амперметра низкого диапазона. Фактически, он снижает ток до уровня диапазона амперметра.Он имеет первичную обмотку и вторичную обмотку. Первичная обмотка подключается к силовой цепи, так что через нее проходит измеряемый ток. Вторичная обмотка трансформатора подключена к амперметру. Трансформатор снизит ток до значения, которое может быть измерено подключенным амперметром.

Цепь однофазного двигателя

Однофазные двигатели предназначены для работы от однофазного источника питания и могут выполнять широкий спектр полезных услуг в домах, офисах, фабриках и мастерских, а также в других коммерческих учреждениях.

Однофазный двигатель имеет две клеммы в клеммной коробке внешнего корпуса. Одна из этих клемм соединена с токоведущим проводом силовой цепи, а другая — с нулевым проводом. Когда электропитание подается на двигатель, он будет работать до тех пор, пока не будет отключено электропитание.

На этом однофазном двигателе работает даже вентилятор. Иногда вентилятор не запускается, когда мы его включаем. Причина в том, что конденсатор, используемый для самозапуска однофазного двигателя, не работает.Лучший способ решить эту проблему — заменить конденсатор.

Определение простой последовательной электрической цепи

Обновлено 15 декабря 2020 г.

Ли Джонсон

Освоение основ электроники означает понимание схем, их работы и способов расчета таких вещей, как общее сопротивление. разные типы схем. Реальные схемы могут быть сложными, но вы можете понять их с помощью базовых знаний, которые вы получите из более простых, идеализированных схем.

Два основных типа цепей — последовательные и параллельные. В последовательной схеме все компоненты (например, резисторы) выстроены в линию, при этом одна петля из проводов составляет схему. Параллельная цепь разделяется на несколько путей с одним или несколькими компонентами на каждом. Расчет последовательных цепей прост, но важно понимать различия и способы работы с обоими типами.

Основы электрических цепей

Электроэнергия течет только по цепям.Другими словами, для того, чтобы что-то работало, ему нужен полный цикл. Если вы разорвите эту петлю с помощью переключателя, питание перестанет течь, и ваш свет (например) погаснет. Простое определение схемы — это замкнутый контур проводника, по которому могут перемещаться электроны, обычно состоящий из источника питания (например, батареи), электрического компонента или устройства (например, резистора или лампочки) и проводящего провода.

Чтобы понять, как работают схемы, вам нужно усвоить базовую терминологию, но вы будете знакомы с большинством терминов из повседневной жизни.

«Разница напряжений» — это термин, обозначающий разницу в электрической потенциальной энергии между двумя местами на единицу заряда. Батареи работают, создавая разность потенциалов между двумя их выводами, что позволяет току течь от одного к другому, когда они соединены в цепи. Потенциал в одной точке технически является напряжением, но на практике важна разница в напряжении. У 5-вольтовой батареи разность потенциалов между двумя клеммами составляет 5 вольт, а 1 вольт = 1 джоуль на кулон.

Подключение проводника (например, провода) к обоим клеммам батареи создает цепь, по которой протекает электрический ток. Сила тока измеряется в амперах, что означает кулоны (заряда) в секунду.

Любой проводник будет иметь электрическое «сопротивление», что означает сопротивление материала протеканию тока. Сопротивление измеряется в омах (Ом), и провод с сопротивлением 1 Ом, подключенный к напряжению 1 вольт, позволит протекать току в 1 ампер.

Связь между ними заключена в законе Ома:

В = IR

Словами, «напряжение равно току, умноженному на сопротивление».

Сравнение последовательностей

с параллельными схемами

Два основных типа схем различаются по расположению в них компонентов.

Простое определение последовательной цепи: «Схема с компонентами, расположенными по прямой линии, поэтому весь ток течет через каждый компонент по очереди.«Если вы сделаете базовую контурную схему с батареей, подключенной к двум резисторам, а затем подключите обратно к батарее, два резистора будут включены последовательно. Таким образом, ток будет идти от положительного полюса батареи (по традиции вы относитесь к току, как если бы он исходит от положительного полюса) к первому резистору, от него ко второму резистору, а затем обратно к батарее.

Параллельная схема отличается. Схема с двумя параллельными резисторами будет разделена на две дорожки с резистором на каждой.Когда ток достигает соединения, то же количество тока, которое входит в соединение, также должно покинуть соединение. Это называется сохранением заряда или, в частности, для электроники нынешним законом Кирхгофа. Если два пути имеют одинаковое сопротивление, по ним будет течь равный ток, поэтому, если ток 6 ампер достигнет соединения с равным сопротивлением на обоих путях, по каждому из них будет течь по 3 ампера. Затем пути соединяются перед повторным подключением к батарее, чтобы замкнуть цепь.

Расчет сопротивления последовательной цепи

Расчет общего сопротивления нескольких резисторов подчеркивает различие между последовательным и последовательным резисторами.параллельные цепи. Для последовательной цепи полное сопротивление ( R, , , всего ) является просто суммой отдельных сопротивлений, поэтому:

R_ {total} = R_1 + R_2 + R_3 + …

Тот факт, что это последовательная цепь, означающая, что полное сопротивление на пути — это просто сумма отдельных сопротивлений на нем.

Для практической задачи представьте последовательную цепь с тремя сопротивлениями: R 1 = 2 Ом, R 2 = 4 Ом и R 3 = 6 Ом .Рассчитайте полное сопротивление в цепи.

Это просто сумма отдельных сопротивлений, поэтому решение будет таким:

\ begin {выровнено} R_ {total} & = R_1 + R_2 + R_3 \\ & = 2 \; \ Омега \; + 4 \; \ Омега \; +6 \; \ Омега \\ & = 12 \; \ Omega \ end {align}

Расчет сопротивления для параллельной цепи

Для параллельных цепей расчет R всего немного сложнее. Формула:

{1 \ выше {2pt} R_ {total}} = {1 \ above {2pt} R_1} + {1 \ above {2pt} R_2} + {1 \ above {2pt} R_3}

Помните, что эта формула дает вам обратную величину сопротивления (т.е.е., деленное на сопротивление). Поэтому вам нужно разделить единицу на ответ, чтобы получить общее сопротивление.

Представьте, что вместо этого параллельно были установлены те же три резистора, что и раньше. Общее сопротивление будет равно:

\ begin {align} {1 \ above {2pt} R_ {total}} & = {1 \ above {2pt} R_1} + {1 \ above {2pt} R_2} + { 1 \ выше {2pt} R_3} \\ & = {1 \ above {2pt} 2 \; Ω} + {1 \ выше {2pt} 4 \; Ω} + {1 \ выше {2pt} 6 \; Ω} \\ & = {6 \ выше {2pt} 12 \; Ω} + {3 \ выше {2pt} 12 \; Ω} + {2 \ выше {2pt} 12 \; Ω} \\ & = {11 \ выше {2pt} 12Ω} \\ & = 0.{-1}} \\ & = 1.09 \; \ Omega \ end {align}

Как решить последовательную и параллельную комбинированную схему

Вы можете разбить все схемы на комбинации последовательных и параллельных схем. Ветвь параллельной цепи может состоять из трех последовательно соединенных компонентов, а цепь может состоять из трех последовательных параллельных ветвящихся секций.

Решение подобных проблем означает просто разбить схему на секции и проработать их по очереди.Рассмотрим простой пример, где есть три ветви в параллельной цепи, но к одной из этих ветвей присоединены три резистора.

Уловка для решения проблемы заключается во включении вычисления последовательного сопротивления в большее для всей цепи. Для параллельной схемы необходимо использовать выражение:

{1 \ above {2pt} R_ {total}} = {1 \ above {2pt} R_1} + {1 \ above {2pt} R_2} + {1 \ выше {2pt} R_3}

Но первая ветвь, R 1 , фактически состоит из трех последовательно соединенных резисторов.Итак, если вы сначала сосредоточитесь на этом, вы знаете, что:

R_1 = R_4 + R_5 + R_6

Представьте, что R 4 = 12 Ом, R 5 = 5 Ом и R 6 = 3 Ом. Общее сопротивление:

\ begin {выровнено} R_1 & = R_4 + R_5 + R_6 \\ & = 12 \; \ Омега \; + 5 \; \ Омега \; + 3 \; \ Омега \\ & = 20 \; \ Omega \ end {align}

Получив этот результат для первой ветви, вы можете перейти к основной проблеме. С одним резистором на каждом из оставшихся путей, предположим, что R 2 = 40 Ом и R 3 = 10 Ом.{-1}} \\ & = 5.7 \; \ Omega \ end {align}

Другие расчеты

Сопротивление намного проще рассчитать в последовательной цепи, чем в параллельной, но это не всегда так. Уравнения для емкости ( C ) в последовательной и параллельной цепях в основном работают противоположным образом. Для последовательной схемы у вас есть уравнение для обратной емкости, поэтому вы рассчитываете общую емкость ( C всего ) с помощью:

{1 \ выше {2pt} C_ {total}} = {1 \ выше {2pt} C_1} + {1 \ выше {2pt} C_2} + {1 \ выше {2pt} C_3} +….

Затем вы должны разделить единицу на этот результат, чтобы найти C всего .

Для параллельной схемы у вас есть более простое уравнение:

C_ {total} = C_1 + C_2 + C_3 + ….

Однако основной подход к решению проблем с последовательными и параллельными схемами тот же.

Электрические цепи

Эта основная идея исследована через:

Противоположные взгляды студентов и ученых

Ежедневный опыт студентов

Студенты имеют большой опыт использования бытовой техники, в работе которой используются электрические цепи (фонарики, мобильные телефоны, плееры iPod).Скорее всего, у них появилось ощущение, что вам нужно включить аккумулятор или выключатель питания, чтобы все «работало», и что батареи могут «разрядиться». Они склонны думать об электрических цепях как о том, что они называют «током», «энергией», «электричеством» или «напряжением», причем все эти названия они часто используют как синонимы. Это неудивительно, учитывая, что все эти ярлыки часто используются в повседневном языке с неясным значением. Какой бы ярлык ни использовали учащиеся, они, вероятно, увидят в электрических цепях «поток» и что-то «хранимое», «израсходованное» или и то, и другое.Некоторые повседневные выражения, например о «зарядке батарей», также могут быть источником концептуальной путаницы для учащихся.

В частности, ученики часто считают, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, такую ​​как свет или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

В частности, студенты часто видят, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, например свет. или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Исследователи описали их как:

Четыре модели простых схем
  • «униполярная модель» — точка зрения, согласно которой на самом деле нужен только один провод между батареей и лампочкой, чтобы в цепи был ток.
  • «модель сталкивающихся токов». — вид, согласно которому ток «течет» с обеих клемм батареи и «сталкивается» в лампочке.
  • «модель потребляемого тока» — представление о том, что ток «расходуется» по мере «обхода» цепи, поэтому ток, «текущий по направлению» к лампочке, больше, чем ток, «утекающий» от нее обратно к лампочке. аккумулятор.
  • «научная модель» — точка зрения, что ток одинаков в обоих проводах.

Ежедневный опыт учащихся с электрическими цепями часто приводит к путанице в мышлении. Учащиеся, которые знают, что вы можете получить удар электрическим током, если дотронетесь до клемм пустой розетки домашнего освещения, если выключатель включен, поэтому иногда считают, что в розетке есть ток, независимо от того, касаются ли они ее или нет. (Точно так же они могут полагать, что есть ток в любых проводах, подключенных к батарее или розетке, независимо от того, замкнут ли переключатель.)

Некоторые студенты думают, что пластиковая изоляция проводов, используемых в электрических цепях, содержит и направляет электрический ток так же, как водопроводные трубы удерживают и регулируют поток воды.

Исследования: Осборн (1980), Осборн и Фрейберг (1985), Шипстоун (1985), Шипстоун и Ганстон (1985), Уайт и Ганстон (1980)

Научная точка зрения

Термин «электричество» (например, «химия») ) относится к области науки.

Модели играют важную роль, помогая нам понять то, что мы не можем видеть, и поэтому они особенно полезны при попытке разобраться в электрических цепях.Модели ценятся как за их объяснительную способность, так и за их способность к прогнозированию. Однако у моделей также есть ограничения.

Модель, используемая сегодня учеными для электрических цепей, использует идею о том, что все вещества содержат электрически заряженные частицы (см. Макроскопические свойства в сравнении с микроскопическими). Согласно этой модели, электрические проводники, такие как металлы, содержат заряженные частицы, которые могут относительно легко перемещаться от атома к атому, тогда как в плохих проводниках, изоляторах, таких как керамика, заряженные частицы перемещать гораздо труднее.

В научной модели электрический ток — это общее движение заряженных частиц в одном направлении. Причина этого движения — источник энергии, такой как батарея, который выталкивает заряженные частицы. Заряженные частицы могут перемещаться только при наличии полного проводящего пути (называемого «контуром» или «петлей») от одного вывода батареи к другому.

Простая электрическая цепь может состоять из батареи (или другого источника энергии), лампочки (или другого устройства, использующего энергию) и проводящих проводов, соединяющих две клеммы батареи с двумя концами лампочки.В научной модели такой простой схемы движущиеся заряженные частицы, которые уже присутствуют в проводах и в нити накала лампочки, являются электронами.

Электроны заряжены отрицательно. Батарея отталкивает электроны в цепи от отрицательной клеммы и притягивает их к положительной клемме (см. Электростатика — бесконтактная сила). Любой отдельный электрон перемещается только на небольшое расстояние. (Эти идеи получили дальнейшее развитие в основной идее «Разобраться в напряжении»).Хотя фактическое направление движения электронов — от отрицательного к положительному полюсу батареи, по историческим причинам обычно описывают направление тока как от положительного к отрицательному полюсу (так называемый « обычный ток »). ‘).

Энергия батареи хранится в виде химической энергии (см. Главную идею преобразования энергии). Когда он подключен к полной цепи, электроны перемещаются, и энергия передается от батареи к компонентам цепи.Большая часть энергии передается световому шару (или другому пользователю энергии), где она преобразуется в тепло и свет или в какую-либо другую форму энергии (например, звук в iPod). В соединительных проводах очень небольшое количество преобразуется в тепло.

Напряжение батареи говорит нам, сколько энергии она передает компонентам схемы. Это также говорит нам кое-что о том, насколько сильно батарея подталкивает электроны в цепи: чем больше напряжение, тем больше толчок (см. Идею фокусировки Использование энергии).

Критические идеи обучения

  • Электрический ток — это общее движение заряженных частиц в одном направлении.
  • Для получения электрического тока необходима непрерывная цепь от одного вывода батареи к другому.
  • Электрический ток в цепи передает энергию от батареи к компонентам цепи. В этом процессе ток не «расходуется».
  • В большинстве схем движущиеся заряженные частицы представляют собой отрицательно заряженные электроны, которые всегда присутствуют в проводах и других компонентах схемы.
  • Батарея выталкивает электроны по цепи.

Исследование: Loughran, Berry & Mulhall (2006)

Количественные подходы к обучению (например, с использованием закона Ома) могут препятствовать развитию концептуального понимания, и их лучше избегать на этом уровне.

Язык, на котором говорят учителя, очень важен. Использование слова «электричество» следует ограничить, поскольку его значение неоднозначно. Говоря о «текущем» токе вместо движения заряженных частиц, можно усилить неверное представление о том, что ток — это то же самое, что и электрический заряд; поскольку «заряд» — это свойство веществ, например масса, лучше называть «заряженные частицы», чем «заряды».

Идея фокуса Введение в научный язык дает дополнительную информацию о развитии научного языка со студентами.

Использование моделей, метафор и аналогий жизненно важно для развития понимания учащимися электрических цепей, потому что для объяснения того, что мы наблюдаем в цепи (например, зажигание лампочки), необходимо использовать научные идеи о вещах, которые мы не можем видеть, например об энергии. и электроны. Поскольку все модели / метафоры / аналогии имеют свои ограничения, важно использовать их множество.Не менее важно четко понимать сходства и различия между любой используемой моделью / метафорой / аналогией и рассматриваемым явлением. Общее ограничение физических моделей (в том числе приведенных ниже) состоит в том, что они подразумевают, что любой заданный электрон перемещается по цепи.

Изучите взаимосвязь между идеями об электричестве и преимуществами и ограничениями моделей в Карты развития концепции — Электричество и магнетизм и модели

Вот некоторые полезные модели и аналогии:

  • аналогия велосипедной цепи — это полезно для развития идеи потока энергии, для отличия этого потока энергии от тока и для демонстрации постоянства тока в данной цепи.Движение велосипедной цепи аналогично движению тока в замкнутой цепи. Движущаяся цепь передает энергию от педали (то есть «аккумулятор») к заднему колесу (то есть «компоненты схемы»), где энергия преобразуется. Эта модель имеет лишь ограниченную полезность и требует от учащегося осознать, что заднее колесо является компонентом, выполняющим преобразование энергии.
  • модель мармелада — это помогает развить идею о том, что движение электронов в цепи сопровождается передачей энергии.Студенты играют роль «электронов» в цепи. Каждый из них собирает фиксированное количество мармеладов, представляющих энергию, когда они проходят через «батарею», и отдают эту «энергию», когда достигают / проходят через «лампочку». Эти студенческие «электроны» затем возвращаются в «батарею» за дополнительной «энергией», которая включает в себя получение большего количества мармеладов.

Еще одно описание этого вида деятельности представлено в виньетке PEEL. Ролевая игра с мармеладом. Эта модель может быть очень мощной, но важным ограничением является представление энергии как субстанции, а не как изобретенной человеческой конструкции.

  • модель веревки — эта модель помогает объяснить, почему в электрической цепи происходит нагрев. Учащиеся образуют круг и свободно держат непрерывную петлю из тонкой веревки горизонтально. Один ученик действует как «батарея» и тянет веревку так, чтобы она скользила через руки других учеников, «компоненты схемы». Студенты чувствуют, как их пальцы нагреваются по мере того, как энергия преобразуется, когда веревка тянется студенческой батареей

Для получения дополнительной информации о развитии идей об энергии см. Фокусную идею Использование энергии.

  • модель водяного контура — это часто используется в учебниках и на первый взгляд кажется моделью, которая легко понятна учащимся; однако важно, чтобы учителя знали о его ограничениях.

В этой модели насос представляет батарею, турбину — лампочку, а водопроводные трубы — соединительные провода. Важно указать учащимся, что этот водяной контур на самом деле отличается от бытового водоснабжения, потому что в противном случае они могут, опираясь на свой повседневный опыт, сделать неправильный вывод, например, что электрический ток может вытекать из проводов контура таким же образом, как и вода может вытечь из труб.

Исследование: Лофран, Берри и Малхолл (2006)

Преподавательская деятельность

Открытое обсуждение через обмен опытом

Упражнение POE (прогнозировать-наблюдать-объяснять) — полезный способ начать обсуждение. Дайте ученикам батарейку, лампочку фонарика (или другую лампочку с нитью накала) и соединительный провод. Попросите их угадать, как следует подключить цепь, чтобы лампочка загорелась. Примечание: НЕ предоставляйте патрон лампы. Это должно спровоцировать обсуждение необходимости создания полного контура для тока и пути тока в лампочке.Это задание можно расширить, поощряя студентов использовать другие материалы вместо проводов.

Бросьте вызов некоторым существующим идеям

Ряд POE (Прогноз-Наблюдение-Объяснение) можно построить, изменив элементы существующей схемы и попросив учащихся сделать прогноз и их обоснование этого прогноза. Например, попросите учащихся предсказать изменения, которые могут произойти в яркости лампочки, когда она подключена к батареям с разным напряжением.

Разъяснение и объединение идей для / путем общения с другими

Попросите учащихся изучить модели и аналогии для электрических цепей, представленных выше.Студенты должны оценить каждую модель на предмет ее полезности для разъяснения представлений об электрических цепях. Студентов также следует поощрять к выявлению ограничений моделей.

Сосредоточьте внимание студентов на недооцененной детали

Попросите студентов изучить работу фонаря и нарисовать картинку, чтобы показать путь тока, когда выключатель замкнут. Студенты должны обсудить или написать о том, что, по их мнению, происходит.

Поощряйте студентов определять явления, которые не объясняются (представленной в настоящее время) научной моделью или идеей

Попросите студентов перечислить особенности электрической цепи, которые объясняются конкретной моделью / метафорой / аналогией, и особенности, которые не объясняются.

Содействовать размышлению и разъяснению существующих идей

Попросите учащихся нарисовать концептуальную карту, используя такие термины, как «батарея», «электроны», «энергия», «соединительные провода», «лампочка», «электрический ток».

Простые электронные схемы для начинающих и студентов инженерных специальностей

Как правило, успех первых проектов играет жизненно важную роль в области электроники для карьеры студентов-инженеров. Многие студенты бросают электронику из-за неудачной первой попытки.После нескольких неудач у ученика остается неправильное представление о том, что эти проекты, работающие сегодня, могут не сработать завтра. Таким образом, мы предлагаем новичкам начать со следующих проектов, которые дадут результат с первой попытки и дадут мотивацию для вашей собственной работы. Прежде чем продолжить, вы должны знать, как работает и используется макетная плата. В этой статье приведены 10 лучших простых электронных схем для начинающих и мини-проекты для студентов инженерных специальностей, но не для проектов последнего года обучения. Следующие схемы относятся к основным и малым категориям.


Что такое простые электронные схемы?

Соединение различных электрических и электронных компонентов с помощью соединительных проводов на макетной плате или путем пайки на печатной плате с образованием цепей, которые называются электрическими и электронными цепями. В этой статье давайте обсудим несколько простых проектов электроники для начинающих, которые построены на простых электронных схемах.

Простые электронные схемы для начинающих

Список из 10 простых электронных схем, обсуждаемых ниже, очень полезен для новичков при выполнении практики, проектирование этих схем помогает справиться со сложными схемами.


Схема освещения постоянного тока

Источник постоянного тока используется для небольшого светодиода с двумя выводами, а именно анодом и катодом. Анод — + ve, катод — –ve. Здесь в качестве нагрузки используется лампа с двумя выводами, положительным и отрицательным. Клеммы + ve лампы подключены к анодному выводу батареи, а клемма –ve батареи подключена к клемме –ve батареи. Переключатель подключен между проводами, чтобы подавать постоянное напряжение на светодиодную лампу.

Освещение постоянного тока Простая электронная схема
Сигнализация дождя

Следующая схема защиты от дождя используется для подачи сигнала тревоги, когда идет дождь. Эта схема используется в домах для защиты их выстиранной одежды и других вещей, которые уязвимы для дождя, когда они остаются дома большую часть времени на работе. Необходимыми компонентами для построения этой схемы являются датчики. Резисторы 10K и 330K, транзисторы BC548 и BC 558, батарея 3V, конденсатор 01mf и динамик.

Цепь аварийной сигнализации о дожде

Всякий раз, когда дождевая вода соприкасается с датчиком в указанной выше цепи, через цепь протекает ток, чтобы активировать транзистор Q1 (NPN), а также транзистор Q1 делает активным транзистор Q2 (PNP).Таким образом, транзистор Q2 проводит, а затем ток через динамик генерирует звук зуммера. Пока зонд не соприкоснется с водой, эта процедура повторяется снова и снова. В приведенной выше схеме построен колебательный контур, который изменяет частоту тона, и, таким образом, тон может быть изменен.


Простой монитор температуры

Эта схема выдает индикацию с помощью светодиода, когда напряжение батареи падает ниже 9 вольт. Эта схема идеальна для контроля уровня заряда батарейки на 12 В.Эти батареи используются в системах охранной сигнализации и портативных устройствах. Работа этой схемы зависит от смещения клеммы базы транзистора T1.

Простая электронная схема монитора температуры

Когда напряжение батареи превышает 9 вольт, то напряжение на клеммах база-эмиттер будет таким же. Это отключает и транзисторы, и светодиоды. Когда напряжение батареи падает ниже 9 В из-за использования, базовое напряжение транзистора T1 падает, а напряжение его эмиттера остается неизменным, поскольку конденсатор C1 полностью заряжен.На этом этапе клемма базы транзистора T1 становится + ve и включается. Конденсатор C1 разряжается через светодиодный индикатор

Схема датчика касания

Схема датчика касания состоит из трех компонентов, таких как резистор, транзистор и светодиод. Здесь и резистор, и светодиод подключены последовательно с положительным питанием к клемме коллектора транзистора.

Простая электронная схема сенсорного датчика

Выберите резистор, чтобы установить ток светодиода примерно на 20 мА.Теперь подключите соединения на двух открытых концах: одно соединение идет к плюсовому проводу, а другое — к клемме базы транзистора. Теперь коснитесь этих двух проводов пальцем. Коснитесь этих проводов пальцем, тогда загорится светодиод!

Схема мультиметра

Мультиметр — это важная, простая и базовая электрическая схема, которая используется для измерения напряжения, сопротивления и тока. Он также используется для измерения параметров постоянного и переменного тока. Мультиметр включает в себя гальванометр, подключенный последовательно с сопротивлением.Напряжение в цепи можно измерить, поместив щупы мультиметра в цепь. Мультиметр в основном используется для проверки целостности обмоток двигателя.

Мультиметр Простая электронная схема
Схема светодиодной мигалки

Конфигурация схемы светодиодной мигалки показана ниже. Следующая схема построена с использованием одного из самых популярных компонентов, таких как таймер 555 и интегральные схемы. Эта цепь будет мигать светодиодом ON и OFF через равные промежутки времени.

LED Flasher Простая электронная схема

Слева направо в схеме конденсатор и два транзистора устанавливают время, необходимое для включения или выключения светодиода. Изменяя время, необходимое для зарядки конденсатора, чтобы активировать таймер. Таймер IC 555 используется для определения времени, в течение которого светодиод остается включенным и выключенным.

Включает в себя сложную схему внутри, но поскольку она заключена в интегральную схему. Два конденсатора расположены с правой стороны таймера, и они необходимы для правильной работы таймера.Последняя часть — это светодиод и резистор. Резистор используется для ограничения тока светодиода. Значит, он не повредит

Невидимая охранная сигнализация

Схема невидимой охранной сигнализации построена на фототранзисторе и ИК-светодиоде. Если на пути инфракрасных лучей нет препятствий, сигнал тревоги не будет издавать звуковой сигнал. Когда кто-то пересекает инфракрасный луч, возникает звуковой сигнал тревоги. Если фототранзистор и инфракрасный светодиод заключены в черные трубки и правильно соединены, дальность действия цепи составляет 1 метр.

Простая электронная схема охранной сигнализации

Когда инфракрасный луч падает на фототранзистор L14F1, он защищает BC557 (PNP) от проводимости, и в этом состоянии зуммер не генерирует звук. Когда инфракрасный луч прерывается, фототранзистор выключается, позволяя транзистору PNP работать, и звучит зуммер. Закрепите фототранзистор и инфракрасный светодиод на обратной стороне в правильном положении, чтобы зуммер не работал. Отрегулируйте переменный резистор, чтобы установить смещение транзистора PNP.Здесь можно использовать и другие типы фототранзисторов вместо LI4F1, но L14F1 более чувствителен.

Светодиодная схема

Светоизлучающий диод — это небольшой компонент, излучающий свет. Использование светодиода дает много преимуществ, потому что оно очень дешевое, простое в использовании, и мы можем легко понять, работает схема или нет, по ее индикации.

LED Простая электронная схема

При прямом смещении дырки и электроны через переход перемещаются вперед и назад.В этом процессе они будут объединяться или иным образом устранять друг друга. Через некоторое время, если электрон перейдет из кремния n-типа в кремний p-типа, то этот электрон объединится с дыркой и исчезнет. Он делает один полный атом, и он более стабилен, поэтому он будет генерировать небольшое количество энергии в виде фотонов света.

В условиях обратного смещения положительный источник питания будет отводить все электроны, присутствующие в переходе. И все отверстия будут тянуться к отрицательной клемме.Таким образом, переход обеднен носителями заряда, и ток через него не течет.

Анод — длинный штифт. Это вывод, который вы подключаете к наиболее положительному напряжению. Катодный вывод должен подключаться к наиболее отрицательному напряжению. Для работы светодиода они должны быть правильно подключены.

Простой метроном светочувствительности с использованием транзисторов

Любое устройство, которое производит регулярные метрические тики (удары, щелчки), мы можем назвать его метрономом (устанавливаемое количество ударов в минуту).Здесь галочки означают фиксированный регулярный слуховой пульс. Синхронизированное визуальное движение, такое как качание маятника, также включено в некоторые метрономы.

Простая электронная схема метронома светочувствительности

Это простая схема метронома светочувствительности, использующая транзисторы. В этой схеме используются два типа транзисторов, а именно транзисторы с номерами 2N3904 и 2N3906, составляющие цепь исходной частоты. Звук из громкоговорителя будет увеличиваться и уменьшаться на частоту звука. LDR используется в этой схеме LDR означает светозависимый резистор, также мы можем назвать его фоторезистором или фотоэлементом.LDR — это регулируемый светорезистор.

Если интенсивность падающего света увеличивается, сопротивление LDR будет уменьшаться. Это явление называется фотопроводимостью. Когда ведущий световой проблесковый маячок приближается к LDR в темной комнате, он получает свет, тогда сопротивление LDR падает. Это усилит или повлияет на частоту источника, частоту звукового контура. Дерево непрерывно ласкает музыку из-за изменения частоты в цепи. Просто посмотрите на приведенную выше схему для получения других подробностей.

Схема сенсорного сенсорного переключателя

Принципиальная схема сенсорного сенсорного переключателя показана ниже. Эта схема может быть построена на IC 555. в режиме моностабильного мультивибратора. В этом режиме эта ИС может быть активирована путем создания высокого логического уровня в ответ на вывод 2. Время, необходимое для генерации выходного сигнала, в основном зависит от номиналов конденсатора (C1) и переменного резистора (VR1).

Чувствительный переключатель на основе касания

После касания сенсорной пластины контакт 2 микросхемы IC будет перемещен к менее логическому потенциалу, например, ниже 1/3 Vcc.Состояние выхода может быть возвращено с низкого на высокий по времени, чтобы активировать ступень срабатывания реле. Как только конденсатор C1 разряжен, активируются нагрузки. Здесь нагрузки подключаются к контактам реле, и управление им может осуществляться через контакты реле.

Электронный глаз

Электронный глаз в основном используется для наблюдения за гостями у основания входной двери. Вместо звонка он подключается к двери с помощью LDR. Каждый раз, когда посторонний человек пытается открыть дверь, тень этого человека падает на LDR.Затем немедленно активируется схема для генерации звука с помощью зуммера.

Electronic Eye

Проектирование этой схемы может быть выполнено с использованием логического элемента, например, НЕ с использованием D4049 CMOS IC. Эта ИС имеет шесть отдельных вентилей НЕ, но в этой схеме используется только один вентиль НЕ. Как только выход логического элемента НЕ высокий, а вход pin3 меньше по сравнению с 1/3 ступени источника напряжения. Точно так же, когда уровень напряжения питания увеличивается выше 1/3, выход становится низким.

Выход этой схемы имеет два состояния, например 0 и 1, и в этой схеме используется батарея 9 В.Контакт 1 в схеме может быть подключен к источнику положительного напряжения, тогда как контакт 8 подключен к клемме заземления. В этой схеме LDR играет основную роль в обнаружении тени человека, и его значение в основном зависит от яркости падающей на него тени.

Схема делителя потенциала построена через резистор 220 кОм и LDR, подключенные последовательно. Как только LDR получает меньше напряжения в темноте, он получает больше напряжения от делителя напряжения. Это разделенное напряжение можно использовать как вход затвора НЕ.Как только: LDR становится темным и входное напряжение этого затвора уменьшается до 1/3 напряжения, тогда на контакте 2 появляется высокое напряжение. Наконец, будет активирован зуммер для генерации звука.

FM-передатчик с использованием UPC1651

Ниже показана схема FM-передатчика, работающего от 5 В постоянного тока. Эта схема может быть построена с кремниевым усилителем, например ICUPC1651. Коэффициент усиления этой схемы находится в широком диапазоне, например 19 дБ, тогда как частотная характеристика составляет 1200 МГц. В этой схеме аудиосигналы можно принимать с помощью микрофона.Эти звуковые сигналы поступают на второй вход микросхемы через конденсатор С1. Здесь конденсатор действует как фильтр шума.

FM-передатчик

FM-модулированный сигнал допустим на контакте 4. Здесь этот контакт 4 является выходным контактом. В приведенной выше схеме LC-цепь может быть сформирована с использованием катушки индуктивности и конденсатора, таких как L1 и C3, так что могут возникать колебания. Таким образом, изменяя конденсатор C3, можно изменять частоту передатчика.

Автоматический светильник для уборной

Вы когда-нибудь думали о существовании какой-либо системы, которая способна включать свет в вашей туалетной комнате, когда вы входите в нее, и выключать свет, когда вы выходите из ванной?

Действительно ли возможно включить свет в ванной, просто войдя в ванную, и выключить, просто выйдя из ванной? Да, это! С автоматической домашней системой вам вообще не нужно нажимать какой-либо переключатель, наоборот, все, что вам нужно сделать, это открыть или закрыть дверь — вот и все.Чтобы получить такую ​​систему, все, что вам нужно, — это нормально замкнутый переключатель, OPAMP, таймер и лампа на 12 В.

Необходимые компоненты

Схема подключения

OPAMP IC 741 представляет собой одиночную OPAMP IC, состоящую из 8 контактов. Контакты 2 и 3 являются входными контактами, контакт 3 — неинвертирующим контактом, а контакт 2 — инвертирующим контактом. Фиксированное напряжение через устройство делителя потенциала подается на контакт 3, а входное напряжение через переключатель подается на контакт 2.

Используемый переключатель представляет собой нормально замкнутый переключатель SPST. Выходной сигнал OPAMP IC подается на микросхему таймера 555, которая при запуске (низким напряжением на входном контакте 2) генерирует высокий логический импульс (с напряжением, равным его источнику питания 12 В) на своем выходном контакте. 3. Этот выходной контакт подключен к лампе 12 В.

Принципиальная схема

Автоматическое освещение для уборной

Работа контура

Переключатель размещается на стене таким образом, что, когда дверь открывается, полностью толкая ее к стене, нормально закрытый переключатель открывается когда дверь касается стены.Используемый здесь OPAMP работает как компаратор. Когда переключатель разомкнут, инвертирующий терминал подключается к источнику питания 12 В, и напряжение приблизительно 4 В подается на неинвертирующий терминал.

Теперь, когда напряжение на неинвертирующей клемме меньше, чем на инвертирующей клемме, на выходе OPAMP генерируется низкий логический импульс. Он поступает на вход таймера IC через схему делителя потенциала. ИС таймера запускается при низком логическом сигнале на своем входе и генерирует высокий логический импульс на своем выходе.Здесь таймер работает в моностабильном режиме. Когда лампа получает этот сигнал 12 В, она светится.

Точно так же, когда человек выходит из туалета и закрывает дверь, переключатель возвращается в свое нормальное положение и закрывается. Поскольку неинвертирующий вывод OPAMP находится под более высоким напряжением по сравнению с инвертирующим выводом, на выходе OPAMP высокий логический уровень. Это не срабатывает таймер; так как таймер не выводит сигнал, лампа выключается.

Автоматический дверной звонок

Вы когда-нибудь задумывались? как легко было бы, если бы вы пошли к себе домой из офиса, очень уставший и подошел к двери, чтобы ее закрыть.Внезапно внутри раздается звонок, затем кто-то открывает дверь, не нажимая.

Вы могли подумать, что это похоже на сон или иллюзию, но это не так; это реальность, которой можно достичь с помощью нескольких основных электронных схем. Все, что требуется, — это расположение датчиков и схема управления для срабатывания сигнализации на основе входного сигнала датчика.

Необходимые компоненты

Схема подключения

Используемый датчик представляет собой инфракрасный светодиод и фототранзистор, размещенные рядом друг с другом.Выходной сигнал сенсорного блока подается на микросхему таймера 555 через транзистор и резистор. Вход на таймер поступает на вывод 2.

На сенсорный блок подается напряжение 5 В, а на вывод 8 микросхемы таймера подается напряжение Vcc напряжением 9 В. К выходному выводу 3 таймера подключен зуммер. Другие контакты таймера IC подключаются аналогичным образом, так что таймер работает в моностабильном режиме.

Принципиальная схема

Автоматический дверной звонок

Работа цепи

Инфракрасный светодиод и фототранзистор расположены так, чтобы при нормальной работе фототранзистор не светился и не проводил ток.Таким образом, транзистор (поскольку он не получает никакого входного напряжения) не проводит.

Так как входной контакт 2 таймера находится на высоком логическом уровне, он не срабатывает и зуммер не звонит, так как он не получает никакого входного сигнала. Если человек приближается к двери, свет, излучаемый светодиодом, принимается этим человеком и отражается обратно. Фототранзистор принимает этот отраженный свет и затем начинает проводить.

Когда этот фототранзистор проводит, транзистор смещается и тоже начинает проводить.На вывод 2 таймера поступает низкий логический сигнал, и таймер срабатывает. Когда этот таймер запускается, на выходе генерируется высокий логический импульс 9 В, и когда зуммер получает этот импульс, он срабатывает и начинает звонить.

Простая сигнализация о дождевой воде

Хотя дождь необходим для всех, особенно для сельскохозяйственных секторов, временами его последствия разрушительны, и даже многие из нас часто избегают дождя, опасаясь промокнуть, особенно когда идет дождь тяжело.Даже если мы заперты в машине, внезапный сильный ливень ограничивает нас и застревает под сильным дождем. Лобовое стекло работающего автомобиля в таких условиях становится делом довольно хлопотным.

Следовательно, час должен иметь систему индикаторов, которая может указывать на возможность дождя. Компоненты такой простой схемы включают OPAMP, таймер, зуммер, два датчика и, конечно же, несколько основных электронных компонентов. Разместив эту схему внутри вашего автомобиля, дома или в любом другом месте, а датчики снаружи, вы можете разработать простую систему для обнаружения дождя.

Необходимые компоненты

Схема подключения

В качестве компаратора используется OPAMP IC LM741. Два датчика предусмотрены в качестве входа для инвертирующего терминала OPAMP таким образом, что, когда дождевая вода попадает на датчики, они соединяются вместе. На неинвертирующий вывод подается фиксированное напряжение через устройство делителя потенциала.

Выходной сигнал OPAMP на выводе 6 подается на вывод 2 таймера через подтягивающий резистор.Контакт 2 таймера 555 является контактом срабатывания. Здесь таймер 555 подключен в моностабильном режиме, так что, когда он запускается на выводе 2, выходной сигнал генерируется на выводе 3 таймера. Конденсатор емкостью 470 мкФ подключается между выводом 6 и землей, а конденсатор емкостью 0,01 мкФ подключается между выводом 5 и землей. Резистор на 10 кОм подключен между контактами 7 и питанием Vcc.

Принципиальная схема

Простая система сигнализации о дождевой воде

Работа контура

Когда нет дождя, датчики не соединяются между собой (здесь вместо датчиков используется кнопка с ключом), и, следовательно, нет подачи напряжения на инвертирующий вход OPAMP.Поскольку на неинвертирующий терминал подается фиксированное напряжение, на выходе OPAMP высокий логический уровень. Когда этот сигнал подается на входной контакт таймера, он не срабатывает, и выход отсутствует.

Когда начинается дождь, датчики соединяются между собой каплями воды, поскольку вода является хорошим проводником тока, и, следовательно, ток начинает течь через датчики, и на инвертирующий вывод OPAMP подается напряжение. Это напряжение больше, чем фиксированное напряжение на неинвертирующем выводе — и тогда, в результате, выходной сигнал OPAMP находится на низком логическом уровне.

Когда это напряжение подается на вход таймера, таймер запускается и генерируется высокий логический уровень на выходе, который затем передается на зуммер. Таким образом, при обнаружении дождевой воды зуммер начинает звонить, указывая на дождь.

Мигающие лампы с таймером 555

Все мы любим фестивали, и поэтому, будь то Рождество, Дивали или любой другой праздник, первое, что приходит в голову, — это украшение. Что может быть в таком случае лучше, чем применить свои знания в области электроники для украшения вашего дома, офиса или любого другого места? Хотя существует много типов сложных и эффективных систем освещения, здесь мы сосредоточимся на простой схеме мигающей лампы.

Основная идея здесь состоит в том, чтобы изменять интенсивность ламп с интервалом в одну минуту, и для этого мы должны обеспечить колебательный вход на переключатель или реле, управляющее лампами.

Необходимые компоненты

Подключение контура

В этой системе таймер 555 используется в качестве генератора, способного генерировать импульсы с интервалом максимум 10 минут. Частоту этого временного интервала можно регулировать с помощью переменного резистора, подключенного между разрядным выводом 7 и выводом 8 Vcc таймера IC.Значение другого резистора установлено на 1 кОм, а конденсатор между контактами 6 и 1 установлен на 1 мкФ.

Выход таймера на выводе 3 подается на параллельную комбинацию диода и реле. В системе используется реле с нормально замкнутыми контактами. В системе используются 4 лампы: две из которых соединены последовательно, а две другие пары последовательно соединенных ламп соединены параллельно друг другу. Переключатель DPST используется для управления переключением каждой пары ламп.

Принципиальная схема

Мигающие лампы с использованием таймера 555

Работа схемы

Когда эта схема получает питание 9 В (также может быть 12 или 15 В), таймер 555 генерирует колебания на своем выходе.Диод на выходе используется для защиты. Когда на катушку реле поступают импульсы, на нее подается питание.

Предположим, общий контакт переключателя DPST подключен таким образом, что верхняя пара ламп получает питание 230 В переменного тока. Поскольку переключение реле изменяется из-за колебаний, яркость ламп также меняется, и они кажутся мигающими. То же самое происходит и с другой парой ламп.

Зарядное устройство с SCR и таймером 555

В настоящее время все электронные устройства, которые вы используете, зависят от источника питания постоянного тока для своей работы.Обычно они получают этот источник питания от источника переменного тока в доме и используют схему преобразователя для преобразования этого переменного тока в постоянный.

Однако, в случае сбоя питания можно использовать аккумулятор. Но основная проблема батарей — их ограниченный срок службы. Тогда что делать дальше? Есть способ, как можно использовать аккумуляторные батареи. Далее самая большая проблема — это эффективная зарядка аккумуляторов.

Чтобы преодолеть такую ​​проблему, простая схема с использованием SCR и таймера 555 разработана для обеспечения контролируемой зарядки и разрядки аккумулятора с индикацией.

Компоненты цепи

Подключение цепи

Питание 230 В подается на первичную обмотку трансформатора. Вторичная обмотка трансформатора подключена к катоду кремниевого управляющего выпрямителя (SCR). Затем анод SCR подключается к лампе, а затем параллельно подключается аккумулятор. Затем комбинация из двух резисторов (R5 и R4) подключается последовательно с потенциометром 100 Ом на батарее. Используется таймер 555 в моностабильном режиме, который запускается последовательной комбинацией диода и транзистора PNP.

Принципиальная схема

Зарядное устройство с тиристором и таймером 555

Работа схемы

Понижающий трансформатор снижает напряжение переменного тока на первичной обмотке, и это пониженное напряжение переменного тока подается на вторичную обмотку. Используемый здесь SCR действует как выпрямитель. В нормальном режиме работы, когда SCR проводит, он позволяет постоянному току течь к батарее. Когда аккумулятор заряжается, небольшой ток проходит через разделитель потенциала R4, R5 и потенциометр.

Поскольку на диод поступает очень малый ток, он проводит незначительно. Когда это небольшое смещение применяется к транзистору PNP, он становится проводящим. В результате транзистор заземлен, и на входной вывод таймера подается низкий логический сигнал, который запускает таймер. Затем выходной сигнал таймера подается на вывод затвора SCR, который запускается на проводимость.

Если аккумулятор полностью заряжен, он начинает разряжаться, и ток через устройство делителя потенциала увеличивается, и диод также начинает сильно проводить, а затем транзистор оказывается в зоне отсечки.При этом не запускается таймер, и в результате SCR не срабатывает, и это прекращает подачу тока на батарею. Индикация заряда батареи отображается при помощи светящейся лампы.

Простые электронные схемы для студентов инженерных специальностей

Существует несколько простых электронных проектов для начинающих, которые включают проекты «сделай сам» («Сделай сам»), проекты без пайки и т. Д. Проекты без пайки можно рассматривать как проекты электроники для начинающих, поскольку это очень простые электронные схемы.Эти беспаечные проекты могут быть реализованы на макетной плате без какой-либо пайки, следовательно, называются беспаечными проектами.

Проекты: датчик ночного освещения, индикатор уровня верхнего резервуара для воды, светодиодный диммер, полицейская сирена, звонок на основе сенсорной точки, автоматическое освещение задержки туалета, система пожарной сигнализации, полицейские огни, умный вентилятор, кухонный таймер и т. Д. примеры простых электронных схем для начинающих.

Простые электронные схемы для начинающих
Smart Fan

Вентиляторы часто используются в электронных приборах в жилых домах, офисах и т. Д., для вентиляции и предотвращения удушья. Этот проект предназначен для сокращения потерь электроэнергии за счет автоматического переключения.

Схема интеллектуального вентилятора

Проект интеллектуального вентилятора представляет собой простую электронную схему, которая включается, когда человек находится в комнате, и вентилятор выключается, когда человек выходит из комнаты. Таким образом можно уменьшить количество потребляемой электроэнергии. Блок-схема интеллектуального вентилятора

Электронная схема интеллектуального вентилятора состоит из ИК-светодиода и фотодиода, используемого для обнаружения человека.Таймер 555 используется для управления вентилятором, если пара ИК-светодиода и фотодиода обнаруживает кого-либо, тогда срабатывает таймер 555.

Night Sensing Light
Night Sensing Light by www.edgefxkits.com

Ночной светильник — это одна из самых простых в разработке электронных схем, а также самая мощная схема для экономии электроэнергии за счет автоматического переключения освещения. Самыми распространенными электронными приборами являются фонари, но всегда сложно управлять ими, запоминая.

Блок-схема ночного освещения

Схема ночного освещения будет управлять светом в зависимости от интенсивности света, падающего на датчик, используемый в цепи. Светозависимый резистор (LDR) используется в качестве светового датчика в цепи, которая автоматически включает и выключает свет без какой-либо поддержки человека.

Светодиодный диммер
Светодиодный диммер

Светодиодные лампы предпочтительнее, так как они наиболее эффективны, долговечны и потребляют очень мало энергии. Функция затемнения светодиодов используется для различных целей, таких как запугивание, украшение и т. Д.Несмотря на то, что светодиоды проектируются для диммирования, для повышения производительности можно использовать схемы диммеров.

Блок-схема светодиодного диммера

Светодиодный диммер — это простые электронные схемы, разработанные с использованием микросхемы таймера 555, полевого МОП-транзистора, регулируемого предустановленного резистора и мощного светодиода. Схема подключена, как показано на рисунке выше, и яркость можно регулировать от 10 до 100 процентов.

Звонок вызова на основе точки касания
Звонок вызова на основе точки касания от

В нашей повседневной жизни мы обычно используем много простых электронных схем, таких как звонок вызова, ИК-пульт дистанционного управления для телевизора, переменного тока и т. Д., и так далее. Обычная система звонка состоит из переключателя, который управляет и издает звук зуммера или загорается индикатор.

Блок-схема звонка на основе точки касания

Звонок вызова на основе точки касания — это инновационная и простая электронная схема, разработанная для замены обычного звонка. Схема состоит из сенсорного датчика, микросхемы таймера 555, транзистора и зуммера. Если человеческое тело касается сенсорного датчика цепи, то напряжение, возникающее на сенсорной пластине, используется для запуска таймера.Таким образом, выходной сигнал таймера 555 становится высоким в течение фиксированного интервала времени (на основе постоянной времени RC). Этот выход используется для управления транзистором, который, в свою очередь, включает зуммер на этот промежуток времени и автоматически выключается после этого.

Система пожарной сигнализации
Система пожарной сигнализации

Самая важная электронная схема для дома, офиса, любого места, где есть вероятность пожара, — это система пожарной сигнализации. Всегда сложно даже представить пожарную аварию, поэтому система пожарной сигнализации помогает потушить пожар или спастись от пожара, уменьшить человеческие жертвы и материальный ущерб.

Блок-схема системы пожарной сигнализации

Простой электронный проект, построенный с использованием светодиодного индикатора, транзистора и термистора, может быть использован в качестве системы пожарной сигнализации. Этот проект можно использовать даже для индикации высоких температур (пожар вызывает высокие температуры), чтобы система охлаждения могла быть включена для снижения температуры до ограниченного диапазона. Термистор (датчик температуры) используется для определения изменений температуры и, таким образом, изменяет вход транзистора. Таким образом, если диапазон температур превышает ограниченное значение, тогда транзистор включит светодиодный индикатор, чтобы указать высокую температуру.

Это все о 10 лучших простых электронных схемах для начинающих, которые заинтересованы в разработке своих простых электронных схем. Мы надеемся, что эти типы схем будут полезны для начинающих, а также студентов-инженеров. Кроме того, любые вопросы, касающиеся проектов по электрике и электронике для студентов-инженеров, оставляйте свои отзывы, комментируя их в разделе комментариев ниже. Вот вам вопрос, что такое активные и пассивные компоненты?

Фото:

Простая схема

Простая схема

Понимание основ работы с автомобильной электрической системой важно для ваших базовых навыков и помогает вам выявлять первопричины и устранять электрические неисправности.Следующая информация поможет вам изучить элементы электричества, определить методы понимания цепей, сопротивления, нагрузки, проверить напряжение холостого хода или доступное напряжение, а также падение напряжения.

Помните о трех элементах электричества; напряжение, сила тока и сопротивление. Напряжение (иногда называемое электродвижущей силой) — это представление электрической потенциальной энергии между двумя точками в электрической цепи, выраженное в вольтах. Подумайте о напряжении как об электрическом давлении, которое существует между двумя точками в проводнике, или о силе, которая заставляет электроны двигаться в электрической цепи.Другими словами, это давление или сила, которые заставляют электроны двигаться в определенном направлении внутри проводника. Когда электроны перемещаются из отрицательно заряженной области в положительно заряженную область, это движение электронов между атомами называется электрическим током. Электрический ток — это мера потока этих электронов через проводник или электричества, протекающего в цепи или электрической системе. Если вы подумаете о садовом шланге в качестве примера, ток — это количество воды, протекающей через шланг.Напряжение — это величина давления, под которым вода проходит через шланг.

Этот поток электронов измеряется в единицах, называемых амперами. Амперы или ампер — это единица измерения силы или скорости протекания электрического тока. Электрическое сопротивление описывает величину сопротивления протеканию тока. Чем больше значение сопротивления, тем больше он борется. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи. Это сопротивление или противодействие тока измеряется в Ом.Один вольт — это величина давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления в цепи.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

Цепь — это законченный путь, по которому течет электричество. Основными элементами базовой электрической цепи являются: источник, нагрузка и заземление. Электричество не может течь без источника питания (батареи), нагрузки (лампочка или резистор-электрическое устройство / компонент) и замкнутого проводящего пути (соединяющих его проводов).Электрические цепи состоят из проводов, соединителей проводов, переключателей, устройств защиты цепей, реле, электрических нагрузок и заземления. Схема, показанная ниже, имеет источник питания, предохранитель, выключатель, лампу и провода, соединяющие их в петлю. Когда соединение завершено, ток течет от положительной клеммы батареи через цепь к отрицательной клемме батареи.

В замкнутой цепи напряжение источника обеспечивает электрическое давление, которое проталкивает ток через цепь.Сторона источника цепи включает в себя все части цепи между положительным полюсом батареи и нагрузкой. Нагрузка — это любое устройство в цепи, которое производит свет, тепло, звук или электрическое движение при протекании тока. Нагрузка всегда имеет сопротивление и потребляет напряжение только при протекании тока. В приведенном ниже примере один конец провода от второй лампы возвращает ток в аккумулятор, поскольку он подключен к кузову или раме транспортного средства. Корпус или рама работают как заземление (то есть часть цепи, которая возвращает ток к батарее).

ТРЕБОВАНИЯ К ЦЕПИ

Полная электрическая цепь необходима для практического использования электричества. Электроны должны течь от источника питания и возвращаться к нему. Соединяя отрицательный и положительно заряженный концы источника питания с проводником, мы получаем потенциал движения электронов. Таким образом, полная цепь — это «путь» или петля, которая позволяет электричеству (току) течь. Но чтобы заставить этот контур или схему работать на нас, нам нужно добавить две вещи: источник питания (аккумулятор или генератор переменного тока) и нагрузку (пример — фары).После того, как электричество выполнило свою работу через Нагрузку, оно должно вернуться обратно к Источнику (Батареи). Если у вас где-то в этой цепи произойдет обрыв, у вас будет разрыв электрического тока. Это также известно как «разомкнутая цепь». Напряжение холостого хода измеряется при отсутствии тока в цепи.

Типы цепей

Существует три основных типа цепей: последовательные, параллельные и последовательно-параллельные. Отдельные электрические цепи обычно объединяют одно или несколько устройств сопротивления или нагрузки.Конструкция автомобильной электрической цепи будет определять, какой тип цепи используется, но все они требуют одинаковых основных компонентов для правильной работы:

1. Источник питания (аккумулятор, генератор, генератор и т. Д.) Необходим для обеспечения потока электронов (электричества).

2. Защитное устройство (предохранитель, плавкая вставка или автоматический выключатель) предотвращает повреждение цепи в случае короткого замыкания.

3. Управляющее устройство (переключатель, реле или транзистор) позволяет пользователю управлять включением или выключением цепи.

4.Нагрузочное устройство (лампа, двигатель, обмотка, резистор и т. Д.) Преобразует электричество в работу.

5. Проводник (обратный путь, заземление) обеспечивает электрический путь к источнику питания и от него.

Цепи серии

Компоненты последовательной цепи соединены встык один за другим, чтобы образовалась простая петля для прохождения тока через цепь. Последовательная цепь имеет только один путь к земле, все нагрузки размещены последовательно, поэтому ток должен проходить через каждый компонент, чтобы вернуться на землю.Если в цепи есть разрыв (например, перегоревшая лампочка), вся цепь и любые другие лампочки гаснут. Если путь прерван, ток не течет, и никакая часть цепи не работает. Рождественские огни — хороший тому пример; когда гаснет одна лампочка, вся струна перестает работать.

Параллельные схемы

Параллельная цепь имеет более одного пути для прохождения тока. На каждую ветвь подается одинаковое напряжение. Если сопротивление нагрузки в каждой ветви одинаково, ток в каждой ветви будет одинаковым.Если сопротивление нагрузки в каждой ветви разное, ток в каждой ветви будет разным. Компоненты параллельной цепи соединены бок о бок, так что у потока тока есть выбор путей в цепи. Если одна ветвь сломана, ток продолжит течь к другим ветвям.

В параллельной цепи ниже два или более сопротивления (R1, R2 и т. Д.) Соединены в цепь следующим образом: один конец каждого сопротивления подключен к положительной стороне цепи, а один конец подключен к отрицательной боковая сторона.

Последовательно-параллельные схемы

Последовательно-параллельная схема включает некоторые компоненты, включенные последовательно, а другие — параллельно. Источник питания и устройства управления или защиты обычно включены последовательно; нагрузки обычно параллельны. Если последовательный участок прерывается, ток перестает течь по всей цепи. Если параллельная ветвь разорвана, ток продолжает течь в последовательной части и оставшихся ветвях.

Внутреннее освещение приборной панели — хороший пример соединения резисторов и ламп в последовательно-параллельную цепь.В этом примере, регулируя реостат, вы можете увеличить или уменьшить яркость света.

Диагностические схемы

Проблемы с электрической цепью обычно вызваны неисправным компонентом или низким или высоким сопротивлением в цепи.

Низкое сопротивление в цепи, как правило, может быть вызвано коротким замыканием компонента или замыканием на землю и, как правило, приводит к перегоранию предохранителя, плавкой вставки или автоматического выключателя.

Высокое сопротивление в цепи может быть вызвано коррозией или разрывом в цепи источника или заземления.Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи.

УСТРОЙСТВА ЗАЩИТЫ ЦЕПИ

Устройства защиты цепей используются для защиты проводов и разъемов от повреждения избыточным током, вызванным перегрузкой по току или коротким замыканием. Избыточный ток вызывает чрезмерное нагревание, что может вызвать «разрыв цепи» защиты цепи. Предохранители, плавкие вставки и автоматические выключатели используются в качестве устройств защиты цепей. Устройства защиты цепей доступны в различных типах, формах и определенных номинальных токах.

Предохранители

Предохранитель

A является наиболее распространенным типом устройства защиты от перегрузки по току. В электрическую цепь вставлен предохранитель, который получает такое же электрическое питание, что и защищаемая цепь. Короткое замыкание или заземление позволяет току течь на землю до того, как он достигнет нагрузки. Поэтому, когда подается слишком большой ток, превышающий номинал предохранителя, он «перегорает» или «перегорает», потому что металлический провод или плавкий элемент в предохранителе плавится. Это размыкает или прерывает цепь и предотвращает повреждение проводов, разъемов и электронных компонентов схемы перегрузкой по току.Размер металлического плавкого элемента (или плавкой вставки) определяет его номинал.

Помните, что чрезмерный ток вызывает избыточное тепло, и именно тепло, а не ток вызывает размыкание цепи защиты. Как только предохранитель «перегорел», его необходимо заменить новым. После того, как вы определили, что предохранитель перегорел, наиболее важным элементом является обеспечение замены предохранителя с той же номинальной силой тока, что и перегоревший. Максимальная нагрузка на один предохранитель не должна превышать семидесяти процентов от номинала предохранителя.Обычно следует выбирать предохранитель с номиналом, немного превышающим нормальный рабочий ток (сила тока), который может использоваться при любом напряжении ниже номинального напряжения предохранителя. Если новый предохранитель тоже перегорел, значит, в цепи что-то не так. Проверьте проводку к компонентам, выходящим из строя сгоревший предохранитель. Ищите плохие соединения, порезы, разрывы или шорты.

Предохранители

имеют разные время-токовые нагрузочные характеристики для конечного времени работы при использовании и для скорости, с которой плавкий элемент перегорает в ответ на состояние перегрузки по току.Со временем нормальные скачки напряжения могут вызвать усталость предохранителей, что может привести к перегоранию предохранителя даже при отсутствии неисправности. На предохранителях всегда указывается номинальный ток в амперах, на который они рассчитаны в непрерывном режиме при стандартной температуре.

Расположение предохранителей

Предохранители расположены по всему автомобилю. Обычное расположение включает в себя моторный отсек, под приборной панелью за левой или правой панелью защиты или под IPDM.Предохранители обычно сгруппированы вместе и часто смешиваются с другими компонентами, такими как реле, автоматические выключатели и элементы предохранителей.

Крышки блока предохранителей

Крышки блока предохранителей / реле обычно маркируют расположение и положение каждого предохранителя, реле и элемента предохранителя, содержащегося внутри.

Типы предохранителей

Предохранители подразделяются на основные категории: предохранители ножевого типа и патронные предохранители старого образца. Используются несколько вариаций каждого.

Общие типы предохранителей

Лопастной предохранитель и плавкий элемент на сегодняшний день являются наиболее часто используемыми. Предохранители ножевого типа имеют пластиковый корпус и два штыря, которые вставляются в гнезда и могут быть установлены в блоки предохранителей, линейные держатели предохранителей или зажимы предохранителей. Существуют три различных типа плавких предохранителей; предохранитель Maxi, предохранитель Standard Auto и предохранитель Mini.

Базовая конструкция

Предохранитель плоского типа представляет собой компактную конструкцию с металлическим элементом и прозрачным изоляционным корпусом, который имеет цветовую кодировку для каждого номинального тока.(Стандартный автоматический режим показан ниже; однако конструкция предохранителей Mini и Maxi одинакова.)

Номинальный ток предохранителя, сила тока

Номинальные значения силы тока предохранителя для предохранителей Mini и Standard Auto идентичны. Однако для определения номинальной силы тока предохранителей макси используется другая схема цветовой кодировки.

Плавкие вставки и элементы предохранителей

Плавкие вставки делятся на две категории: патрон плавкого элемента и плавкая вставка.Конструкция и принцип действия плавких вставок и элементов предохранителей аналогичны плавким предохранителям. Основное отличие состоит в том, что плавкая вставка и плавкий элемент используются для защиты электрических цепей с более высоким током, обычно цепей на 30 ампер или более. Как и в случае с предохранителями, при перегорании плавкой вставки или плавкого элемента его необходимо заменить новым. Плавкие вставки защищают цепи между аккумулятором и блоком предохранителей.

Плавкие вставки

Плавкие вставки — это короткие отрезки проволоки меньшего диаметра, предназначенные для плавления при перегрузке по току.Плавкая вставка обычно на четыре (4) сечения провода меньше, чем цепь, которую она защищает. Изоляция плавкой вставки — специальный негорючий материал. Это позволяет проводу расплавиться, но изоляция останется нетронутой в целях безопасности. Некоторые плавкие ссылки имеют на одном конце тег, который указывает их рейтинг. Как и предохранители, плавкие вставки необходимо заменять после того, как они «перегорели» или расплавились. Многие производители заменили плавкие вставки плавкими вставками или предохранителями Maxi.

Картридж с предохранителем

Предохранители, плавкая вставка картриджного типа, также известна как предохранители Pacific.Элемент имеет клеммную и плавкую части как единое целое. Элементы предохранителя почти заменили плавкую перемычку. Они состоят из корпуса, в котором находятся клемма и предохранитель. Картриджи с плавкими предохранителями имеют цветовую маркировку для каждой силы тока. Хотя элементы предохранителей доступны в двух физических размерах и могут быть вставлены или закреплены на болтах, вставной тип является наиболее популярным.

Конструкция картриджа с предохранителем

Конструкция элемента предохранителя довольно проста.Цветной пластиковый корпус содержит элемент термозакрепления, который виден через прозрачный верх. Номиналы предохранителей также указаны на корпусе.

Цветовая маркировка элемента предохранителя

Номинальные значения силы тока предохранителя

приведены ниже. Плавкая часть элемента предохранителя видна через прозрачное окошко. Номинальные значения силы тока также указаны на предохранительном элементе.

Плавкие элементы

Плавкие элементы часто располагаются рядом с аккумулятором сами по себе.

Плавкие элементы также могут располагаться в блоках реле / ​​предохранителей в моторном отсеке.

Автоматические выключатели

Автоматические выключатели используются вместо предохранителей для защиты сложных силовых цепей, таких как электрические стеклоподъемники, люки на крыше и цепи обогревателя. Существует три типа автоматических выключателей: тип с ручным сбросом — механический, тип с автоматическим сбросом — механический и твердотельный с автоматическим сбросом — PTC. Автоматические выключатели обычно располагаются в блоках реле / ​​предохранителей; однако в некоторые компоненты, такие как двигатели стеклоподъемников, встроены автоматические выключатели.

Конструкция автоматического выключателя (ручного типа)

Автоматический выключатель в основном состоит из биметаллической ленты, соединенной с двумя выводами и контактом между ними. Ручной автоматический выключатель при срабатывании (ток превышает номинальный) размыкается и должен быть сброшен вручную. Эти ручные автоматические выключатели называются автоматическими выключателями «без цикла».

Автоматический выключатель (ручной тип)

Автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой.Эта полоса имеет форму диска и вогнута вниз. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается или деформируется вверх, и контакты размыкаются, чтобы остановить прохождение тока. Автоматический выключатель можно сбросить после срабатывания.

Ручной сброс Тип

Когда автоматический выключатель размыкается из-за перегрузки по току, автоматический выключатель требует сброса. Для этого вставьте небольшой стержень (канцелярскую скрепку), чтобы переустановить биметаллическую пластину, как показано.

Тип с автоматическим сбросом — механический

Автоматические выключатели с автоматическим сбросом называются «циклическими» выключателями. Этот тип автоматического выключателя используется для защиты сильноточных цепей, таких как дверные замки с электроприводом, электрические стеклоподъемники, кондиционер и т. Д. Автоматический выключатель с автоматическим возвратом в исходное положение содержит биметаллическую полосу. Биметаллическая полоса будет перегреваться и открываться из-за перегрузки по току в условиях перегрузки по току и автоматически сбрасывается, когда температура биметаллической ленты остывает.

Устройство и работа с автоматическим сбросом

Циклический автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается вверх, и набор контактов размыкается, чтобы остановить прохождение тока. При отсутствии тока биметаллическая полоса охлаждается и возвращается к своей нормальной форме, замыкая контакты и возобновляя прохождение тока.Автоматические выключатели с автоматическим возвратом в исходное состояние считаются «циклическими», потому что они циклически размыкаются и замыкаются, пока ток не вернется к нормальному уровню.

Тип твердотельного накопителя с автоматическим сбросом — PTC

Полимерный прибор с положительным температурным коэффициентом (PTC) известен как самовосстанавливающийся предохранитель.

Полимерный PTC — это специальный тип автоматического выключателя, называемый термистором (или терморезистором). Термистор PTC увеличивает сопротивление при повышении температуры.PTC, которые сделаны из проводящего полимера, представляют собой твердотельные устройства, что означает, что они не имеют движущихся частей. PTC обычно используются для защиты электрических цепей стеклоподъемников и дверных замков.

Конструкция и эксплуатация полимеров PTC

В нормальном состоянии материал в полимерном ПТК имеет форму плотного кристалла с множеством частиц углерода, упакованных вместе. Углеродные частицы обеспечивают проводящие пути для прохождения тока. Это сопротивление низкое.Когда материал нагревается от чрезмерного тока, полимер расширяется, разрывая углеродные цепи. В этом расширенном «отключенном» состоянии есть несколько путей для тока. Когда ток превышает порог срабатывания, устройство остается в состоянии «разомкнутой цепи» до тех пор, пока на цепь остается поданное напряжение. Он сбрасывается только при снятии напряжения и остывании полимера. PTC используются для защиты электрических цепей стеклоподъемников и дверных замков.

УСТРОЙСТВА УПРАВЛЕНИЯ

Управляющие устройства используются для «включения» или «выключения» протекания тока в электрической цепи.Устройства управления включают в себя различные переключатели, реле и соленоиды. Электронные устройства управления включают конденсаторы, диоды и переключающие транзисторы. Коммутационные транзисторы действуют как переключатель или реле с электронным управлением. Преимущество транзистора — это скорость открытия и закрытия цепи.

Управляющие устройства необходимы для запуска, остановки или перенаправления тока в электрической цепи. Устройство управления или переключатель позволяет включать или выключать электричество в цепи.Выключатель — это просто соединение в цепи, которое можно разомкнуть или замкнуть. Большинству переключателей для работы требуется физическое движение, в то время как реле и соленоиды работают с электромагнетизмом.

Коммутаторы

  • Однополюсный односторонний (SPST)
  • Однополюсный, двусторонний (SPDT)
  • Многополюсный многопозиционный переключатель (MPMT или групповой переключатель)
  • Мгновенный контакт
  • Меркурий
  • Температура (биметалл)
  • Задержка по времени
  • Мигалка
  • РЕЛЕ
  • СОЛЕНОИДЫ

Переключатель — это наиболее распространенное устройство управления цепями.Переключатели обычно имеют два или более набора контактов. Размыкание этих контактов называется «разрывом» или «размыканием» цепи, замыкание контактов называется «замыканием» или «завершением» цепи.

Переключатели описываются количеством полюсов и ходов, которые они имеют. «Полюса» относятся к количеству клемм входной цепи, а «Броски» относятся к количеству клемм выходной цепи. Переключатели называются SPST (однополюсные, одноходовые), SPDT (однополюсные, двухходовые) или MPMT (многополюсные, многоходовые).

Однополюсный одинарный бросок (SPST)

Самый простой тип переключателя — переключатель «шарнирная защелка» или «лезвие ножа». Он либо «завершает» (включает), либо «размыкает» (выключает) цепь в одной цепи. Этот переключатель имеет один входной полюс и один выходной ход.

Однополюсный, двойной бросок (SPDT)

Однополюсный входной двухпозиционный выходной переключатель имеет один провод, идущий к нему, и два выходных провода. Переключатель света фар является хорошим примером однополюсного двухпозиционного переключателя.Переключатель диммера фары посылает ток либо в дальний, либо в ближний свет цепи фары.

Многополюсная многоточечная (MPMT)

Многополюсный вход, многополюсные выходные переключатели, также известные как «групповые» переключатели, имеют подвижные контакты, подключенные параллельно. Эти переключатели перемещаются вместе для подачи тока на разные наборы выходных контактов. Выключатель зажигания — хороший пример многополюсного многопозиционного переключателя. Каждый переключатель посылает ток от разных источников к разным выходным цепям одновременно в зависимости от положения.Пунктирная линия между переключателями указывает, что они движутся вместе; один не будет двигаться без движения другого.

Мгновенный контакт

Переключатель мгновенного действия имеет подпружиненный контакт, который не позволяет ему замкнуть цепь, кроме случаев, когда на кнопку прикладывается давление. Это «нормально открытый» тип (показан ниже). Выключатель звукового сигнала — хороший пример выключателя с мгновенным контактом. Нажмите кнопку звукового сигнала и раздастся звуковой сигнал; отпустите кнопку, и звуковой сигнал прекратится.

Вариантом этого типа является нормально закрытый (не показан), который работает наоборот, как описано выше. Пружина удерживает контакты в замкнутом состоянии, кроме случаев, когда кнопка нажата. Другими словами, цепь находится в состоянии «ВКЛ» до тех пор, пока не будет нажата кнопка для разрыва цепи.

Меркурий

Ртутный выключатель представляет собой герметичную капсулу, частично заполненную ртутью. На одном конце капсулы расположены два электрических контакта. Когда переключатель вращается (перемещается из истинной вертикали), ртуть течет к противоположному концу капсулы с контактами, замыкая цепь.Ртутные переключатели часто используются для обнаружения движения, например, тот, который используется в моторном отсеке на светофоре. Другие применения включают отключение подачи топлива при опрокидывании и некоторые приложения для датчиков подушки безопасности. Ртуть — опасные отходы, с которыми следует обращаться осторожно.

Температурный биметаллический

Термочувствительный переключатель, также известный как «биметаллический» переключатель, обычно содержит биметаллический элемент, который изгибается при нагревании, замыкая контакт, замыкая цепь, или размыкая контакт, размыкая цепь.В реле температуры охлаждающей жидкости двигателя, когда охлаждающая жидкость достигает предела температуры, биметаллический элемент изгибается, вызывая замыкание контактов в переключателе. Это замыкает цепь и загорается предупреждающий индикатор на панели приборов.

Время задержки

Выключатель с выдержкой времени содержит биметаллическую полосу, контакты и нагревательный элемент. Переключатель задержки времени нормально замкнут. Когда ток течет через переключатель, ток течет через нагревательный элемент, вызывая его нагрев, в результате чего биметаллическая полоса изгибается и размыкает контакты.Поскольку ток продолжает течь через нагревательный элемент, биметаллическая полоса остается горячей, сохраняя контакты переключателя открытыми. Время задержки перед размыканием контактов определяется характеристиками биметаллической ленты и количеством тепла, выделяемого нагревательным элементом. Когда питание выключателя отключается, нагревательный элемент охлаждается, и биметаллическая полоса возвращается в исходное положение, а контакты замыкаются. Обычное применение переключателя с задержкой времени — это обогреватель заднего стекла.

Мигалка

Мигающий сигнал работает в основном так же, как переключатель задержки времени; кроме случаев, когда контакты размыкаются, ток перестает течь через нагревательный элемент. Это вызывает охлаждение нагревательного элемента и биметаллической ленты. Биметаллическая полоса возвращается в исходное положение, замыкая контакты, позволяя току снова проходить через контакты и нагревательный элемент. Этот цикл повторяется снова и снова, пока не будет отключено питание мигающего устройства. Обычно этот тип переключателя используется для включения сигналов поворота или четырехпозиционного указателя поворота (аварийных фонарей).

Реле

Реле — это просто переключатель дистанционного управления, который использует небольшой ток для управления большим током. Типичное реле имеет как цепь управления, так и цепь питания. Конструкция реле содержит железный сердечник, электромагнитную катушку и якорь (набор подвижных контактов). Существует два типа реле: нормально разомкнутые (показаны ниже) и нормально замкнутые (НЕ показаны). Нормально разомкнутые (Н.О.) реле имеют контакты, которые «разомкнуты» до тех пор, пока реле не будет под напряжением, а нормально замкнутые (N.C.) реле имеет контакты, которые «замкнуты» до тех пор, пока реле не сработает.

Работа реле

Ток протекает через управляющую катушку, которая намотана на железный сердечник. Железный сердечник усиливает магнитное поле. Магнитное поле притягивает верхний контактный рычаг и тянет его вниз, замыкая контакты и позволяя мощности от источника питания поступать на нагрузку. Когда катушка не находится под напряжением, контакты разомкнуты, и питание на нагрузку не поступает.Однако, когда переключатель схемы управления замкнут, ток течет к реле и питает катушку. Возникающее магнитное поле тянет якорь вниз, замыкая контакты и позволяя подавать питание на нагрузку. Многие реле используются для управления большим током в одной цепи и низким током в другой цепи. Примером может служить компьютер, который управляет реле, а реле управляет цепью более высокого тока.

Соленоиды — тянущие типа

Соленоид — это электромагнитный переключатель, который преобразует ток в механическое движение.Когда ток течет через обмотку, создается магнитное поле. Магнитное поле притянет подвижный железный сердечник к центру обмотки. Этот тип соленоида называется соленоидом «тянущего» типа, поскольку магнитное поле втягивает подвижный железный сердечник в катушку. Обычно тянущие соленоиды используются в пусковой системе. Соленоид стартера соединяет стартер с маховиком.

Работа вытяжного типа

Когда ток течет через обмотку, создается магнитное поле.Эти магнитные силовые линии должны быть как можно меньше. Если рядом с катушкой, по которой течет ток, поместить железный сердечник, магнитное поле будет растягиваться, как резинка, вытягивая и втягивая железный стержень в центр катушки.

Работа толкающего / толкающего типа

В соленоиде двухтактного типа в качестве сердечника используется постоянный магнит. Поскольку «одинаковые» магнитные заряды отталкиваются, а «непохожие» магнитные заряды притягиваются, при изменении направления тока, протекающего через катушку, сердечник либо «втягивается», либо «выталкивается наружу».«Обычно этот тип соленоида используется в электрических дверных замках.

УСТРОЙСТВА НАГРУЗКИ

Любое устройство, такое как лампа, звуковой сигнал, электродвигатель стеклоочистителя или обогреватель заднего стекла, потребляющее электричество, называется нагрузкой. В электрической цепи все нагрузки считаются сопротивлением. Нагрузки расходуют напряжение и контролируют величину тока, протекающего в цепи. Нагрузки с высоким сопротивлением вызывают протекание меньшего тока, в то время как нагрузки с более низким сопротивлением позволяют протекать большим токам.

Фары

Фонари бывают разной мощности, чтобы излучать больше или меньше света. Когда лампы соединяются последовательно, они разделяют доступное напряжение в системе, и излучаемый свет уменьшается. Когда лампочки расположены параллельно, каждая лампочка имеет одинаковое количество напряжения, поэтому свет будет ярче.

Двигатели

Двигатели используются в различных системах автомобиля, включая сиденья с электроприводом, дворники, систему охлаждения, системы отопления и кондиционирования воздуха.Двигатели могут работать на одной скорости, например, сиденья с электроприводом, или на нескольких скоростях, например, электродвигатель вентилятора системы отопления и кондиционирования воздуха. Когда двигатели работают на одной скорости, на них обычно подается системное напряжение. Однако, когда двигатели работают с разной скоростью, входное напряжение может быть в разных точках якоря, чтобы уменьшить, чтобы увеличить скорость двигателя, аналогично тому, как спроектирован двигатель стеклоочистителя, или они могут делить напряжение с резистором, который находится в серия с двигателем, как двигатель вентилятора для системы отопления и кондиционирования воздуха.

Нагревательные элементы

Нагревательные элементы установлены в наружных зеркалах, заднем стекле и сиденьях. На нагревательные элементы обычно подается напряжение системы в течение определенного времени для нагрева компонента по запросу.

ЧТО ТАКОЕ ЗАКОН ОМА?

Понимание взаимосвязи между напряжением, током и сопротивлением в электрических цепях важно для быстрой и точной диагностики и ремонта электрических проблем.Закон Ома гласит: ток в цепи всегда будет пропорционален приложенному напряжению и обратно пропорционален величине имеющегося сопротивления. Это означает, что если напряжение повышается, ток будет расти, и наоборот. Кроме того, когда сопротивление растет, ток падает, и наоборот. Закон Ома можно найти хорошее применение при поиске и устранении неисправностей в электросети. Но вычисление точных значений напряжения, тока и сопротивления не всегда практично … да и действительно необходимо. Однако вы должны быть в состоянии предсказать, что должно происходить в цепи, в отличие от того, что происходит в аварийном транспортном средстве.

Source Voltage не зависит ни от тока, ни от сопротивления. Он либо слишком низкий, либо нормальный, либо слишком высокий. Если он слишком низкий, ток будет низким. Если это нормально, ток будет высоким, если сопротивление низкое, или ток будет низким, если сопротивление высокое. Если напряжение слишком высокое, ток будет большим.

На ток влияет напряжение или сопротивление. Если напряжение высокое или сопротивление низкое, ток будет высоким. Если напряжение низкое или сопротивление велико, ток будет низким.Ток увеличивается, когда сопротивление падает.

На сопротивление не влияют ни напряжение, ни ток. Он либо слишком низкий, хорошо, либо слишком высокий. Если сопротивление слишком низкое, ток будет высоким при любом напряжении. Если сопротивление слишком велико, ток будет низким, если напряжение в норме. Мера сопротивления — насколько сложно протолкнуть поток электрического заряда.

Хорошее сопротивление: для правильной работы некоторым цепям требуется «ограничение» протекания тока. В этом случае используются «резисторы».Резисторы имеют разные номиналы в зависимости от того, насколько ток должен быть ограничен.

Плохое сопротивление: в большинстве случаев слишком большое сопротивление снижает ток и может привести к неправильной работе системы. Обычно причиной является грязь или коррозия на электрических разъемах или заземляющих соединениях.

Электрическая схема — Простая английская Википедия, бесплатная энциклопедия

Схема — это замкнутый контур , состоящий из компонентов схемы, в которых могут течь электроны от источника напряжения или тока.Если схема состоит из электрических компонентов, таких как резистор, конденсатор, катушка индуктивности и т. Д., То она будет называться Электрическая цепь , и если схема состоит из любых компонентов электронной схемы, таких как диод, транзистор и т. будет называться Электронная схема . Таким образом, электронные схемы могут состоять как из электрических компонентов , так и из электронных схем , но электрическая схема будет иметь только электрические компоненты.

Точка, где электроны входят в электрическую цепь, называется «источником» электронов.Точка, в которой электроны покидают электрическую цепь, называется «возвратной» или «землей». Точка выхода называется «возвращением», потому что электроны всегда попадают в источник, когда они завершают свой путь в электрической цепи.

Часть электрической цепи, которая находится между начальной точкой электронов и точкой, где они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка электрической цепи может быть такой же простой, как нагрузка на бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, например, нагрузка на выходе гидроэлектростанции.

В цепях используется два вида электроэнергии: переменный ток (AC) и постоянный ток (DC). Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили, работающие от батарей, а также другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот. Для передачи постоянного тока высокого напряжения используются большие преобразователи.

Экспериментальная электронная схема

В электронных схемах обычно используются источники постоянного тока. Нагрузка электронной схемы может быть такой же простой, как несколько резисторов, конденсаторов и лампы, соединенных вместе, чтобы создать вспышку в камере.Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

Резисторы и другие элементы схемы можно подключать последовательно или параллельно. Сопротивление в последовательной цепи — это сумма сопротивлений.

Цепь или электрическая схема — это визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Чертеж соединений всех компонентов в нагрузке схемы упрощает понимание того, как соединяются компоненты схемы.Чертежи электронных схем называются «принципиальными схемами». Чертежи электрических цепей называются «электрическими схемами». Как и другие схемы, эти схемы обычно рисуют чертежники, а затем распечатывают. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

Схема — это схема электрической цепи. Схемы — это графические изображения основных соединений в цепи, но они не являются реалистичными изображениями цепи. На схемах используются символы для обозначения компонентов в цепи.Условные обозначения используются в схеме, чтобы обозначить, как течет электричество. Мы используем обычное соглашение: от положительной клеммы к отрицательной. Реальный путь перетока электричества — от отрицательной клеммы к положительной.

На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как компоненты, такие как резисторы, конденсаторы, изоляторы, двигатели, розетки, фонари, переключатели и другие электрические и электронные компоненты, соединяются вместе. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема работает некорректно.

Ток, протекающий в электрической или электронной цепи, может внезапно возрасти при выходе из строя какого-либо компонента. Это может вызвать серьезное повреждение других компонентов цепи или создать опасность возгорания. Для защиты от этого в цепь можно подключить предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель размыкает или «разрывает» цепь, когда ток в этой цепи становится слишком высоким, или предохранитель «перегорает». Это дает защиту.

Прерывание от замыкания на землю (G.F.I.) устройства [изменить | изменить источник]

Стандартный возврат для электрических и электронных цепей — заземление. Когда электрическое или электронное устройство выходит из строя, оно может размыкать обратную цепь на землю. Пользователь устройства может стать частью электрической цепи устройства, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может быть серьезно шокирован или даже убит электрическим током.

Чтобы предотвратить опасность поражения электрическим током и возможность поражения электрическим током, устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах. При обнаружении обрыва цепи заземления G.F.I. устройство немедленно открывает источник напряжения для устройства. G.F.I. устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепей.

Короткие замыкания — это цепи, которые возвращаются к источнику питания неиспользованным или с той же мощностью, что и на выходе.Обычно они перегорают, но иногда этого не происходит. Это может привести к возгоранию электрического тока.

Основные электрические схемы-компоненты, типы

Что такое электрическая цепь?

Электрическая цепь — это замкнутый путь для передачи электрического тока через среду электрических и магнитных полей. Поток электронов через петлю составляет электрический ток. Электроны входят в цепь через «Источник», которым может быть батарея или генератор.Источник обеспечивает электроны энергией, создавая электрическое поле, которое обеспечивает электродвижущую силу.

Электроны покидают цепь через нагрузку на землю, замыкая тем самым замкнутый путь. Нагрузкой или выходом может быть любое простое бытовое устройство, такое как телевизор, лампа, холодильник, или сложная нагрузка, например, на гидроэлектростанции.

Простая электрическая цепь состоит из источника (например, батареи), проводов в качестве проводящей среды и нагрузки (например, лампочки).Батарея обеспечивает необходимую энергию для потока электронов к лампочке.

Основные элементы схемы

Как упоминалось выше во введении, схема представляет собой соединение элементов между собой. Эти элементы подразделяются на активные и пассивные в зависимости от их способности генерировать энергию.

Активные элементы схемы

Активные элементы — это элементы, которые могут генерировать энергию. Примеры включают батареи, генераторы, операционные усилители и диоды.Обратите внимание, что в электрической цепи элементы источника являются наиболее важными активными элементами.

Источники энергии, будь то источник напряжения или тока, бывает двух типов — независимые и зависимые источники. Примером независимого источника является батарея, которая обеспечивает постоянное напряжение в цепи, независимо от тока, протекающего через клеммы.

Примером зависимого источника является транзистор, который обеспечивает ток в цепи в зависимости от приложенного к нему напряжения.Другой пример — операционный усилитель, который выдает напряжение в зависимости от дифференциального входного напряжения, приложенного к его клеммам.

Пассивные элементы схемы

Пассивные элементы можно определить как элементы, которые могут управлять потоком электронов через них. Они либо увеличивают, либо уменьшают напряжение. Вот несколько примеров пассивных элементов.

Резистор : резистор препятствует прохождению через него тока. Для линейной цепи применим закон Ома, который гласит, что напряжение на резисторе прямо пропорционально току, протекающему через него, а пропорциональная константа — это сопротивление.

Катушка индуктивности : Катушка индуктивности накапливает энергию в форме электромагнитного поля. Напряжение на катушке индуктивности пропорционально скорости изменения тока, протекающего через нее.

Конденсатор : Конденсатор накапливает энергию в виде электростатического поля. Напряжение на конденсаторе пропорционально заряду.

Типы электрических цепей

Цепи постоянного тока

В цепях постоянного тока применяемое возбуждение является постоянным источником.В зависимости от типа соединения активных и пассивных компонентов с источником цепь можно разделить на последовательные и параллельные цепи.

Последовательные цепи

Когда несколько пассивных элементов соединены последовательно с источником энергии, такая схема называется последовательной схемой. В последовательной цепи через каждый элемент протекает одинаковое количество тока, и напряжение делится. В последовательной цепи, поскольку элементы соединены в линию, если среди них есть неисправный элемент, полная цепь действует как разомкнутая цепь.

  • Для резистора, подключенного в цепи постоянного тока, напряжение на его выводах прямо пропорционально току, проходящему через него, таким образом, сохраняется линейная зависимость между напряжением и током. Для резисторов, соединенных последовательно, общее сопротивление равно сумме всех значений сопротивлений.
  • Для конденсаторов, соединенных последовательно, общая емкость равна сумме обратных величин всех значений емкости.
  • Для катушек, соединенных последовательно, общая индуктивность равна сумме всех значений индуктивности.
Параллельные схемы

В параллельной схеме один вывод всех элементов подключен к одному выводу источника, а другой вывод всех элементов подключен к другому выводу источника.

В параллельных цепях напряжение в параллельных элементах остается неизменным, а ток изменяется. Если среди параллельных элементов есть неисправный элемент, это не повлияет на схему.

  • Для резисторов, соединенных параллельно, полное сопротивление равно сумме обратных величин всех значений сопротивления.
  • Для конденсаторов, соединенных последовательно, общая емкость равна сумме всех значений емкости.
  • Для катушек, соединенных последовательно, общая индуктивность равна сумме всех обратных значений индуктивности.

Цепи переменного тока

Цепи переменного тока — это те цепи, элемент возбуждения которых является источником переменного тока. В отличие от источника постоянного тока, который является постоянным, источник переменного тока имеет переменные ток и напряжение через равные промежутки времени. Как правило, для приложений с большой мощностью используются цепи переменного тока.

Простая схема переменного тока с использованием сопротивления

Для переменного тока, проходящего через резистор, соотношение тока и напряжения зависит от фазы и частоты источника питания. Приложенное напряжение будет постоянно меняться со временем, и закон Ома можно использовать для расчета тока, проходящего через резистор в любой момент времени.

Другими словами, если в момент времени t секунд значение напряжения равно v вольт, ток будет:

i = v / R

, где значение R всегда постоянно.

Приведенное выше уравнение показывает, что полярность тока зависит от полярности напряжения. Кроме того, как ток, так и напряжение достигают своей максимальной и нулевой точек одновременно. Таким образом, для резистора напряжение совпадает по фазе с приложенным током.

Рассмотрим приведенную ниже принципиальную схему

Когда переключатель замкнут, ток проходит через резистор и определяется уравнением ниже

i = Im cos (ωt + Φ)

Напряжение, V = IR = RIm cos (ωt + Φ)

Для резистора значения напряжения и тока будут расти и падать одновременно.Следовательно, разность фаз между напряжением и током равна нулю.

Цепь переменного тока с использованием чистой индуктивности

Катушка из тонкой проволоки, намотанная на цилиндрический сердечник, известна как индуктор. Сердечник может быть воздушным сердечником (многослойным полым) или железным сердечником. Когда через индуктор протекает переменный ток, магнитное поле также изменяется. Это изменение магнитного поля приводит к индуцированному напряжению на катушке индуктивности. Согласно закону Ленца, индуцированное напряжение таково, что оно противодействует протеканию через него тока.

Во время первого полупериода напряжения источника индуктор накапливает энергию в виде магнитного поля, а в следующей половине он выделяет энергию.
Индуцированная ЭДС определяется следующим образом:

e = Ldi / dt

Здесь L — собственная индуктивность.

Теперь, приложенное входное напряжение переменного тока определяется как v (t) = Vm Sinωt

Ток через катушку индуктивности равен: I (t) = Im Sinωt

Таким образом, напряжение на катушке индуктивности будет

e = L di / dt = wLI_m cos⁡wt = wLI_m sin⁡ (wt + 90)

Таким образом, для катушки индуктивности напряжение опережает ток на 90 градусов.

Теперь сопротивление катушки индуктивности называется реактивным сопротивлением и выражается формулой

Таким образом, полное сопротивление или сопротивление пропорционально скорости изменения тока катушки индуктивности.

Цепь переменного тока с конденсатором

При постоянном питании постоянного тока пластины конденсатора заряжаются до приложенного напряжения, временно накапливают этот заряд и затем начинают разряжаться. Когда конденсатор полностью заряжен, он блокирует ток, поскольку пластины насыщаются.


Когда на конденсатор подается напряжение переменного тока, скорость заряда и разряда зависит от частоты источника питания.Напряжение на конденсаторе отстает от протекающего через него тока на 90 градусов.

Ток через конденсатор определяется как

e = Ldi / dt

Емкостное реактивное сопротивление определяется как:

e = Ld / idt

Таким образом, полное сопротивление или реактивное сопротивление источника переменного тока обратно пропорционально частоте источника питания. .

Что такое короткое замыкание и обрыв?

Короткое замыкание

Соединение с низким или незначительным сопротивлением между двумя проводниками в электрической цепи называется коротким замыканием.Короткое замыкание приведет к выделению большего количества тепла и, в конечном итоге, к искрам, пламени или дыму.

Короткое замыкание может быть вызвано неплотными контактами, неисправной изоляцией, резким пережевыванием проводов вредителями и старыми приборами. Один из лучших и часто используемых методов предотвращения повреждений в результате короткого замыкания — это использование предохранителя или автоматического выключателя.

Обрыв цепи

Обрыв цепи вызван обрывом в электрической цепи. Когда какой-либо элемент в цепи остается неподключенным, создается разомкнутая цепь.В то время как напряжение на разомкнутой цепи имеет некоторое конечное значение, ток равен нулю.

Защита цепи

Преднамеренная установка слабого звена в электрической цепи называется защитой цепи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *