Прозвонка диода: Проверка диодов | Fluke

Содержание

Проверка диодов | Fluke

Проверка диодов цифровым мультиметром выполняется одним из двух способов:

  1. Режим проверки диодов: рекомендуется в большинстве случаев.
  2. Режим измерения сопротивления: обычно используется в тех случаях, когда на мультиметре не предусмотрен режим проверки диодов.

Примечание. В некоторых случаях для проверки требуется отсоединить один выход диода от цепи.

Что необходимо знать о проверке диодов в режиме измерения сопротивления:

  • Не всегда позволяет определить, исправен диод или нет.
  • Проверку в таком режиме не рекомендуется проводить для подключенного к цепи диода, поскольку показания могут быть ошибочными.
  • В некоторых областях применения этот режим МОЖНО ИСПОЛЬЗОВАТЬ для подтверждения неисправности диода после того, как проверка диодов выявила неисправность.

Для оптимальной проверки необходимо измерить падение напряжения на диоде при прямом смещении. Диод с прямым смещением действует как замкнутый переключатель, который обеспечивает прохождение тока.

В режиме проверки диодов мультиметр создает небольшое напряжение между измерительными проводами. Мультиметр показывает падение напряжения, когда измерительные провода подключены к диоду с прямым смещением. Проверку диодов следует выполнять следующим образом:

  1. Убедитесь, что a) в цепь не поступает питание, и б) на диоде отсутствует напряжение. Напряжение в цепи может присутствовать из-за заряженных конденсаторов. В этом случае необходимо разрядить конденсаторы. В соответствии с требованиями настройте мультиметр на измерение напряжения переменного или постоянного тока.
  2. Переведите регулятор (поворотный переключатель) в положение режима проверки диодов ( ). Эта функция на регуляторе может быть совмещена с другой функцией.
  3. Подсоедините измерительные провода к диоду. Запишите полученный результат.
  4. Поменяйте местами измерительные провода. Запишите полученный результат.

Анализ результатов проверки диодов

  • Для наиболее распространенных кремниевых диодов падение напряжения составляет от 0,5 до 0,8 В, что свидетельствует об исправности диода с прямым смещением.
    Падение напряжения на некоторых германиевых диодах составляет от 0,2 до 0,3 В.
  • При обратном смещении исправного диода на экране мультиметра отображается OL. OL указывает на то, что диод работает как разомкнутый переключатель.
  • Неисправный диод (с обрывом) делает невозможным прохождение тока в любом направлении. Если диод имеет обрыв, мультиметр отображает OL для обоих направлений.
  • На диоде с коротким замыканием наблюдается одинаковое падение напряжения (приблизительно 0,4 В) в обоих направлениях.

Мультиметр в режиме измерения сопротивления (Ω) можно использовать для проведения дополнительной проверки диода или, как уже говорилось ранее, в тех случаях, если на мультиметре не предусмотрен режим проверки диода.

Диод имеет прямое смещение, если положительный (красный) измерительный провод подсоединен к аноду, а отрицательный (черный) измерительный провод — к катоду.

  • Сопротивление исправного диода с прямым смещением должно находиться в диапазоне от 1000 Ом до 10 МОм.
  • При прямом смещении диода показания сопротивления будут высокими, так как ток от мультиметра проходит через диод, результатом чего становится высокое сопротивление, которое требуется для проверки.

Диод имеет обратное смещение, если положительный (красный) измерительный провод подсоединен к катоду, а отрицательный (черный) измерительный провод — к аноду.

  • Если диод с обратным смещением исправен, на мультиметре отображается OL. Диод неисправен, если показания одинаковы для обоих направлений.

Проверку в режиме измерения сопротивления следует выполнять следующим образом:

  1. Убедитесь, что a) в цепь не поступает питание, и б) на диоде отсутствует напряжение. Напряжение в цепи может присутствовать из-за заряженных конденсаторов. В этом случае необходимо разрядить конденсаторы. В соответствии с требованиями настройте мультиметр на измерение напряжения переменного или постоянного тока.
  2. Переведите регулятор в положение измерения сопротивления (Ω). Эта функция на регуляторе может быть совмещена с другой функцией.
  3. Отсоедините диод от цепи и подключите к нему измерительные провода. Запишите полученный результат.
  4. Поменяйте местами измерительные провода. Запишите полученный результат.
  5. Для получения достоверных результатов сравните показания, полученные в режиме измерения сопротивления, с показаниями для известного исправного диода.

Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.

Подберите подходящий мультиметр

Как измерить сопротивление диода

Промышленность выпускает плоскостные и точечные полупрово­дниковые диоды, отличающиеся конструкцией, технологией изготов­ления и значением характеризующих их параметров.

Измерение параметров диодов принципиально отличается от рас­смотренных ранее измерений аналогичных параметров, что объясня­ется зависимостью свойств полупроводниковых приборов от внешних условий (главным образом, от температуры) и нелинейностью вольт-амперных характеристик полупроводниковых приборов.

В соответствии с первой причиной следует учитывать разогрев p-n-перехода проходящим током во время измерения, что требует обеспе­чения отвода тепла исследуемого диода (теплоотвод) и ограничения времени измерения.

Вторая причина обязывает выполнять измерения при определен­ных значениях напряжения и силы тока.

Параметры полупроводниковых диодов определяются свойствами p-n-перехода.

Сила тока, протекающего через диод, зависит от знака и значения приложенного напряжения. Эта зависимость наглядно представляет­ся вольт-амперной характеристикой, где по оси ординат откладывают значение силы тока диода, а по оси абсцисс — приложенное напряже­ние. Поскольку прямой ток обычно превышает обратный в тысячи раз, то ВАХ диодов строят в разных масштабах: прямой ток откладывают в миллиамперах, обратный — в микроамперах. Масштаб обратного напряжения выбирают более крупным, чем масштаб прямого напря­жения.

ВАХ полупроводникового диода представлена на рис. 6. 1, а, где хорошо видно, что при большом обратном напряжении резко возрас­тает обратный ток. Это явление сопровождается тепловым необрати­мым пробоем диода и выходом его из строя. На ВАХ имеются обла­сти с различным дифференциальным сопротивлением

Rдиф= , поэтому необходимая точность определения параметров может быть достигнута при соблюдении некоторых условий измерения. При изме­рении параметров на прямой ветви ВАХ (рис. 6.1, 6) следует задавать постоянный ток Iпр и измерять падение прямого напряжения Uпр. Это условие означает, что внутреннее сопротивление источника питания должно быть много больше сопротивления диода, чтобы изменение напряжения на диоде (VD) не вызывало изменений тока, выходящих за пределы заданной погрешности измерений, т.е. источник питания должен быть источником тока по отношению к диоду. Условие необхо­димо выполнять на всех участках ВАХ (при измерении напряжения), где дифференциальное сопротивление мало.

Рис. 6.1. ВАХ диода (а), схема измерения на прямой (6) И обратной (в) ветвях

Стабилизированный источник питания постоянного тока обеспе­чивает дискретные значения прямого тока в диапазоне изменения прямого напряжения для испытуемого диода. Измерение Uпрвыпол­няет высокоомный вольтметр постоянного тока; контроль дискретных значений тока обеспечивается миллиамперметром магнитоэлектриче­ской системы.

При измерении параметров диода на обратной ветви ВАХ (рис. 6.1. в) необходимо задаваться силой обратного тока Iобри из­мерять обратное напряжение Uобр .При этом источник питания Е, ко­торым задается режим измерения, должен иметь малое внутреннее сопротивление — в противном случае незначительные изменения об­ратного тока вызовут большую погрешность при измерении обратно­го напряжения.

Со стабилизированного источника на диод VD подаются заданные значения обратного напряжения, которые контролируются вольт­метром магнитоэлектрической системы. Сила обратного тока диода измеряется микроамперметром постоянного тока.

Таким образом, в справочнике на диоды в качестве электрических характеристик указываются координаты точек характеристики на пря­мой и обратной ветвях.

Прямую ветвь характеризуют следующие параметры: Uпр— прямое падение напряжения на диоде при заданной силе постоянного прямого тока

Iпр; Rдиф— дифференциальное сопротивление.

Обратную ветвь характеризуют следующие параметры: Uобр постоянное обратное напряжение на диоде при заданной силе постоян­ного обратного тока, протекающего через диод: Iобр сила постоянного обратного тока, протекающего через диод при подаче на него постоянного обратного напряжения Uобр ; Uобр.max наибольшее допустимое обратное напряжение (предельное напряжение).

Эффективность выпрямления определяют расчетом коэффициента выпрямления по результатам измерений:

Исследование ВАХ диодов по точкам оказывается трудоемким и не всегда целесообразным. Поэтому на практике требуемые па­раметры измеряют в определенных точках. Например. Uпр, Iпр, Iобр измеряют с помощью специальных измерителей параметров дио­дов.

Для оценки частотных свойств диода снимают частотные характеристики Iвыпр( f ) (рис. 6.2).

Рис. 6.2. Схема измерения частотной характеристики диода

Основным параметром, определяющим частотные свойства диода, является граничная рабочая частота fгр, при которой сила выпрямлен­ного тока уменьшается на 30% относительно номинального значения, измеренного на низкой частоте.

Для определения граничной рабочей частоты исследуемый диод VD включается в схему однополупериодного выпрямителя с активно-емкостной нагрузкой. На вход схемы подается переменное напряже­ние неизменной амплитуды различной частоты, контролируемое на выходе генератора вольтметром. Резистор R1обеспечивает согласова­ние сопротивления генератора и сопротивления нагрузки. Сила конт­ролируемого выпрямленного тока измеряется миллиамперметром.

На высоких частотах (более 100 кГц) должны быть приняты меры для уменьшения погрешности, вносимой паразитными индуктивностями.

Значение емкости С конденсатора выбирается таким, чтобы ем­костное сопротивление при минимальной частоте подводимого напря­жения было значительно меньше сопротив­ления резистора

R1.

Проходная емкость диода ограничивает применение полупроводниковых диодов на высоких частотах.

Емкость p-n-перехода диода измеряют при определенном напряжении смещения, так как она существенно зависит от этого на­пряжения (рис. 6.3).

Погрешность измерения емкости зависит от точности задания рабочей точки, в которой измеряется емкость, и точности измерения на­пряжения.

Все рассмотренные измерения выполняют при температуре окру­жающей среды +20. +50 °С. если это не оговорено особо.

Изменение температуры заметно влияет на все основные парамет­ры диода. С повышением температуры уменьшается прямое и обратное сопротивление, увеличивается проходная емкость диода из-за уменьшения контактной разности потенциалов, что приводит к некоторому ухудшению частотных свойств диода. С повышением температуры особенно резко меняется обратное сопротивление, что является основ­ным фактором, определяющим температурный предел работы диодов, а дальнейшее повышение температуры приводит к необратимому из­менению его параметров. Исследуемый диод помещают в термостат, поддерживая заданную температуру (для германиевых — не выше 70 °С, для кремниевых — не выше 125 °С). На основании анализа по­лученных результатов определяют максимально и минимально допу­стимые температуры для диода конкретного типа.

У выпрямительных диодовизмеряют все указанные параметры, для которых необходимо знать предельно допустимые эксплуатацион­ные режимы, при которых диод должен работать с заданной надежно­стью в течение установленного срока.

Предельно допустимые режимы выпрямительных диодов характе­ризуются максимальной силой прямого тока Iпр. maxи обратного напря­жения Uобр.max , максимально допустимой мощностью Рmax, рассеивае­мой на диоде, диапазоном температур окружающей среды.

Измерение силы прямого тока и обратного напряжения описано ранее, а значение рассеиваемой на диоде мощности определяется как сумма мощностей при протекании прямого и обратного токов:

Из-за малости обратного тока значением Робробычно пренебрегают и тогда

У высокочастотных диодовизмеряют практически все те же па­раметры, которые рассматривались ранее. Однако СВЧ-диоды из-за чувствительности к тепловым и электрическим воздействиям должны храниться в экранирующей защитной оболочке, и в процессе измере­ния параметров диод должен быть защищен от воздействия электро­магнитного поля.

Уимпульсных диодов наряду с параметрами ВАХ измеряют спе­циальные параметры (характеризующие инерционность диодов): вре­мя восстановления обратного сопротивления, заряд переключения, максимальное импульсное прямое падение напряжения.

У детекторных диодов измеряют чувствительность по току, со­противление в рабочей точке, коэффициент стоячей волны, шумовое отношение.

У смесительных диодов измеряемыми параметрами являются по­тери преобразования, выходное сопротивление, коэффициент стоячей полны, шумовое отношение, нормированный коэффициент шума.

Упараметрическихиумножительных диодов с управляемой емкостью наряду с емкостью диода, силой обратного тока и предель­но допустимым напряжением измеряют добротность диода на задан­ной частоте и собственную индуктивность диода.

У стабилитронов (стабисторов) измеряют напряжение стабили­зации.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9574 – | 7561 – или читать все.

78.85.5.182 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Сегодня без электроники никуда. Она является составной частью любого современного прибора или гаджета. При этом все приборы, как это ни печально, не могут работать вечно и периодически ломаются. Одной из довольно распространенных причин поломки целого ряди электроприборов, является выход из строя такого элемента электросети, как диод.

Провести проверку исправности этого компонента можно своими руками в домашних условиях. Эта статья расскажет вам, как проверить диод мультиметром, а также о том, что собой представляют данные элементы и каков сам измерительный прибор.

Диод диоду рознь

Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-».

Обратите внимание! Течь в обратном направлении, от катода к аноду, электрический ток в диодах не может.

Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультметром.
На сегодняшний день в радиоэлектронике существует несколько видов диодов:

  • светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
  • защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.

Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры).
Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен.
Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод. В такой ситуации можно эти детали не выпаивать, а проверить «на месте».

Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:

  • превышение максимально допустимого уровня прямого тока;
  • превышение обратного напряжения;
  • некачественная деталь;
  • нарушение правил эксплуатации прибора, установленных производителем.

При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием.
В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.

Мультиметр

Мультиметр является универсальным прибором, который выполняет ряд функций:

  • измеряет напряжение;
  • определяет сопротивление;
  • проверяет провода на предмет наличия обрывов.

С помощью этого прибора даже можно определить пригодность батарейки.

Как проводится проверка

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?».
Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока. При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев.
Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора. Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Проверка диодного моста

Иногда имеется ситуация, когда нужно проверить на работоспособность диодный мост. Он имеет вид сборки, состоящей из четырех полупроводников. Они соединяются таким образом, чтобы переменное напряжение, подаваемое к двум из четырех спаянных элементов, переходило в постоянное. Последнее снимается с двух других выводов. В результате происходит выпрямление переменного напряжения и перевод его в постоянное.

По сути, принцип проверки в этой ситуации остается таким же, как было описано выше. Единственной особенностью тут является определение, к какому выводу будет подключен измерительный прибор. Здесь имеется четыре варианта подключения, которые следует «прозвонить»:

  • выводы 1 – 2;
  • выводы 2 – 3;
  • выводы 1 – 4;
  • выводы 4 – 3;

Проверив каждый выход, вы получите четыре результата. Полученные показатели следует оценивать по тому же принципу, что и для отдельного полупроводника.

Анализируем результаты

При проверке диодов (обычного и Шоттки) с помощью мультиметра, вы получите определенный результат. Теперь нужно понять, что он может означать. К признакам, которые свидетельствуют в пользу исправности полупроводника, относятся следующие моменты:

  • при подключении детали электросхемы к прибору последний будет выдавать величину имеющегося прямого напряжения в этом элементе;

Обратите внимание! Разные типы диодов обладают различным уровнем напряжения, по которому они и отличаются. Например, для германиевых изделий этот параметр составит 0,3-0,7 вольт

  • при подключении обратным способом (щуп прибора к аноду изделия) будет регистрироваться ноль.

Если эти два показателя соблюдаются, то полупроводник работает адекватно и причина поломки не в нем. А вот если хотя бы одни из параметров не соответствует, то элемент признается негодным и подлежит замене.
Кроме этого следует учитывать, что возможна не поломка, а «утечка». Этот неприятный дефект может проявиться при длительной эксплуатации прибора или некачественной сборке.
При наличии короткого замыкания или утечки, полученное сопротивление будет довольно низким. Причем вывод необходимо делать, основываясь на виде полупроводника. Для германиевых элементов этот показатель в данной ситуации будет иметь диапазон от 100 килоом до 1 мегаом, для кремниевых — тысячи мегаом. Для выпрямительных полупроводников данный показатель будет в разы больше.
Как видим, своими силами не так уж и сложно провести оценку работоспособности полупроводников в любом электроприборе. Вышеописанный принцип подходит для проверки диодных элементов различных типов и видов. Главное в этой ситуации правильно подключить измерительный прибор к полупроводнику и проанализировать полученные результаты.

И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность (где катод, а где анод) и работоспособность диода. Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току (питающегося от батареи), как показано на рисунке ниже. При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке (a). При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке (b) (некоторые модели цифровых мультиметров в этом случае показывают "OL").

Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный щуп подключен к катоду, а красный – к аноду. (b) Перемена щупов местами показывает высокое сопротивление, указывающее на обратное смещение.

Конечно, чтобы определить, какое вывод диода является катодом, а какой – анодом, вы должны точно знать, какой вывод мультиметра является положительным (+), а какой – отрицательным (-), когда на нем выбран режим «сопротивление» или «Ω». В большинстве цифровых мультиметров, которые я видел, красный вывод используется, как положительный, а черный, как отрицательный, в соответствии с соглашением о цветовой маркировке электроники.

Одна из проблем использования омметра для проверки диода заключается в том, что мы имеем только качественное значение, а не количественное. Другими словами, омметр говорит вам, только в каком направлении диод проводит ток; полученное при измерении низкое значение сопротивления бесполезно. Если омметр показывает значение «1,73 ома» при прямом смещении диода, то число 1,7 Ом не представляет для нас, как для техников или разработчиков схем, никакой реально полезной количественной оценки. Оно не представляет собой ни прямое падение напряжения, ни величину сопротивления материала полупроводника самого диода; это число скорее зависит от обеих величин и будет изменяться в зависимости от конкретного омметра, используемого для измерения.

По этой причини, некоторые производители цифровых мультиметров оснащают свои измерительные приборы специальной функцией «проверка диода», которая показывает реальное прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах. Эти измерительные приборы работают, пропуская через диод небольшой ток и измеряя падение напряжения между двумя измерительными щупами (рисунок ниже).

Мультиметр с функцией «Проверка диода», вместо низкого сопротивления, показывает прямое падение напряжения 0,548 вольт.

Показание прямого напряжения, полученное таким образом с помощью мультиметра обычно меньше, чем «нормальное» падение в 0,7 вольта для кремниевых диодов и 0,3 вольта для германиевых диодов, так как ток, обеспечиваемый измерительным прибором, довольно мал. Если у вас нет мультиметра с функцией проверки диодов, или вы хотели бы измерить прямое падение напряжения на диоде при другом токе, то можно собрать схему из батареи, резистора и вольтметра.

Измерение прямого напряжения диода с помощью мультиметра без функции «проверка диода»: (a) Принципиальная схема. (b) Схема соединений

Подключение диода в этой тестовой схеме в обратном направлении просто приведет к тому, что вольтметр покажет полное напряжение батареи.

Если эта схема была разработана для обеспечения протекания через диод тока постоянной (или почти) величины, несмотря на изменения прямого падения напряжения, то она может быть использована в качестве основы для инструмента, измеряющего температуру: измеренное на диоде напряжение будет обратно пропорционально температуре перехода диода. Конечно, ток через диод должен быть минимален, чтобы самонагревания (значительного количества рассеиваемой диодом мощности), которое могло бы помешать измерению температуры.

Помните, что некоторые цифровые мультиметры, оснащенные функцией «проверка диода», при работе в обычном режиме «сопротивление» (Ω) могут выдавать очень низкое тестовое напряжение (менее 0,3 вольт), слишком низкое для полного схлопывания (сжатия) обедненной области PN перехода. Суть в том, что тестирования полупроводниковых приборов здесь должна использоваться функция «проверка диода», а функция «сопротивления» – для всего остального. Использование очень низкого тестового напряжения для измерения сопротивления облегчает процесс измерения сопротивления неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, так как переходы полупроводникового компонента не будут смещены такими низкими напряжениями в прямом направлении.

Рассмотрим пример резистора и диода, соединенных параллельно и припаянных к печатной плате. Как правило, перед измерением сопротивления резистора необходимо было бы выпаять его из схемы (отсоединить резистор от остальных компонентов), в противном случае любые параллельно подключенные компоненты будут влиять на полученные показания. При использовании мультиметра, который выдает на щупы очень низкое тестовое напряжение в режиме «сопротивление», на PN переход диода не будет подано напряжение, достаточное для того, чтобы он был смещен в прямом направлении, и, следовательно, диод будет пропускать незначительный ток. Следовательно, измерительный прибор «видит» диод, как разрыв, и показывает сопротивление только резистора (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением (

Если использовать такой омметр для проверки диода, он покажет очень высокое сопротивление (много мегаом), даже если подключить диод в «правильном» (для прямого смещения) направлении (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением, слишком низким для прямого смещения диодов, не видит диодов.

Величина обратного напряжения диода измеряется не так легко, так как превышение обратного напряжения на обычном диоде приводит к его разрушению. Хотя существуют специальные типы диодов, разработанные для «пробоя» в режиме обратного смещения без повреждения диода (так называемые стабилитроны), которые тестируются в той же схеме источник/резистор/вольтметр при условии, что источник напряжения обеспечивает величину напряжения, достаточную для перехода диода в область пробоя. Более подробную информацию об этом читайте в одной из следующих статей этой главы.

Как проверить светодиод мультиметром: возможные способы не выпаивая

Светодиоды – это полупроводниковые приборы искусственного света. Их работа основана на излучении световых фотонов и электромагнитной энергии видимого, инфракрасного и ультрафиолетового диапазона частот. Свет излучает p-n переход в зоне контакта диодов p- и n-типов проводимости во время идущего через него постоянного стабилизированного тока. При этом излучается свет (около 6 – 15% потребленной электроэнергии) и выделяется тепло – не менее 80 – 90% этой энергии.

Основные причины неисправности диода

Причин поломки может быть несколько. Тестирование делают по специальной методике. Основные причины сбоев:

  1. Тепловой пробой в результате перегрева и деструкция (разрушение) кристалла. Сопровождается горением лакового покрытия и пластмассового корпуса. На фото сгоревший светодиод на печатной плате лампы-ретрофита, аналога галогенной лампы типа MR16. В одном из корпусов SMD2835 из-за перегрева кристалла сгорел нанесенный на него желтый люминофор. Видна коричневая точка на элементе с позиционным обозначением D11.
  2. Электрический пробой p-n перехода. Прямое рабочее напряжение диода в зависимости от цвета свечения и материалов p-n перехода лежит в диапазоне от 1,5 до 4-4,5 В. Обратное напряжение на несколько вольт больше прямого. Поэтому скачки напряжения могут вызвать его нестабильность на выходе. Если они превышают обратное напряжение диода, возможен пробой.
  3. Механический обрыв. К полупроводниковому кристаллу от контактов корпуса ток подводят серебряные или золотые проволочки. От вибрации или ударов может произойти их обрыв.
  4. Деградация. Постепенное снижение характеристик светодиода, прежде всего яркости и оттенка свечения. Падение яркости нормируется 30, 50 и 70% от первоначальной. На 5-10% яркость падает в течение первой 1000 часов работы у большинства устройств. Падение яркости на 50 – 70% требует замены лампы, модуля, линейки или ленты. Иногда оно происходит за 15 – 20 тысяч часов.

На фото сгоревший светодиод на печатной плате лампы-ретрофита, аналога галогенной лампы типа MR16. В одном из корпусов SMD2835 из-за перегрева кристалла сгорел нанесенный на него желтый люминофор. Видна коричневая точка на элементе с позиционным обозначением D11.

Деградация идет в люминофорах белых светодиодов и в элементах вторичной оптики – линзах, встроенных в корпус или монтируемых на его поверхности. Под действием света линзы мутнеют, снижаются светопропускание и световой поток.

«Прозвонка светодиода мультиметром, прозвонка диода» – сленговый термин, попавший в светотехнику из электротехники слабых токов. Когда нужно было, например, проверить исправность проводников в кабеле, брали аккумулятор, батарейку или переносной блок питания и обычный электромеханический звонок. К первому контакту разъема кабеля подключали «крокодилом» аккумулятор и звонок. На обратном конце кабеля к первому проводу последовательно подключали остальные провода. Звеневший звонок показывал исправность проводов.

Так же проверяли замыкания проводов в кабеле между собой. Способ использовали и после проверки звонка амперметром. Название операции закрепилось у электриков, а потом перешло в электронику. Только использовали не звонок, а тестер, который называли по-разному – АВОметр, омметр, мультиметр.

Проверка светодиода или прозвонка мультиметром. Информация на дисплее – О – диод исправен, ток идет; OL – диод исправен, ток не идет.

Проверить исправность светодиода мультиметром можно прямо на плате или выпаяв его. Прибор используют для проверки цепей постоянного и переменного тока. Им измеряют напряжение, сопротивление резисторов в режиме омметр, исправность и работоспособность конденсаторов, выпрямительных диодов, p-n-p и n-p-n транзисторов и другое.

Проверка диода мультиметром.

Красный щуп и провод мультиметра – это цепь положительного полюса или «+» источника питания и анода диода. Черные провод и щуп – цепь, связанная с катодом и отрицательным полюсом источника. Мультиметр включен на режим измерения постоянного тока в диапазоне от 0 до 20 мА или 0,02 А. На табло мультиметра высветилось 15,7 мА, что означает что диод открыт и его рабочий ток составляет указанную величину. Светодиод обычной яркости при такой силе тока должен светиться и немного греться.

В схеме обозначения диода поперечная черточка – это катод, треугольник – анод. Прямоугольник голубого цвета обозначает резистор с постоянным сопротивлением. Он ограничивает прямой, т.е. рабочий ток светодиода.

При подаче напряжения напрямую без ограничения тока возможно превышение рабочего значения и тепловой пробой диода.

Проверка светодиода при помощи батарейки

Чтобы проверить LED при помощи батарейки, нужно собрать цепь по схеме.

Схема проверки светодиода LED1 от батарейки 9V.

На схеме:

  1. LED1 – проверяемое устройство.
  2. 9V – источник питания (батарейка с напряжением 9В).
  3. VAΩ – измерительный прибор для замера V – напряжения, A – тока, Ω – сопротивления, АВОметр или мультиметр. На схеме работает в режиме измерения напряжения.
  4. R1 - токоограничивающий резистор.
  5. R2 – переменный резистор, задающий яркость светодиода.

Резистором R2 на мультиметре устанавливается номинальный рабочий ток. Исправный LED-элемент дает свет. Неисправный – не светит.

Термин «мультиметр» – транслитерация международного названия «Multimeter». Образован от терминов Multi – много и meter – измерять. Имеет названия «тестер», «АВОметр»– от Ампер-Вольт-Омметр.

Современный мультиметр – универсальный измерительный прибор с цифровым (англ. – digital) дисплеем.

Один из видов мультиметров.

Другое название прибора – «тестер»– транслитерация кириллицей международного термина tester – тестирователь, проверятель, испытатель.

Проверка без выпаивания светодиода

Чтобы проверить светодиод не выпаивая, нужно анализировать схему устройства. Если нет цепей, параллельных диоду, его можно прозвонить не выпаивая. Параллельные цепи могут влиять на результат.

На щупы мультиметра нужно напаять острые стальные иглы. Всю иглу кроме кончика и щуп нужно изолировать, например, термоусаживающейся трубкой. Щупом с иглой прокалывают слой защитного лака до контакта с выводом диода на корпусе или контактной площадки на плате. Измерение сопротивления в прямом и обратном направлении показывает работоспособность устройства. Прямое сопротивление – десятки–сотни Ом. Обратное – сотни килоОм или более.

Проверка СМД-диодов в фонарике

Это делается только если из фонарика можно вынуть плату с SMD-светодиодом, не поломав его, и есть запасная плата с таким же диодом. Проверка производится заменой на плату заведомо исправную.

В заключении на видео проверяют светодиод в различных устройствах, если нет специального прибора

СМД-прибор можно проверить разными способами. Наиболее простой и доступный – проверка мультиметром. Позволяет проверить диод, не выпаивая его. Выбирайте удобный для вас способ.

Как прозвонить диод мультиметром - Multimetri.ru

Прозвонка диода — дело нечастое. Может понадобится при ремонте бытовой техники, при сборке схемы, просто при разборе завалов деталей — что нужно оставить, а что выбросить, как вышедшее из строя.

Готовим мультиметр

Во-первых, блок мультиметра должен быть исправен. Во-вторых, батарейка в мультиметре должна обеспечивать номинальную отдачу. И, в-третьих, провода и щупы должны быть целыми.

Измеряя что-то негодным прибором мы со стопроцентной уверенностью получим негодный результат.

Читайте также

Как прозвонить реле мультиметром. Как работает реле

»

Чёрный — минусовой — провод нужно включить в гнездо COM.

Красный — плюсовой — в гнездо с обозначением единиц измерения напряжения, тока и сопротивления.

Рукоятку выбора режима нужно установить на символ диода — то есть как раз в режим прозвонки диодов.

Читайте также

Как прозванивать светодиоды мультиметром

»

Мультиметр в таком режиме показывает 1 — то есть никакого тока между шупами не течёт. Соединяем щупы на короткий промежуток времени. Мультиметр должен показать 0 — это признак исправности прибора.

к содержанию ↑

Прозваниваем диод

Прижимаем пальцами чёрный щуп к катоду элемента. Красный щуп берём за рукоять и не касаемся кожей жала щупа. Иначе при обратной прозвонке ток пойдёт по пути наименьшего сопротивления — из руки в руку. И мультиметр покажет не 1, а ток, проходящий через тело.

Читайте также

Как прозвонить конденсатор мультиметром

»

Касаемся красным щупом анода элемента. Мультиметр должен показать значение в диапазоне от 0,4 до 0,5. Это говорит о том, что тракт анод-катод исправен.

Переворачиваем диод, чёрный щуп прижимаем к аноду, а красным касаемся катода. Прибор как показывал 1, так и должен показывать 1. Если значение на дисплее меньше, а тем более — 0, диод идёт на выброс. Диод — прибор с односторонней проводимостью. И от катода к аноду у него должно быть бесконечно большое сопротивление. Если это не так — диод пробит, выбрасываем или сдаём в скупку старых радиодеталей — пусть добывают из него золото или другие драгметаллы.

Смотрим видео мастера Сергея Гаврилова. Прозвонка диода.

Читайте также

Как прозвонить транзистор мультиметром. Как работает транзистор

»

на работоспособность, мультиметром без выпаивания, исправность полупроводниковых элементов

Диодная сборка – линия электрода, которая широко используется во всех электронных приборах. Что он собой представляет, как его проверять и распаять по инструкции, как осуществляется сборка, прозвонка диода и проверка диода, об этом и другом далее.

Что такое диод

Диодом называется электронный вид элемента на плате, который состоит из нескольких полупроводниковых слоев и имеет разную проходимость и мощность, в зависимости от того, какое имеет направление электротока. Электрод делится на анод с катодом. В большинстве случаев он нужен для того, чтобы проводить защитные модуляции с выпрямлениями и преобразованиями поступающих электрических сигналов на супрессоре.

Что такое диод

Инструкция по проверке

В ответ на вопрос, как проверить диод мультиметром, не выпаивая, необходимо уточнить, чтобы успешно его проверить, как и стабилитрон, необходимо взять его и мультиметр, сделать прозвонок. Как правило, многие из устройств оснащены функцией диодной проверки. По инструкции она выглядит таким образом:

Анод и катод
  1. Все, что нужно, это перевести регулятор на функцию проверки, взять концы мультиметра и присоединить их к диодной сборке. К знаку минус нужно поднести анод, а к знаку плюс – катод. Нередко это просто белые и красные полосы соответственно.
  2. Затем появятся значения порогового напряжения и значение с показаний проверки.
Подключение анода и катода

Обратите внимание! В ходе проверки выпрямительного светодиода шотка или schottky прикасаться руками к одному из зарядов нельзя, поскольку корректными показания в таком случае не будут. В ходе первого определения нужно повторить процедуру в противоположном порядке. Так, анод нужно поместить к знаку плюс, а катод – минус. При таком подключении на мультиметр поступит цифра 1. Это значит, что ток не течет. Все под защитой.

Стоит отметить, что более подробная инструкция со схемами, ответами на популярные вопросы о светодиодных узких супрессорах и предупреждениях дана в инструкции к каждому мультиметру.

Мультиметр для проверки диодной сборки

Проверка на исправность полупроводниковых элементов

Чтобы проверить полупроводниковые элементы на исправность, необходимо воспользоваться цифровым измерительным мультиметром с крышкой и большим функционалом. Большинство из них оснащены подобной функцией прозвона моста и генератора, поэтому сделать процедуру проверки может каждый желающий. Все что нужно, это прозвонить с помощью многофункционального мультиметра свободный диод, установить регуляторную ручку на измерительном приборе и нажать кнопку с данным обозначением на управленческой приборной панели. Далее необходимо подключить соответствующий красный щуп к аноду, а черный к катоду. Только так прибор измерит все правильно.

Обратите внимание! Понять, где анод, а где катод, несложно, прочитав описание к модели мультиметра, или воспользоваться помощью электронщика. Как правило, на каждом проводке имеется своя маркировка, благодаря которой понять, где что находится, очень просто в конкретной ситуации. В результате должно получиться пороговое прямое напряжение. Если есть повреждение какого-то элемента, то на панели появится ноль напротив того электрода, который будет подключен, или цифра выше или ниже допустимой.

В ответ на то, как проверить диодную сборку мультиметром, если специального режима в мультиметре нет, можно указать, что необходимо собрать схему: соединить источник питания с резистором и проверяемым полупроводником. Затем подключить элемент анода к резистору, а катод к источнику питания. Далее следует нажать пуск и посмотреть, в каком состоянии находится полупроводниковый элемент. Как и в прошлом случае, исправный элемент измерителем будет выдавать прямое напряжение.

Проверка мультиметром без выпаивания

Без выпаивания мультиметром можно проверить электроды. Все что нужно, это выбрать на устройстве сопротивляющий измерительный режим с диапазоном в 2 кОм. Затем стандартно нужно присоединить красный проводок к части анода, а черный к части катода. Так будет показана цифра напряжения в омах. Как правило, при разрыве цепи измерение получается с цифрой выше допустимого или со значением 0.

Обратите внимание! Важно понимать, что для проверки оборудования и полупроводниковых элементов необходимо полностью действовать в соответствии с представленной к мультиметру инструкцией. Также необходимо понимать важные физические моменты и немного понимать в электронике для составления правильной электрической схемы. В противном случае отсутствие знаний может затруднить работу с мультиметром.

Правильность подключения электродов залог успешной проверки

Тестирование высоковольтных диодов

Для проверки высоковольтного электрода необходимо собрать представленную на рисунке схему. Напряжения в 45 вольт будет достаточно, чтобы проверить любые элементы. Методика проверки не отличается от тестирования простых анодов с катодами. Величина сопротивления при этом не может достигать 3,6 кОм.

Тестирование высоковольтных диодов

Техника безопасности

По технике безопасности любые тестирования с обычными и высоковольтными электродами нельзя проводить в сырых и влажных комнатах. Кроме того, нельзя в момент измерений делать переключения измерений и делать замеры, если величины напряжения с силой тока больше обозначенных в мультиметре. Чтобы проверка была успешной и не опасной, необходимо использовать щупы, имеющие исправную изоляцию.

Техника безопасности при работе с мультиметром

Анализ результатов

Сделав проверку, можно судить о том, исправен полупроводник или нет. Признаком того, работоспособен ли электрод или нет, будут совпадающие величины, которые высвечиваются на панели прибора в том порядке, когда анод подключен к электроду со значением минус, а катод – к тому, что имеет значение плюса.

Что касается противоположного порядка подсоединения, то здесь будет хорошим результат 0. При оценке результатов важно учитывать уровень напряжения. Он может зависеть иногда и от того типа, который имеет электрод.

Результат нулевой

Если соблюдать данные параметры, можно понять, в каком состоянии находится диод. Есть ли поломка или нет. Если же какой-то показатель неудовлетворительный, то полупроводник необходимо в срочном порядке заменить.

Интересно, что проверить диоды может каждый желающий. Сегодня на рынке представлено большое количество бюджетных мультиметров, которые в точности смогут показать правдивые результаты проверки работоспособности диода на любом бытовом электроприборе.

Плохой результат измерительного прибора

Диод это электронный элемент, который обладает определенной проводимостью тока. Проверять его можно при помощи тестера или мультиметра. Делать это необходимо по инструкции, идущей к любому проверяющему аппарату.

Как проверить диод используя цифровой и аналоговый мультиметр

Диоды — одни из компонентов, которые могут быть очень легко протестированы. Обычные диоды такие как Диоды Зенера могут быть проверены при помощи мультиметра. При тестировании диода прямой режим проведения и обратный режим блокирования должны быть протестированы отдельно.

Для тестирование обычного диода, используя цифровой мультиметр.
Чтобы проверить обычный кремниевый диод, используя цифровой мультиметр, поместите селектор мультиметра в диодный режим проверки. Соедините положительный вывод мультиметра к анодному и отрицательный вывод к катоду диода. Если мультиметр выводит на экран напряжение между 0.6 к 0.7, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить прямой режим проводимости диода. Выведенное на экран значение — фактически потенциальный барьер кремниевого диода и его диапазонов значений от 0.6 до 0.7 вольт в зависимости от температуры.
Теперь соедините положительный вывод мультиметра к катоду и отрицательный вывод к аноду. Если мультиметр показывает бесконечное чтение (по диапазону), мы можем предположить, что диод исправен. Это — тест для того, чтобы проверить обратный режим блокирования диода.

 

Для того, чтобы протестировать Германиевые диоды, процедура — та же, но дисплей будет между 0.25 и 0.3 В, чтобы указать верное условие в прямосмещенном режиме. Потенциальный барьер для Германиевого диода между 0.25 и 0.3V.When, реверс смещения мультиметра, покажет бесконечное чтение (по диапазону).

 

Тестирование обычного диода, используя аналоговый мультиметр.


Чтобы проверить обычный Кремниевый диод, используя аналоговый мультиметр, поместите селектор мультиметра в позицию низкого сопротивления ( 1K). Соедините положительный вывод мультиметра к аноду диода и отрицательный вывод мультиметра к катоду диода. Если мультиметр показывает чтение низкого сопротивления, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить прямосмещенный режим диода.
Теперь поместите селектор мультиметра в позицию высокого сопротивления (100K).  Соедините положительный вывод мультиметра к катоду диода и отрицательный вывод к аноду диода. Если мультиметр показывает бесконечное чтение, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить обратный режим блокирования диода. Мультиметр показывает бесконечное или очень высокое сопротивление, потому что у обратно-смещенного диода есть очень высокое сопротивление (обычно в диапазоне сотен Омов K).

 

Тестирование Диода Зенера.

Прямые характеристики Диода Зенера подобны обычному диоду. Так методы, используемые для того, чтобы протестировать вперед проводящий режим любого обычного диода, также применимо к Диоду Зенера . Но в обратном режиме, у напряжения обратного пробоя есть большое значение, и это должно быть в частности протестировано. Например, 5.3-вольтовый Диод Зенера должен начать проводить только, когда примененное обратное напряжение просто превышает 5.3V. Режим обратного смещения Диода Зенера может быть легко протестирован при помощи схемы, данной ниже. Сопротивление R1 может обычно быть 100 Омов. Мультиметр должен быть в режиме напряжения. Теперь медленно увеличивайте производство переменного источника питания и одновременно наблюдайте напряжение, показанное в мультиметре. Дисплей мультиметра увеличивается вместе с увеличением напряжения источника питания до напряжения пробоя. Кроме того показания мультиметра остается неизменным несмотря на напряжение источника питания. Это вызвано тем, что Диод Зенера находится теперь в области пробоя, и напряжение через него останется постоянным независимо от увеличения напряжения питания, и это постоянное напряжение будет равно напряжению пробоя. Если показание мультиметра  равно напряжению пробоя, определенному производителем, мы можем предположить, что Диод Зенера исправен.

При выполнении этого теста не забудьте не превышать входное напряжение возбуждения к точке, которая вынуждает Диод Зенера рассеять больше питания. Обычно оно не должно превышать  больше, чем 10mA.

Как проверить диод мультиметром. Подробная инструкция

В данной статье объясним как проверить диод мультиметром. Полупроводниковый диод, как компонент электронной схемы, довольно часто выходит из строя по различным причинам, например, превышение максимально допустимого прямого тока, обратного напряжения и тому подобное. Различают два вида неисправности диода – пробой и короткое замыкание.

Действие диода, как полупроводникового прибора с p-n переходом, заключается в том, что он пропускает электрический ток только в одном направлении (от анода к катоду), в обратном же направлении (от катода к аноду) ток не течет.

Держатель для платы

Материал: АБС + металл, размер зажима печатной платы (max): 20X14 см...

 Зная это свойство диода можно легко проверить его на неисправность при помощи обычного мультиметра.

Как проверить диод мультиметром

Обычные диоды, так же как и стабилитроны, можно проверить с помощью мультиметра. Чтобы проверить этот полупроводниковый прибор с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов, обычно данный режим имеет значок диода:

Следует отметить, что при проверке в данном режиме, на мультиметре отображается прямое напряжение, а не сопротивление, когда просто прозванивают диод в режиме сопротивления.

Признаки исправного диода:

  • При подключении плюсового щупа (красный) мультиметра к аноду диода, а минусового щупа (черный) к катоду диода на экране мультиметра должна высветиться определенная величина прямого напряжения данного диода. У разных типов диодов прямое напряжение  отличается. Так у германиевых диодов оно составляет  примерно 0,3…0,7 вольт, у кремниевых диодов 0,7…1,0 вольта. Хотя некоторые типы мультиметров могут показывать более низкое значение прямого напряжения в режиме проверки.

  • И на оборот, при подключении минусового щупа мультиметра к аноду диода, а плюсового щупа к катоду диода на экране будет ноль.

При иных показаниях мультиметра можно утверждать о неисправности проверяемого диода.

Электрический паяльник с регулировкой температуры

Мощность: 60/80 Вт, температура: 200'C-450'C, высококачествен...

Альтернативный способ проверки исправности диода

В том случае, если у вас мультиметр не снабжен режимом проверки диодов, то проверить диод можно по простой схеме, которая приведена ниже.

При данной проверке, мультимет необходимо перевести в режим измерения постоянного напряжения. При том подключении исправного  диода, как указано на схеме, вольтметр покажет прямое напряжение на диоде. Если теперь выводы диода поменять местами, то он не будет проводить ток, а вольтметр укажет напряжение питания (в данном случае 5 вольт).

Так же можно прозвонить диод и определить его общее состояние путем измерения сопротивления, как в прямом, так и в обратном направлении.

Для этого необходимо перевести мультиметр в режим измерения сопротивления, диапазон до 2 кОм. При подключении диода в прямом направлении (красный к аноду, черный к катоду) измерительный прибор покажет сопротивление несколько сотен Ом, в обратном направлении прибор покажет символ разрыва цепи, что говорит об очень большом сопротивлении.

Как проверить диодный мост

Прежде чем перейти к вопросу проверки диодного моста, вкратце приведем его описание. Диодный мост представляет собой сборку из четырех диодов, соединенных таким образом, что переменное напряжение (AC), подаваемое к двум из четырех выводов диодного моста, переходит в постоянное напряжение (DC) снимаемое с двух других его выводов.

 

Таким образом, предназначение диодного моста – выпрямление переменного напряжения с целью получения постоянного напряжения.

Диодный (выпрямительный) мост представляет собой четыре выпрямительных диода соединенных по определенной схеме:

Поскольку диодный мост предназначен для выпрямления переменного напряжения (синусоиды), то при первой полуволне переменного напряжения в работе участвуют одна пара диодов:

 а при следующей полуволне работает другая пара выпрямительных диодов:

Проверка диодного моста ничем не отличается от проверки обычного диода. Просто необходимо определиться, к каким выводам подключать мультиметр. Условно пронумеруем выводы выпрямителя от 1 до 4:

 

Отсюда следует, что для проверки диодного моста нам достаточно прозвонить 4 диода:

  • 1-й: выводы 1 – 2;
  • 2-й: выводы 2 – 3;
  • 3-й: выводы 1 – 4;
  • 4-й: выводы 4 – 3;

При проверке, необходимо руководствоваться на показания мультиметра, как и при проверке обычных диодов.

Как мне проверить диоды с помощью мультиметра?

Тестовые диоды с настройкой теста диодов мультиметра. Если в мультиметре отсутствует настройка проверки диодов, используйте функцию омметра или функцию проверки целостности цепи. Подготовьте диод перед тестированием для получения наиболее точного результата.

Советы

Полупроводниковые компоненты, такие как диоды, могут выйти из строя по разным причинам, включая отказ от теплового пробоя или отказ на определенных частотах. Простые процедуры тестирования не могут найти эти типы дефектов.Если вы сомневаетесь в диоде, замените его заведомо исправным компонентом.

Предупреждения

Эти процедуры тестирования не работают с стабилитронами.

Подготовка диода к тестированию

Убедитесь, что оба вывода диода чистые и не имеют следов коррозии или загрязнений. Если диод является частью электрической цепи, удалите его из цепи. Если вы не можете удалить диод из его цепи, отключите один вывод диода от цепи, чтобы электрически изолировать компонент для тестирования.

Диоды пропускают ток в одном направлении, от анода к катоду. Производители идентифицируют катодный вывод диода по контрастной цветной полосе. Анод - противоположный вывод. Ток, движущийся вперед от анода к катоду, встречает небольшое прямое сопротивление. Ток, протекающий в обратном направлении, встречает большое сопротивление. Процедуры испытаний зависят от измерения или сравнения значений прямого и обратного сопротивления.

Мультиметр с опцией проверки диодов

Настройте мультиметр для проверки диодов.Определите полярность измерительных щупов или проводов. Красный провод является положительным для большинства мультиметров, но некоторые отличаются. См. Инструкции производителя мультиметра.

Наконечники

Некоторые выводы мультиметра заканчиваются острым концом или зондом, а другие - зажимом из крокодиловой кожи. Оба вывода одинаково хорошо подходят для тестирования диодов.

  1. Подсоедините положительный провод к клемме анода или прикоснитесь к нему.
  2. Подсоедините отрицательный провод к клемме катода или коснитесь его.
  3. Считайте показания мультиметра.На дисплее отображается падение напряжения между датчиками. Хороший диод создает падение напряжения от 0,5 до 0,6 вольт. Хороший германиевый диод создает падение напряжения от 0,25 до 0,3 вольт. Отсутствие падения напряжения или чрезмерное падение напряжения указывает на то, что диод неисправен.
  4. Поменяйте местами измерительные провода.
  5. Считайте показания мультиметра. Хороший диод показывает обрыв цепи. Измерение, отличное от обрыва цепи, может указывать на неисправность диода.

Если тест показывает хорошие результаты в обоих направлениях, диод исправен.Другие результаты могут указывать на неисправность диода.

Омметр или настройка целостности цепи

Сконфигурируйте мультиметр для проверки резистора или целостности цепи.

Предупреждения

Используйте следующий метод, только если мультиметр не имеет настройки проверки диодов.

Наконечники

Полярность измерительного щупа или проводов не имеет значения при проверке диода следующим образом.

  1. Подсоедините один измерительный провод к одной из клемм диода или прикоснитесь к нему.
  2. Подсоедините другой измерительный провод к противоположной клемме диода или прикоснитесь к нему.
  3. Считайте значение сопротивления на мультиметре или отметьте результат проверки целостности.
  4. Поменяйте местами измерительные провода.
  5. Считайте значение сопротивления или отметьте результат проверки целостности.
  6. Сравните измерения.

Омметр измеряет очень высокое сопротивление или разрыв цепи в одном направлении и очень низкое сопротивление в противоположном направлении. Типичным измерением для исправного диода, например, является отношение 10: 1, при этом обратное сопротивление в 10 или более раз превышает прямое сопротивление.Точное измерение зависит от типа проверяемого диода, его номинального напряжения и производителя.

Хороший диод показывает непрерывность только в одном направлении. Неисправный диод показывает непрерывность в обоих направлениях или разрыв цепи в обоих направлениях.

Как пользоваться мультиметром

Добавлено в избранное Любимый 59

Непрерывность

Тестирование непрерывности - это проверка сопротивления между двумя точками.Если сопротивление очень низкое (менее нескольких Ом), две точки соединяются электрически, и издается звуковой сигнал. Если сопротивление превышает несколько Ом, значит, цепь разомкнута и звуковой сигнал не издается. Этот тест помогает убедиться, что соединения выполнены правильно между двумя точками. Этот тест также помогает нам определить, подключены ли две точки, которых не должно быть.

Непрерывность, возможно, самая важная функция для гуру встраиваемого оборудования. Эта функция позволяет нам проверять проводимость материалов и отслеживать, где были выполнены или не выполнены электрические соединения.

Установите мультиметр в режим «Непрерывность». Он может варьироваться в зависимости от цифрового мультиметра, но ищите символ диода с распространяющимися волнами вокруг него (например, звук, исходящий из динамика).

Мультиметр установлен в режим проверки целостности цепи.

Теперь соедините щупы вместе. Мультиметр должен издать звуковой сигнал (Примечание: не все мультиметры имеют настройку непрерывности, но большинство должно). Это показывает, что очень небольшое количество тока может протекать без сопротивления (или, по крайней мере, с очень маленьким сопротивлением) между датчиками.

Внимание! В общем, выключите систему перед проверкой целостности цепи.

На макетной плате, на которой не запитан , используйте щупы, чтобы проткнуть два отдельных контакта заземления. Вы должны услышать тональный сигнал, указывающий, что они подключены. Подключите пробники от контакта VCC на микроконтроллере к VCC на источнике питания. Он должен издать звуковой сигнал, указывающий, что питание свободно течет от вывода VCC к микроконтроллеру. Если он не издает тонального сигнала, вы можете начать следовать по маршруту, по которому проходит медный провод, и определять, есть ли обрывы в линии, проводе, макетной плате или печатной плате.

Continuity - отличный способ проверить, соприкасаются ли два контакта SMD. Если ваши глаза не видят этого, мультиметр обычно является отличным вторым ресурсом для тестирования.

Когда система не работает, непрерывность - еще одна вещь, которая помогает устранить неполадки в системе. Вот шаги, которые необходимо предпринять:

  1. Если система включена, внимательно проверьте VCC и GND с настройкой напряжения, чтобы убедиться, что напряжение соответствует уровню. Если система 5 В работает при 4,2 В, внимательно проверьте свой регулятор, он может быть очень горячим, что указывает на то, что система потребляет слишком большой ток.
  2. Выключите систему и проверьте целостность цепи между VCC и GND. Если есть непрерывность (если вы слышите звуковой сигнал), значит, у вас где-то короткое замыкание.
  3. Выключите систему. Убедитесь, что VCC и GND правильно подключены к контактам микроконтроллера и других устройств. Система может быть включена, но отдельные микросхемы могут быть подключены неправильно.
  4. Предположим, вы можете запустить микроконтроллер, отложить мультиметр в сторону и перейти к последовательной отладке или использовать логический анализатор для проверки цифровых сигналов.

Обрыв цепи и большие конденсаторы: При обычном поиске неисправностей. вы будете проверять целостность цепи между землей и шиной VCC. Это хорошая проверка работоспособности перед включением прототипа, чтобы убедиться, что в системе питания нет короткого замыкания. Но не удивляйтесь, если вы услышите короткий звуковой сигнал! при зондировании. Это связано с тем, что в системе питания часто присутствует значительная емкость. Мультиметр ищет очень низкое сопротивление, чтобы увидеть, подключены ли две точки.Конденсаторы будут действовать как короткое замыкание в течение доли секунды, пока не заполнятся энергией, а затем будут действовать как открытое соединение. Поэтому вы услышите короткий звуковой сигнал, а затем ничего. Ничего страшного, просто шапки заряжаются.



← Предыдущая страница
Измерение тока Базовый цифровой мультиметр

- 7 Функция Напряжение Сопротивление Ток Транзистор Диод Зуммер непрерывности и прямоугольная волна

  • Убедитесь, что он подходит, введя номер вашей модели.
  • Базовый цифровой мультиметр с легко читаемым высококонтрастным ЖК-экраном для удобного чтения во время тестирования
  • Пользовательские символы с цветовой кодировкой для напряжения, силы тока / тока и сопротивления четко обозначены их числовыми значениями вокруг циферблата
  • NPN & Цифровой тестер транзисторов PNP вместе со встроенным зуммером для проверки целостности звука и установленная батарея 9 В

Стиль: Базовый цифровой мультиметр PDM631

Цифровой мультиметр - самый важный инструмент, когда дело касается электроники.С помощью ProTechTrader PDM-631 вы сможете измерять постоянный и переменный ток, сопротивление, диоды, транзисторы, непрерывность и тестовые сигналы прямоугольной формы - и все это у вас на ладони! PDM-631 очень удобен в использовании, потому что ProTechTrader разработал его для новичков. Напряжения имеют синюю цветовую кодировку и четко обозначены буквой V. Различия между переменным и постоянным током также четко обозначены оранжевым цветом. В отличие от других мультиметров, каждая цифра на циферблате имеет четкий символ, обозначающий сопротивление, вольт или ампер.Цифровой ЖК-дисплей обеспечивает точное визуальное считывание ваших результатов. Вы также можете быть уверены в ваших результатах непрерывности благодаря встроенному зуммеру, который обеспечивает непрерывность звука. ProTechTrader разработал руководство пользователя, чтобы оно было максимально удобным для пользователя, с четко обозначенными иллюстрациями. Комплектация: Мультиметр ProTechTrader PDM-631 с предварительно установленной батареей 9 В Набор красных и черных измерительных щупов мультиметра Руководство на английском языке

CMTK-1032 Цифровые клещи Мультиметр Постоянный ток, переменный ток, постоянный ток, сопротивление, диодный тестер

Политика возврата

Вы можете вернуть большинство новых неоткрытых товаров в течение 30 дней с момента доставки для получения полного возмещения.Мы также оплатим стоимость обратной доставки, если возврат является результатом нашей ошибки (вы получили неправильный или бракованный товар и т. Д.).

Вы должны рассчитывать на получение возмещения в той же платежной форме, которая использовалась при покупке, в течение четырех недель с момента передачи вашей посылки отправителю. Этот период времени включает в себя время доставки для получения возврата от грузоотправителя, время, необходимое нам для обработки вашего возврата после его получения, и время, необходимое для зачисления возмещения на ваш счет.

Для получения дополнительной информации, пожалуйста, обратитесь к нашей Политике возврата, возврата и гарантии или свяжитесь с нами.

Политика доставки

Мы можем отправить товар практически по любому адресу в мире. Обратите внимание, что существуют ограничения на некоторые продукты, и некоторые продукты не могут быть отправлены в другие страны.

Когда вы размещаете заказ, мы рассчитаем для вас сроки доставки и доставки в зависимости от наличия ваших товаров и выбранных вами вариантов доставки.В зависимости от выбранного вами поставщика доставки, приблизительные даты доставки могут отображаться на странице сметы доставки.

Также обратите внимание, что стоимость доставки для многих товаров, которые мы продаем, зависит от веса. Вес любого такого предмета можно узнать на его странице с подробными сведениями. Чтобы отразить политику используемых нами транспортных компаний, все веса будут округлены до следующего полного фунта.

Для получения дополнительной информации, пожалуйста, обратитесь к нашей Политике доставки.

Гарантийная Политика

На большинство наших товаров предоставляется гарантия 1 год на дефекты производителя.Он не включает ущерб, причиненный неправильным использованием, несчастными случаями, неправильным обращением, переделками, небрежным обращением или другими внешними причинами.

Гарантия не распространяется на расходные материалы (например, электроды, калибровочный раствор, аккумулятор, индексное масло), аксессуары, кабель, компакт-диск и / или любой письменный документ, прилагаемый к изделию.

Для получения дополнительной информации, пожалуйста, обратитесь к нашей Гарантийной политике.

Как заменить СВЧ диод

Если вы пытаетесь разогреть пищу в микроволновой печи, но она остается такой же холодной, как и при входе в нее, одной из наиболее частых причин является неисправный диод.Другие причины включают неисправный магнетрон, неисправный высоковольтный конденсатор или неисправный дверной выключатель. Чтобы разобраться, виноват ли диод, следует проверить диод мультиметром. Другие признаки того, что диод нуждается в замене, включают запах электрического горения, разделение диода на две части или сгоревшую трещину на диоде.

Микроволновые диоды

легко заменить, но обязательно соблюдайте правила техники безопасности и разрядите высоковольтный конденсатор.

Предупреждение о безопасности

Из-за того, что микроволновые печи требуют очень высокого напряжения и большого тока, при ремонте прибора высок риск поражения электрическим током.СВЧ диоды обычно располагаются рядом с высоковольтным конденсатором. Высоковольтный конденсатор может накапливать смертельное количество электричества даже после того, как микроволновая печь была отключена от источника питания на несколько месяцев. Для безопасного доступа к электрическим компонентам микроволновой печи конденсатор должен быть разряжен.

Конденсатор можно разрядить, прикоснувшись к положительной и отрицательной клеммам конденсатора металлической отверткой. Вы должны обезопасить себя от поражения электрическим током, и одновременно с этим необходимо коснуться клемм.Вы можете использовать отвертку с резиновой ручкой или плоскогубцы с резиновыми ручками. Если вы не уверены, доверьте это квалифицированному специалисту.

Что делает диод?

Диод микроволн преобразует переменный ток (AC) в постоянный (DC), который удваивает напряжение и питает магнетрон, который нагревает пищу. Без диода магнетрон не получил бы достаточного напряжения для своей работы.

Проверка диода мультиметром

Хотя неисправный диод, скорее всего, будет иметь видимые признаки того, что его необходимо заменить, вы должны проверить его с помощью мультиметра.

Перед тем, как получить доступ к микроволновой печи для удаления диода для проверки, убедитесь, что микроволновая печь отключена от источника питания. Перед извлечением диода из микроволновой печи рекомендуется разрядить высоковольтный конденсатор (см. Предупреждение о безопасности выше).

При проверке микроволнового диода с помощью мультиметра вам понадобится мультиметр, который питается от 9-вольтовой батареи и с настройкой Rx10 000. В качестве альтернативы вы можете использовать мультиметр в сочетании с 9-вольтовой батареей для проверки микроволнового диода.

Исправный диод показывает непрерывность - непрерывный электрический путь - только в одном направлении. Следовательно, вы должны проверить непрерывность в одном направлении, а затем в другом. Если обрыв в обоих направлениях, диод закорочен и его необходимо заменить. Если обрыва нет, диод открыт и его необходимо заменить.

Для проверки диода мультиметром:

  1. Установите мультиметр на Rx10 000 или выше.
  2. Откалибруйте провода измерителя.
  3. Прикоснитесь черным проводом мультиметра к одному концу диода, а красный провод мультиметра - к другому.
  4. Обратите внимание на показания мультиметра.
  5. Поменяйте местами провода мультиметра, чтобы проверить целостность в обратном направлении.
  6. Обратите внимание на показания мультиметра.

Если мультиметр показал целостность цепи в обоих направлениях или нет вообще, диод необходимо заменить.

Для проверки диода с 9-вольтовой батареей:

  1. Установите мультиметр на постоянное напряжение.
  2. Прижмите черный провод мультиметра к одному концу диода.
  3. Коснитесь противоположным концом диода отрицательной клеммой аккумулятора.
  4. Коснитесь красным проводом мультиметра положительной клеммы аккумулятора.
  5. Обратите внимание на показания мультиметра.
  6. Проверьте диод на целостность в обратном направлении, удерживая черный провод мультиметра напротив противоположного конца диода. Другой конец диода должен касаться отрицательной клеммы аккумулятора, а красный провод мультиметра - положительной клеммы, как при первом тесте.Вы также можете перевернуть аккумулятор, удерживая тот же конец диода напротив положительной клеммы на аккумуляторе.
  7. Обратите внимание на показания мультиметра.

Напряжение исправного диода падает на несколько вольт при нажатии на один конец диода и почти не изменяется при нажатии на другой конец диода.

Доступ к диоду

Доступ к микроволновой печи будет зависеть от того, какая микроволновая печь у вас есть, и от того, является ли она частью кухонного шкафа или стоит отдельно.На некоторых микроволновых печах может потребоваться снятие панели управления; на других, откручивание задней панели может дать вам доступ. Обратитесь к руководству по эксплуатации микроволновой печи, если не знаете, какую панель снимать.

Для снятия и замены диода:

  1. Отключите микроволновую печь от источника питания.
  2. Снимите пластину поворотного стола и опору.
  3. Отвинтите и / или отсоедините соответствующие панели.
  4. Разрядите конденсатор (обратите внимание на предупреждение о безопасности выше). Некоторые диоды и конденсаторы могут находиться за другой панелью, которую необходимо будет удалить.
  5. Если вам нужно отсоединить провода или снять какие-либо детали, например, волновод, сделайте снимок, чтобы вспомнить, как собирать микроволновую печь. Использование острогубцев может помочь при отсоединении проводов.
  6. Диод обычно закрепляется винтом, а другой конец подсоединяется к конденсатору. Выкрутите винт крепления диода.
  7. С помощью острогубцев отсоедините другой конец диода от конденсатора. Обратите внимание, какой конец диода подключается к конденсатору.Если новый диод установлен неправильно, он, скорее всего, не сработает.
  8. Удалив старый диод, установите новый диод, соблюдая правильную полярность.
  9. Снова соберите микроволновую печь, обязательно подключив все провода и / или вставив обратно все части, которые вы, возможно, сняли.

Теперь ваша микроволновая печь готова к использованию. Если микроволновая печь все еще имеет проблемы с нагревом, возможно, необходимо перевернуть диод или заменить магнетрон или конденсатор.

Использование диодного режима на моем мультиметре для отладки цепей.Хорошая идея?

Я видел несколько видеороликов на YouTube, где ведущий, имеющий опыт ремонта печатных плат Apple (и, предположительно, других), рекомендует использовать мультиметр в «диодном режиме», чтобы проводить измерения в подозрительной проблемной части схему и сравните с заведомо исправной платой. На платы не подается питание во время измерения.

В обоих случаях они рекомендуют заземлить красный провод, а черный - к контрольной точке (около 6:40 в видео Джессы и 2:45 в видео Луи).

Преимущества, очевидно, заключаются в том, что диодный режим измеряет несколько быстрее, чем просто измерение сопротивления. В моем режиме измерения сопротивления потребовалось около секунды для измерения, в то время как мультиметр автоматически выбирает диапазон, но режим диода казался практически мгновенным.

Они оба рекомендуют найти проблемный разъем или ИС, а затем (при отключенной плате) измерить каждый вывод и записать его, а затем сравнить с заведомо исправной платой в том же месте. Любые существенно отличающиеся показания указывают на возможную проблему.


Мои вопросы:

  • Зачем менять полярность? Вы вводите отрицательное напряжение в части схемы, которые предположительно предназначены для положительного напряжения.

  • Не повредит ли подача отрицательного напряжения основную цепь? Я измерил три мультиметра, которые у меня есть, в режиме диода и обнаружил, что они использовали:

    • 7,3 В при 1,0 мА
    • 3,3 В при 1,4 мА
    • 2,5 В при 0,91 мА

Я бы подумал, что введение -7В в материнскую плату вызовет ряд проблем, но оба эти докладчика используют эту технику как способ быстрой отладки.Может быть, их счетчики подают только 3,3 В, но даже в этом случае.


Из комментария:

сколько вольт / мА использует функция ома?

Те же счетчики в том же порядке:

  • 2,77 В при 1,0 мА
  • 0,48 В при 0,65 мА
  • 0,53 В при 0,31 мА

Возможное объяснение?

Подумайте о приведенных выше вопросах, особенно о том, "зачем использовать отрицательное напряжение?" Я придумал одно возможное объяснение:

Если подключить (скажем) плюс 3.3 В на плату, затем ее части будут пытаться включить питание. Например, если вы подключаетесь к Vcc микросхемы, микросхема попытается включить питание, или если вы подключите ее к линии передачи данных, она включится паразитно.

Полученные показания мало что покажут. По сути, ваш мультиметр стал источником питания с недостаточным питанием.

Однако, подавая отрицательное напряжение , основные микросхемы отклонят его (через свои защитные диоды) и, таким образом, не включатся. Остается только «путь к земле» через различные резисторы и делители напряжения.Это позволит быстрее выявить отсутствующие или неисправные резисторы, поврежденные дорожки, плохие соединения и т. Д.

Звучит правдоподобно?

Проверка целостности цепи (диоды ESD)

  • ATE
    • ATE Системы
    • Тестовое оборудование
    • Планирование тестирования
    • Простая программа тестирования
    • Непрерывность
    • Цифровые тесты
    • I2C
    • Стоимость тестирования мультисайта
    • Обработчики и испытатели
    • PVT характеристика
    • Анализ данных
  • Скамья
    • Основы скамейки
    • GPIB
    • ПЛИС
    • RaspberryPi
    • Ардуино
    • Разъемы и кабели
  • линейный
    • Модель конденсатора
    • Цепи
    • RLC
      • RC фильтр
      • Конденсатор
      • LC серии
      • LC Шунт
    • Диод IV
    • Биполярный
      • CE Усилитель
      • Нагрузочная линия НПН
      • BJT Текущее зеркало
    • CMOS
      • Инвертор
      • Соотношение W / L
      • Текущее зеркало
      • Грузовая марка NMOS
    • операционных усилителей и т. Д.
      • Внутреннее устройство операционного усилителя
      • Не инвертирующий
      • Инвертирование
      • Неидеально
      • Повторитель напряжения / буфер
      • Фильтр Саллена-Ки
      • LM555
    • Управление питанием
      • Выпрямители
      • Линейный регулятор
      • Бак
      • Повышение
      • R DS (на)
      • Переходные процессы нагрузки
    • PSRR
  • Mix-Sig
    • дБ
    • SNR идеального N-битного АЦП
    • дБ до PPM
    • N бит в PPM
    • RC
    • БПФ
    • Прямоугольная волна БПФ
    • Два тона
    • Когерентность
    • Выборка с псевдонимом
    • Клипса
    • ШИМ
  • РФ
    • Настройки TX / RX
    • Амплитудная модуляция
    • Частотная модуляция
    • S-параметры
    • P1 дБ
    • IM3
    • Подавление гетеродина (QAM)
    • LO тяга
    • Уровень шума
    • PLL
    • Фазовый шум
    • Супергетеродин
    • Прямое преобразование
    • ADS Smith Utility
    • Сонет
    • дБ до
    • В
  • LTSpice
    • Директивы
      • LTspice Mac
      • .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *