Работа полевого транзистора для чайников: Практические примеры схем на полевых транзисторах.

Содержание

Практические примеры схем на полевых транзисторах.

Сегодня для закрепления материала про полевики рассмотрим схемы на полевых транзисторах и обсудим принцип их работы. Предыдущие статьи про ПТ вот тут – раз и два. Начнем!

Схема истокового повторителя.

Биполярным аналогом этого устройства является эмиттерный повторитель (о нем шла речь тут). Вот как выглядит простейший повторитель на полевом транзисторе:

Ну давайте разбираться что же и как этот повторитель повторяет 🙂 Напряжение на выходе:

U_и = i_с\medspace R_1

Ток стока мы можем определить через напряжение затвор-исток следующим образом:

i_с = g_m\medspace U_{зи} = g_m\medspace (U_з\medspace-\medspace U_и)

Подставляем i_с в формулу для U_и и получаем вот что:

U_и = \frac{R_1\medspace g_m}{1 + R_1\medspace g_m}\medspace U_з

И если сопротивление нагрузки R_1 намного превышает величину \frac{1}{g_m}, то мы получаем довольно-таки хороший повторитель (U_з = U_и).

Но у этой схемы есть парочка существенных недостатков. Во-первых, характеристики полевого транзистора трудно поддаются контролю при изготовлении, поэтому такой истоковый повторитель может иметь непредсказуемое смещение по постоянному току. А во-вторых, такой повторитель имеет довольно-таки большое выходное сопротивление, соответственно, амплитуда выходного сигнала все-таки будет меньше, чем амплитуда сигнала на входе.

Более качественный повторитель получается при использовании согласованных пар транзисторов. Такая схема выглядит следующим образом:

Рассмотрим работу данной схемы. Полевик Q2 задает определенный ток. Этот ток соответствует напряжению затвор-исток, равному нулю. Транзисторы включены последовательно, значит через Q1 течет такой же ток, а так как полевики абсолютно одинаковые, то и для Q1 напряжение затвор-исток равно нулю. В то же время:

U_{зи} = U_з\medspace-\medspace U_и = U_{вх}\medspace-\medspace U_{вых} = 0

Вот и получаем, что U_{вх} = U_{вых}, то есть напряжение на выходе повторяет сигнал на входе.

Эту схему истокового повторителя можно еще модернизировать, добавив резисторы в цепь истока. С помощью подбора их значений можно установить разные значения тока стока:

На этом заканчиваем с истоковыми повторителями и переходим к некоторым другим схемам на полевых транзисторах 🙂

Схема ключа на полевом транзисторе.

Здесь мы видим n-канальный МОП-транзистор. При заземленном затворе полевик находится в закрытом состоянии и, соответственно, входной сигнал не проходит на выход. Если подать на затвор напряжение, например, +10 В, то транзистор перейдет в открытое состояние и сигнал практически беспрепятственно пройдет на выход.

Тут особо и объяснять нечего 🙂

Теперь перейдем к логическим элементам (вентилям) на МОП-транзисторах. И начнем с вариантов исполнения логического инвертора. Посмотрите на схемку:

Что вообще должен делать инвертор? Очевидно, что инвертировать сигнал 🙂 То есть подаем на вход сигнал низкого уровня, на выходе получаем высокий уровень и наоборот.

Давайте смотреть как это все работает. Если на входе низкий уровень сигнала, то n-канальный МОП-транзистор закрыт, ток через резистор нагрузки не течет, соответственно, все напряжение Vcc оказывается на выходе. А если на входе высокий уровень, то ПТ во включенном состоянии проводит ток, при этом на нагрузке появляется напряжение, а потенциал стока (выходной сигнал) практически равен нулю (низкий уровень). Вот так вот эта схема и работает.

Рассмотрим еще один вариант инвертора, но уже с использованием p-канального ПТ:

Работает эта схема аналогично схеме инвертора на n-канальном транзисторе, поэтому останавливаться на этом не будем.

Есть один большой минус у обеих этих схем – это высокое выходное сопротивление. Можно, конечно, уменьшать R_1, но при это рассеиваемая мощность будет увеличиваться (она обратно пропорциональна квадрату сопротивления). Как вы понимаете, в этом нет ничего хорошего. Отличной альтернативой этим схемам инверторов является схема на комплементарных МОП-транзисторах (КМОП). Она имеет следующий вид:

Итак, пусть у нас на входе сигнал высокого уровня. Тогда p-канальный МОП-транзистор Q2 будет выключен, а Q1, напротив, будет во включенном состоянии. При этом на выходе будет сигнал низкого уровня. А что если на входе низкий уровень? А тогда наоборот Q1 будет выключен, а Q2 включен, и на выходе окажется сигнал высокого уровня. Вот и все 🙂

Пожалуй, рассмотрим теперь еще одну схемку на полевиках – схему логического вентиля И-НЕ. Этот вентиль имеет два входа и один выход, и и низкий уровень должен быть на выходе только в том случае, когда на оба входа подан сигнал высокого уровня. Во всех остальных случаях на выходе сигнал высокого уровня.

Смотрите, как это работает. Если на Входе 1 и Входе 2 высокий уровень, то оба n-канальных транзистора Q1 и Q2 проводят ток, а p-канальные Q3 и Q4 закрыты, и на выходе окажется сигнал низкого уровня. Если на одном из входов сигнал низкого уровня, то один из транзисторов Q3, Q4 открыт, а, соответственно, один из транзисторов Q2, Q1 закрыт. Тогда цепь Q1 – Q2 – земля разомкнута, а на выход через открытый транзистор Q3 или Q4 попадает напряжение высокого уровня. Вот и получается, что низкий уровень на выходе возможен только если на обоих входах сигнал высокого уровня.

Заканчиваем на этом разговор о полевых транзисторах 🙂 Мы сегодня рассмотрели схемы на полевых транзисторах и кроме того разобрались как они работают. Так что до скорых встреч на нашем сайте!

вид и обозначение, достоинства и недостатки, принцип работы для чайников

В электронике и радиотехнике очень часто применяются полупроводниковые приборы, к которым относятся и транзисторы. Полевые транзисторы (ПТ) потребляют значительно меньше электрической энергии, благодаря чему они применяются в различных маломощных устройствах. Кроме того, существуют модели, работающие на больших токах при малом потреблении питающего напряжения (U).

Общие сведения

FET или ПТ — полупроводниковый прибор, который при изменении управляющего U, регулирует I (силу тока). Этот тип транзистора называется еще униполярным. Появился он позже обычного транзистора (биполярного), но с ростом технологии получил широкое распространение среди цифровых устройств благодаря низкому энергопотреблению. Основное отличие заключается в методе регулирования I. В биполярном — регулирование I происходит при помощи управляющего I, а полевом — при помощи U (Рисунок 1).

Рисунок 1 — Отличие полевого от биполярного Т.

У ПТ нет I управления, и он обладает высоким входным сопротивлением (R), которое достигает несколько сотен ГОм (ГигаОм) или ТОм (ТерраОм). Для того чтобы узнать сферы применения ПТ, нужно внимательно изучить его. Носителями заряда являются электроны или дырки, а у биполярного — электроны и дырки.

Классификация и устройство

ПТ бывают нескольких видов, обладают различными характеристиками и устройством. Они делятся на 2 типа:

  1. С управляющим p-n — переходом (JFET).
  2. С изолированным затвором (MOSFET).

Кроме того, каждый из типов бывает с N и P каналами. У ПТ с N-каналом носителями заряда являются электроны, а у P-канального — дырки. Принцип работы для P и N аналогичен, отличие лишь в подаче U другой полярности в качестве управляющего.

Устройство JFET ПТ (рисунок 2) простое. Область N образовывает канал между зонами P. К концам канала N подключаются электроды, которые называются условно стоком (С) и истоком (И), так как все зависит от схемы подключения. Затвор (З) — тип электрода, который образовывается при закорачивании полупроводников P. Это обусловлено электрическим соединением при воздействии U. Возле С и И находится область повышенной концентрации или легирование (N+) электронов, что приводит к улучшению проводимости канала. Наличие зоны легирования значительно понижает образование паразитных p-n — переходов, образующихся при присоединении алюминия.

Рисунок 2 — Схематическое устройство ПТ типа JFET.

MOFSET называется МОП или МДП, также делятся на типы — со встроенным и индуцируемым каналами. В каждом из этих типов есть модели с P и N каналами. Полевой транзистор, обозначение которого представлено на рисунке 3, иногда обладает 4 выводами.

Рисунок 3 — Обозначение МДП-транзистора.

Устройство довольно простое и показано на рисунке 4. Для ПТ с N-каналом подложка (покрывается SiO2) обладает электропроводимостью P-типа. Через слой диэлектрика проводятся электроды стока и истока от зон с легированием, а также вывод, который закорачивается с истоком. Слой затвора находится над диэлектриком.

Рисунок 4 — Типичное устройство ПТ с индуцированным каналом.

Принцип работы JFET

JFET работает в 2 режимах. Эта особенность связана с тем, что подается на затвор напряжение положительной и отрицательной составляющей (рис. 5). При подключении U > 0 к стоку, а земли к истоку необходимо подсоединить затвор к земле (Uзи = 0).

Во время постепенного повышения U между С и И (Uис) ПТ является обыкновенным проводником. При низких значениях Uис ширина канала является максимальной.

При высоких значениях Uис через канал протекают большие значения силы тока между истоком и стоком (Iис). Это состояние получило название омической области (ОО). В полупроводнике N-типа, а именно в зонах p-n — перехода происходит снижение концентрации свободных электронов. Несимметричное разрастание слоя снижения концентрации свободных электронов называется обедненным слоем. Разрастание случается со стороны подключенного источника питания. Происходит сильное сужение канала при повышении Uис, вследствие которого Iис растет незначительно. Работа ПТ в этом режиме называется насыщением.

Рисунок 5 — Схема работы JFET (Uзи = 0).

При подаче низкого отрицательного U на затворе происходит сильное сужение канала и уменьшение Iис. При уменьшении U произойдет закрытие канала, и ПТ будет работать в режиме отсечки, а U, при котором прекращается подача Iис, называется напряжением отсечки (Uотс).

На рисунке 6 изображено графическое представление работы ПТ при Uзи < 0:

Рисунок 6 — Графическое представление принципа работы полевого транзистора типа JFET.

При использовании в режиме насыщения происходит усиление сигнала (рис. 7), так как при незначительных изменениях Uис происходит значительное изменение Iис:

Рисунок 7 — Пример S JFET.

Этот параметр является усилительной способностью JFET и называется крутизной стоко-затворной характеристики (S). Единица измерения — mA/В (милиАмпер/Вольт).

Особености работы MOFSET

При подключении U между электродами С и И любой полярности к MOFSET с индуцированным N-каналом ток не потечет, так как между легитивным слоем находится слой с проводимостью P, которая не пропускает электроны. Принцип работы с каналом P-типа такой же, только необходимо подавать отрицательное U. Если подать положительное Uзи на затвор, то возникнет электрическое поле, выталкивающее дырки из зоны P в направлении подложки (рис. 8).

Под затвором концентрация свободных носителей заряда начнет уменьшаться, а их место займут электроны, которые притягиваются положительным зарядом затвора. При достижении Uзи порогового значения концентрация электронов будет значительно больше концентрации дырок. В результате этого произойдет формирование между С и И канала с проводимостью N-типа, по которому потечет Iис. Можно сделать вывод о прямо пропорциональной зависимости Iис от Uзи: при повышении Uзи происходит расширение канала и увеличение Iис. Этот процесс является одним из режимов ПТ — обогащения.

Рисунок 8 — Иллюстрация работы ПТ с индуцированным каналом (тип N).

ВАХ ПТ с изолированным затвором примерно такой же, как и с управляющим переходом (рис. 9). Участок, на котором Iис растет прямо пропорционально росту Uис, является омической областью (насыщения). Участок при максимальном расширении канала, на котором Iис не растет, является активной областью.

При превышении порогового значения U переход типа p-n пробивается, и ПТ является обычным проводником. В этом случае радиодеталь выходит из строя.

Рисунок 9 — ВАХ ПТ с изолированным затвором.

Отличие между ПТ со встроенным и индуцируемым каналами заключается в наличии между С и И канала проводящего типа. Если к ПТ со встроенным каналом подключить между стоком и истоком U разной полярности и оставить затвор включенным (Uзи = 0), то через канал потечет Iис (поток свободных носителей заряда — электронов). При подключении к затвору U < 0 возникает электрическое поле, выталкивающее электроны в направлении подложки. Произойдет уменьшение концентрации свободных носителей заряда, а сопротивление увеличится, следовательно, Iис — уменьшится. Это состояние является режимом обеднения.

При подключении к затвору U > 0 возникает электромагнитное поле, которое будет притягивать электроны из стока, истока и подложки. В результате этого произойдет расширение канала и повышение его проводимости, а Iис увеличится. ПТ начнет работать в режиме обогащения. Вольт-амперная характеристика (ВАХ) представлена на рисунке 10.

Рисунок 10 — ВАХ ПТ со встроенным каналом.

Несмотря на свою универсальность, ПТ обладают преимуществами и недостатками. Эти недостатки следуют из устройства, способа исполнения и ВАХ приборов.

Преимущества и недостатки

Преимущества и недостатки являются условными понятиями, взятыми из сравнения полевых и биполярных транзисторов. Одним из свойств ПТ является высокое сопротивление Rвх. Причем у MOFSET его значение на несколько порядков выше, чем у JFET. ПТ практически не потребляют ток у источника сигнала, который нужно усилить.

Например, если взять обыкновенную схему, генерирующую сигнал на базе микросхемы-микроконтроллера. Эта схема управляет работой электродвигателя, но обладает низким значением тока, которого недостаточно для этих целей. В этом случае необходим усилитель, потребляющий малое количества I и генерирующий на выходе ток высокой величины. В усилителе такого типа и следует применить JFET, обладающий высоким Rвх. JFET обладает низким коэффициентом усиления по U. При построении усилителя на JFET (1 шт.) максимальный коэффициент усиления будет около 20, при использовании биполярного — несколько сотен.

В усилителях высокого качества применяются оба типа транзистора. При помощи ПТ происходит усиление по I, а затем, при помощи биполярного происходит усиление сигнала по U. Однако ПТ обладают рядом преимуществ перед биполярными. Эти преимущества заключаются в следующем:

  1. Высокое Rвх, благодаря которому происходит минимальное потребление I и U.
  2. Высокое усиление по I.
  3. Надежность работы и помехоустойчивость: при отсутствии протекания I через затвор, в результате чего управляющая цепь затвора изолирована от стока и истока.
  4. Высокое быстродействие перехода из одного состояния в другое, что позволяет применять ПТ на высоких частотах.

Кроме того, несмотря на широкое применение, ПТ обладают несколькими недостатками, не позволяющими полностью вытеснить с рынка биполярные транзисторы. К недостаткам относятся следующие:

  1. Повышенное падение U.
  2. Температура разрушения прибора.
  3. Потребление большего количества энергии на высоких частотах.
  4. Возникновение паразитного транзистора биполярного типа (ПБТ).
  5. Чувствительность к статическому электричеству.

Повышенное падение U возникает из-за высокого R между стоком и истоком во время открытого состояния. ПТ разрушается при превышении температуры по Цельсию 150 градусов, а биполярный — 200. ПТ обладает низким энергопотреблением только на низких частотах. При превышении частоты 1,6 ГГц энергопотребление возрастает по экспоненте. Исходя из этого, частоты микропроцессоров перестали расти, а делается упор на создании машин с большим количеством ядер.

При использовании мощного ПТ в его структуре образовывается ПБТ, при открытии которого ПТ выходит из строя. Для решения этой проблемы подложку закорачивают с И. Однако это не решает проблему полностью, так как при скачке U может произойти открытие ПБТ и выход из строя ПТ, а также цепочки из деталей, которые подключены к нему.

Существенным недостатком ПТ является чувствительность к статическому электричеству. Этот недостаток исходит от конструктивной особенности ПТ. Слой диэлектрика (изоляционный) тонкий, и его очень легко разрушить при помощи заряда статического электричества, который может достигать сотен или тысяч вольт. Для предотвращения выхода из строя при воздействии статического электричества предусмотрено заземление подложки и закорачивание ее с истоком. Кроме того, в некоторых типах ПТ между стоком и истоком стоит диод. При работе с интегральными микросхемами на ПТ следует применять антистатические меры: специальные браслеты и транспортировка в вакуумных антистатических упаковках.

Схемы подключения

ПТ подключается примерно так же, как и обыкновенный, но есть некоторые особенности. Существует 3 схемы включения полевых транзисторов: с общими истоком (ОИ), стоком (ОС) и затвором (ОЗ). Чаще всего применяется схема подключения с ОИ (схема 1). Это подключение позволяет получить значительное усиление по мощности. Однако подключение с ОИ используется в низкочастотных усилителях, а также обладает высокой входной емкостной характеристикой.

Схема 1 — Включение с ОИ.

При включении с ОС (схема 2) получается каскад с повторителем, который называется истоковым. Преимуществом является низкая входная емкость. Его применяют для изготовления буферных разделительных каскадов (например, пьезодатчик).

Схема 2 — Подключение с ОС.

При подключении с ОЗ (схема 3) не происходит значительного усиления по току, коэффициент усиления по мощности ниже, чем при подключениях с ОИ и ОС. Однако при помощи этого типа подключения возможно полностью избежать эффекта Миллера. Эта особенность позволяет увеличить максимальную частоту усиления (усиление СВЧ).

Схема 3 — Включение с ОЗ.

Таким образом, ПТ получили широкое применение в области информационных технологий. Однако не смогли вытеснить с рынка радиодеталей биполярные транзисторы. Это связано, прежде всего, с недостатками ПТ, которые кроются в принципе работы и конструктивной особенности. Главным недостатком является высокая чувствительность к полям статического электричества.

устройство, классификация и работа простым языком

С каждым годом появляется все больше и больше электронных средств, а они часто ломаются. На ремонт уходит немало средств, порой, достигая до 50 процентов от стоимости аппарата. И что досадно, некоторые из этих поломок можно было устранить самому, имея начальные знания о том, как работает транзистор. Почему он? Именно транзисторы чаще всего выходят из строя.

Виды транзистора

Чтобы легче разобраться в работе транзистора, необходимо иметь представление о нем. Он является полупроводником, что указывает на его способность проводить ток в одном направлении и не пропускать в другом. Чтобы достичь таких характеристик используются разные способы изготовления. Все эти приборы по своему характеру работы делятся на две группы:

  1. биполярные
  2. полярные

Хотя и те и другие относятся к одному классу — транзисторы, происходящие в них процессы сильно отличаются.

Биполярный

Движение электронов по замкнутой цепи называется электрическим током. Грубо говоря, чем больше электронов, тем больше ток. Если атом отдает электроны, он становится положительно заряженным и, наоборот, притягивая лишние электроны, он становится отрицательно заряженным.

При добавлении в кремний и германий примесей они становятся необходимым материалом, из которых и изготавливаются биполярные транзисторы.

Биполярными называются электронные приборы, состоящие из двух, имеющие разные заряды слоев. Причем два крайних имеют одинаковый заряд. Тот слой, который имеет положительный заряд, называется «p», а отрицательный — «n». В связи с этим различают следующие типы:

Граница между этими слоями называется переход. Внутреннюю область, разделенную двумя переходами, называют базой. Две внешние области называют эмиттер и коллектор. Монокристалл изготовлен таким образом, что одна внешняя область передает в базу носители энергии и называется эмиттером. Другая внешняя область забирает эти носители и называется коллектором.

На электрической схеме биполярный транзистор обозначается в виде круга, внутри которого нарисована черточка, а к ней подходят три прямые. Одна подходит под углом в 90 градусов и обозначает базу, две другие под наклоном. Та из них что имеет стрелку обозначает эмиттер, другая — коллектор. Сам прибор, как правило, имеет три вывода, соответствующих этим областям.

Принцип действия

Один из сложных радиоэлементов — транзистор. Принцип работы его сводится к следующему:

  • регулировка
  • усиление
  • генерация

Биполярные обладают большей мощностью и могут работать с большими частотами. Однако, если нужен широкий спектр усиления, то без полевого не обойтись.

Работа полевого

Рассмотрим, как работает транзистор. Для начинающих радиолюбителей трудно разобраться во всех этих переходах. Чтобы показать принцип работы транзистора простым языком, обратим внимание на следующий пример.

Водопроводный кран вентильного типа способен очень плавно менять напор воды. Это достигается благодаря постепенному изменению пропускного отверстия. На этом же принципе основана работа и полевого транзистора.

Затвор окружает пропускной канал. При подаче на него запирающего напряжения, электрическое поле как бы сдавливает проход, тем самым уменьшая поток заряженных частиц. Как и при закрывании крана необходимо прилагать небольшое усилие, так и мощность затвора, по сравнению с основным каналом, очень мала. Сходство также и в том, что при небольших изменениях напряжения на затворе, сечение прохода также меняется незначительно.

Как работает биполярный

Работа биполярного прибора несколько отличается от работы полевого. В первую очередь отличается способ управления движением заряженных частиц. В полевом используется электрическое поле, в биполярном — ток между базой и эмиттером.

В зависимости от типа прибора стрелочка эмиттера на схеме будет либо направлена к базе, тогда это тип p-n-p, либо от базы, тогда это n-p-n. При подключении к этим зажимам одноименного напряжения («p» подключается к «+», а «n» подключается к «-«) в цепи эмиттер — база возникает ток. В базе появляется больше носителей заряда и их становится тем больше, чем больше ток в этой цепи.

К коллектору подводится обратное напряжение, т. е. к «p» подключается «-«, а к «n» — «+». Поскольку между эмиттером и коллектором возникает разность потенциалов, между этими выводами появляется ток. Он будет тем больше, чем больше носителей заряда имеется в базе.

Когда к эмиттеру и базе подключают источник питания противоположного знака, ток прекращается, транзистор закрывается. Что поможет лучше понять работу транзистора? Для чайников важно понять одну истину. Если открыт переход эмиттер — база (подается прямое напряжение), то открыт и сам прибор, в противном случае он закрыт.

Меры предосторожности

Полевые транзисторы очень чувствительны к повышенному напряжению. При работе с ними необходимо предотвратить возможность попадания на них статистического напряжения. Этого можно достичь надев заземленный браслет. При подборе аналога важно учитывать не только рабочее напряжение, но и допустимый ток. А если прибор работает в частотном режиме, то и его частоту.

для чего он нужен, как его открыть, схемы

Для того чтобы быстро изменить силу тока в усилительных схемах, лампочках или электрических двигателях применяют транзисторы. Они умеют ограничивать силу тока плавно и постепенно или специальным методом «импульс-пауза». Второй способ особо часто используется при широтно-импульсной модуляции и управления. Если используется мощный источник тока, то транзистор проводит его через себя и регулирует параметр слабым значением. Если тока маловато, то используют сразу несколько транзисторов, обладающих большей чувствительностью. Соединять в таком случае их нужно каскадным образом. В этой статье будет рассмотрено, как открыть полевой транзистор, какой принцип работы полевого транзистора для чайников и какие обозначения выводов полевой транзистор имеет.

Что это такое

Полевой транзистор — это радиоэлемент полупроводникового типа. Он используется для усиления электросигнала. В любом цифровом приборе схема с полевым транзистором исполняет роль ключа, который управляет переключением логических элементов прибора. В этом случае использование ПТ является очень выгодным решением проблемы с точки зрения уменьшения размеров устройства и платы. Обусловлено это тем, что цепь управления радиокомпонентами требует не очень большой мощности, а значит, что на одном кристалле могут располагаться тысячи и десятки тысяч транзисторов.

Схема подключения электротранзистора полевого типа

Материалами, из которых делают полупроводниковые элементы и транзисторы в том числе, являются:

  • Фосфид индия;
  • Нитрид галлия;
  • Арсенид галлия;
  • Карбид кремния.
График области насыщения электротранзистора

Важно! Полевые транзисторы также называют униполярными, так как при протекания через них электротока используется только один вид носителей.

Характеристики полевого транзистора

Основными характеристики полевого транзистора являются:

  • Максимально допустимая постоянная рассеиваемая мощность;
  • Максимально допустимая рабочая частота;
  • Напряжение сток-исток;
  • Напряжение затвор-сток;
  • Напряжение затвор-исток;
  • Максимально допустимый ток стока;
  • Ток утечки затвора;
  • Крутизна характеристики;
  • Начальный ток стока;
  • Емкость затвор-исток;
  • Входная ёмкость;
  • Выходная ёмкость;
  • Проходная ёмкость;
  • Выходная мощность;
  • Коэффициент шума;
  • Коэффициент усиления по мощности.
Характеристика напряженности поля заряда

Как он работает

Полевой транзистор включает нескольких составных элементов — истока (источника носителя заряда наподобие эмиттера на биполярном элементе), стока (приемника заряда по аналогии с коллектором) и затвора (управляющего электрода наподобие сетки в лампах или базы). Работа первых двух очевидна и состоит в генерации и приеме носителя электрозаряда, среди которых электроны и дырки. Затвор же нужен в первую очередь для управления электротоком, который протекает через ПТ. То есть, получается классического вида триод с катодом, анодом и электродом управляющего типа.

Когда происходит подача напряжения на затвор, возникает электрополе, которое изменяет ширину определенных переходов и влияет на параметр электротока, протекающего от истока к стоку. Если управляющее напряжение отсутствует, то ничто не будет препятствовать потоку носителей заряда в виде электронов. Когда напряжение управления повышается, то канал, по которому движутся электроны или дырки, наоборот, уменьшается, а при достижении некоего предела закрывается совсем, и полевой транзистор входит в так называемый режим отсечки. Именно эта характеристика ПТ делает возможным их применение в качестве ключей.

Подключение нагрузки к электротранзистору для его открытия

Свойства усиления электротока этого радиокомпонента обусловлены тем, что сильный электрический ток, который протекает от истока к стоку, повторяет все динамические характеристика напряжения, прикладываемого к затвору. Другим языком, с выхода этого усилителя берется абсолютно такой же по форме сигнал, как и на электроде управления, только более сильный.

Строение ПТ (униполярного транзистора) немного отличается от биполярного. А именно тем, что электричество в нем пере пересекает определенные переходные зоны. Электрозаряды совершают движение по участку регуляции, который называется затвором. Его пропускная способность регулируется параметром напряжения.

Виды электротранзисторов полевого типа с маркировкой

Важно! Пространство зон транзистора под действием электрического поля уменьшается и увеличивается. Исходя из этого изменяется количество носителей зарядов — от их полного отсутствия до переизбытка.

Для чего нужен

ПТ нужны для того, чтобы управлять выходным током с помощью создаваемого электрического поля и изменять его важнейшие параметры. Структуры, созданные на основе полевого транзистора, часто используются в интегральных схемах цифрового и аналогового вида.

n- и p-канальные электротранзисторы

Именно за счет полевого управления, эти транзисторы воздействуют на величину приложенного к их затвору напряжения. Это отличает их от биполярных транзисторов, которые управляются током, который протекает через их базу. ПТ потребляют значительно меньшее количество электроэнергии, что и определило их популярность при использовании в ждущих и следящих устройствах, а также интегральных схемах малого потребления ( при организации спящего режима).

Важно! Одними из наиболее известных устройств, основанных на действии полевых транзисторов, являются пульты управления от телевизора, наручные часы электронного типа. Эти устройства за счет своего строения и применения ПТ могут годами работать от одного крошечного источника питания в виде батарейки.

Схематический вид электротранзистора полевого типа

Как открыть полевой транзистор

Для того чтобы полностью открыть полевой транзистор и запустить его работы в режиме ключа, напряжение базы-эмиттера должно быть больше 0,6-0,7 Вольт. Также сила электротока, текущая через базу должна быть такой, чтобы он мог спокойно протекать через коллектор-эмиттер без каких-либо препятствий. В идеальном случае, сопротивление через коллектор-эмиттер должно быть равным нулю, в реальности же оно будет иметь сотые доли Ома. Такой режим называется «режимом насыщения транзистора».

Режим насыщения элемента через транзистор

Как видно на схеме, коллектор и эмиттер находятся в режиме насыщения и соединены накоротко, что позволяет лампочке гореть «на полную».

Схема (структура)

На схеме ниже можно увидеть примерное строение транзистора полярного типа. Его выводы соединены с металлизированными участками затвора, истока и стока. Схема изображает именно p канальное устройство, затвором которого является n-слой. Он имеет гораздо меньшее удельное сопротивление, чем канальная область p-слоя. Область же перехода n-p в большей степени находится в p-слое.

Схематическое изображение электротранзистора с n-p каналами

Как подключить

Все зависит от того, каким именно образом полевой транзистор будет включаться в усилительный каскад. Таких способа есть три:

  • С общим истоком;
  • С общим стоком;
  • С общим затвором.
Схемы включения полевого электротранзистора в цепи

Их различия заключаются в том, что они используют различные электроды подаются питающим напряжением и к каким электроцепям присоединен источник сигнала и нагрузка для него.

Общий исток наиболее часто используется для достижения максимального усиления сигнала входа. Общий сток используется для устройств согласования, потому что усиление там используется небольшое, но сигналы входа и выхода аналогичны по фазе. Схема с общим затвором применяется чаще всего в усилителях высокой частоты. При таком способе подключения полоса пропускания намного шире, чем в других способах.

Конструкция полевого транзистора с управляющим p-n-переходом и каналом n-типа

Таким образом, полевой транзистор это очень важный полупроводниковый радиоэлемент, который способен управлять сопротивлением канала электротока путем воздействия на него поперечного электрического поля, создаваемого напряжением затвора.

MOSFET транзисторы. Устройство, принцип работы и разновидности.

Полевой транзистор с изолированным затвором

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n — переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).

Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел — полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).

Еще одно, довольно распространенное название – МДП (металл – диэлектрик — полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Внешний вид одного из широко распространённых мосфетов — IRFZ44N.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

  • Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

  • Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому «+»), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

  • Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом (+) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому — напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Полевые транзисторы (Униполярные)- принцип работы и устройство, обозначение на схеме

Полевые транзисторы это отдельный тип полупроводников, которые оснащены одновременно тремя электродами. Их называют истоком, затвором и стоком. В оснащенном стоком/истоком пространстве, находится особый канал токопровождения. В нем и протекает электрический ток. Он изготовлен из материалов, обладающих полупроводниковыми свойствами с переходом либо p либо n.

Управление осуществляется изменением величины проводимости канала, которая находится в прямой зависимости от напряжения заряда, проходящего между затвором и истоком. В биполярных транзисторах ток течет к коллектору от эмиттера, проходя через переходы p-n. В статье рассмотрены все вопросы строения, особенности, сферы использования полевых транзисторов. В качестве дополнения, статья содержит в себе несколько видеоматериалов и одну подробную научную статью.

Различные модели полевых резисторов

Полевые транзисторы с изолированным затвором. Устройство и принцип действия

Полевой транзистор с изолированным затвором (МДП-транзистор, MOSFET) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. МДП-транзисторы (структура: металл-диэлектрик-полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. отсюда другое название этих транзисторов – МОП – транзисторы (структура: металл-окисел-полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012 … 1014Ом).

Полевые транзисторы  – это однополярные устройства, как и обычные полевые транзисторы. То есть управляемый ток не должен проходить через PN переход. В транзисторе имеется PN переход, но его единственное назначение – обеспечить непроводящую обедненную область, которая используется для ограничения тока через канал.

Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП-транзисторы выполняют двух типов – со встроенным и с индуцированным каналом.

Полевые транзисторы разных размеров

Рассмотрим особенности МДП-транзисторов со встроенным каналом. Конструкция такого транзистора с каналом n-типа показана на рис. 4, а. В исходной пластинке кремния р- типа с относительно высоким удельным сопротивлением, которую называют подложкой, с помощью диффузионной технологии созданы две сильнолегированные области с противоположным типом электропроводности – n. На эти области нанесены металлические электроды – исток и сток. Между истоком и стоком имеется тонкий приповерхностный канал с электропроводностью n- типа. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. На слой диэлектрика нанесен металлический электрод – затвор. Наличие слоя диэлектрика позволяет в таком полевом транзисторе подавать на затвор управляющее напряжение обеих полярностей.

Основные характеристики полевых транзисторов.

Основные параметры полевых транзисторов:

  1. Максимально допустимая постоянная рассеиваемая мощность;
  2. Максимально допустимая рабочая частота;
  3. Напряжение сток-исток;
  4. Напряжение затвор-сток;
  5. Напряжение затвор-исток;
  6. Максимально допустимый ток стока;
  7. Ток утечки затвора;
  8. Крутизна характеристики;
  9. Начальный ток стока;
  10. Емкость затвор-исток;
  11. Входная ёмкость;
  12. Выходная ёмкость;
  13. Проходная ёмкость;
  14. Выходная мощность;
  15. Коэффициент шума;
  16. Коэффициент усиления по мощности.

Полевые транзисторы разных размеров

Полевые транзисторы с управляющим р-n-переходом

В полевых транзисторах с управляющим р-n-переходом управление током транзистора достигается путем изменения сечения канала за счет изменения области, занимаемой этим переходом. Управляющий р-n-переход образуется между каналом и затвором, которые выполняются из полупроводников противоположных типов проводимости. Так, если канал образован полупроводником η-типа, то затвор – полупроводником p-типа. Напряжение между затвором и истоком всегда подается обратной полярности, т.е. запирающей р-n-персход. Напомним, что при подаче напряжения обратной полярности область, занимаемая р-n-переходом, расширяется. При этом расширяется и область, обедненная носителями заряда, а значит, сужается область канала, через которую может течь ток. Причем, чем больше значение запирающего напряжения, тем шире область, занимаемая р-n-переходом, и тем меньше сечение и проводимость канала.

Материал в тему: устройство подстроечного резистора.

Так же, как и для биполярных транзисторов, для описания работы полевых транзисторов используют выходные характеристики. Выходная характеристика нолевого транзистора – это зависимость тока стока Iс от напряжения между стоком и истоком при фиксированном напряжении между затвором и истоком. В отличие от биполярного, работа нолевого транзистора может также описываться непосредственной зависимостью выходного параметра – тока стока от входного – управляющего напряжения между затвором и истоком. В зависимости от температуры, эти характеристики несколько изменяются. Напряжение UЗИ, при котором канал полностью перекрывается (IС = 0), называется напряжением отсечки Uотc. Управляющее действие затвора характеризуют крутизной, которая может быть определена по выходным характеристикам (см. рис. 1.15, г):

S = ΔIс/ΔUЗИ, при UСИ = const.

Так как управляющий p-n-переход всегда заперт, у полевых транзисторов практически отсутствует входной ток. Благодаря этому они имеют очень высокое входное сопротивление и практически не потребляют мощности от источника управляющего сигнала. Это свойство относится не только к транзисторам с управляющим р-n-переходом, но и ко всем полевым транзисторам, что выгодно отличает их от биполярных.

Распространённые типы полевых транзисторов

В настоящее время в радиоаппаратуре применяются ПТ двух основных типов – с управляющим p-n-переходом и с изолированным затвором. Опишем подробнее каждую модификацию.

Управляющий p-n-переход

Эти полевые транзисторы представляют собой удлинённый полупроводниковый кристалл, противоположные концы которого с металлическими выводами играют роль стока и истока. Функцию затвора исполняет небольшая область с обратной проводимостью, внедрённая в центральную часть кристалла. Так же, как сток и исток, затвор комплектуется металлическим выводом.

Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок (в зависимости от типа проводимости основного кристалла).

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Изолированный затвор

Конструкция этих полевых транзисторов отличается от описанных выше ПТ с управляющим p-n-переходом. Здесь полупроводниковый кристалл играет роль подложки, в которую на некотором удалении друг от друга внедрены две области с обратной проводимостью. Это исток и сток соответственно. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует.

Из-за того, что в конструкции этих полевых транзисторов используются три типа материалов – металл, диэлектрик и полупроводник, – данные радиокомпоненты часто именуют МДП-транзисторами. В элементах, которые формируются в кремниевых микросхемах планарно-эпитаксиальными методами, в качестве диэлектрического слоя используется оксид кремния, в связи с чем буква «Д» в аббревиатуре заменяется на «О», и такие компоненты получают название МОП-транзисторов.

Полевой транзистор на схеме.

Существует два вида этих полевых транзисторов – с индуцированным и встроенным каналом. В первых физический канал отсутствует и возникает только в результате воздействия электрического поля от затвора на подложку. Во-вторых канал между истоком и стоком физически внедрён в подложку, и напряжение на затворе требуется не для формирования канала, а лишь для управления его характеристиками. Схемотехническое преимущество ПТ с изолированным затвором перед транзисторами с управляющим p-n-переходом заключается в более высоком входном сопротивлении.

Это расширяет возможности применения данных элементов. К примеру, они используются в высокоточных устройствах и прочей аппаратуре, критичной к электрическим режимам. В силу конструктивных особенностей МОП-транзисторы чрезвычайно чувствительны к внешним электрическим полям. Это вынуждает соблюдать особые меры предосторожности при работе с этими радиодеталями. В частности, в процессе пайки необходимо использовать паяльную станцию с заземлением, а, кроме того, заземляться должен и человек, выполняющий пайку. Даже маломощное статическое электричество способно повредить полевой транзистор.

Классификация транзисторов.

Выходные характеристики

Семейство выходных характеристик транзистора с управляющим рп-переходом в схеме с общим истоком показано на рис. 26.4. Они ана­логичны выходным характеристикам биполярного транзистора. Эти ха­рактеристики показывают зависимость выходного тока ID от выходного напряжения VDS(напряжения между стоком и истоком) для заданных Значений напряжения на затворе VGS(напряжения между затвором и истоком).

Диапазон изменения смещающего напряжения затвор-исток доволь­но велик (несколько вольт) в отличие от биполярного транзистора, где напряжение база-эмиттер практически постоянно. Видно, что при увеличении (по абсолютной величине) напряжения на затворе ток стока уменьшается. Это уменьшение происходит до тех пор, пока расширяющийся обедненный слой перехода затвор-канал не пере­кроет весь канал, останавливая протекание тока. В этом случае говорят, что полевой транзистор находится в состоянии отсечки.

Схема полевого транзистора.

Напряжение отсечки

рассмотрим выходную характеристику для VGS= 0. При уве­личении напряжения VDS(от нулевого значения) ток стока постепенно увеличивается, пока не достигает точки Р, после которой величина тока практически не изменяется. Напряжение в точке Р называется напря­жением отсечки. При этом напряжении обедненный слой, связанный с обратносмещенным переходом затвор-канал, почти полностью перекры­вает канал. Однако протекание тока IDв этой точке не прекращается, поскольку благодаря этому току как раз и создается обедненный слой. Все кривые семейства выходных характеристик имеют свои точки отсеч­ки: P1P2 и т. д. Если соединить эти точки друг с другом линией, то правее ее лежит область отсечки, являющаяся рабочей областью полевого транзистора.

Полевой транзистор.

Усилитель на полевом транзисторе с общим истоком

Схема типичного усилителя ЗЧ на полевом транзисторе показана на рис. 26.5. В этой схеме через резистор утечки R1 отводится на шасси очень малый ток утечки затвора. Резистор R3 обеспечивает необходимое обратное смещение, поднимая потенциал истока выше потенциала затво­ра. Кроме того, этот резистор обеспечивает также стабильность режима усилителя по постоянному току. R2 – нагрузочный резистор, который может иметь очень большое сопротивление (до 1,5 МОм). Развязыва­ющий конденсатор С2 в цепи истока устраняет отрицательную обратную связь по переменному току через резистор R3. Следует отметить, что раз­делительный конденсатор С1 может иметь небольшую емкость (0,1 мкФ) благодаря высокому входному сопротивлению полевого транзистора.

При подаче сигнала на вход усилителя изменяется ток стока, вызы­вая, в свою очередь, изменение выходного напряжения на стоке транзи­стора. Во время положительного полупериода входного сигнала напря­жение на затворе увеличивается в положительном направлении, обратное напряжение смещения перехода затвор-исток уменьшается и, следовательно, увеличивается ток IDполевого транзистора. Увеличение ID приводит к уменьшению выходного (стокового) напряжения, и на выходе воспроизводится отрицательный полупериод усиленного сигнала. И на­оборот, отрицательному полупериоду входного сигнала соответствует по­ложительный полупериод выходного сигнала. Таким образом, входной и выходной сигналы усилителя с общим истоком находятся в противофазе.

Расчет статического режима

Одно из преимуществ полевого транзистора – очень малый ток утечки затвора, величина которого не превышает нескольких пикоампер (10-12 A). Поэтому в схеме усилителя па рис. 26.5 затвор находится практически при нулевом потенциале. Ток полевого транзистора протекает от стока к истоку и обычно отождествляется с током стока ID (который, очевидно, равен току истока IS).

Рассмотрим схему на рис. 26.5. Полагая ID = 0,2 мА, вычисляем потенциал истока:

VS = 0,2 мА · 5 кОм = 1 В. Это величина напряжения обратного смещения управляющего    pn-перехода.

Падение напряжения на резисторе R2 = 0,2 мА · 30 кОм = 6 В.

Потенциал стока VD = 15 – 6 = 9 В.

Линия нагрузки

Линию нагрузки можно начертить точно так же, как для биполярного транзистора. Если ID = 0, то VDS= VDD = 15 В. Это точка Х на линии нагрузки. Если VDS= 0, то почти все напряжение VDDисточника питания па­дает на резисторе R2. Следовательно, ID = VDD / R2= 15 В / 30 кОм = 0,5 мА. Это точка Y на линии нагрузки. Рабочая точка Q выбирается таким образом, чтобы транзистор работал в области отсечки. Выбранная рабочая точка Q точка покоя определяется величинами: ID = 0,2 мА, VGS= – 1 В, VDS= 9 В.

Полевой транзистор.

МОП-транзистор

В полевом транзисторе этого типа роль затвора играет металлический электрод, электрически изолированный от полупроводника тонкой пленкой диэлектрика, в данном случае оксида. Отсюда и название транзистора «МОП» – сокращение от «металл-оксид-полупроводник». Канал п-типа в МОП-транзисторе формируется за счет притяже­ния электронов из подложки р-типа диэлектрическим слоем затвора (рис. 26.7). Ширину канала можно изменять, подавая на затвор электрический потенциал. Подача положительного (относительно подложки)

Заключение

Более подробную информацию об устройстве полевых транзисторов можно узнать в статье Лекция о полевых транзисторах. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.bourabai.ru

www.studme.org

www.radiolubitel.net

www.radioprog.ru

www.eandc.ru

Предыдущая

ПолупроводникиЧто такое NTC термисторы

Следующая

ПолупроводникиЧто такое SMD светодиоды

Что такое полевой транзистор? — Определение, конструкция и классификация

Определение: FET — это аббревиатура, используемая для «полевого транзистора ». Это трехполюсное униполярное устройство, в котором проводимость регулируется с помощью приложенного электрического поля . Само название дает краткое представление о принципе его работы, «эффект поля», эти два слова ясно указывают на то, что это транзистор, управляемый электрическим полем.

Таким образом, его также называют устройством, управляемым напряжением, в котором только основные носители заряда участвуют в механизме проводимости.Он состоит из трех выводов: истока, затвора и стока.

Обозначение схемы, описанное на схеме ниже, ясно иллюстрирует три вывода полевого транзистора.

История полевого транзистора

В 1926 году идею полевого транзистора (FET) представил Lilienfield. После этого, в 1935 году, компания Heil также осветила полевой транзистор. Но к этому времени полевые транзисторы не пользовались большой популярностью.Это было в 1940 году, когда значение полевых транзисторов стало расти. Это связано с тем, что в 1940-е годы исследования полупроводников проводились в лабораториях Bell .

Значение полевого транзистора

Прежде чем обсуждать значение полевого транзистора, я хотел бы поделиться ключевой концепцией, касающейся полевого транзистора. Транзистор в названии часто путают с биполярным транзистором. Но существует огромная разница между полевым транзистором и биполярным транзистором.

Хотя оба являются транзисторами, и оба связаны с проводимостью тока, и оба имеют три вывода, но на этом сходство заканчивается.BJT использует инжекцию и сбор неосновных носителей заряда, и этот процесс инжекции и сбора выполняется во время прямого смещения P-N перехода. Напротив, полевые транзисторы используют электрическое поле для изменения ширины обеднения во время обратного смещения перехода.

Таким образом, проводимость в BJT связана с основными носителями, а также с неосновными носителями, но механизм проводимости в полевых транзисторах обусловлен только основными носителями заряда. Это причина того, что полевые транзисторы называют униполярными устройствами.

Водная аналогия для понимания концепции FET

Чтобы понять, как работает полевой транзистор, давайте воспользуемся аналогией. Аналогии часто упрощают понимание даже сложной концепции. Источник воды можно понимать как источник полевого транзистора, емкость, собирающая воду, аналогична дренажному выводу полевого транзистора. Давайте быстро взглянем на диаграмму ниже, после чего понимание концепции FET будет легкой прогулкой.

Теперь вы можете догадаться, какой терминал ворот аналогичен? Если вы думаете о водопроводном кране, то да, вы правы.Это не что иное, как регулирующий кран, который контролирует поток воды. Теперь регулирующий кран регулирует количество воды, поступающей из выхода, точно так же, как напряжение на клемме затвора управляет потоком тока от истока к клемме стока.

Конструкция и работа полевого транзистора

Полупроводник — основа всех полевых транзисторов. В зависимости от того, какой канал мы используем, то есть N-канал или P-канал, будет использоваться образец полупроводника. Если мы проектируем N-канальные полевые транзисторы, то канал будет из полупроводника N-типа.А в середине противоположных фаз образца будет рассеиваться полупроводник P-типа.

Полупроводниковая шина P-типа будет действовать как вывод затвора. Противоположные концы полупроводника P-типа будут соединены вместе, чтобы сформировать общий вывод затвора. Таким образом, по обе стороны от затвора будет два P-N перехода, которые будут называться терминалами истока и стока.

Компоненты полевых транзисторов

  1. Канал: Это область, в которой текут основные носители заряда.Когда большинство носителей заряда вводятся в полевой транзистор, то только по этому каналу они перетекают от истока к стоку.
  2. Источник: Источник — это терминал, через который большинство носителей заряда вводятся в полевой транзистор.
  3. Дренаж: Дренаж — это приемный терминал, в который входят основные носители заряда и, таким образом, участвуют в процедуре проводимости.
  4. Gate: Терминал затвора формируется путем диффузии одного типа полупроводника с другим типом полупроводника.Это в основном создает область с высоким содержанием примесей, которая контролирует поток носителя от истока к стоку.

Классификация полевых транзисторов

Классификацию полевых транзисторов можно понять с помощью диаграммы, представленной на изображении ниже. Полевые транзисторы в основном описаны в двух типах: JFET (Junction field effect transistor) и полевой транзистор с изолированным затвором.

Полевой транзистор перехода: Полевой транзистор перехода — это не что иное, как полевой транзистор, в котором проводимость устанавливается путем изменения ширины истощения при обратном смещении перехода.По конструкции он состоит из двух типов: N-канал и P-канал.

Полевой транзистор с изолированным затвором: Полевой транзистор с изолированным затвором — это тот, в котором затвор изолирован от образца полупроводника изоляционным материалом. Это два типа MESFET (полевой транзистор с металлическим полупроводником), и MISFET (полевой транзистор с металлическим диэлектриком и полупроводником).

И MESFET, и MISFET используют переход металл-полупроводник, а не обычный P-N переход.Но особенность, которая отличает их обоих, — это использование изоляционного материала в случае MISFET, в то время как в MESFET изоляционного материала нет.

MOSFET — это подтип MISFET, в котором оксидный слой играет решающую роль в обеспечении изоляции между затвором и другими выводами. МОП-транзисторы работают в двух режимах: Depletion mode и Enhancement Mode . В режиме истощения существует физический канал, в то время как в режиме улучшения его нет.

Полевой МОП-транзистор с истощением и расширением может быть снова разработан двумя способами, используя N-канал или P-канал.Это было краткое описание полевых транзисторов.

Полевой транзистор с переходным соединением

»Примечания по электронике

Полевой транзистор JFET — активный электронный компонент, который является одной из рабочих лошадок в электронной промышленности, обеспечивая хороший баланс между стоимостью и производительностью.


FET, Полевой транзистор, Учебное пособие включает:
FET основы Характеристики полевого транзистора JFET МОП-транзистор МОП-транзистор с двойным затвором Силовой MOSFET MESFET / GaAs полевой транзистор HEMT & PHEMT Технология FinFET


Переходный полевой транзистор или JFET широко используется в электронных схемах.Полевой транзистор с переходным эффектом — это надежный и полезный электронный компонент, который можно очень легко использовать в различных электронных схемах, от усилителей с полевыми транзисторами до переключающих схем с полевыми транзисторами.

Полевой транзистор с переходным эффектом находится в свободном доступе, а полевые транзисторы JFET можно купить за очень небольшие деньги. Это делает их идеальными для использования во многих схемах, где требуется хороший баланс между стоимостью и производительностью.

Полевые транзисторы

доступны в течение многих лет, и хотя они не обеспечивают чрезвычайно высокий уровень входного сопротивления постоянного тока полевого МОП-транзистора, они, тем не менее, очень надежны, прочны и просты в использовании.Это делает эти электронные компоненты идеальным выбором для многих конструкций электронных схем. Также доступны компоненты как с выводами, так и с устройствами для поверхностного монтажа.

Основы JFET

В основном полевой транзистор или полевой транзистор состоит из секции кремния, проводимость которой регулируется электрическим полем. Часть кремния, через которую протекает ток, называется каналом и состоит из кремния одного типа, N-типа или P-типа.

Соединительный полевой транзистор, символ цепи JFET

Соединения на обоих концах устройства известны как исток и сток.Электрическое поле для управления током прикладывается к третьему электроду, известному как затвор.

Поскольку только электрическое поле управляет током, протекающим в канале, говорят, что устройство работает от напряжения и имеет высокий входной импеданс, обычно много МОм. Это может быть явным преимуществом по сравнению с биполярным транзистором, работающим от тока и имеющим гораздо более низкий входной импеданс.

Работа JFET

Junction FET — это устройство, управляемое напряжением.Другими словами, напряжения, появляющиеся на затворе, контролируют работу устройства.

Устройства с N-каналом и P-каналом работают одинаково, хотя носители заряда инвертированы, т.е. электроны в одном и дырки в другом. Случай для N-канального устройства будет описан, так как это наиболее часто используемый тип.

Junction FET, JFET работает ниже насыщения

Толщина этого слоя изменяется в соответствии с величиной обратного смещения на переходе.Другими словами, при небольшом обратном смещении обедненный слой проходит только небольшой путь в канал и остается большая площадь для проведения тока.

Когда на затвор прикладывается большое отрицательное смещение, слой обеднения увеличивается, распространяясь дальше в канал, уменьшая площадь, по которой может проходить ток.

При увеличении смещения слой истощения в конечном итоге будет увеличиваться до такой степени, что он простирается прямо через канал, и канал считается отсеченным.

Когда в канале протекает ток, ситуация несколько меняется. При отсутствии напряжения на затворе электроны в канале (при условии, что канал n-типа) будут притягиваться положительным потенциалом на стоке и будут течь к нему, позволяя току течь внутри устройства и, следовательно, во внешней цепи.

Величина тока зависит от ряда факторов и включает площадь поперечного сечения канала, его длину и проводимость (т.е.е. количество свободных электронов в материале) и приложенное напряжение.

Из этого видно, что канал действует как резистор, и по его длине будет падение напряжения. В результате это означает, что p-n-переход становится все более смещенным в обратном направлении по мере приближения к стоку. Следовательно, слой истощения становится толще ближе к сливу, как показано.

По мере увеличения обратного смещения затвора достигается точка, в которой канал почти перекрывается обедняющим слоем.Однако канал никогда не закрывается полностью. Причина этого в том, что электростатические силы между электронами заставляют их распространяться, давая обратный эффект увеличению толщины обедненного слоя.

После определенного момента поле вокруг электронов, текущих в канале, успешно противодействует дальнейшему увеличению обедненного слоя. Напряжение, при котором слой обеднения достигает своего максимума, называется напряжением отсечки.

Приложения для схемы JFET

Полевые транзисторы

— очень полезные электронные компоненты, поэтому они используются во многих конструкциях электронных схем.Они предлагают ряд явных преимуществ, которые можно использовать во многих схемах.

  • Простое смещение
  • Высокое входное сопротивление
  • Низкий уровень шума

Судя по своим характеристикам, полевые транзисторы JFET используются во многих схемах, от усилителей до генераторов, от логических переключателей до фильтров и многих других приложений.

Структура и изготовление JFET

JFET могут быть как N-канальными, так и P-канальными устройствами. Их можно сделать очень похожими способами, за исключением того, что области N и P в приведенной ниже структуре поменяны местами.

Часто устройства изготавливаются на более крупной подложке, а сам полевой транзистор изготавливается, как показано на схеме ниже.

Типовая структура JFET

Существует несколько способов изготовления полевых транзисторов. Для кремниевых устройств сильно легированная подложка обычно действует как второй затвор.

Активная область n-типа может быть затем выращена с помощью эпитаксии или может быть сформирована путем диффузии примесей в подложку или ионной имплантацией.

Если используется арсенид галлия, подложка образована полуизолирующим внутренним слоем.Это снижает уровни любых паразитных емкостей и позволяет получить хорошие высокочастотные характеристики.

Какой бы материал ни использовался для полевого транзистора, расстояние между стоком и истоком имеет важное значение и должно быть сведено к минимуму. Это сокращает время прохождения, когда требуются высокочастотные характеристики, и обеспечивает низкое сопротивление, что жизненно важно, когда устройство должно использоваться для питания или коммутации.

Ввиду их популярности JFET доступны в различных пакетах.Они широко доступны в виде свинцовых электронных компонентов в популярном пластиковом корпусе TO92, а также в ряде других. Затем, как устройства для поверхностного монтажа, они доступны в пакетах, включая SOT-23 и SOT-223. Вероятно, наиболее широко используются JFET в качестве устройств для поверхностного монтажа. Наиболее крупномасштабное производство осуществляется с использованием технологии поверхностного монтажа и сопутствующих устройств для поверхностного монтажа.

Хотя JFET менее популярен, чем MOSFET и имеет меньшее количество JFET, он все же остается очень полезным компонентом.Предлагая высокий входной импеданс, простое смещение, низкий уровень шума и низкую стоимость, он обеспечивает высокий уровень производительности, который может использоваться во многих ситуациях.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Полевые транзисторы (современные)


дюйм 1945 г. у Шокли появилась идея сделать твердотельное устройство. полупроводников. Он рассудил, что сильное электрическое поле может вызвать электрический ток внутри соседнего полупроводника. Он попытался построить один, затем Уолтер Браттейн попытался построить его, но это не сработало.

Три года спустя Браттейн и Бардин построили первый рабочий транзистор, германиевый точечный транзистор, который выпускался как серия «А».Шокли тогда разработан переходной (сэндвич) транзистор, который был изготовлен в течение нескольких лет после этого. Но в 1960 году ученый из Белла Джон Аталла разработал новый дизайн, основанный на первоначальных теориях Шокли о полевом эффекте. К концу 1960-х производители перешли из интегральные схемы переходного типа к полевым устройствам. Cегодня, большинство транзисторов являются полевыми транзисторами. Вы используете миллионы из них сейчас.

МОП-транзисторы

Большинство современных транзисторов — это «МОП-полевые транзисторы», или металлооксидные полупроводниковые полевые транзисторы. Они были разработан в основном Bell Labs, Fairchild Semiconductor и сотнями Кремниевой долины, японских и других производителей электроники.

Полевые транзисторы названы так потому, что слабый электрический сигнал, проходящий через один электрод, создает электрическое поле через остальную часть транзистора. Это поле меняется с положительного на отрицательное, когда входящий сигнал делает и контролирует второй ток, проходящий через остальные транзистора. Поле модулирует второй ток, чтобы имитировать первый — но он может быть существенно больше.

Как это работает

На дне транзистора находится П-образный участок. (хотя он более плоский, чем истинная буква «U») полупроводника N-типа с избытком электронов.В центре буквы U находится секция, известная как «база», сделанная из P-типа (положительно заряженная) полупроводник со слишком малым количеством электронов. (Собственно, N- и P-типы можно перевернуть, и устройство будет работать точно так же, за исключением того, что дырки, а не электроны, вызывают ток.)

Три электрода прикреплены к верхней части этого полупроводниковый кристалл: один к средней положительной секции и по одному в каждое плечо U.Путем подачи напряжения на электроды на U ток будет течь через него. Сторона, где электроны входящий известен как источник, и сторона, где электроны выходит называется стоком.

Если больше ничего не произойдет, ток будет течь от с одной стороны на другую. Из-за того, как электроны ведут себя при переход между полупроводниками N- и P-типа, однако ток не будет течь особенно близко к базе.Он путешествует только через тонкий канал посередине U.

Также к основанию прикреплен электрод, клин из полупроводника P-типа посередине, отделенный от остальная часть транзистора тонким слоем оксида металла, например в виде диоксида кремния (играющего роль изолятора). Этот электрод называется «затвор». Слабый электрический сигнал, который мы хотим усилить, проходит через гейт.Если заряд, проходящий через ворота, отрицательный, он добавляет больше электронов к базе. Поскольку электроны отталкиваются друг от друга, электроны в U отойдите как можно дальше от базы. Это создает зона обеднения вокруг базы — целая область, где электроны не может путешествовать. Канал посередине U через который может течь, становится еще тоньше. Добавьте достаточно отрицательный заряд к базе и канал полностью перещипнется, остановка всего тока.Это как наступить на садовый шланг чтобы остановить поток воды. (Раньше транзисторы управлялись эту зону истощения, используя то, как движутся электроны, когда два полупроводниковые пластины кладут рядом друг с другом, создавая то, что известен как соединение P-N. В MOS-FET переход P-N заменен оксидом металла, который оказалось, что массовое производство микрочипов проще.)

А теперь представьте, если заряд проходит через ворота положительный.Положительное основание притягивает много электронов — внезапно территория вокруг базы, которая раньше была нейтральной зоной открывается. Канал для тока через U становится больше, чем было изначально, и может течь гораздо больше электричества через.

Переменный заряд на базе, следовательно, меняется сколько тока проходит через U. Входящий ток может использоваться как кран для включения или выключения тока по мере его прохождения остальной транзистор.

С другой стороны, транзистор можно использовать в и более сложным способом — в качестве усилителя. Текущий путешествие через U становится больше или меньше в идеальной синхронизации с зарядом, входящим в базу, что означает, что он имеет идентичный шаблон как исходный слабый сигнал. А со второй ток подключен к другому источнику напряжения, это может быть сделано, чтобы быть больше.Ток, проходящий через U-образный идеальная копия оригинала, только в усилении. Транзистор используется таким образом для стереоусиления в динамиках и микрофонах, а также для усиления телефонных сигналов при их перемещении по Мир.

Сноска на Шокли

Шокли наблюдал за ростом Кремниевой долины, но мог не похоже, чтобы войти в Землю Обетованную, которую он вообразил.Он никогда удалось сделать полевые транзисторы, в то время как другие компании проектировали, росли и процветали. Фред Зейтц назвал Шокли Моисей из Кремниевой долины «.

Другие типы транзисторов:
— Точечный Транзистор
— Переходный («Сэндвич»). Транзистор

Ресурсы:
Как все работает Дэвид Маколей
Научная энциклопедия Ван Ностранда
— The Полевой транзистор
— Интервью, Уолтер Браун, 3 мая 1999 г.


Авторские права 1999 г., ScienCentral, Inc. и Американский институт физики.Нет часть этого веб-сайта может воспроизводиться без письменного разрешения. Все права защищены.

Анимация переходного полевого транзистора

Теперь доступно видео для замены устаревшей Flash-анимации на этой странице по адресу https://learnabout-electronics.org/Semiconductors/fet_02a.php.

Нажмите зеленую кнопку, чтобы перейти к новой версии

Перейти на новую страницу

Как работает JFET

Использование анимации

Для начала щелкните и перетащите вверх любую из ручек ползунков напряжения V GS или V DS .Это подает соответствующие напряжения на JFET. Посмотрите окно «Что происходит», чтобы получить информацию о работе транзистора при настройке ползунков V GS и V DS .

Устройство управления V DS изменяет напряжение на стоке и истоке, что устанавливает градиент напряжения для притяжения электронов от истока к стоку, создавая ток стока I D . Обратите внимание на то, как начальное увеличение тока перестает расти после превышения точки отсечки.Увеличение тока, обычно вызываемое увеличением приложенного напряжения, приблизительно уравновешивается увеличением сопротивления проводящего канала, вызванным ростом обедненных слоев вокруг областей затвора. Это происходит из-за обратного смещения на PN переходах затвора, вызванного тем, что затвор P-типа находится под более низким напряжением, чем канал N-типа (особенно ближе к положительному концу стока), поскольку сток становится более положительным.

При V DS в области насыщения и V GS при нулевом напряжении протекает максимальный ток.Этот ток можно уменьшить до нуля, просто увеличив отрицательное напряжение затвор-исток V GS , чтобы сузить проводящий канал. Поскольку переход затвор-канал имеет обратное смещение, JFET управляет большим током стока, используя изменяющееся напряжение на затворе практически без тока затвора. Преимущество JFET заключается в том, что, хотя его коэффициент усиления (прямой или взаимной прозрачности) не очень высок по сравнению с некоторыми другими устройствами; из-за отсутствия тока затвора входной импеданс чрезвычайно высок.Также, в отличие от биполярного транзистора, ток не должен проходить через какие-либо PN-переходы (которые, по сути, являются небольшими конденсаторами), поэтому высокочастотные характеристики JFET очень хорошие.

Скачать полноэкранную анимацию

Страница Обновлено 14 июля 2010 г.

Вернуться в раздел «Как работает JFET»

Начало страницы

Полевой транзистор

Полевые транзисторы

Функция полевых транзисторов аналогична биполярным транзисторам (особенно того типа, который мы обсудим здесь), но есть несколько отличий.У них есть 3 клеммы, как показано ниже. Два основных типа полевых транзисторов — это полевые МОП-транзисторы с каналом «N» и «P». Здесь мы будем обсуждать только канал N. Фактически, в этом разделе мы будем обсуждать только наиболее часто используемый N-канальный MOSFET в режиме улучшения (полевой транзистор с металлическим оксидом и полупроводником). Его схематический символ находится ниже. Стрелки показывают, как НОЖКИ реального транзистора соответствуют условному обозначению.

Current Control:
Терминал управления называется воротами.Помните, что через базовый вывод биполярного транзистора проходит небольшой ток. Затвор на полевом транзисторе практически не пропускает ток при управлении постоянным током.При управлении затвором с помощью высокочастотных импульсных сигналов постоянного или переменного тока может протекать небольшой ток. Напряжение «включения» транзистора (также известное как пороговое значение) варьируется от одного полевого транзистора к другому, но составляет примерно 3,3 В по отношению к источнику.

Когда полевые транзисторы используются в секции аудиовыхода усилителя, Vgs (напряжение от затвора до источника) редко превышает 3.5 вольт. Когда полевые транзисторы используются в импульсных источниках питания, Vgs обычно намного выше (от 10 до 15 вольт). Когда напряжение затвора превышает примерно 5 вольт, он становится более эффективным (что означает меньшее падение напряжения на полевом транзисторе и, следовательно, меньшее рассеивание мощности).

Обычно используются полевые МОП-транзисторы, потому что их легче использовать в сильноточных приложениях (например, в импульсных источниках питания в автомобильных аудиоусилителях). Если используется биполярный транзистор, часть тока коллектор / эмиттер должна протекать через переход базы.В ситуациях с высоким током, когда имеется значительный ток коллектора / эмиттера, ток базы может быть значительным. Полевые транзисторы могут работать при очень небольшом токе (по сравнению с биполярными транзисторами). Единственный ток, который течет из схемы возбуждения, — это ток, протекающий из-за емкости. Как вы уже знаете, когда к конденсатору подается постоянный ток, возникает первоначальный скачок, а затем ток прекращается. Когда затвор полевого транзистора приводится в действие высокочастотным сигналом, схема управления по существу видит только конденсатор небольшой емкости.Для низких и промежуточных частот схема возбуждения должна обеспечивать небольшой ток. На очень высоких частотах или когда задействовано много полевых транзисторов, схема возбуждения должна обеспечивать больший ток.

Примечание:
Затвор полевого МОП-транзистора имеет некоторую емкость, что означает, что он будет удерживать заряд (сохранять напряжение). Если напряжение затвора не разряжено, полевой транзистор будет продолжать проводить ток. Это не означает, что вы можете заряжать его и ожидать, что полевой транзистор будет продолжать проводить бесконечно долго, но он будет продолжать проводить до тех пор, пока напряжение на затворе не станет ниже порогового напряжения.Вы можете убедиться, что он отключился, если вы подключите понижающий резистор между затвором и истоком.

Сильноточные клеммы:
«Управляемые» клеммы называются истоком и стоком. Это клеммы, отвечающие за пропускание тока через транзистор.

Пакеты транзисторов:
МОП-транзисторы используют те же «корпуса», что и биполярные транзисторы. Наиболее распространенным в автомобильном стереоусилителе в настоящее время является корпус TO-220 (показан выше).


Транзистор в цепи:
На этой диаграмме показаны напряжения на резисторе и полевом транзисторе с 3 различными напряжениями затвора.Вы должны увидеть, что на резисторе нет напряжения, когда напряжение затвора составляет около 2,5 вольт. Это означает, что ток не течет, потому что транзистор не открыт. Когда транзистор частично включен, на обоих компонентах возникает падение напряжения (напряжения). Когда транзистор полностью открыт (напряжение затвора около 4,5 В), полное напряжение питания подается на резистор, и на транзисторе практически нет падения напряжения. Это означает, что оба вывода (исток и сток) транзистора имеют по существу одинаковое напряжение.Когда транзистор полностью включен, нижний вывод резистора эффективно заземлен.

Напряжение на затворе Напряжение на резисторе Напряжение на транзисторе
2,5 В без напряжения примерно 12 вольт
3,5 В менее 12 вольт менее 12 вольт
4,5 В примерно 12 вольт практически нет напряжения

В следующей демонстрации вы можете увидеть, что к лампе подключен полевой транзистор.Когда напряжение ниже примерно 3 вольт, лампа полностью выключена. Нет тока, протекающего через лампу или полевой транзистор. Когда вы нажимаете кнопку, вы можете видеть, что конденсатор начинает заряжаться (на это указывает восходящая желтая линия и точка пересечения кривой зарядки конденсатора с белой линией, идущей слева направо. Когда полевой транзистор начинает включаться, напряжение на стоке начинает падать (обозначено падающей зеленой линией и точкой, где зеленая кривая пересекается с белой линией).Когда напряжение затвора приближается к пороговому значению (~ 3,5 В), напряжение на лампе начинает расти. Чем больше он увеличивается, тем ярче становится лампа. После того, как напряжение на затворе достигнет примерно 4 вольт, вы увидите, что лампочка полностью горит (на ее выводах есть полные 12 вольт). Напряжение на полевом транзисторе практически отсутствует. Вы должны заметить, что полевой транзистор полностью выключен при напряжении ниже 3 вольт и полностью включен после четырех вольт. Любое напряжение затвора ниже 3 вольт практически не влияет на полевой транзистор.Выше 4 вольт мало влияет.


Расчетные параметры

Напряжение затвора:
Как вы уже знаете, полевой транзистор управляется напряжением затвора. Для этого типа полевого МОП-транзистора максимальное безопасное напряжение затвора составляет ± 20 вольт. Если на затвор (относительно источника) будет подано более 20 вольт, это приведет к разрушению транзистора. Транзистор будет поврежден, потому что напряжение будет проходить через изолятор, который отделяет затвор от части стока / истока полевого транзистора.

Ток:
Как и биполярные транзисторы, каждый полевой транзистор предназначен для безопасной передачи определенного количества тока.Если температура полевого транзистора выше 25 ° C (приблизительно 77 градусов Фаренгейта), «безопасные» токонесущие способности транзистора будут уменьшены. Безопасная рабочая зона (S.O.A) продолжает уменьшаться при повышении температуры. Когда температура приближается к максимальной безопасной рабочей температуре, номинальный ток транзистора приближается к нулю.

Напряжение:
полевых транзисторов будут повреждены, если будет превышено указанное максимальное напряжение сток-исток. Информационный листок можно получить у производителя.Лист данных предоставит вам всю информацию, необходимую для его использования.

Рассеиваемая мощность: полевые транзисторы
похожи на биполярные транзисторы с точки зрения корпусов и рассеиваемой мощности, и вы можете вернуться по этой ссылке на страницу биполярных транзисторов для получения дополнительной информации. Нажмите кнопку «назад», чтобы вернуться.

МОП полевой транзистор

МОП полевой транзистор Подразделы
Рисунок 10.16: вертикальный разрез интегрированного MOSFET
Рисунок 10.17: четыре типа полевых МОП-транзисторов и их обозначения

Существует четыре различных типа полевых МОП-транзисторов: показано на рис. 10.17 все охватываемые моделью будут объяснено здесь. « Модель первого порядка » — это физическая модель с уравнения тока стока согласно Гарольду Шичману и Дэвиду А. Ходжес [13].

Следующая таблица содержит параметры модели и устройства для MOSFET уровень 1.

Рисунок 10.18: n-канальный полевой МОП-транзистор с большим сигналом, модель

Заранее сделано несколько полезных сокращений, чтобы упростить DC текущие уравнения.

Пороговое напряжение, зависящее от смещения, зависит от объемного источника напряжение или напряжение объемного стока в зависимости от режим работы.

(10.169)

Следующие уравнения описывают поведение постоянного тока в N-канальный MOSFET в нормальном режиме, т.е.е. , в соответствии с Шичман и Ходжес.

  • область отсечения:

с участием

(10.182)

В обратном режиме работы, т.е. , тот же самый уравнения могут быть применены со следующими модификациями. Заменить с, с и с . Ток стока меняется на противоположное. Кроме того, трансдуктивности изменяют свои управляющие узлы, т.е.

(10.183)

Текущие уравнения двух паразитных диодов в узле объемного и их производные записывают следующим образом.

с участием

(10.186)

Рисунок 10.19: сопровождаемая модель постоянного тока внутреннего MOSFET

С прилагаемой моделью постоянного тока, показанной на рис. 10.19 это возможно формирование матрицы MNA и текущего вектора внутреннее устройство MOSFET.

(10.187)

Есть электрические параметры, а также физические и геометрические. параметров в наборе параметров модели для полевых МОП-транзисторов « Первый Модель заказа ». Некоторые электрические параметры могут быть получены из геометрия и физические параметры.

Емкость оксида на квадратный метр площади канала может быть вычисляется как

(10.191)

Тогда общую оксидную емкость можно записать как

(10.192)

Коэффициент крутизны можно рассчитать с помощью

(10.193)

Поверхностный потенциал определяется выражением (с температурным напряжением)

(10.194)

Уравнение (10.194) справедливо для концентраций акцепторов () существенно больше концентрации донора. Объемный порог (также иногда называемый эффектом тела) коэффициент) составляет

(10.195)

И наконец, пороговое напряжение нулевого смещения записывается как следует.

(10,196)

Где обозначает напряжение плоской полосы, состоящее из работы разница функций между затвором и подложкой материал и дополнительный потенциал из-за заряда поверхности оксида.

(10.197)

Температурно-зависимый потенциал запрещенной зоны кремния (материал подложки Si) пишет следующим образом.С участием то ширина запрещенной зоны составляет примерно.

(10.198)

Разница работы выхода вычисляется в зависимости от материал проводника затвора. Это может быть либо оксид алюминия ( ), n-поликремний ( ) или п-поликремний ( ). Работа выхода полупроводника, что представляет собой разность энергий между вакуумным уровнем и фермиевским уровнем. уровень (см. рис. 10.20), меняется в зависимости от допирования концентрация.

(10.199)

(10.200)

Рисунок 10.20: Диаграммы энергетических зон изолированных (плоских) МОП материалов

Выражение в ур. (10.199) визуализируется в Инжир. 10.20. Аббревиатуры обозначают

Обратите внимание, что потенциал положителен в p-MOS и отрицательный в n-MOS, как показывает следующее уравнение.

(10.201)

Когда материал проводника затвора представляет собой сильно легированный поликристаллический кремний (также называемый поликремнием), то модель предполагает, что Уровень Ферми этого полупроводника такой же, как зона проводимости (для n-poly) или валентная зона (для p-poly). В глиноземе Ферми уровень, валентность и зона проводимости равны сродству к электрону.

Если нижняя емкость объемного перехода без смещения на квадратный метр площадь стыка не приводится, ее можно рассчитать следующим образом.

(10.202)

Вот и все, что касается физических параметров. Параметры геометрии учитывать электрические параметры по длине, площади или объему. Таким образом, модель MOS масштабируема.

Сопротивление диффузии на стоке и затворе вычисляется следующим образом. Сопротивление листа относится к толщине диффузионного слоя. площадь.

(10.203)

Если ток насыщения объемного перехода на квадратный метр площадь стыка, а также участки стока и истока имеют соответствующие токи насыщения рассчитываются с помощью следующих уравнения.

(10.204)

Если параметры и не заданы нулевым смещением обедняющие емкости для емкости днища и боковины равны вычисляется следующим образом.



Модель слабого сигнала

Рисунок 10.21: Модель малого сигнала внутреннего MOSFET

Емкости объемного стока и объемного истока в модели MOSFET разделены на три части: обедненная емкость переходов, которая состоит из площади и боковой части и диффузионной емкости.

Диффузионные емкости переходов объемный сток и объемный исток определяются временем прохождения миноритарных сборов через соединение.

Хранение заряда в MOSFET состоит из емкостей, связанных с паразиты и внутреннее устройство. Паразитные емкости состоят из трех постоянных емкостей перекрытия. Собственные емкости состоят из нелинейной емкости тонкого оксида, которая распределена между затворной, сливной, истоковой и насыпной областями.Ворота MOS емкости, как нелинейная функция напряжений на клеммах, равны моделируется кусочно-линейной моделью Дж. Э. Мейера [15].

Зависимые от смещения емкости оксида затвора распределяются в соответствии с Модель Мейера [15] выглядит следующим образом.

  • области отсечения:

  • область насыщения:

с участием

(10.230)

В обратном режиме работы и должен быть поменяется, меняет знак, то приведенные выше формулы могут быть применяется также.

Постоянные емкости перекрытия рассчитываются следующим образом.

С помощью этих определений можно сформировать слабый сигнал Матрица Y-параметров внутреннего устройства MOSFET в действующем точка, которая может быть преобразована в S-параметры.

(10.234)

с участием

Тепловой шум, создаваемый внешними резисторами, и характеризуется следующей спектральной плотностью.

(10.241)

Рисунок 10.22: модель шума внутреннего MOSFET

Канальный и фликкер-шум, создаваемый крутизной по постоянному току ток от стока к истоку характеризуется спектральным плотность

(10.242)

Матрица корреляции шумового тока (представление проводимости) собственный МОП-транзистор может быть выражен как

(10.243)

Это матричное представление легко преобразовать в шумовую волну. представление если S-параметр слабого сигнала матрица известна.

Температура влияет на некоторые параметры модели МОП, которые обновляются согласно новой температуре. Контрольная температура в следующие уравнения обозначают номинальную температуру определяется моделью МОП-транзистора. Температурная зависимость и определяется

Влияние температуры на и моделируется

(10.246)

где зависимость уже описывалась в раздел 10.2.4 на стр. В температурная зависимость« и есть описывается следующими соотношениями

Температурная зависимость определяется соотношением

(10.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *