Расчет сопротивления светодиода: Расчёт резистора для светодиода | Онлайн калькулятор

Содержание

Расчет резистора для светодиодов: примеры, онлайн калькулятор

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор.  Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих драйверов. Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко.

Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led.

Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы проверки led.

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит  — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где  — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

https://cxem.net/calc/ledcalc.php

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех светодиодов CREE XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления разработана Сергеем Войтевичем. Скачать программу можно по этой ссылке.

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Заключение

Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

Расчет сопротивления резистора для светодиода

Светоизлучающие диоды, характеризуются рядом эксплуатационных параметров:

  • Номинальный (рабочий) ток – Iн;
  • падение напряжения при номинальном токе – Uн;
  • максимальная рассеиваемая мощность – Pmax;
  • максимально допустимое обратное напряжение – Uобр.

Самым важным из перечисленных параметров является рабочий ток.

При протекании через светодиод номинального рабочего тока – номинальный световой поток, рабочее напряжение и номинальная рассеиваемая мощность устанавливаются автоматически. Для того чтобы задать рабочий режим LED, достаточно задать номинальный ток светодиода.

В теории светодиоды нужно подключать к источникам постоянного тока. Однако, на практике, LED подключают к источникам постоянного напряжения: батарейки, трансформаторы с выпрямителями или электронные преобразователи напряжения (драйверы).

Для задания рабочего режима светодиода, применяют простейшее решение – последовательно с LED включают токоограничивающий резистор. Их еще называют гасящими или балластными сопротивлениями.

Рассмотрим, как выполняется расчет сопротивления резистора для светодиода.

Расчет резистора светодиода (по формулам)

При расчете вычисляют две величины:

  • Сопротивление (номинал) резистора;
  • рассеиваемую им мощность P.

Источники напряжения, питающие LED, имеют разное выходное напряжение. Для того чтобы выполнить подбор резистора для светодиода нужно знать напряжение источника (Uист), рабочее падение напряжения на диоде и его номинальный ток. Формула для расчета выглядит следующим образом:

R = (Uист — Uн) / Iн

При вычитании из напряжения источника номинальное падение напряжения на светодиоде – мы получаем падение напряжения на резисторе. Разделив получившееся значение на ток мы, по закону Ома, получаем номинал токоограничивающего резистора. Подставляем напряжение, выраженное в вольтах, ток – в амперах и получаем номинал, выраженный в омах.

Электрическую мощность, рассеиваемую на гасящем сопротивлении, вычисляют по следующей формуле:

P = (Iн)2 ⋅ R

Исходя из полученного значения, выбирается мощность балластного резистора. Для надежной работы устройства она должна быть выше расчетного значения. Разберем пример расчета.

Пример расчета резистора для светодиода 12 В

Рассчитаем сопротивление для LED, питающегося от источника постоянного напряжения 12В.

Допустим в нашем распоряжении имеется популярный сверхяркий SMD 2835 (2. 8мм x 3.5мм) с рабочим током 150мА и падением напряжения 3,2В. SMD 2835 имеет электрическую мощность 0,5 ватта. Подставим исходные значения в формулу.

R = (12 — 3,2) / 0,15 ≈ 60

Получаем, что подойдет гасящий резистор сопротивлением 60 Ом. Ближайшее значение из стандартного ряда Е24 – 62 ома. Таким образом, для выбранного нами светодиода можно применить балласт сопротивлением 62Ом.

Теперь вычислим рассеиваемую мощность на сопротивлении.

P = (0,15)2 ⋅ 62 ≈ 1,4

На выбранном нами сопротивлении будет рассеиваться почти полтора ватта электрической мощности. Значит, для наших целей можно применить резистор с максимально допустимой рассеиваемой мощностью 2Вт.

Осталось купить резистор с подходящим номиналом. Если же у вас есть старые платы, с которх можно выпаять детали, то по цветовой маркировке можно выполнить подбор резистора. Воспользуйтесь формой ниже.

На заметку! В приведенном выше примере на токоограничительном сопротивлении рассеивается почти в три раза больше энергии, чем на светодиоде. Это означает, что с учетом световой отдачи LED, КПД нашей конструкции меньше 25%.

Чтобы снизить потери энергии лучше применить источник с более низким напряжением. Например, для питания можно применить преобразователь постоянного напряжения AC/AC 12/5 вольт. Даже с учетом КПД преобразователя потери будут значительно меньше.

Параллельное соединение

Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:

R = (Uист — Uн) / (n ⋅ Iн)

P = (n ⋅ Iн)2 ⋅ R

Где n – количество параллельно включенных ЛЕДов.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.

В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.

Совет. Если по какой-то причине нужно обойтись одним гасящим сопротивлением, увеличьте его номинал на 20-25%. Это обеспечит большую надежность конструкции.

Пример правильного подключения резистора

Можно ли обойтись без резисторов?

Действительно, в некоторых случаях можно не использовать токоограничивающий резистор. Рассмотренный нами светодиод можно напрямую запитать от двух батареек 1,5В. Так как его рабочее напряжение составляет 3,2В, то протекающий через него ток будет меньше номинального и балласт ему не потребуется. Конечно, при таком питании светодиод не будет выдавать полный световой поток.

Иногда в цепях переменного тока в качестве токоограничивающих элементов вместо резисторов применяют конденсаторы (подробнее про расчет конденсатора). В качестве примера можно привести выключатели с подсветкой, в которых конденсаторы являются «безваттными» сопротивлениями.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Материалы по теме:

какие формулы помогут вычислить сопротивление

В наше время светодиоды используются если не во всех, то в очень многих сферах деятельности. И несмотря на это, многие потребители едва ли понимают принципы работы светодиодов. Как и почему вообще работают светодиоды? И какую роль в этом процессе играют резисторы? Как произвести расчет резистора для светодиода? Постараемся разобраться.

Что такое резистор и сопротивление светодиода?

Резистором называется компонент электрической цепи, который характеризуется пассивностью и в лучшем случае обладает сопротивлением электрическому току.

Другими словами, для такого устройства в любое время должен действовать закон Ома.

 

Главная функция резистора – энергичное сопротивление электротоку. Именно это качество делает резисторы необходимыми при создании систем искусственного освещения, в том числе и с применением светодиодов.

В каких случаях возможно подключение светодиода с помощью резистора?

Подключать светодиод с помощью резистора можно при условии, что эффективность схемы не является первостепенной целью. Самый простой пример – применение светодиода для индикации подсветки выключателя в электроприборе. В таком случае мощность потребления едва достигает 0.1 Вт, а яркость не ставится во главу угла. А вот при использовании светодиода с энергопотреблением более 1 Вт нужно обязательно убедиться, что блок питания обеспечивает стабилизированное напряжение. Если же напряжение схемы не стабилизировано, то все скачки и помехи будут негативно сказываться на работе светодиода.

Не менее актуальна схема питания через резистор в лабораторных условиях, когда есть задача тестирования новой модели светодиода.

Виды резисторов

Существует несколько классификаций резисторов, каждая из которых отличается признаков, по которому сравниваются разные виды устройств.

В зависимости от материала резистивного элемента выделяют следующие типы резисторов:

  • Металлофольговые;
  • Непроволочные;
  • Проволочные.

По способы защиты резисторы бывают:

  • Неизолированными;
  • Изолированными;
  • Вакуумными;
  • Герметизированными.

Назначение резисторов группирует устройства следующим образом:

  • Резисторы общего предназначения;
  • Высокочастотные;
  • Высокомегаомные;
  • Высоковольтные.

Расчет резистора для светодиода

Осуществить расчет резисторов по силам не только специалистам. Достаточно базовых знаний и понимания физики процесса. Чтобы определить необходимое сопротивление резисторов, нужно учитывать следующие важные факторы:

  • Маркировка на устройстве отображает так называемое напряжение падения, которое необходимо для расчета необходимого напряжения и для подбора резисторов.
  • Числовое значение напряжения определяется в виде разницы между напряжением агрегата и напряжением питания светодиода;
  • Чтобы рассчитать необходимое сопротивление, нужно разделить остаточное напряжение на величину тока, необходимую для бесперебойной работы системы.

Математический расчет сопротивления резистора

Согласно второму правилу Кирхгофа, можно составить равенство U = Ur + Uled, которое можно интерпретировать таким образом: U = I x R + I x Rled, где Rled – это дифференциальное сопротивление.

Значение Rled меняется вместе с изменением работы полупроводника. В данном случае соотношение переменных величин тока и напряжения определяет величину сопротивления.

Также есть смысл вывести формулу для вычисления сопротивления резистора: R = (U – Uled) / I, Ом. В данной формуле Uled – это паспортная величина для конкретного типа светодиода.

Как рассчитать резистор графическим способом?

При наличии ВАХ светодиода расчет резистора для светодиодов можно осуществить графическим методом, хотя такой способ и не очень распространен. Зная ток нагрузки, можно с помощью графика определить прямое напряжение. Необходимо с оси ординат (I) провести прямую до пересечения с кривой и опустить на ось абсцисс.

Особенности расчета

Каким бы ни было подключение резистора, всегда есть свои тонкости и нюансы. Постараемся разобраться, в чем особенности последовательного, параллельного и смешанного способов соединения.

Последовательное соединение

При последовательной схеме светодиоды расставляются друг за другом, и обычно достаточно одного резистора, если удастся корректно произвести расчет сопротивления. Это можно объяснить тем, что в электроцепи в каждом месте установки электроприбора имеется один и тот же ток, значение которого не изменяется.

Параллельное соединение

 

Часто бывает необходимость в подключении нескольких диодов к одному и тому же источнику. В теории можно использовать один токоограничивающий резистордля питания нескольких LED, соединенных параллельно.

Стоит отметить, что даже в «китайских» моделях производитель устанавливает отдельный ограничительный резистор. При общем балласте для нескольких LED значительно растет вероятность поломки диодов, излучающих свет.

Смешанное соединение

При выборе смешанного соединения схему следует рассчитывать отдельно для каждой последовательной цепи. Если количество и типы светодиодов одинаковы в каждой из последовательных цепей, расчет можно произвести единожды для любой группы диодов. Важно, чтобы все светодиоды были однотипными, как минимум, в пределах общей цепи.

Примеры расчетов сопротивления и мощности резистора

Рассмотрим пример расчета сопротивления резистора LED SMD 5050, при работе с которой следует учитывать некоторые конструкционные особенности светодиода, который включает три независимых кристалла.

При условии, что LED SMD 5050 одноцветный, напряжение на кристалле будет отличаться максимум на 0.1 В. Таким образом, светодиод может быть запитан от одного резистора, а три анода можно объединить в одну группу, три катода – соответственно, в другую. Для подключения SMD 5050 с параметрами ULED=3,3 В и ILED=0,02 А.

R = (5 – 3.3) / (0.02 х 3) = 28.3 Ом. Ближайший стандартный показатель составляет 30 Ом. К установке принимаем резистор с сопротивлением 30 Ом и мощностью 0.25 Вт.

Для максимального удобства и скорости проведения расчетов можно использовать специальный онлайн калькулятор расчет резистора. Этот инструмент дает возможность произвести расчет резисторов в кратчайшие сроки с минимальными затратами времени и сил.

Расчет резистора для светодиода – формула и таблица подбора сопротивления

Уже невозможно представить современное освещение без использования светодиодов. Они используются буквально во всех возможных сферах – это связано с их сравнительно просто конструкцией, которая обеспечивает эргономичное соотношение стоимости, потребляемой энергии и производимого света. Единственная сложность, с которой может столкнуться обычный потребитель – грамотная установка светодиодов, которая позволит извлечь из их работы максимальную эффективность.

Одним из важнейших параметров, который нужно учитывать при запуске, является ограничение тока, подаваемого на тело светодиода. Расчет резистора для светодиода позволит добиться стабильной работы освещения и обеспечить долгий срок работы каждого отдельно взятого элемента.

Теоретическая часть

Светодиод – полупроводниковый элемент, который излучает свет при прохождении сквозь него тока с определенными параметрами. Долговечность подключенного устройства и стабильность его работы напрямую зависит от величины тока, которая на него подается. Именно стабильность, а не сила тока; вопреки распространенному мнению, даже незначительные превышения в этом параметре значительно увеличивают скорость паспортной деградации кристаллов, излучающих светодиодный свет.

Во избежание нежелательных перегрузок была предложена система ограничения подаваемого тока, которая называется «токоограничивающий резистор». Важно отметить, что он именно ограничивает ток, поступающий в устройство, но не стабилизирует его, поэтому при неправильно подобранном резисторе его наличие может оказаться бесполезным. Для правильного подбора сопротивления к конкретному источнику света необходимо узнать некоторые технические данные и провести расчет сопротивления резистора.

Светодиод и ограничитель для него

Зачем нужен резистор?

Токоограничительный светодиодный резистор нужен в тех случаях, когда на первом месте стоит именно стабильность и продолжительность работы источников света, а не мощность их излучения. Такие цели преследуются в различных бытовых приборах с мигающими индикаторами, указателями и кнопками включения, а также в автомобилях, где стабильность тока в системе оставляет желать лучшего. Также он незаменим во время тестирования новых моделей светодиодов в производственных лабораториях.

В случаях, когда важна яркость света, которую выдает кристалл, нужно использовать именно стабилизатор тока – драйвер. Чаще всего драйвер имеет точные параметры и продается в комплекте с конкретным LED-изделием – светильником, лентой, или же сразу встраивается в лампочку. Также драйвер используется, если мы выбираем очень мощные источники света с огромной яркостью.

Как подключить сопротивление к светодиоду

Расчет для мощного светодиода

В этом разделе будет представлена инструкция, как выбрать ограничитель на основании расчетов. Все нижеприведенные числа теоретические. Для получения точной информации о своих светодиодах изучите техническую документацию, предоставляемую производителем или поставщиком.

Как рассчитать резистор для светодиода? В качестве примера будет использован расчет сопротивления теоретического светодиода белого цвета, который необходимо подключить к источнику тока 12 В (обозначим его буквой U). Сопротивление токоограничивающего резистора будет обозначаться буквой R – наша искомая величина. Белые и голубые светодиоды обычно имеют напряжение питания 4 В, все остальные цвета – не более 2 В. Наш источник света будет иметь максимальную мощность Umax=3.8 В, и минимальную Umin=3.1 В.

Ни в коем случае не используйте для расчета значение максимальной мощности, т. к. это все равно заставит работать светодиод на пределе вне зависимости от наличия ограничительного резистора. Обязательно необходимо узнать ток самого LED, он измеряется в амперах и обозначается буквой I. Наше устройство будет иметь ток 50 мА, или же 0. 05 А. На этом сбор данных о LED заканчивается, их нужно подставить в простую формулу вида:

R = (U — Umin) / I

Проводим элементарное вычисление, в ходе которого выясняем, что:

R = (12 — 3.1) / 0.05 = 178 Ом.

Однако эта формула не дает нам конечного значения, т. к. не существует резисторов под каждое точно найденное число. Для поиска необходимого элемента нужно воспользоваться специальной таблицей, которая поможет подобрать резистор с максимально приближенным значением сопротивления. Для этого можно взглянуть на ниже представленные картинки. На них стрелочкой будет показан метод определения резистора, который нужно спросить у продавцов или поискать у себя.

Таблица подбора резистора с максимально приближенным значением сопротивления

Проанализировав таблицу, видим, что нам очень повезло – существует именно такой резистор для LED, который нам нужен.

Однако именно его выбирать не стоит. Существует такое понятие, как запас – лучше прибавьте к этому значению 10–15% для амортизации, мало ли что в электропроводке может произойти. Выполняем действие:

R = 178 + (178 × 0.15) ≈ 205 Ом.

Подберем необходимый вариант, снова просмотрев таблицу. Видим, что существует именно такой элемент. Его и следует использовать для ограничения подаваемого тока для светодиодов.

Расчет для светодиода с тремя кристаллами

Существуют светодиоды, где используется несколько кристаллов. В этом случае нужно рассчитать необходимое сопротивление с учетом того, что каждый кристалл имеет свой собственный ток. Если светодиод одноцветный, то в ранее указанной формуле значение I нужно умножить на количество включенных кристаллов (n). Все остальные значения оставим аналогичными. Получаем:

R = (U — Umin) / I × n

R = (12 — 3.1) / 0.05 × 3= 534 Ом.

Добавляем амортизацию 15% и получаем:

R = 534 + (534 × 0.15) ≈ 614 Ом.

Ближайшим расчетным значением в таблице является сопротивление резистора в 612 Ом – это наш выбор.

Если элемент использует несколько кристаллов с разными напряжениями, расчет гасящего резистора по формуле выполняется для каждого отдельно взятого кристалла. Для подключения светодиодов к сети каждый резистор должен подавать ток на тот кристалл, для которого он рассчитывался, то есть подключение будет разветвлено на три или более контакта. Количество резисторов должно равняться количеству светящихся элементов в самом светодиоде.

Ни в коем случае не подключайте RGB-светодиоды через один общий резистор – один кристаллик может сгореть, а второй даже не засветится, нужно подбирать каждый вариант отдельно.

Простая формула позволяет рассчитать реально необходимые значения и выполнить подбор реального сопротивления. Таким образом, получаем стабильно работающие источники света, которые имеют резистор гасящего сопротивления, рассчитанного с достаточным запасом амортизации для предохранения от перепадов в сети.

Нежелательно использовать значение сопротивления меньше рассчитанного, иначе смысл наличия ограничителя пропадает совершенно. Также не стоит использовать параллельное подключение самих элементов.

Расчет сопротивления для диодов

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный — 1,8. 2В;
  • зеленый и желтый — 2. 2,4В;
  • белые и синие — 3. 3,5В.

Допустим что мы будем использовать синий светодиод , падение напряжения на нем — 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит — Uсвет = 5В — 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит — Uсвет = 5В — 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.
Для начала определимся с терминологией (люди, знакомые с электроникой, могут перейти к следующему пункту).

Падение напряжения — напряжение U (измеряется в вольтах, V) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
Оно же — напряжение питания. Не путать с напряжением источника питания.
Рабочий ток — ток I (измеряется в амперах, А. мы будем измерять в миллиамперах — 1 мА = 0.001 А).
СопротивлениеR измеряется в омах — Ом. Именно в этих единицах измеряются резисторы (сопротивления).
Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

С терминологией вроде всё. Перейдём к теории.
Вот примерное падение напряжения для каждого из основных цветов светодиодов.

Красный — 1,6-2,03
Оранжевый — 2,03-2,1в
Жёлтый — 2,1-2,2в
Зелёный — 2,2-3,5в
Синий — 2,5-3,7в
Фиолетовый — 2,8-4в
Белый — 3-3,7в

Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА.
В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.
Да, всё так, но светодиод – предмет тёмный, изучению не подлежит интересный.
Тогда как напряжения питания он забирает на себя ровно столько, сколько ему требуется, ток превышающий его рабочий ток, попросту сожжёт кристалл.

Давайте возьмём пример. Имеется светодиод оранжевого цвета, который, согласно приведённой выше таблице, имеет напряжение питания порядка 2,1V, и рабочий ток 20мА. Если мы обрушим на него всю мощь бортовой сети нашего автомобиля, то напряжение в цепи, в которую он включен, снизится на

2. 1V, правда, избыточный ток тут же его сожжёт…
Как же быть, если нам, например, нужно установить светодиод для подсветки замка зажигания?
Всё просто – нужно лишить участок цепи, в которую включен светодиод, избыточного тока.

Как? – спросите вы. Всё просто. Был такой дядя, Георг Ом, который вывел известную любому старшекласснику формулу (закон Ома для участка цепи) – U=I*R (где U – напряжение, I – ток, R – сопротивление.)
Переворачиваем эту прекрасную формулу, получая R=U/I.
В нашем случае R – сопротивление (номинал резистора), которое нам потребуется; U – напряжение в участке цепи, I – рабочий ток нашего светодиода.
Vs – напряжение источника питания
Vl – напряжение питания светодиода
Таким образом R=(Vs-Vl)/I=(12-2.1)/0.02=9.9/0.02=495 Ом – номинал резистора, который необходимо включить в цепь, дабы напрямую подключить светодиод к бортовой сети при выключенном двигателе.
Для работы при включенном двигателе рассчитываем так же, только Vs берём уже 14В.
Настоятельно рекомендую производить расчёты для авто, беря за напряжение бортовой сети 14В, иначе ваши светодиоды достаточно быстро выйдут из строя.

Если взять номинал больше, например 550-600 Ом, то светодиод будет светить чуть менее ярко.
Если номинал будет меньше, то «свет твоей звезды будет коротким, хоть и очень ярким».

Достоверно узнать, сколько вольт потребляет конкретный светодиод, можно подключив его к источнику постоянного напряжения в 3-5 вольт, подсоединив последовательно вольтметр (можно использовать электронный мультиметр, включив его в соответствующий режим), после чего посчитать насколько снизилось напряжение в цепи. И исходя уже их этих, конкретных данных, рассчитать требуемый вам резистор. Подробнее об этом методе читайте здесь.

В конце хочу сказать вам, что настоятельно рекомендую использовать номинал резистора немного выше чем расчётный, что, несомненно, продлит жизнь светодиодам.
Для определения резистора по цветовой маркировке (а именно так обозначены все современные резисторы) рекомендую использовать этот онлайн-калькулятор.
www.chipdip.ru/info/rescalc

Спасибо, что читаете мой БЖ, мне очень приятно. Если остались вопросы — задавайте не стесняясь — всем отвечу.

Уже невозможно представить современное освещение без использования светодиодов. Они используются буквально во всех возможных сферах – это связано с их сравнительно просто конструкцией, которая обеспечивает эргономичное соотношение стоимости, потребляемой энергии и производимого света. Единственная сложность, с которой может столкнуться обычный потребитель – грамотная установка светодиодов, которая позволит извлечь из их работы максимальную эффективность.

Одним из важнейших параметров, который нужно учитывать при запуске, является ограничение тока, подаваемого на тело светодиода. Расчет резистора для светодиода позволит добиться стабильной работы освещения и обеспечить долгий срок работы каждого отдельно взятого элемента.

Теоретическая часть

Светодиод – полупроводниковый элемент, который излучает свет при прохождении сквозь него тока с определенными параметрами. Долговечность подключенного устройства и стабильность его работы напрямую зависит от величины тока, которая на него подается. Именно стабильность, а не сила тока; вопреки распространенному мнению, даже незначительные превышения в этом параметре значительно увеличивают скорость паспортной деградации кристаллов, излучающих светодиодный свет.

Во избежание нежелательных перегрузок была предложена система ограничения подаваемого тока, которая называется «токоограничивающий резистор». Важно отметить, что он именно ограничивает ток, поступающий в устройство, но не стабилизирует его, поэтому при неправильно подобранном резисторе его наличие может оказаться бесполезным. Для правильного подбора сопротивления к конкретному источнику света необходимо узнать некоторые технические данные и провести расчет сопротивления резистора.

Зачем нужен резистор?

Токоограничительный светодиодный резистор нужен в тех случаях, когда на первом месте стоит именно стабильность и продолжительность работы источников света, а не мощность их излучения. Такие цели преследуются в различных бытовых приборах с мигающими индикаторами, указателями и кнопками включения, а также в автомобилях, где стабильность тока в системе оставляет желать лучшего. Также он незаменим во время тестирования новых моделей светодиодов в производственных лабораториях.

В случаях, когда важна яркость света, которую выдает кристалл, нужно использовать именно стабилизатор тока – драйвер. Чаще всего драйвер имеет точные параметры и продается в комплекте с конкретным LED-изделием – светильником, лентой, или же сразу встраивается в лампочку. Также драйвер используется, если мы выбираем очень мощные источники света с огромной яркостью.

Расчет для мощного светодиода

В этом разделе будет представлена инструкция, как выбрать ограничитель на основании расчетов. Все нижеприведенные числа теоретические. Для получения точной информации о своих светодиодах изучите техническую документацию, предоставляемую производителем или поставщиком.

Как рассчитать резистор для светодиода? В качестве примера будет использован расчет сопротивления теоретического светодиода белого цвета, который необходимо подключить к источнику тока 12 В (обозначим его буквой U). Сопротивление токоограничивающего резистора будет обозначаться буквой R – наша искомая величина. Белые и голубые светодиоды обычно имеют напряжение питания 4 В, все остальные цвета – не более 2 В. Наш источник света будет иметь максимальную мощность Umax=3.8 В, и минимальную Umin=3.1 В.

Ни в коем случае не используйте для расчета значение максимальной мощности, т. к. это все равно заставит работать светодиод на пределе вне зависимости от наличия ограничительного резистора. Обязательно необходимо узнать ток самого LED, он измеряется в амперах и обозначается буквой I. Наше устройство будет иметь ток 50 мА, или же 0.05 А. На этом сбор данных о LED заканчивается, их нужно подставить в простую формулу вида:

Проводим элементарное вычисление, в ходе которого выясняем, что:

R = (12 — 3.1) / 0.05 = 178 Ом.

Однако эта формула не дает нам конечного значения, т. к. не существует резисторов под каждое точно найденное число. Для поиска необходимого элемента нужно воспользоваться специальной таблицей, которая поможет подобрать резистор с максимально приближенным значением сопротивления. Для этого можно взглянуть на ниже представленные картинки. На них стрелочкой будет показан метод определения резистора, который нужно спросить у продавцов или поискать у себя.

Проанализировав таблицу, видим, что нам очень повезло – существует именно такой резистор для LED, который нам нужен.

Однако именно его выбирать не стоит. Существует такое понятие, как запас – лучше прибавьте к этому значению 10–15% для амортизации, мало ли что в электропроводке может произойти. Выполняем действие:

R = 178 + (178 × 0.15) ≈ 205 Ом.

Подберем необходимый вариант, снова просмотрев таблицу. Видим, что существует именно такой элемент. Его и следует использовать для ограничения подаваемого тока для светодиодов.

Расчет для светодиода с тремя кристаллами

Существуют светодиоды, где используется несколько кристаллов. В этом случае нужно рассчитать необходимое сопротивление с учетом того, что каждый кристалл имеет свой собственный ток. Если светодиод одноцветный, то в ранее указанной формуле значение I нужно умножить на количество включенных кристаллов (n). Все остальные значения оставим аналогичными. Получаем:

R = (U — Umin) / I × n

R = (12 — 3.1) / 0.05 × 3= 534 Ом.

Добавляем амортизацию 15% и получаем:

R = 534 + (534 × 0.15) ≈ 614 Ом.

Ближайшим расчетным значением в таблице является сопротивление резистора в 612 Ом – это наш выбор.

Если элемент использует несколько кристаллов с разными напряжениями, расчет гасящего резистора по формуле выполняется для каждого отдельно взятого кристалла. Для подключения светодиодов к сети каждый резистор должен подавать ток на тот кристалл, для которого он рассчитывался, то есть подключение будет разветвлено на три или более контакта. Количество резисторов должно равняться количеству светящихся элементов в самом светодиоде.

Ни в коем случае не подключайте RGB-светодиоды через один общий резистор – один кристаллик может сгореть, а второй даже не засветится, нужно подбирать каждый вариант отдельно.

Простая формула позволяет рассчитать реально необходимые значения и выполнить подбор реального сопротивления. Таким образом, получаем стабильно работающие источники света, которые имеют резистор гасящего сопротивления, рассчитанного с достаточным запасом амортизации для предохранения от перепадов в сети.

Нежелательно использовать значение сопротивления меньше рассчитанного, иначе смысл наличия ограничителя пропадает совершенно. Также не стоит использовать параллельное подключение самих элементов.

Расчитываем резистор для светодиода, драйвер и гасящий конденсатор

Светодиодные элементы все чаще применяются в сферах деятельности человечества как осветительные приборы для помещений, в уличных фонарях, карманных фонариках, при освещении аквариума. В автомобильной индустрии группы светодиодов широко используются для подсветки габаритных огней, стоп сигналов и поворотов.

Внешний вид светодиодов

Отдельными элементами с различными цветами обеспечивают подсветку приборной панели, индикацию понижения уровня охлаждающей жидкости радиатора. Невозможно перечислить все направления их использования: от украшения новогодней елки, подсветки аквариума до приборов ракетно-космической техники.

Они постепенно вытесняют обычные лампы накаливания. Многочисленные Интернет магазины в режиме онлайн продают светодиодные ленты и другие осветительные приборы. Также можно найти калькулятор расчета схем драйверов для них, если появится необходимость их ремонта или изготовления своими руками. Такому бурному развитию есть целый ряд причин.

Основные преимущества

  • малое потребление энергии;
  • высокий КПД;
  • низкие напряжения;
  • почти отсутствует нагрев;
  • высокая степень электрической и пожарной безопасности;
  • крепкий корпус: отсутствие хрупких нитей накаливания и стеклянных колб делает их устойчивыми к механическим, вибрационным воздействиям;
  • безынерционное срабатывание обеспечивает быстродействие, нет затрат времени на разогрев нити накаливания;
  • прочность, малые габариты и долговечность;
  • непрерывный ресурс работы не менее 5 лет;
  • широкий выбор спектра (цвета) и возможность конструкции отдельного элемента делать рассеянное или направленное освещение.

Есть несколько существенных недостатков:

  1. Высокая стоимость.
  2. Интенсивность светового потока отдельного элемента мала.
  3. Чем выше напряжение требуемого источника питания, тем быстрее разрушается структура светодиодных элементов. Проблема перегрева решается установкой радиатора.

Параметры и особенности

Достоинств у светодиодов намного больше, чем недостатков, но по причине высокой стоимости народ не спешит приобретать осветительные приборы на основе светодиодов. Люди, обладающие необходимыми познаниями, покупают отдельные элементы и сами собирают светильники для аквариума, делают подключения на приборные панели автомобилей, стоповых сигналов и габаритов. Но для этого надо хорошо разобраться в принципах работы, параметрах и конструктивных особенностях светодиодов.

Параметры:

  • рабочий ток;
  • рабочее напряжение;
  • цвет светового потока;
  • угол рассеивания:
  • тип корпуса.

Особенностью конструкций является диаметр, форма линзы, которая определяет направленность и степень рассеивания светового потока. Участок цветового спектра свечения определяют примеси добавляемые в полупроводниковый кристалл диода. Фосфор, индий, галлий, алюминий обеспечивают подсветку от красного до желтого диапазона.

Состав азота, галлия, индия сделает спектр в диапазоне синего и зеленого цветов, если к кристаллу синего (голубого) спектра добавить люминофор, можно получить белый свет. Углы направления и рассеивания потоков определяет состав кристалла, но в большей степени форма линзы светодиода.

Для поддержания живого мира аквариума необходим процесс фотосинтеза водорослей. Здесь требуется правильный спектр и определенный уровень освещения аквариума, с чем хорошо справляются светодиоды.

Расчет параметров и схем

Определившись с цветом, направлением потока освещения и напряжением источника питания можно покупать светодиоды. Но чтобы собрать нужную схему, надо сделать расчет резистора светодиода в цепи, который гасит повышенное напряжение питания. Рабочий ток и напряжение нам известно по номиналам.

Надо обязательно учитывать, что светодиод это полупроводник, который имеет полярности.

Если перепутать полярности, он не засветится и может вообще выйти из строя. Хорошим примером для расчета гасящего резистора в схемах подключения светодиодов являются светотехнические приборы автомобиля. В качестве индикации состояния определенного технического параметра используется один светодиодный элемент, как вариант берется пониженный уровень охлаждающей жидкости радиатора.

Схема подключения светодиода

R = Uак. – Uраб./ I раб.
R = 12В – 3В/00,2А = 450 Ом = 0,45 кОм.

Uак – напряжение источника питания, в нашем случае автомобильный аккумулятор 12В;
Uраб – рабочее напряжение светодиода;
I раб – рабочий ток светодиода.

Можно рассчитать сопротивление гасящего резистора в схеме с последовательным подключением некоторого количества светодиодов. Такой вариант может использоваться для подсветки приборов на передней панели или в качестве стоповых огней автомобиля.

Схема последовательного подключения светодиодов и гасящего сопротивления

Расчет сопротивления аналогичный:

R = Uак – Uраб*n / Iраб.

R = 12В – 3В * 3/ 0.02А = 150 Ом = 0,15 кОм.

n – количество светодиодов 3 шт.

Стоит рассмотреть случай с шестью светодиодами; в стопорных фонарях применяют и большее количество, но методика расчета сопротивления и построение схемы будут те же.

R = Uак – Uраб*n / Iраб
R = 12В – 18 В/ 002А – рабочее напряжение диодов превышает напряжение источника питания, в этом случае придется диоды разделить на 2 группы по три диода и подключить их по параллельной схеме. Расчеты делаем для каждой группы отдельно.

Схема с шестью светодиодами

Предыдущий расчет с тремя светодиодами в схеме с последовательным подключением показывает, что для параллельного подключения в каждой группе величина сопротивления резистора должна быть по 0,15 кОм.

Несмотря на небольшой нагрев, светодиодные светильники не работают без радиатора. Например, для освещения аквариума сверху устанавливается крышка, на которой крепятся точечные источники света или светодиодная лента. Чтобы избежать ее перегрева, применяется алюминиевый профиль. Для изготовления радиатора начинают применять специальные пластмассы, рассеивающие тепло. Специалисты не рекомендуют самостоятельно заниматься их изготовлением, хотя никто не запрещает принимать меры по улучшению теплоотвода от мощных светильников. В качестве радиатора хорошо применять медь, обладающую высокой теплопроводностью.

На многих сайтах можно найти калькулятор, с помощью которого предоставляется возможность выбора схемы, внесения параметров диода и расчета в режиме онлайн резистора для одного светодиода или группы.

В специализированных магазинах можно купить диски с программным обеспечением и установить на домашний компьютер драйвера. Программа с драйверами легко скачивается бесплатно в режиме онлайн или покупается, если оплатить электронными деньгами на сайте.

Особенности, которые надо учитывать:

  • Не рекомендуется подключать светодиоды в параллельной схеме через одно сопротивление. При неисправности одного диода на остальные будет подаваться слишком мощное напряжение, что приведет все диоды к выходу из строя. Если попадется такая схема, можно через онлайн-калькулятор рассчитать и переделать ее, добавив отдельные сопротивления на светодиоды.

Схема параллельного подключения

  • В расчетах могут получиться значения резистора, которые не совпадают со стандартными номиналами, тогда выбирается сопротивление немного большее. Здесь удобно использовать калькулятор в онлайн режиме.
  • При совпадении рабочего напряжения светодиодов и источника питания в бытовых схемах для фонариков, елочных гирлянд иногда резистор не используют. При этом отдельные светодиоды светятся с разной яркостью, это вызвано разбросом их параметров. Рекомендуется в этих случаях применять конверторы для повышения напряжений.

Ниже изображена одна из простейших схем драйвера светодиодной лампы.

Схема и фото драйвера лампы MR-16

Схема собрана с применением вместо трансформатора конденсатора C1 и резистора R1. Напряжение подается на диодный мост. Ограничение тока обеспечивается за счет конденсатора С1, который создает сопротивление, но не рассеивает тепло, а уменьшает напряжение при последовательном подключении к цепи питания.

Выпрямленное напряжение сглаживается с помощью электролитического конденсатора С2. Сопротивление R1 предназначено для разрядки конденсатора С1 при отключении питания. R1 и R2 в работе схемы не участвуют. Резистор R2 предназначен для защиты конденсатора С2 от пробоя, если происходит обрыв в цепи питания лампы.

На фото представлен вид драйвера с двух сторон. Красный цилиндр — это изображение конденсатора С1, черный — С2.

Резистор. Видео

На вопрос, что такое резистор, и как он работает, ответит это видео. Простота изложения дает возможность усвоить материал даже новичку.

Учитывая все вышесказанное, можно сделать правильный самостоятельный расчет резистора для светодиода и приобрести в специализированном магазине то, что по-настоящему пригодится в хозяйстве.

Оцените статью:

Как рассчитать сопротивление резистора для светодиода: формула, онлайн калькулятор

Светодиоды пришли на смену традиционным системам освещения – лампам накаливания и энергосберегающим лампам. Чтобы диод работал правильно и не перегорел, его нельзя подключать напрямую в питающую сеть. Дело в том, что он имеет низкое внутреннее сопротивление, потому если подключить его напрямую, то сила тока окажется высокой, и он перегорит. Ограничить силу тока можно резисторами. Но нужно подобрать правильный резистор для светодиода. Для этого проводятся специальные расчеты.

Расчет резистора для светодиода

Чтобы компенсировать сопротивление светодиода, нужно прежде всего подобрать резистор с более высоким сопротивлением. Такой расчет не составит труда для тех, кто знает, что такое закон Ома.

Математический расчет

Исходя из закона Ома, рассчитываем по такой формуле:

где Un – напряжение сети; Uvd – напряжение, на которое рассчитана работа светодиода; Ivd – ток.

Допустим, у нас светодиод с характеристиками:

2,1 -3, 4 вольт – рабочее напряжение (Uvd). Возьмем среднее значение 2, 8 вольт.

20 ампер – рабочий ток (Ivd)

220 вольт – напряжение сети (Un)

В таком случае мы получаем величину сопротивления R = 10, 86. Однако этих расчетов недостаточно. Резистор может перегреваться. Для предотвращения перегрева нужно учитывать при выборе его мощность, которая рассчитывается по следующей формуле:

Обратите внимание, что резистор подведен на плюсовой контакт диода.

Для наглядности рекомендуем посмотреть видео:

Графический расчет

Графический способ – менее популярный для расчета резистора на светодиод, но может быть даже более удобный. Зная напряжение и ток диода (их называют еще вольтамперными характеристиками – ВАХ), вы можете узнать сопротивление нужного резистора по графику, представленному ниже:

Тут изображен расчет для диода с номинальным током 20мА и напряжением источника питания 5 вольт. Проводя пунктирную линию от 20 мА до пересечения с «кривой led» (синий цвет), чертим пересекающую линию от прямой Uled до прямой и получаем максимальное значение тока около 50 мА. Далее рассчитываем сопротивление по формуле:

Получаем значение 100 Ом для резистора. Находим для него мощность рассеивания (Силу тока берем из Imax):

Онлайн-калькулятор расчета сопротивления

Задача усложняется, если вы хотите подключить не один, а несколько диодов.

Для облегчения самостоятельных расчетов мы подготовили онлайн-калькулятор расчета сопротивления резисторов. Если подключать несколько светодиодов, то нужно будет выбрать между параллельным и последовательным соединениями между ними. И для этих схем нужны дополнительные расчеты для источника питания. Можно их легко найти в интернете, но мы советуем воспользоваться нашим калькулятором.

 

Вам понадобится знать:

  1. Напряжение источника питания.
  2. Характеристику напряжения диода.
  3. Характеристику тока диода.
  4. Количество диодов.

А также нужно выбрать параллельную или последовательную схему подключения. Рекомендуем ознакомиться с разницей между соединениями в главах, которые мы подготовили ниже.

Читайте также: Основные способы определения полярности у светодиода.

В каких случаях допускается подключение светодиода через резистор

Никакие диоды, в том числе светодиоды, нельзя включать без ограничения проходящего тока. Резисторы в таком случае просто необходимы. Даже небольшое изменения напряжения вызывают очень сильное изменение тока и, следовательно, перегрев диода.

Если вы планируете подключать несколько диодов, рекомендуем выбирать модели одной фирмы. Одинаковые образцы лучше работают вместе.

Параллельное соединение

Для тех, кто уже сталкивался на практике со схемами подключения светодиодного освещения, вопрос о выборе между параллельным и последовательным соединением обычно не стоит. Чаще всего выбирают схему последовательного соединения. У параллельного соединения для светодиодов есть один важный недостаток – это удорожание и усложнение конструкции, потому что для каждого диода нужен отдельный резистор. Но такая схема имеет и большой плюс – если сгорела одна линия, то перестанет светить только один диод, остальные продолжат работу.

Читайте также: Схема для плавного включения ламп накаливания 220 В.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Объясняется достаточно просто: если перегорит один светодиод, то на другой (-ие) может попасть больший ток и начнется перегрев. Потому при параллельной схеме подключения каждому диоду нужен отдельный резистор.

Неправильно:

 

Правильно:

 

Последовательное соединение светодиодов

Именно такое соединение пользуется популярностью. Объясняется такой частый выбор простым примером. Представьте, что в елочной гирлянде для каждого светодиода подобран резистор. А в гирлянде этих лампочек бывает более сотни! Параллельное соединение в данном случае невыгодно и трудоемко.

Только в самодельных гирляндах можно встретить параллельное соединение. В заводских моделях всегда последовательное.

Можно ли обойтись без резисторов

В бюджетных или просто старых приборах используются резисторы. Также они используются для подключения всего только нескольких светодиодов.

Но есть более современный способ – это понижение тока через светодиодный драйвер. Так, в светильниках в 90% встречаются именно драйверы. Это специальные блоки, которые через схему преобразуют характеристики тока и напряжения питающей сети. Главное их достоинство – они обеспечивают стабильную силу тока при изменении/колебании входного напряжения.

Читайте также: Как сделать блок питания из энергосберегающей лампы своими руками.

Сегодня можно подобрать драйвер под любое количество светодиодов. Но рекомендуем не брать китайские аналоги! Кроме того, что они быстрей изнашиваются, ещё могут выдавать не те характеристики в работе, которые заявлены на упаковке.

Если светодиодов не так много, подойдут и резисторы вместо достаточно высокого по цене драйвера.

Интересное видео по теме:

В заключение

Пишите комментарии и делитесь статьей в социальных сетях! Если возникли вопросы, можно найти в интернете дополнительные видео для расчета сопротивления резистора и на другие близкие темы.

Как рассчитать номинал резистора для светодиодного освещения

Определение номинала резистора для освещения светодиодов простое и понятное дело, но мы должны принимать во внимание цвет светодиода, а также номинальную мощность требуемого резистора и количество светодиодов в цепи. Мы надеемся, что чтение «Как рассчитать номинал резистора для светодиодного освещения» даст вам то, что вам нужно для вашего проекта.

Светодиоды

становятся все более популярными для различных световых проектов и нужд.Это связано с превосходной энергоэффективностью и увеличенным сроком службы светодиодов по сравнению с лампами накаливания. Кроме того, по мере совершенствования технологии и увеличения производства стоимость продолжает снижаться.

Чтобы рассчитать номинал резистора для светодиодного освещения от 12 В постоянного тока, выполните следующие действия:
  1. Определите напряжение и ток, необходимые для вашего светодиода.
  2. Мы будем использовать следующую формулу для определения номинала резистора: резистор = (напряжение батареи — напряжение светодиода) / желаемый ток светодиода.
  3. Для типичного белого светодиода, который требует 10 мА при питании от 12 В, значения следующие: (12–3,4) /. 010 = 860 Ом.
  4. Чтобы использовать несколько светодиодов параллельно, просуммируйте текущие значения. Из приведенного выше примера, если мы используем 5 белых светодиодов, потребляемый ток составляет 10 мА x 5 = 50 мА. Итак (12-3,4) /. 050 = 172 Ом.
Объясните идею расчета номинала резистора для светодиодного освещения

Светодиодный куб RGB 8x8x8 по GPL3 +

LED — это аббревиатура от Light Emitting Diode.Это означает, что светодиод имеет определенную полярность, которая должна быть применена, чтобы он излучал свет. Несоблюдение этого требования полярности может вызвать катастрофическое повреждение светодиода. Это связано с тем, что светодиод имеет относительно низкое допустимое значение напряжения обратной полярности (обычно около 5 вольт). Поскольку светодиод по сути является диодом, он имеет максимальное значение тока, которое нельзя превышать в течение любого периода времени.

Применение светодиодов

Имея это в виду, мы рассмотрим требования к ограничивающему резистору, который должен использоваться в цепи светодиода.Поскольку светодиоды доступны в различных цветах, требуемое значение сопротивления будет варьироваться в зависимости от цвета светодиода. Это связано с тем, что цвет светодиода определяется материалами, из которых он изготовлен, и эти различные материалы имеют разные характеристики напряжения. Значение прямого напряжения — это напряжение, необходимое для включения светодиода. Обычные красный, зеленый, оранжевый и желтый светодиоды имеют прямое напряжение приблизительно 2,0 В; но белый и синий светодиоды имеют значение прямого напряжения 3.4 вольта. Из-за этого изменения значение сопротивления резистора будет варьироваться в зависимости от цвета светодиода.

Процедура состоит в том, чтобы выбрать номинал резистора, который будет обеспечивать правильное количество тока, протекающего в светодиодах, на основе этого значения прямого напряжения и значения источника питания, запитывающего схему.

Так как автомобильные приложения — одно из самых популярных применений светодиодов, я рассмотрю пример проекта светодиодного освещения, в котором в качестве источника питания используется 12 вольт.Требуемая формула — это закон Ома, который гласит, что сопротивление равно напряжению, деленному на ток. Здесь важно отметить, что значение напряжения используется в расчетах. Разница между напряжением источника питания (аккумулятора) и значением прямого напряжения светодиода. Это потому, что мы хотим, чтобы резистор «понижал» напряжение от источника питания до значения прямого напряжения светодиода.

Формула
Резистор = (напряжение батареи — напряжение светодиода) / желаемый ток светодиода.

Итак, предположим, что источник питания 12 В и белый светодиод с желаемым током 10 мА; Формула принимает вид Резистор = (12–3,4) /. 010, что составляет 860 Ом. Поскольку это нестандартное значение, я бы использовал резистор на 820 Ом. Нам также необходимо определить номинальную мощность (ватт) необходимого резистора. Это вычисляется путем умножения значения напряжения, падающего на резистор, на значение тока, протекающего в нем. Для нашего примера, приведенного выше, (12–3,4) X 0,010 = 0,086, поэтому мы можем безопасно использовать в этом приложении резистор Вт, поскольку мы должны использовать следующий по величине стандартный номинальный ток.

Если требуется более одного светодиода, несколько светодиодов (одного цвета) могут быть подключены параллельно. Это сохранит то же требование напряжения, но значение тока будет увеличиваться прямо пропорционально количеству светодиодов. Номинальная мощность резистора также может увеличиться. В качестве примера мы возьмем тот же белый светодиод, но мы подключим 5 светодиодов параллельно. Следовательно, требуемое значение тока будет 10 мА, умноженным на 5 (0,010 X 5 = 0,050). Используя это в нашей формуле; (12-3.4) /. 050 = 172 Ом. Используйте стандартное значение 180 Ом. Номинальная мощность теперь будет выше (12–3,4) X 0,050 = 0,43, поэтому в этом случае нам нужно использовать резистор не менее ½ Вт.

Заключение

Эти два примера будут повторяться для красных светодиодов. Для одного красного светодиода: (12–2,0) /. 010 = 1000 Ом, что составляет 1 кОм, а номинальная мощность составляет (12–2,0) X (0,010) = 0,100, поэтому Вт достаточно. Для 5 красных светодиодов, включенных параллельно: (12-2.0) /. 05 = 200 Ом, что является стандартным значением, а номинальная мощность составляет (12-2.0) X 0,050 = 0,5, поэтому я бы использовал резистор на 1 Вт, чтобы дать нам некоторый допуск для компенсации колебаний напряжения источника питания и т. Д.

Как мы видим, определение номинала резистора для освещения светодиодов простое и понятное, но мы должны принимать во внимание цвет светодиода, а также номинальную мощность требуемого резистора и количество светодиодов в цепи. Вы можете посетить наш магазин, где представлен широкий выбор светодиодов и резисторов.

Расчет значений резисторов, ограничивающих ток для цепей светодиодов


Светодиод — это один из тех компонентов продукта, который просто обязан работать.Если я смотрю на свой компьютер через комнату и не вижу, как его светодиодный индикатор мигает мне в ответ, я предполагаю, что он выключен; Никогда не ожидал, что светодиод мог перегореть. Для этого есть веская причина: при работе в соответствии со спецификациями срок службы светодиода составляет 100000 часов или более.

Ключом к увеличению срока службы светодиода является ограничение протекающего через него тока. Часто это делается с помощью простого резистора, значение которого рассчитывается по закону Ома. В этой статье рассматривается, как применить закон Ома к одиночным и кластерным схемам светодиодов.Я также предоставил электронную таблицу Excel, чтобы упростить и ускорить процесс.

Одиночные светодиоды

При вычислении значения резистора, ограничивающего ток для одного светодиода, основная форма закона Ома — V = IR — становится:

где:

  • В batt — напряжение между резистором и светодиодом.
  • В led — прямое напряжение светодиода.
  • I led — прямой ток светодиода.

На рисунке 1 (а) показан пример схемы с одним светодиодом. Между прочим, V batt — V led — это падение напряжения на резисторе, а (I led ) 2 R — мощность, рассеиваемая резистором. Расчет рассеиваемой мощности — это этап, который многие люди — как любители, так и профессионалы — склонны пропускать. Итак, что вы называете резистором на 1/8 Вт, который должен рассеивать 1/2 Вт? Уголь.

светодиодов в серии

Приведенное выше уравнение становится лишь немного сложнее, если вы соедините несколько светодиодов последовательно.Падение напряжения на светодиодах увеличивается, уменьшая падение напряжения на резисторе. Ток через резистор (и светодиоды) остается прежним:

, где n — количество последовательно включенных светодиодов. На рис. 1 (b) показан пример с тремя последовательно включенными светодиодами. Падение напряжения на светодиодах в три раза больше, чем у одного светодиода.

светодиодов параллельно

Если вы подключите несколько светодиодов параллельно, ток через резистор возрастет (хотя ток через каждый светодиод останется прежним).Падение напряжения на светодиодах не изменяется, как и падение напряжения на резисторе:

, где m — количество параллельно включенных светодиодов. На рис. 1 (c) показан пример с тремя параллельно включенными светодиодами. Ток в цепи в три раза превышает ток одного светодиода.

РИСУНОК 1. Простые светодиодные схемы. (а) Схема с одним светодиодом. (б) светодиоды последовательно. (c) светодиоды параллельно.


Светодиодные массивы

Если вы соединяете несколько светодиодов в массив, вам просто нужно объединить последовательную и параллельную формы уравнений:

Важно, чтобы в каждой из m параллельных ветвей цепи было n светодиодов (соединенных последовательно) и чтобы все светодиоды имели одинаковые светодиодные индикаторы V и I .В противном случае все ставки отменены. На рис. 2 (а) показаны четыре светодиода, подключенных таким образом, что предыдущее уравнение не применяется. Рисунок 2 (b) показывает один из нескольких «правильных» способов подключения четырех светодиодов.

РИСУНОК 2. Светодиодные матрицы .


Регулировка яркости

Контроль яркости полезен для гаджетов, которые могут использоваться в различных условиях окружающего освещения (снаружи / внутри, ночью / днем ​​и т. Д.). Для этой функции требуется два резистора — один фиксированный (R f ) и один переменный (R v ).R f ограничивает ток, когда R v находится на минимальном значении — обычно 0 Ом — что позволяет максимальному току протекать через светодиод. Стоимость рэндов f рассчитывается, когда рандов против = 0:

.

, где Iled (max) — это максимальный ток, который вы хотите через светодиод.

Увеличение значения R v увеличивает сопротивление цепи, уменьшая ток через светодиод. Когда R v установлен на максимальное значение, через светодиод проходит минимальный ток.Стоимость рэндов против определяется по формуле:

.

, где I led (мин.) — минимальный ток, который вы хотите через светодиод.

РИСУНОК 3. Регулировка яркости.


Этапы проектирования

Существует четыре шага для выбора подходящего номинала (значений) токоограничивающего резистора:

  • Используя желаемые рабочие характеристики и спецификации светодиодов, решите соответствующие уравнения для «идеальных» номиналов резисторов.
  • Выберите подходящие «реальные» значения резистора.Если в расчетах указан резистор 132,27 Ом, ближайшие «реальные» значения резистора составляют 130 Ом и 150 Ом (допуск 5%). Конечно, вы можете выбрать другие значения в зависимости от того, что у вас есть под рукой.
  • Вставьте значения резисторов, которые вы выбрали, обратно в вычисления, чтобы увидеть, будут ли они удовлетворять желаемым рабочим характеристикам.
  • Выполните вычисления, используя выбранные значения резисторов с крайними допусками. Резистор 150 Ом с допуском 5% может иметь диапазон от 142 Ом.От 5 Ом до 157,5 Ом и редко бывает точно 150 Ом. Также рассчитайте ток, потребляемый схемой, и необходимую мощность, рассеиваемую резисторами.

Некоторые люди не выполняют ни одного из этих шагов и просто угадывают значение. Большинство из них проходят первые два шага, что обычно нормально, если вы не работаете слишком близко к пределам светодиода, где допуски могут подтолкнуть вас к краю. Выполнив все четыре шага, вы можете гарантировать, что ваши светодиоды, по крайней мере, будут работать безопасно и прослужат долгое время.

Множественные итерации — это перетаскивание

Подсчитать подходящие резисторы для светодиодных цепей довольно просто. Это займет всего несколько минут, даже если вы пройдете все четыре этапа проектирования. В этом нет ничего страшного, если вам нужно сделать это только один раз, но что, если вы хотите увидеть влияние различных резисторов в цепи? Что делать, если у вас есть набор светодиодов, и вы хотите определить, как лучше всего их подключить? ( На рис. 4 показаны четыре способа подключения шести светодиодов.) Расчеты по-прежнему просты; вам просто нужно повторить их еще несколько раз.Это утомительно, и именно тогда люди склонны совершать ошибки.

Чтобы избавиться от скуки и связанных с ней ошибок, я составил электронную таблицу Excel, в которой выполняются все необходимые вычисления, включая поиск «реальных» значений резисторов. Это реальная экономия времени!

РИСУНОК 4. Способы подключения шести светодиодов.


Использование электронной таблицы

Электронная таблица (доступна на веб-сайте Nuts & Volts по адресу www.nutvolts.com ) разбит на три раздела. В первом разделе «Характеристики цепи» вы вводите параметры цепи. Во втором разделе, «Расчетные значения I & R и предлагаемые резисторы», вычисляются необходимые номиналы резисторов и предлагаются «настоящие» резисторы для использования в схеме. Последний раздел, «Расчетная производительность с использованием выбранных резисторов», позволяет вам подключать значения резисторов (предлагаемые значения или значения по вашему выбору) и рассчитывать токи светодиодов, токи источника питания и рассеиваемую мощность резистора.Также учитывается допуск резистора. Примечание. Вам следует изменить только значения, выделенные синим полужирным шрифтом. Обычный черный текст изменять нельзя. NV

РИСУНОК 5. Вид электронной таблицы.


Загрузки

Что в почтовом индексе? Таблица для расчета резисторов

светодиодов (светоизлучающих диодов) | Electronics Club

Светодиоды (светодиоды) | Клуб электроники

Тестирование | Цвет | Размеры и формы | Резистор | Светодиоды последовательно | Светодиодные данные | Мигает | Подставки

Смотрите также: Лампы | Диоды

LED = светоизлучающий диод

светодиода излучают свет, когда через них проходит электрический ток.

Электрические характеристики светодиода сильно отличаются от поведения лампы, и он должен быть защищен от пропускание чрезмерного тока, обычно это достигается подключением резистора последовательно со светодиодом. Никогда не подключайте светодиод напрямую к батарее или источнику питания.

светодиода должны быть подключены правильно, на схеме может быть указано a или + для анода и k или для катода (да, это действительно k, а не c, для катода).Катод — это короткий вывод, и на корпусе может быть небольшое сглаживание. круглых светодиодов. Если вы видите внутри светодиода, катод — это электрод большего размера, но это не официальный метод идентификации.

Пайка светодиодов

Светодиоды

могут быть повреждены нагреванием при пайке, но риск невелик, если вы не будете очень медленными. При пайке большинства светодиодов особых мер предосторожности не требуется.

Rapid Electronics: светодиоды


Тестирование светодиода

Никогда не подключайте светодиод напрямую к батарее или источнику питания , потому что светодиод может быть разрушенным чрезмерным током, проходящим через него.

Светодиоды

должны иметь последовательно включенный резистор для ограничения тока до безопасного значения, для в целях тестирования 1к резистор подходит для большинства светодиодов, если напряжение питания составляет 12 В или меньше. Не забудьте правильно подключить светодиод.

Пожалуйста, смотрите ниже объяснение того, как разработать подходящий резистор. значение для светодиода.


Цвета светодиодов

Цвет светодиода определяется его полупроводниковым материалом, а не окраской. «упаковки» (пластиковый корпус).Светодиоды всех цветов доступны в неокрашенном виде. упаковки, которые могут быть рассеянными (молочными) или прозрачными (часто называемыми «прозрачными от воды»). Цветные упаковки также доступны в диффузных (стандартный тип) или прозрачных.

Синие и белые светодиоды могут быть дороже других цветов.

Двухцветные светодиоды

Двухцветный светодиод имеет два светодиода, подключенных «обратно параллельно» (один вперед, один назад). объединены в один корпус с двумя выводами. Одновременно может гореть только один из светодиодов и они менее полезны, чем трехцветные светодиоды и светодиоды RGB, описанные ниже.

Трехцветные светодиоды

Самый популярный тип трехцветного светодиода, в котором красный и зеленый светодиоды объединены в один. пакет с тремя выводами. Их называют трехцветными, потому что смешанные красный и зеленый свет кажется желтым, и он появляется, когда горят и красный, и зеленый светодиоды.

На схеме показана конструкция трехцветного светодиода. Обратите внимание на разные длины трех выводов. Центральный вывод (k) является общим катодом для оба светодиода, внешние выводы (a1 и a2) являются анодами для светодиодов, что позволяет каждый должен быть освещен отдельно, или оба вместе, чтобы дать третий цвет.

Rapid Electronics: красный / зеленый светодиод

RGB светодиоды

светодиодов RGB содержат красный, зеленый и синий светодиоды в одном корпусе. Каждый внутренний светодиод можно переключить включается и выключается по отдельности, позволяя производить диапазон цветов:

  • Красный + зеленый дает желтый
  • Красный + синий дает пурпурный
  • Зеленый + синий дает голубой
  • Красный + зеленый + синий дает белый

Можно получить более широкий диапазон цветов, изменяя яркость каждого внутреннего светодиода.

Rapid Electronics: RGB LED



Размеры, формы и углы обзора светодиодов

Светодиоды

доступны в самых разных размерах и формах. «Стандартный» светодиод имеет круглое поперечное сечение диаметром 5 мм, и это, вероятно, лучший тип для общего использования, но также популярны круглые светодиоды диаметром 3 мм.

Светодиоды круглого сечения используются часто, и их очень легко установить на коробки, просверлив отверстие под диаметр светодиода, добавив пятно клея, поможет удержать светодиод, если необходимо.Также доступны зажимы для светодиодов (изображенные на рисунке) для фиксации светодиодов в отверстиях. Другие формы поперечного сечения включают квадрат, прямоугольник и треугольник.

Фотография © Rapid Electronics

Светодиоды различаются не только цветами, размерами и формами, но и углом обзора. Это говорит вам, насколько распространяется луч света. Стандартные светодиоды имеют обзорный угол 60 °, но другие имеют узкий луч 30 ° или меньше.

Склад Rapid Electronics особенно широкий выбор светодиодов и их веб-сайт является хорошим руководством к широкому ассортименту доступных включая новейшие светодиоды высокой мощности.


Расчет номинала резистора светодиода

Светодиод должен иметь последовательно подключенный резистор для ограничения тока через светодиод. иначе он перегорит практически мгновенно.

Номинал резистора R определяется по формуле:

R = значение резистора в омах ().
В S = напряжение питания.
В L = напряжение светодиода (2 В или 4 В для синих и белых светодиодов).
I = ток светодиода в амперах (A)

Ток светодиода должен быть меньше максимально допустимого для вашего светодиода.Для светодиодов стандартного диаметра 5 мм максимальный ток обычно составляет 20 мА, поэтому значения 10 мА или 15 мА подходят для многих цепей. Для расчета ток должен быть в амперах (А). Чтобы преобразовать мА в А, разделите ток в мА на 1000.

Если расчетное значение недоступно, выберите ближайшее стандартное значение резистора. что на больше , так что ток будет немного меньше, чем вы выбрали. На самом деле вы можете выбрать резистор большего номинала, чтобы уменьшить ток. (например, для увеличения срока службы батареи), но это сделает светодиод менее ярким.

Например

Если напряжение питания V S = 9V, а у вас красный светодиод (V L = 2V), требующий тока I = 20 мА = 0,020 А,
R = (9В — 2В) / 0,02А = 350, так что выберите 390 (ближайшее стандартное значение, которое больше).

Напряжение светодиода

Напряжение светодиода V L определяется цветом светодиода. Красные светодиоды имеют самое низкое напряжение, желтые и зеленые немного выше. Наибольшее напряжение имеют синий и белый светодиоды.

Для большинства целей точное значение не критично, и вы можете использовать 2 В для красных, желтых и зеленых светодиодов или 4 В для синих и белых светодиодов.

Расчет формулы светодиодного резистора по закону Ома

Закон Ома гласит, что сопротивление резистора R = V / I, где:
В = напряжение на резисторе (в данном случае = В S — В L )
I = ток через резистор

Итак, R = (V S — V L ) / I

Для получения дополнительной информации о расчетах см. Страницу закона Ома.



Последовательное подключение светодиодов

Если вы хотите, чтобы несколько светодиодов горели одновременно, их можно соединить последовательно. Это продлевает срок службы батареи за счет освещения нескольких светодиодов таким же током, как и только один светодиод.

Все светодиоды, подключенные последовательно, пропускают одинаковый ток , поэтому лучше всего, если они все того же типа. Источник питания должен иметь достаточное напряжение, чтобы обеспечить около 2 В для каждого светодиода. (4 В для синего и белого) плюс еще минимум 2 В для резистора.Чтобы выработать ценность для резистора вы должны сложить все напряжения светодиодов и использовать это для V L .

Пример расчетов:

Для последовательного красного, желтого и зеленого светодиода требуется напряжение питания не менее 3 × 2 В + 2 В = 8 В, поэтому батарея 9 В и будет идеальной.
В L = 2 В + 2 В + 2 В = 6 В (три напряжения светодиодов суммируются).
Если напряжение питания V S составляет 9 В, а ток I должен быть 15 мА = 0,015 А,
Резистор R = (В S — В L ) / I = (9-6) / 0.015 = 3 / 0,015 = 200,
, поэтому выберите R = 220 (ближайшее стандартное значение, которое больше).

Избегайте параллельного подключения светодиодов!

Соединение нескольких светодиодов параллельно с одним общим резистором, как правило, является плохой идеей.

Если для светодиодов требуется немного другое напряжение, загорится только светодиод с самым низким напряжением, и он может быть разрушен более сильным током, протекающим через него. Хотя идентичные светодиоды могут быть успешно подключены параллельно с одним резистором, что редко дает какую-либо полезную пользу потому что резисторы очень дешевые, а ток такой же, как при подключении светодиодов по отдельности.

Если светодиоды включены параллельно, у каждого из них должен быть свой резистор.


Чтение таблицы технических данных для светодиодов

Веб-сайты и каталоги поставщиков обычно содержат таблицы технических данных для таких компонентов, как светодиоды. Эти таблицы содержат много полезной информации в компактной форме, но они могут быть трудным для понимания, если вы не знакомы с используемыми сокращениями. Вот важные свойства светодиодов:

  • Максимальный прямой ток, I F макс.
    «Вперед» означает, что светодиод правильно подключен.
  • Типичное прямое напряжение, В F тип.
    Это V L в расчете светодиодного резистора, около 2В или 4В для синих и белых светодиодов.
  • Сила света
    Яркость при заданном токе, например 32 мкд при 10 мА (мкд = милликандела).
  • Угол обзора
    60 ° для стандартных светодиодов, другие излучают более узкий луч около 30 °.
  • Длина волны
    Пиковая длина волны излучаемого света, она определяет цвет светодиода, е.грамм. красный 660 нм, синий 430 нм (нм = нанометр).

Следующие два свойства можно игнорировать для большинства цепей:

  • Максимальное прямое напряжение, В F max.
    Это можно игнорировать, если у вас есть подходящий резистор, включенный последовательно.
  • Максимальное обратное напряжение, В R max.
    Этим можно пренебречь, если светодиоды подключены правильно.

Мигающие светодиоды

Мигающие светодиоды выглядят как обычные светодиоды, но содержат ИС (интегральную схему) а также сам светодиод.Микросхема мигает светодиодом с низкой частотой, например 3 Гц (3 вспышки в секунду). Мигающие светодиоды предназначены для прямого подключения к определенному напряжению питания, например, 5 В или 12 В. без последовательного резистора. Обратитесь к поставщику, чтобы узнать безопасный диапазон напряжения питания для конкретный мигающий светодиод. Частота вспышек фиксированная, поэтому их использование ограничено, и вы можете предпочесть построить свою собственную схему для мигания обычного светодиода, например Проект мигающего светодиода, в котором используется 555 нестабильная схема.

Rapid Electronics: мигающие светодиоды


Светодиодные дисплеи

Светодиодные экраны

представляют собой пакеты из множества светодиодов, расположенных по схеме, наиболее знакомой схеме. является 7-сегментным дисплеем для отображения чисел (цифры 0–9).Картинки ниже проиллюстрировать некоторые из популярных дизайнов.

Гистограмма, 7-сегментные, звездообразные и матричные светодиодные дисплеи
Фотографии © Rapid Electronics

Rapid Electronics: светодиодные дисплеи

Подключение контактов светодиодных дисплеев

Существует много типов светодиодных дисплеев, поэтому для получения дополнительной информации см. Каталог или веб-сайт поставщика. штыревые соединения. На диаграмме справа показан пример из Быстрая электроника. Как и многие 7-сегментные дисплеи, этот пример доступен в двух версиях: Общий анод (SA) со всеми анодами светодиодов, соединенными вместе, и общий катод (SC) со всеми катодами, соединенными вместе.Буквы a-g относятся к 7 сегментам, A / C является общим анодом или катодом, в зависимости от ситуации (на 2 штыря). Обратите внимание, что некоторые контакты нет (NP), но их позиция все еще пронумерована.

См. Также: Драйверы дисплея.


Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент светодиодов, других компонентов и инструментов для электроники, и я рад рекомендую их как поставщика.


Книги по комплектующим:


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Калькулятор светодиодного резистора

— Дюймовый калькулятор

Рассчитайте резистор для использования в цепи со светодиодом, указав ниже напряжение питания, прямое напряжение и прямой ток.При необходимости рассчитайте резистор для подключения нескольких последовательно соединенных светодиодов.

Результатов:

Рекомендация по мощности резистора



Как рассчитать размер резистора для использования со светодиодом

Светоизлучающие диоды или светодиоды, используемые в электрических цепях, должны быть соединены с резистором для регулирования тока.Это необходимо для предотвращения потребления тока, превышающего номинальный для светодиода, что может привести к повреждению компонента.

Чтобы определить правильное значение резистора, закон Ома используется для вывода формулы для резистора.

Формула для расчета светодиодного резистора

R (Ом) = В с — (В f × N) I f

Требуемое сопротивление равно напряжению питания минус прямое напряжение, умноженное на количество светодиодов, деленное на прямой ток.

В с — или напряжение питания — равно напряжению, подаваемому в цепь.

В f — или прямое напряжение — равно падению напряжения светодиода. Это значение различается для светодиодов разного цвета, см. Таблицу ниже, где показано падение напряжения для светодиодов разных цветов.

I f — или прямой ток — равен току, потребляемому светодиодами. Большинство светодиодов рассчитаны на ток 20-30 мА.

N — количество последовательно включенных светодиодов.

Схема, показывающая схему со светодиодом и необходимым резистором.

Например, найти резистор для использования в светодиодах с прямым напряжением 2 вольта и током 20 миллиампер при напряжении питания 5 В.

R = 5 В — 2 В 0,02 A
R = 3 В 0,02 A
R = 150 Ом

Падение напряжения и рекомендуемый размер резистора для светодиодов разного цвета

Диаграмма, показывающая падение напряжения или прямое напряжение для светодиодов разных цветов, а также рекомендуемый размер резистора для данного прямого тока и напряжения питания.
Цвет Типичное прямое напряжение (Vf) Напряжение питания (Вс) прямой ток (если) Рекомендуемый размер резистора Рекомендуемая номинальная мощность резистора
Красный 2 В 5 В 20 мА 150 Ом 0,06 Вт
Зеленый 2,1 В 5 В 20 мА 145 Ом 0.058 Вт
Синий 3,6 В 5 В 20 мА 70 Ом 0,028 Вт
Белый 3,6 В 5 В 20 мА 70 Ом 0,028 Вт
Желтый 2,1 В 5 В 20 мА 145 Ом 0,058 Вт
Оранжевый 2,2 В 5 В 20 мА 140 Ом 0.056 Вт
Янтарь 2,1 В 5 В 20 мА 145 Ом 0,058 Вт
Инфракрасный 1,7 В 5 В 20 мА 165 Ом 0,066 Вт

Что произойдет, если не использовать резистор со светодиодом? Важное руководство по светодиодам — ​​Siytek

Допускается использование светодиода без резистора, но необходимо использовать некоторый метод ограничения тока, чтобы предотвратить разрушение устройства.Несоблюдение ограничения тока может привести к перегоранию устройства, преждевременному выходу из строя или даже взрыву.

Я наверняка взорвал несколько светодиодов в мои молодые и неопытные годы, в результате чего часть кожуха поразительно разлетелась по комнате!

Во многих приложениях самый простой способ регулировать ток через светодиод — это использовать резистор, хотя существуют более сложные методы, такие как использование драйвера постоянного тока.

В этом уроке мы рассмотрим , почему необходимо ограничивать ток, протекающий через светодиод, и как мы можем выбрать правильный резистор, чтобы вы могли избежать того, чтобы ваш проект превратился в дым.

Что такое светодиод?

Если вы еще не знали, LED обозначает светоизлучающий диод . Это полупроводниковое устройство, которое может превращать электрический ток в свет.

Использование различных полупроводниковых материалов позволяет изготавливать светодиоды разных цветов. Однако до середины 90-х светодиоды имели ограниченный диапазон цветов, таких как красный, зеленый и желтый. В частности, было невозможно произвести синий цвет.

Развитие светодиодной технологии и внедрение новых материалов в производственный процесс расширили диапазон доступных цветов.Одним из величайших достижений в светодиодной технологии стало введение нитрида индия-галлия.

Это позволило производить синие светодиоды, дополняющие диапазон доступных основных цветов: красный, зеленый и синий. Тогда стало возможно производить светодиоды RGB, которые могут воспроизводить весь цветовой спектр. Это открыло множество приложений, с которыми мы уже знакомы.

Вслед за этой разработкой последовали улучшения в яркости, а также в использовании белого светодиода. Как только технология зашла так далеко, светодиодные лампы стали реальностью, и вместо лампы накаливания было установлено светодиодное освещение.

Сейчас доступен широкий спектр различных типов светодиодов, содержащих различные типы материалов. Поскольку в них используются разные материалы, некоторые электрические характеристики отличаются.

Важно понимать основные характеристики, чтобы рассчитать номинал токоограничивающего резистора и разработать схему, которая будет правильно питать ваш светодиод.

Характеристики светодиода

Светодиод — это красивый простой компонент, требующий минимальных знаний в области электроники для использования, и в то же время дает потрясающие конечные результаты для самых простых проектов в области электроники.

Одноцветный вариант имеет только два контакта и для работы требуется только один другой компонент, токоограничивающий резистор. Он также выглядит круто, потому что … это светодиод!

Каждый светодиод имеет два контакта: положительный вывод анода и отрицательный вывод катода. Поскольку светодиод представляет собой диод , полярность должна быть правильной для протекания тока. Схематический символ светодиода из Википедии

Есть три фундаментальных момента, которые нам нужно понять, чтобы рассчитать размер резистора ограничения тока.

  1. Закон Ома
  2. Закон Ватта
  3. Прямое напряжение и ток

Как только мы поймем эти принципы и сможем рассчитать размер нашего ограничивающего резистора, мы сможем понять , почему необходимо использовать резистор (предполагая, что простая схема, в которой не используется драйвер постоянного тока).

Закон Ома

Закон Ома, вероятно, является наиболее фундаментальным принципом в электронике. Он описывает соотношение между напряжением, током и сопротивлением.

Если вы новичок в электронике, иногда бывает трудно представить себе, что именно происходит «внутри проводов», но этот хорошо известный рисунок в карикатуре прекрасно резюмирует это.

Мы можем описать этот принцип в основных математических терминах, напряжение равно току, умноженному на сопротивление.

 напряжение (В) = ток (I) x сопротивление (R) 

В случае нашей светодиодной схемы мы можем использовать Ом для расчета значения нашего ограничивающего резистора с использованием известных значений напряжения и тока.

Закон Ватта

Закон Ватта описывает взаимосвязь между мощностью, напряжением и током. Это измерение количества энергии, используемой с течением времени.

 1 Ватт = 1 Джоуль в секунду 

Простыми математическими терминами мы можем сказать, что мощность равна напряжению, умноженному на ток.

 мощность (Вт) = напряжение (В) x ток (I) 

Обратите внимание, что можно заменить закон Ома на закон Ватта. Вы заметите, что оба закона имеют ток (I) и напряжение (V).Например, вы можете заменить напряжение в законе Ватта на ток , умноженный на сопротивление из закона Ома, поскольку ток , умноженный на сопротивление, равняется напряжению .

 В = I x R
P = I x  V  

, следовательно,

 P = I x  (I x R)  

В случае нашей светодиодной схемы нам нужно использовать закон Ватта для расчета мощности, рассеиваемой резистором.

Когда ток течет через резистор, мощность рассеивается в виде тепла, поэтому мы должны убедиться, что наш резистор способен рассеивать достаточно большое количество энергии в виде тепла, не разрушаясь и не становясь чрезмерно горячим.

Прямое напряжение и ток

Прямое напряжение и прямой ток светодиода — это два свойства, которые нам нужны для расчета необходимого сопротивления.

При подаче напряжения на светодиод, часть напряжения «теряется» из-за характеристик светодиода. Мы называем это падением напряжения , и величина падения напряжения зависит от материалов, используемых в его конструкции, и, следовательно, от цвета. Это напряжение известно как прямое напряжение и обозначается как Vf .

Прямой ток — это значение, используемое для описания величины тока, который мы должны подавать на светодиод, чтобы он светился с оптимальной яркостью. Мы должны ограничить ток, протекающий через него, с помощью внешнего компонента, в нашем случае токоограничивающего резистора.

Оба эти значения приведены в таблице данных, техническом документе, обычно поставляемом со всеми компонентами, которые разработчик схем может использовать для получения технических деталей, необходимых для разработки схемы с использованием конкретного компонента.

В нашем примере мы будем использовать стандартный красный светодиод. Как показано в следующей таблице данных, мы можем видеть, что он имеет прямое напряжение 2,1 вольт и прямой ток 25 миллиампер (то же самое, что 0,025 ампер). Эти значения довольно распространены для стандартного красного светодиода.

Рассчитайте сопротивление

Из таблицы данных мы знаем, что прямой ток должен быть 25 мА, который мы будем использовать в качестве желаемого значения сопротивления в уравнении закона Ома. Однако прямое напряжение не дает нам необходимого значения для значения напряжения по закону Ома, и мы также должны учитывать напряжение источника питания.

В этом примере мы будем использовать 5 вольт для источника питания светодиодов, поскольку это обычное напряжение, используемое микроконтроллерами, и, вероятно, вы захотите использовать его для управления своими светодиодами. Конечно, вы можете выбрать любое подходящее напряжение для вашего приложения.

Мы подключим наши компоненты последовательно так, чтобы ток протекал от положительной клеммы нашего источника питания через резистор, затем светодиод и затем на землю. Не имеет значения, расположен ли резистор до или после светодиода, поскольку ток остается постоянным для компонентов, подключенных последовательно.

Как упоминалось ранее, на светодиодах будет падение напряжения, равное прямому напряжению. Прямое напряжение указано в таблице данных светодиодов.

 Vf = 2,1V 

Остающееся напряжение появляется на резисторе, поэтому, если мы вычтем прямое напряжение из напряжения питания, мы можем вычислить напряжение на резисторе, Vr.

 Vr = V - Vf 
Vr = 5 - 2,1
Vr = 2,9

Мы хотим снабдить светодиод значением прямого тока, указанным в таблице данных, 25 мА.Поскольку резистор ограничивает ток, мы должны использовать напряжение на резисторе и желаемый прямой ток в уравнении закона Ома.

Теперь мы можем рассчитать сопротивление, переписав уравнение закона Ома в терминах сопротивления (косая черта означает «деленное на»). Помните, что мы должны преобразовать миллиамперы в амперы, просто разделите на 1000.

  25 мА = 0,025 A  
 R = Vr / I
R = 2,9 / 0,025
R = 116 Ом 

Теперь мы знаем, что для обеспечения светодиода током 25 мА мы должны использовать резистор номиналом 116 Ом.Всегда лучше проявлять небольшую осторожность, поскольку значения сопротивления имеют допуск и могут незначительно отличаться от заданного значения.

На практике мы должны округлить это значение до ближайшего значения общего резистора. Важно округлять в большую, а не в меньшую сторону, так как если бы мы округляли в меньшую сторону, мы подавали бы на светодиод ток, превышающий рекомендованный.

Мы будем использовать значение из значений резистора E12, что даст нам ближайшее большее значение, равное 120 Ом.

Резистор Теплоотдача

В отличие от светодиода, который преобразует электрический ток в свет (и некоторое количество тепла), резистор почти полностью преобразует электрический ток в тепло.

Нам известно напряжение на резисторе и ток, протекающий через него (и светодиода). Мы можем использовать закон Ватта для расчета мощности, рассеиваемой резистором.

 P = I x V 
P = 0,025 x 2,9
P = 0,0725

Резистор будет рассеивать 0,0725 Вт мощности в виде тепла, также обозначаемого как 72,5 милливатт (мВт).

Поэтому, когда мы выбираем резистор, нам нужно проверить техническое описание, чтобы увидеть, может ли он рассеивать 72,5 мВт тепла без повреждений.

Стандартные резисторы меньшего размера обычно могут рассеивать 125 мВт (также указывается как 1/8 ватта), поэтому наша комбинация светодиода, резистора и источника питания будет работать хорошо.

Мне

ДЕЙСТВИТЕЛЬНО нужен резистор?

Один вопрос, который я задавал несколько раз, но тот, который редко объясняется в подобных руководствах, касается сценария, в котором прямое напряжение равно напряжению питания.

Давайте посчитаем, как это выглядит на бумаге. В этом примере мы будем использовать синий светодиод с прямым напряжением 3,3 В и прямым током 25 мА. В качестве источника питания мы будем использовать 3,3 В, обычное напряжение питания, встречающееся в схемах микроконтроллеров.

Сначала рассчитываем напряжение на резисторе.

 Vr = V - Vf
Vr = 3,3 - 3,3
Vr = 0V 

Теперь мы можем снова использовать закон Ома, чтобы вычислить необходимое значение сопротивления для известного напряжения на резисторе и желаемого тока.

 R = Vr / I 
R = 0 / 0,025
R = 0 Ом

Что ?! Разве мы не доказали с помощью закона Ома, что значение сопротивления не требуется и, следовательно, резистор не требуется, если напряжение питания и прямое напряжение равны?

Легко понять, почему так много людей приходят к такому выводу, используя базовые принципы электроники.Я сам однажды задал такой же вопрос!

На самом деле я недавно видел, как кто-то задавал этот вопрос на форуме, что и вдохновило меня на написание этой статьи.

Реальное приложение

Первое, что нужно запомнить, это то, что мы имеем дело с абсолютными числами в наших расчетах, но в реальном мире напряжение питания 3,3 В, вероятно, не будет равняться точно 3,3 В. Это может быть 3,34 В, и точно так же прямое напряжение не будет точным, это может быть 3,28 В.

Далее нам нужно рассмотреть сценарий, в котором в цепи нет резистора.В этом случае сопротивление, определяющее прохождение тока через светодиод, будет внутренним сопротивлением внутри самого светодиода.

Обратите внимание, что на практике внутреннее сопротивление светодиода суммируется со значением сопротивления, выбранным для токоограничивающего резистора. Однако значение настолько мало, что его почти всегда игнорируют, поскольку оно не оказывает заметного влияния на расчет.

Внутреннее сопротивление

Итак, что произойдет, если мы будем полагаться на внутреннее сопротивление внутри светодиода? Сначала мы должны рассчитать внутреннее сопротивление.Это можно сделать, используя данные о прямом токе и прямом напряжении из таблицы.

Сначала выберем две точки напряжения на графике в линейной области. Мы выберем 3,25 В и 3,5 В. Затем давайте запомним их текущие значения, 10 мА и 20 мА соответственно.

Разница между этими значениями составляет 0,25 В и 10 мА. Мы можем использовать эти значения с законом Ома для расчета внутреннего сопротивления.

 R = V / I
R = 0,2 / 0,015
R = 25 Ом 

Далее нам нужно рассчитать собственное напряжение светодиодов, Vint.Это напряжение на светодиоде, которое можно вычесть из напряжения питания, чтобы получить напряжение на внутреннем сопротивлении.

 Винт = Vf - (Если x Rint)
Винт = 3,25 - (0,01 x 25)
Vint = 3 V 

Не волнуйтесь, если вы не усвоили все это, это немного более продвинуто, чем объем этого руководства, но я подумал, что все равно включу его.

Позвольте мне немного прояснить ситуацию. Здесь важны два значения: собственное напряжение Vint и внутреннее сопротивление Rint .Это то же самое, что и в нашем предыдущем примере, только напряжение и сопротивление для внутреннего сопротивления светодиода, а не внешнего резистора.

 Винт = 3 В
Rint = 25 Ом 

Расчет тока, протекающего через светодиод, такой же, как и раньше, мы используем закон Ома для расчета значения тока, используя значения, указанные выше.

Давайте попробуем это с произвольным напряжением питания V = 3,5 В. Сначала мы вычтем Vint из V, чтобы получить Vr = 0,5 В. Затем мы можем использовать это напряжение с внутренним сопротивлением для расчета тока.

 I = Vr / Rint
I = 0,5 / 25
I = 0,02 A 

Как и ожидалось, получаем 20 мА, что соответствует графику. Однако в реальном мире напряжение питания не будет точным. Поэтому давайте рассчитаем для 3,4 В разность 100 мВ.

Сначала мы вычитаем Vint, чтобы получить 0,4 В, затем снова вычисляем ток, используя внутреннее сопротивление.

 I = Vr / Rint
I = 0,4 / 25
I = 0,016 A 

Как видите, у нас есть заметное изменение тока только при небольшом изменении напряжения.

Сравнение

Наконец, мы можем сравнить результат с резистором и без него. Мы знаем, что падение напряжения на 100 мВ может уменьшить ток, протекающий через светодиод без внешнего резистора, на 4 мА.

Внешний резистор и питание 12 В

Сначала мы рассчитаем размер резистора, необходимого для достижения 20 мА тока через светодиод, используя типичное прямое напряжение 3,3 В, указанное в таблице данных. Мы можем использовать произвольное напряжение источника питания 12 В.

 R = (V - Vf) / I
R = (12 - 3.3) / 0,02
R = 435 Ом 

Теперь мы можем смоделировать такое же падение напряжения питания. Прямое напряжение светодиода фиксировано, поэтому падение 100 мВ повлияет на напряжение на резисторе. Это, в свою очередь, повлияет на ток, протекающий через светодиод, и рассчитывается следующим образом.

 I = ((V - Vf) - 100 мВ) / R
I = 8,6 / 435
I = 0,0198 

Результат показывает, что мы наблюдаем снижение тока только на 200 наноампер , или на 0,2 мА.

Внешний резистор и источник питания 24 В

Также стоит отметить, что чем больше напряжение на резисторе, тем меньше разница в изменении напряжения питания.Например, если мы увеличим напряжение питания до 24 В, падение напряжения питания на 100 мВ изменит ток следующим образом.

 R = (V - Vf) / I
R = (24 - 3,3) / 0,02
R = 1035 Ом 
 I = ((V - Vf) - 100 мВ) / R
I = 20,6 / 1035
I = 0,0199 

Теперь мы видим, что при питании от источника питания 24 В мы видим разницу в токе только в 100 нА или 0,1 мА!

Не забывайте о тепловыделении!

Значит, чем выше напряжение питания, тем лучше? Ну, не совсем потому, что вам все же нужно учитывать тепловыделение.Использование источника питания 24 В со светодиодом, который имеет падение напряжения 3,3 В, будет означать, что на резисторе будет 20,7 В. Сколько тепла он должен рассеять?

 P = I x V 
P = 0,02 x 20,7
P = 0,414 Вт

Наш резистор должен быть рассчитан как минимум на 500 мВт или 1/2 Вт. Даже это довольно близко к требованию, и поэтому резистор будет нагреваться.

Как и во многих случаях в электронике, всегда есть компромисс, и вы должны выбрать правильные значения компонентов, чтобы получить лучший компромисс.

Заключение

Важно регулировать ток, протекающий через светодиод, чтобы он работал стабильно и правильно. Совершенно приемлемо ограничивать ток с помощью резистора или другого устройства регулирования тока.

Теоретически можно было бы ограничить ток, используя внутреннее сопротивление светодиода, но на самом деле это просто нецелесообразно. Напряжение должно быть очень точным.

Также необходимо настроить каждый светодиод, чтобы он соответствовал точной характеристике прямого напряжения, которая также будет отличаться для каждого светодиода из-за производственных допусков, связанных с производством светодиода.

Самый простой способ предотвратить преждевременную смерть светодиода или даже его взрыв — это использовать токоограничивающий резистор!

Я надеюсь, что этот урок был информативным и дал вам некоторые новые и полезные знания о скромных и вездесущих светодиодах! Пожалуйста, найдите время, чтобы посетить некоторые из моих других интересных руководств!

Извините, эта страница не существует. Пожалуйста, дайте нам знать, где была неправильная ссылка. Спасибо.
Вот наша карта сайта:
  • Контакты
  • Как сделать заказ и другая полезная информация
    • Время выполнения
    • Гарантии на продукцию
    • Как заказать
    • Варианты оплаты
    • Варианты доставки
      • Стоимость доставки курьером
      • Зоны страны доставки
    • Политика в отношении образцов
  • Прейскуранты нашей продукции
    • Прейскурант на светодиоды для сквозных отверстий
    • Прейскурант на другие светодиоды
    • Прейскурант светодиодной продукции
  • Онлайн-каталог наших светодиодов и светодиодной продукции
    1. Светодиоды для сквозных отверстий
      1. 1.Светодиоды 8мм
      2. 3мм светодиоды
      3. Светодиоды 4,8 мм, угол XL
      4. 5 мм светодиоды InGan (белый, синий, чистый зеленый)
      5. 5 мм GaAlInP (красный, желтый) светодиоды
      6. 8мм светодиоды
      7. 10мм светодиоды
      8. Светодиоды 5 мм и 8 мм 100 мА 0,5 Вт
      9. Двухцветные светодиоды 3 мм и 5 мм
      10. Мигающие светодиоды
      11. Плоские светодиоды
      12. Овальные светодиоды
      13. ИК-светодиоды и модуль ИК-приемника
      14. X-type: дешевое светодиодное издание
        • Пакеты для светодиодных меток
      15. Детали светодиодной упаковки
      16. Таблица преобразования старых / новых светодиодных номеров Калькулятор светодиодного резистора
    2. 7-сегментный светодиодный дисплей
    3. Другие светодиоды
      1. светодиодов RGB
      2. Светодиоды SMD
      3. COB СВЕТОДИОДЫ
      4. Светодиоды мощности 1Вт, 3Вт, 5Вт, 10Вт, 20Вт
      5. Светодиодные лампы Piranha 0.2 Вт
      6. Подробная информация об упаковке
    4. Светодиодная продукция
      1. Светодиодные ленты
      2. Светодиодные ленты — Акционная распродажа
      3. Светодиодные модули
      4. Светодиодные лампы — Распродажа
      5. Светодиодные трубки
      6. Светодиодные аксессуары
      7. Держатели для светодиодов со сквозным отверстием 3 ~ 10 мм
      8. Подробная информация об упаковке светодиодной продукции
      9. Прейскурант светодиодной продукции
  • Акции и акции

Как рассчитать и подключить светодиоды последовательно и параллельно

В этой статье вы узнаете, как рассчитать светодиоды последовательно и параллельно, используя простую формулу, и настроить свои собственные индивидуальные светодиодные дисплеи, теперь у вас нет интересно, как подключить светодиодные фонари? но на самом деле может это сделать, подробности узнайте здесь.

Эти фонари известны не только своими великолепными цветовыми эффектами, но также своей долговечностью и наименьшим энергопотреблением.

Более того, светодиоды могут быть соединены в группы для формирования больших буквенно-цифровых дисплеев, которые могут использоваться в качестве индикаторов или рекламы.

Молодые любители электроники и энтузиасты часто путаются и задаются вопросом, как рассчитать светодиод и его резистор в цепи, поскольку им сложно оптимизировать напряжение и ток через группу светодиодов, необходимых для поддержания оптимальной яркости.

Почему нам нужно рассчитывать светодиоды

Проектирование светодиодных дисплеев может быть забавным, но очень часто мы просто думаем, как подключить светодиодные фонари? С помощью формулы узнайте, насколько просто создать свои собственные светодиодные дисплеи.

Мы уже знаем, что для включения светодиода требуется определенное прямое напряжение (FV). Например, для красного светодиода требуется FV 1,2 В, для зеленого светодиода — 1,6 В, а для желтого светодиода — около 2 В.

Все современные светодиоды имеют примерно 3.Прямое напряжение 3 В независимо от цвета.

Но поскольку заданное напряжение питания светодиода будет в основном выше, чем его значение прямого напряжения, добавление ограничивающего резистора тока со светодиодом становится обязательным.

Поэтому давайте узнаем, как можно рассчитать резистор ограничителя тока для выбранного светодиода или серии светодиодов

Расчет резистора ограничителя тока

Значение этого резистора можно рассчитать по следующей формуле:

R = ( напряжение питания VS — прямое напряжение светодиода VF) / ток светодиода I

Здесь R — рассматриваемый резистор в Ом

Vs — входное напряжение питания светодиода

VF — прямое напряжение светодиода, которое на самом деле является минимальным напряжением питания требуется светодиод для освещения с оптимальной яркостью.

Когда возникает вопрос о последовательном подключении светодиодов, вам просто нужно заменить «прямое напряжение светодиода» на «общее прямое напряжение» в формуле, умножив FV каждого светодиода на общее количество светодиодов в серии. Предположим, что есть 3 последовательно соединенных светодиода, тогда это значение становится 3 x 3,3 = 9,9

Ток светодиода или I относится к номинальному току светодиода, он может находиться в диапазоне от 20 мА до 350 мА в зависимости от спецификации выбранного светодиода. В формуле это необходимо преобразовать в амперы, чтобы 20 мА стало 0.02 А, 350 мА становится 0,35 А и так далее.

Как подключить светодиоды?

Чтобы понять это, давайте прочитаем следующее обсуждение:

Предположим, вы хотите разработать светодиодный дисплей с 90 светодиодами в нем с источником питания 12 В для питания этого 90 светодиодного дисплея.

Чтобы оптимально согласовать и настроить 90 светодиодов с источником питания 12 В, вам необходимо соответствующим образом соединить светодиоды последовательно и параллельно.

Для этого расчета нам потребуется учитывать 3 параметра, а именно:

  1. Общее количество светодиодов, которое в нашем примере составляет 90
  2. Прямое напряжение светодиодов, здесь мы считаем его 3 В для упрощения расчет, обычно это 3.3V
  3. Вход питания, который в данном примере составляет 12 В.

Прежде всего, мы должны рассмотреть параметр последовательного подключения и проверить, сколько светодиодов может быть размещено в пределах заданного напряжения питания

Мы делаем это, разделив напряжение питания на 3 вольта.

Очевидно, ответ будет = 4. Это дает нам количество светодиодов, которые можно разместить в блоке питания 12 В.

Однако вышеупомянутое условие может быть нецелесообразным, потому что это ограничит оптимальную яркость строгим напряжением питания 12 В и в случае, если напряжение питания снижено до некоторого более низкого значения, приведет к снижению яркости светодиода.

Следовательно, чтобы обеспечить более низкий запас по крайней мере 2 В, было бы целесообразно исключить один счетчик светодиодов из расчета и сделать его 3.

Таким образом, 3 последовательно соединенных светодиода для источника питания 12 В выглядят достаточно хорошо, и это гарантирует, что даже если питание было уменьшено до 10 В, при этом светодиоды могли загореться довольно ярко.

Теперь мы хотели бы знать, сколько таких 3 светодиодных гирлянд можно сделать из наших 90 светодиодов в руках? Следовательно, разделив общее количество светодиодов (90) на 3, мы получим ответ, равный 30.Это означает, что вам нужно будет припаять 30 рядов светодиодных цепочек или цепочек, каждая из которых имеет 3 светодиода в серии. Это довольно легко, правда?

Когда вы закончите сборку упомянутых 30-ти светодиодных гирлянд, вы, естественно, обнаружите, что каждая цепочка имеет свои собственные положительные и отрицательные свободные концы.

Затем подключите рассчитанное значение резисторов, как описано в предыдущем разделе, к любому из свободных концов каждой серии, вы можете подключить резистор на положительном конце цепи или отрицательном конце, положение не имеет значения. поскольку резистор просто должен соответствовать серии, вы можете даже включить что-то среднее между серией светодиодов.Используя предыдущее значение, мы находим резистор для каждой светодиодной цепочки:

R = (напряжение питания VS — прямое напряжение светодиода VF) / ток светодиода

= 12 — (3 x 3) / 0,02 = 150 Ом

Предположим мы подключаем этот резистор к каждому из отрицательных концов светодиодных цепочек.

  • После этого вы можете начать соединять общие положительные концы светодиодов вместе и отрицательные концы или концы резисторов каждой серии вместе.
  • Наконец, подайте напряжение 12 В на эти общие концы, соблюдая полярность.Вы сразу же обнаружите, что весь дизайн ярко светится с одинаковой интенсивностью.
  • Вы можете выровнять и расположить эти светодиодные цепочки в соответствии с дизайном дисплея.

Светодиоды с нечетным счетчиком

Может возникнуть ситуация, когда светодиодный дисплей содержит светодиоды с нечетным числом.

Например, предположим, что в приведенном выше случае вместо 90, если бы дисплей состоял из 101 светодиода, тогда, учитывая 12 В в качестве источника питания, делить 101 на 3 становится довольно неудобной задачей.

Итак, мы находим ближайшее значение, которое прямо делится на 3, которое равно 99. Разделив 99 на 3, мы получим 33.

Следовательно, расчет для этих 33 светодиодных цепочек будет таким, как описано выше, но как насчет оставшихся двух светодиодов? Не беспокойтесь, мы все еще можем сделать цепочку из этих двух светодиодов и поставить ее параллельно с оставшимися 33 цепочками.

Однако, чтобы гарантировать, что 2 цепочки светодиодов потребляют равномерный ток, как и остальные 3 цепочки светодиодов, мы рассчитываем последовательный резистор соответственно.

В формуле мы просто изменяем общее прямое напряжение, как показано ниже:

R = (напряжение питания VS — прямое напряжение светодиода VF) / ток светодиода

= 12 — (2 x 3) / 0,02 = 300 Ом

Это дает нам значение резистора специально для цепочки из 2 светодиодов.

Следовательно, у нас есть 150 Ом для всех трех светодиодных цепочек и 300 Ом для двух светодиодных цепочек.

Таким образом вы можете отрегулировать цепочки светодиодов с несоответствующим количеством светодиодов, вставив подходящий компенсирующий резистор последовательно с соответствующими цепочками светодиодов.

Таким образом, проблема легко решается путем изменения номинала резистора для оставшейся меньшей серии.

На этом мы завершаем наше руководство по последовательному и параллельному подключению светодиодов для любого заданного количества светодиодов с использованием указанного напряжения питания. Если у вас есть какие-либо связанные вопросы, используйте поле для комментариев, чтобы решить эту проблему.

Расчет светодиодов, включенных последовательно, параллельно на плате дисплея

До сих пор мы изучили, как светодиоды могут быть подключены или рассчитаны последовательно и параллельно.

В следующих параграфах мы исследуем, как создать большой цифровой светодиодный дисплей путем последовательного и параллельного соединения светодиодов.

В качестве примера мы построим числовой дисплей «8», используя светодиоды, и посмотрим, как он подключен.

Необходимые детали

Для конструкции вам понадобятся следующие электронные компоненты:
КРАСНЫЙ светодиод 5 мм. = 56 шт.
РЕЗИСТОР = 180 ОМ ¼ ВАТТ CFR,
ПЛАТА ОБЩЕГО НАЗНАЧЕНИЯ = 6 НА 4 ДЮЙМА

Как рассчитать и построить светодиодный дисплей?

Конструкция этой схемы отображения номеров очень проста и выполняется следующим образом:

Вставьте все светодиоды в плату общего назначения; следуйте ориентации, как показано на принципиальной схеме.

Сначала припаяйте только один вывод каждого светодиода.

После этого вы обнаружите, что светодиоды не выровнены прямо, а на самом деле закреплены довольно криво.

Прикоснитесь наконечником паяльника к припаянной точке светодиода и одновременно надавите на конкретный светодиод так, чтобы его основание прижалось к плате. Сделайте это, чтобы все светодиоды выровнялись ровно.

Теперь закончите пайку другого непаянного вывода каждого из светодиодов. Аккуратно отрежьте их провода кусачком.Согласно принципиальной схеме общие плюсы всех светодиодов серии.

Подключите резисторы 180 Ом к отрицательным открытым концам каждой серии. Снова соедините все свободные концы резисторов.

На этом завершается построение светодиодного дисплея с номером «8». Чтобы проверить это, просто подключите источник питания 12 В к общему положительному выводу светодиода и отрицательному общему резистору.

Число «8» должно мгновенно загореться в виде большого цифрового дисплея, и его можно будет распознать даже с большого расстояния.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *