Расчет трансформатора по сечению сердечника: Формула расчета трансформатора по сердечнику

Содержание

Простейший расчет силового трансформатора

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

Простой расчет силового трансформатора | hardware

На этой страничке приведен простой метод расчета параметров трансформатора для сетей питания промышленной частоты (для России это 220V 50 Гц). Это может понадобиться для радиолюбительского творчества, ремонта и модификации трансформаторов. Обратите внимание, что даже если приведенный метод расчета и некоторые уравнения могли быть обобщены, здесь для упрощения вычислений принимались во внимание только классические сердечники трансформаторов с закрытым магнитным потоком, составленные из стальных пластин.

[Шаг 1. Определение размеров магнитопровода]

Когда разрабатывается трансформатор, первый шаг в разработке состоит в выборе подходящего сердечника, чтобы трансформатор мог передать необходимую мощность. Обычно чем больше мощность, тем больше должны быть размеры трансформатора. В действительности нет теоретических или физических ограничений на то, чтобы трансформатор меньшего размера мог передавать большую мощность. Но по практическим соображениям на сердечнике малого размера недостаточно места для размещения всех обмоток, поэтому можно выбрать только лишь сердечник не меньше определенного размера. Хороший базовый выбор может дать следующая эмпирическая формула (для рабочей частоты трансформатора 50 Гц):

P = η * S2 / 14000

Это выражение связывает (допустимую) мощность P трансформатора с площадью поверхности поперечного сечения S, с учетом эффективности сердечника η (греческая буква «eta»). При измерении поверхности поперечного сечения следует удалить 5%, чтобы учесть толщину лака на ферромагнитных пластинах, составляющих сердечник трансформатора. Площадь поперечного сечения S соответствует минимальному сечению магнитного потока в трансформаторе, и S можно определить по размерам участка магнитопровода, на котором расположены обмотки, как показано на рисунке ниже:

S=a*b

Рисунок выше показывает сердечник с двумя петлями магнитного потока, который применяется чаще всего из-за незначительного магнитного поля рассеивания, небольшого размера и технологичности в изготовлении трансформатора. Это так называемый Ш-образный сердечник. Две петли магнитного потока получаются потому, что обмотки в таком трансформаторе находятся в середине трансформатора, и их магнитное поле разветвляется на 2 половины справа и слева от обмотки. Если в Вашем трансформаторе одна петля магнитного потока (это трансформатор наподобие тороидального), то тогда не имеет значения, в каком месте сердечника определять площадь его поперечного сечения.

Эффективность η зависит от материала сердечника, и если Вы не знаете значение этого параметра, то следующая таблица даст грубую подсказку:

Таблица 1. Значение эффективности η и плотности магнитного потока φ для некоторых типов сердечника.

Материал сердечника η (коэффициент) φ (единицы Wb/m2)
Холоднокатаная текстурированная сталь, легированная кремнием (grain-oriented silicon steel), M5 0.88 1.3
То же самое, толщина пластин 0.35 мм, M6 0.84 1.2
Обычная сталь, легированная кремнием, толщина пластин 0.5 мм, M7 0.82 1.1
Обычная кремниевая сталь (или сталь для повышенной прочности) 0.80 1.0
Мягкая низкоуглеродистая сталь (mild steel) 0.70 0.8

Чтобы упростить расчет трансформатора, ниже вставлен онлайн-калькулятор:

В этом калькуляторе уже учтены 5% для уменьшения площади сечения сердечника из-за их лакового покрытия.

[Шаг 2. Определение плотности магнитного потока в сердечнике]

После того, как были определены размеры сердечника, нужно определить плотность магнитного потока φ (греческая буква «phi»). Она тоже зависит от типа материала сердечника, и если Вы не знаете этот параметр, то можно снова воспользоваться таблицей 1. Если предполагается, что трансформатор будет непрерывно работать долгое время, или условия его работы подразумевают плохой теплообмен (плохую вентиляцию), то следует немного снизить плотность магнитного потока (например на 10%). Это снизит потери и трансформатор будет меньше нагреваться, но повысятся затраты на железо сердечника и медь для обмоток, хотя учет подобных затрат может быть важен только для промышленного производства, но не для радиолюбительской практики. Противоположное решение (без снижения плотности магнитного потока) может быть принято если важны затраты на материалы трансформатора, и только если трансформатор не предназначен для работы длительное время на полной мощности.

Как только плотность магнитного потока была определена, по следующей формуле можно вычислить константу трансформатора γ, выражающую количество витков на 1 вольт:

γ = 106 * sqrt(2) / (2 * pi * f * φ * S)

Множитель 106 учитывает, что площадь поперечного сечения сердечника S выражена в мм2. Следует сделать еще несколько замечаний по этой формуле: например, низкие частоты требуют больше витков, и поэтому трансформаторы на 60 Гц обычно получаются меньшего размера, чем трансформаторы на 50 Гц. Таким образом, сниженная плотность магнитного потока (и сниженные потери в сердечнике) потребует больше витков, даже если это кажется парадоксальным. И конечно, чем больше размер сердечника, тем меньше требуется витков: если Вы когда-нибудь видели большие, мощные высоковольтные трансформаторы, используемые энергетическими компаниями для своих высоковольтных линий, то у них имеется всего лишь несколько сотен витков для преобразования многих киловольт, в то время как маленький трансформатор на 230V в Вашем маленьком будильнике содержит тысячи витков.

[Шаг 3. Вычисление числа витков]

Теперь мы знает константу трансформатора γ, и по ней можно очень просто вычислить количество витков N для каждой обмотки трансформатора в зависимости от напряжения обмотки U:

N = γ * U

Обратите внимание, что все напряжения и токи учитываются в СКЗ (эта аббревиатура соответствует английской RMS), в то время как плотность магнитного потока выражена в своем пиковом значении, чтобы избежать насыщения. Этот факт объясняет наличие корня из 2 в формуле вычисления константы трансформатора γ.

Для вторичной обмотки хорошей практикой будет увеличить количество витков примерно на 5%, что скомпенсирует потери энергии в трансформаторе.

Чтобы упростить все расчеты, можно использовать следующий онлайн-калькулятор:

В этом калькуляторе уже учтена поправка 5% для количества витков вторичной обмотки.

Как уже отмечалось, количество витков в трансформаторе зависит от размеров сердечника и плотности магнитного потока в нем, но не от мощности трансформатора. Таким образом, если Ваш трансформатор требует больше одной вторичной обмотки, просто повторите описанное вычисление количества витков для каждой обмотки. Однако в этом случае может потребоваться выбор сердечника большего размера, чтобы на нем поместились все обмотки, или другими словами, следует выбирать размер сердечника по общей мощности, снимаемой со всех вторичных обмоток. Также используйте площадь сечения сердечника достаточно большую, чтобы трансформатор мог передавать требуемую мощность.

[Шаг 4. Как правильно выбрать провода для обмоток трансформатора]

На последнем шаге следует вычислить диаметр провода для каждой обмотки. Чтобы сделать это, для провода выбирается плотность тока c. Хорошим компромиссом будет выбор 2.5 A/мм2. Если выбрать значение c меньше, то для обмоток понадобится больше меди, но в трансформаторе будет меньше потерь: этот вариант подойдет для мощных трансформаторов. Выбор значения c больше приведет к меньшим затратам на провод и удешевит трансформатор, но он будет больше нагреваться, и это может быть допустимо только когда трансформатор используется недолго на своей полной мощности, или на полной мощности понадобится дополнительное охлаждение. Обычно выбирают значение в диапазоне 2..3 A/мм2. Как только была определена плотность тока в проводе, то диаметр провода может быть вычислен по следующей формуле:

d = 2 * sqrt( I / (pi * c) )

Или для c = 2.5 A/мм2:

d = 0.72 * sqrt(I)

Чтобы упростить расчет диаметра провода, используйте следующий онлайн-калькулятор:

[Практика в изготовлении трансформатора]

Теперь, когда все вычисления завершены, начинаются сложности: поместятся ли вычисленные витки обмоток на выбранном сердечнике трансформатора? Ответ непростой, и зависит от множества факторов: сечения и вида провода, качества намотки (виток к витку или «внавал»), наличия и толщины изоляции между слоями обмотки и отдельными обмотками, и так далее. Другими словами, тут некоторый опыт окажется полезнее, чем множество уравнений.

Обычно сложно купить пустой сердечник трансформатора, и поэтому домашние проекты часто начинаются с перемотки старого трансформатора. Не все трансформаторы можно разобрать: некоторые сердечники проклеены смолой, которая слишком прочна, чтобы её удалить, не изгибая пластины сердечника. К счастью, многие трансформаторы можно разобрать, если снять с них верхний кожух, который скрепляет пластины. Кожух обычно снимается, если отогнуть или зашлифовать ушки крепления. Иногда сердечники имеют специальные не залитые краской винты, стягивающие сердечник, такой трансформатор разобрать проще всего. Каждая пластина сердечника должна быть аккуратно удалена, чтобы получить доступ к обмоткам трансформатора. Изогнутые или поцарапанные пластины сердечника следует выбросить, потому что они будут производить лишние потери и дополнительный шум в работе трансформатора.

Если получится, то можно использовать готовую первичную обмотку трансформатора, перемотав только вторичные обмотки. Это возможно, когда первичная обмотка намотана первой, и не закрывает собой вторичные обмотки трансформатора. В принятии решения, стоит ли перематывать или снимать конкретную обмотку, или она должна быть сохранена, полезно узнать количество витков этой обмотки, однако это невозможно, не разматывая её, если обмотка намотана в несколько слоев или «внавал». К счастью, есть трюк для определения количества витков обмоток: перед разборкой сердечника нужно намотать временную обмотку из малого количества витков изолированного провода (например, 10 витков), подключить трансформатор к сети, и измерить напряжение на полученной тестовой обмотке. По измеренному напряжению можно просто рассчитать количество витков на 1 вольт, и по нему достаточно точно вычислить количество витков каждой обмотки по её напряжению, без необходимости разматывать обмотки и считать их витки.

После того, как новые обмотки намотаны, время снова собрать трансформатор, поместив пластины сердечника на свое место. Бывает сложно без дополнительных усилий вернуть все пластины обратно на место, однако даже если одна или две пластины не будут вставлены, то все равно трансформатор будет нормально работать. Но по этой причине при выборе сердечника по площади поперечного сечения следует немного повысить требования к его размерам. Когда на трансформатор подано напряжение сети, важно, чтобы все пластины были при этом плотно сжаты или склеены друг с другом, иначе сердечник трансформатора будет вибрировать и издавать неприятный шум.

Многие трансформаторы имеют пластины сердечника в форме букв E и I (в России их называют Ш-образными сердечниками), наподобие таких, как показаны на картинке выше. Когда собираете трансформатор, такие пластины следует вставлять друг в друга с чередованием E-I на одном слое и I-E на следующем, и так далее. Это минимизирует воздушный зазор в магнитном потоке и повышает взаимосвязь обмоток.

Для обмоток всегда используйте эмалированный провод. Использовать провод в изоляции ПВХ (PVC, это обычные электрические провода) очень плохая идея, потому что слой изоляции у них слишком толстый, будет потеряно слишком много пространства под обмотки. Также ПВХ-изоляция очень плохо проводит тепло и может даже оплавиться, что приведет к замыканиям. Ваш трансформатор быстро перегреется и может выйти из строя.

Всегда размещайте слой изоляции между первичной и вторичной обмотками, чтобы снизить риск удара током при касании вторичных электрических цепей. Для изоляции используйте тонкие материалы, желательно негорючие, которые служат хорошим изолятором и проводником тепла. Часто для межвитковой изоляции используют лакоткань, слюду и пропитанную воском бумагу. Я использую ленту Каптона, и иногда обычную матерчатую изоленту.

Изоляция эмалированного провода хорошо выдерживает напряжение до 1000V (пиковое значение. Когда это возможно, обращайтесь к спецификации производителя. Если напряжение обмоток превышает это значение, то лучше поделить обмотку на несколько слоев, проложив изоляцию между ними.

[Общие выводы]

Самостоятельная намотка или перемотка трансформаторов требуется в специальных случаях ремонта, или когда требуется получить напряжения, которых нет в готовом трансформаторе. Но перед тем, как разбирать трансформатор, делать на нем новые обмотки и собирать его обратно, лучше всего провести некоторые расчеты, чтобы получить нужные результаты с первой попытки и не тратить лишнее время.

[Используемые символы]

Символ Описание Единица измерения
S Площадь поперечного сечения мм2
d Диаметр провода мм
f Рабочая частота трансформатора Гц
I СКЗ тока обмотки A
N Количество витков обмотки количество
P Передаваемая трансформатором мощность VA (Вт)
U СКЗ напряжения обмотки V
γ Количество витков на 1 вольт витков/V
η Эффективность сердечника коэффициент
φ Плотность магнитного потока в сердечнике Wb/m2

Примечание: 1 Wb/m2 = 1 T = 10000 Gauss

[Ссылки]

1. Calculating mains frequency power transformers site:giangrandi.ch.
2. Coil and transformer calculator site:dicks-website.eu.
3. РАСЧЕТ СЕТЕВОГО ТРАНСФОРМАТОРА site:rcl-radio.ru.

РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА

силовой трансформатор   радиотехнические расчеты    радио калькулятор

        РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА

В радиолюбительской практике иногда возникает необходимость в изготовлении трансформатора с нестандартными значениями напряжения и тока.

Хорошо, если удается подобрать готовый трансформатор с нужными обмотками, в противном случае трансформатор приходится изготавливать самостоятельно.

Эта страничка посвящена изготовлению силового трансформатора своими силами. В промышленных условиях расчет трансформатора — весьма трудоемкая работа, но для радиолюбителей созданы упрощенные методики расчета. С одной из таких методик я и хочу вас познакомить.

Перед началом расчета нам нужно определиться с выходными данными будущего трансформатора.

Во-первых - номинальная мощность (P). Мощность трансформатора определяется как сумма мощностей всех вторичных обмоток. Мощность любой из вторичных обмоток определяем из произведения напряжения на вторичной обмотке и снимаемого с нее тока (напряжение для расчета берем в Вольтах, а ток — в Амперах).

Исходя из полученной номинальной мощности трансформатора можно вычислить минимальное сечение сердечника (S) (измеряется в квадратных сантиметрах). При выборе сердечника руководствуются шириной центральной пластины сердечника и толщиной набора. Площадь сечения сердечника определяется как произведение ширины пластины на толщину набора.

 

S серд = L*T  (все величины берутся в Сантиметрах!)

S окна = h*b

Также полезно сразу рассчитать площадь окна выбранного нами сердечника. Эта величина будет использоваться для проверки коэффициента заполнения окна ( проще говоря — поместятся все обмотки на данном трансформаторе, или нет). 

Далее — приступаем к вычислению коэффициента N. Этот коэффициент показывает, сколько витков нужно намотать для получения напряжения на обмотке в 1 вольт.

Дальнейший расчет сводится к умножению напряжения на обмотке на это коэффициент (N). Эта процедура для всех обмоток одинакова.

Далее — рассчитываем рабочий ток в сетевой обмотке исходя из мощности трансформатора и сетевого напряжения.

Диаметр провода в обмотках рассчитывается по приведенным формулам (ток берется в Миллиамперах !). Иногда не удается приобрести провод нужного сечения (но есть провод меньшего диаметра) — для этого случая полезно воспользоваться следующей табличкой:

Как пользоваться табличкой? Предположим, в результате расчета диаметр провода обмотки у нас получился равным 0,51 миллиметра. Для получения эквивалентного по сечению провода нам нужно взять либо 2 провода, диаметром 0,31 миллиметра, либо 3 провода с диаметром 0,29 миллиметров. Соответственно, обмотка будет состоять не из расчетного провода, а из нескольких, вместе сложенных проводов меньшего сечения. Надеюсь, что пример довольно понятный для понимания…

В конце расчета проверяем коэффициент заполнения окна обмотками. Если этот коэффициент не превышает 0,5 — всё в порядке — можно приступать к намотке, в противном случае придется использовать сердечник с большей площадью сечения и произвести весь расчет заново…

Сборка сердечника  у силового трансформатора производится «в перекрышку» — так как показано на рисунке внизу:

Если у вас найдется готовый силовой трансформатор с номинальной мощностью не ниже, чем необходимо, то можно сетевую обмотку не перематывать, а ограничиться расчетом только вторичной обмотки.

Для примера : нам нужен силовой трансформатор для зарядки автомобильного аккумулятора с номинальным током зарядки 5 ампер.

Таким образом - мощность такого трансформатора должна быть не менее 90 ватт (18 вольт помноженное на 5 ампер).

В данном случае можно использовать силовой трансформатор типа ТС180 от лампового черно-белого телевизора. Переделка такого трансформатора сводится только к перемотке вторичной обмотки. Данный трансформатор изготовлен с применением так называемого «О» - образного сердечника и имеет две катушки. Все обмотки такого трансформатора разделены пополам и наматываются на обе катушки. Для переделки разбираем аккуратно сердечник (предварительно пометив одну из сторон сердечника, так как половинки при сборке трансформатора пришлифовываются друг к другу), сматываем все обмотки, кроме помеченных цифрами 1-3. Во время сматывания накальной обмотки (она намотана самым толстым проводом) нужно сосчитать число витков. Полученное число витков делим на 6,5 - получаем количество витков обмотки данного трансформатора на 1 вольт. Затем умножаем это число на 18 и получаем нужное число витков вторичной обмотки. По формуле рассчитываем диаметр провода вторичной обмотки. При данном токе обмотки диаметр провода должен быть не менее, чем 1,42 миллиметра. Если вы найдете такой провод, то вторичную обмотку нужно разделить на 2 части и наматывать на каждый каркас, после чего соединить обмотки последовательно. Можно использовать провод меньшего диаметра (например 1,0 миллиметра). В этом случае на каждый каркас наматываем полное число витков и обмотки соединяем параллельно.   

Ниже приведена табличка для изготовления силового трансформатора с «типовыми» размерами  сердечника:

Пользование табличкой, думаю, не составит трудностей…

Расчет тороидального сетевого трансформатора

Исходные данные для расчета: напряжение/ток всех вторичных обмоток. Исходя из этих данных получаем минимальную габаритную мощность трансформатора. Пример: нужен трансформатор с двумя вторичными обмотками . Первая — на 14 вольт при токе в 1 ампер, вторая — 30 вольт при токе 0,05 ампера. Получаем сумму мощности во вторичных обмотках (14*1)+(30*0,05)=15,5 ватт. Главный качественный показатель силового трансформатора для радиоаппаратуры — это его надежность. Следствие надежности — это минимальный нагрев трансформатора при работе и минимальная просадка выходных напряжений под нагрузкой (иными словами, трансформатор должен быть «жестким»).
В расчетах примем КПД трансформатора 0,95 . Учитывая то, что нам нужен надежный трансформатор, и учитывая то, что напряжение в сети может иметь отклонения от 220 вольт до 10%, принимаем В=1,2 Тл
Плотность тока принимаем 3,5 А/мм2
Коэффициент заполнения сердечника сталью принимаем 0,95
Коэффициент заполнения окна принимаем 0,45
Исходя из принятых допущений, формула для расчета габаритной мощности у нас примет вид:

Р=1.9 * Sc * So

Далее считаем количество витков первичной (сетевой) обмотки — оно равно n1=40 * 220 / Sc
Где: Sc — площадь поперечного сечения сердечника, соответственно [кв. см]; 220 — напряжение первичной обмотки [В]; Количество витков во вторичных обмотках считаем по той же формуле, но учитываем падение напряжения под нагрузкой — добавляем примерно 5 % к расчитанному количеству.

Диаметр провода всех обмоток расчитываем по формулам

— для меди         

— для алюминия

онлайн-калькуляторы, особенности автотрансформаторов и торов

Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом. Случается так, что при выходе трансформатора из строя или при самостоятельном изготовлении радиоприборов не получается найти устройство с нужными параметрами серийного производства. Поэтому приходится выполнять расчёт трансформатора и его изготовление самостоятельно.

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Виды сердечников

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.

Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

По конструкции сердечник разделяют на три основных вида:

  • стержневой;
  • броневой;
  • тороидальный.

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:

  • S — площадь сечения сердечника.
  • K — постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Типовой расчёт параметров

Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:

  • напряжение первичной и вторичной обмотки;
  • габаритны сердечника;
  • толщину пластины.

После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.

Стержневой тип магнитопровода

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:

  1. Рассчитывается ток нагрузки: In=Po/U2, А.
  2. Вычисляется величина тока вторичной обмотки: I2 = 1,5*In, А.
  3. Определяется мощность вторичной обмотки: P2 = U2*I2, Вт.
  4. Находится общая мощность устройства: Pт = 1,25*P2, Вт.
  5. Вычисляется сила тока первичной обмотки: I1 = Pт/U1, А.
  6. Находится необходимое сечение магнитопровода: S = 1,3*√ Pт, см².

Следует отметить, что если конструируется устройство с несколькими выводами во вторичной обмотке, то в четвёртом пункте все мощности суммируются, и их результат подставляется вместо P2.

После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:

  • U1 — напряжение первичной обмотке, В.
  • S — площадь сердечника, см².
  • K1, K2 — число витков в обмотках, шт.

Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:

  • d — диаметр провода, мм.
  • I — обмоточный ток рассчитываемой катушки, А.

При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.

Особенности автотрансформатора

Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений.

Например, мощность магнитопровода 250 Вт, на входе 220 вольт, на выходе требуется получить 240 вольт. Разница напряжений составляет 20 В, при мощности 250 Вт ток будет равен 12,5 А. Такое значение тока соответствует мощности 12,5*240=3000 Вт. Потребление сетевого тока составляет 12,5+250/220=13,64А, что как раз и соответствует 3000Вт=220В*13,64А. Трансформатор имеет одну обмотку на 240 В с отводом на 220 В, который подключён к сети. Участок между отводом и выходом мотается проводом, рассчитанным на 12,5А.

Таким образом, автотрансформатор позволяет получить на выходе мощность значительно больше, чем трансформатор на таком же сердечнике при небольшом коэффициенте передачи.

Трансформатор тороидального типа

Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются. Использование онлайн-калькулятора для расчёта тороидального трансформатора позволяет не только сократить время изготовления изделия, но и «на лету» поэкспериментировать с разными вводными данными. В качестве таких данных используются:

  • напряжение входной обмотки, В;
  • напряжение выходной обмотки, В;
  • ток выходной обмотки, А;
  • наружный диаметр тора, мм;
  • внутренний диаметр тора, мм;
  • высота тора, мм.

Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:

  1. Мощность выходной обмотки: P2=I2*U2, Вт.
  2. Габаритная мощность: Pg=P2/Q, Вт. Где Q — коэффициент, берущийся из справочника (0,76−0,96).
  3. Фактическое сечение «железа» в месте размещения катушки: Sch= ((D-d)*h)/2, мм2.
  4. Расчётное сечение «железа» в месте расположения катушки: Sw =√Pq/1.2, мм2
  5. Площадь окна тора: Sfh=d*s* π/4, мм2.
  6. Значение рабочего тока входной обмотки: I1=P2/(U1*Q*cosφ), А, где cosφ справочная величина (от 0,85 до 0,94).
  7. Сечение провода находится отдельно для каждой обмотки из выражения: Sp = I/J, мм2., где J- плотность тока, берущаяся из справочника (от 3 до 5).
  8. Число витков в обмотках рассчитывается отдельно для каждой катушки: Wn=45*Un*(1-Y/100)/Bm* Sch шт., где Y — табличное значение, которое зависит от суммарной мощности выходных обмоток.
  9. Остается найти выходную мощность и расчёт тороидального силового трансформатора считается выполненным. Pout = Bm*J*Kok*Kct* Sch* Sfh /0,901, где: Bm — магнитная индукция, Kok — коэффициент заполнения проводом, Kct —коэффициент заполнения железом.

Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.

Рекомендации по сборке и намотке

При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.

Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.

По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.

Выбор и расчёт сердечника трансформатора


Площадь сечения сердечника трансформатора -очень важный параметр. На величину магнитного потока, создаваемого в сердечнике трансформатора, кроме числа витков первичной обмотки и величины протекающего в ней тока, оказывает влияние и размер самого сердечника. Если трансформатор имеет сердечник малого размера, то создать в таком сердечнике магнитный поток большой величины нельзя и на выходе такого трансформатора получить большую мощность не удастся. Это объясняется тем, что материал, из которого изготовлен сердечник, имеет способность насыщаться. Явление насыщения трансформатора состоит в том, что, несмотря на увеличение тока в обмотке, магнитный поток в сердечнике, достигнув некоторой максимальной величины, далее практически не изменяется.

Предположим, что имеется катушка с железным сердечником, по которой протекает постоянный ток. При увеличении тока магнитный поток будет также увеличиваться. При малых величинах тока возрастание потока окажется пропорциональным увеличению тока. Затем поток будет нарастать всё медленнее и наконец при некоторой величине тока перестанет увеличиваться совсем. Наступит насыщение стали (насыщение сердечника).

В трансформаторе режим насыщения приводит к тому, что передача энергии из первичной обмотки во вторичную частично прекращается. Нормальная работа трансформатора возможна лишь тогда, когда магнитный поток в его сердечнике изменяется пропорционально изменению тока в первичной обмотке. Для выполнения этого условия необходимо, чтобы сердечник не был в состоянии насыщения, а это возможно лишь тогда, когда его объём и сечение не меньше вполне определённой величины. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

Расчёт мощности трансформатора. Формула.

На практике часто приходится рассчитывать сечение сердечника по заданной мощности трансформатора:

Sсерд = 1.2√P, см2

Если известно сечение сердечника, то можно ориентировочно рассчитать мощность трансформатора по формуле:

P = S2серд / 1.44, вт.


Расчет трансформатора

Трансформаторы используются в блоках питания различной аппаратуры для преобразования переменного напряжения. Блоки питания, собранные по трансформаторной схеме, постепенно снижают распространенность благодаря тому, что современная схемотехника позволяет понизить напряжение без самого громоздкого и тяжелого элемента системы питания. Трансформаторы для блока питания актуальны в тех случаях, когда габариты и масса не критичны, а требования к безопасности велики. Обмотки (кроме автотрансформатора) осуществляют гальваническое разделение и изоляцию цепей первичного (или сетевого) и вторичного (выходного) напряжений.

Трансформатор

Принцип действия и разновидности трансформаторов

Работа устройства основана на всем известном явлении электромагнитной индукции. Переменный ток, проходящий через провод первичной обмотки, наводит переменный магнитный поток в стальном сердечнике, а он, в свою очередь, вызывает появление напряжения индукции в проводе вторичных обмоток.

Совершенствование трансформатора с момента его изобретения сводится к выбору материала и конструкции сердечника (магнитопровода).

Типы сердечников

Металл для магнитопровода должен иметь определенные технические характеристики, поэтому были разработаны специальные сплавы на основе железа и особая технология производства.

Для изготовления трансформаторов наибольшее распространение получили следующие типы магнитопроводов:

  • броневые;
  • стержневые;
  • кольцевые.

Силовой трансформатор низкой частоты, как понижающий, так и повышающий, имеет сердечник из отдельных пластин трансформаторного железа. Такая конструкция выбрана из соображения минимизации потерь из-за образования вихревых токов в сердечнике, которые нагревают его и снижают КПД трансформатора.

Броневые сердечники наиболее часто выполняются из Ш-образных пластин. Стержневые магнитопроводы могут изготавливаться из П-образных, Г-образных или прямых пластин.

Кольцевые магнитопроводы выполняются из тонкой ленты трансформаторной стали,  намотанной на оправку и скрепленной клеящим составом.

Из ленты также могут выполняться броневые и стержневые сердечники, причем такая технология наиболее часто встречается у маломощных устройств.

Виды магнитопроводов

Ниже приведена методика расчета трансформатора, где показано:

  • как рассчитать мощность трансформатора;
  • как выбрать сердечник;
  • как определить количество витков и сечение (диаметр) проводов обмоток;
  • как собрать и проверить готовую конструкцию.

Исходные данные, необходимые для расчета

Расчет сетевого трансформатора начинается с определения его полной мощности. Поэтому, перед тем, как рассчитать трансформатор, нужно определиться с мощностью потребления всех, без исключения, вторичных обмоток. Согласно мощности выбирается сечение сердечника. Опять же, от мощности определенным образом зависит и КПД. Чем больше полная мощность, тем выше КПД. Принято в расчетах ориентироваться на такие значения:

  • до 50 Вт – КПД 0.6;
  • от 50 Вт до 100 Вт – КПД 0.7;
  • от 100 Вт до 150 Вт – КПД 0.8;
  • выше 150 Вт – КПД 0.85.

Количество витков сетевой и вторичной обмоток рассчитывается уже после выбора магнитопровода. Диаметр или поперечное сечение проводов каждой обмотки определяется на основании протекающих через них токов.

Выбор магнитопровода сердечника

Минимальное сечение сердечника в см2 определяется из габаритной мощности. Габаритная мощность трансформатора – это суммарная полная мощность всех вторичных обмоток с учетом КПД.

Итак, мощность трансформатора можно определить, это полная суммарная мощность всех вторичных обмоток:

Умножая полученное значение на КПД, завершаем расчет габаритной мощности.

Определение площади стержня сердечника производится после того, как произведен расчет габаритной мощности трансформатора из такого выражения:

S=√P.

Зная площадь сечения центрального стержня магнитопровода, можно подбирать нужный из готовых вариантов.

Важно! Сердечник, на котором будут располагаться обмотки, должен иметь, по возможности, сечение, как можно более близкое к квадрату. Площадь сечения должна быть равной или несколько больше расчетного значения.

Качество работы и технологичность сборки также зависит от формы магнитопровода. Наилучшим качеством обладают конструкции, выполненные на кольцевом магнитопроводе (тороидальные). Их отличает максимальный КПД для заданной мощности, наименьший ток холостого хода и минимальный вес. Основная сложность заключается в выполнении обмоток, которые в домашних условиях приходится мотать исключительно вручную при помощи челнока.

Проще всего делать трансформаторы на разрезных ленточных магнитопроводах типа ШЛ (Ш-образный) или ПЛ (П-образный). Как пример, можно привести мощный трансформатор блока питания старого цветного телевизора.

Трансформатор телевизора УЛПЦТИ

Трансформаторы старого времени выпуска или современные дешевые выполнены с использованием отдельных Ш,- или П-образных пластин. Технологичность выполнения обмоток у них такая же, как у ленточных разрезных, но трудность состоит в сборке магнитопровода. Такие устройства практически всегда будут иметь повышенный ток холостого хода, особенно, если используемое железо низкого качества.

Расчет количества витков и диаметра проводов

Расчет трансформатора начинается с определения необходимого количества витков обмоток на 1 В напряжения. Найденное значение будет одинаковым для любых обмоток. Для собственных целей можно применить упрощенный метод расчета. Посчитать, сколько надо витков на 1 В можно, подставив площадь сечения стержня магнитопровода в см2 в формулу:

где k – коэффициент, зависящий от формы магнитопровода и его материала.

На практике с достаточной точностью приняты следующие значения коэффициента:

  • 60 – для магнитопровода из Ш,- и П-образных пластин;
  • 50 – для ленточных магнитопроводов;
  • 40 – для тороидальных трансформаторов.

Большие значения связаны с невозможностью плотного заполнения сердечника отдельными металлическими пластинами. Как видно, наименьшее количество витков будет иметь тороидальный трансформатор, отсюда и выигрыш в массе изделия.

Зная, сколько витков нужно на 1 В, можно легко узнать количество витков каждой из обмоток:

где U – значение напряжения холостого хода на обмотке.

У маломощных трансформаторов (до 50 Вт) нужно получившееся количество витков первичной обмотки увеличить на 5%. Таким образом, компенсируется падение напряжения, которое возникает на обмотке под нагрузкой (в понижающих трансформаторах первичная обмотка всегда имеет большее количество витков, чем вторичные).

Диаметр провода рассчитываем с учетом минимизации нагрева вследствие протекания тока. Ориентировочным значением считается плотность тока в обмотках 3-7 А на каждый мм2 провода. На практике расчет диаметра проводов обмоток можно упростить, используя простые формулы, что дает допустимые значения в большинстве случаев:

Меньшее значение применяется для расчета диаметров проводов вторичных обмоток, поскольку у понижающего трансформатора они располагаются ближе к поверхности и имеют лучшее охлаждение.

Зная расчетное значение диаметра обмоточных проводов, нужно выбрать из имеющихся такие, диаметр которых наиболее близок к расчетному, но не менее.

После определения количества витков во всех обмотках, расчет обмоток трансформатора не лишним будет дополнить проверкой, поместятся ли обмотки в окно магнитопровода. Для этого подсчитайте коэффициент заполнения окна:

Для тороидальных сердечников c внутренним диаметром D формула имеет вид:

Для Ш,- и П-образных магнитопроводов коэффициент не должен превышать 0.3. Если это значение больше, то разместить обмотку не получится.

Тороидальный трансформатор

Выходом из ситуации будет выбор сердечника с большим сечением, но это если позволяют габариты конструкции. В крайнем случае, можно уменьшить количество витков одновременно во всех обмотках, но не более чем на 5%. Несколько возрастет ток холостого хода, и не избежать повышенного нагрева обмоток, но в большинстве случаев это не критично. Также можно немного уменьшить провода по сечению, увеличив тем самым плотность тока в обмотках.

Важно! Увлекаться увеличением плотности тока нельзя, поскольку это вызовет сильный рост нагрева и, как следствие, нарушение изоляции и перегорание обмоток.

Изготовление обмоток

Намотка провода обмотки трансформатора производится на каркас, изготовленный из плотного картона или текстолита, за исключением тороидальных сердечников, в которых обмотка ведется непосредственно на магнитопровод, который перед намоткой нужно тщательно заизолировать. Можно использовать готовый пластиковый, который продается вместе с магнитопроводом.

Сборный каркас обмотки

Пластиковый каркас

Между отдельными обмотками нужно прокладывать межобмоточную изоляцию. Важнее всего – хорошо заизолировать вторичную обмотку от первичной. В качестве изоляции можно использовать трансформаторную бумагу, лакоткань, фторопластовую ленту. Ленту из фторопласта нужно использовать с осторожностью. Несмотря на высочайшие электроизоляционные качества, тонкая лента фторопласта под действием натяжения или давления (особенно межу первичной и вторичной обмотками) способна «потечь» и обнажить отдельные витки обмотки. Особенно этим страдает лента для уплотнения сантехнических изделий.

Фторопластовая лента

В отдельных, ответственных случаях, в процессе намотки можно пропитать первичную обмотку (если трансформатор понижающий) изоляционным лаком. Пропитка готового устройства в домашних условиях эффекта почти не даст, поскольку лак не попадет в глубину обмотки. Для этих целей на производствах существует аппаратура вакуумной пропитки.

Выводы обмоток делаются отрезками гибкого изолированного провода для проводов, диаметр которых менее 0.5 мм. Более толстый провод можно выводить напрямую. Места пайки гибкого и обмоточного проводов нужно дополнительно проложить несколькими слоями изоляции.

Обратите внимание! При пайке выводов нельзя оставлять на месте спайки острые концы проводов или застывшего припоя. Такие места нужно аккуратно обрезать бокорезами.

Сборка трансформатора

При сборке нужно учитывать следующие нюансы:

  1. Пакет сердечника должен собираться плотно, без щелей и зазоров;
  2. Отдельные части ленточного магнитопровода подогнаны друг к другу, поэтому менять местами их нельзя. Требуется аккуратность, поскольку при отслоении отдельных лент их невозможно будет установить на место;
  3. Деформированные пластины сборного сердечника нельзя выравнивать молотком – трансформаторная сталь теряет свои свойства при механических нагрузках;
  4. Пакет пластин сборного сердечника должен быть собран максимально плотно, поскольку при работе рыхлого сердечника будет издаваться сильный гул, увеличивающийся при нагрузке;
  5. Весь пакет сердечника любого типа нужно плотно стянуть по той же причине.

Обратите внимание! Качество сборки будет лучше, если торцы ленточного разрезного сердечника перед сборкой покрыть лаком. Также готовый собранный сердечник перед окончательной утяжкой можно покрыть лаком.

При этом можно добиться значительного понижения постороннего звука.

Проверка готового трансформатора заключается в измерении тока холостого хода и напряжения обмоток под номинальной нагрузкой и на нагрев при максимальной нагрузке. Все измерения рассчитанного и собранного трансформатора нужно проводить только после полной сборки, поскольку с незатянутым сердечником ток холостого хода может быть больше обычного в несколько раз.

Ток холостого хода сильно различается в трансформаторах различных типов и составляет от 10 мА для тороидальных трансформаторов, до 200 мА – с Ш-образным сердечником из низкокачественного трансформаторного железа.

Измерение холостого тока

Приведен расчет трансформатора, который при наличии навыков можно произвести за пару десятков минут. Для тех, кто сомневается в своих силах или боится сделать ошибку, расчет силового трансформатора можно выполнить, используя калькулятор для расчета, который может работать как в off-line, так и в on-line режимах. Согласно данной методике возможна перемотка перегоревшего трансформатора. Для неисправного трансформатора расчет также ведется от имеющегося сердечника и значения напряжения вторичных обмоток.

Видео

Оцените статью:

О расчете трансформаторов: толщина обмотки и сечения сердечника, сопротивление

Конструкция трансформатора

Если посмотреть на трансформатор с внешней стороны, то это Ш-образное устройство, состоящее из металлического сердечника, картонного или пластикового каркаса и обмотки из медной проволоки. Обмоток две.

Сердечник – это несколько стальных пластин, которые обработаны специальным лаком и соединены между собой. Лак наносится специально, чтобы между пластинами не проходило напряжение. Таким способом борются с так называемыми вихревыми токами (токами Фуко). Все дело в том, что токи Фуко просто будут нагревать сам сердечник. А это потери.

Именно с потерями связан и состав пластин сердечника. Трансформаторное железо (так чаще всего называют сталь для сердечника специалисты), если посмотреть ее в разрезе, состоит из больших кристаллов, которые, в свою очередь, изолированы друг от друга окисной пленкой.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Назначение и функциональность

Итак, какие функции выполняет трансформатор?

  1. Это снижение напряжения до необходимых параметров.
  2. С его помощью снижается гальваническая развязка сети.

Что касается второй функции, то необходимо дать пояснения. Обе обмотки (первичная и вторичная) трансформатора тока между собой напрямую не соединены. Значит, сопротивление прибора, по сути, должно быть бесконечным. Правда, это идеальный вариант. Соединение же обмоток происходит через магнитное поле, создаваемой первичной обмоткой. Вот такой непростой функционал.

Как измерить диаметр провода

Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.

Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.

Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.

Пример.

Я намотал 100 витков провода и получил длину набора –39 мм.

39 / 100 = 0,39 мм

По таблице определяю диметр провода по меди – 0,35мм.

Таблица данных обмоточных проводов
Диаметр без изоляции, ммСечение меди, мм²Сопротив-ление 1м при 20ºС, ОмДопустимая нагрузка при плотности тока 2А/мм²Диаметр с изоляцией, ммВес 100м с изоляцией, гр
0,030,000724,7040,00140,0450,8
0,040,001313,920,00260,0551,3
0,050,0029,290,0040,0651,9
0,060,00286,440,00570,0752,7
0,070,00394,730,00770,0853,6
0,080,0053,630,01010,0954,7
0,090,00642,860,01270,1055,9
0,10,00792,230,01570,127,3
0,110,00951,850,0190,138,8
0,120,01131,550,02260,1410,4
0,130,01331,320,02660,1512,2
0,140,01541,140,03080,1614,1
0,150,01770,990,03540,1716,2
0,160,02010,8730,04020,1818,4
0,170,02270,7730,04540,1920,8
0,180,02550,6880,0510,223,3
0,190,02840,6180,05680,2125,9
0,20,03140,5580,06280,22528,7
0,210,03460,5070,06920,23531,6
0,230,04160,4230,08320,25537,8
0,250,04910,3570,09820,27544,6
0,270,05730,3060,1150,3152,2
0,290,06610,2бб0,1320,3360,1
0,310,07550,2330,1510,3568,9
0,330,08550,2050,1710,3778
0,350,09620,1820,1920,3987,6
0,380,11340,1550,2260,42103
0,410,1320,1330,2640,45120
0,440,15210,1150,3040,49138
0,470,17350,1010,3460,52157
0,490,18850,09310,3780,54171
0,510,20430,08590,4080,56185
0,530,22060,07950,4410,58200
0,550,23760,07370,4760,6216
0,570,25520,06870,510,62230
0,590,27340,06410,5470,64248
0,620,30190,0580,6040,67273
0,640,32170,05450,6440,69291
0,670,35260,04970,7050,72319
0,690,37390,04690,7480,74338
0,720,40720,0430,8140,78367
0,740,43010,04070,860,8390
0,770,46570,03760,930,83421
0,80,50270,03481,0050,86455
0,830,54110,03241,0820,89489
0.860,58090,03011,160,92525
0,90,63620,02751,270,96574
0,930,67930,02581,360,99613
0,960,72380,02421,451,02653
10,78540,02241,571,07710
1,040,84950,02061,71,12764
1,080,91610,01911,831,16827
1,120,98520,01781,971,2886
1,161,0570,01662,1141,24953
1,21,1310,01552,261,281020
1,251,2270,01432,451,331110
1,31,3270,01322,6541,381190
1,351,4310,01232,861,431290
1,41,5390,01133,0781,481390
1,451,6510,01063,31,531490
1,51,7670,00983,5341,581590
1,561,9110,00923,8221,641720
1,622,0610,00854,1221,711850
1,682,2170,00794,4331,771990
1,742,3780,00744,7561,832140
1,812,5730,00685,1461,92310
1,882,7770,00635,5551,972490
1,952,9870,00595,982,042680
2,023,2050,00556,4092,122890
2,13,4640,00516,922,23110
2,264,0120,00448,0232,363620
2,444,6760,00379,3522,544220

Виды сердечников

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.
Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

По конструкции сердечник разделяют на три основных вида:

  • стержневой;
  • броневой;
  • тороидальный.

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:

  • S — площадь сечения сердечника.
  • K — постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Программы для расчета

Известно много программ, которые предлагают онлайн расчет параметров любого трансформатора на броневом или стержневом сердечнике. Одной из таких может стать сервис на сайте «skrutka». Для определения характеристик потребуется указать ряд следующих данных:

  • входное напряжение — U1;
  • выходное напряжение — U2;
  • ширину пластины — а;
  • толщину стопки — b ;
  • частоту сети — Гц;
  • габаритная мощность — В*А;
  • КПД;
  • магнитную индуктивность магнитопровода — Тл;
  • плотность тока в обмотках — А/мм кв.

Последние 4 величины являются табличными, поэтому потребуется воспользоваться справочником.

Необходимо грамотно и ответственно отнестись к расчету параметров трансформатора, потому что от качества выполненной работы будет зависеть и качество функционирования вашего блока питания. Не всегда стоит надеяться на программы, в них могут быть ошибки. Выберите один или несколько параметров и пересчитайте их вручную по ранее приведенным формулам. Если получится примерно равное значение, то результат можно считать правильным.

Расчет трансформатора онлайн

Существует формула расчета трансформатора, которая помогает совершить расчет трансформатора питания. Чтобы упростить себе жизнь и избежать ошибок в вычислениях, вы можете воспользоваться данной программой. Она позволит вам конструировать трансформаторы на различные напряжения и мощности очень быстро и без проблем. Это очень удобный калькулятор для радиолюбителей и профессионалов. Он поможет не только рассчитать трансформатор, но и поможет изучить его устройство, как всё работает. Это самый простой и быстрый способ всё рассчитать. Для этого нужно заполнить все известные вам данные и нажать кнопку. Получается вам нужно нажать одну кнопку, чтобы произвести расчет трансформатора!

Преимущества онлайн калькулятора

В результате расчета трансформатора онлайн, на выходе получаются параметры в виде мощности, силы тока в амперах, количества витков и диаметра провода в первичной и вторичной обмотке.

Существуют формулы, позволяющие быстро выполнить расчеты трансформатора. Однако они не дают полной гарантии от ошибок при проведении вычислений. Чтобы избежать подобных неприятностей, применяется программа онлайн калькулятора.

Полученные результаты позволяют выполнять конструирование трансформаторов для различных мощностей и напряжений. С помощью калькулятора осуществляются не только расчеты трансформатора. Появляется возможность для изучения его устройства и основных функций.

Запрошенные данные вставляются в таблицу и остается только нажать нужную кнопку.

Благодаря онлайн калькулятору не требуется проводить каких-либо самостоятельных подсчетов. Полученные результаты позволяют выполнять перемотку трансформатора своими руками.

Большинство необходимых расчетов осуществляется в соответствии с размерами сердечника. Калькулятор максимально упрощает и ускоряет все вычисления.

Необходимые пояснения можно получить из инструкции и в дальнейшем четко следовать их указаниям.

Конструкция трансформаторных магнитопроводов представлена тремя основными вариантами – броневым, стержневым и тороидальным. Прочие модификации встречаются значительно реже. Для расчета каждого вида требуются исходные данные в виде частоты, входного и выходного напряжения, выходного тока и размеров каждого магнитопровода.

Типовой расчёт параметров

Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:

  • напряжение первичной и вторичной обмотки;
  • габаритны сердечника;
  • толщину пластины.

После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.

Стержневой тип магнитопровода

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:

После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:

  • U1 — напряжение первичной обмотке, В.
  • S — площадь сердечника, см².
  • K1, K2 — число витков в обмотках, шт.

Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:

  • d — диаметр провода, мм.
  • I — обмоточный ток рассчитываемой катушки, А.

Читайте также:  Электросварка электродами для начинающих: как правильно варить

При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.

Расчет сетевого трансформатора

  • Если у Вас есть некий трансформаторный сердечник, из которого нужно сделать трансформатор, то необходимо замерить сердечник (как показано на рисунке), а так же замерить толщину пластины или ленты.
  • Первым делом необходимо рассчитать  площадь сечения сердечника — Sc (см²) и площадь поперечного сечения окна — Sо (см²).
  • Для тороидального трансформатора:
  • Sc= H * (D – d)/2
  • S0=  π * d2/ 4

Для Ш и П — образного сердечника:

Определим габаритную мощность нашего сердечника на частоте 50 Гц:

  • η — КПД трансформатора,
  • Sc — площадь поперечного сечения сердечника, см2,
  • So — площадь поперечного сечения окна, см2,
  • f — рабочая частота трансформатора, Гц,
  • B — магнитная индукция, T,
  • j — плотность тока в проводе обмоток, A/мм2,
  • Km — коэффициент заполнения окна сердечника медью,
  • Kc — коэффициент заполнения сечения сердечника сталью.

При расчете трансформатора необходимо учитывать, что габаритная мощность трансформатора должна быть больше расчетной электрической мощности вторичных обмоток.

Исходными начальными данными для упрощенного расчета являются:

  • напряжение первичной обмотки U1
  • напряжение вторичной обмотки U2
  • ток вторичной обмотки l2
  • мощность вторичной обмотки Р2 =I2 * U2 = Рвых
  • площадь поперечного сечения сердечника Sc
  • площадь поперечного сечения окна So
  • рабочая частота трансформатора f = 50 Гц

КПД (η) трансформатора можно взять из таблицы, при условии что Рвых = I2 * U2 (где I2 ток во вторичной обмотке, U2 напряжение вторичной обмотки), если в трансформаторе несколько вторичных обмоток, что считают Pвых каждой и затем их складывают.

B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.

j — плотность тока в проводе обмоток , так же выбирается в зависимости от конструкции магнитопровода и Pвых.

Km — коэффициент заполнения окна сердечника медью

Kc — коэффициент заполнения сечения сердечника сталью

Коэффициенты заполнения для пластинчатых сердечников указаны в скобках при изоляции пластин лаком или фосфатной пленкой.

При первоначальном расчете необходимо соблюдать условие —Pгаб ≥ Pвых, если это условие не выполняется то при расчете уменьшите ток или напряжение вторичной обмотки.

После того как Вы определились с габаритной мощностью трансформатора, можно приступить к расчету напряжения одного витка:

  1. где Sc — площадь поперечного сечения сердечника, f — рабочая частота (50 Гц), B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.
  2. Теперь определяем число витков первичной обмотки:
  3. w1=U1/u1
  4. где U1 напряжение первичной обмотки, u1 — напряжение одного витка.
  5. Число витков каждой из вторичных обмоток находим из простой пропорции:
  • где w1 — кол-во витков первичной обмотки, U1 напряжение первичной обмотки, U2 напряжение вторичной обмотки.
  • Определим мощность потребляемую трансформатором  от сети с учетом потерь:
  • Р1 = Рвых /  η
  • где η — КПД трансформатора.
  • Определяем величину тока в первичной обмотке трансформатора:
  • I1 = P1/U1
  • Определяем диаметры проводов обмоток трансформатора:
  • d = 0,632*√ I
  • где d — диаметр провода, мм, I — ток обмотки, А (для первичной и вторичной обмотки).

Расчёт трехфазного трансформатора

Изготовление трехфазного трансформатора и его точный расчёт процесс более сложный, так как здесь первичная и вторичная обмотка состоят уже из трёх катушек. Это разновидность силового трансформатора, магнитопровод которого выполнен чаще всего стержневым способом. Здесь уже появляются такие понятие, как фазные и линейные напряжения. Линейные измеряются между двумя фазами, а фазные между фазой и землёй. Если трансформатор трехфазный рассчитан на 0,4 кВ, то линейное напряжение будет 380В, а фазное 220 В. Обмотки могут быть соединены в звезду или треугольник, что даёт разные величины токов и напряжений.

Обмотки трехфазного трансформатора расположены на стержнях так же, как и в однофазном, т. е. обмотки низшего напряжения НН размещаются ближе к стержню, а обмотки высшего напряжения ВН — на обмотках низшего напряжения.

Высоковольтные трансформаторы трёхфазного тока рассчитываются и изготавливаются исключительно в промышленных условиях. Кстати, любой понижающий трансформатор при обратном включении, выполняет роль повышающего напряжение устройства.

Расчет броневого трансформатора

Распространен вид трансформаторов, используемый практически во всех устройствах от зарядных аппаратов для шуруповертов, заканчивая боками питания магнитофонов. В процессе эксплуатации всех этих устройств часто возникают поломки в питателе, связанные со сгоревшим намоточным изделием. Тогда для его восстановления потребуется перемотка, но это проблемы не решает.

Часто требуется увеличить мощность источника, тогда как рассчитать трансформатор, чтобы его железо не перегревалось? Потребуется выбрать железо больших размеров и использовать более толстый провод. Такой ход поможет сохранить работоспособность устройства и даже улучшить характеристики, сделав его стабильнее и устойчивее при скачках напряжений в сети.

К сожалению, не все производители учитывают этот фактор, а ведь наша сеть неустойчива и регулярно в ней наблюдаются помехи в виде высоковольтных игольчатых импульсов. Также возникают ситуации, когда наблюдается просадка сети до 170 В, что характерно в зимний период. Тогда необходимо предусмотреть запас по напряжению как минимум на 40−45%, увеличив мощность и компенсационного стабилизатора. Часто такие ситуации наблюдаются в частном секторе.

Вернемся к расчету Ш-образного трансформатора на ШП-сердечнике. Принцип будет одинаков и с сердечником типа ПЛ при условии размещения обмотки на средней части. Для чего потребуется выполнить следующие шаги:

  • Определить площадь поперечного сечения средней части сердечника. Она выражается буквой S сеч. и находится из произведения ее сторон. Взяв линейку, измеряем параметры сечения, перемножаем и получаем значение в квадратных сантиметрах.
  • На следующем этапе решается вопрос, как рассчитать мощность трансформатора. Это расчетная величина, которую можно определить, возведя S сеч. в квадрат. Значение будет измеряться в Вт и обозначаться буквой «P».
  • При расчете мощности сердечника необходимо учитывать тип использованных пластин. Например, если были применены для набора Ш-20, то общая толщина сердечника должна быть 30 мм при мощности в 36 Вт. Если для трансформатора были использованы пластины Ш-30, то толщина набора будет достаточно в 20 мм, а при использовании Ш-24 — 25 мм. Существуют справочные таблицы, в которых можно найти мощность трансформатора по сечению магнитопровода для конкретной ситуации. Для обеспечения наилучшей стабильности работы источников питания следует использовать железо с избытком мощности как минимум на 25%. То есть, если ранее была расчетная мощность равна 6 Вт, то для надежности работы и исключения насыщения сердечника следует брать в расчет как минимум 8 Вт. Это обязательное условие. Если использовать магнитопровод с меньшей площадью сечения сердечника, то трансформатор быстро выйдет из строя, потому что железо окажется в насыщении, что приведет к увеличению токов в обмотках.
  • На следующем этапе необходимо определиться с количеством обмоток. Для современных транзисторных устройств достаточно будет всего одной или сдвоенной со средней точкой. Поэтому рассмотрим пример расчета именно такого трансформатора. Для этого потребуется воспользоваться понятием «вольт на виток». Значение определяется следующим образом: W /В=(50÷70) / S сеч. Формула справедлива только для сердечников типа ШП и П. Л. При расчете первичной и вторичной обмоток потребуется взять произведение полученного отношения и входного напряжения: W1 = W / B∙U1, W2 = 1,2 ∙ W /B∙U2.
  • Выполняется расчет и выбор диаметра провода. Он выбирается исходя из хорошего теплоотвода и изоляции, для чего рекомендуется применять ПЭЛ или ПЭВ, покрытые лаком. Определить его размер можно по формуле: d =0,7∙√ I. Величина выражается в мм. Провод выбирается с небольшим запасом до 4−6%.

Все программы расчета трансформаторов позволяют находить параметры изделий в любом порядке. Они используют стандартные алгоритмы, по которым выводятся значения. При необходимости можно создать собственный калькулятор с помощью таблиц Excel. Подобным образом работает и калькулятор расчета трансформатора на стержневом сердечнике.

Источники

  • https://onlineelektrik.ru/eoborudovanie/transformatori/uproshhennyj-vid-rascheta-transformatora.html
  • https://www.RusElectronic.com/ustrojstvo-transformatora/
  • https://master-pmg.ru/oborudovanie/raschet-transformatora-onlajn.html
  • https://PlazmoSvarka.ru/sovety/raschet-toroidalnogo-transformatora-onlajn-kalkulyator.html
  • http://energo-novgorod.ru/calcs/calc-trans/
  • https://regionvtormet.ru/instrumenty/raschet-moshhnosti-transformatora-na-sterzhnevom-magnitoprovode-vruchnuyu-i-pri-pomoshhi-onlajn-kalkulyatora.html

Как построить понижающие трансформаторы с помощью расчетов

Понижающий трансформатор — это устройство, которое понижает более высокий потенциал переменного тока до более низкого потенциала переменного тока в соответствии с его коэффициентом намотки и спецификациями.

В этой статье мы собираемся обсудить, как спроектировать и сконструировать базовый понижающий трансформатор, который обычно применяется в источниках питания от сети.

Введение

Это, вероятно, поможет любителям электроники разрабатывать и строить свои собственные трансформаторы, основанные на их конкретных требованиях.На следующих страницах представлен упрощенный метод компоновки, позволяющий получить удовлетворительно разработанные трансформаторы. С другой стороны, процесс проектирования может стать предметом экспериментов.

Таблицы, представленные в этой статье, сокращают расчеты обрезки, которые помогают проектировщику найти подходящий размер проволоки или даже сердцевины для ламинирования. Здесь представлены исключительно относящиеся к делу данные и расчеты, чтобы проектировщик не был сбит с толку нежелательными деталями.

Здесь мы конкретно обсудим трансформаторы, которые имеют 2 или более обмоток изолированного медного провода вокруг железного сердечника.Это одна первичная обмотка и одна или несколько вторичных обмоток.

Каждая обмотка электрически изолирована друг от друга, однако магнитно соединена с помощью ламинированного железного сердечника. Небольшие трансформаторы имеют корпусную структуру, т. Е. Обмотки окружены сердечником, как показано на рис. 1. Мощность, подаваемая вторичной обмоткой, фактически передается от первичной, хотя на уровне напряжения, зависящем от передаточного отношения обмотки a. пара обмоток.

Видеоинтерпретация

Базовая конструкция трансформатора

На начальном этапе проектирования трансформатора необходимо четко выразить оценки первичного и вторичного напряжения и номинальный ток вторичной обмотки.

После этого определите содержание сердечника, которое будет использоваться: штамповка из обычной стали или холоднокатаная штамповка с ориентированным зерном (CRGO). CRGO отличается большей допустимой плотностью потока и меньшими потерями.

Наилучшее возможное поперечное сечение сердечника приблизительно определяется по:

Площадь сердечника: 1,152 x √ (выходное напряжение x выходной ток) кв. См.

Что касается трансформаторов, имеющих несколько вторичных обмоток, необходимо учитывать сумму произведения выходного напряжения на ампер каждой обмотки.

Количество витков на первичной и вторичной обмотках определяется по формуле для отношения витков на вольт как:

Оборотов на вольт = 1 / (4,44 x 10 -4 частота x площадь сердечника x плотность потока)

Здесь частота обычно составляет 50 Гц для домашнего источника питания в Индии. Плотность потока можно рассматривать как приблизительно 1,0 Вебер / кв. М. предназначен для штамповки обычной стали и примерно 1,3 Вебера / кв.м. для штамповки CRGO.

Расчет первичной обмотки

Ток в первичной обмотке представлен по формуле:

Первичный ток = Сумма вольт и ампер, деленных на первичные вольт x КПД

КПД малого трансформаторы могут отклоняться от 0.От 8 до 0. §6. Значение 0,87 отлично подходит для обычных трансформаторов.

Необходимо определить подходящий размер провода для обмотки. Диаметр провода зависит от номинального тока обмотки, а также от допустимой плотности тока провода.

Плотность тока может достигать 233 ампер / кв. См. в небольших трансформаторах и с минимальным током 155 ампер / кв. см. в больших.

Данные обмотки

Обычно значение 200 ампер / кв. См. можно считать, согласно которому создается Таблица №1.Количество витков в первичной обмотке выражается формулой:

Первичная Оборотов = Число витков на вольт x Первичное напряжение

Площадь, потребляемая обмоткой, определяется плотностью изоляции, техникой намотки и проводом. диаметр.

В таблице №1 приведены расчетные значения витков на квадратный см. через которое мы можем рассчитать площадь окна, потребляемую первичной обмоткой.

Площадь первичной обмотки = Число витков первичной обмотки / Число витков на кв.см из Таблицы № 1

Расчет вторичной обмотки

Учитывая, что у нас есть предполагаемый номинальный вторичный ток, мы можем определить размер провода для вторичной обмотки, просто просматривая Таблицу № 1 напрямую.

Количество витков на вторичной обмотке рассчитывается идентичным методом, когда дело касается первичной обмотки, но необходимо добавить около 3% лишних витков, чтобы компенсировать внутреннее падение напряжения вторичной обмотки трансформатора при нагрузке.Следовательно,

Число витков вторичной обмотки = 1,03 (витков на вольт x вторичное вольт)

Площадь окна, необходимая для вторичной обмотки, определена в Таблице 2 как

Площадь вторичного окна = Число витков вторичной обмотки / число витков на квадратный см (из Таблицы № 2 ниже)

Расчет размера сердечника

Основным критерием выбора сердечника может быть общая площадь окна доступного пространства обмотки.

Общая площадь окна = Площадь основного окна + сумма площадей второстепенных окон + пространство для бывшего окна и изоляция.

Необходимо немного больше места для поддержки первого и изоляции между обмотками. Конкретное количество дополнительной области может отличаться, даже если для начала можно было бы рассмотреть 30%, хотя это может потребоваться настроить позже.

Таблица размеров штамповки трансформатора

Идеальные размеры сердечников, обладающих более значительным оконным пространством, обычно определяются из таблицы 2 с учетом зазора между слоями при их укладке (элемент укладки сердечника может быть принят равным 0.9), теперь у нас есть

Общая площадь ядра = Площадь ядра / 0,9 кв. См. Как правило, предпочтительна квадратная центральная конечность.

Для этого ширина язычка ламинирования составляет

Ширина язычка = √ Общая площадь сердцевины (кв. См)

Теперь еще раз обратитесь к Таблице 2 и в качестве последнего пункта найдите подходящий размер сердцевины , имеющей достаточную площадь окна и близкое значение ширины язычка, как рассчитано. При необходимости измените высоту штабеля, чтобы получить желаемую секцию сердечника.

Высота штабеля = Общая площадь сердечника / Фактическая ширина язычка

Стопка не должна быть намного ниже ширины шпунта, а должна быть больше. Однако он не должен превышать ширину шпунта более чем в 1 1/2 раза.

Схема сборки сердечника

Как собрать трансформатор

Обмотка выполняется поверх изолирующего каркаса или бобины, которая устанавливается на среднюю стойку ламинированного сердечника. Обычно сначала наматывают первичную обмотку, а затем вторичную, сохраняя изоляцию между двумя слоями обмотки.

Последний изолирующий слой наносится поверх обмотки для защиты всех от механических повреждений и вибрации. Когда используются тонкие провода, их отдельные концы необходимо припаять к более тяжелым проводам, чтобы вывести клеммы за пределы первого.

Ламинирование, как правило, накладывается на основу альтернативным ламинированием в обратном порядке. Ламинирование должно быть плотно связано с помощью подходящей зажимной рамы или с помощью гаек и болтов (в случае, если в ламинаторе имеются сквозные отверстия).

Как применять экранирование

Это может быть разумной идеей использовать электростатический экран между первичной и вторичной обмотками, чтобы избежать электрических помех, передаваемых через вторичную обмотку от первичной обмотки.

Экран понижающих трансформаторов может быть изготовлен из медной фольги, которую можно намотать между двумя обмотками на несколько большее расстояние. Изоляция должна быть покрыта всей фольгой, и должны быть приняты соответствующие меры, чтобы два конца фольги никогда не соприкасались друг с другом.Кроме того, с этим экранирующим полем можно припаять провод и соединить его с линией заземления схемы или с пластиной трансформатора, которая может быть зажата с линией заземления схемы.

Для проектирования тороидального трансформатора вы можете обратиться к следующему PDF-документу:

https://www.homemade-circuits.com/wp-content/uploads/2021/04/torroidal-transformer_compressed.pdf

Расчет частоты сети силовые трансформаторы

Расчетные силовые трансформаторы промышленной частоты

Введение

На этой странице простая методика расчета частоты сети с закрытым сердечником. силовые трансформаторы.Он предназначен для домашнего пивоварения, ремонта и модификации трансформаторов. Обратите внимание, что даже если этот метод и некоторые уравнения могут быть обобщенно, в расчет принимаются только классические сердечники, составленные из стальных пластин. учетная запись.


Размер ядра

При проектировании трансформатора питания с замкнутым сердечником первым шагом является чтобы выбрать подходящий сердечник по мощности, устройство должно справиться. Обычно для большой мощности требуются большие жилы.На самом деле нет никаких теоретических или физических причин, препятствующих маленькому ядру. от обработки большой мощности, но по практическим соображениям на малом ядре, не хватает места для всех обмоток: большой сердечник — единственный выбор. Чтобы с самого начала выбрать довольно хорошее ядро, следующие эмпирическая формула (для рабочей частоты 50 Гц) может помочь:

Это уравнение связывает (полную) мощность P с поперечным сечением жилы. поверхность A с учетом КПД активной зоны η (греч. «эта»).При измерении поперечного сечения жилы следует удалить около 5%, чтобы учесть толщину лака на ферромагнитных пластинах составляя ядро. Поперечное сечение A — это минимальное поперечное сечение магнитного цепь, обычно измеряемая там, где расположены обмотки, как показано на рисунок ниже:

На приведенной выше диаграмме показан сердечник с двойной петлей, который на сегодняшний день является наиболее распространенным. тип сердечника из-за его низкого потока утечки и небольших размеров.Это называется «двойной петлей», потому что магнитное поле, создаваемое катушки в середине сердечника петляют половину на левой части сердечника и половина в правой части. В этом случае важно измерить поперечное сечение жилы внутри обмотки (как показано), где поток не делится пополам. Если ваш трансформатор имеет одну магнитную петлю, например тороидальный трансформатор, чем поперечное сечение одинаково по всему сердечнику и не имеет значения, где вы это измеряете.

Эффективность зависит от материала, из которого изготовлен сердечник; если неизвестно, таблица ниже даст общее представление:

Материал опорной плиты Плотность магнитного потока φ
[Вб / м 2 ]
Эффективность сердечника η
[1/1]
Текстурированная кремнистая сталь (C-образная), M5 1.3 0,88
Текстурированная кремнистая сталь (пластины 0,35 мм), M6 1,2 0,84
Кремнистая сталь без ориентированной зернистости (пластины 0,5 мм), M7 1,1 0,82
Стандартная кремниевая сталь без ориентированной зернистости (или для тяжелых условий эксплуатации) 1,0 0,80
Низкоуглеродистая сталь 0,8 0,70

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

В этом калькуляторе уже учтено уменьшение ядра на 5%. поперечное сечение.


Плотность потока в активной зоне

Затем необходимо определить плотность потока сердечника φ (греч. «фи»). Опять же, это зависит от материала, и, если он не известен, та же таблица будет помощь. Если трансформатор должен работать непрерывно или в плохо вентилируемом помещении. окружающей среде, небольшое уменьшение плотности потока (например, на 10%) приведет к уменьшите потери и сохраните трансформатор в холодном состоянии за счет большего количества железа и больше меди. Обратное может быть рассмотрено для снижения стоимости материалов в трансформаторах. используется только в течение коротких периодов времени или не предназначен для работы на полной мощности непрерывно.

После определения плотности потока можно рассчитать трансформатор константа γ , выражающая количество витков на вольт всех обмотки по следующей формуле:

Коэффициент 10 6 учитывает, что поперечное сечение жилы равно выражено в мм 2 . По поводу этой формулы следует отметить еще несколько моментов: например, низкий частоты требуют больше витков, и вы могли заметить, что 60 Гц трансформаторы, которые обычно немного меньше, чем эквивалентные 50 Гц единицы.Более того, низкая магнитная индукция также требует большего количества витков, а это означает, что для уменьшения потока в сердечнике (и уменьшения потерь) приходится наматывать больше витков, даже если это кажется нелогичным. Последнее замечание: для больших сердечников требуется несколько оборотов: если вы когда-нибудь смотрели внутри огромных высоковольтных трансформаторов, используемых энергетическими компаниями для своих высоковольтные линии электропередач, у них всего несколько сотен витков для многих киловольт, в то время как небольшой трансформатор 230 В внутри вашего будильника имеет тысячи поворотов.


Расчет обмоток

Теперь, когда мы знаем постоянную трансформатора γ , легко рассчитайте количество витков N для каждой обмотки по формуле:

Обратите внимание, что все напряжения и токи являются среднеквадратичными значениями, а плотность потока выражается его пиковым значением, чтобы избежать насыщения: это объясняет член √2 в уравнении постоянной трансформатора.

Для вторичных обмоток рекомендуется немного увеличить количество витков, скажем, на 5% или около того, чтобы компенсировать потери в трансформаторе.

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

Этот калькулятор уже учитывает фактор 5% для вторичного повороты.

Вы могли заметить, что количество витков зависит от размера сердечника и магнитного потока. плотность, но не по мощности. Итак, если вашему трансформатору требуется более одной вторичной обмотки, просто повторите расчет обмоток для каждой вторичной обмотки.Но в этом случае выбирайте сердечник достаточно большой, чтобы вместить все обмотки или, в Другими словами, выберите размер сердечника в соответствии с общей мощностью всех вторичные обмотки. Также используйте первичный провод с поперечным сечением, достаточно большим, чтобы выдержать общую мощность.


Выбор правильного провода

Последний шаг — рассчитать диаметр провода для каждой обмотки. Для этого необходимо выбрать плотность тока в проводнике c . Хороший компромисс — 2,5 А / мм 2 .Более низкое значение потребует больше меди, но приведет к меньшим потерям: это подходит для тяжелых трансформаторов. Более высокое значение потребует меньше меди и сделает трансформатор более дешевым, но из-за повышенного нагрева это будет приемлемо только при кратковременном использовании. время работы на полной мощности или может потребоваться охлаждение. Стандартные значения составляют от 2 до 3 А / мм 2 . После определения плотности тока можно рассчитать диаметр проволоки. используя следующее уравнение:

Или для c = 2.5 А / мм 2 :

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:


Практически

Теперь, когда вычисления завершены, начинается самое сложное: будет ли рассчитанные обмотки подходят на выбранный сердечник? Что ж, ответ непростой и зависит от большого количества факторов: сечение и форма провода, радиус изгиба провода, качество намотки, наличие изолирующей фольги между слоями обмотки и т. д.С другой стороны, некоторый опыт будет полезнее, чем много уравнения.

Купить пустой сердечник трансформатора сложно, и обычно начинаются домашние проекты. от старого трансформатора, чтобы раскрутить и восстановить. Не все трансформаторы можно разобрать: некоторые склеены смола, которая слишком сильна, чтобы удалить ее без изгиба основных пластин. К счастью, многие трансформаторы можно разобрать, сняв крышку. который удерживает все пластины вместе или шлифованием двух сварных швов поперек все тарелки.Затем каждую пластину необходимо осторожно снять, чтобы получить доступ к обмотки. Погнутые или поцарапанные пластины следует выбросить.

Если повезет, можно повторно использовать первичную обмотку и восстановить только вторичный, если первичный не наматывается на вторичный или не имеет неподходящее количество оборотов. Решая, следует ли оставить обмотку как есть или нет, полезно определить его количество витков, но подсчитать их без разматывая катушку.К счастью, есть способ определить количество витков: до разбирая сердечник, просто намотайте несколько витков (скажем, 5 или около того) изолированного провода вокруг обмоток и измерьте напряжение, наведенное в этом самодельном вторичный при нормальном питании трансформатора. По этой величине легко рассчитать количество витков на вольт трансформатора. и подсчитайте количество витков каждой обмотки без фактического подсчета их.

После того, как новые обмотки намотаны, самое время восстановить сердечник, ставим все пластины на место.Без силового пресса их все вернуть будет сложно, но если на в конце остается одна-две пластины, трансформатор все равно будет работать нормально. Но по этой причине при выполнении расчеты, выбрав меньшее поперечное сечение жилы. Когда трансформатор запитан, сила на пластинах сердечника значительна. и важно их крепко держать или склеивать; в противном случае ядро будет вибрировать и будет очень шумно.

Многие трансформаторы имеют пластины сердечника E-I, как показано на рисунке выше.При восстановлении сердечника пластины должны быть скрещены: E-I для одной слой и I-E для следующего, и так далее. Это минимизирует воздушный зазор и помогает поддерживать высокий коэффициент связи.

Всегда используйте эмалированный медный провод для всех обмоток. Изолированный провод из ПВХ (обычный электрический провод) — очень плохая идея, потому что слой изоляции очень толстый, занимает много места в сердечнике и является очень плохой проводник тепла: ваш трансформатор очень быстро перегреется.

Всегда кладите слой изолирующей фольги между первичной и вторичной обмотками. если они расположены близко друг к другу, чтобы предотвратить опасность поражения электрическим током в случае нарушение изоляции провода.Используйте что-нибудь тонкое, не горит, и это хороший изолятор. Я использую каптоновую ленту, но может подойти и обычная изолента.

Изоляция эмалированного медного провода обычно составляет до 1000 В (пиковое напряжение). стоимость). Если возможно, ознакомьтесь со спецификациями проводов, предоставленными его производитель. Если напряжение на крыле превышает это значение, лучше разделить намотка на два или более слоев, разделенных изолирующей фольгой между ними.


Заключение

Представлен простой метод расчета сетевых силовых трансформаторов. и я надеюсь, что это поможет домашним пивоварам в разработке собственных трансформаторов. в соответствии с их конкретными потребностями.Намотка собственных трансформаторов часто является единственным доступным выбором, когда требуются необычные напряжения. Но разобрав трансформатор, сделайте новые обмотки и верните обратно вместе — это много работы, поэтому лучше провести некоторые расчеты, прежде чем получится сразу с первой попытки.


Используемые символы

Символ Описание Установка
A Поперечное сечение жил мм 2
д Диаметр проволоки мм
f Рабочая частота Гц
I Среднеквадратичный ток обмотки А
N Количество витков 1/1
п. Полная мощность трансформатора ВА
U Действующее значение напряжения обмотки В
γ Число оборотов на В витков / В
η Эффективность сердечника 1/1
φ Плотность магнитного потока сердечника Вт / м 2

Примечание: 1 Вт / м 2 = 1 T = 10’000 Гаусс


Библиография

  • Nuova Elettronica, Vol.6, 134 с.
  • Nuova Elettronica, Riv 179, p66


Основы работы с силовыми трансформаторами | Типы и конструктивные формулы трансформаторов

Трансформатор передает электроэнергию из одной цепи в другую без изменения частоты. Он содержит первичную и вторичную обмотки. Первичная обмотка подключается к основному источнику питания, а вторичная — к требуемой цепи. В нашей проектной схеме мы взяли дизайн маломощного (10 кВА) однофазного силового трансформатора 50 Гц в соответствии с нашими требованиями в проекте.

Трансформатор в основном бывает трех типов:

  1. Тип сердечника
  2. Тип оболочки
  3. Тороидальный

В сердечнике тип обмотки окружает часть сердечника, тогда как сердечник типа оболочки окружает обмотки. В типе Core есть два основных типа, а именно тип E-I и тип U-T. В этой конструкции трансформатора мы использовали сердечник типа E-I. Мы выбрали сердечник E-I, так как обмотка намного проще по сравнению с тороидальной, но эффективность очень высока (95% -96%). Это связано с тем, что в тороидальных сердечниках потери магнитного потока намного меньше.

Трансформаторы, используемые в проекте:

  1. Трансформатор серии: Для обеспечения необходимого повышающего или понижающего напряжения и
  2. Управляющий трансформатор: Для измерения выходного напряжения и для подачи питания.
Расчетные формулы:

Здесь мы берем ссылку на данные обмоток в таблице эмалированных медных проводов и размеры таблицы штамповок трансформатора для выбора входных и выходных обмоток SWG и сердечника трансформатора для заданных спецификаций.

Процедура проектирования выполняется при условии, что даны следующие характеристики трансформатора: —


  • Вторичное напряжение (Vs)
  • Вторичный ток (Is)
  • Коэффициент трансформации (n2 / n1)

Из этих данных Подробно мы рассчитываем ширину язычка, высоту пакета, тип сердечника, площадь окна следующим образом: —

  • Вторичный вольт-ампер (SVA) = вторичное напряжение (Vs) * вторичный ток (Is)
  • Первичный вольт-ампер (PVA) = Вторичный вольт-ампер (SVA) / 0.9 (при КПД трансформатора 90%)
  • Первичное напряжение (Vp) = Вторичное напряжение (Vs) / соотношение витков (n2 / n1)
  • Первичный ток (Ip) = Первичный вольт-ампер (PVA) / Первичное напряжение (Vp)
  • Требуемая площадь поперечного сечения жилы определяется по формуле: — Площадь жилы (CA) = 1,15 * sqrt (первичные вольт-амперы (PVA))
  • Общая площадь жилы (GCA) = Площадь жилы (CA) ) * 1,1
  • Число витков обмотки определяется соотношением, которое определяется как: — Число витков на вольт (Tpv) = 1 / (4.44 * 10-4 * площадь жилы * частота * плотность потока)

Данные обмотки эмалированного медного провода

(@ 200A / см²)

0,0026

0,0131

905 0,0365

9065

Таблица размеров: .905

3

3

Макс. Сила тока (А)

Оборотов / кв. см

SWG

Макс. Сила тока (А)

Оборотов / кв. см

SWG

0,001

81248

50

0.1874

711

29

0,0015

62134

49

39706

48

0,2726

504

27

0.0041

27546

47

0,3284

415

26

3

3

341

25

0,0079

14392

45

0.4906

286

24

0,0104

11457

44

9689

9337

43

0,7945

176

22

0.0162

7755

42

1.0377

137

21

106

20

0,0233

5595

40

1.622

87,4

19

0,0274

4838

39

3

3507

38

3,178

45,4

17

0.0469

2800

37

4,151

35,2

16

26,8

15

0,0715

1902

35

6.487

21,5

14

0,0858

1608

34

8,579

8,579

8,579

8,579

0,1013

1308

33

10,961

12,8

12

0.1182

1137

32

13,638

10,4

11

8,7

10

0,1588

881

30

4

Типовой номер

Ширина языка (см)

Площадь окна (кв.см)

Типовой номер

Ширина язычка (см)

Площадь окна (кв. см)

17

1,27

1,27

9

2,223

7,865

12A

1,588

1,897

3

7,865

74

1,748

2,284

11A

1,905

2,723

4A

3,335

10,284

30

30

2

10,891

1,588

3,329

16

2 9179

16

2 3,81

3,703

3

3,81

12,704

10

1.588

4,439

4AX

2,383

13,039

15

00

15

2,52

14,117

33

2,8

5,88

75

2.54

15.324

1

1.667

6.555

4

4

2

2 905 2,54

6,555

7

5,08

18,969

11

1.905

7,259

6

3,81

19,356

34

34

1,588

1,588

1,588

1,588

39,316

3

3,175

7,562

8

5.08

49,803

Для работы от сети частота составляет 50 Гц, а плотность потока можно принять равной 1 Вт / см2. для штамповок из обычной стали и 1,3 Вт / кв. см для штамповок из CRGO, в зависимости от используемого типа.

Отсюда

  • Количество витков в первичной обмотке (n1) = число витков на вольт (Tpv) * первичное напряжение (V1)
  • Число витков вторичной обмотки (n2) = число витков на вольт (Tpv) x вторичное напряжение (V2) * 1,03 (Предположим, что имеется составляет 3% падения в обмотках трансформатора)
  • Ширина язычка пластин приблизительно определяется по формуле: —

Ширина язычка (Tw) = Sqrt * (GCA)

Плотность тока

Это допустимая нагрузка по току провод на единицу площади поперечного сечения.Выражается в ампер / см². Вышеупомянутая таблица проводов рассчитана на продолжительную работу при плотности тока 200 А / см². Для прерывистого или прерывистого режима работы трансформатора можно выбрать более высокую плотность до 400 А / см², то есть вдвое большую, чем нормальная плотность, чтобы сэкономить на стоимости единицы. Это выбрано, поскольку повышение температуры для случаев прерывистой работы меньше для случаев непрерывной работы.

Итак, в зависимости от выбранной плотности тока, мы теперь вычисляем значения первичного и вторичного токов, которые нужно искать в таблице проводов для выбора SWG: —

n1a = Первичный ток (Ip) вычислен / (плотность тока / 200)

n2a = Расчетный вторичный ток (Is) / (плотность тока / 200)

Для этих значений первичного и вторичного токов мы выбираем соответствующие SWG и число оборотов на кв. см из таблицы проводов.Затем мы приступаем к расчету следующим образом: —

  • Первичная площадь (Па) = Первичные витки (n1) / (Первичные витки на квадратный см)
  • Вторичная площадь (sa) = Вторичные витки (n2) / (Вторичные витки на квадратный см)
  • Общая площадь окна, необходимая для жилы, определяется как: —

Общая площадь (TA) = Основная площадь (Па) + Вторичная площадь (sa)

  • Дополнительное пространство, необходимое для первой и изоляции, может быть принято как На 30% больше места, чем требуется для фактической площади намотки.Это значение является приблизительным и может быть изменено в зависимости от фактического метода намотки.

Площадь окна (Wacal) = Общая площадь (TA) * 1,3

Для вычисленного выше значения ширины язычка мы выбираем номер сердечника и площадь окна из основной таблицы, гарантируя, что выбранная площадь окна больше или равна Общая площадь ядра. Если это условие не выполняется, мы выбираем большую ширину шпунта, обеспечивая такое же условие с соответствующим уменьшением высоты штабеля, чтобы поддерживать приблизительно постоянную общую площадь сердечника.

Таким образом, мы получаем доступную ширину язычка (Twavail) и площадь окна ((avail) (aWa)) из базовой таблицы

  • Высота стека = Общая площадь сердечника / ширина язычка ((available) (atw)).

Для коммерческих целей прежнего размера мы приближаем отношение высоты штабеля к ширине язычка к ближайшим следующим значениям: 1,25, 1,5, 1,75. В худшем случае мы принимаем отношение равным 2. Однако можно принять любое отношение до 2, что потребовало бы создания собственного прежнего.

Если соотношение больше 2, мы выбираем большую ширину язычка (aTw), обеспечивая все условия, указанные выше.

  • Высота стопки (ht) / ширина язычка (aTw) = (некоторое соотношение)
  • Измененная высота стопки = ширина язычка (aTw) * Ближайшее значение стандартного отношения
  • Модифицированная общая площадь ядра = ширина языка (aTw) * Изменено высота стопки.

Такая же процедура проектирования применяется для управляющего трансформатора, где нам нужно обеспечить, чтобы высота стопки была равна ширине язычка.

Таким образом, мы находим номер ядра и высоту стека для заданных спецификаций.

Проектирование трансформатора на примере:
  • Приведены следующие детали: —
  • п.напряжение (Вс) = 60 В

сек. ток (Is) = 4,44 А

  • Оборотов на соотношение (n2 / n1) = 0,5

Теперь нам нужно произвести следующие расчеты: —

  • сек Вольт-Ампер (SVA) = Vs * Is = 60 * 4,44 = 266,4 ВА
  • Первичное напряжение-ампер (PVA) = SVA / 0,9 = 296,00 ВА
  • Первичное напряжение (Vp) = V2 / (n2 / n1) = 60 / 0,5 = 120 В
  • Первичный ток (Ip) = PVA / Vp = 296,0 / 120 = 2,467 A
  • Площадь ядра (CA) = 1,15 * sqrt (PVA) = 1,15 * sqrt (296) = 19,785 см²
  • Общая площадь сердечника площадь (GCA) = CA * 1.1 = 19,785 * 1,1 = 21,76 см²
  • Оборотов на вольт (Tpv) = 1 / (4,44 * 10-4 * CA * частота * плотность потока) = 1 / (4,44 * 10-4 * 19,785 * 50 * 1) = 2,272 оборота на вольт
  • Обороты первичного оборота (N1) = Tpv * Vp = 2,276 * 120 = 272,73 оборота
  • Оборотов секунд (N2) = Tpv * Vs * 1,03 = 2,276 * 60 * 1,03 = 140,46 оборота
  • Ширина язычка (TW) = Sqrt * (GCA) = 4,690 см
  • Мы выбираем плотность тока как 300A / см², но плотность тока в таблице проводов указана для 200A / cm², затем
  • Значение поиска первичного тока = Ip / (плотность тока / 200) = 2.467 / (300/200) = 1.644A
  • Значение поиска вторичного тока = Is / (плотность тока / 200) = 4.44 / (300/200) = 2.96A

Для этих значений первичного и вторичного токов мы выбираем соответствующие SWG и число оборотов на квадратный см от таблицы проводов.

SWG1 = 19 SWG2 = 18

Оборотов на кв. См первичной обмотки = 87,4 см² витков на 1 см² вторичной обмотки = 60,8 см²

  • Площадь первичной обмотки (Па) = n1 / витков на см (первичная обмотка) = 272.73 / 87,4 = 3,120 см²
  • Вторичная площадь (sa) = n2 / витков на кв. См (вторичная) = 140,46 / 60,8 = 2,310 см²
  • Общая площадь (at) = pa + sa = 3,120 + 2,310 = 5,430 см²
  • Окно площадь (Wa) = общая площадь * 1,3 = 5,430 * 1,3 = 7,059 см²

Для вычисленного выше значения ширины язычка мы выбираем номер сердечника и площадь окна из основной таблицы, гарантируя, что выбранная площадь окна больше или равна в основную площадь брутто. Если это условие не выполняется, мы выбираем большую ширину шпунта, обеспечивая такое же условие с соответствующим уменьшением высоты штабеля, чтобы поддерживать приблизительно постоянную общую площадь сердечника.

Таким образом, мы получаем доступную ширину язычка (Twavail) и площадь окна ((avail) (aWa)) из основной таблицы:

  • Таким образом, доступная ширина язычка (atw) = 3,81 см
  • Доступная площадь окна (awa) = 10,891 см²
  • Номер ядра = 16
  • Высота стопки = gca / atw = 21,99 / 3,810 = 5,774 см

Из соображений производительности мы приблизили отношение высоты стопки к ширине язычка (aTw) к ближайшим следующим значениям 1,25, 1,5, и 1,75. В худшем случае принимаем отношение равным 2.

Если соотношение больше 2, мы выбираем большую ширину язычка, обеспечивая все условия, указанные выше.

  • Высота стопки (ht) / ширина язычка (aTw) = 5,774 / 3,81 = 1,516
  • Измененная высота стопки = ширина язычка (aTw) * Ближайшее значение стандартного соотношения = 3,810 * 1,516 = 5,715 см
  • Измененная общая площадь сердечника = Ширина язычка (aTw) * Измененная высота стопки = 3,810 * 5,715 = 21,774 см²

Таким образом, мы находим номер сердечника и высоту стопки для заданных спецификаций.

Конструкция малогабаритного трансформатора управления на примере:

Приведены следующие данные: —

  • п. напряжение (Vs) = 18V
  • sec ток (Is) = 0.3A
  • оборотов на соотношение (n2 / n1) = 1

Теперь нам нужно произвести следующие вычисления: —

  • sec.Volt-Amps (SVA ) = Vs * Is = 18 * 0,3 = 5,4 ВА
  • Первичное вольт-амперное напряжение (PVA) = SVA / 0,9 = 5,4 / 0,9 = 6 ВА
  • Первичное напряжение. Напряжение (Vp) = V2 / (n2 / n1) = 18/1 = 18V
  • Prim.ток (Ip) = PVA / Vp = 6/18 = 0,333A
  • Площадь жилы (CA) = 1,15 * sqrt (PVA) = 1,15 * sqrt (6) = 2,822 см²
  • Площадь поперечной жилы (GCA) = CA * 1,1 = 2,822 * 1,1 = 3,132 см²
  • Оборотов на вольт (Tpv) = 1 / (4,44 * 10-4 * CA * частота * плотность потока) = 1 / (4,44 * 10-4 * 2,822 * 50 * 1) = 15,963 витка на вольт
  • Prim. Обороты (N1) = Tpv * Vp = 15,963 * 18 = 287,337 оборота
  • Оборотов (N2) = Tpv * Vs * 1,03 = 15,963 * 60 * 1,03 = 295,957 витков
  • Ширина языка (TW) = Sqrt * (GCA ) = Sqrt * (3.132) = 1,770 см

Мы выбираем плотность тока как 200 А / см², но плотность тока в таблице проводов указана для 200 А / см², затем

  • Значение поиска первичного тока = Ip / (плотность тока / 200 ) = 0,333 / (200/200) = 0,333 А
  • Значение поиска вторичного тока = Is / (плотность тока / 200) = 0,3 / (200/200) = 0,3 А

Для этих значений первичного и вторичного токов мы выберите соответствующий SWG и Turns per Sq. см от проволочного стола.

SWG1 = 26 SWG2 = 27

Поворотов на кв. см первичной обмотки = 415 витков Оборотов на кв. см вторичной обмотки = 504 витка

  • Первичная площадь (Па) = n1 / витков на кв. см (первичная) = 287,337 / 415 = 0,692 см²
  • Вторичная площадь (sa) = n2 / витков на квадратный см (вторичная) = 295,957 / 504 = 0,587 см²
  • Общая площадь (at) = pa + sa = 0,692 + 0,587 = 1,280 см²
  • Площадь окна (Wa) = общая площадь * 1.3 = 1,280 * 1,3 = 1,663 см²

Для вычисленного выше значения ширины язычка мы выбираем номер сердечника и площадь окна из основной таблицы, гарантируя, что выбранная площадь окна больше или равна общей площади сердечника. Если это условие не выполняется, мы выбираем большую ширину шпунта, обеспечивая такое же условие с соответствующим уменьшением высоты штабеля, чтобы поддерживать приблизительно постоянную общую площадь сердечника.

Таким образом, мы получаем доступную ширину язычка (Twavail) и площадь окна ((avail) (aWa)) из основной таблицы

  • Таким образом, доступная ширина язычка (atw) = 1.905 см
  • Доступная площадь окна (awa) = 18,969 см²
  • Число сердечников = 23
  • Высота стека = gca / atw = 3,132 / 1,905 = 1,905 см

Таким образом, был разработан трансформатор управления.

(решено) — 2.1. Однофазный трансформатор с сердечником 6600/400 В, 50 Гц имеет … — (1 ответ)

2.1. Однофазный трансформатор с сердечником на 6600/400 В, 50 Гц имеет полезную площадь поперечного сечения сердечника
см2. Максимальная плотность потока в сердечнике —
1.5 Т. Рассчитайте количество витков в первичной и вторичной обмотках.
Отв. 462, 28
2.2. Однофазный трансформатор, 50 Гц, 220/3000 В, имеет полезную площадь поперечного сечения
сердечника 400 см2. Если пиковое значение магнитной индукции в сердечнике составляет 1,239 Тл,
рассчитывает подходящие значения количества витков в первичной и вторичной обмотках

2.3. Однофазный трансформатор 50 Гц имеет 80 витков на первичной обмотке и 280 витков
во вторичной обмотке. Напряжение, приложенное к первичной обмотке, составляет
240 В при 50 Гц.Рассчитайте (i) максимальную плотность потока в сердечнике и (ii) наведенную ЭДС
во вторичной обмотке. Чистая площадь поперечного сечения жилы может составлять
на 200 см2.
Ans. (I) 0,675 Вт / м2; (ii) 840 В
2.4. Значения сопротивления первичной и вторичной обмоток
однофазного трансформатора
2200/200 В, 50 Гц составляют 2,4 и 0,02 Ом. соответственно.
Найдите (i) эквивалентное сопротивление первичной обмотки относительно вторичной обмотки, (ii) эквивалентное сопротивление
вторичной обмотки относительно первичной обмотки, (iii) полное сопротивление трансформатора
относительно вторичной обмотки и (iv) полное сопротивление трансформатора относительно первичной обмотки
.
2,5. Испытание на короткое замыкание, проведенное на однофазном трансформаторе
20 кВА, 2000/200 В, 50 Гц, дало следующие показания:
При 100 В, приложенном к первичной обмотке, ток полной нагрузки циркулирует во вторичной обмотке с коротким замыканием
с потребляемой мощностью 300 Вт. Рассчитайте вторичное напряжение на клеммах
при полной нагрузке
(i) при единичном коэффициенте мощности, (ii) при pf 0,75 с запаздыванием на
и (iii) при pf 0,8 с опережением. Найдите также процентное регулирование в
для каждого случая.
Ответ :(i) 197 В, 1.5% (ii) 191,4 В, 4,28% (iii)
203,3 В, -1,66%
2,6. Потери в стали и при полной нагрузке в меди в однофазном трансформаторе мощностью 40 кВА составляют
450 и 850 Вт соответственно. Найдите (i) КПД при полной нагрузке, когда коэффициент мощности
нагрузки отстает на 0,8, (ii) максимальный КПД и (iii) нагрузку
, при которой достигается максимальный КПД.
2,7. Испытания на обрыв и короткое замыкание были проведены на однофазном трансформаторе 50 кВА, 6360 / 2Q0 В,
50 Гц, чтобы определить его эффективность.Наблюдения
во время этих испытаний:
Испытание на обрыв цепи: напряжение на первичной обмотке 6360 В.
Первичный ток
, 1,0 А, потребляемая мощность 2 кВт.
Испытание на короткое замыкание: напряжение на первичной обмотке 180 В, ток на вторичной обмотке
175 А, потребляемая мощность 2 кВт.
Рассчитайте КПД трансформатора при подаче полной нагрузки при мощности
с коэффициентом запаздывания 0,8.
Ответ: 89,2%
2.8. Рассчитайте КПД при полной нагрузке, половинной нагрузке и 1/4 нагрузки при (i) единице pf
и (ii) 0.71 пФ, для однофазного трансформатора
мощностью 80 кВА, 1100/250 В, 50 Гц, потери которого следующие:
Потери в стали = 800 Вт
Суммарные потери в меди при 160 А в обмотке низкого напряжения составляют 200 Вт.
52 Введение в электрические машины
Ответ 🙁 i) 98,04 Y., 97,57%, 95,92% (ii) 97,25%, 96,61%;, 94,36
%.
2.9. Параметры эквивалентной схемы однофазного трансформатора 10 кВА, 2000/400 В, 50 Гц,
следующие:
Первичная обмотка: r1 = 5,5 °; х1 = 12?
Вторичная обмотка: r2 = 0.2?; х2 = 0,45?
Если первичное напряжение питания составляет 2000 В, рассчитайте приблизительное значение
вторичного напряжения при полной нагрузке с запаздыванием коэффициента мощности 0,8.
Ответ: 377,6 В
2.10. Трансформатор 10 кВА 2200/460 В подключается как автотрансформатор
, повышающий напряжение с 2200 В до 2660 В. При использовании для преобразования 10 кВА
определяет выходную нагрузку кВА.
Отв .: 57,8 кВА
2.11. Три подключенных трансформатора? -Y понижают напряжение с 12600 до 600–
В и обеспечивают нагрузку 55 кВА при коэффициенте мощности 0.866 отстает. Вычислить:
(a)
(b)
(c)
(d)
Коэффициент трансформации каждого трансформатора.
Нагрузка в кВА и кВт в каждом трансформаторе. Однофазный трансформатор с сердечником 6600/400 В, 50 Гц имеет полезную площадь поперечного сечения сердечника
428 см2. Максимальная магнитная индукция в сердечнике
1,5 Тл. Рассчитайте количество витков в первичной и вторичной обмотках.

Наличие относительно недорогих магнитных материалов, с магнитной восприимчивостью порядка 1000 и более, позволяет производство высоких плотностей магнитного потока с относительно небольшими токи.Устройства, предназначенные для использования этих материалов, включают: компактные индукторы, трансформаторы и вращающиеся машины. Многие из этих моделируются как магнитные цепи, которые являются темой этого раздел.

Рисунок 9.7.1 Сильно намагничиваемый сердечник, в котором Поток, индуцированный обмоткой, может циркулировать двумя путями.

Показана типичная магнитная цепь сердечников трансформатора. на рис. 9.7.1. Ядро из материала с высокой проницаемостью имеет пару в центре прорезаны прямоугольные окна. Провода, проходящие через эти окна охватывают центральную колонну.Поток генерируемый этой катушкой, как правило, направляется намагничиваемым материал. Он проходит вверх через центральную ножку материала и разделяется на части, которые проходят по ножкам влево и вправо.

Пример 9.6.2 с его высокопроницаемой сферой, возбуждаемой небольшим катушка, дала возможность изучить улавливание магнитных поток. Здесь, как и в случае с b / a 1 , плотность потока внутри сердечника имеет тенденцию быть тангенциальной на поверхность.Таким образом, плотность магнитного потока определяется материала и распределение поля в ядре, как правило, независимо от внешней конфигурации.

В ситуациях этого типа, когда канал магнитного потока позволяет аппроксимировать распределение магнитных области интегральные законы MQS служат во многом той же цели, что и Законы Кирхгофа для электрических цепей.

Рисунок 9.7.2 Поперечное сечение высокопроницаемого сердечник, показывающий контур C 1 , охватываемый поверхностью S 1 , используется с Интегральный закон Ампера и замкнутая поверхность S 2 , используемые с интегральный закон непрерывности потока.

Форма MQS интегрального закона Ампера применяется к контуру, такому как как C 1 на рис. 9.7.2, следуя по пути циркулирующего магнитного поток.

Поверхность, ограниченная этим контуром на рис. 9.7.2, пронизана N раз. током, переносимым по проводу, поэтому поверхностный интеграл Плотность тока справа в (1) в данном случае равна Ni . Одинаковый уравнение можно записать для контура, проходящего через левую нога, или для одного, циркулирующего через внешние ноги.Обратите внимание, что последний будет охватывать поверхность S , через которую чистый ток будет ноль.

Если интегральный закон Ампера играет роль, аналогичную закону Кирхгофа закон напряжения, затем интегральный закон, выражающий непрерывность магнитного поток аналогичен текущему закону Кирхгофа. Это требует, чтобы через закрытую поверхность, такую ​​как S 2 на рис. 9.7.2, сетка магнитный поток равен нулю.

В результате поток, входящий в закрытая поверхность S 2 на рис.9.7.2 через центральную ногу должен равняться уходу влево и вправо через верхние ноги магнитная цепь. Вернемся к именно этому магнитному схема, когда мы обсуждаем трансформаторы.

Пример 9.7.1. Поле воздушного зазора электромагнита

Магнитная цепь на рис. 9.7.3 может быть использована для создания высокая напряженность магнитного поля в узком воздушном зазоре. Катушка витка N оборачивается вокруг левой ножки высокопроницаемого ядра.При условии чтобы длина г воздушного зазора не слишком велика, флюс в результате тока и в этой обмотке в значительной степени направляется по намагничивающийся материал.

Рисунок 9.7.3 Поперечное сечение магнитопровода используется для создания напряженности магнитного поля H g в воздушном зазоре.

Путем аппроксимации полей в секциях схемы как по существу однородны, можно использовать интегральные законы для определить напряженность поля в зазоре.В левой ноге поле аппроксимируется константой H 1 по длине l 1 и площадь поперечного сечения A 1 . Аналогично по длине l 2 , которые имеют площади поперечного сечения A 2 , напряженность поля равна приблизительно H 2 . Наконец, в предположении, что зазор ширина г мала по сравнению с размерами поперечного сечения зазор, поле в зазоре представлено константой H g .В Затем применяется линейный интеграл от H в интегральном законе Ампера (1) к контуру C , который следует напряженности магнитного поля вокруг схему, чтобы получить левую часть выражения

Правая часть этого уравнения представляет собой поверхностный интеграл из J d a для поверхности S , имеющей этот контур в качестве края. Полный ток через поверхность — это просто ток через один провод, умноженный на количество раз, когда он протыкает поверхность С .

Мы предполагаем, что намагничивающийся материал работает в условиях условия магнитной линейности. Тогда конституционный закон связывает плотность потока и напряженность поля в каждой из областей.

Непрерывность магнитного потока (2) требует, чтобы полный поток через каждый участок схемы быть одинаковым. С потоком плотности, выраженные с помощью (4), для этого требуется, чтобы

Наша цель — определить H g . С этой целью используется (5) написать

и эти отношения использовались для исключения H 1 и H 2 в пользу H г в (3).Из полученного выражения следует, что

Отметим, что в пределе бесконечной проницаемости керна зазор Напряженность поля просто Ni / г .

Если магнитопровод можно разбить на участки, в которых напряженность поля практически однородна, то поля могут быть определяется из интегральных законов. Предыдущий пример это показательный случай. Требуется более общий подход, если ядро имеет сложную геометрию или требуется более точная модель.

На протяжении всей главы мы предполагаем, что намагничивающийся материал достаточно изолирующий, так что даже если поля изменяются во времени, в сердечнике нет плотности тока. В результате магнитный напряженность поля в ядре можно представить в терминах скалярной магнитный потенциал, введенный в гл. 8.3.

Согласно интегральному закону Ампера (1) интегрирование H d s по замкнутому контуру должно быть равно «Ампер повороты» Ni , проходящий через поверхность, охватывающую контур.При H , выраженном через , интеграция из (a) — (b) вокруг контура, такого как C на рис. 9.7.4, который окружает чистый ток, равный к произведению витков N и тока на виток i , дает a b = Ni . Если (a) и (b) смежные друг другу ясно, что является многозначным. Чтобы указать главное значение этой многозначной функции, мы должны ввести разрыв в где-то по контуру.В цепи На рис. 9.7.4 определено, что эта неоднородность возникает по всей поверхности. S d .

Рисунок 9.7.4 Типичная конфигурация магнитной цепи в котором магнитный скалярный потенциал сначала определяется внутри сильно намагничивающийся материал. Основная ценность многозначного скалярный потенциал внутри сердечника берется, не пересекая поверхность S d .

Сделать линейный интеграл H d s из любой точки чуть выше поверхности S d вокруг контура до точки чуть ниже поверхность, равная Ni , потенциал должен испытывать разрыв = Ni на S d .Везде внутри магнитный материал, удовлетворяет уравнению Лапласа. Если в добавление, нормальная магнитная индукция на стенках намагничиваемого материала равна требуется, чтобы исчезнуть, распределение в ядре однозначно определен. Обратите внимание, что только разрыв в указано на поверхности S d . Величина с одной стороны или другой не указан. Кроме того, нормальная производная от , который пропорционален нормальному компоненту H , должен быть непрерывно по S d .

Следующий простой пример показывает, как скалярная магнитная потенциал можно использовать для определения поля внутри магнитного схема.

Пример 9.7.2. Магнитный потенциал внутри намагничиваемого сердечника

Сердечник магнитопровода, показанного на рис. 9.7.5, имеет внешний и внутренние радиусы a и b соответственно, а длина d в z направление, которое больше по сравнению с . Текущий и несут в в направлении z через центральное отверстие и обратно на внешнем периферия на Н витков.Таким образом, интеграл H d s по контуру циркулирующий вокруг магнитной цепи должен быть Ni , а поверхность разрыв S d вводится произвольно, как показано на рис. 9.7.5. При граничном условии отсутствия утечки потока / r = 0 при r = a и при r = b решение уравнения Лапласа в ядре определяется однозначно.

Рисунок 9.7.5 Магнитная цепь, состоящая из сердечника имеющий форму кругового цилиндрического кольца с витком N обмотка наматывается примерно на половину ее окружной длины.В длина системы в бумаге очень велика по сравнению с внешний радиус a .

В принципе краевая задача может быть решена, даже если геометрия сложная. Для конфигурации, показанной на рис. 9.7.5, требование отсутствия радиальной производной предполагает, что Независимо от r . Таким образом, с A произвольный коэффициент, разумный догадываюсь

Коэффициент A был выбран так, чтобы действительно было разрыв Ni в между = 2 и = 0 .

Напряженность магнитного поля, полученная при подстановке (9) в (8), равна

Обратите внимание, что H является непрерывным, как и должно быть.

Теперь, когда внутреннее поле определено, возможно, в свою очередь, чтобы найти поля в окружающих областях свободного пространства. В решение для внутреннего поля вместе с заданной поверхностью распределение тока на границе между областями, обеспечивает касательное поле на границах внешних областей.В пределах произвольная константа, граничное условие на поэтому указано. Во внешних регионах нет замкнутого контура, который оба остаются в пределах региона и окружают текущие. В этих регионах — непрерывный. Таким образом, проблема поиска полей «утечки» сводится к нахождению краевого решения уравнения Лапласа.

Такой подход изнутри-снаружи дает приблизительное поле распределение, которое оправдано только в том случае, если относительная проницаемость ядро очень большое.Как только внешнее поле приблизительно в таким образом, его можно использовать, чтобы предсказать, сколько потока покинуло магнитная цепь и, следовательно, насколько велика погрешность в расчетах. Как правило, будет обнаружено, что ошибка зависит не только от относительной проницаемость, но и по геометрии. Если магнитная цепь состоит из длинных и тонких ног, то мы ожидаем утечка потока должна быть большой и приближение подход изнутри-снаружи, чтобы стать недействительным.

Взаимосвязи и характеристики электрических клемм

Практические индукторы (дроссели) часто имеют форму магнитных цепей.При наличии более одной обмотки на одной магнитной цепи магнитный Схема служит сердечником трансформатора. На рисунке 9.7.6 показан схематическое изображение трансформатора. Каждая обмотка моделируется как идеально проводящий, поэтому его напряжение на клеммах определяется формулой (9.2.12).

Однако поток, связанный одной обмоткой, возникает из-за двух токов. Если сердечник магнитно-линейный, у нас есть поток, связанный первым катушка, которая представляет собой сумму потокосцепления L 11 i 1 за счет собственного ток и потокосцепление L 12 из-за тока во втором обмотка.Аналогичная ситуация и для второй катушки. Таким образом потокосцепления связаны с токами на клеммах посредством матрица индуктивности .

Коэффициенты L ij зависят от геометрии сердечника и катушки. и свойства материала, с L 11 и L 22 знакомые самоиндукции и L 12 и L 21 взаимное индуктивности .

Рисунок 9.7.6 Схема трансформатора как определено терминальными соотношениями из (12) или идеального трансформатор, как определено в (13).

Слово «трансформатор» обычно используется двумя способами, каждый из которых часто схематично, как на рис. 9.7.6. В первом подразумевается только то, что терминальные отношения резюмируются (12). Во втором случае, когда устройство считается идеальным трансформатор , клеммы указаны как напряжение и текущие коэффициенты.Для идеального трансформатора

Предположительно такое устройство может служить для повышения напряжения при понижая ток. Отношения между терминалом напряжения и между клеммами токи линейны, так что такой Устройство «идеально» для обработки сигналов.

Магнитная цепь, разработанная в следующем примере, представляет собой магнитную цепь. типовой трансформатор. У нас две цели. Сначала мы определяем индуктивности, необходимые для завершения (12). Во-вторых, мы определяем условия, при которых такой трансформатор работает как идеальный трансформатор.

Пример 9.7.3. Трансформатор

Ядро, показанное на рис. 9.7.7, знакомо из введения в этот раздел, рис. 9.7.1. «Окна» заполнены пара обмоток, имеющая витки N 1 и N 2 соответственно. Они разделяют центральную ветвь магнитной цепи как общий сердечник и генерируют поток, который циркулирует по ветвям в обе стороны.

Рисунок 9.7.7 В типичном трансформаторе связь оптимизирован за счет размещения первичной и вторичной обмоток на одном ядре.На вставке показано, насколько в полной мере используется намагничивающийся материал в основное производство.

Соотношение между напряжениями на клеммах для идеального трансформатора зависит только от единства связи между двумя обмотками. То есть, если мы называем магнитный поток через центральную ножку, поток, связывающий соответствующие катушки,

Эти утверждения предполагают, что нет потока утечки, который мог бы соединить одну катушку, но обойти другую.

Что касается магнитного потока, проходящего через центральную опору, напряжения на зажимах следуют из (14) как

Из этих выражений, без дальнейших ограничений на режим работы следует соотношению между терминалом напряжения (13).

Теперь воспользуемся интегральными законами для определения потоковых связей в условия токов. Потому что желательно минимизировать пик плотность магнитного потока в каждой точке сердечника, и потому что поток через центральную ножку равномерно делится между двумя контуров, сечения возвратных ветвей выполнены наполовину такой же большой, как у центральной ноги.


3 Для оптимизации использования материала сердечника относительные размеры часто принимают как в на вставке к рис.9.7.7. Из прямоугольных секций вырезаются две жилы. измерения 6h x 8h . После того, как окна были удалены, прямоугольник разрезается на две части, образуя две жилы « E «, которые затем можно в сочетании с « I » образуют два полных сердечника. Уменьшить вихревые токи, сердечник часто делают из лакированных пластин. Об этом будет сказано в гл. 10. В результате величина B и, следовательно, H , могут быть аппроксимированы как постоянные во всем ядро.[Обратите внимание, что теперь мы использовали условие непрерывности потока из (2).]

При средней длине циркулирующей силовой линии магнитного поля взятый равным -1, интегральный закон Ампера (1) дает

Принимая во внимание предполагаемую магнитную линейность сердечника, магнитный поток через площадь поперечного сечения центральной стойки проходит

и из этих двух последних выражений следует, что

Умножение на витки N 1 и затем N 2 соответственно дает потокосцепления 1 и 2 .

Сравнение этого выражения с (12) идентифицирует само- и взаимное индуктивности как

Обратите внимание, что взаимные индуктивности равны. В гл. 11.7, мы увидим что это следствие сохранения энергии. Так же самоиндуктивности связаны с взаимной индуктивностью соотношением

При каких условиях оконечные токи подчиняются соотношениям для «идеальный трансформатор»?

Предположим, что (1) клеммы выбраны как «первичные» клеммы трансформатора и приводятся в действие источником тока I (t) , и что выводы обмотки (2), «вторичной», подключены к резистивной нагрузке R .Признать, что обмотка на самом деле внутреннее сопротивление, эта нагрузка включает сопротивление обмотки как хорошо. Электрическая схема показана на рис. 9.7.8.

Рисунок 9.7.8 Трансформатор с сопротивлением нагрузки R , который включает внутреннее сопротивление вторичной обмотки.

Уравнение вторичной цепи:

и используя (12) с i 1 = I , следует, что вторичный ток i 2 регулируется

В целях иллюстрации рассмотрим реакцию на привод, который в синусоидальном установившемся состоянии.Угловая частота привода равный , отклик имеет такую ​​же временную зависимость в устойчивое состояние.

Подстановка в (23) показывает, что комплексная амплитуда ответ

Идеальное соотношение трансформатор-ток получается, если

В этом случае (25) сводится к

Когда выполняется условие идеального трансформатора (26), первый член в левый в (23) преобладает над вторым. Что останется, если термин сопротивления не учитывается — это утверждение

Делаем вывод, что для идеальной работы трансформатора магнитный поток связи незначительны. Это очень важно для трансформатора вести себя как линейное устройство. Независимо от того, представлена ​​ли индуктивность матрица (12) или идеальные соотношения (13), линейная операция петли на наличие линейной зависимости между B и H в сердечнике, (17). Работая в режиме (26), так что B достаточно мала чтобы избежать насыщения, (17) имеет тенденцию оставаться в силе.

Конструкция трансформатора с магнитными ферритовыми сердечниками

Magnetics предлагает два метода выбора ферритового сердечника для силового применения: выбор сердечника по допустимой мощности и выбор сердечника по продукту WaAc.

Выбор сердечника по мощности передачи

Диаграмма мощности характеризует допустимую мощность каждого ферритового сердечника на основе рабочей частоты, топологии схемы, выбранного уровня магнитного потока и количества мощности, требуемой для схемы. Если эти четыре особенности известны, ядро ​​может быть выбрано из типовой диаграммы допустимой мощности.

Выбор сердечника компанией WaAc Продукт

Допустимая мощность сердечника трансформатора также может быть определена с помощью его продукта WaAc, где Wa — доступная площадь окна сердечника, а Ac — эффективная площадь поперечного сечения сердечника.Используя приведенное ниже уравнение, рассчитайте продукт WaAc, а затем используйте диаграмму распределения продукта по площади (WaAc), чтобы выбрать соответствующее ядро.

WaAc = произведение площади окна и площади сердечника (см 4 )

P o = Выходная мощность (Вт)

D cma = Плотность тока (милл / ампер) Плотность тока может быть выбрана в зависимости от допустимого нагрева. 750 окр. mils / amp является консервативным; 500 цир.милс агрессивен.

B max = Плотность потока (гаусс) выбирается в зависимости от рабочей частоты. Выше 20 кГц потери в сердечнике увеличиваются. Для работы ферритовых сердечников на более высоких частотах необходимо, чтобы уровни магнитного потока сердечника не превышали ± 2 кг. График зависимости плотности потока от частоты показывает снижение уровней магнитного потока, необходимое для поддержания потерь в сердечнике 100 мВт / см3 на различных частотах с максимальным повышением температуры на 25 ° C. для типичного силового материала материал Magnetics ’P.

WaAc = произведение площади окна и площади сердечника (см 4 )

Ac = Площадь сердечника в см 2

ƒ = частота (герцы)

K t = топологическая постоянная (для коэффициента заполнения 0,4).

Константы топологии K t

Прямой конвертер = 0,0005
Толкай-тяни = 0,001
Полумост = 0,0014
Полный мост = 0.0014
Обратный ход = 0,00033 (одна обмотка)
Обратный ход = 0,00025 (многообмотка)

Формула WaAc была получена на основе выводов из главы 7 книги А.И. Прессмана «Проектирование импульсного источника питания». Выбор B max на различных частотах, D cma и альтернативные расчеты повышения температуры трансформатора также обсуждаются в главе 7 книги. Книга Pressman.

ПЛОТНОСТЬ ПОТОКА VS. ПЕРИОДИЧНОСТЬ

После выбора сердечника можно легко произвести расчет первичных и вторичных витков и сечения проводов.

Посмотреть типичную схему управления мощностью

Диаграмма распределения продукции в области просмотра (WaAc)

Скачать в формате PDFContact Magnetics

Максимальная плотность потока

— обзор

1.

Почему сердечник трансформатора ламинирован?

Покажите, что без учета потерь вторичное напряжение трансформатора, первичная обмотка которого подключена к синусоидальному источнику питания, определяется выражением 4 · 44Φ M fT , где Φ M = максимальное рабочее поток, f = частота питания, T = количество вторичных витков.

Трансформатор с максимальной рабочей плотностью потока 1 Тл (Вт / м 2 ) имеет вторичное напряжение 115 В при 50 Гц. Вычислите площадь жилы в см. 2 , если на вторичной обмотке 70 витков.

(74 см 2 .) (U.L.C.I.)

2.

Сделайте эскиз сердечника однофазного трансформатора, чтобы показать, как минимизируются потери на вихревые токи. Назовите другую потерю, которая возникает в трансформаторе. Как удержать этот убыток на низком уровне?

Трансформатор 5 кВА, 200/100 В имеет 75 витков на вторичной обмотке.Пренебрегая током холостого хода и всеми потерями, рассчитайте (а) первичный и вторичный токи полной нагрузки и (б) количество витков первичной обмотки.

((a) 25 A, 50 A; (b) 150.) (U.L.C.I.)

3.

Нарисуйте векторную диаграмму трансформатора без нагрузки.

Объясните, почему, когда увеличивается ток нагрузки на вторичной обмотке трансформатора, увеличивается и первичный ток.

Трансформатор имеет 200 витков на первичной обмотке и 100 витков на вторичной.Нагрузка на вторичной обмотке составляет 5 кВт при 110 В и коэффициенте мощности 0,8. Пренебрегая всеми потерями, рассчитайте (а) первичное напряжение, (б) первичный ток.

((а) 220 В; (б) 28 · 4 А.) (ULCI)

4.

Изобразите в масштабе векторную диаграмму однофазного трансформатора на 200/100 В на холостом ходу. при работе при номинальном напряжении. Ток холостого хода 5 А опережает магнитный поток на 10 °. Диаграмма должна показывать приложенное первичное напряжение, первичные и вторичные электродвижущие силы, ток холостого хода и указывать магнитный поток трансформатора.

Покажите из уравнения электродвижущей силы трансформатора, что если приложенное напряжение и частота изменяются так, чтобы отношение напряжение / частота было постоянным, то плотность магнитного потока останется неизменной.

(N.C.T.E.C.)

5.

Потери на вихревые токи в трансформаторе пропорциональны BM2f2, где B M — максимальная плотность потока, а f — частота питания. Предполагая трансформатор э.д.с. Уравнение показывает, что если пренебречь падением напряжения на трансформаторе, потери на вихревые токи пропорциональны квадрату напряжения питания.

(N.C.T.E.C.)

6.

Назовите все потери мощности, которые происходят в трансформаторе. Сравните значения потерь, когда трансформатор находится (а) без нагрузки, (б) при полной нагрузке.

Однофазный трансформатор 400/200 В, 50 Гц питается напряжением 400 В. Первичная обмотка имеет 240 витков, а эффективная площадь сердечника составляет 70 см. 2 . Рассчитайте максимальную плотность потока в сердечнике. (Продолжение.)

Если бы напряжение питания и частота были уменьшены вдвое, какой была бы максимальная плотность магнитного потока?

(1 · 07 т, 1 · 07 т.) (N.C.T.E.C.)

7.

Сделайте эскиз, чтобы проиллюстрировать конструкцию и работу бесступенчатого автотрансформатора (или вариакта). Почему угольная щетка очень узкая?

Однофазный автотрансформатор на 200/100 В подает ток 40 А. Рассчитайте ток (a) от источника питания, (b) в общей части обмотки. Пренебрегайте всеми потерями.

((a) 20 A, (b) 20 A.) (NCTEC)

8.

Однофазный понижающий трансформатор на 500/250 В принимает ток 0,5 A при коэффициент мощности 0,25 на холостом ходу.Когда трансформатор нагружен так, что подаваемый вторичный ток составляет 10 А при отставании коэффициента мощности 0,8, найдите, нарисовав векторную диаграмму в масштабе, ток, потребляемый первичной обмоткой. Почему коэффициент мощности первичной обмотки трансформатора отстает, когда вторичная обмотка питает резистивную нагрузку?

(5 · 4 A.) (D.E.I.)

9.

Кратко объясните природу потерь, которые возникают в трансформаторе под нагрузкой, указав в каждом случае факторы, от которых они зависят.

Однофазный трансформатор 100 кВА, 6600/440 В дает следующие результаты испытаний:

(a)

испытание без нагрузки с номинальным напряжением, потребляемая мощность = 1 · 25 кВт;

(б)

испытание на короткое замыкание с током 220 А во вторичной обмотке, мощность от источника питания = 1 · 25 кВт.

Рассчитайте КПД при 14,12,34, 1 и 114-кратной полной нагрузке при единичном коэффициенте мощности и, следовательно, постройте кривую КПД / нагрузка трансформатора.

(95%, 96%, 97 · 4%, 97 · 5%, 97 · 4%.) (ULCI)

10.

Трансформатор 200 кВА питает десять трехфазных двигателей мощностью 15 л.с. , Асинхронные двигатели 415 В, 50 Гц. Если каждый из них работает на три четверти полной нагрузки с коэффициентом мощности 0,8 и КПД 82%, вычислите (а) линейный ток при наличии десяти двигателей, (б) количество дополнительных машин, работающих под нагрузкой. те же условия, что и этот трансформатор.

((a) 178 A, (b) еще 5.) (N.C.T.E.C.)

Не даются ответы на следующие задачи.

11.

Нарисуйте векторную диаграмму холостого хода трансформатора с двойной обмоткой и тщательно опишите, что представляет каждый вектор.

Трансформатор рассчитан на напряжение 2 В на виток с соотношением витков от 1 до 3. Если вторичная обмотка должна питать нагрузку 50 кВА при напряжении 720 В, рассчитайте:

(a)

первичное напряжение питания;

(б)

количество витков на каждой обмотке;

(в)

ток в каждой обмотке.

Все потери не учитываются. (U.L.C.I.)

12.

Как минимизировать потери в стали в трансформаторе?

Однофазный трансформатор имеет отношение напряжений холостого хода 400/3300 В. Первичная (низковольтная) обмотка имеет 80 витков, а чистая площадь поперечного сечения сердечника составляет 200 см. 2 . Рассчитайте максимальное значение магнитной индукции и количество витков вторичной обмотки.

(ULCI)

13.

Нарисуйте в масштабе векторную диаграмму тока для нагруженного однофазного трансформатора, к которой применимы следующие данные:

Ток холостого хода: 4 А с отставанием от первичного напряжения на 80 °.Ток вторичной нагрузки: 60 А, отставание от вторичного напряжения на 50 °. Первичные витки: 800.Вторичные витки: 200.

Покажите на диаграмме положения векторов, представляющих первичные и вторичные напряжения на клеммах, при условии, что падение напряжения на обмотках незначительно. .

Обозначьте вектор, представляющий ток, снимаемый с источника питания, и оцените его величину и фазу по отношению к первичному напряжению на клеммах.

(W.J.E.C.)

14.

Трансформатор мощностью 10 кВА имеет потери в стали 80 Вт и потери в меди при полной нагрузке 120 Вт.Рассчитайте его КПД (а) при полной нагрузке с коэффициентом мощности нагрузки 0,8, (б) при 70% полной нагрузки с коэффициентом мощности нагрузки 0,8.

15.

Резистор с сопротивлением 6 Ом подключен к вторичной обмотке автотрансформатора на 200/240 В. Если первичная обмотка подключена к источнику питания 180 В с номинальной частотой, рассчитайте (а) первичный и вторичный токи, (б) ток в общей части обмотки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *