Рассчитать предохранитель: Плавкий предохранитель – расчет и выбор проволоки для ремонта

Содержание

Как рассчитать предохранитель по мощности – АвтоТоп

Подбор сечения силового кабеля.

Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в процессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.

1 Ом = 1 Вольт /1 Ампер

Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.

Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)

Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2

280 Вт. (максимальная мощность)

Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.

Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A

Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов. Плюсовой провод и заземление желательно тянуть от аккамулятора, если это невозможно по какой-то причине, заземлять ВСЕ компоненты системы нужно в одной точке, дабы исключить разность потенциалов между компонентами.
Расчет номинала предохранителя.
Расстояние от плюсовой клеммы аккумулятора до потребителя в основном превышает 40 сантиметров, поэтому устанавливаем защитный предохранитель, естественно не далее 40 сантиметров от аккумуляторной клеммы, а лучше устанавливать главный предохранитель возможно ближе к плюсовой клемме аккумулятора. Его назначение, защитить питающий кабель от возгорания, например в случае аварии автомобиля (ДТП). Повреждение автомобиля может быть пустяковым, но пережатый питающий кабель приведет к короткому замыканию, возгоранию и уничтожению автомобиля. Номинал главного предохранителя определяется МАКСИМАЛЬНО возможным номиналом предохранителя для данного сечения кабеля. Например для кабеля сечением 2 GA МАКСИМАЛЬНО возможный номинал предохранителя составляет 150 Ампер. А можно поставить предохранитель номиналом, допустим 100 Ампер, 80Ампер или 50 Ампер? Да можно! Можно поставить любой предохранитель, при одном условии, что он НЕ БУДЕТ превышать номинал 150 Ампер (иначе смысл этого предохранителя пропадает). Общий максимальный ток, который может быть потреблен к примеру двумя усилителями (моноблок 80А и двухканальник 30А), составляет 110 Ампер, так что если поставить главный предохранитель номиналом 100 Ампер, существует вероятность того, что он будет перегорать на пиках максимальной громкости. Исходя из вышеизложенного, я рекомендую выбрать предохранитель номиналом 150 Ампер, в случае нештатной ситуации он сработает.

Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.

Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.

Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды

На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).

Повторно использовать плавкие вставки можно, но осторожно…

Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.

Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.

В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.

Поистине универсальное приспособление

Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.

Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t

+70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.

Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.

Как правильно выбрать предохранитель

Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.

Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:

Inom = Pmax / U
  • I nom – номинальный ток защиты, A.
  • P max – максимальная мощность, W.
  • U – напряжение питания, V.

Хотя лучше пользоваться специально созданными для этой цели таблицами.

Приведем некоторые данные из них:

  • Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
  • 50W – 0,25A.
  • 100W – 0,5A.
  • 150W – 1A.
  • 250W – 2A.
  • 500W – 3A.
  • 800W – 4A.
  • 1kW – 5A.
  • 1,2kW – 6A.
  • 1,6kW – 8A.
  • 2kW – 10A.
  • 2,5kW – 12A.
  • 3kW – 15A.
  • 4kW – 20A.
  • 6kW – 30A.
  • 8kW – 40A.
  • 10kW – 50A.

Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.

Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.

Кулибиным на заметку

При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.

Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.

Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.

Обратимся к справочнику:

  • Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
  • 2A – 0,09 мм – 0,10 мм.
  • 3A – 0,11мм – 0,14 мм.
  • 5A – 0,16 мм – 0,19 мм.
  • 7A – 0,20 мм – 0,25 мм.
  • 10A – 0,25 мм – 0,30 мм.
  • 15A – 0,33 мм – 0,40 мм.
  • 20A – 0,40 мм – 0,48 мм.
  • 25A – 0,46 мм – 0,56 мм.
  • 30A – 0,52 мм – 0,64 мм.
  • 35A – 0,58 мм – 0,70 мм.
  • 40A – 0.63 мм – 0,77 мм.
  • 45A – 0,68 мм – 0,83 мм.
  • 50A – 0,73 мм – 0,89 мм.

Таким образом, данная проволока сгодится для предохранителя на 30A.

Имеется 3 способа ремонта трубчатого предохранителя:
  1. Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
  2. Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта. Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.
  3. Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.

Описанную технологию можно успешно использовать для ремонта любых типов вставок.

Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.

Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.

Наибольшее распространение получили плавкие предохранители. Они дешевы и просты в изготовлении и в случае короткого замыкания в сети обеспечивает защиту проводки от возгарания.

Когда перегорает плавкий предохранитель (плавкая вставка), требуется быстро его заменить. Не всегда имеется запасной предохранитель на нужный ток. Проще всего защитный предохранитель выполнить из провода соответствующего диаметра. Причем расчет диаметр провода для необходимого тока плавления (защиты) можно выбрать из таблицы, где приведены значения для разных металлов. В качестве основания для закрепления (припаивания) плавкой вставки может использоваться каркас перегоревшего.

Таблица 5.1 Значения по току плавления для проволоки из разных металлов

Ток, АДиаметр провода в ммТок, АДиаметр провода в мм
МедьАлюмин. СтальОловоМедьАлюмин.СтальОлово
10,0390,0660,1320,183600,821,01,82,8
20,0690,1040,1890,285700,911,12,03,1
30,1070,1370,2450,380801,01,222,23,4
50,180,1930,3460,53901,081,322,383,65
70,2030,2500,450,661001,151,422,553,9
100,2500,3050,550,851201,311,602,854,45
150,320,400,721,021601,571,943,24,9
200,390,4850,871,331801,722,103,75,8
250,460,561,01,562001,842,254,056,2
300,520,641,151,772251,992,454,46,75
350,580,701,261,952502,142,604,77,25
400,630,771,382,142752,22,805,07,7
450,680,831,52,33002,42,955,38,2
500,730,891,62,45

Формула для расчета диаметра медной проволоки для предохранителя

Для определения более точных значений диаметра медной проволоки для ремонта предохранителя, или если требуется предохранитель на ток защиты, значения которого нет в таблице, можно воспользоваться ниже приведенной формулой.

Формула для расчета диаметра медной проволоки для ремонта предохранителя

где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.

Видео: Простой расчет и изготовление предохранителей

Расчет предохранителя по току 12 вольт – АвтоТоп

Для защиты электрических цепей от аварийных режимов работы, таких как повышенное потребление мощности или короткое замыкание, используют плавкие вставки или предохранители. Они устроены таким образом, что при протекании тока до определенного уровня ничего не происходит, но, согласно закону Джоуля-Ленца при протекании электрического тока происходит выделение тепла на проводнике. Поэтому при определенной силе тока тепла выделяется такое количество, что проводник плавкой вставки просто перегорает.

В электронных схемах предохранители устанавливают на входе питания, он нужен для защиты трансформатора, дорожек платы и других узлов. Также используется для защиты электродвигателя – их часто устанавливают в щитах, к которым происходит подключение. К примеру, при заклинивании ротора электродвигателя в цепи статора (и ротора тоже, для ДПТ, и двигателей с фазным ротором) будет протекать повышенный ток, который сожжет предохранитель. Но если его номинал подобран чрезмерно большим, то сгорят обмотки электрической машины.

Кроме самого проводника предохранитель состоит из стеклянного или керамического корпуса, а для больших мощностей и напряжений корпус заполняется внутри диэлектрическим порошкообразным материалом – это нужно для гашения дуги, возникающей при перегорании плавкой вставки.

Казалось бы, простое устройство и принцип работы, но для его расчетов нужно использовать ряд формул, что значительно усложняет задачу. Хотя можно избежать их, если использовать наш онлайн калькулятор, который производит расчет плавкой вставки предохранителя:

Давайте разбираться, как рассчитать диаметр проволоки. Для начала определяют Iном потребления защищаемого устройства. Его можно узнать из технической документации, для электродвигателей – прочитать на шильдике или определить по мощности устройства. Если параметр не указан, определите его по формуле:

Iном=P/U

После этого проводят расчеты по току, умноженному на коэффициент запаса, который равен 1,2-2,0, в зависимости от типа нагрузки и её особенностей. При имеющейся тонкой проволоке определенного диаметра рассчитывают Iплавления:

При диаметрах проволоки от 0,02 до 0,2 мм:

От 0,2 мм и выше:

  • d – диаметр;
  • k или m – коэффициент, он приведен в таблице для различных металлов.

Чтобы определить диаметр провода зная ток I:

Для малых I – d от 0,02 до 0,2 мм:

Для больших I – диаметр провода от 0,2 мм и выше:

Если нужно узнать количество тепла, которое выделяется на плавкой вставке, то используйте формулу:

Время и количество теплоты для плавления:

  • m – масса проволоки;
  • Лямбда – удельное количество телпоты плавления, табличная величина характерная для каждого материала.

Масса круглой проволоки:

Для проверки правильности расчётов вы можете измерить сопротивление проводника по формуле:

Кстати, предохранители высоковольтных цепей обычно имеют высокое сопротивление (килоОмы). Для удобства можно воспользоваться таблицей:

Как вы можете убедиться, расчет плавкой вставки предохранителя достаточно объёмный, поэтому проще посчитать защитный предохранитель с помощью нашего онлайн калькулятора по току. Как уже было сказано, его вы можете определить, исходя из мощности.

Каждый предохранитель выполняет функцию защиты электрических цепей и оборудования от перегревания при прохождении тока с показателями, значительно превышающими номинальные. Для того, чтобы правильно обеспечить надежную защиту необходимо заранее делать расчет плавких предохранителей. Данные элементы рассчитаны на эксплуатацию в самых различных условиях, поэтому требуется их индивидуальный подбор для каждого конкретного случая.

Группы предохранителей

Одним из средств защиты бытовой техники и оборудования, а также кабелей и проводов служат плавкие вставки или предохранители. Они обеспечивают надежную защиту от скачков напряжения в сети и коротких замыканий. Существуют различные конструкции и типы этих устройств, рассчитанные на любые токи.

До недавнего времени плавкие предохранители вставлялись в пробки и являлись единственной защитой квартиры или частного дома. В современных условиях их сменили более надежные защитные устройства многоразового использования – автоматические выключатели. Тем не менее, предохранители не потеряли своей актуальности и в настоящее время. Они устанавливаются в различные приборы и в автомобили, защищая приборы и электрооборудование от любых негативных последствий.

Предохранители делятся на следующие основные группы:

  • Общего назначения
  • Быстродействующие
  • Защищающие полупроводниковые приборы
  • Для защиты трансформаторов
  • Низковольтные

Для того, чтобы произвести правильные расчеты, и определить, какие нужны плавкие вставки, рекомендуется учитывать все основные параметры, от которых зависит характеристика предохранителя.

Основным показателем является номинальный ток, значение которого связано с геометрическими и теплофизическими параметрами. При этом, учитывается потеря мощности и превышение на выводах температурного режима. Общая величина тока для предохранителя зависит от номинального тока плавкой вставки. Величина номинального тока для основания определяется таким же показателем плавкой вставки, установленной в предохранителе.

Принцип действия плавких предохранителей

Принцип действия одноразовых защитных устройств очень простой. Внутри каждого из них находится калиброванная проволока, соединяющая контакты. Если значение тока не превышает предельно допустимых норм, происходит ее нагрев примерно до 70 градусов. Когда электрический ток превышает установленный номинал, нагрев проволоки существенно увеличивается. При определенной температуре она начинает плавиться, в результате чего происходит разрыв электрической цепи. Перегорание проводка происходит практически мгновенно. Из-за этого предохранители и получили свое название – плавкая вставка.

В разных конструкциях плавкой вставки предохранителя подбирается таким образом, чтобы срабатывание происходило при установленном значении тока. В процессе эксплуатации плавкие предохранители периодически выходят из строя и подлежат замене. Как правило их не ремонтируют, однако многие домашние мастера вполне успешно проводят их реставрацию.

Поскольку перегорает лишь сама проволока, а корпус остается целым, необходимо заменить ее и устройство продолжит выполнять свои функции. Новые технические характеристики зачастую не только не уступают старому прибору, но и во многом превосходят его, поскольку качество ручной сборки всегда выше заводской. Основным условием является правильный выбор материала проводника и расчет его сечения.

Общие правила расчета

Для того, чтобы сделать правильный расчет плавких вставок предохранителей, необходимо учитывать номинальное напряжение. Это значение должно быть таким, при котором предохранитель отключает электрическую цепь. Основным показателем служит минимальное напряжение, предусмотренное для основания и плавкой вставки.

Еще один важный показатель, который должен учитываться при расчетах – напряжение отключения. Этот параметр заключается в мгновенном значении напряжения, появляющегося после срабатывания самого предохранителя или плавкой вставки. Как правило, в расчет принимается максимальное значение этого напряжения.

Кроме того, в обязательном порядке учитывается ток плавления, от которого зависит диаметр проволоки, установленной внутри. Когда выполняется расчет плавкой вставки предохранителя, для каждого металла этот показатель имеет собственное значение и выбирается с помощью таблицы или калькулятора. Материал и размер вставок должен обеспечить требуемые защитные характеристики. Длина вставки не может быть слишком большой, поскольку это влияет на гашение дуги и общие температурные характеристики.

Расчетная мощность нагрузки обычно указывается в маркировке изделия. В соответствии с этим параметром выполняется расчет номинального тока предохранителя по формуле: Inom = Pmax/U, в которой Inom является номинальным током защиты, Pmax – максимальная мощность нагрузки, а U – напряжение питающей сети.

Онлайн расчет диаметра провода для плавких вставок предохранителей

Все расчеты можно выполнить гораздо быстрее, воспользовавшись онлайн-калькулятором. В соответствующие окна вводятся данные о материале вставки и токе, после чего в окне результата появятся данные о диаметре проволоки.

Плавкие вставки

Самодельный предохранитель из медной проволоки может стать отличным временным способом заменить перегоревший предохранитель. Но если вы решились на такое, то крайне важно правильно подобрать сечение того самого проводника, который вы будете использовать. Почему это важно, каковы причины перегорания предохранителей и способы временного устранения этого неудобства мы и рассмотрим в нашей статье.

Причины перегорания предохранителей

Начнем с самого важного — с причин перегорания предохранителей. Ведь просто так нечего не происходит и прежде чем ставить «жучек», необходимо определиться с причинами поломки предохранителя.

Их может быть несколько:

Выбор диаметра проволоки и ремонт предохранителя

Ну, а теперь давайте перейдет к основному вопросу нашей статьи – выбору диаметра и непосредственно ремонту. Начнем с первого.

Выбор диаметра проводника

Диаметр проводника в предохранителях четко рассчитан. Если вы выполняете замену, то должны установить проводник такого же диаметра. Иначе ваш предохранитель не будет выполнять свою функцию по защите электрической сети.

  • Сделать это можно несколькими способами. Наиболее простой взять сечение провода для предохранителя, и таблица стандартных значений позволит осуществить вам выбор. Для этого достаточно измерить диаметр провода.

  • Диаметр провода можно измерить с помощью штангенциркуля или даже обычной линейки. Если диаметр проволоки для предохранителя слишком мал, то измерения можно произвести следующим образом. Проволоку наматываем на любой небольшой предмет – зажигалку, карандаш, ручку.

  • Желательно сделать 10-20 витков, для большей точности измерения. Витки делаем максимально плотными, для исключения пространства межу ними. Затем измеряем диаметр всех витков. Полученное значение делим на количество витков. Вот вам и диаметр провода для предохранителя.

Обратите внимание! При данном способе измерения диаметра у вас наверняка будет небольшая погрешность, связанная с недостаточной плотностью витков. Поэтому полученное число округляем для ближайшего меньшего.

  • Расчет предохранителя из медной проволоки можно произвести и для значений, не указанных в таблице. Для этого нам необходимо знать требуемый ток плавкой вставки и материал проволоки.
  • Для того чтобы вычислить диаметр медной проволоки для предохранителя до 7А, нам следует воспользоваться приведенной ниже формулой. В этой формуле d – рассчитываемый диаметр, Iпл – требуемый ток плавкой вставки, k – коэффициент учитывающий материал проволоки. Для меди он составляет 0,034.

  • Если вы хотите своими руками вычислить диаметр проволоки для вставки на номинал выше 7А, то вам следует воспользоваться формулой, приведенной ниже. В этой формуле m – коэффициент учитывающий материал проволоки. Для меди он равен 80.

  • Если толщина провода для предохранителя в результате расчета или выбора по таблице получилась таковой, какой нет в наличии. То можно добиться требуемого диаметра за счет соединения нескольких проволок разного сечения. Хотя этот вариант и несколько хуже.

Ремонт предохранителей

Установка вместо калиброванной плавкой вставки в предохранитель проволоки в простонародье называется установкой «жучка». Любой «жучек», согласно нормам ПУЭ, недопустим, так как не всегда способен качественно защитить электроустановку.

Тем не менее к такому способу ремонта предохранителей прибегают достаточно часто. Особенно когда под рукой нет запасного предохранителя.

  • Установка «жучка» вместо предохранителя зависит от его типа. Если это трубчатый предохранитель на большой номинальный ток, то такие изделия обычно имеют разборную конструкцию как на видео.

  • То есть, предохранитель можно раскрутить. Изъять перегоревшую плавкую вставку и вместо нее установить предохранитель из медного провода.
  • С изделиями меньших номиналов все немного сложнее. Обычно они изготавливаются неразборными, в связи с чем придётся повозиться.

  • Если перед вами трубчатый предохранитель стеклянного или керамического типа, то они обычно имеют металлические оконцовки. Для установки «жучка» их необходимо просверлить с двух сторон и в полученную полость вставить наш проводник. Отверстие вместе с проводником желательно затем запаять.
  • С ножевыми предохранителями выполнить ремонт своими руками несколько сложнее. Тут просверлить отверстие не получится, так как крепить провод необходимо к ножам, которые скрыты под корпусом. В этом случае сечение провода предохранителя на 10 А или другого номинала крепят непосредственно на ножи перед корпусом. А затем устанавливают предохранитель.

Обратите внимание! Такой способ намного опаснее. Так как при перегорании провода возможно его разбрызгивание по соседнему оборудованию. К пожару это может и не привести, но повредить оборудование может.

  • Именно, исходя из этих причин, наша инструкция не советует наматывать проволоку непосредственно на контакты-держатели предохранителей. Это же касается намотки провода поверху корпуса трубчатого предохранителя.

  • Отдельный вопрос — предохранители с наполнителем. Наполнитель необходим для более быстрого погасания электрической дуги. Обычно такие изделия имеют разборную конструкцию и для них необходима такая же толщина проволоки для предохранителя, как и для других трубчатых изделий. Песок же, который находится внутри изделия, сначала ссыпаем, а затем опять засыпаем в предохранитель.

Вывод

Диаметр провода для предохранителей зависит от номинального тока изделия и от материала используемого провода. Подобрать или рассчитать этот диаметр не так уж сложно. Но такая починка является лишь временной мерой.

ПУЭ не зря требует использования лишь калиброванных вставок, а что касается неразборных предохранителей с небольшим номинальным током, то их цена не столь высока, чтобы рисковать дорогостоящим оборудованием. Поэтому при первой возможности обязательно замените «жучок» на нормальный предохранитель или калиброванную вставку.

Самая банальная и распространенная причина перегорания предохранителя – это короткое замыкание. В результате данного события ток резко возрастает, на что и реагирует плавкая вставка в предохранителе, перегорая.

Так же достаточно частым явлением является перегорание проводника при заклинивании приводного механизма питающей цепи. В этом случае предохранитель действует как защита от перегрузки.

Следующей возможной причиной того что вам потребуется искать провод для предохранителя может быть скачек напряжения. При резком и главное длительном снижении напряжения, ток, согласно закону Ома, пропорционально возрастает. Это может привести к перегоранию предохранителя. При непродолжительных по времени скачках такое происходит крайне редко.

Еще один возможный вариант, это частая работа предохранителя на грани срабатывания. Когда ток, протекающий через него, близок к номинальному, проволока для предохранителей сильно нагревается. Затем остывает, и опять нагревается. Такой режим изменяет структуру металла, из-за чего предохранитель может перегореть при значительно более низких значениях тока.

Именно для исключения таких случаев качественные предохранители выпускают из максимально чистых металлов. У них изменение структуры при частых перепадах температур минимизировано.

Пример выбора плавких предохранителей

В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.

Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей

Таблица 1 – Технические характеристики двигателей 4АМ

Обозначение на схемеТип двигателяНоминальная мощность Р, кВтКПД η,%Коэффициент мощности, cos φIп/Iн
4АМ112М27,587,50,887,5
4АМ100L25,587,50,917,5
4АМ160S215880,917,5
4АМ90L2384,50,886,5
4АМ180S215880,917,5

Расчет

1. Определяем номинальный ток для двигателя 1Д:

2. Определяем пусковой ток для двигателя 1Д:

3. Определяем номинальный ток плавкой вставки предохранителя FU2:

Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;

где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».

Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.

Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.

Таблица 2

Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.

Обозначение на схеме Тип двигателя Ном.ток, А Пусковой ток, А Номинальный ток плавкой вставки, А Ном. ток предохранит., А
Расчетный
Выбранный
4АМ112М2 14,82 111,15 44,46 50 50
4АМ100L2 10,5 78,8 31,52 40 40
4АМ160S2 28,5 213,7 85,48 100 100
4АМ90L2 6,14 39,9 15,96 20 20
4АМ180S2 28,5 213,7 85,48 100 100

4. Выбираем плавкую вставку предохранителя FU1.

4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:

4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.

Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.

Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.

Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».

Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.

Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.

Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.

Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).

Таблица 4 – Результаты расчетов

Обозначение на схеме Номинальный ток плавкой вставки, А Iк.з.(3), А Iк.з.(1), А Максимальный ток отключения плавкой вставки при времени 5 сек.
Iк.з.max, A
Примечание
FU1 125 2468  
FU2 50 326 281 Условие выполняется
FU3 40 222 195 Условие выполняется
FU4 100 (80) 429 595 (432) Условие не выполняется
FU5 20 122 86 Условие выполняется
FU6 100 (80) 429 595 (432) Условие не выполняется

Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.

Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).

Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Плавкие предохранители. Выбор, расчет предохранителя.

Плавкие предохранители

Назначение

При возникновении эксплуатационных (технологических) перегрузок и аварийных режимов, являющихся следствием нарушений работы схемы, по электрическим цепям аварийного контура протекают токи, превосходящие номинальные значения, на которые рассчитано электрооборудование.

В результате воздействия аварийных токов и перегрева токопроводов нарушается электрическая изоляция, обгорают и плавятся контактные поверхности соединительных шин и электрических аппаратов. Электродинамические удары при переходных процессах вызывают повреждение шин, изоляторов и обмоток реакторов.

Для ограничения амплитуды аварийных токов и длительности их протекания применяются специальные устройства и системы защиты электрооборудования.

Примечание. Устройства защиты должны отключить аварийную цепь раньше, чем могут выйти из строя отдельные ее элементы.

При больших перегрузках или коротких замыканиях устройства защиты должны сразу отключить всю электроустановку или часть ее с максимальным быстродействием для обеспечения дальнейшей работоспособности или, если авария является следствием выхода из строя одного из элементов цепи, предотвратить выход из строя другого электрооборудования.

В случае небольших перегрузок, не опасных для оборудования в течение определенного времени, система защиты может воздействовать на предупреждающую сигнализацию для сведения обслуживающего персонала или на систему автоматического регулирования для снижения тока.

Виды защиты и требования к ней

Поскольку основным фактором, приводящим к выходу из строя электрооборудования, является тепловое действие аварийного тока, то по принципу построения защитные устройства делятся на токовые и тепловые.

Токовые защитные устройства контролируют значения или отношения значений протекающих через оборудование токов.

Независимо от параметров установки и типа применяемых защитных аппаратов и систем выделяют следующие общие требования к защите.

Быстродействие — обеспечение минимально возможного времени срабатывания защиты, не превышающего допустимого.

Селективность. Аварийное отключение должно производиться только в той цепи, где возникла причина аварии. А другие участки силовой цепи должны оставаться в работе.

Электродинамическая стойкость. Максимальный ток, ограниченный защитными устройствами, не должен превышать допустимого для данной электроустановки значения по электродинамической стойкости.

Уровень перенапряжений. Отключение аварийного тока не должно вызывать перенапряжений, опасных для полупроводниковых приборов. Надежность. Устройства защиты не должны выходить из строя при отключении аварийных токов. Они обеспечивают возможность быстрого

восстановления электрической цепи при устранении неисправности.

Помехоустойчивость. При появлении помех в сети и в цепях управления устройства защиты не должно ложно срабатывать.

Чувствительность. Защита должна срабатывать при всех повреждениях и токах, опасных для элеменов схемы, независимо от места и характера аварии.

Плавкие предохранители

Определение. Плавкие предохранители — это аппараты, защищающие установки от перегрузок и токов короткого замыкания.

Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство (это не обязательный атрибут, а вспомогательный, без него предохранитель все равно работать будет), гасящее дугу, возникающую после плавления вставки.

К предохранителям предъявляются следующие требования:

— времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта;

— время срабатывания предохранителя при коротком замыкании должно быть минимальным, особенно при защите полупроводниковых приборов;

— характеристики предохранителя должны быть стабильными;

— в связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность;

— замена сгоревшего предохранителя или плавкой вставки не должна занимать много времени.

Выбор предохранителей

для защиты асинхронных электродвигателей

Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.

Правило. Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Все электродвигатели разбиты на две группы: по времени; по частоте пуска.

Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3–5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.

К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч.

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по формуле:

IвсIпд/К,

где Iпд — пусковой ток двигателя; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6–2.

Примечание. Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она со временем может перегореть и при нормальной работе двигателя.

Вставка, выбранная в соответствии с приведенной выше формулой, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.

Сгорание вставок при пуске может повлечь работу двигателя на двух фазах и его повреждение.

Примечание. Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи питания каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей

Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током, и самозапуск двигателей. Если он допустим по условиям техники безопасности, технологического процесса и т. п.

При расчете уровня защиты необходимо точно определить, какие двигатели:

— отключаются при понижении или полном исчезновении напряжения;

— остаются включенными;

— повторно включаются при появлении напряжения.

Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по формуле:

Iвс ≥ ∑Iпд/К,

где ∑Iпд — сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей

Плавкие вставки предохранителей выбираются по следующему соотношению:

Iном. вст.Iкр/К,

где Iкр = Iпуск + Iдлит — максимальный кратковременный ток линии; Iпускпусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения; Iдлитдлительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) — это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5–7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению IвсIпд/К будет иметь номинальный ток в 2–3 раза больше номинального тока двигателя. Выдерживая этот ток неограниченное время, она не может защитить двигатель от перегрузки.

Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.

Примечание. Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также возможность повреждения контактов пускателя.

Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя. Он разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя.

Это условие обеспечивается, если время отключения тока короткого замыкания предохранителем не превышает 0,15–0,2 с. Для этого ток короткого замыкания должен быть в 10–15 раз больше номинального тока вставки предохранителя, защищающего электродвигатель.

Обеспечение селективности срабатывания плавких предохранителей

Избирательность (селективность) защиты плавкими предохранителями обеспечивается подбором плавких вставок таким образом, чтобы при возникновении короткого замыкания, например, на ответвлении к электроприемнику, срабатывал ближайший плавкий предохранитель, защищающий этот электроприемник, но не срабатывал предохранитель, защищающий головной участок сети.

Выбор плавких предохранителей по условию селективности следует производить, пользуясь типовыми время-токовыми характеристиками t=f(I) предохранителей с учетом возможного разброса реальных характеристик по данным завода-изготовителя.

При защите сетей предохранителями типов ПН, НПН и НПР с типовыми характеристиками (рис. 20 и рис. 21) селективность действия защиты будет выполняться, если между номинальным током плавкой вставки, защищающей головной участок сети Iг, и номинальным током плавкой вставки на ответвлении к потребителю Io выдерживаются определенные соотношения.

Например, при небольших токах перегрузки плавкой вставки (около 180–250 %) селективность будет выдерживаться, если Iг больше Io хотя бы на одну ступень стандартной шкалы номинальных токов плавких вставок.

Рис. 20. Защитные (времятоковые) характеристики плавких предохранителей типа ПН-2


Рис. 21. Защитные (времятоковые) характеристики плавких предохранителей типа НПР и НПН

При коротком замыкании селективность защиты предохранителями типа НПН будет обеспечиваться, если будут выдерживаться следующие соотношения:

где Iк — ток короткого замыкания ответвления, А; Iг — номинальный ток плавкой вставки плавкого предохранителя головного участка сети, А; Iо — номинальный ток плавкой вставки на ответвлении, А.

Соотношения между номинальными токами плавких вставок Iг и Iо для предохранителей типа ПН2, обеспечивающие надежную селективность, приведены в табл. 2.

Таблица 2 Номинальные токи последовательно включенных плавких вставок предохранителей ПН2, обеспечивающих надежную селективность


Номинальный ток меньшей плавкой вставки , а

Номинальный ток большей плавкой вставки , а, при отношении /Io

10

20

50

100 и более

30

40

50

80

120

40

50

60

100

120

50

60

80

120

120

60

80

100

120

120

80

100

120

120

150

100

120

120

150

150

120

150

150

250

250

150

200

200

250

250

200

250

250

300

300

250

300

300

400

более 600

300

400

400

более 600

400

500

более 600

Примечание. — ток короткого замыкания в начале защищаемого участка сети.

Для выбора плавких предохранителей по условию селективности можно использовать метод согласования характеристик предохранителей, в основу которого положен принцип сопоставления сечений плавких вставок по формуле:

,

где а — коэфициент селективности; F1 — сечение плавкой вставки, расположенной ближе к источнику питания; F2 — сечение плавкой вставки, расположенной дальше от источника питания, т. е. ближе к нагрузке.

Полученное значение а сравнивают с данными табл. 3, где приведены наименьшие значения а, при которых обеспечивается селективность. Селективность защиты будет обеспечена, если расчетное значение а равно табличному или больше него.

Наименьшие значения а, при которых обеспечивается селективность защиты Таблица 3


Металл плавкой вставки предохранителя, расположенного ближе к источнику питания (для любого типа предохранителя)

отношение а сечений плавких вставок смежных предохранителей, если предохранитель, расположенный ближе к нагрузке, изготовлен

с заполнителем при плавкой вставке из

без заполнителя при плавкой вставке из

меди

серебра

цинка

свинца

меди

серебра

цинка

свинца

Медь

1,55

1,33

0,55

0,2

1,15

1,03

0,4

0,15

Серебро

1,72

1,55

0,62

0,23

1,33

1,15

0,46

0,17

Цинк

4,5

3,95

1,65

0,6

3,5

3,06

1,2

0,44

Свинец

12,4

10,8

4,5

1,65

9,5

8,4

3,3

1,2

Выбор плавких предохранителей для защиты цепей управления

Выбор плавких вставок для цепи управления с напряжением Uн можно произвести по формуле

Iн. вст. ≥ (∑Pр + 0,1∑Pв)/Uн,

где ∑Pр — наибольшая суммарная мощность, потребляемая катушками электрических аппаратов (электромагнитными пускателями, промежуточными реле, реле времени, исполнительными электромагнитами) и сигнальными лампами и т. д. при одновременной работе, ВА или Вт;

Pв — наибольшая суммарная мощность, потребляемая при включении катушек одновременно включаемых аппаратов (пусковая мощность), ВА или Вт.

Если известны не мощности, а токи, то это формула может быть записана в виде

Iн.вст. ≥ ∑Iр + 0,1∑Iв

Плавкие вставки. Как выбрать и расчет тока. Работа и применение

Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.

Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.

Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды

На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).

Повторно использовать плавкие вставки можно, но осторожно…

Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.

Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.

В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.

Поистине универсальное приспособление

Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.

Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t ~ +70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.

Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.

Как правильно выбрать предохранитель

Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.

Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:
Inom = Pmax / U
Где:
  • I nom – номинальный ток защиты, A.
  • P max – максимальная мощность, W.
  • U – напряжение питания, V.

Хотя лучше пользоваться специально созданными для этой цели таблицами.

Приведем некоторые данные из них:
  • Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
  • 50W – 0,25A.
  • 100W – 0,5A.
  • 150W – 1A.
  • 250W – 2A.
  • 500W – 3A.
  • 800W – 4A.
  • 1kW – 5A.
  • 1,2kW – 6A.
  • 1,6kW – 8A.
  • 2kW – 10A.
  • 2,5kW – 12A.
  • 3kW – 15A.
  • 4kW – 20A.
  • 6kW – 30A.
  • 8kW – 40A.
  • 10kW – 50A.

Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.

Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.

Кулибиным на заметку

При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.

Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.

Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.

Обратимся к справочнику:
  • Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
  • 2A – 0,09 мм – 0,10 мм.
  • 3A – 0,11 мм – 0,14 мм.
  • 5A – 0,16 мм – 0,19 мм.
  • 7A – 0,20 мм – 0,25 мм.
  • 10A – 0,25 мм – 0,30 мм.
  • 15A – 0,33 мм – 0,40 мм.
  • 20A – 0,40 мм – 0,48 мм.
  • 25A – 0,46 мм – 0,56 мм.
  • 30A – 0,52 мм – 0,64 мм.
  • 35A – 0,58 мм – 0,70 мм.
  • 40A – 0.63 мм – 0,77 мм.
  • 45A – 0,68 мм – 0,83 мм.
  • 50A – 0,73 мм – 0,89 мм.

Таким образом, данная проволока сгодится для предохранителя на 30A.

Имеется 3 способа ремонта трубчатого предохранителя:
  1. Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
  2. Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта. Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.
  3. Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.

Описанную технологию можно успешно использовать для ремонта любых типов вставок.

Похожие темы:

Расчет плавких вставкок для предохранителей — Avislab

Плавкие вставки для предохранителей всегда перегорают в неподходящий момент. И что мы делаем? Конечно! Делаем из него «жука». Если это сделать неправильно, можно навлечь на себя беду. Для того, чтобы правильно и безопасно восстановить плавкую вставку нужно всего лишь выбрать правильный диаметр используемой проволоки. Ниже приведен расчет диаметра провода для плавких вставок предохранителей по таблице.

Ток плавле- ния, А Диаметр, мм
Медь Алюминий Никелин Железо Олово Свинец
0,5 0,03 0,04 0,05 0,06 0,11 0.13
1 0,05 0,07 0,08 0,12 0,18 0,21
2 0,09 0,1 0,13 0,19 0,29 0,33
3 0,11 0,14 0,18 0,25 0,38 0,43
4 0,14 0,17 0,22 0,3 0,46 0,52
5 0,16 0,19 0,25 0,35 0,53 0,6
6 0,18 0,22 0,28 0,4 0,6 0,68
7 0,2 0,25 0,32 0,45 0,66 0,75
8 0,22 0,27 0,34 0,48 0,73 0,82
9 0,24 0,29 0,37 0,52 0,79 0,89
10 0,25 0,31 0,39 0,55 0,85 0,95
15 0,32 0,4 0,52 0,72 1,12 1,25
20 0,39 0,48 0,62 0,87 1,35 1,52
25 0,46 0,56 0,73 1 1,56 1,75
30 0,52 0,64 0,81 1,15 1,77 1,98
35 0,58 0,7 0,91 1,26 1,95 2,2
40 0,63 0,77 0,99 1,38 2,14 2,44
45 0,68 0,83 1,08 1,5 2,3 2,65
50 0,73 0,89 1,15 1,6 2,45 2,78
60 0,82 1 1,3 1,8 2,80 3,15
70 0,91 1,1 1,43 2 3,1 3,5
80 1 1,22 1,57 2,2 3,4 3,8
90 1,08 1,32 1,69 2,38 3,64 4,1
100 1,15 1,42 1,82 2,55 3,9 4,4
120 1,31 1,6 2,05 2,85 4,45 5
140 1,45 1,78 2,28 3,18 4,92 5,5
160 1,59 1,94 2,48 3,46 5,38 6
180 1,72 2,10 2,69 3,75 5,82 6,5
200 1,84 2,25 2,89 4,05 6,2 7
225 1,99 2,45 3,15 4,4 6,75 7,6
250 2,14 2,6 3,35 4,7 7,25 8,1
275 2,2 2,8 3,55 5 7,7 8,7
300 2,4 2,95 3,78 5,3 8,2 9,2
Диаметр плавкой вставки предохранителя выбирают в зависимости от тока плавления. За ток плавления обычно принимают значение тока в два раза превышающий номинальный ток. Т.е. если Ваше устройство потребляет ток 1А, ток плавления принимаем 2А. И согласно нему выбираем диаметр проволоки. В данном случае медь 0,09мм или алюминий 0,1мм.

Плавкая вставка не перегорает мгновенно, для этого требуется некоторое время, пусть даже очень малое. Поэтому, кратковременные перегрузки (например, пусковые токи) не вызывают разрушения плавкой вставки.

Плавкая вставка, даже небольшого диаметра, толщиной всего 0,2мм, при перегорании может разлетаться на мелкие части. Часть металла испаряется, часть разбрызгивается расплавленными каплями. Разлетающиеся части плавкой вставки имеют температуру близкую к температуре плавления материала, из которого они сделаны и могут нанести вред оборудованию или находящимся рядом людям. Поэтому, плавкая вставка обязательно должна быть в корпусе, который сможет противостоять воздействиям при разрушении плавкой вставки. В зависимости от номинала плавких вставок, корпуса изготавливают из пластмассы, стекла, керамики.

Плавкие вставки можно так же рассчитать по предложенной ниже методике.

Расчёт проводников для плавких предохранителей

Ток плавления проводника для применения в плавкой вставке (предохранителе) можно рассчитать по формулам:

где: d – диаметр проводника, мм; k – коэффициент, зависящий от материала проводника согласно таблице.

где: m – коэффициент, зависящий от материала проводника согласно таблице.

Формула (1) применяется для малых токов (тонкие проводники d=(0,02 – 0,2) мм), а формула (2) для больших токов (толстые проводники). Таблица коэффициентов.

Диаметр проводника для использования в плавком предохранителе рассчитывается по формулам: Для малых токов (тонкие проводники диаметром от 0,02 до 0,2 мм):

Для больших токов (толстые проводники):

Количество теплоты выделяемое на плавкой вставке рассчитывается по формуле:

где: I – ток, текущий через проводник; R – сопротивление проводника; t – время нахождения плавкой вставки под током I.

Сопротивление плавкой вставки рассчитывается по формуле:

где: p– удельное сопротивление материала проводника; l – длина проводника; s – площадь сечения проводника.

Для упрощения расчетов сопротивление принимается постоянным. Рост сопротивления плавкой вставки вследствие повышения температуры не учитываем.

Зная количество теплоты, необходимое для расплавления плавкой вставки, можно рассчитать время расплавления по формуле:

где: W — количество теплоты, необходимое для расплавления плавкой вставки; I — ток плавления; R — сопротивление плавкой вставки.

Количество теплоты, необходимое для расплавления плавкой вставки рассчитывается по формуле:

где: лямбда 🙂 — удельная теплота плавления материала из которого сделана плавкая вставка; m — масса плавкой вставки.

Масса плавкой вставки круглого сечения рассчитывается по формуле:

где: d — диаметр плавкой вставки; l — длина плавкой вставки; p — плотность материала плавкой вставки.

Я для себя сделал небольшую html страничку — памятку с автоматизированным расчетом диаметра плавкой вставки.

Удачи.

Таблица диаметров проводов для предохранителей — Таблицы — Справочник

       

Таблица диаметров плавких вставок

 

Если в предохранителе перегорает плавкая вставка, ее нужно заменить. Но что делать, если нет под рукой стандартизированных вставок? Как выбрать ток плавления вставки?

Ток плавления – это удвоенное значение тока номинального тока потребителя. Так, если номинальная нагрузка составляет 10 А, выбираем ток плавкой вставки, равный 20 А. Надо иметь в виду, что предохранитель мгновенно не перегорает, ему нужно какое-то время. Поэтому пусковые токи двигателей или другие кратковременные повышенные токи не влияют на работу предохранителя.

Назначение плавких вставок как и автоматических выключателей –защита сети и потребителей от перегрузок и коротких замыканий. Главное отличие плавких вставок от автоматов – это одноразовое использование. В последнее время все больше отходят от применения предохранителей, предпочитая их автоматическим выключателям. Плюс плавких вставок – это относительная доступность, дешевизна в применении. Минус – при срабатывании, чтобы включить, нужно время для замены вставки; при замене вставки нужно отключать напряжение.

 

Ток плавления, А

Диаметр, мм

Медь

Алюминий

Железо

0,5

0,03

0,04

0,06

1

0,05

0,07

0,12

2

0,09

0,1

0,19

3

0,11

0,14

0,25

4

0,14

0,17

0,3

5

0,16

0,19

0,35

6

0,18

0,22

0,4

7

0,2

0,25

0,45

8

0,22

0.27

0,48

9

0,24

0,29

0,52

10

0,25

0,31

0,55

15

0,32

0,4

0,72

20

0,39

0,48

0,87

25

0,46

0.56

1

30

0,52

0,64

1,15

35

0,58

0,7

1,26

40

0,63

0.77

1,38

45

0,68

0,83

1,5

50

0,73

0,89

1,6

60

0,82

1

1,8

70

0,91

1.1

2

80

1

1,22

2,2

90

1,08

1,32

2,38

100

1,15

1,42

2,55

120

1,31

1.6

2,85

140

1,45

1.78

3,18

160

1,59

1,94

3,46

180

1,72

2,1

3,75

200

1,84

2,25

4,05

225

1,99

2,45

4,4

250

2,14

2,6

4,7

275

2,2

2,8

5

300

2,4

2,95

5,3

 

                 I=80√d3
                                      — формула для расчета тока плавкой вставки для медной проволоки
                                                                                          

WAZIPOINT

Предохранители различных номиналов

Руководство по расчету номиналов предохранителей
Предохранитель предназначен для размыкания цепи при срабатывании предохранителя. текущий порог превышен. Это однофункциональное устройство, и исторически одноразовые. Рассчитывая номинал предохранителя самого основного защитного оборудования, мы используйте правило удара, просто выберите предохранитель на 150% — 200% от нормального рабочего тока конкретной схемы.Но на самом деле здесь задействованы многочисленные расчеты. для определения подходящего номинала предохранителя. Часто необходимо учитывать другие факторы, такие как: включая температуру окружающей среды, доступную энергию во время повреждения, пусковой ток, и т.п. Чтобы выбрать предохранитель с надлежащим номиналом, устройства, необходимо учитывать следующие параметры и критерии: 1. Каков нормальный рабочий ток схемы? 2. Какое рабочее напряжение? 4. Какая рабочая температура окружающей среды? 5. Какой доступный ток короткого замыкания? 6. Каков максимально допустимый I²t? 7. Есть ли пусковые токи? 8. Используется ли защитное устройство для защиты от короткого замыкания, защита от перегрузки или и то, и другое? 9. Каковы ограничения по физическому размеру? 10.Поверхностное крепление печатной платы или сквозное отверстие? 11. Должен ли быть предохранитель? «заменяемый на месте»? 12.Существует ли сброс способности? 13. Какие разрешения агентства по безопасности необходимы? 14. Как смонтировать устройство? 15. какова стоимость соображения?

Формула для расчета номинала предохранителя

Спонсировано:

Там это простая и основная формула для расчета номинала предохранителя, напряжения или мощность для каждого прибора: В Номинал предохранителя можно рассчитать, разделив мощность, потребляемую устройством, на напряжение, поступающее в прибор.я (Амперы) = P (Вт) ÷ В (напряжение).
Расчет номинала предохранителя для двигателя Предохранитель для машины рассчитан на нагрузку, которую машина возит при обкатке. Например, двигатель мощностью 1 л.с. (746 Вт), работающий на 115 В будет потреблять 746/115 = 6,5 А при полной нагрузке, поэтому теоретически предохранитель на 10 А будет быть достаточным.

Что такое фактор плавления?

Коэффициент предохранителя — это соотношение минимального тока предохранителя и номинального тока предохранителя.

Следовательно, коэффициент предохранителя = минимальный ток предохранителя или номинальный ток предохранителя.

Значение коэффициента предохранения всегда больше 1.

Формула расчета номинала предохранителя

Класс предохранителя: температура плавления и удельное сопротивление различных металлов, используемых для плавкого предохранителя, следующие:


Металл Точка плавления Удельное сопротивление
Алюминий 240oF 2,86 мкОм — см
Медь 2000oF 1.72 мкОм — см
Свинец 624oF 21,0 мкОм — см
Серебро 1830oF 1,64 мкОм — см
Ом — см
Цинк 787oF 6,1 мкОм — см
Многие раз мы сталкиваемся с некоторыми физическими ограничениями, чтобы выбрать предохранитель или монтажные размеры автоматического выключателя. Это по этой причине производители предохранителей и автоматических выключателей создали широкий выбор компонентов с различными физическими размерами.Однако обычно есть компромиссы. что инженер должен учитывать. В целом говоря, чем меньше предохранитель, тем меньше ток и / или возможности предохранителя или автоматический выключатель может иметь. Например, субминиатюрный предохранитель может быть ограничен до 15 А. в то время как более крупный предохранитель со стеклянной трубкой 1/4 «x 1 1/4» может вместить до 40А. Кроме того, хотя предохранитель может быть меньше, соответствующий держатель предохранителя может быть существенно большее добавление к рассмотрению.

Загрузите копию в формате pdf полного руководства по расчету номиналов предохранителей:

Прочтите подробную информацию о различных типах предохранителей и их использовании

Какой предохранитель мне использовать?

Какой предохранитель мне использовать?

Предохранитель предназначен для защиты вашего оборудования / устройства, а также вас в случае перегрузки из-за механической или электрической неисправности.

Имейте в виду, что если у вас возникнет искушение использовать что-то вроде скрепки или фольги, обернутой вокруг старого предохранителя или гвоздя, не делайте этого. Это чрезвычайно опасно и может привести к поражению электрическим током, возгоранию или полному отказу устройства.

В Великобритании большая часть бытовой техники может быть оснащена литой вилкой. Вилки имеют предохранитель на 3 или 13 ампер — очень редко можно найти что-то среднее, хотя есть и другие предохранители.Вилка с предохранителем для устройства обеспечивает минимальную защиту, необходимую для вашего оборудования / устройства. Однако неправильный предохранитель будет постоянно перегорать, если он неправильно рассчитан, или не сможет защитить ваше оборудование от катастрофического расплавления, если он будет слишком высоким.

Техническая ссылка на вилку для Великобритании — BS 1362.

Если на держателе предохранителя вилки тисненая вилка, там будет номинал предохранителя для вашего прибора. Т.е. 13 А или 3 А.

Сетевой штекер занимает 25.Предохранитель BS 1362 4 мм (1,25 дюйма), эти предохранители можно приобрести в любом местном супермаркете или магазине DIY. Они дешевы, поэтому не рискуйте украсть предохранитель у другого устройства только для того, чтобы ваше устройство заработало, если только вы не используете предохранитель того же номинала.

«У меня на приборе установлена ​​литая вилка, но нет предохранителя? Я не знаю, какой тип предохранителя мне нужен!»

Давайте посчитаем —

В Великобритании напряжение в сети обычно составляет 240 В.Посмотрите на идентификационную табличку устройства, которая находится на основании или на задней панели устройства. Он сообщит мощность, напряжение, герц — Гц (частоту) и, возможно, необходимую силу тока.

Простой расчет: ватт, разделенный на вольт, равен амперам. После того, как вы рассчитали это, это простой случай добавления примерно 10% к значению и выбора ближайшего предохранителя для соответствия. Это более точный метод, чем просто предположение, нужен ли вам предохранитель на 3, 5 или даже 13 ампер.Замена неправильного предохранителя на правильный позволит избежать риска перегорания предохранителя.

Если у вас есть тренировочный провод, такой как 4-контактная розетка или более, он будет рассчитан только на максимум 13 ампер. Перегрузка одного из них становится очевидной, когда общая сила тока подключенных устройств превышает 13 ампер в этом удлинительном проводе.

В большинстве случаев на настольной лампе нет паспортной таблички, однако мы знаем, что максимальная мощность лампочки будет 100 Вт, поэтому расчет будет таким:

100 Вт, разделенные на 240 В, равняются 0.42 ампер + 10%, что равняется 0,46 ампер.

100/240 = 0,42 А + 10% = 0,46 А

Итак, исходя из этого расчета, идеальный предохранитель будет на 1 ампер. Однако большинство производителей в стандартную комплектацию вставляют предохранитель на 3 А.

По мере развития современной жизни и совершенствования технологий лампочки переходят на светодиоды. Многие светодиодные лампы имеют мощность 5 Вт (это одна 20 th лампочки на сто ватт), поэтому расчет для этого будет:

5 Вт, разделенное на 240 В, равно 0.02 ампер, что равно 0,022 ампер.

5/240 = 0,02 ампер + 10% = 0,0,022 ампер

Итак, исходя из этого расчета, идеальным предохранителем был бы предохранитель на один ампер, но, опять же, большинство производителей установят предохранитель на три ампера.

Чайники имеют широкий диапазон мощности, в зависимости от того, медленно это кипящий чайник или быстро кипящий.

Типичная идентификационная табличка, которая находится на основании чайника, может отображать следующую информацию: 220–240 Вольт — 50 Гц 1850–2200 Вт. Идентификационная табличка показывает, что этот чайник подходит для Европы 220 В (1850 Вт). ) и Великобритании 240 В (2200 Вт).50 Гц — это частота, которая не требуется для расчета.

В расчете будет 2200 Вт, разделенные на 240 В, что составит 9,17 А + 10%, что равно 10,087 А. Итак, исходя из этого расчета, идеальным предохранителем был бы предохранитель примерно на 10 А.

2200/240 = 9,17 А + 10% = 10,087 А

Однако предохранитель на 13 ампер будет входить в стандартную комплектацию вилки производителем, любой предохранитель ниже даже 10 ампер выйдет из строя.

Если прибор показывает 60 Гц, значит, он не подходит для использования в Великобритании. Если прибор показывает 50–60 Гц, он подходит для двойного использования (Европа / Великобритания).

Ниже представлена ​​сетка, которая даст вам представление о том, какой номинал предохранителя обычно используется в вашем приборе.

Размер предохранителя зависит от устройства или оборудования, которое он питает.

Если вы, например, оборудовали новую кухню, вы можете обнаружить, что у вас есть предохранитель над столешницей рядом с розеткой или рядом с ней.Затем ответвление плавкого предохранителя гаснет и изолирует устройство ниже, поэтому вам не нужно вставлять вилку в розетку в случае выхода из строя устройства (есть вероятность, что вы можете получить электрический ток, просто вытащив розетку). Поскольку все приборы поставляются с литой вилкой, гарантия может быть нарушена, если вы отключите вилку.

Как правило, в этом случае у вас будет предохранитель на 13 А в ответвлении предохранителя, питающийся до предохранителя на 13 А. в вилке.

Если вы обнаружите, что у вас есть предохранитель на 3 А в ответвлении предохранителя, питающий ваше устройство, и, используя приведенные выше расчеты, у вас есть потребность в предохранителе на 13 А, тогда предохранитель в ответвлении предохранителя необходимо заменить на 13 предохранитель amp.

В других случаях, когда электрик мог обнаружить, что в зоне, где клиентам требуется освещение, нет кабелей для цепи освещения, для питания новой цепи освещения мог быть установлен ответвление предохранителя. В этом ответвлении с предохранителем может быть предохранитель на три или пять ампер, в зависимости от количества света в цепи. Обычно вы обнаружите это, когда есть пристройка, такая как зимний сад, или вы установили садовое освещение.

Для получения дополнительной информации или немедленной помощи позвоните нам по телефону 01892 531728, который работает круглосуточно и без выходных.

Вы также можете заполнить нашу онлайн-форму запроса, и мы быстро ответим.

Электроэнергия и выбор предохранителей — Электробезопасность — Редакция GCSE Physics (Single Science) — Другое

Мощность электрического прибора может быть рассчитана на основе тока, протекающего через него, и разности потенциалов на нем.

Вы можете рассчитать мощность, используя следующее уравнение:

мощность = ток x напряжение

P = I × V

Где:

P — мощность в ваттах, W

I — ток в амперы (амперы), A

V — это разность потенциалов в вольтах, V

Например, какова мощность 1.Лампа 5 В, потребляющая ток 5 А?

Мощность = 1,5 × 5 = 7,5 Вт

Определение лучшего предохранителя для использования

Уравнение P = I × V можно переставить, чтобы найти ток, если известны мощность и разность потенциалов:

I = P ÷ V

Например, какой ток протекает через электрический камин мощностью 1,15 кВт при разности потенциалов 230 В? Помните, что 1,15 кВт — это 1150 Вт.

Ток = 1150 ÷ ​​230 = 5 A

Предохранители бывают стандартными номиналами 3 A, 5 A или 13 A.

Лучшим предохранителем в этом примере будет предохранитель на 13 А. Предохранители на 3А и 5А перегорят, даже если огонь работает нормально.

Уравнения предохранителей — Ness Engineering Inc.

Уравнения предохранителя (закон Приса) Закон

Приса можно использовать для расчета приблизительного значения постоянного тока предохранителя для данного размера провода и материала. Фактический ток предохранителя, к сожалению, может зависеть от детальной передачи тепла от провода, на которую могут влиять корпус, теплопроводность провода к клеммам на обоих концах и другие физические условия.Поэтому можно использовать одномерное уравнение теплопроводности или более сложный термический анализ, чтобы лучше определить точный ток плавкого предохранителя. Однако, как быстро сделанная оценка, закон Приса может оказаться ценным.

Закон

Приса гласит, что постоянный ток плавкого предохранителя для элемента с прямым проводом обычно зависит от его диаметра, как указано по формуле:

Закон Причеса

Или можно определить диаметр проволоки для данного материала и тока плавления, чтобы можно было выбрать проволоку большего размера, чтобы избежать плавления.

, где I f — ток плавкого предохранителя в амперах, C — коэффициент Приса для конкретного используемого металла, а d — диаметр плавкого элемента в дюймах. Уильям Генри Прис определил это соотношение в 1884 году, сравнив баланс между теплотой, генерируемой внутри провода (I²R), с тепловыми потерями в проводе (πhdl), где h — тепловые потери на единицу площади из-за излучения или конвекции, d — диаметр провода. , l — длина провода (6 дюймов в случае тестовых образцов, которые Прис использовал для эмпирического определения этого).Вблизи порога плавления потери тепла и выделяемое тепло примерно равны. Таким образом, мы можем установить количество выделяемого тепла равным тепловыделению следующим образом:

Решая для I², определяем:

Затем мы можем извлечь квадратный корень и найти зависимость тока плавления от диаметра проволоки (как указано выше):

Где C — коэффициент Приса в зависимости от конкретного материала / сплава проволоки:


В следующей таблице показаны коэффициенты Приса для распространенных материалов / сплавов плавких элементов, а также диаметр проводов из этих материалов, которые будут плавиться при указанном в таблице токе.


Диаметр (дюймы)

Ток (А)

Медь

С = 10 244


Алюминий

С = 7,585


Платина

С = 5 172


Немецкое серебро

С = 5,230


Платиноид

С = 4,750

1

0.0021


0,0026


0,0033


0,0033


0,0035

2

0,0034


0,0041


0,0053


0,0053


0,0056

3

0,0044


0.0054


0,007


0,0069


0,0074

4

0,0053


0,0065


0,0084


0,0084


0,0089

5

0,0062


0,0076


0.0098


0,0097


0,0104

10

0,0098


0,012


0,0155


0,0154


0,0164

15

0,0129


0,0158


0.0203


0,0202


0,0215

20

0,0156


0,0191


0,0246


0,0245


0,0261

25

0,0181


0,0222


0.0286


0,0284


0,0303

30

0,0205


0,025


0,0323


0,032


0,0342

35

0,0227


0,0277


0,0358


0.0356


0,0379

40

0,0248


0,0303


0,0391


0,0388


0,0414

45

0,0268


0,0328


0,0423


0.042


0,0448

50

0,0288


0,0352


0,0454


0,045


0,048

60

0,0325


0,0397


0,0513


0,0509


0.0542

70

0,036


0,044


0,0568


0,0564


0,0601

80

0,0394


0,0481


0,0621


0,0616


0,0657

90

0.0426


0,052


0,0672


0,0667


0,0711

100

0,0457


0,0558


0,072


0,0715


0,0762

120

0.0516


0,063


0,0814


0,0808


0,0861

140

0,0572


0,0698


0,0902


0,0895


0,0954

160

0.0625


0,0763


0,0986


0,0978


0,1043

180

0,0676


0,0826


0,1066


0,1058


0,1128

200

0.0725


0,0886


0,1144


0,1135


0,121

225

0,0784


0,0958


0,1237


0,1228


0,1309

250

0.0841


0,1208


0,1327


0,1317


0,1404

275

0,0897


0,1095


0,1414


0,1404


0,1497

300

0.095


0,1161


0,1498


0,1487


0,1586


Диаметр (дюймы)

Ток (А)

Утюг

С = 3,148


Олово

С = 1,642


Свинец оловянный

С = 1,318


Свинец

С = 1,379

1

0.0047


0,0072


0,0083


0,0081

2

0,0074


0,0113


0,0132


0,0128

3

0,0097


0,0149


0,0173


0.0168

4

0,0117


0,0181


0,021


0,0203

5

0,0136


0,021


0,0243


0,0236

10

0,0216


0.0334


0,0386


0,0375

15

0,0283


0,0437


0,0506


0,0491

20

0,0343


0,0529


0,0613


0.0595

25

0,0398


0,0614


0,0711


0,069

30

0,045


0,0694


0,0803


0,0779

35

0,0498


0.0769


0,089


0,0864

40

0,0545


0,084


0,0973


0,0944

45

0,0589


0,0909


0,1052


0,1021

50

0.0632


0,0975


0,1129


0,1095

60

0,0714


0,1101


0,1275


0,1237

70

0,0791


0,122


0.1413


0,1371

80

0,0864


0,1334


0,1544


0,1499

90

0,0935


0,1443


0,1671


0,1621

100

0.1003


0,1548


0,1792


0,1739

120

0,1133


0,1748


0,2024


0,1964

140

0,1255


0,1937


0.2243


0,2176

160

0,1372


0,2118


0,2452


0,2379

180

0,1484


0,2291


0,2652


0,2573

200

0.1592


0,2457


0,2845


0,276

225

0,1722


0,2658


0,3077


0,2986

250

0,1848


0,2851


0.3301


0,3203

275

0,1969


0,3038


0,3518


0,3417

300

0,2086


0,322


0,3728


0,3617


Направляйте запросы, комментарии и предложения в компанию [email protected]

% PDF-1.4 % 3239 0 объект > эндобдж xref 3239 56 0000000016 00000 н. 0000001475 00000 н. 0000001683 00000 н. 0000001741 00000 н. 0000001929 00000 н. 0000001978 00000 н. 0000004166 00000 н. 0000004363 00000 п. 0000004432 00000 н. 0000004560 00000 н. 0000004618 00000 н. 0000004747 00000 н. 0000004854 00000 н. 0000004912 00000 н. 0000005054 00000 н. 0000005112 00000 н. 0000005293 00000 п. 0000005350 00000 н. 0000005408 00000 н. 0000005441 00000 п. 0000005559 00000 н. 0000005737 00000 н. 0000006819 00000 н. 0000007052 00000 н. 0000007278 00000 н. 0000007449 00000 н. 0000008557 00000 н. 0000008617 00000 н. 0000008740 00000 н. 0000008762 00000 н. 0000008855 00000 н. 0000008879 00000 н. 0000010434 00000 п. 0000010456 00000 п. 0000010549 00000 п. 0000010571 00000 п. 0000010695 00000 п. 0000039200 00000 н. 0000069990 00000 н. 0000070013 00000 п. 0000070043 00000 п. 0000070074 00000 п. 0000070104 00000 п. 0000070135 00000 п. 0000070318 00000 п. 0000071413 00000 п. 0000071686 00000 п. 0000072776 00000 п. 0000072800 00000 п. 0000072825 00000 п. 0000080400 00000 п. 0000080706 00000 п. 0000081838 00000 п. 0000082046 00000 п. 0000002021 00000 н. 0000004142 00000 п. трейлер ] >> startxref 0 %% EOF 3240 0 объект > эндобдж 3241 0 объект > эндобдж 3242 0 объект > / Кодировка> >> / DA (/ Helv 0 Tf 0 г) >> эндобдж 3243 0 объект > эндобдж 3244 0 объект > эндобдж 3293 0 объект > поток HV {TfwvAvoŭAF | & Z | da3Ⱥ> h5kwQXm [TD1 q6m1WM7 # P ߐ t3˂t ((2rӈ1pϊF9 褌 9ELsz:! 8! C6-W̒vԗ} D9jDrFPnGFpntl% zcƔfulox | m + $) \ Fңwg ‘} VFyV1V̋BI $ 0X | 3b Kn & ,, + 6 | ؋_ nwaS} 9 {\ T

@ 8Nv 0apLpt ᬈ Ow π (: N [톓

Типы, размеры, перегоревшие предохранители и замена

Электрическая система в каждом доме имеет некоторую форму защиты цепей для отключения цепей в случае перегрузки, короткого замыкания или замыкания на землю.В домах, построенных примерно после 1965 года, или в старых домах, в которых было обновлено электроснабжение, эта защита обычно обеспечивается серией автоматических выключателей на главной панели обслуживания. Автоматические выключатели — это механические устройства, которые определяют величину протекающего тока и «отключаются», когда протекающий ток превышает безопасную пропускную способность проводов цепи. Однако, если у вас есть дом, построенный до 1960 года, и электроснабжение не обновлялось, есть большая вероятность, что у вас есть другая защита цепи — ввинчиваемые предохранители, находящиеся внутри главной панели предохранителей.

Как работают предохранители

Предохранители — относительно простые устройства. Предохранители, которые защищают отдельные цепи на 120 В, обычно представляют собой керамические резьбовые заглушки, которые вставляются в резьбовые гнезда на панели предохранителей. Тонкая металлическая полоска внутри предохранителя проводит весь электрический поток через цепь, и если ток превышает допустимую нагрузку на металлическую полоску, она перегревается и плавится, тем самым прерывая прохождение тока и отключая цепь. Предохранитель — это своего рода система раннего предупреждения, которая обнаруживает перегрузки и «взрывы» до того, как сами провода цепи могут перегреться и, возможно, вызвать пожар.

В более крупных цепях на 240 В, а также в главном предохранителе, контролирующем основной поток энергии, используется предохранитель другого типа. Этот тип предохранителя представляет собой цилиндрический патрон, который вставляется в блок предохранителей, который вставляется и выходит из панели предохранителей. Принцип тот же — металлическая проводящая полоса внутри предохранителя прогорает, если ток превышает допустимую мощность цепи.

В отличие от современных автоматических выключателей, предохранители не подлежат восстановлению. Вместо этого перегоревшие предохранители необходимо отвинтить (или вынуть вилку из розетки) и заменить.Очень важно, чтобы предохранители были правильно согласованы с силой тока цепи. Например, существует явная опасность, если в цепи на 15 ампер используется предохранитель на 20 ампер, поскольку это создает потенциал для того, чтобы схема потребляла больше энергии, чем провода цепи могут безопасно выдержать.

Блок предохранителей

Предохранители размещены в блоке предохранителей — предшественнике главной сервисной панели, используемой в современных системах автоматических выключателей. Блок предохранителей обычно располагается вдали от основных жилых помещений, таких как гараж, прачечная или подвал.Если вы не уверены, есть ли у вас блок предохранителей или прерыватель, найдите панель и откройте ее. Выключатели представляют собой прямоугольные блоки с двухпозиционными переключателями. Большинство выключателей располагаются рядами или рядами. В блоке предохранителей, напротив, вы увидите группу круглых ввинчиваемых вилок с маленькими стеклянными окошками.

Типы и размеры предохранителей

Ваша панель предохранителей может включать несколько различных типов предохранителей. К наиболее распространенным относятся:

  • Предохранители Edison Base (Type-T). Предохранители Type-T рассчитаны на напряжение не более 125 вольт и рассчитаны на ток не более 30 ампер.Это стандартный предохранитель для большинства бытовых цепей на 120/125 В. На лицевой стороне предохранителя указана номинальная сила тока. Если вы уверены, что предохранители были правильно подобраны к силе тока цепи, вы можете смело использовать запасные предохранители точно такой же силы тока. Если вы считаете, что есть вероятность, что в цепи «перегорел» предохранитель — что кто-то, возможно, установил плавкий предохранитель, превышающий номинал цепи, — проконсультируйтесь с электриком, чтобы определить правильный размер предохранителя. Предохранитель на 15 А должен соответствовать проводам цепи 14 калибра, а предохранитель на 20 А предназначен для проводов калибра 12.
  • Предохранители типа S. Предохранители Type-S состоят из двух компонентов: адаптера и самого предохранителя. Для каждого уровня силы тока имеется соответствующий адаптер розетки с уникальной резьбой, чтобы предотвратить несовпадение предохранителей. По возможности рекомендуется установить предохранители и основания Type-S, поскольку это предотвратит установку неправильных предохранителей в будущем.
  • Картридж предохранителей. Патронные предохранители представляют собой керамические предохранители цилиндрической формы с металлическими гильзами или лезвиями на обоих концах. Обычно они используются для цепей на 240 ампер.Патронные предохранители помещаются в блок предохранителей, который вставляется в прорезь в блоке предохранителей. Для их удаления необходимо извлечь блок предохранителей, потянув за ручку, а затем заменить отдельные предохранители в блоке. Обычно они располагаются парами внутри блока предохранителей, каждый из которых управляет напряжением 120 вольт из комбинированных 240 вольт. Патронные предохранители используются не только для цепей прибора на 240 В, но и для «главного предохранителя», который управляет питанием всей панели предохранителей. Как и на ввинчиваемых предохранителях, на патронных предохранителях указаны значения силы тока.Основные предохранители часто рассчитаны на 60 ампер, а предохранители для цепей электроприборов — чаще на 30 или 40 ампер.

Определение перегоревшего предохранителя

Самый распространенный признак перегоревшего предохранителя — отключение электричества в одной или нескольких частях вашего дома. Предохранители, в отличие от автоматов, не имеют двухпозиционных выключателей. Вместо этого у большинства предохранителей есть небольшое стеклянное окошко, через которое можно осмотреть сам предохранитель. Когда предохранитель перегорит, вы либо увидите расплавленную металлическую полосу внутри окошка предохранителя, либо увидите помутнение или следы ожога на стекле.Это указывает на то, что металлическая полоса внутри расплавилась.

Замена предохранителя

Замена предохранителя обычно заключается в том, чтобы идентифицировать перегоревший предохранитель, а затем осторожно откручивать и вкручивать точную замену.

Согласование предохранителя с силой тока цепи

Очень важно установить предохранители, соответствующие номинальной силе тока проводов цепи. Установка предохранителя слишком большого размера для цепи создает риск того, что цепь будет потреблять больше энергии, чем провода могут безопасно выдержать.Например, если 20-амперный предохранитель подключен к цепи, обслуживаемой проводом 14-го калибра (который рассчитан только на 15-амперную мощность), вы создаете серьезный риск перегрева проводов цепи. НИКОГДА не устанавливайте предохранитель большего размера, чем перегоревший предохранитель, который вы заменяете.

Процедура замены отличается от схемы на 240 вольт. Здесь вам нужно будет осторожно вытащить блок предохранителей из гнезда и изучить отдельные предохранители картриджа. Небольшой инструмент, известный как съемник предохранителей, полезен при извлечении патронных предохранителей из блока.

Как заменить перегоревший ввинчиваемый предохранитель

Необходимые инструменты и материалы

  • Резиновый коврик
  • Фонарик
  • Запасной предохранитель

Инструкции

  1. Найдите перегоревший предохранитель

    Положите резиновый коврик на пол перед панелью предохранителей, затем откройте дверцу панели. (Резиновый коврик защищает от поражения электрическим током.)

    Используйте фонарик, чтобы осмотреть стеклянные окошки на каждом предохранителе.Перегоревший предохранитель может оставить следы ожога на стекле, или вы можете увидеть, как металлическая нить накала внутри расплавляется.

    Выключите свет и отключите подключенные к электросети приборы. Это снизит вероятность повторной перегрузки цепи после замены предохранителя.

  2. Удалите перегоревший предохранитель

    Осторожно удерживая перегоревший предохранитель за керамический ободок, открутите его против часовой стрелки и извлеките из гнезда. Изучите лицевую сторону предохранителя на предмет его силы тока и выберите точную замену.

    Осторожно

    Будьте очень осторожны, не прикасайтесь к металлическим частям при извлечении или установке предохранителя. Будьте особенно осторожны, чтобы не прикасаться к металлической резьбе на предохранителе, когда вы откручиваете или ввинчиваете предохранитель. Если вы случайно прикоснетесь к резьбе, когда она соприкасается с токоведущей шиной на панели, существует опасность возникновения напряжения под напряжением.

  3. Установите сменный предохранитель

    Вставьте новый предохранитель в гнездо, закручивая его по часовой стрелке, пока он плотно не встанет в гнездо.Закройте панель предохранителей, затем проверьте цепь, включив свет и подключив приборы.

Как заменить перегоревший предохранитель картриджа

Если электрический прибор, такой как плита, внезапно перестает работать, вероятно, перегорел предохранитель картриджа, обслуживающий цепь прибора. Часто это схемы на 30 или 40 ампер. Если внезапно отключится электричество во всем доме, возможно, перегорел один из основных предохранителей.

Необходимые инструменты и материалы

  • Резиновый коврик
  • Фонарик
  • Съемник предохранителей (опция)
  • Тестер целостности или мультиметр (опция)
  • Запасной предохранитель

  1. Снимите блок предохранителей

    Положите резиновый коврик на пол перед панелью предохранителей, затем откройте дверцу панели.(Резиновый коврик защищает от поражения электрическим током.)

    Найдите блок предохранителей, управляющий цепью. Это может быть обозначено как «Диапазон» или «Сушилка». Блок предохранителей обычно имеет небольшую металлическую ручку, прикрепленную к передней части. Если перегоревший предохранитель является главным предохранителем, блок основных предохранителей обычно располагается в верхней части блока предохранителей.

    Осторожно возьмитесь за металлическую ручку на блоке предохранителей и потяните прямо наружу, чтобы извлечь блок из блока предохранителей.

  2. Снимите и проверьте предохранители

    С большинством предохранителей картриджей не очевидно, что они перегорели, поэтому вам необходимо проверить их.

    Используйте съемник для предохранителей, чтобы извлечь предохранитель из блока предохранителей. Затем используйте тестер целостности (или мультитестер, настроенный на режим непрерывности), чтобы проверить предохранитель, прикрепив по одному щупу к каждой металлической втулке на предохранителе. Если тестер не загорается, это означает, что нет целостности и перегорел предохранитель.

  3. Вставьте новый предохранитель

    Вставьте точный запасной предохранитель в блок предохранителей, плотно прижав его к месту, чтобы закрепить на контактных кронштейнах.

  4. Замените блок предохранителей

    Вставьте блок предохранителей в соответствующий паз на панели предохранителей и надавите на него, пока он не встанет на место. При этом не прикасайтесь к металлическим частям блока предохранителей.

    Включите прибор, обслуживаемый предохранителем картриджа, чтобы убедиться, что он работает правильно.

Модернизация электрооборудования

Если у вас есть блок предохранителей, это означает, что ваша электрическая сеть устарела и, вероятно, недостаточна для энергопотребления современного дома.Панели предохранителей обычно обеспечивают мощность 30 или 60 ампер, и сейчас считается, что минимальный минимум для дома с современной техникой составляет не менее 100 ампер, предпочтительно 150 или 200 ампер.

Домовладельцы с панелями предохранителей регулярно сталкиваются с перегоревшими предохранителями, и это признак того, что электрическое обслуживание нуждается в обновлении. Установка нового электрооборудования с автоматическими выключателями — это работа профессионального электрика, и домовладелец не должен пытаться это сделать.

▷ Установка блока предохранителей и расчет нагрузок

В прошлый раз мы рассказывали вам об Андрее.Он снова прислал нам статью для участия в блоге. Помните, что вы можете сделать то же самое, отправив нам письмо.

Введение

Некоторые могут посчитать установку блока предохранителей в жилом помещении довольно простой задачей. Автоматический выключатель на 16 А и провод 2,5 мм² для настенных розеток, автоматический выключатель на 10 А и провод на 1,5 мм² для цепи освещения, не очень сложно. Я должен сказать, что приведенные выше значения относятся к европейским однофазным цепям на 230 В.

Но что, если бы нам пришлось распределять электроэнергию в мастерскую или место, которое имеет другие нагрузки, такие как двигатели или электроинструменты? Давайте посмотрим, как мы можем настроить эту схему и блок предохранителей для нее.

Расчет нагрузок

Как и в случае с любой другой схемой, нам нужно определить общий ток, необходимый для ее питания. Для нашего примера в мастерской большинство однофазных электроинструментов и оборудования будут иметь мощность менее 2000 Вт, и это самая безопасная максимальная нагрузка для непрерывно работающей линии 230 В. Выше этой мощности, скорее всего, потребуется 3-х фазная цепь.

Нам известна формула для расчета тока для маломощного оборудования, такого как лампы: I N = при U = 230 В, а cosϕ зависит от типа нагрузки.Для резистивных нагрузок, таких как нагреватели, лампы накаливания, cosϕ = 1, для люминесцентных ламп с внутренней компенсацией cosϕ = 0,8-0,95. Следует иметь в виду, что для люминесцентных ламп Pi = Plamp + Pbalast.

Для двигателей с однофазной нагрузкой большой мощности формула немного отличается: I N = где η — КПД. Если вам неизвестна эффективность, можно использовать значение 0,8. В таблице ниже представлена ​​оценка cosϕ для асинхронных двигателей:

Расчет схем и автоматических выключателей

Рекомендуется поддерживать нагрузку менее 2 кВт на каждую цепь с независимыми предохранителями, но с двигателями и сильноточным оборудованием нам нужно быть осторожными, какой тип автоматического выключателя выбрать, потому что многие двигатели при запуске потребляют намного больше тока, чем номинальное значение. и это может привести к срабатыванию выключателя.

Существует 3 основных типа автоматических выключателей или автоматических выключателей, обозначенных буквами B, C и D. Они различаются мгновенным значением тока отключения: B имеет значение от 3 до 5 от номинального тока, C от 5 до 10. раз больше номинального тока и D от 10 до 20 раз. В зависимости от двигателя вам может понадобиться автоматический выключатель C или D.

Согласно IEC 60364-4-41 каждая цепь розетки должна быть защищена УЗО с высокой чувствительностью.

После того, как мы рассчитали ток, необходимый для всех цепей на месте, сумма этих значений тока определит сечение провода между основным блоком предохранителей и удаленным.Пожалуйста, обратитесь к следующей таблице для дополнительной оценки значений cosϕ для обычного электрического оборудования.

Для расчета сечения провода есть очень хороший онлайн-инструмент, который поможет вам рассчитать его в соответствии со стандартами NEC или IEC: http://www.cablesizer.com/

Поскольку все нагрузки равномерно распределены по новым цепям и все цепи защищены соответственно автоматическими выключателями для освещения и автоматическими выключателями для настенных розеток, важно отметить, что роль автоматических выключателей заключается в защите схемы.Текущий рейтинг должен быть следующей ступенью выше тока, потребляемого нагрузкой. Поэтому, если нагрузка составляет 14 А, следует выбрать автоматический выключатель на 16 А вместе с правильным сечением провода для схемы. Автоматический выключатель должен защищать этот провод от перегрева и потенциального возгорания или разрыва цепи.

В низковольтных жилых установках расстояния достаточно малы, чтобы не создавать проблем с падением напряжения на линиях, но по своему опыту я обнаружил много проблем с заземлением при установке нового блока предохранителей.

Другой распространенной проблемой было нераспределение нагрузки на все 3 фазы в общем блоке предохранителей, но это тема для другой статьи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *