Размеры элементов электрических схем: Размеры Элементов Электрических Схем Гост

Содержание

Размеры Элементов Электрических Схем Гост

При изображении на схеме нескольких одинаковых элементов устройств обозначения выводов контактов допускается указывать на одном из них.


При указании нескольких меток одного вывода в последующих строках допускается линии выводов к ним не подводить.

Размеры УГО в электрических схемах.
Как читать Элекрические схемы

Элементам, не входящим в устройства, позиционные обозначения присваивают, начиная с единицы, по правилам, установленным в 5.

При разнесенном способе изображения одинаковых элементов устройств обозначения выводов контактов указывают на каждой составной части элемента устройства. Над таблицей допускается указывать УГО контакта — гнезда или штыря.

Характерная особенность такой схемы — минимальная детализация. D — Символ заземления.

Допускается обозначать блок управления, как показано на черт.

Порядок следования меток определяет логический уровень разрешающего сигнала: первая функция осуществляется при LOG1, вторая — при LOG0.


Условное графическое обозначение элементов (УГО)

2 Нормативные ссылки

Отключают и включают в работу определенные участки сети, по мере необходимости. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три: Функциональная, на ней представлены узловые элементы изображаются как прямоугольники , а также соединяющие их линии связи. Обозначение линий связи на принципиальных схемах ГОСТ 2.

Графические обозначения в электрических схемах механических переключателей Условные графические обозначения розеток и выключателей в электрических схемах. В — УГО воспринимающей части электротепловой защиты.

Обозначение зависимости выводов осуществляется путем присваивания им меток выводов: для влияющего вывода — буквенным обозначением зависимости в соответствии с приложением 3 и порядковым номером, проставленным после буквенного обозначения без пробела; для каждого зависимого от данного влияющего вывода — тем же порядковым номером, проставленным без пробела перед буквенным обозначением метки вывода, присвоенной ему в соответствии с табл. Условные графические обозначения элементов, используемых как составные части обозначений других элементов устройств , допускается изображать уменьшенными по сравнению с остальными элементами например, резистор в ромбической антенне, клапаны в разделительной панели.


Примеры УГО в функциональных схемах Ниже представлен рисунок с изображением основных узлов систем автоматизации. В случае, если вывод зависим от нескольких влияющих выводов, порядковый номер каждого из них должен быть указан через запятую черт.

Таблица 3 4.

Обозначения электромеханических приборов и контактных соединений Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

Допускается позиционное обозначение проставлять внутри прямоугольника УГО.
Условные графические обозначения радиоэлементов

Нормативные документы

Например, для двоичного счисления ряд весов имеет вид 20, 21, 22, 23,

Стандарт включает в себя 64 документа ГОСТ, которые раскрывают основные положения, правила, требования и обозначения.

Таблица 3 4. Звонок на электрической схеме по стандартам УГО с обозначенным размером Размеры УГО в электрических схемах На схемах наносят параметры элементов, включенных в чертеж.

Выводы питания элементов приводят либо в качестве текстовой информации на свободном поле схемы, либо одним из способов, приведенных на черт. Рисунок 7 5. При использовании меток выводов, не установленных настоящим стандартом, их следует приводить в УГО в скобках и пояснять на поле схемы черт.


Примечания к пп. Звонок на электрической схеме по стандартам УГО с обозначенным размером Размеры УГО в электрических схемах На схемах наносят параметры элементов, включенных в чертеж. Примечания: 1. Виды электрических схем В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи.

2.2. Обозначения функций элементов


Автоматический выключатель на однолинейной схеме Трансформатор представляет собой стальной сердечник с двумя обмотками. Щетка: на контактном кольце 2. С — символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников. Порядок расположения контактов в таблице определяется удобством построения схемы.

Приведем в качестве примера основные графические обозначения для разных видов электрических схем. При использовании меток выводов, не установленных настоящим стандартом, их следует приводить в УГО в скобках и пояснять на поле схемы черт.

Выводы элементов подразделяют на логически равнозначные, то есть взаимозаменяемые без изменения функции элемента, и логически неравнозначные. Эту метку проставляют над группами выводов, к которым она относится, отделяя от них интервалом.
Как читать электрические схемы. Радиодетали маркировка обозначение

2.1. Общие правила построения УГО

Элементам, не входящим в устройства, позиционные обозначения присваивают, начиная с единицы, по правилам, установленным в 5. Допускается отделять такие элементы друг от друга штриховой линией черт.

Групповую метку располагают над группой меток, которые должны быть записаны без интервала между строками черт.

Эту метку проставляют над группами выводов, к которым она относится, отделяя от них интервалом.

Отключают и включают в работу определенные участки сети, по мере необходимости. Размеры УГО в электрических схемах. С — символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников. При этом метки выводов присваивают одним из способов, представленных на черт.

1 Область применения

Если несколько последовательных выводов имеют части меток, отражающие одинаковые функции, то такие выводы могут быть объединены в группу выводов, а эта часть метки выносится в групповую метку. Допускается опускать пробел между группами выводов, имеющих метку более высокого порядка.

Размеры условных графических обозначений, а также толщины их линий должны быть одинаковыми на всех схемах для данного изделия установки. Если невозможно указать характеристики или параметры входных и выходных цепей изделия, то рекомендуется указывать наименование цепей или контролируемых величин. Монтажную логику можно рассматривать условно как элемент, который изображают в виде УГО элемента монтажной логики черт. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. УГО элемента выполняют без дополнительных полей или без правого или левого дополнительного поля, в следующих случаях: все выводы логически равнозначны; функции выводов однозначно определяются функцией элемента. В этом случае существует хотя бы одно логическое соединение между данными элементами.

Допускается дополнять обозначение зависимости меткой, поясняющей функциональное назначение вывода, которая помещается в круглых скобках. Если в состав изделия входит несколько одинаковых устройств, то позиционные обозначения элементам следует присваивать в пределах этих устройств. Порядок расположения контактов в таблице определяется удобством построения схемы. Так, например, существует три типа контактов — замыкающий, размыкающий и переключающий. Щетка: на контактном кольце 2.

Как нарисовать розетки, выключатели и лампы на плане квартиры.

Размеры обозначений

Выборка материалов из ГОСТ, имеющих отношение к размерам изображений условных графических обозначений элементов электрических схем.

Все изображения вставлены из ГОСТ без изменений.


ГОСТ 2.701-84 Схемы виды и типы. Общие требования к выполнению (фрагмент)

2.4.2. Условные графические обозначения элементов изображают в размерах, установленных в стандартах на условные графические обозначения. Условные графические обозначения, соотношения размеров которых приведены в соответствующих стандартах на модульной сетке, должны изображаться на схемах в размерах, определяемых по вертикали и горизонтали количеством шагов модульной сетки М (черт. 2а). При этом шаг модульной сетки для каждой схемы может быть любым, но одинаковым для всех элементов и устройств данной схемы.


Черт. 2а

 

 

Условные графические обозначения элементов, размеры которых в указанных стандартах не установлены, должны изображать на схеме в размерах, в которых они выполнены в соответствующих стандартах на условные графические обозначения.

Размеры условных графических обозначений, а также толщины их линий должны быть одинаковыми на всех схемах для данного изделия (установки).

Примечания:

1. Все размеры графических обозначений допускается пропорционально изменять.

2. Условные графические обозначения элементов, используемых как составные части обозначений других элементов (устройств), допускается изображать уменьшенными по сравнению с остальными элементами (например, резистор в ромбической антенне, клапаны в разделительной панели).


ГОСТ 2.722-68 Машины электрические (фрагмент)

9. Размеры основных элементов условных графических обозначений, табл. 3.


ГОСТ 2.721-74 Обозначения общего применения. Таблица 7


ГОСТ 2.728-74 Резисторы, конденсаторы (фрагмент)

7. Размеры условных графических обозначений приведены в табл. 6.
Все геометрические элементы условных графических обозначений следует выполнять линиями той же толщины, что и линии электрической связи.

Таблица 6

 


ГОСТ 2.730-73 Приборы полупроводниковые (фрагмент)

ПРИЛОЖЕНИЕ 2
Справочное
Размеры (в модульной сетке) основных условных графических обозначений

 


ГОСТ 2.732-68 ИСТОЧНИКИ СВЕТА (фрагмент)

4. Размеры условного графического обозначения лампы накаливания


ГОСТ 2.747-68 Размеры условных графических обозначений (фрагмент)

2. Размеры условных графических обозначений приведены в таблице.

 


ГОСТ 2.755-87 УСТРОЙСТВА КОММУТАЦИОННЫЕ И КОНТАКТНЫЕ СОЕДИНЕНИЯ (фрагмент)

Размеры (в модульной сетке) основных условных графических обозначений приведены в табл.10.
Таблица 10


ГОСТ 2.756-76 ВОСПРИНИМАЮЩАЯ ЧАСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ УСТРОЙСТВ (фрагмент)

Таблица 2


ГОСТ 2.767-89 РЕЛЕ ЗАЩИТЫ (фрагмент)

Размеры (в модульной сетке) основных условных графических обозначений
Таблица 4

 


ГОСТ 2.768?90 ИСТОЧНИКИ ЭЛЕКТРОХИМИЧЕСКИЕ, ЭЛЕКТРОТЕРМИЧЕСКИЕ И ТЕПЛОВЫЕ (фрагмент)

СООТНОШЕНИЕ РАЗМЕРОВ ОСНОВНЫХ УСЛОВНЫХ ГРАФИЧЕСКИХ ОБОЗНАЧЕНИЙ


Дополнительно рекомендую прочитать статью: Размеры обозначений в электрических схемах.


 

▶▷▶▷ гост размеры условные обозначения элементов электрических схем гост

▶▷▶▷ гост размеры условные обозначения элементов электрических схем гост
ИнтерфейсРусский/Английский
Тип лицензияFree
Кол-во просмотров257
Кол-во загрузок132 раз
Обновление:08-03-2019

гост размеры условные обозначения элементов электрических схем гост — Yahoo Search Results Yahoo Web Search Sign in Mail Go to Mail» data-nosubject=»[No Subject]» data-timestamp=’short’ Help Account Info Yahoo Home Settings Home News Mail Finance Tumblr Weather Sports Messenger Settings Want more to discover? Make Yahoo Your Home Page See breaking news more every time you open your browser Add it now No Thanks Yahoo Search query Web Images Video News Local Answers Shopping Recipes Sports Finance Dictionary More Anytime Past day Past week Past month Anytime Get beautiful photos on every new browser window Download Размеры обозначений — elektroshemaru elektroshemaru/2009-02-05-22-57-45/ugo-1 Cached ГОСТ 2701-84 Схемы виды и типы Общие требования к выполнению (фрагмент) 242 Условные графические обозначения элементов изображают в размерах, установленных в стандартах на условные графические обозначения Условные обозначения в электрических схемах: графические и ddecadru/uslovnye-oboznacheniya-v-elektricheskikh-skhemakh Cached ГОСТ 2709-89 «ЕСКД Обозначения условные проводов и контактных соединений электрических элементов , оборудования и участков цепей в электрических схемах» ГОСТ 2721-74 «ЕСКД Гост Размеры Условные Обозначения Элементов Электрических Схем Гост — Image Results More Гост Размеры Условные Обозначения Элементов Электрических Схем Гост images Условные обозначения в электрических схемах ГОСТ electric-220ru/news/uslovnye_oboznachenija_v_eh Cached Условные обозначения в электрических схемах ГОСТ , отображены в таблицах Условные обозначения приведены к единым формам и во всех схемах соответствуют одним и тем же элементам ГОСТ 2702-2011 Единая система конструкторской документации docscntdru/document/1200086241 Cached Обозначения условные проводов и контактных соединений электрических элементов , оборудования и участков цепей в электрических схемах ГОСТ 2710-81 Единая система конструкторской документации Условные обозначения в электрических схемах по ГОСТ wwwasutppru/uslovnye-oboznachenija-v-jelekt Cached Таблица 1 Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах ОБОЗНАЧЕНИЯ УСЛОВНЫЕ БУКВЕННО ЦИФРОВЫЕ И ГРАФИЧЕСКИЕ НА veneculsturu/lib/disk/2016/29pdf Правила выполнения электрических схем ГОСТ 2705−70 ЕСКД Правила выполнения электрических схем обмо-ток и изделий с обмотками ГОСТ 2709−89 ЕСКД Обозначения условные проводов и контактных Условные обозначения на электрических схемах по ГОСТ stroychikru/elektrika/uslovnye-oboznacheniya-na-shemah Cached Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств размеры УГО — studfilesnet studfilesnet/preview/5065531 Cached 07022016 35596 Кб 64 Условные графические обозначения в электрических схемах (действующие и отмененные) Краткий обзор _ electromonterinfomht Условные обозначения в электрических схемах (гост 7624-55) studfilesnet/preview/949771 Cached Условные обозначения в электрических схемах ( гост 7624-55) В схемах выполненных по ГОСТ 7624-55 все обозначения даются в «нормальном» положении аппаратов, те при отсутствии напряжения во всех цепях схемы и всяких Размеры условных графических обозначений в электрических схемах centrbytaru/info/electromonter/handbook/symbol_sizehtml Cached • Условные графические обозначения элементов , размеры которых в указанных стандартах не установлены, должны изображать на схеме в размерах, в которых они выполнены в соответствующих Promotional Results For You Free Download | Mozilla Firefox ® Web Browser wwwmozillaorg Download Firefox — the faster, smarter, easier way to browse the web and all of Yahoo 1 2 3 4 5 Next 26,000 results Settings Help Suggestions Privacy (Updated) Terms (Updated) Advertise About ads About this page Powered by Bing™

  • установленных в стандартах на условные графические обозначения Условные обозначения в электрических схемах: графические и ddecadru/uslovnye-oboznacheniya-v-elektricheskikh-skhemakh Cached ГОСТ 2709-89 «ЕСКД Обозначения условные проводов и контактных соединений электрических элементов
  • в которых они выполнены в соответствующих Promotional Results For You Free Download | Mozilla Firefox ® Web Browser wwwmozillaorg Download Firefox — the faster
  • должны изображать на схеме в размерах

Размеры элементов электрических схем гост

Опубликовано: 22.08.2018

В промышленном и частном строительстве распространены профильные трубы. Из них конструируют хозяйственные постройки, гаражи, теплицы, беседки. Конструкции бывают как классически прямоугольными, так и витиеватыми. Поэтому важно правильно сделать расчет трубы на изгиб. Это позволит сохранить форму и обеспечить конструкции прочность, долговечность, на сайте https://avtoindustriya.com/gruzovye-avtomobili/gruzovye-avtomobili-kitay/faw/.


УАЗ ХАНТЕР 514 ДИЗЕЛЬ установка вакуумного насоса

Металл имеет свою точку сопротивления, как максимальную, так и минимальную.

Максимальная нагрузка на конструкцию приводит к деформациям, ненужным изгибам и даже изломам. При расчетах обращаем внимание на вид трубы, сечение, размеры, плотность, общие характеристики. Благодаря этим данным известно, как поведет себя материал под воздействием факторов окружающей среды.


Рисуем схемы в sPlan

Учитываем, что при давлении на поперечную часть трубы напряжение возникает даже в точках, удаленных от нейтральной оси. Зоной наиболее касательного напряжения будет та, которая располагается вблизи нейтральной оси.

Во время сгибания внутренние слои в согнутых углах сжимаются, уменьшаются в размерах, а наружные слои растягиваются, удлиняются, но средние слои сохраняют и после окончания процесса первоначальные размеры.

Ружьё, которое вам подходит, попадает туда, куда вы смотрите. Таким образом, когда вы подносите приклад ружья к вашему лицу – вы можете нажимать на спуск без колебаний, будучи уверенным, на что бы вы ни смотрели – оно получит заряд дроби в самый центр. Кроме того, с ружьём, которое вам подходит, удобнее обращаться и из него гораздо приятнее стрелять, на сайте https://avtoindustriya.com/gruzovye-avtomobili/gruzovye-avtomobili-kitay/faw/.

Как же узнать, подходит ли вам ваше ружьё? Большинство людей берут ружьё, вскидывают его к плечу и склоняются к прицелу. Если линия прицеливания совпадает с ожидаемой: « Оно неплохо подходит» . Обратная сторона подгонки – это использование пробного ружья с полностью регулируемым ложем. Вы стреляете по стальной пластине или по тарелочкам, а мастер в это время подгоняет под вас размеры ложа.

     

 

Хотя полная подгонка и очень полезная вещь – вы можете подогнать ружьё под себя самостоятельно. Всё больше моделей ружей – полуавтоматы Браунинг, Бенелли и Беретта, а также помповые ружья и полуавтоматы Моссберг – продаются с прокладками и проставками, с помощью которых вы можете изменить отгиб (погиб), отвод и длину приклада. С другими ружьями вам придётся импровизировать.

 

Мастера-оружейники используют квадратные стальные пластины размером 91 или 121 см, покрытые краской или смазкой, чтобы увидеть дробовую осыпь при проверке результатов подгонки ружья. Если у вас нет пластины, можно использовать лист или пластиковую скатерть. Подвесьте её и в центре прицельную метку размерами 5 см. Используйте чок с сильным сужением и встаньте на расстоянии 14 метров. Сначала используйте незафиксированное ружьё и плавно поднимайте его к щеке. Сфокусируйтесь на цели и выстрелите сразу же, как только ружьё коснется плеча. Не пытайтесь прицеливаться и не смотрите на мушку. Повторяйте, пока в мишени не появятся отверстие. Если отверстие располагается строго выше или ниже метки – вам нужно изменить отгиб (погиб) приклада. Если строго слева или справа – вам нужно изменить отвод. Каждый см смещения на дистанции 14 метров соответствует 1, 58 миллиметра изменения размеров приклада.

УСЛОВНЫЕ ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ СХЕМ

2.1. Символы общего применения (ГОСТ 2.721-74)

2.2. Резисторы (ГОСТ 2.728-74)

2.3. Конденсаторы (ГОСТ 2.728-74)

2.4. Катушки индуктивности, дроссели и трансформаторы (ГОСТ 2.723-69)

2.5. Устройства коммутации (ГОСТ 2.755-74, ГОСТ 2.756-76)

2.6. Полупроводниковые приборы (ГОСТ 2.7З0-73)

2.7. Электровакуумные приборы (ГОСТ 2.731-81)

2.8. Электроакустические приборы (ГОСТ 2.741-68*)

2.9. Пьезоэлектрические устройства, измерительные приборы, источники питания (ГОСТ 2.736-68, ГОСТ 2.729-68, ГОСТ 2.742-68, ГОСТ 2.727-68)

2.10. Электрические машины (ГОСТ 2.722-68*)

Вопросы для самопроверки

Символы общего применения (ГОСТ 2.721-74)

Для построения УГО с уточнением особенностей элементов схем используют базовые символы и различные знаки. Большое распространение в схемах радиоустройств, электротехнических изделий имеют знаки регулирования – различные стрелки, пересекающие исходный символ или входящие в него, пересекающие исходный символ под углом 45°, указывающие на переменный параметр элемента схемы (рис. 2.1, а ).

Стрелка может быть дополнена знакоцифровым символом. Так, на рис. 2.1, б . в . г показан характер регулирования: линейный, ступенчатый, 8-ступенчатый. На рис. 2.1, д стрелка дополнена условием регулирования. Стрелка с изломом на рис. 2.1, е . ж . и и надпись указывают, что параметр регулирования изменяется по определенному закону. Стрелки на рис. 2.1, к . л, м указывают на подстроечное регулирование. В верхней части стрелки возможно присутствие символа, указывающего на расположение регулирующего элемента в данном из­делии: на лицевой панели, задней панели или внутри. Символы общего применения составляют знаки, указывающие направление движения: механических перемеще­ний, магнитных, световых потоков и т. д.

Рис. 2.1. Знаки регулирования

На рис. 2.2 показаны обозначения вращательного (рис. 2.2, а ), качательного (рис. 2.2, б ), сложного (рис. 2.2, в ) движений, направление восприятия магнитного сигнала (рис. 2.2, г ) и светового потока (рис. 2.2, д ).

Рис. 2.2. Знаки, указывающие направление движения

Составной частью символов некоторых элементов явля­ется знак, указывающий на способ управления подвижными элементами схемы. На рис. 2.3 приведены обозначения руч­ного нажатия (рис. 2.3, а ) или вытягивания (рис. 2.3, б ), поворота (рис. 2.3, в ), ножного привода (рис. 2.3, г ) и фиксации движения (рис. 2.3, д ).

Рис. 2.3. Знаки, указывающие на способ управления

УГО элементов электрических схем выделены в группы и сведены в таблицы для лучшего восприятия. В таблицах даны рекомендуемые размеры УГО для выполнения схем радиоустройств и электротехнических изделий. При выполнении чертежей – плакатов – в курсовом и дипломном проектировании следует обратиться к литературе [2], в которой даны построения УГО по основным фигурам А и В, показывающим пропорциональные отношения элементов.

Основное назначение резисторов – оказывать активное сопротивление в электрической цепи. Параметром резистора является активное сопротивление, которое измеряется в омах, килоомах (1000 Ом) и мегаомах (1000000 Ом).

Резисторы подразделяются на постоянные, переменные, подстроечные и нелинейные (табл. 2.1). По способу исполнения различают резисторы проволочные и непроволочные (металлопленочные).

Буквенно-цифровое позиционное обозначение резисторов состоит из латинской буквы R и порядкового номера по схеме.

Конденсаторы (ГОСТ 2.728-74)

Конденсаторы – это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя и более электродами, разделенными диэлектриком. Различают конденсаторы постоянной емкости, переменной (регулируемые) и саморегулируемые. Конденсаторы постоянной большой емкости чаще всего оксидные и, как правило, имеют полярность подключения к электрической цепи. Емкость их измеряется в фарадах, например, 1 пФ (пикофарада) = 10 –12 Ф, 1нФ (нанофарада) = 10 -9 Ф, 1мкФ (микрофарад) = 10 -6 Ф (табл. 2.2). Буквенно-цифровое позиционное обозначение конденсаторов состоит из латинской буквы С и порядкового номера по схеме.

УГО катушек индуктивности и трансформаторов

УГО устройств коммутации

Окончание табл. 2.4

Большое пополнение происходит и в группе полевых транзисторов, условные графические обозначения которых пока никак не отмечены в отечественных стандартах.

Транзисторы – полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

Большую группу этих приборов соста­вляют биполярные транзисторы, имеющие два р–n-перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой – с коллектором (коллекторный переход).

Транзистор, база которого имеет проводимость типа n, обозначают формулой р–n–р, а транзистор с базой типа р имеет структуру n–р–n(табл. 2.6). Несколько эмиттерных областей имеют транзисторы, входящие в интегральные сборки. Допускается изображать транзисторы по ГОСТ 2.730-73 без символа корпуса для бескорпусных транзисторов и транзисторных матриц.

Электроакустическими называют приборы, преобразующие энергию звуковых или механических колебаний в электрические, и наоборот. Основ-ной буквенный код (кроме приборов сигнализации) – латинская буква В.

Для контроля электрических и неэлектрических величин в технике используют всевозможные приборы, их буквенный код – латинская буква Р, а общее УГО приборов – кружок с двумя разнонаправленными линиями – выводами.

УГО, поясняющие конструкцию электрических машин (ГОСТ 2.722-68 * )

Вопросы для самопроверки

УСЛОВНЫЕ ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ СХЕМ

2.1. Символы общего применения (ГОСТ 2.721-74)

2.2. Резисторы (ГОСТ 2.728-74)

2.3. Конденсаторы (ГОСТ 2.728-74)

2.4. Катушки индуктивности, дроссели и трансформаторы (ГОСТ 2.723-69)

2.5. Устройства коммутации (ГОСТ 2.755-74, ГОСТ 2.756-76)

2.6. Полупроводниковые приборы (ГОСТ 2.7З0-73)

2.7. Электровакуумные приборы (ГОСТ 2.731-81)

2.8. Электроакустические приборы (ГОСТ 2.741-68*)

2.9. Пьезоэлектрические устройства, измерительные приборы, источники питания (ГОСТ 2.736-68, ГОСТ 2.729-68, ГОСТ 2.742-68, ГОСТ 2.727-68)

2.10. Электрические машины (ГОСТ 2.722-68*)

Вопросы для самопроверки

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. В случае нарушения авторского права напишите сюда.

*****

Электрическая схема — это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы — условные обозначения и правила расшифровки их сочетаний.

Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.

Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Так, например, существует три типа контактов — замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта — замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты кнопок управления, реле времени, путевых выключателей и т.д.

Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.

Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.

Условные графические обозначения и размеры некоторых элементов принципиальных схем:

Стандарты. Условные графические обозначения на электрических схемах и схемах автоматизации:

ГОСТ 2.710-81 Обозначения буквенно-цифровые в электрических схемах: скачать ГОСТ 2.710-81

ГОСТ 2.747-68 Размеры условных графических обозначений: скачать ГОСТ 2.747-68

ГОСТ 21.614-88 Изображения условные графические: скачать ГОСТ 21.614-88

ГОСТ 2.755-87 Устройства коммутационные и контактные соединения: скачать ГОСТ 2.755-87

ГОСТ 2.756-76 Воспринимающая часть электромеханических устройств: скачать ГОСТ 2.756-76

ГОСТ 2.709-89 Обозначения условные проводов и контактных соединений: скачать ГОСТ 2.709-89

ГОСТ 21.404-85 Обозначения приборов и средств автоматизации: скачать ГОСТ 21.404-85

*****

Согласно ГОСТ 2.701-84 «Схемы. Виды и типы. Общие требования к выполнению» условные графические обозначения элементов изображают в размерах, установленных в стандартах на условные графические обозначения.

Условные графические обозначения, соотношения размеров которых приведены в соответствующих стандартах на модульной сетке, должны изображаться на схемах в размерах, определяемых по вертикали и горизонтали количеством шагов модульной сетки М (черт. 2а). При этом шаг модульной сетки для каждой схемы может быть любым, но одинаковым для всех элементов и устройств данной схемы.

• Условные графические обозначения элементов, размеры которых в указанных стандартах не установлены, должны изображать на схеме в размерах, в которых они выполнены в соответствующих стандартах на условные графические обозначения.

Размеры условных графических обозначений, а также толщины их линий должны быть одинаковыми на всех схемах для данного изделия (установки).

• Все размеры графических обозначений допускается пропорционально изменять.

• Условные графические обозначения элементов, используемых как составные части обозначений других элементов (устройств), допускается изображать уменьшенными по сравнению с остальными элементами (например, резистор в ромбической антенне, клапаны в разделительной панели).

Условные графические обозначения элементов изображают на схеме в положении, в котором они приведены в соответствующих стандартах, или повернутыми на угол, кратный 90°, если в соответствующих стандартах отсутствуют специальные указания. Допускается условные графические обозначения поворачивать на угол, кратный 45°, или изображать зеркально повернутыми.

*****

ГОСТ 2.702-75 «Правила выполнения электрических схем» устанавливает правила выполнения структурных, функциональных, принципиальных, соединения, подключения, общих, расположения, комбинированных и совмещенных электрических схем изделий всех отраслей промышленности. При соблюдении общих требований (ГОСТ 2.701-84) уточняются или устанавливаются дополнительные правила с учетом специфики вида схем. Укажем наиболее важные правила для принципиальных электрических схем.

· Схемы вычерчивают для изделий, находящихся в отключенном положении.

· Элементы на схеме изображаются в виде УГО, размеры и толщина линий которых приведены в ГОСТ 2.747-68 или в других соответствующих ГОСТах. Допускается при необходимости все обозначения пропорционально увеличивать или уменьшать (расстояние между двумя соседними линиями при этом должно быть не менее 1 мм).

Расположение УГО элементов на схеме должно определяться удобством чтения схемы, а также необходимостью изображения связей между элементами кратчайшими линиями при минимальном количестве пересечений. УГО выполняют совмещенным или разнесенным способами. При совмещенном способе составные части элементов изображают на схеме в непосредственной близости друг к другу. При разнесенном способе УГО составных частей элементов располагают в разных местах схемы таким образом, чтобы отдельные цепи изделия были изображены наиболее наглядно. Разнесенным способом допускается вычерчивать как всю схему, так и отдельные элементы.

· При вычерчивании схем используются типы линий, установленные ГОСТ 2.303-68. Сплошной основной линией толщиной 0,5. 1,0 мм изображаются УГО, линии электрической связи, линии рамки, основной надписи, перечня элементов. Сплошная тонкая линия применяется для подчеркивания надписей, штриховая — для изображения линий механической связи, условного изображения последовательно соединенных одинаковых элементов.

· Каждому электрическому элементу изделия, изображенному на схеме, должно быть присвоено буквенно-цифровое позиционное обозначение в соответствии с требованиями ГОСТ 2.710-81. Согласно указанному ГОСТу, резисторы обозначаются — R, конденсаторы — С, приборы полупроводниковые — V, выключатели — S и т.д. Порядковые номера элементам присваивают, начиная с единицы в пределах группы элементов, имеющих на схеме одинаковые буквенные обозначения, например, R 1, R 2, R 3. (резисторы), S 1, S 2. (выключатели). Цифровые обозначения не присваиваются, если в схеме содержится только один элемент данного наименования.

Буквенно-цифровое обозначение элементов выполняется шрифтом 3,5 или 5, причем высота букв и цифр должна быть одинаковой. Порядковые номера элементам присваиваются в соответствии с последовательностью расположения элементов на схеме сверху вниз в направлении слева направо. Позиционные обозначения проставляются рядом с условными графическими обозначениями элементов с правой стороны или над ними. Буквенно-цифровые обозначения могут быть нанесены только горизонтально.

· На схеме рекомендуется указывать характеристики входных и выходных цепей изделия (частоту, напряжение, силу тока и др.). Поэтому взамен условных графических обозначений разъемов выполняют таблицу входных или выходные данных. Каждой таблице присваивают позиционное обозначение элемента, взамен условного графического обозначения, которого она помещена.

В первой графе таблицы указывается номер контакта разъема. В графе «Цепь» записываются характеристики электрических цепей изделия (час­тота, напряжение и др.). На рис. 1а приведены размеры таблиц входных и выходных данных и пример заполнения. Для удобства изображения схемы таблицу можно выполнять зеркально повернутой, как показано на рис. 1б.

Таблица заполняется шрифтом 3,5 или 5. Таблицу входных или вы­ходных данных следует располагать только горизонтально.

Рис. 1. Образец оформления входных и выходных данных

Рис. 2. Пример принципиальной электрической схемы

Схема вычерчивается для устройства, находящегося в отключенном состоянии.

Элементы электрических устройств изображаются на схеме в виде условных буквенно-графических обозначений, к которым в случае их неоднократного использования в схеме, придается еще и цифровое позиционное обозначение (например С2).

Размеры условных графических обозначений элементов схемы приведены в ГОСТах 2.710 – 2.751. 2.755 – 68 где приведены также и их размеры.

Толщина линий условных графических изображений элементов (S) избирается в пределах от 0,2 до 0,6 мм (при вычерчивании в натуральном масштабе).

Буквенно-цифровое обозначение элемента схемы (ГОСТ 2.710-81) проставляется над его графическим обозначением, или справа от него. Высота шрифта для буквенного и позиционного обозначений одинакова.

Толщина обводки всех элементов схемы (включая и электрические цепи) совершенно одинакова по всему чертежу в пределах размеров, указанных ранее.

Образец выполнения задания приведен на рис. 2.

· перечень элементов, входящих в схему, выполняют в виде таблицы (рис. 3) и помещают на первом листе схемы или выполняют в виде самостоятельного документа на формате А4. В последнем случае код перечня элементов должен состоять из буквы П и кода схемы, к которой выпускают перечень, например, код перечня элементов к гидравлической принципиальной схеме — ПГЗ. При этом в основной надписи (графа 1) указывают наименование изделия, а также наименование документа – «Перечень элементов»; при выполнении перечня элементов на первом листе схемы его располагают, как правило, над основной надписью. Расстояние между перечнем элементов и основной надписью должно быть не менее 12 мм. Продолжение перечня элементов помещают слева от основной надписи, повторяя шапку таблицы;

Рис. 3. Образец выполнения перечня элементов

· таблица перечня элементов заполняется сверху вниз группами в алфавитном порядке буквенных позиционных обозначений: в графе «Поз. Обозначение» — позиционные обозначения элементов, устройств и функциональных групп, в графе «Наименование» — для элемента наименование в соответствии с документом, на основании которого этот элемент применен, и обозначение этого документа, например, резистор МЛТ-0, 5-300 кОм ± 5% ГОСТ 7113-77, в графе «Примечание» рекомендуется указывать технические данные элемента, не содержащиеся в его наименовании;

В пределах каждой группы, имеющей одинаковые буквенные позиционные обозначения, элементы располагают по возрастанию порядковых номеров. Элементы одного типа с одинаковыми параметрами, имеющие на схеме последовательные порядковые номера, допускается записывать в перечень в одну строку с указанием наименьшего и наибольшего номера, например, С 8. С 12, а в графу «Кол-во» — общее количество элементов.

При записи однотипных элементов допускается не повторять в каждой строке наименование элемента, а записывать его в виде общего наименования к соответствующей группе элементов. В общем наименовании записывают наименование, тип и обозначение документа, на основании которого эти элементы применены.

Элементы, входящие в самостоятельные устройства или функциональные группы, записываются в перечень элементов отдельно, начиная с наименования устройства или функциональной группы, которое записывают в графе «Наименование» и подчеркивают, причем ниже наименования устройства (функциональной группы) должна быть оставлена одна свободная строка, выше — не менее одной свободной строки.

Схема соединений (монтажные) определяет конструктивное выполнение электрических соединений элементов в изделии. На схеме изображают все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т.п.) и соединения между ними. Устройства обозначают в виде прямоугольников или упрощенных внешних сочетаний, элементы в виде условно-графических обозначений, установленных в стандартах ЕСКО, прямоугольников или упрощенных внешних сочетаний.

Входные и выходные элементы изображают условными графическими обозначениями. Расположение изображений входных и выходных или выводов внутри условных графических обозначений устройств и элементов должно примерно соответствовать их действительному расположению в устройстве или элементе.

На схеме соединений радиоприемного устройства (рис. 4,а) в отличие от принципиальной схемы (рис. 4,б) показаны такие элементы, необходимые для выполнения монтажа и эксплуатации изделия:

— гнездо XS1 для подключения антенны;

— соединители XT1, XT2 для подключения аккумуляторов батареи питания;

— монтажная стойка X1.

Около условных графических обозначений устройств и элементов указывают позиционные обозначения, присвоенные им на принципиальной схеме.

Рис. 4. Примеры схем: а – схема соединения,

б – принципиальная электрическая схема

Схема расположения (Э7)

Схема расположения определяет относительное расположение составных частей изделия, а при необходимости, также жгутов, проводов, кабелей. На схеме изображают составные части изделия и при необходимости связи между ними, а также конструкцию, помещение или местность, на которых эти части расположены. Составные части изделия изображают в виде упрощенных внешних очертаний или условных графических обозначений, которые располагают в соответствии с действительным (!) размещением частей изделия в конструкции или на местности.

Провода, жгуты и кабели изображают в виде отдельных линий, или упрощенных внешних очертаний.

Около изображений устройств и элементов помещают их наименование и типы и (или) обозначение документа, на основе которого они применены. При большом количестве составных частей эти сведения записываются в перечень элементов. В этом случае составным частям изделия присваивают позиционные обозначения.

Схемы расположения могут быть выполнены на разрезах конструкции, на разрезах или планах зданий или в аксонометрии.

На рис. 3 приведена электрическая схема расположения сварочного поста, изображенная в аксонометрии. Сварочный пост показан во внутреннем интерьере служебного помещения.

Схема расположения – это расчетно-графическая работа, выполняемая студентами самостоятельно с целью закрепления и углубления знаний и выработки умения применять теоретические положения изучаемой дисциплины и достижения науки и техники для решения конкретных практических задач.

Электротехническая часть проекта включает расчет и выбор электропривода, выбор аппаратуры управления и защиты, светотехнические расчеты и выбор облучательных установок, подсчет электрических нагрузок, выбор источников питания и расчеты наружных и внутренних электрических сетей.

За основу проекта следует взять производственное помещение и технологию из действующих в настоящее время типовых проектов. Используя данные этих проектов, студенту предлагается составить таблицу основного технологического оборудования, в которой необходимо указать порядковый номер оборудования по технологической схеме, его наименование и марку, технические данные, данные по электрооборудованию этих машин и механизмов.

Затем на плане здания (можно воспользоваться архитектурно-строи­тельными чертежами типового проекта) необходимо показать расположе­ние электрифицированного технологического оборудования.

Рис. 5.Схема расположения электрического оборудования

Например, электродвигатели изображают кружочками, рядом проставляют позиционное обозначение ( Ml; М2; МЗ и т.д.), записанное в числителе; а в знаменателе указывают мощность в киловаттах (4,0; 7,5; 10 и т.д.).

Кроме плана на чертеже приводят спецификацию на оборудование, которую помещают над основной надписью; перечень (экспликацию) помещений в виде таблицы, содержащей, например, такие графы: «номер по плану», «помещение», «площадь, м 2 «, «категория и класс помещения по характеру среды»; расчетно-монтажные таблицы для силовых и осветительных сетей, примечания, расшифровки условных обозначений трасс проводок, светильников, шкафов и т. п.

При проектировании внутренних электропроводок руководствуются отраслевым стандартом ОСТ 70.004.0013-81 «Электропроводки объектов сельскохозяйственного производства» и ПУЭ.

Сначала необходимо разработать схему питания внутренних сетей и привести в пояснительной записке рисунок этой схемы. Затем на плане, в зависимости от характера окружающей среды, размещают силовое электрооборудование: электрические сети для питания электроприёмников и управляющие устройства электроприводов.

Ознакомление с выполнением схем расположения в процессе курсового и дипломного проектирования необходимо для студентов по целому ряду специальностей.

9. Методическое обеспечение работы “Оформление электрической

схемы (принципиальной, соединений, расположения и т.д.)”

При выполнении данной работы перед студентами ставятся следую­щие задачи:

1.Ознакомиться с правилами графического оформления конструктор­ских документов:

— “Схема электрическая принципиальная”;

— “Схема электрическая соединения”;

— “Схема электрическая расположения”.

2.Привить навыки графического оформления схем.

3.Привить навыки по пользованию нормативно-технической и спра­вочной информацией (ГОСТы, ОСТы, справочники).

В соответствии с поставленными задачами студенту необходимо:

1.Выполнить схему с наименьшим количеством изломов и пересече­ний линий электрической связи.

2.Идентифицировать электрические и другие элементы, входящие в из­делие, используя ГОСТ ЕСКД, указанный ранее.

3.Обозначить схему, элементы схем, входные и выходные цепи.

4.Обозначить последовательно или параллельно соединенные одинако­вые элементы.

5.Выполнить перечень элементов.

Задача выполнения в курсовых и дипломных работах по оформлению схем является актуальной, т.к. в связи с комплексной автоматизацией возрастает удельный вес конструкторских документов в виде разнообразных схем и знание условностей и правил их оформления является неотъемлемой частью общей подготовки специалистов по специальности 110302 -Электрификация и автоматизация сельского хозяйства.

1. ГОСТ 2.701-84. Схемы. Виды и типы.

2. ГОСТ 2.702-75. Правила выполнения электрических схем.

3. ГОСТ 2.710-81. Обозначения буквенно-цифровые в электрических схемах.

4. ГОСТ 2.722-68; ГОСТ 2.723-68; ГОСТ 2.725-68; ГОСТ 2.727-68; ГОСТ 2.747-68; ГОСТ 2.755-84 Обозначения условно-графические в схемах.

5. Усатенко С.Т. Выполнение электрических схем по ЕСКД. Справочник / С.Т. Усатенко, Т.К. Каченюк, М.В. Терехова — М. 1989.

6. Камнев В.Н. Чтение схем и чертежей электроустановок. — М. Высш. шк, 1990.

Перечень стандартов, используемых при выполнении схем

ГОСТ 2.701-84. Схемы. Виды и типы. Общие требования к выполнению.

ГОСТ 2.702-75. Правила выполнения электрических схем.

ГОСТ 2.703-68. Правила выполнения кинематических схем.

ГОСТ 2.704-76. Правила выполнения гидравлических и пневматических схем.

ГОСТ 2.708-81. Правила выполнения электрических схем цифровой вычислительной техники.

ГОСТ 2.710-81. Обозначения буквенно-цифровые, применяемые на электрических схемах.

ГОСТ 2.721-74. Обозначения общего применения.

ГОСТ 2.722-68. Обозначения условные графические в схемах. Машины электрические.

ГОСТ 2.723-68. Обозначения условные графические в схемах. Катушки индуктивности, дроссели, трансформаторы, автотрансформаторы и магнитные усилители.

ГОСТ 2.725-68. Обозначения условные графические в схемах. Устройства коммутирующие.

ГОСТ 2.727-68. Обозначения условные графические в схемах. Разрядники; предохранители

ГОСТ 2.728-74. Обозначения условные графические в схемах. Резисторы; конденсаторы

ГОСТ 2.729-68. Обозначения условные графические в схемах. Приборы электроизмерительные.

ГОСТ 2.730-73. Обозначения условные графические в схемах. Приборы полупроводниковые.

ГОСТ 2.732-68. Обозначения условные графические в схемах. Источники света.

ГОСТ 2.742-68. Обозначения условные графические в схемах. Источники тока электрические.

ГОСТ 2.743-91. Обозначения условные графические в схемах. Элементы цифровой техники.

ГОСТ 2.747-68. Обозначения условные графические в схемах. Размеры условных графических обозначений.

ГОСТ 2.751-73. Обозначения условные графические в схемах. Электрические связи, провода, кабели и шины.

ГОСТ 2.755-87. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения.

ГОСТ 2.756-76. Обозначения условные графические в схемах. Воспринимающая часть электромеханических устройств.

ГОСТ 12.1.114-82. Обозначения условные графические. Пожарные машины и оборудование.

СТ СЭВ 158-75. Схемы электрические. Общие требования к выполнению

СТ СЭВ 527-77. Схемы электрические. Классификация, термины и определения.

Размеры условных графических обозначений. Все геометрические элементы следует выполнять линиями той же толщины, что и линии электрической связи ГОСТ 2.728-74.

*****

Подробности Категория: Начинающим Опубликовано 20.04.2016 13:41 Автор: Admin Просмотров: 2790

Электрическая схема представляет собой особый язык который при помощи специальных обозначений описывает работу и содержание электрического устройства или целой системы взаимосвязанных электрических блоков.

Условные обозначения на электрических схемах получаются из простых геометрических примитивов. квадрат, треугольник, окружность, прямоугольник. А также из пунктирных линий,сплошных линий разной толщины, точек и др. Их сочетание при помощи специальной системы, которая описана в стандартах позволяет осуществить обозначение любых электрических приборов, устройств, электрических машин, электрических связей, виды способы соединения обмоток, способы регулирования и т.п.

На электрических схемах дополнительно используют специальные знаки, которые поясняют особенность работы элемента схемы. Так, например есть три типа контактов:

замыкающий; размыкающий; переключающий

Обозначение определенное в стандарте отражает только основную функцию контакта, это размыкание и замыкание электрической цепи. Для того чтобы указать дополнительных функций контакта в стандартах для этих целей приняли специальные символы и знаки которые наносятся на подвижные части контакта.

Такие знаки позволяют отличать к примеру контакты по функциональному назначению.

Некоторые элементы имеют не одно а несколько вариантов обозначения на схемах. К примеру существует несколько отличных вариантов обозначения переключающих ,выключающих устройств и обмоток трансформаторов. Примять можно разные обозначения в зависимости от конкретного случая.

Если устройство или элемент не определены в стандарте то его нужно обозначать исходя из его принципа действия основываясь на обозначении аналогичных и схожих устройствах с соблюдением основных принципах обозначения принятых в стандарте.

Про условные обозначения в электрических схемах было немного сказано ранее. Ниже представлены обозначения силовых частей и ссылки на стандарты обозначения.

Обозначения на электрических схемах. ГОСТ

Буквенно-цифровые обозначения на электрических схемах. Скачать ГОСТ 2.710-81

Изображения условные графические. Скачать ГОСТ 21.614-88

Коммутационные устройства и контактные соединения. Скачать ГОСТ 2.755-87

Воспринимающая часть электромеханических устройств. Скачать ГОСТ 2.756-76

Условные обозначения проводов и контактных соединений. Скачать ГОСТ 2.709-89

Условные обозначения на электрических схемах (ГОСТ), как правтльно читать

Электрическая схема – это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение.

Все условные (условно-графические) обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т.д. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Благодаря огромному количеству разнообразных электрических элементов появляется возможность создавать очень подробные электрические схемы, понятные практически каждому специалисту в электрической области.

Каждый элемент на электрической схеме должен выполняться в соответствие с ГОСТ. Т.е. кроме правильного отображения графического изображения на электрической схеме должны быть выдержаны все стандартные размеры каждого элемента, толщина линий и т.д.

Существует несколько основных видов электрических схем. Это схема однолинейная, принципиальная, монтажная (схема подключений). Также схемы бывают общего вида – структурные, функциональные. У каждого вида своё назначение. Один и тот же элемент на разных схемах может обозначаться и одинаково, и по-разному.

Графические обозначения на однолинейной схеме

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.

Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Графические обозначения на монтажной схеме

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления,  и т.д.).

На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Графические обозначения на принципиальной схеме

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.

Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.  

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

Размеры элементов на электрических схемах гост

Электрическая схема – это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы – условные обозначения и правила расшифровки их сочетаний.

Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.

Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Так, например, существует три типа контактов – замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта – замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты кнопок управления, реле времени, путевых выключателей и т.д.

Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.

Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.

Условные графические обозначения и размеры некоторых элементов принципиальных схем:

С ДРУГОГО САЙТА:

Условные графические обозначения в электрических схемах


Рано или поздно, занимаясь проведением электромонтажных или электроремонтных работ приходиться иметь дело с электрическими схемами, которые содержат множество буквенно-цифровых и условно графических обозначений. О последних и пойдет разговор в этой статье. Существует большое количество видов элементов электрических схем, имеющих самые разные функции, поэтому, нет единого документа, определяющего правильность графического обозначения всех элементов, которые можно встретить на схемах. Ниже, в таблицах приведены некоторые примеры условных графических изображений электрооборудования и проводок, элементов электрических цепей на схемах, взятых из различных действующих в настоящее время документов. Скачать бесплатно нужный ГОСТ целиком можно, перейдя по ссылкам внизу страницы.

Скачать бесплатно ГОСТ

  • ГОСТ 21.614Изображения условные графические электрооборудования и проводок в оригинале

  • ГОСТ 2.722-68Обозначения условные графические в схемах. Машины электрические

  • ГОСТ 2.723-68 Обозначения условные графические в схемах. Катушки индуктивности, реакторы, дроссели, трансформаторы, автотрансформаторы и магнитные усилители

  • ГОСТ 2.729-68 Обозначения условные графические в схемах. Приборы электроизмерительные

  • ГОСТ 2.755-87 Обозначения условные графические в схемах. Устройства коммутационные и контактные соединения

Скачать книгу.

Обозначения буквенно-цифровые в электрических схемах (ГОСТ 2.710 – 81)

Буквенные коды элементов приведены в таблице. Позиционные обозначения элементам (устройствам) присваивают в пределах изделия. Порядковые номера элементам (устройствам) следует присваивать, начиная с единицы , в пределах группы элементов , имеющих одинаковый буквенный код в соответствии с последовательностью расположения элементов или устройств на схеме сверху вниз в направлении слева направо.

Позиционные обозначения проставляют на схеме рядом с условным графическим обозначением элементов или устройств с правой стороны или над ними. Цифры и буквы, входящие в позиционное обозначение выполняются одного размера.

Однобук- венный кодГруппы видов элементовПримеры видов элементовДвухбук- венный код
AУстройства (общее обозначение)

Преобразователи неэлектрических величин в электрические
(кроме генераторов и источников питания) или наоборот

Сельсин – приемникBEСельсин – датчикBCТепловой датчикBKФотоэлементBLДатчик давленияBPТахогенераторBRДатчик скоростиBVCКонденсаторы––

Схемы интегральные,
микросборки

Схема интегральная,аналоговаяDAСхема интегральная,цифровая, логический элементDDУстройство задержкиDTУстройство хранения информацииDSНагревательный элементEKЛампа осветительнаяEL

Разрядники,предохранители,
устройства защитные

Дискретный элемент защиты по току мгновенного действияFAДискретный элемент защиты по току инерционного действияFPДискретный элемент защиты по напряжениюFVПредохранительFUGГенераторы, источники питанияБатареяGB

Элементы индикаторные и сигнальные

Прибор звуковой сигнализацииHAИндикатор символьныйHGПрибор световой сигнализацииHL

Реле, контакторы, пускатели

Реле указательноеKHРеле токовоеKAРеле электротепловоеKKКонтактор, магнитный пускательKMРеле поляризованноеKPРеле времениKTРеле напряженияKVLКатушки индуктивности,дросселиДроссель люминисцентного освещенияLLMДвигатели––

Приборы, измерительное оборудование

АмперметрPAСчётчик импульсовPCЧастотометрPFСчётчик реактивной энергииPKСчётчик активной энергииPIОмметрPRРегистрирующий приборPSИзмеритель времени, часыPTВольтметрPVВаттметрPW

Выключатели и разъединители в силовых цепях

Выключатель автоматическийQFРазъединительQSТермисторRKПотенциометрRPШунт измерительныйRSВаристорRU

Устройства коммутационные в цепях управления, сигнализации и измерительных

Примечание. Обозначение применяют для аппаратов не имеющих контактов силовых цепей

Выключатель или переключательSAВыключатель кнопочныйSBВыключатель автоматическийSFВыключатели, срабатывающие от различных воздействий: -от уровняSL-от давленияSP-от положенияSQ-от частоты вращенияSR-от температурыSKТрансформатор токаTAТрансформатор напряженияTVСтабилизаторTSUПреобразователи электрических величин в электрическиеПреобразователь частоты, инвертор, выпрямительUZ

Приборы электровакуумные и полупроводниковые

Диод, стабилитронVDПриборы электровакуумныеVLТранзисторVTТиристорVSТокосъёмникXAШтырьXPГнездоXSСоединения разборныеXT

Устройства механические с электромагнитным приводом

ЭлектромагнитYAТормоз с электромагнитным приводомYBЭлектромагнитная плитаYH

Дата добавления: 2018-02-15 ; просмотров: 11858 ; ЗАКАЗАТЬ РАБОТУ

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2.756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы

  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D – Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В – ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установки Обозначение розеток и выключателей

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

2. УСЛОВНЫЕ ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ…

Привет, Вы узнаете про условные графические обозначения, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое условные графические обозначения, элементов электрических схем,уго , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база

  • 2.0 . Дополнительные символы обозначения коппусов. заземлений. экранироаний
  • 2.1. Символы общего применения (ГОСТ 2.721-74)
  • 2.2. Резисторы (ГОСТ 2.728-74)
  • 2.3. Конденсаторы (ГОСТ 2.728-74)
  • 2.4. Катушки индуктивности, дроссели и трансформаторы (ГОСТ 2.723-69)
  • 2.5. Устройства коммутации (ГОСТ 2.755-74, ГОСТ 2.756-76)
  • 2.6. Полупроводниковые приборы (ГОСТ 2.7З0-73)
  • 2.7. Электровакуумные приборы (ГОСТ 2.731-81)
  • 2.8. Электроакустические приборы (ГОСТ 2.741-68*)
  • 2.9. Пьезоэлектрические устройства, измерительные приборы, источники питания (ГОСТ 2.736-68, ГОСТ 2.729-68, ГОСТ 2.742-68, ГОСТ 2.727-68)
  • 2.10. Электрические машины (ГОСТ 2.722-68*)
  • Вопросы для самопроверки

С 1 февраля 2016 года, введен в действие новый ГОСТ Р МЭК 60617-DB-12M-2015 «Графические символы для схем», который является переведенной на русский язык копией стандарта IEC, определяющего требования к символам условных обозначений для использования в электротехнических схемах.

2.0 . Дополнительные символы обозначения коппусов. заземлений. экранироаний

1 Экранирование.

(электростатическое или электромагнитное) под изображением линии экранирования проставляют буквенные обозначения соответственно: а) электростатическое


Символ электростатического экранирования (проставляют под изображением линии экранирования).

б) электромагнитное


Символ электромагнитного экранирования (проставляют под изображением линии экранирования).

2 Экранирование группы элементов. ( Экранирование допускается изображать с любой конфигурацией контура)

3 Экранирование группы линий электрической связи

4 Индикатор контрольной точки.

5. Прибор, устройство

6. Баллон (электровакуумного и ионного прибора), корпус (полупроводникового прибора).

Примечание. Комбинированные электровакуумные приборы при раздельном изображении систем электродов

7 Линия для выделения устройств, функциональных групп, частей схемы

8 Фигуры символов заземления.

Фигуры для обозначения заземления и возможных повреждений изоляции:


Заземление, общее обозначение.
Бесшумное заземление (чистое).
Защитное заземление.
Электрическое соединение с корпусом (массой).
Эквипотенциальность.
Возможность повреждения изоляции.

Каждая из фигур обозначения заземления, имеет текстовое поле и управляющий маркер изменения символа для его расположения снизу, справа или слева от заземляемого объекта.


Пример расположения символа обозначения заземления справа от заземляемого объекта.

2.1. Символы общего применения (ГОСТ 2.721-74)

Для построения уго с уточнением особенностей элементов схем используют базовые символы и различные знаки. Большое распространение в схемах радиоустройств, электротехнических изделий имеют знаки регулирования – различные стрелки, пересекающие исходный символ или входящие в него, пересекающие исходный символ под углом 45°, указывающие на переменный параметр элемента схемы (рис . Об этом говорит сайт https://intellect.icu . 2.1, а).

Стрелка может быть дополнена знакоцифровым символом. Так, на рис. 2.1, б, в, г показан характер регулирования: линейный, ступенчатый, 8-ступенчатый. На рис. 2.1, д стрелка дополнена условием регулирования. Стрелка с изломом на рис. 2.1, е, ж, и и надпись указывают, что параметр регулирования изменяется по определенному закону. Стрелки на рис. 2.1, к, л, м указывают на подстроечное регулирование. В верхней части стрелки возможно присутствие символа, указывающего на расположение регулирующего элемента в данном изделии: на лицевой панели, задней панели или внутри. Символы общего применения составляют знаки, указывающие направление движения: механических перемещений, магнитных, световых потоков и т. д.

а б в г д е

ж и к л м

Рис. 2.1. Знаки регулирования

На рис. 2.2 показаны обозначения вращательного (рис. 2.2, а), качательного (рис. 2.2, б), сложного (рис. 2.2, в) движений, направление восприятия магнитного сигнала (рис. 2.2, г) и светового потока (рис. 2.2, д).


а б в г д

Рис. 2.2. Знаки, указывающие направление движения

Составной частью символов некоторых элементов является знак, указывающий на способ управления подвижными элементами схемы. На рис. 2.3 приведены обозначения ручного нажатия (рис. 2.3, а) или вытягивания (рис. 2.3, б), поворота (рис. 2.3, в), ножного привода (рис. 2.3, г) и фиксации движения (рис. 2.3, д).

а б в г д

Рис. 2.3. Знаки, указывающие на способ управления

УГО элементов электрических схем выделены в группы и сведены в таблицы для лучшего восприятия. В таблицах даны рекомендуемые размеры УГО для выполнения схем радиоустройств и электротехнических изделий. При выполнении чертежей – плакатов – в курсовом и дипломном проектировании следует обратиться к литературе , в которой даны построения УГО по основным фигурам А и В, показывающим пропорциональные отношения элементов.

2.2. Резисторы (ГОСТ 2.728-74)

Основное назначение резисторов – оказывать активное сопротивление в электрической цепи. Параметром резистора является активное сопротивление, которое измеряется в омах, килоомах (1000 Ом) и мегаомах (1000000 Ом).

Резисторы подразделяются на постоянные, переменные, подстроечные и нелинейные (табл. 2.1). По способу исполнения различают резисторы проволочные и непроволочные (металлопленочные).

Буквенно-цифровое позиционное обозначение резисторов состоит из латинской буквы R и порядкового номера по схеме.

Таблица 2.1

УГО резисторов

2.3. Конденсаторы (ГОСТ 2.728-74)

Конденсаторы – это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя и более электродами, разделенными диэлектриком. Различают конденсаторы постоянной емкости, переменной (регулируемые) и саморегулируемые. Конденсаторы постоянной большой емкости чаще всего оксидные и, как правило, имеют полярность подключения к электрической цепи. Емкость их измеряется в фарадах, например, 1 пФ (пикофарада) = 10–12 Ф, 1нФ (нанофарада) = 10-9Ф, 1мкФ (микрофарад) = 10-6 Ф (табл. 2.2). Буквенно-цифровое позиционное обозначение конденсаторов состоит из латинской буквы С и порядкового номера по схеме.

Таблица 2.2

УГО конденсаторов

2.4. Катушки индуктивности, дроссели и трансформаторы (ГОСТ 2.723-69)

Буквенно-цифровое позиционное обозначение катушек индуктивности и дросселей состоит из латинской буквы L и порядкового номера по схеме. При необходимости указывают и главный параметр этих изделий – индуктивность , измеряемую в генри (Гн), миллигенри (1 мГн = 10-3 Гн) и микрогенри (1 мкГн = 10-6 Гн). Если катушка или дроссель имеет магнитопровод, УГО дополняют его символом – штриховой или сплошной линией. Радиочастотные трансформаторы могут быть с магнитопроводами или без них и иметь обозначение L1, L2 и т. д. Трансформаторы, работающие в широкой полосе частот, обозначают буквой Т, а их обмотки – римскими цифрами (табл. 2.3).

Таблица 2.3

УГО катушек индуктивности и трансформаторов

2.5. Устройства коммутации (ГОСТ 2.755-74, ГОСТ 2.756-76)

УГО устройств коммутации – выключатели, переключатели, электромагнитные реле – построены на основе символов контактов: замыкающих, размыкающих и переключающих (табл. 2.4). Стандартом предусматривается в УГО таких устройств отражение конструктивных особенностей:неодновременность срабатывания контактов в группе; отсутствие (наличие) фиксации в одном из положений; способ управления коммутационным устройством; функциональное назначение.

Таблица 2.4

УГО устройств коммутации

Окончание табл. 2.4

2.6. Полупроводниковые приборы (ГОСТ 2.7З0-73)

2.6.1. Диоды, тиристоры , оптроны

Диод – самый простой полупроводниковый прибор, обладающий односторонней проводимостью благодаря электронно-дырочному переходу
(р–n-переход, см. табл. 2.5).

Таблица 2.5

УГО полупроводниковых приборов

В УГО диодов – туннельного, обращенного и диода Шотки – введены дополнительные штрихи к катодам. Свойство обратно смещенного р–n-переходавести себя как электрическая емкость использовано в специальных диодах-варикапах. Более сложный полупроводниковый прибор – тиристор , имеющий, как правило, три р–n-перехода. Обычно тиристоры используются в качестве переключающих диодов. Тиристоры с выводами от крайних слоев структуры называют динисторами. Тиристоры с дополнительным третьим выводом (от внутреннего слоя структуры) называют тринисторами. УГО симметричного (двунаправленного) тринистора получают из символа симметричного динистора добавлением третьего вывода.

Большую группу составляют полупроводниковые приборы – фотодиоды, светодиоды и светодиодные индикаторы. Особо необходимо остановиться на оптронах – изделиях, основанных на совместной работе светоизлучающих и светопринимающих полупроводниковых приборов. Группа оптронов постоянно пополняется.

Большое пополнение происходит и в группе полевых транзисторов, условные графические обозначения которых пока никак не отмечены в отечественных стандартах.

2.6.2. Транзисторы

Транзисторы – полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

Большую группу этих приборов составляют биполярные транзисторы , имеющие два р–n-перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой – с коллектором (коллекторный переход).

Транзистор , база которого имеет проводимость типа n, обозначают формулой р–n–р, а транзистор с базой типа р имеет структуру n–р–n (табл. 2.6). Несколько эмиттерных областей имеют транзисторы, входящие в интегральные сборки. Допускается изображать транзисторы по ГОСТ 2.730-73 без символа корпуса для бескорпусных транзисторов и транзисторных матриц.

Таблица 2.6

УГО транзисторов

Окончание табл. 2.6

2.7. Электровакуумные приборы (ГОСТ 2.731-81)

Электровакуумными называют приборы, действие которых основано на использовании электрических явлений в вакууме. Система УГО этих приборов построена поэлементным способом. В качестве базовых элементов приняты обозначения баллона, нити накала (подогревателя), сетки, анода и др.Баллон герметичен и может быть стеклянным, металлическим, керамическим, металлокерамическим. Наличие газа в баллоне в газоразрядных приборах показывают точкой внутри символа (табл. 2.7).

Таблица 2.7

УГО электровакуумных приборов

2.8. Электроакустические приборы (ГОСТ 2.741-68*)

Электроакустическими называют приборы, преобразующие энергию звуковых или механических колебаний в электрические, и наоборот. Основ-ной буквенный код (кроме приборов сигнализации) – латинская буква В.

Таблица 2.8

УГО электроакустических приборов

2.9. Пьезоэлектрические устройства, измерительные приборы,


источники питания (ГОСТ 2.736-68, ГОСТ 2.729-68,
ГОСТ 2.742-68, ГОСТ 2.727-68)

В радиоэлектронной аппаратуре (РЭА) широко используются приборы, действие которых основано на так называемом пьезоэлектрическом эффекте (piezo – давлю). Существует прямой пьезоэффект, когда возникают электрические заряды на поверхности тела, подвергнутого деформации, и обратный. Применение резонаторов в РЭА основано на использовании прямого пьезоэффекта. Буквенный код пьезоэлементов и резонаторов –латинские буквы ВQ. На основе пьезоэлектрических резонаторов изготовляют различные полосовые фильтры (буквенный код Z и ZQ). Пьезоэлементы находят широкое применение в пьезоэлектрических преобразователях (подразд. 2.8). Пьезоэлектрические преобразователи используют также в ультразвуковых линиях задержки. Стандартом не установлен буквенный код этих устройств, рекомендуется обозначать латинской буквой Е.

Для контроля электрических и неэлектрических величин в технике используют всевозможные приборы, их буквенный код – латинская буква Р, а общее УГО приборов – кружок с двумя разнонаправленными линиями – выводами.

Для автономного питания РЭА используются электрохимические источники тока – гальванические элементы и аккумуляторы (код – буква G).

Для защиты от перегрузок по току и коротких замыканий в нагрузке
в приборах с питанием от сети используют плавкие предохранители (табл. 2.9). Код таких изделий – латинская буква F.

Таблица 2.9

УГО устройств, приборов, источников питания

Окончание табл. 2.9

2.10. Электрические машины (ГОСТ 2.722-68*)

В устройствах автоматики и телемеханики, в конструкциях промышленных станков и строительно-дорожных машин для привода различных механизмов используют электрические машины. Базовое обозначение статора и ротора электродвигателя имеет форму окружности (табл. 2.10).

Таблица 2.10

Базовые элементы УГО электрических машин

ГОСТ 2.722-68* предусматривает УГО, поясняющие конструкцию электрических машин (табл. 2.11), УГО электрических машин в двух формах (табл. 2.12). Внутри окружности допускается указывать следующие надписи латинскими буквами: G – генератор; М – двигатель; В – возбудитель; ВR – тахогенератор. Разрешается также указывать род тока, число фаз, вид соединения обмоток.

Таблица 2.11

УГО, поясняющие конструкцию электрических машин (ГОСТ 2.722-68*)

Таблица 2.12

УГО электрических машин (форма 1 и 2)

Вопросы для самопроверки

1. Перечислите типы знаков общего применения на схемах.

2. Назовите буквенный код обозначения резисторов.

3. Назовите буквенный код обозначения конденсаторов.

4. Назовите буквенный код обозначения катушек индуктивности.

5. Назовите буквенный код обозначения трансформаторов промышленной частоты.

6. Назовите буквенный код обозначения реле.

7. Назовите буквенный код обозначения тиристоров .

8. Назовите буквенный код обозначения диодов.

9. Назовите буквенный код обозначения транзисторов?

10. Назовите буквенный код обозначения звонков, зуммеров и гидрофонов.

11. Назовите буквенный код обозначения аналоговых измерительных приборов.

12. Перечислите буквенные коды электрических машин.

13. Преобразуйте значение 100 нФ в микрофарады (мкФ).

14. Укажите рекомендуемые размеры УГО резисторов.

15. Укажите рекомендуемые размеры УГО транзисторов.

Я хотел бы услышать твое мнение про условные графические обозначения Надеюсь, что теперь ты понял что такое условные графические обозначения, элементов электрических схем,уго и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база

Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.

Circuit Element — обзор

Линия передачи — это элемент распределенной схемы. В отличие от обычной низкочастотной цепи, напряжения и токи в линии передачи изменяются в зависимости от продольного положения, поскольку они испытывают фазовую (или временную) задержку, когда волна распространяется от одного конца линии к другому. Этот эффект становится важным, когда длина линии становится значительной частью длины волны на рабочей частоте. Рассмотрим схему, показанную на рисунке 4.4, где линия передачи без потерь длиной подключена между идеальным генератором и сопротивлением нагрузки, R L . Для простоты предполагается, что нагрузка согласована с характеристическим сопротивлением линии Z 0 , чтобы не было отраженной волны.

РИСУНОК 4.4. Согласованная линия передачи характеристического импеданса, Z 0

В момент времени t = 0 пусть синусоидальный сигнал задается следующим образом:

(4.3) vg (t) = V0cos (ωt),

, где ω = 2π f — радианная частота. Пусть этот сигнал подан на генератор, расположенный в точке z = 0. Если линия является воздушной линией, сигнал распространяется со скоростью v p = 3 × 10 8 м / сек и достигает нагрузки. в момент времени τ = / v p . Таким образом, сигнал испытывает временную задержку, пропорциональную расстоянию, которое волна прошла вдоль линии. При нагрузке форма сигнала определяется по формуле:

(4.4) vL (t) = V0cos [ω (t − τ)] = V0cos [ωt − 2πℓλ],

, где v p = λ f используется для получения второго равенства. Из уравнения 4.4 видно, что задержка соответствует пройденному расстоянию, нормированному на длину волны λ. Чем больше становится дробь / λ, тем больше задержка. Для обычных цепей, работающих на низкой частоте, доля / λ мала; следовательно, фазовой задержкой по проводу можно пренебречь. На более высоких частотах длина волны становится короче; следовательно, / λ становится больше для фиксированного .Важным эффектом фазовой задержки является то, что линейное напряжение изменяется в зависимости от положения вдоль линии, потому что волна требует конечного времени, чтобы пройти от места источника до места измерения. На низких частотах эти локальные разности потенциалов незначительны из-за очень короткого времени прохождения. Однако это неверно, когда длина линии становится значительной частью рабочей длины волны. Уравнение 4.4 можно обобщить на любую позицию z вдоль линии, записав:

(4.5) v (z, t) = V0cos [ω (t − τz)] = V0cos [ωt − 2πzλ],

, где ωτ z — фазовая задержка, возникающая на расстоянии z , измеренная относительно в начало координат z = 0 на стороне генератора линии. Электрическое расстояние можно записать через фазовую постоянную:

(4.6) β = 2πλ (рад / м),

, так что волна напряжения принимает вид:

(4.7) v (z, t) = V0cos [ ωt − β].

Уравнение 4.7 представляет падающую волну, движущуюся от генератора к нагрузке, и остается справедливым на бесконечно длинной линии, и в этом случае отраженная волна отсутствует.Мы можем получить некоторое представление о распространении волн вдоль линии, построив график зависимости напряжения от фазовой задержки β z для фиксированной временной переменной ωt. На рисунке 4.5 показаны три стадии изменения формы волны напряжения.

РИСУНОК 4.5. Изменение формы волны напряжения на линии передачи без потерь

По мере того, как время прогрессирует от t = 0 до t = t 1 , а затем до t = t 2 , образец эталонного напряжения пик сигнала перемещается в положительном направлении z , например, от местоположения z = 0 до z 1 до z 2 .Это верно для каждой точки сигнала. Фактически, существует постоянная фазовая задержка, βΔ z = ωΔ t , между последовательными снимками. Поскольку ω и β постоянны, это означает, что по мере увеличения времени на Δ t положение эталонного образца пропорционально смещается вдоль положительного направления z на расстояние (ω / β) Δt. Смещение в единицу времени определяется как скорость распространения или фазовая скорость :

(4.8) vp = ωβ = fλ.

Ток падающей волны определяется выражением:

(4.9) i (z, t) = v (z, t) Z0 = V0Z0cos [ωt − βz].

Уравнение 4.9 отображает только изменение амплитуды относительно напряжения в уравнении 4.7. Поскольку фаза неизменна, выводы о распределенном характере напряжения, рассмотренные ранее для напряжения, справедливы и для тока.

Веб-сайт класса физики

Электрические схемы: обзор набора проблем

Этот набор из 34 задач нацелен на вашу способность определять такие величины цепи, как ток, сопротивление, разность электрических потенциалов, мощность и электрическая энергия, на основе словесных описаний и диаграмм физических ситуаций, относящихся к электрическим цепям.Проблемы варьируются по сложности от очень простых и простых до очень сложных и сложных. Более сложные задачи обозначены цветом , синие задачи .

Текущий

Когда заряд проходит по проводам электрической цепи , считается, что в проводах присутствует ток. Электрический ток — это количественное понятие, которое определяется как скорость , с которой заряд проходит через точку в цепи.Его можно определить, измерив количество заряда, протекающего по площади поперечного сечения провода в цепи. Как величина скорости, ток (I) выражается следующим уравнением

I = Q / т

где Q — количество заряда, протекающего через точку за период времени t. Стандартной метрической единицей измерения величины тока является ампер, часто сокращенно Ампер или А. Ток в 1 ампер эквивалентен 1 кулону заряда, протекающему через точку за 1 секунду.Поскольку количество заряда, проходящего через точку в цепи, связано с количеством мобильных носителей заряда (электронов), которые проходят через эту точку, ток также может быть связан с количеством электронов и временем. Чтобы установить связь между током и числом электронов, нужно знать количество заряда на одном электроне.

Q электрон = 1,6 x 10 -19 C

Сопротивление

Когда заряд течет по цепи, он встречает сопротивление или препятствие для его прохождения.Как и ток, сопротивление — это измеримый термин. Величина сопротивления, обеспечиваемого сечением провода, зависит от трех переменных — материала, из которого сделан провод, длины провода и площади поперечного сечения провода. Одним из физических свойств материала является его удельное сопротивление — мера способности этого материала сопротивляться прохождению заряда через него. Значения удельного сопротивления для различных проводящих материалов обычно указаны в учебниках и справочниках. Зная значение удельного сопротивления (ρ) материала, из которого состоит провод, а также его длину (L) и площадь поперечного сечения (A), его сопротивление (R) можно определить с помощью приведенного ниже уравнения.

R = ρ • L / A

Стандартная метрическая единица измерения сопротивления — Ом (сокращенно греческой буквой Ом ).

Основная трудность при использовании приведенного выше уравнения связана с единицами выражения различных величин. Удельное сопротивление (ρ) обычно выражается в Ом • м. Таким образом, длина должна быть выражена в метрах, а площадь поперечного сечения — в метрах 2 . Многие провода круглые и имеют круглое сечение.Таким образом, площадь поперечного сечения в приведенном выше уравнении можно рассчитать, зная радиус или диаметр провода, используя формулу для площади круга.

A = π • R 2 = π • D 2 /4

Соотношение напряжение-ток-сопротивление

Величина тока, протекающего в цепи, зависит от двух переменных. Ток обратно пропорционален общему сопротивлению (R) цепи и прямо пропорционален разности электрических потенциалов, приложенной к цепи.Разность электрических потенциалов (ΔV), приложенная к цепи, — это просто напряжение, подаваемое источником энергии (батареи, розетки и т. Д.). Для домов в США это значение близко к 110–120 вольт. Математическая взаимосвязь между током (I), напряжением и сопротивлением выражается следующим уравнением (которое иногда называют уравнением закона Ома ).

Мощность

Электрические цепи — это энергия.Энергия включается в цепь аккумулятором или коммерческим поставщиком электроэнергии. Элементы схемы (освещение, обогреватели, двигатели, холодильники и даже провода) преобразуют эту электрическую потенциальную энергию в другие формы энергии, такие как световая энергия, звуковая энергия, тепловая энергия и механическая энергия. Мощность означает скорость, с которой энергия передается или преобразуется устройством или цепью. Это скорость, с которой энергия теряется или приобретается в любом заданном месте в цепи.Таким образом, общее уравнение мощности —

P = ΔE / т

Потеря (или усиление) энергии — это просто произведение разности электрических потенциалов между двумя точками и количества заряда, который перемещается между этими двумя точками за период времени t. Таким образом, потеря (или усиление) энергии равна просто ΔV • Q. Когда это выражение подставляется в вышеприведенное уравнение, уравнение мощности становится

P = ΔV • Q / т

Поскольку отношение Q / t, найденное в приведенном выше уравнении, равно току (I), приведенное выше уравнение также можно записать как

P = ΔV • I

Комбинируя уравнение закона Ома с приведенным выше уравнением, можно получить два других уравнения мощности.Их

P = I 2 • R P = ΔV 2 / R

Стандартная метрическая единица измерения мощности — Вт . В единицах измерения ватт эквивалентен усилителю • Вольт, усилителю 2 • Ом и вольт 2 / Ом.

Затраты на электроэнергию

Коммерческая энергетическая компания взимает с домохозяйств ежемесячную плату за поставленную электроэнергию.В счете за услуги обычно указывается количество энергии, потребленной в течение месяца, в единицах киловатт • часов . Эта единица — единица мощности, умноженная на единицу времени, — это единица энергии. Домохозяйство обычно оплачивает счет на основе количества кВт • ч электроэнергии, потребленной в течение месяца. Таким образом, задача определения стоимости использования конкретного прибора в течение заданного периода времени довольно проста. Сначала необходимо определить мощность и преобразовать ее в киловатты.Затем эту мощность необходимо умножить на время использования в часах, чтобы получить потребляемую энергию в единицах кВт • час. Наконец, это количество энергии должно быть умножено на стоимость электроэнергии из расчета $ / кВт • час, чтобы определить стоимость в долларах.

Эквивалентное сопротивление

Довольно часто в цепи используется более одного резистора. Хотя каждый резистор имеет собственное индивидуальное значение сопротивления, общее сопротивление цепи отличается от сопротивления отдельных резисторов, составляющих цепь.Величина, известная как эквивалентное сопротивление , указывает полное сопротивление цепи. Концептуально эквивалентное сопротивление — это сопротивление, которое один резистор будет иметь, чтобы оказывать такое же общее влияние на сопротивление, как и комбинация резисторов, которые присутствуют. Таким образом, если в схеме есть три резистора с эквивалентным сопротивлением 25 Ом, то один резистор на 25 Ом может заменить три отдельных резистора и оказать влияние на схему, эквивалентное .Значение эквивалентного сопротивления (R eq ) учитывает индивидуальные значения сопротивления резисторов и способ их подключения.

Есть два основных способа включения резисторов в электрическую цепь. Их можно подключить последовательно или параллельно . Резисторы, которые соединены последовательно, подключаются последовательно, так что весь заряд, который проходит через первый резистор, также проходит через другие резисторы.При последовательном соединении весь заряд, протекающий по цепи, проходит через все отдельные резисторы. Таким образом, эквивалентное сопротивление последовательно соединенных резисторов является суммой значений отдельных сопротивлений этих резисторов.

R экв. = R 1 + R 2 + R 3 +… (последовательные соединения)

Параллельно подключенные резисторы подключаются бок о бок, так что заряд, приближающийся к резисторам, разделяется на два или более разных пути.Параллельно подключенные резисторы характеризуются наличием участков разветвления, в которых заряд разветвляется по разным путям. Заряд, который проходит через один резистор, не проходит через другие резисторы. Эквивалентное сопротивление параллельно включенных резисторов меньше значений сопротивлений всех отдельных резисторов в цепи. Хотя это может быть не совсем интуитивно понятным, уравнение эквивалентного сопротивления параллельно соединенных резисторов дается уравнением с несколькими взаимными членами.

1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3 +… (параллельное соединение)

Анализ последовательной цепи

Некоторые проблемы второй половины этого набора относятся к последовательным цепям. Нередко проблема сопровождается чертежом или схемой, показывающей расположение батарей и резисторов. Чертеж и соответствующая принципиальная схема ниже представляют последовательную цепь, питаемую тремя ячейками и имеющую три последовательно соединенных резистора (лампочки).

Если представить себе заряд, покидающий положительный полюс батареи и следующий по его пути, когда он пересекает полный контур, становится очевидным, что заряд проходит через все резисторы последовательно. Таким образом, он соответствует критериям последовательной цепи. Знание того, что цепь является последовательной, позволяет связать общее или эквивалентное сопротивление цепи с отдельными значениями сопротивления с помощью уравнения эквивалентного сопротивления, описанного выше.

R экв. = R 1 + R 2 + R 3 +… (последовательные соединения)

Ток последовательной цепи в резисторах такой же, как и в батарее. Поскольку нет ответвлений в местах, где заряд разделяется на пути, можно сказать, что ток в батарее равен току в резисторе 1, равен току в резисторе 2 и равен току в резисторе 3 .. ., В форме уравнения можно записать, что

I аккумулятор = I 1 = I 2 = I 3 =… (последовательные цепи)

Когда заряд проходит через резисторы в последовательной цепи, происходит падение электрического потенциала, когда он проходит через каждый резистор.Это падение электрического потенциала на каждом резисторе определяется током через резистор и сопротивлением резистора. Это согласуется с уравнением закона Ома, описанным выше (ΔV = I • R). Поскольку ток (I) в каждом отдельном резисторе одинаков, логично сделать вывод, что резисторы с наибольшим сопротивлением (R) будут иметь наибольшую разность электрических потенциалов (ΔV), приложенную к ним.

Разность электрических потенциалов на отдельных резисторах цепи часто обозначается как падения напряжения .Эти падения напряжения последовательно соединенных резисторов математически связаны с электрическим потенциалом или номинальным напряжением элементов или батареи, которые питают цепь. Если заряд приобретает 12 В электрического потенциала при прохождении через батарею электрической цепи, то он теряет 12 В при прохождении через внешнюю цепь. Это падение электрического потенциала на 12 В является результатом серии отдельных падений электрического потенциала, когда он проходит через отдельные резисторы последовательной цепи.Эти отдельные падения напряжения (разность электрических потенциалов) в сумме дают общее падение напряжения в цепи. В форме уравнения можно сказать, что

ΔV аккумулятор = ΔV 1 + ΔV 2 + ΔV 3 +… (последовательные цепи)

где ΔV аккумулятор — электрический потенциал, накопленный в аккумуляторе, а ΔV 1 , ΔV 2 и ΔV 3 — это падения напряжения (или разности электрических потенциалов) на отдельных резисторах.

Более подробное и исчерпывающее обсуждение последовательных схем и их анализа можно найти в Учебном пособии по физике.

Анализ параллельных цепей

Самые последние проблемы в этом наборе относятся к параллельным цепям. Опять же, нет ничего необычного в том, что проблема сопровождается рисунком или схематической диаграммой, показывающей расположение батарей и резисторов.Чертеж и соответствующая принципиальная схема ниже представляют собой параллельную цепь с питанием от трех ячеек и имеющую три параллельно соединенных резистора (лампочки).

Если представить заряд, покидающий положительный полюс батареи и следующий по своему пути, когда он проходит через полный контур, становится очевидным, что заряд достигает места разветвления до достижения резистора. В месте разветвления, которое иногда называют узлом, заряд проходит по одному из трех возможных путей через резисторы.Вместо того, чтобы проходить через каждый резистор, один заряд будет проходить через единственный резистор во время полного цикла вокруг цепи. Таким образом, он соответствует критериям параллельной цепи. Знание того, что схема является параллельной, позволяет связать общее или эквивалентное сопротивление схемы с отдельными значениями сопротивления с помощью уравнения эквивалентного сопротивления, описанного выше.

1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3 +… (параллельное соединение)

В месте разветвления заряд разделяется на отдельные пути.Таким образом, ток в отдельных путях будет меньше, чем ток вне путей. Общий ток в цепи и ток в батарее равны сумме тока в отдельных цепях. В форме уравнения можно записать, что

I аккумулятор = I 1 + I 2 + I 3 +… (параллельные цепи)

Текущие значения этих отдельных ветвей контролируются двумя величинами — сопротивлением резистора в ветви и разностью электрических потенциалов (ΔV), приложенной к ветви.В соответствии с уравнением закона Ома, рассмотренным выше, можно сказать, что ток в ветви 1 равен разности электрических потенциалов на ветви 1, деленной на сопротивление ветви 1. Аналогичные утверждения можно сделать и для других ветвей. В форме уравнения можно сказать, что

I 1 = ΔV 1 / R 1 I 2 = ΔV 2 / R 2 I 3 = ΔV 3 / R 3

Эклектические разности потенциалов (ΔV 1 , ΔV 2 и ΔV 3 ) на отдельных резисторах часто называют падениями напряжения.Подобно последовательным цепям, любой заряд, покидающий батарею, должен испытывать такое же падение напряжения, как и усиление, которое он получает при прохождении через батарею. Но в отличие от последовательных цепей, в параллельной цепи заряд проходит только через один резистор. Таким образом, падение напряжения на этом резисторе должно равняться разности электрических потенциалов на батарее. В форме уравнения можно сказать, что

ΔV аккумулятор = ΔV 1 = ΔV 2 = ΔV 3 +… (параллельные цепи)

где ΔV аккумулятор — электрический потенциал, накопленный в аккумуляторе, а ΔV 1 , ΔV 2 и ΔV 3 — это падения напряжения (или разности электрических потенциалов) на отдельных резисторах.

Более подробное и исчерпывающее обсуждение параллельных схем и их анализа можно найти в Учебном пособии по физике.

Привычки эффективно решать проблемы

Эффективный решатель проблем по привычке подходит к физическим проблемам таким образом, чтобы отражать набор дисциплинированных привычек. Хотя не все эффективные специалисты по решению проблем используют один и тот же подход, все они имеют общие привычки.Эти привычки кратко описаны здесь. Эффективное решение проблем …

  • … внимательно читает задачу и создает мысленную картину физической ситуации. При необходимости они набрасывают простую схему физической ситуации, чтобы помочь визуализировать ее.
  • … идентифицирует известные и неизвестные величины и записывает их в организованном порядке, часто записывая их на самой диаграмме. Они приравнивают заданные значения к символам, используемым для представления соответствующей величины (например,г., ΔV = 9,0 В; R = 0,025 Ом; Я = ???).
  • … строит стратегию решения неизвестной величины; стратегия, как правило, сосредоточена вокруг использования физических уравнений и во многом зависит от понимания принципов физики.
  • … определяет подходящую (ые) формулу (ы) для использования, часто записывая их. При необходимости они выполняют необходимое преобразование количеств в правильные единицы.
  • … выполняет подстановки и алгебраические манипуляции, чтобы найти неизвестную величину.

Подробнее …

Дополнительная литература / Учебные пособия:

Следующие страницы Учебного пособия по физике могут быть полезны для того, чтобы помочь вам в понимании концепций и математики, связанных с этими проблемами.

Набор проблем электрических цепей

Просмотреть набор задач

Электрические схемы Решения с аудиогидом

Просмотрите решение проблемы с аудиогидом:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34

Основы электричества: сопротивление, индуктивность и емкость

Электронные схемы являются неотъемлемой частью почти всех технологических достижений, достигнутых в нашей жизни сегодня.Сразу приходят на ум телевидение, радио, телефоны и компьютеры, но электроника также используется в автомобилях, кухонной технике, медицинском оборудовании и промышленных системах управления. В основе этих устройств лежат активные компоненты или компоненты схемы, которые электронным образом управляют потоком электронов, например, полупроводники. Однако эти устройства не могли функционировать без гораздо более простых пассивных компонентов, которые предшествовали полупроводникам на многие десятилетия. В отличие от активных компонентов, пассивные компоненты, такие как резисторы, конденсаторы и катушки индуктивности, не могут управлять потоком электронов с помощью электронных сигналов.

Сопротивление

Как следует из названия, резистор — это электронный компонент, который препятствует прохождению электрического тока в цепи.

В металлах, таких как серебро или медь, которые имеют высокую электропроводность и, следовательно, низкое удельное сопротивление, электроны могут свободно переходить от одного атома к другому с небольшим сопротивлением.

Электрическое сопротивление компонента схемы определяется как отношение приложенного напряжения к электрическому току, протекающему через него, согласно HyperPhysics, веб-сайту физических ресурсов, размещенному на кафедре физики и астрономии в Университете штата Джорджия.Стандартной единицей измерения сопротивления является ом, названный в честь немецкого физика Георга Симона Ома. Он определяется как сопротивление в цепи с током 1 ампер при 1 вольте. Сопротивление можно рассчитать с помощью закона Ома, который гласит, что сопротивление равно напряжению, разделенному на ток, или R = V / I (чаще записывается как V = IR), где R — сопротивление, V — напряжение, а I — ток.

Резисторы обычно делятся на постоянные и переменные. Резисторы с фиксированным номиналом — это простые пассивные компоненты, которые всегда имеют одинаковое сопротивление в установленных пределах по току и напряжению.Они доступны в широком диапазоне значений сопротивления от менее 1 Ом до нескольких миллионов Ом.

Переменные резисторы — это простые электромеханические устройства, такие как регуляторы громкости и диммеры, которые изменяют эффективную длину или эффективную температуру резистора, когда вы поворачиваете ручку или перемещаете ползунок.

Пример индуктора из медного провода, установленного на печатной плате. (Изображение предоставлено Shutterstock)

Индуктивность

Индуктор — это электронный компонент, состоящий из катушки с проволокой, через которую проходит электрический ток, создающий магнитное поле.Единицей измерения индуктивности является генри (H), названный в честь Джозефа Генри, американского физика, который открыл индуктивность независимо примерно в то же время, что и английский физик Майкл Фарадей. Один генри — это величина индуктивности, которая требуется для создания 1 вольт электродвижущей силы (электрического давления от источника энергии), когда ток изменяется со скоростью 1 ампер в секунду.

Одним из важных применений индукторов в активных цепях является то, что они имеют тенденцию блокировать высокочастотные сигналы, пропуская низкочастотные колебания.Обратите внимание, что это противоположная функция конденсаторов. Объединение двух компонентов в цепь может выборочно фильтровать или генерировать колебания практически любой желаемой частоты.

С появлением интегральных схем, таких как микрочипы, катушки индуктивности становятся все менее распространенными, потому что трехмерные катушки чрезвычайно трудно изготовить в двумерных печатных схемах. По этой причине, по словам Майкла Дубсона, профессора физики из Университета Колорадо в Боулдере, микросхемы разрабатываются без катушек индуктивности и вместо них используют конденсаторы для достижения практически тех же результатов.

Несколько примеров конденсаторов. Конденсаторы хранят электрический заряд. (Изображение предоставлено Питером Матисом, Университет Колорадо)

Емкость

Емкость — это способность устройства накапливать электрический заряд, и поэтому электронный компонент, который накапливает электрический заряд, называется конденсатором. Самый ранний пример конденсатора — лейденская банка. Это устройство было изобретено для накопления статического электрического заряда на проводящей фольге, которая выстилала внутреннюю и внешнюю поверхность стеклянной банки.

Простейший конденсатор состоит из двух плоских проводящих пластин, разделенных небольшим зазором. Разность потенциалов или напряжение между пластинами пропорциональна разнице в количестве заряда на пластинах. Это выражается как Q = CV, где Q — заряд, V — напряжение, а C — емкость.

Емкость конденсатора — это количество заряда, которое он может хранить на единицу напряжения. Единицей измерения емкости является фарад (Ф), названный в честь Фарадея, и определяется как способность хранить 1 кулон заряда с приложенным потенциалом 1 вольт.Один кулон (C) — это количество заряда, переносимого током в 1 ампер за 1 секунду.

Для повышения эффективности обкладки конденсатора уложены слоями или намотаны катушками с очень маленьким воздушным зазором между ними. В воздушном зазоре часто используются диэлектрические материалы — изоляционные материалы, которые частично блокируют электрическое поле между пластинами. Это позволяет пластинам накапливать больше заряда без искрения и короткого замыкания.

Конденсаторы часто встречаются в активных электронных схемах, использующих колебательные электрические сигналы, например, в радиоприемниках и звуковом оборудовании.Они могут заряжаться и разряжаться почти мгновенно, что позволяет использовать их для создания или фильтрации определенных частот в цепях. Колебательный сигнал может заряжать одну пластину конденсатора, в то время как другая пластина разряжается, а затем, когда ток меняется на противоположное, он заряжает другую пластину, в то время как первая пластина разряжается.

Как правило, более высокие частоты могут проходить через конденсатор, а более низкие частоты блокируются. Размер конденсатора определяет частоту среза, при которой сигналы блокируются или пропускаются.Комбинированные конденсаторы могут использоваться для фильтрации выбранных частот в заданном диапазоне.

Суперконденсаторы производятся с использованием нанотехнологий для создания сверхтонких слоев материалов, таких как графен, для достижения емкости, в 10–100 раз превышающей емкость обычных конденсаторов того же размера; но они имеют гораздо более медленное время отклика, чем обычные диэлектрические конденсаторы, поэтому их нельзя использовать в активных цепях. С другой стороны, их иногда можно использовать в качестве источника питания в определенных приложениях, например, в микросхемах памяти компьютера, чтобы предотвратить потерю данных при отключении основного питания.

Конденсаторы также являются важными компонентами устройств отсчета времени, например, разработанных компанией SiTime, базирующейся в Калифорнии. Эти устройства используются в самых разных приложениях, от мобильных телефонов до высокоскоростных поездов и торговли на фондовом рынке. Это крошечное устройство синхронизации, известное как МЭМС (микроэлектромеханические системы), для правильной работы полагается на конденсаторы. «Если резонатор [колебательный компонент в устройстве синхронизации] не имеет подходящего конденсатора и емкости нагрузки, схема синхронизации не будет надежно запускаться, а в некоторых случаях она вообще перестает колебаться», — сказал Пиюш Севалия, исполнительный директор. вице-президент по маркетингу в SiTime.

Дополнительные ресурсы:

Эта статья была обновлена ​​16 января 2019 г. участником Live Science Рэйчел Росс.

электрических цепей

Электрическая цепь — это замкнутый контур, по которому может течь ток. Электрическая цепь может состоять практически из любых материалов (включая людей, если мы не будем осторожны!), Но практически говоря, они обычно состоят из электрических устройств, таких как провода, батареи, резисторы и переключатели.Обычный ток будет проходить через полный путь с обратной связью (замкнутый контур) от высокого потенциала к низкому потенциалу, поэтому электроны фактически текут в противоположном направлении, от низкого потенциала к высокому. Если путь не является замкнутым контуром (разомкнутым контуром), заряд не будет течь.

Электрические цепи, представляющие собой трехмерные конструкции, обычно представляются в двух измерениях с помощью диаграмм, известных как принципиальные схемы. Эти схемы представляют собой упрощенные стандартизованные представления, в которых общие элементы схемы представлены определенными символами, а провода, соединяющие элементы в схеме, представлены линиями.Слева показаны условные обозначения основных принципиальных схем.

Для протекания тока по цепи необходим источник разности потенциалов. Типичными источниками разности потенциалов являются гальванические элементы, батареи (состоящие из двух или более элементов, соединенных вместе) и источники питания (напряжения). В общей терминологии мы часто называем гальванические элементы батареями. Рисуя элемент или батарею на принципиальной схеме, помните, что более длинная сторона символа — это положительный полюс.

Электрические цепи должны образовывать полный проводящий путь для протекания тока. В примере схемы, показанной ниже слева, цепь является неполной, потому что переключатель разомкнут, поэтому ток не будет течь, и лампа не будет гореть. Однако в схеме внизу справа переключатель замкнут, образуя контур замкнутого контура. Пойдет ток, и лампа загорится.

Обратите внимание, что на рисунке справа обычный ток будет течь от положительного к отрицательному, создавая путь тока по часовой стрелке в цепи.Однако настоящие электроны в проводе движутся в противоположном направлении или против часовой стрелки.

Энергия и мощность

Так же, как механическая мощность — это скорость, с которой расходуется механическая энергия, электрическая мощность — это скорость, с которой расходуется электрическая энергия. Ранее мы узнали, что когда вы работаете над чем-то, вы изменяете его энергию, и что электрическая работа или энергия равна разности заряда, умноженной на разность потенциалов.Следовательно, мы можем записать наше уравнение для электрической мощности как:

Однако мы также знаем, что количество заряда, перемещающегося за точку за данную единицу времени, является текущим, поэтому мы можем продолжить наш вывод следующим образом:

Итак, электрическая мощность, затрачиваемая в цепи, — это электрический ток, умноженный на разность потенциалов (напряжение). Используя закон Ома, мы можем расширить его еще больше, чтобы предоставить нам несколько различных методов для расчета электрической мощности, рассеиваемой резистором:

Конечно, сохранение энергии по-прежнему применяется, поэтому энергия, используемая в резисторе, преобразуется в тепло (в большинстве случаев) и свет, или ее можно использовать для работы.Посмотрим, сможем ли мы применить эти знания на практике.

Вопрос: Тостерная печь на 110 вольт потребляет ток 6 ампер на максимальной мощности, преобразуя электрическую энергию в тепловую. Какая максимальная мощность тостера?

Ответ:

Вопрос: Какая минимальная информация необходима для определения мощности, рассеиваемой в резисторе неизвестного значения?

  1. разность потенциалов на резисторе, всего
  2. ток через резистор, всего
  3. разность тока и потенциала, всего
  4. ток, разность потенциалов и время срабатывания

Ответ: (3) только ток и разность потенциалов (P = VI).

Как работают электронные компоненты

Электронные гаджеты стали неотъемлемой частью нашей жизни. Они сделали нашу жизнь комфортнее и удобнее. От авиации до медицины и здравоохранения электронные гаджеты находят широкое применение в современном мире. Фактически, революция в электронике и революция в компьютерах идут рука об руку.

Большинство гаджетов имеют крошечные электронные схемы, которые могут управлять машинами и обрабатывать информацию.Проще говоря, электронные схемы — это линия жизни различных электроприборов. В этом руководстве подробно рассказывается об общих электронных компонентах, используемых в электронных схемах, и о том, как они работают.

В этой статье я дам обзор электронных схем. Затем я предоставлю дополнительную информацию о 7 различных типах компонентов. Для каждого типа я буду обсуждать состав, принцип работы, а также функцию и значение компонента.

  1. Конденсатор
  2. Резистор
  3. Диод
  4. Транзистор
  5. Катушка индуктивности
  6. Реле
  7. Кристалл кварца


Обзор электронной схемы

Электронная схема — это структура, которая направляет и управляет электрическим током для выполнения различных функций, включая усиление сигнала, вычисление и передачу данных.Он состоит из нескольких различных компонентов, таких как резисторы, транзисторы, конденсаторы, катушки индуктивности и диоды. Для соединения компонентов друг с другом используются токопроводящие провода или дорожки. Однако цепь считается завершенной, только если она начинается и заканчивается в одной и той же точке, образуя цикл.


Элементы электронной схемы

Сложность и количество компонентов в электронной схеме может изменяться в зависимости от ее применения. Однако простейшая схема состоит из трех элементов, включая токопроводящую дорожку, источник напряжения и нагрузку.

Элемент 1: токопроводящий путь

Электрический ток течет по токопроводящей дорожке. Хотя медные провода используются в простых цепях, они быстро заменяются токопроводящими дорожками. Проводящие дорожки — это не что иное, как медные листы, наклеенные на непроводящую основу. Они часто используются в небольших и сложных схемах, таких как печатные платы (PCB).

Элемент 2: Источник напряжения

Основная функция цепи — обеспечить безопасное прохождение электрического тока через нее.Итак, первый ключевой элемент — это источник напряжения. Это двухконтактное устройство, такое как аккумулятор, генераторы или энергосистемы, которые обеспечивают разность потенциалов (напряжение) между двумя точками в цепи, так что ток может течь через них.

Элемент 3: Нагрузка

Нагрузка — это элемент в цепи, который потребляет мощность для выполнения определенной функции. Лампочка — простейшая нагрузка. Однако сложные схемы имеют разные нагрузки, такие как резисторы, конденсаторы, транзисторы и транзисторы.


Факты об электронных схемах

Факт 1: Обрыв цепи

Как упоминалось ранее, цепь всегда должна образовывать петлю, чтобы через нее протекал ток. Однако, когда дело доходит до разомкнутой цепи, ток не может протекать, поскольку один или несколько компонентов отключены намеренно (с помощью переключателя) или случайно (сломанные части). Другими словами, любая цепь, не образующая петли, является разомкнутой.

Факт 2: Замкнутый контур

Замкнутый контур — это контур, который образует контур без каких-либо прерываний.Таким образом, это полная противоположность разомкнутой цепи. Однако полная цепь, которая не выполняет никаких функций, остается замкнутой цепью. Например, цепь, подключенная к разряженной батарее, может не работать, но это все равно замкнутая цепь.

Факт 3: Короткое замыкание

В случае короткого замыкания между двумя точками электрической цепи образуется соединение с низким сопротивлением. В результате ток имеет тенденцию течь через это вновь образованное соединение, а не по намеченному пути.Например, если есть прямое соединение между отрицательной и положительной клеммами батареи, ток будет проходить через нее, а не через цепь.

Однако короткое замыкание обычно приводит к серьезным несчастным случаям, так как ток может протекать на опасно высоких уровнях. Следовательно, короткое замыкание может повредить электронное оборудование, вызвать взрыв батарей и даже вызвать пожар в коммерческих и жилых зданиях.

Факт 4: Печатные платы (PCB)

Для большинства электронных приборов требуются сложные электронные схемы.Вот почему разработчикам приходится размещать крошечные электронные компоненты на печатной плате. Он состоит из пластиковой платы с соединительными медными дорожками с одной стороны и множества отверстий для крепления компонентов. Когда макет печатной платы наносится химическим способом на пластиковую плату, она называется печатной платой или печатной платой.

Рисунок 1: Печатная плата . [Источник изображения]
Факт 5: Интегральные схемы (ИС)

Хотя печатные платы могут предложить множество преимуществ, для большинства современных приборов, таких как компьютеры и мобильные телефоны, требуются сложные схемы, состоящие из тысяч и даже миллионов компонентов.Вот тут-то и пригодятся интегральные схемы. Это крошечные электронные схемы, которые могут поместиться внутри небольшого кремниевого чипа. Джек Килби изобрел первую интегральную схему в 1958 году в компании Texas Instruments. Единственная цель ИС — повысить эффективность электронных устройств при уменьшении их размера и стоимости производства. С годами интегральные схемы становились все более сложными, поскольку технологии продолжают развиваться. Вот почему персональные компьютеры, ноутбуки, мобильные телефоны и другая бытовая электроника с каждым днем ​​становятся все дешевле и лучше.

Рисунок 2: интегральных схем. [Источник изображения]

Электронные компоненты

Благодаря современным технологиям, процесс сборки электронных схем был полностью автоматизирован, особенно для изготовления микросхем и печатных плат. Количество и расположение компонентов в схеме может варьироваться в зависимости от ее сложности. Однако он построен с использованием небольшого количества стандартных компонентов.

Следующие компоненты используются для создания электронных схем.


Компонент 1: Конденсатор

Конденсаторы

широко используются для построения различных типов электронных схем.Конденсатор — это пассивный двухконтактный электрический компонент, который может электростатически накапливать энергию в электрическом поле. Проще говоря, он работает как небольшая аккумуляторная батарея, накапливающая электричество. Однако, в отличие от аккумулятора, он может заряжаться и разряжаться за доли секунды.

Рисунок 3: Конденсаторы [Источник изображения]
A. Состав Конденсаторы

бывают всех форм и размеров, но обычно они состоят из одинаковых основных компонентов. Между ними уложены два электрических проводника или пластины, разделенные диэлектриком или изолятором.Пластины состоят из проводящего материала, такого как тонкие пленки из металла или алюминиевой фольги. С другой стороны, диэлектрик — это непроводящий материал, такой как стекло, керамика, пластиковая пленка, воздух, бумага или слюда. Вы можете вставить два электрических соединения, выступающих из пластин, чтобы зафиксировать конденсатор в цепи.

B. Как это работает?

Когда вы прикладываете напряжение к двум пластинам или подключаете их к источнику, на изоляторе возникает электрическое поле, в результате чего на одной пластине накапливается положительный заряд, а на другой накапливается отрицательный заряд.Конденсатор продолжает сохранять заряд, даже если вы отключите его от источника. В тот момент, когда вы подключаете его к нагрузке, накопленная энергия перетекает от конденсатора к нагрузке.

Емкость — это количество энергии, хранящейся в конденсаторе. Чем выше емкость, тем больше энергии он может хранить. Увеличить емкость можно, сдвинув пластины ближе друг к другу или увеличив их размер. В качестве альтернативы вы также можете улучшить изоляционные качества, чтобы увеличить емкость.

C. Функция и значение

Хотя конденсаторы выглядят как батареи, они могут выполнять различные типы функций в цепи, такие как блокировка постоянного тока, позволяя переменному току проходить или сглаживать выходную мощность от источника питания. Они также используются в системах передачи электроэнергии для стабилизации напряжения и потока мощности. Одной из наиболее важных функций конденсатора в системах переменного тока является коррекция коэффициента мощности, без которой вы не сможете обеспечить достаточный пусковой момент для однофазных двигателей.

Фильтры для конденсаторов

Если вы используете микроконтроллер в цепи для запуска определенной программы, вы не хотите, чтобы его напряжение упало, так как это приведет к сбросу контроллера. Вот почему дизайнеры используют конденсатор. Он может обеспечить микроконтроллер необходимой мощностью на долю секунды, чтобы избежать перезапуска. Другими словами, он отфильтровывает шумы в линии питания и стабилизирует источник питания.

Применения удерживающего конденсатора

В отличие от батареи, конденсатор быстро разряжается.Вот почему он используется для кратковременного питания цепи. Батареи вашей камеры заряжают конденсатор, прикрепленный к вспышке. Когда вы делаете снимок со вспышкой, конденсатор высвобождает свой заряд за доли секунды, создавая вспышку света.

Применение конденсатора таймера

В резонансной или зависящей от времени схеме конденсаторы используются вместе с резистором или катушкой индуктивности в качестве элемента синхронизации. Время, необходимое для зарядки и разрядки конденсатора, определяет работу схемы.


Компонент 2: Резистор

Резистор — это пассивное двухконтактное электрическое устройство, которое препятствует прохождению тока. Это, наверное, самый простой элемент в электронной схеме. Это также один из наиболее распространенных компонентов, поскольку сопротивление является неотъемлемым элементом почти всех электронных схем. Обычно они имеют цветовую маркировку.

Рисунок 4: Резисторы [Источник изображения]
A. Состав

Резистор — это совсем не модное устройство, потому что сопротивление — это естественное свойство, которым обладают почти все проводники.Итак, конденсатор состоит из медной проволоки, обернутой вокруг изоляционного материала, такого как керамический стержень. Количество витков и толщина медной проволоки прямо пропорциональны сопротивлению. Чем больше количество витков и чем тоньше провод, тем выше сопротивление.

Также можно встретить резисторы, изготовленные по спирали из углеродной пленки. Отсюда и название резисторы с углеродной пленкой. Они предназначены для схем с низким энергопотреблением, потому что резисторы с углеродной пленкой не так точны, как их аналоги с проволочной обмоткой.Однако они дешевле проводных резисторов. К обоим концам прикреплены клеммы проводов. Поскольку резисторы не учитывают полярность в цепи, ток может течь в любом направлении. Таким образом, не нужно беспокоиться о том, чтобы прикрепить их вперед или назад.

B. Как это работает?

Резистор может показаться не очень большим. Можно подумать, что он ничего не делает, кроме как потребляет энергию. Однако он выполняет жизненно важную функцию: контролирует напряжение и ток в вашей цепи.Другими словами, резисторы дают вам контроль над конструкцией вашей схемы.

Когда электрический ток начинает течь по проводу, все электроны начинают двигаться в одном направлении. Это похоже на воду, текущую по трубе. По тонкой трубе будет течь меньше воды, потому что у нее меньше места для ее движения.

Точно так же, когда ток проходит через тонкий провод в резисторе, электронам становится все труднее двигаться через него. Короче говоря, количество электронов, проходящих через резистор, уменьшается с увеличением длины и толщины провода.

C. Функция и значение У резисторов

есть множество применений, но три наиболее распространенных — это управление током, разделение напряжения и цепи резистор-конденсатор.

Ограничение тока

Если вы не добавите резисторы в цепь, ток будет опасно высоким. Это может привести к перегреву других компонентов и их повреждению. Например, если вы подключите светодиод напрямую к батарее, он все равно будет работать.Однако через некоторое время светодиод нагреется, как огненный шар. В конечном итоге он сгорит, поскольку светодиоды менее устойчивы к нагреву.

Но, если ввести в схему резистор, он снизит протекание тока до оптимального уровня. Таким образом, вы можете дольше держать светодиод включенным, не перегревая его.

Делительное напряжение Также используются резисторы

для понижения напряжения до нужного уровня. Иногда для определенной части схемы, такой как микроконтроллер, может потребоваться более низкое напряжение, чем для самой схемы.Здесь на помощь приходит резистор.

Допустим, ваша схема работает от аккумулятора 12 В. Однако для микроконтроллера требуется только питание 6 В. Итак, чтобы разделить напряжение пополам, все, что вам нужно сделать, это подключить последовательно два резистора с равным сопротивлением. Проволока между двумя резисторами снизит наполовину напряжение вашей цепи, к которой может быть подключен микроконтроллер. Используя соответствующие резисторы, вы можете снизить напряжение в цепи до любого уровня.

Резисторно-конденсаторные цепи Резисторы

также используются в сочетании с конденсаторами для создания интегральных схем, содержащих массивы резистор-конденсатор в одной микросхеме.Их также называют RC-фильтрами или RC-сетями. Они часто используются для подавления электромагнитных помех (EMI) или радиочастотных помех (RFI) в различных инструментах, включая порты ввода / вывода компьютеров и ноутбуков, локальные сети (LAN) и глобальные сети (WAN), среди прочего. Они также используются в станках, распределительных устройствах, контроллерах двигателей, автоматизированном оборудовании, промышленных приборах, лифтах и ​​эскалаторах.


Компонент 3: Диод

Диод — это устройство с двумя выводами, которое позволяет электрическому току течь только в одном направлении.Таким образом, это электронный эквивалент обратного клапана или улицы с односторонним движением. Он обычно используется для преобразования переменного тока (AC) в постоянный ток (DC). Он изготовлен либо из полупроводникового материала (полупроводниковый диод), либо из вакуумной трубки (вакуумный ламповый диод). Однако сегодня большинство диодов изготовлено из полупроводникового материала, особенно из кремния.

Рисунок 5: Диод [Источник изображения]
A. Состав

Как упоминалось ранее, существует два типа диодов: вакуумные диоды и полупроводниковые диоды.Вакуумный диод состоит из двух электродов (катода и анода), помещенных внутри герметичной вакуумной стеклянной трубки. Полупроводниковый диод состоит из полупроводников p-типа и n-типа. Поэтому он известен как диод с p-n переходом. Обычно он изготавливается из кремния, но также можно использовать германий или селен.

B. Как это работает?
Вакуумный диод

Когда катод нагревается нитью накала, в вакууме образуется невидимое облако электронов, называемое пространственным зарядом.Хотя электроны испускаются катодом, отрицательный объемный заряд отталкивает их. Поскольку электроны не могут достичь анода, через цепь не протекает ток. Однако, когда анод становится положительным, объемный заряд исчезает. В результате ток начинает течь от катода к аноду. Таким образом, электрический ток внутри диода течет только от катода к аноду и никогда от анода к катоду.

P-N переходной диод

Диод с p-n переходом состоит из кремниевых полупроводников p-типа и n-типа.Полупроводник p-типа обычно легируется бором, оставляя в нем дырки (положительный заряд). С другой стороны, полупроводник n-типа легирован сурьмой, добавляя в него несколько дополнительных электронов (отрицательный заряд). Таким образом, электрический ток может протекать через оба полупроводника.

Когда вы складываете блоки p-типа и n-типа вместе, дополнительные электроны n-типа объединяются с дырками p-типа, создавая зону обеднения без каких-либо свободных электронов или дырок. Короче, ток через диод больше не может проходить.

Когда вы подключаете отрицательную клемму батареи к кремнию n-типа, а положительную клемму к p-типу (прямое смещение), ток начинает течь, поскольку электроны и дырки теперь могут перемещаться по переходу. Однако, если вы перевернете клеммы (обратное смещение), ток не будет течь через диод, потому что дырки и электроны отталкиваются друг от друга, расширяя зону истощения. Таким образом, как и вакуумный диод, переходной диод может пропускать ток только в одном направлении.

С.Функция и значение

Хотя диоды являются одними из простейших компонентов электронной схемы, они находят уникальное применение в различных отраслях промышленности.

Преобразование переменного тока в постоянный

Наиболее распространенным и важным применением диодов является преобразование переменного тока в постоянный. Обычно полуволновой (один диод) или двухполупериодный (четыре диода) выпрямитель используется для преобразования мощности переменного тока в мощность постоянного тока, особенно в бытовых источниках питания. Когда вы пропускаете источник питания переменного тока через диод, через него проходит только половина формы волны переменного тока.Поскольку этот импульс напряжения используется для зарядки конденсатора, он создает устойчивые и непрерывные постоянные токи без каких-либо пульсаций. Различные комбинации диодов и конденсаторов также используются для создания различных типов умножителей напряжения для умножения небольшого переменного напряжения на высокие выходы постоянного тока.

Обходные диоды

Обходные диоды часто используются для защиты солнечных панелей. Когда ток от остальных элементов проходит через поврежденный или пыльный солнечный элемент, это вызывает перегрев.В результате общая выходная мощность снижается, создавая горячие точки. Диоды подключаются параллельно солнечным элементам, чтобы защитить их от проблемы перегрева. Эта простая конструкция ограничивает напряжение на неисправном солнечном элементе, позволяя току проходить через неповрежденные элементы во внешнюю цепь.

Защита от скачков напряжения

Когда источник питания внезапно прерывается, он создает высокое напряжение в большинстве индуктивных нагрузок.Этот неожиданный скачок напряжения может повредить нагрузку. Однако вы можете защитить дорогое оборудование, подключив диод к индуктивным нагрузкам. В зависимости от типа безопасности эти диоды известны под разными названиями, включая демпферный диод, обратный диод, подавляющий диод и диод свободного хода, среди других.

Демодуляция сигнала

Они также используются в процессе модуляции сигнала, поскольку диоды могут эффективно удалять отрицательный элемент сигнала переменного тока.Диод выпрямляет несущую волну, превращая ее в постоянный ток. Звуковой сигнал извлекается из несущей волны, этот процесс называется звуковой частотной модуляцией. Вы можете слышать звук после некоторой фильтрации и усиления. Следовательно, диоды обычно используются в радиоприемниках для извлечения сигнала из несущей волны.

Защита от обратного тока

Изменение полярности источника постоянного тока или неправильное подключение батареи может привести к протеканию значительного тока через цепь.Такое обратное подключение может повредить подключенную нагрузку. Вот почему защитный диод включен последовательно с положительной стороной клеммы аккумулятора. В случае правильной полярности диод становится смещенным в прямом направлении, и ток течет по цепи. Однако в случае неправильного подключения он становится смещенным в обратном направлении, блокируя ток. Таким образом, это может защитить ваше оборудование от возможных повреждений.


Компонент 4: Транзистор

Один из важнейших компонентов электронной схемы, транзисторы произвели революцию в области электроники.Эти крошечные полупроводниковые устройства с тремя выводами существуют уже более пяти десятилетий. Их часто используют как усилители и переключающие устройства. Вы можете думать о них как о реле без каких-либо движущихся частей, потому что они могут включать или выключать что-то без какого-либо движения.

Рисунок 6: Транзисторы [Источник изображения]
A. Состав

Вначале германий использовался для создания транзисторов, которые были чрезвычайно чувствительны к температуре. Однако сегодня они изготавливаются из кремния, полупроводникового материала, обнаруженного в песке, потому что кремниевые транзисторы гораздо более устойчивы к температуре и дешевле в производстве.Есть два разных типа биполярных переходных транзисторов (BJT), NPN и PNP. Каждый транзистор имеет три контакта, которые называются базой (b), коллектором (c) и эмиттером (e). NPN и PNP относятся к слоям полупроводникового материала, из которых изготовлен транзистор.

B. Как это работает?

Когда вы помещаете кремниевую пластину p-типа между двумя стержнями n-типа, вы получаете NPN-транзистор. Эмиттер присоединен к одному n-типу, а коллектор — к другому.База прикреплена к р-образному типу. Избыточные дырки в кремнии p-типа действуют как барьеры, блокирующие прохождение тока. Однако, если вы приложите положительное напряжение к базе и коллектору и отрицательно зарядите эмиттер, электроны начнут течь от эмиттера к коллектору.

Расположение и количество блоков p-типа и n-типа остаются инвертированными в транзисторе PNP. В этом типе транзистора один n-тип находится между двумя блоками p-типа. Поскольку распределение напряжения отличается, транзистор PNP работает иначе.Транзистор NPN требует положительного напряжения на базу, в то время как PNP требует отрицательного напряжения. Короче говоря, ток должен течь от базы, чтобы включить PNP-транзистор.

C. Функция и значение

Транзисторы функционируют как переключатели и усилители в большинстве электронных схем. Дизайнеры часто используют транзистор в качестве переключателя, потому что, в отличие от простого переключателя, он может превратить небольшой ток в гораздо больший. Хотя вы можете использовать простой переключатель в обычной цепи, для усовершенствованной схемы может потребоваться различное количество токов на разных этапах.

Транзисторы в слуховых аппаратах

Одно из самых известных применений транзисторов — слуховой аппарат. Обычно небольшой микрофон в слуховом аппарате улавливает звуковые волны, преобразовывая их в колеблющиеся электрические импульсы или токи. Когда эти токи проходят через транзистор, они усиливаются. Затем усиленные импульсы проходят через динамик, снова преобразуя их в звуковые волны. Таким образом, вы можете услышать значительно более громкую версию окружающего шума.

Транзисторы в компьютерах и калькуляторах

Все мы знаем, что компьютеры хранят и обрабатывают информацию, используя двоичный язык «ноль» и «единица». Однако большинство людей не знают, что транзисторы играют решающую роль в создании чего-то, что называется логическими вентилями, которые являются основой компьютерных программ. Транзисторы часто соединяются с логическими вентилями, чтобы создать уникальный элемент устройства, называемый триггером. В этой системе транзистор остается включенным, даже если вы уберете ток базы.Теперь он переключается или выключается всякий раз, когда через него проходит новый ток. Таким образом, транзистор может хранить ноль, когда он выключен, или единицу, когда он включен, что является принципом работы компьютеров.

Транзисторы Дарлингтона

Транзистор Дарлингтона состоит из двух соединенных вместе транзисторов с полярным соединением PNP или NPN. Он назван в честь своего изобретателя Сидни Дарлингтона. Единственное назначение транзистора Дарлингтона — обеспечить высокий коэффициент усиления по току при низком базовом токе.Вы можете найти эти транзисторы в приборах, которым требуется высокий коэффициент усиления по току на низкой частоте, таких как регуляторы мощности, драйверы дисплея, контроллеры двигателей, световые и сенсорные датчики, системы сигнализации и усилители звука.

IGBT и MOSFET транзисторы

Биполярные транзисторы с изолированным затвором (IGBT) часто используются в качестве усилителей и переключателей в различных инструментах, включая электромобили, поезда, холодильники, кондиционеры и даже стереосистемы.С другой стороны, полевые транзисторы металл-оксид-полупроводник (MOSFET) обычно используются в интегральных схемах для управления уровнями мощности устройства или для хранения данных.


Компонент 5: Индуктор

Катушка индуктивности, также известная как реактор, представляет собой пассивный компонент цепи, имеющей два вывода. Это устройство хранит энергию в своем магнитном поле, возвращая ее в цепь при необходимости. Было обнаружено, что когда две катушки индуктивности размещаются рядом, не касаясь друг друга, магнитное поле, создаваемое первой катушкой индуктивности, воздействует на вторую катушку.Это был решающий прорыв, который привел к изобретению первых трансформаторов.

Рисунок 7: Катушки индуктивности [Источник изображения]
A. Состав

Это, вероятно, простейший компонент, состоящий только из мотка медной проволоки. Индуктивность прямо пропорциональна количеству витков в катушке. Однако иногда катушка наматывается на ферромагнитный материал, такой как железо, слоистое железо и порошковое железо, для увеличения индуктивности. Форма этого сердечника также может увеличить индуктивность.Тороидальные (в форме бублика) сердечники обеспечивают лучшую индуктивность по сравнению с соленоидными (стержневыми) сердечниками на такое же количество витков. К сожалению, индукторы в интегральной схеме сложно соединить, поэтому их обычно заменяют резисторами.

B. Как это работает?

Когда ток проходит по проводу, он создает магнитное поле. Однако уникальная форма индуктора приводит к созданию гораздо более сильного магнитного поля. Это мощное магнитное поле, в свою очередь, сопротивляется переменному току, но пропускает через него постоянный ток.Это магнитное поле также хранит энергию.

Возьмем простую схему, состоящую из батареи, переключателя и лампочки. Лампа будет ярко светиться, как только вы включите выключатель. Добавьте в эту цепь индуктивность. Как только вы включаете выключатель, лампочка переключается с яркой на тусклую. С другой стороны, когда переключатель выключен, он становится очень ярким, всего на долю секунды до полного выключения.

Когда вы включаете выключатель, индуктор начинает использовать электричество для создания магнитного поля, временно блокируя прохождение тока.Но только постоянный ток проходит через индуктор, как только магнитное поле заполнено. Вот почему лампочка переключается с яркой на тусклую. Все это время индуктор накапливает некоторую электрическую энергию в виде магнитного поля. Итак, когда вы выключаете выключатель, магнитное поле поддерживает постоянный ток в катушке. Таким образом, лампочка некоторое время горит ярко перед тем, как погаснуть.

C. Функция и значение

Хотя индукторы полезны, их трудно включить в электронные схемы из-за их размера.Поскольку они более громоздкие по сравнению с другими компонентами, они увеличивают вес и занимают много места. Следовательно, их обычно заменяют резисторами в интегральных схемах (ИС). Тем не менее, индукторы имеют широкий спектр промышленных применений.

Фильтры в настроенных схемах

Одним из наиболее распространенных применений индукторов является выбор желаемой частоты в настроенных схемах. Они широко используются с конденсаторами и резисторами, подключенными параллельно или последовательно, для создания фильтров.Импеданс катушки индуктивности увеличивается с увеличением частоты сигнала. Таким образом, автономная катушка индуктивности может действовать только как фильтр нижних частот. Однако, когда вы объединяете его с конденсатором, вы можете создать режекторный фильтр, потому что импеданс конденсатора уменьшается с увеличением частоты сигнала. Таким образом, вы можете использовать различные комбинации конденсаторов, катушек индуктивности и резисторов для создания различных типов фильтров. Они присутствуют в большинстве электронных устройств, включая телевизоры, настольные компьютеры и радио.

Дроссели как дроссели

Если через дроссель протекает переменный ток, он создает противоположный ток. Таким образом, он может преобразовывать источник переменного тока в постоянный. Другими словами, он подавляет питание переменного тока, но позволяет постоянному току проходить через него, отсюда и название «дроссель». Обычно они встречаются в цепях питания, которым необходимо преобразовать питание переменного тока в питание постоянного тока.

Ферритовые бусины

Ферритовый шарик или ферритовый дроссель используется для подавления высокочастотного шума в электронных схемах.Некоторые из распространенных применений ферритовых шариков включают компьютерные кабели, телевизионные кабели и кабели для зарядки мобильных устройств. Эти кабели иногда могут действовать как антенны, взаимодействуя с аудио- и видеовыходами вашего телевизора и компьютера. Таким образом, индукторы используются в ферритовых шариках, чтобы уменьшить такие радиочастотные помехи.

Индукторы в датчиках приближения

Большинство датчиков приближения работают по принципу индуктивности. Индуктивный датчик приближения состоит из четырех частей, включая индуктор или катушку, генератор, схему обнаружения и выходную схему.Осциллятор генерирует флуктуирующее магнитное поле. Когда объект приближается к этому магнитному полю, начинают накапливаться вихревые токи, уменьшая магнитное поле датчика.

Схема обнаружения определяет силу датчика, в то время как выходная схема вызывает соответствующий ответ. Индуктивные датчики приближения, также называемые бесконтактными датчиками, ценятся за их надежность. Они используются на светофорах для определения плотности движения, а также в качестве датчиков парковки легковых и грузовых автомобилей.

Асинхронные двигатели

Асинхронный двигатель, вероятно, является наиболее распространенным примером применения индукторов. Обычно в асинхронном двигателе индукторы устанавливаются в фиксированном положении. Другими словами, им не разрешается выравниваться с близлежащим магнитным полем. Источник питания переменного тока используется для создания вращающегося магнитного поля, которое затем вращает вал. Потребляемая мощность регулирует скорость вращения. Следовательно, асинхронные двигатели часто используются в приложениях с фиксированной скоростью.Асинхронные двигатели очень надежны и прочны, поскольку нет прямого контакта между двигателем и ротором.

Трансформаторы

Как упоминалось ранее, открытие индукторов привело к изобретению трансформаторов, одного из основных компонентов систем передачи энергии. Вы можете создать трансформатор, объединив индукторы общего магнитного поля. Обычно они используются для повышения или понижения напряжения в линиях электропередач до желаемого уровня.

Накопитель энергии

Катушка индуктивности, как и конденсатор, также может накапливать энергию. Однако, в отличие от конденсатора, он может накапливать энергию в течение ограниченного времени. Поскольку энергия хранится в магнитном поле, она схлопывается, как только отключается источник питания. Тем не менее, индукторы функционируют как надежные накопители энергии в импульсных источниках питания, таких как настольные компьютеры.


Компонент 6: реле

Реле — это электромагнитный переключатель, который может размыкать и замыкать цепи электромеханическим или электронным способом.Для работы реле необходим относительно небольшой ток. Обычно они используются для регулирования малых токов в цепи управления. Однако вы также можете использовать реле для управления большими электрическими токами. Реле — это электрический эквивалент рычага. Вы можете включить его небольшим током, чтобы включить (или усилить) другую цепь, использующую большой ток. Реле могут быть либо электромеханическими, либо твердотельными.

Рисунок 8: реле [Источник изображения]
A. Состав

Электромеханическое реле (ЭМИ) состоит из корпуса, катушки, якоря, пружины и контактов.Рама поддерживает различные части реле. Якорь — это подвижная часть релейного переключателя. Катушка (в основном из медной проволоки), намотанная на металлический стержень, создает магнитное поле, которое перемещает якорь. Контакты — это токопроводящие части, которые размыкают и замыкают цепь.

Твердотельное реле (SSR) состоит из входной цепи, цепи управления и выходной цепи. Входная цепь эквивалентна катушке электромеханического реле. Схема управления действует как связующее устройство между входными и выходными цепями, в то время как выходная цепь выполняет ту же функцию, что и контакты в ЭМИ.Твердотельные реле становятся все более популярными, поскольку они дешевле, быстрее и надежнее электромеханических реле.

B. Как это работает?

Используете ли вы электромеханическое реле или твердотельное реле, это нормально замкнутое (NC) или нормально разомкнутое (NO) реле. В случае реле NC контакты остаются замкнутыми при отсутствии питания. Однако в нормально разомкнутом реле контакты остаются разомкнутыми при отсутствии питания.Короче говоря, всякий раз, когда через реле протекает ток, контакты либо размыкаются, либо замыкаются.

В ЭМИ источник питания возбуждает катушку реле, создавая магнитное поле. Магнитная катушка притягивает металлическую пластину, установленную на якоре. Когда ток прекращается, якорь возвращается в исходное положение под действием пружины. EMR также может иметь один или несколько контактов в одном пакете. Если в цепи используется только один контакт, она называется цепью с одиночным разрывом (SB). С другой стороны, цепь двойного размыкания (DB) идет с буксировочными контактами.Обычно реле с одинарным размыканием используются для управления маломощными устройствами, такими как индикаторные лампы, в то время как контакты с двойным размыканием используются для управления мощными устройствами, такими как соленоиды.

Когда дело доходит до работы SSR, вам необходимо подать напряжение выше, чем указанное напряжение срабатывания реле, чтобы активировать входную цепь. Вы должны подать напряжение ниже установленного минимального напряжения падения реле, чтобы деактивировать входную цепь. Схема управления передает сигнал из входной цепи в выходную.Выходная цепь включает нагрузку или выполняет желаемое действие.

C. Функция и значение

Поскольку они могут управлять сильноточной цепью с помощью слаботочного сигнала, в большинстве процессов управления используются реле в качестве первичных устройств защиты и переключения. Они также могут обнаруживать неисправности и нарушения, возникающие в системах распределения электроэнергии. Типичные приложения включают телекоммуникации, автомобили, системы управления дорожным движением, бытовую технику и компьютеры, среди прочего.

Защитные реле

Защитные реле используются для отключения или отключения цепи при обнаружении каких-либо нарушений. Иногда они также могут подавать сигнал тревоги при обнаружении неисправности. Типы реле защиты зависят от их функции. Например, реле максимального тока предназначено для определения тока, превышающего заданное значение. При обнаружении такого тока реле срабатывает, отключая автоматический выключатель, чтобы защитить оборудование от возможного повреждения.

Дистанционное реле или реле импеданса, с другой стороны, может обнаруживать отклонения в соотношении тока и напряжения, а не контролировать их величину независимо. Он срабатывает, когда отношение V / I падает ниже заданного значения. Обычно защитные реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.

Реле автоматического повторного включения

Реле автоматического повторного включения предназначено для многократного повторного включения автоматического выключателя, который уже отключен с помощью защитного реле.Например, при резком падении напряжения в электрической цепи вашего дома может наблюдаться несколько кратковременных перебоев в подаче электроэнергии. Эти сбои происходят из-за того, что реле повторного включения пытается автоматически включить защитное реле. В случае успеха питание будет восстановлено. В противном случае произойдет полное отключение электроэнергии.

Тепловые реле

Тепловое воздействие электрической энергии — это принцип работы теплового реле. Короче говоря, он может обнаруживать повышение температуры окружающей среды и соответственно включать или выключать цепь.Он состоит из биметаллической полосы, которая нагревается при прохождении через нее сверхтока. Нагретая полоса изгибается и замыкает замыкающий контакт, отключая автоматический выключатель. Наиболее распространенное применение теплового реле — защита электродвигателя от перегрузки.


Компонент 7. Кристалл кварца

Кристаллы кварца находят несколько применений в электронной промышленности. Однако в основном они используются в качестве резонаторов в электронных схемах. Кварц — это встречающаяся в природе форма кремния.Однако теперь его производят синтетически, чтобы удовлетворить растущий спрос. Проявляет пьезоэлектрический эффект. Если вы приложите физическое давление к одной стороне, возникающие в результате вибрации создадут переменное напряжение на кристалле. Резонаторы на кварцевом кристалле доступны во многих размерах в зависимости от требований.

Рисунок 9: Кристалл кварца [Источник изображения]
A. Состав

Как упоминалось ранее, кристаллы кварца либо производятся синтетическим путем, либо встречаются в природе.Их часто используют для создания кварцевых генераторов для создания электрического сигнала с точной частотой. Обычно форма кристаллов кварца гексагональная с пирамидками на концах. Однако для практических целей их разрезают на прямоугольные плиты. К наиболее распространенным типам форматов резки относятся X, Y и AT. Эта плита помещается между двумя металлическими пластинами, называемыми удерживающими пластинами. Внешняя форма кварцевого кристалла или кварцевого генератора может быть цилиндрической, прямоугольной или квадратной.

Б.Как это работает?

Если подать на кристалл переменное напряжение, он вызовет механические колебания. Огранка и размер кристалла кварца определяют резонансную частоту этих колебаний или колебаний. Таким образом, он генерирует постоянный сигнал. Кварцевые генераторы дешевы и просты в изготовлении синтетическим способом. Они доступны в диапазоне от нескольких кГц до нескольких МГц. Поскольку кварцевые генераторы имеют более высокую добротность или добротность, они очень стабильны во времени и температуре.

C. Функция и значение

Исключительно высокая добротность позволяет использовать кристаллы кварца и резонансный элемент в генераторах, а также в фильтрах в электронных схемах. Вы можете найти этот высоконадежный компонент в радиочастотных приложениях, в качестве тактовых схем генератора в платах микропроцессоров, а также в качестве элемента синхронизации в цифровых часах.

Кварцевые часы

Проблема традиционных часов с винтовой пружиной заключается в том, что вам нужно периодически заводить катушку.С другой стороны, маятниковые часы зависят от силы тяжести. Таким образом, они по-разному показывают время на разных уровнях моря и высотах из-за изменений силы тяжести. Однако на характеристики кварцевых часов не влияет ни один из этих факторов. Кварцевые часы питаются от батареек. Обычно крошечный кристалл кварца регулирует шестеренки, которые управляют секундной, минутной и часовой стрелками. Поскольку кварцевые часы потребляют очень мало энергии, батарея часто может работать дольше.

Фильтры

Вы также можете использовать кристаллы кварца в электронных схемах в качестве фильтров.Они часто используются для фильтрации нежелательных сигналов в радиоприемниках и микроконтроллерах. Большинство основных фильтров состоят из одного кристалла кварца. Однако усовершенствованные фильтры могут содержать более одного кристалла, чтобы соответствовать требованиям к рабочим характеристикам. Эти кварцевые фильтры намного превосходят фильтры, изготовленные с использованием ЖК-компонентов.


Заключение

От общения с близкими, живущими на разных континентах, до приготовления горячей чашки кофе — электронные устройства затрагивают практически все аспекты нашей жизни.Однако что заставляет эти электронные устройства выполнять, казалось бы, трудоемкие задачи всего за несколько минут? Крошечные электронные схемы — основа всего электронного оборудования. Чтение о различных компонентах электронной схемы поможет вам понять их функции и значение. Поделитесь своими предложениями и мнениями по этому поводу в разделе комментариев ниже.

// Эта статья изначально была опубликована на ICRFQ.

Цепи серии

19.2 | Texas Gateway

Электрические цепи и резисторы

Теперь, когда мы понимаем понятие электрического тока, давайте посмотрим, что мы можем с ним сделать.Как вы, несомненно, знаете, современный образ жизни в значительной степени зависит от электрических устройств. Эти устройства содержат оригинальные электрические цепи, представляющие собой законченные замкнутые пути, по которым протекает электрический ток. Возвращаясь к нашей аналогии с водой, электрическая цепь предназначена для электрического заряда, как сеть труб — для воды: электрическая цепь направляет электрический заряд от одной точки к другой, пропуская заряд через различные устройства по пути для извлечения работы или информации.

Электрические цепи изготавливаются из многих материалов и охватывают огромный диапазон размеров, как показано на Рисунке 19.9. Компьютеры и сотовые телефоны содержат электрические цепи, размеры которых могут составлять примерно миллиардную долю метра (нанометра или 10-9 м · 10-9 м). Пути, которые направляют ток в этих устройствах, создаются сверхточной химической обработкой кремния или других полупроводников. С другой стороны, большие энергосистемы содержат электрические цепи, характеристики которых измеряются в масштабе метров. Эти системы переносят такие большие электрические токи, что их физические размеры должны быть относительно большими.

Рисунок 19.9 На фотографии слева показана микросхема , содержащая сложную интегральную электрическую схему. Такие чипы лежат в основе таких устройств, как компьютеры и сотовые телефоны. На фотографии справа показана типовая электрическая схема, необходимая для передачи электроэнергии большой мощности.

Пути, образующие электрические цепи, сделаны из проводящего материала, обычно из металла в макроскопических цепях. Например, медные провода внутри здания школы образуют электрические цепи, питающие освещение, проекторы, экраны, динамики и т. Д.Для представления электрической схемы рисуем принципиальные схемы. Мы используем линии и символы для обозначения элементов схемы. Простая электрическая схема показана в левой части рисунка 19.10. Справа — аналогичный водяной контур, о котором мы поговорим ниже.

Рисунок 19.10 Слева приведена принципиальная схема, показывающая батарею (красным), резистор (черный зигзагообразный элемент) и ток I . Справа аналогичный водяной контур. Насос подобен батарее, песочный фильтр подобен резистору, ток воды подобен электрическому току, а резервуар подобен земле.

Есть много разных символов, которые ученые и инженеры используют в принципиальных схемах, но мы сосредоточимся на четырех основных символах: провод, батарея или источник напряжения, резисторы и земля. Тонкие черные линии на электрической схеме обозначают путь, по которому должен идти электрический заряд. Предполагается, что эти пути являются идеальными проводниками, поэтому электрический заряд может перемещаться по ним без потери энергии. На самом деле провода в цепях не идеальны, но они подходят для наших целей достаточно близко.

Зигзагообразный элемент, обозначенный R , представляет собой резистор, который представляет собой элемент схемы, обеспечивающий известное сопротивление. Макроскопические резисторы часто имеют цветовую кодировку для обозначения их сопротивления, как показано на рисунке 19.11.

Красный элемент на рисунке 19.10 — это батарея с обозначенными положительной и отрицательной клеммами; более длинная линия представляет собой положительный полюс батареи, а более короткая линия — отрицательный полюс. Обратите внимание, что значок батареи не всегда окрашен в красный цвет; это сделано на рисунке 19.10 просто для облегчения идентификации.

Наконец, элемент с надписью земля в нижнем левом углу цепи указывает, что цепь подключена к Земле, которая представляет собой большой, практически нейтральный объект, содержащий бесконечное количество заряда. Помимо прочего, земля определяет потенциал отрицательной клеммы аккумулятора. Обычно потенциал земли определяется равным нулю: Vground≡0Vground≡0. Это означает, что весь нижний провод на рисунке 19.11 находится под напряжением ноль вольт.

Рисунок 19.11 Некоторые типовые резисторы. Цветные полосы указывают значение сопротивления каждого резистора.

Электрический ток на рисунке 19.10 обозначен синей линией I . Стрелка указывает направление, в котором будет течь положительный заряд в этой цепи. Напомним, что в металлах электроны являются мобильными носителями заряда, поэтому отрицательные заряды фактически текут в противоположном направлении по этой цепи (то есть против часовой стрелки). Однако мы проводим ток, чтобы показать направление, в котором будет двигаться положительный заряд.

В правой части рисунка 19.10 изображен аналогичный водяной контур. Вода под более высоким давлением покидает верхнюю часть насоса, что подобно зарядам, покидающим положительный полюс батареи. Вода движется по трубе, как заряды по проволоке. Затем вода проходит через песочный фильтр, который нагревается по мере протекания воды. Этот шаг подобен заряду, проходящему через резистор. Когда заряды проходят через резистор, они действительно нагревают резистор.Пройдя через песочный фильтр, вода преобразует свою потенциальную энергию в тепло, поэтому ее давление ниже. Точно так же заряды, выходящие из резистора, преобразовали свою потенциальную энергию в тепло, поэтому они имеют более низкое напряжение. Напомним, что напряжение — это всего лишь потенциальная энергия на заряд. Таким образом, давление воды аналогично электрической потенциальной энергии (то есть напряжению). Возвращаясь снова к водяному контуру, мы видим, что вода возвращается в нижнюю часть насоса, что подобно заряду, возвращающемуся на отрицательную клемму аккумулятора.Водяной насос использует источник энергии, чтобы снова перекачивать воду до высокого давления, создавая давление, необходимое для повторного прохождения через контур. Водяной насос похож на аккумулятор, который использует химическую энергию для повышения напряжения заряда до уровня положительного полюса.

Потенциальная энергия на заряд на положительном выводе батареи — это номинальное напряжение батареи. Это напряжение похоже на давление воды в верхней трубе. Точно так же, как более высокое давление заставляет воду двигаться к более низкому давлению, более высокое напряжение заставляет электрический заряд течь к более низкому напряжению.Насос забирает воду под низким давлением и работает над ней, выбрасывая воду под более высоким давлением. Точно так же аккумулятор заряжается при низком напряжении, работает на нем и выбрасывает заряд при более высоком напряжении.

Обратите внимание, что ток в водяном контуре, показанном на Рисунке 19.10, одинаков во всем контуре. Другими словами, если мы измерим количество молекул воды, проходящих через поперечное сечение трубы в единицу времени в любой точке цепи, мы получим один и тот же ответ независимо от того, где в цепи мы измеряем.То же самое и с электрической схемой на том же рисунке. Электрический ток одинаков во всех точках этой цепи, в том числе внутри батареи и в резисторе. Электрический ток не ускоряется в проводах и не замедляется в резисторе. Это создаст точки, в которых будет накапливаться слишком много или слишком мало заряда. Таким образом, ток одинаков во всех точках цепи, показанной на рисунке 19.10.

Хотя ток везде одинаковый как в электрическом, так и в водяном контурах, напряжение или давление воды изменяется по мере того, как вы перемещаетесь по контурам.В водяном контуре давление воды на выходе из насоса остается неизменным до тех пор, пока вода не пройдет через песочный фильтр, при условии отсутствия потерь энергии в трубе. Точно так же напряжение в электрической цепи одинаково во всех точках данного провода, потому что мы предположили, что провода являются идеальными проводниками. Таким образом, как показывает постоянный красный цвет верхнего провода на рис. 19.12, напряжение на этом проводе постоянно и равно V = VbatteryV = Vbattery. Затем напряжение падает, когда вы проходите через резистор, но как только вы дойдете до синего провода, напряжение останется на новом уровне V = 0V = 0 на всем пути до отрицательной клеммы батареи (т.е., синий вывод аккумуляторной батареи).

Рисунок 19.12 Напряжение в красном проводе постоянно при V = VbatteryV = Vbattery от положительного полюса батареи до верха резистора. Напряжение в синем проводе постоянно и равно V = Vground = 0V = Vground = 0 от нижней части резистора до отрицательной клеммы батареи.

Если перейти от синего провода через аккумулятор к красному проводу, то напряжение возрастет от V = 0V = 0 к V = VbatteryV = Vbattery. Аналогичным образом, если мы перейдем от синего провода через резистор к красному проводу, напряжение также изменится с V = 0V = 0 на V = VbatteryV = Vbattery.Таким образом, используя закон Ома, мы можем написать

Врезистор = Vbattery = IR. Vresistor = Vbattery = IR.

Обратите внимание, что VresistorVresistor измеряется от нижней части резистора до верхней части, что означает, что верхняя часть резистора находится под более высоким напряжением, чем нижняя часть резистора. Таким образом, ток течет от верхней части резистора или с более высоким напряжением к нижней части резистора или с более низким напряжением.

Virtual Physics

Цепь батарейного резистора

Используйте это моделирование, чтобы лучше понять, как связаны сопротивление, напряжение и ток.Моделирование показывает батарею с резистором, подключенным между выводами батареи, как на предыдущем рисунке. Вы можете изменить напряжение аккумулятора и сопротивление. Моделирование показывает, как электроны реагируют на эти изменения. Он также показывает атомные сердечники в резисторе и то, как они возбуждаются и нагреваются по мере прохождения большего тока через резистор.

Нарисуйте принципиальную схему цепи, убедившись, что нарисуйте стрелку, указывающую направление тока. Теперь отметьте три точки вдоль проволоки.Не меняя настроек, позвольте моделированию работать в течение 20 секунд, пока вы подсчитываете количество электронов, проходящих через это пятно. Запишите номер на принципиальной схеме. Теперь проделайте то же самое с двумя другими точками контура. Что вы заметили по поводу количества зарядов, проходящих через каждое пятно за 20 с? Помните, что этот ток определяется как скорость заряда, протекающего по цепи. Что это значит для тока во всей цепи?

Проверка захвата

С помощью ползунка напряжения подайте на аккумулятор положительное напряжение.Обратите внимание, что электроны в левом проводе расположены дальше друг от друга, чем в правом. Как это отражает напряжение в двух проводах?

  1. Напряжение между статическими зарядами прямо пропорционально расстоянию между ними.
  2. Напряжение между статическими зарядами прямо пропорционально квадрату расстояния между ними.
  3. Напряжение между статическими зарядами обратно пропорционально расстоянию между ними.
  4. Напряжение между статическими зарядами обратно пропорционально квадрату расстояния между ними.

Другие возможные элементы схемы включают конденсаторы и переключатели. Они нарисованы, как показано в левой части рисунка 19.14. Выключатель — это устройство, которое размыкает и замыкает цепь, как выключатель света. Он аналогичен клапану в водяном контуре, как показано в правой части рисунка 19.14. При разомкнутом переключателе ток в цепи не проходит.Когда переключатель замкнут, он становится частью провода, поэтому ток проходит через него без потери напряжения.

Конденсатор обозначен буквой C слева на Рисунке 19.14. Конденсатор в электрической цепи аналогичен гибкой мембране в водяном контуре. Когда переключатель замкнут в цепи, показанной на рисунке 19.14, батарея заставляет электрический ток течь к конденсатору, заряжая верхнюю пластину конденсатора положительным зарядом. Когда это происходит, напряжение на обкладках конденсатора увеличивается.Это похоже на мембрану в водяном контуре: когда клапан открывается, насос заставляет воду течь к мембране, заставляя ее растягиваться, чтобы удерживать избыток воды. Когда это происходит, давление за мембраной увеличивается.

Теперь, если мы разомкнем выключатель, конденсатор будет удерживать напряжение между своими пластинами, потому что зарядам некуда идти. Точно так же, если мы закроем клапан, воде некуда будет идти, и мембрана будет поддерживать давление воды в трубе между собой и клапаном.

Если переключатель в электрической цепи замкнут в течение длительного времени или если клапан в водяном контуре долгое время открыт, ток в конечном итоге перестанет течь, потому что конденсатор или мембрана полностью заряжены. Теперь каждая цепь находится в установившемся состоянии, что означает, что ее характеристики не меняются со временем. В этом случае установившееся состояние характеризуется нулевым током, и он не меняется, пока переключатель или клапан остаются в том же положении.В установившемся режиме через конденсатор не проходит электрический ток и через мембрану не проходит ток воды. Разница напряжений между пластинами конденсатора будет такой же, как и напряжение батареи. В водяном контуре давление за мембраной будет таким же, как давление, создаваемое насосом.

Хотя схема на рисунке 19.14 может показаться немного бессмысленной, потому что все, что происходит, когда переключатель замкнут, — это заряжается конденсатор, это показывает способность конденсатора накапливать заряд.Таким образом, конденсатор служит резервуаром для заряда. Это свойство конденсаторов используется в схемах по-разному. Например, конденсаторы используются для питания цепей во время зарядки аккумуляторов. Кроме того, конденсаторы могут служить фильтрами. Чтобы понять это, вернемся к аналогии с водой. Предположим, у вас есть шланг для воды и вы поливаете свой сад. Ваш друг думает, что он забавный, и перекручивает шланг. Пока шланг перекручен, вода не течет. Когда он отпускает, вода снова начинает течь.Если он сделает это очень быстро, вы почувствуете, что вода — нет воды — вода — нет воды, и это действительно не способ поливать свой сад. Теперь представьте, что шланг наполняет большое ведро, и вы поливаете его из нижней части. Если у вас с самого начала была вода в ведре и ваш друг не перегибал шланг слишком долго, вы сможете поливать свой сад без перерывов. Ваш друг, перегибающий водяной шланг, отфильтровал водой из большого ведра, поэтому это не повлияет на вашу способность поливать сад.Мы можем думать о прерывании тока (будь то вода или электрический ток) как шум . Конденсаторы действуют аналогично ведру для воды, помогая отфильтровывать шум. Конденсаторы имеют так много применений, что очень редко можно найти электронную схему, в которой нет конденсаторов.

Рис. 19.14 Слева представлена ​​электрическая цепь, содержащая батарею, переключатель и конденсатор. Слева — аналогичный водяной контур с насосом, клапаном и растягивающейся мембраной.Насос подобен батарее, клапан — переключателю, а растяжимая мембрана — конденсатору. Когда переключатель замкнут, электрический ток течет по мере зарядки конденсатора и увеличения его напряжения. Точно так же в водяном контуре, когда клапан открыт, поток воды течет по мере того, как растягивающаяся мембрана растягивается, и давление воды за ней увеличивается.

Работа по физике

Что нужно, чтобы стать инженером-электриком

Физика используется в самых разных областях.Одна из областей, требующая очень глубоких знаний физики, — это электротехника. Инженер-электрик может работать над чем угодно, от крупномасштабных энергосистем, обеспечивающих энергией большие города, до электронных схем нанометрового масштаба, которые используются в компьютерах и сотовых телефонах (рис. 19.15).

Работая с энергетическими компаниями, вы можете нести ответственность за обслуживание электросети, которая поставляет электроэнергию на большие территории. Хотя большая часть этой работы выполняется из офиса, обычно их вызывают на сверхурочную работу после штормов или других природных явлений.Многим инженерам-электрикам нравится эта часть работы, которая требует от них гонок по сельской местности, ремонтирующих высоковольтные трансформаторы и другое оборудование. Однако одним из наиболее неприятных аспектов этой работы является удаление трупов несчастных белок или других животных, забредших в трансформеры.

Другая карьера в области электротехники может включать разработку схем для сотовых телефонов, что требует втиснуть около 10 миллиардов транзисторов в электронный чип размером с ноготь большого пальца.Эти работы могут включать много работы с компьютерным моделированием, а также могут включать в себя другие области, помимо электроники. Например, линзы диаметром 1 м, которые используются для изготовления этих схем (по состоянию на 2015 год), настолько точны, что их отправляют с производства на завод по производству микросхем на грузовиках с регулируемой температурой, чтобы гарантировать, что они удерживаются в определенный температурный диапазон. Если они нагреваются или охлаждаются слишком сильно, они слегка деформируются, делая их бесполезными для сверхточной фотолитографии, необходимой для производства этих чипов.

Помимо глубоких знаний физики, инженеры-электрики должны, прежде всего, быть практичными. Рассмотрим, например, как одной корпорации удалось запустить несколько противоракетных ракет на ракетном полигоне Уайт-Сэндс в Нью-Мексико в 1960-х годах. Перед запуском обшивка ракеты должна была иметь такое же напряжение, что и рельс, с которого она запускалась. Рельс был соединен с землей большим медным проводом, соединенным с колом, вбитым в песчаную землю. Однако ракета была соединена с помощью пуповины с оборудованием в диспетчерской в ​​нескольких метрах от нее, которое было заземлено через другую цепь заземления.Перед запуском ракеты разница напряжений между обшивкой ракеты и направляющей должна быть менее 2,5 В. После особенно засушливой погоды запуск ракеты невозможен, так как разница напряжений составляет 5 В. Группа электрических цепей. инженеры, в том числе отец вашего автора, стояли и размышляли, как уменьшить разницу напряжений. Ситуация разрешилась, когда один из инженеров понял, что моча содержит электролиты и достаточно хорошо проводит электричество.При этом четыре инженера быстро решили проблему, помочившись на шип. Разница напряжений сразу упала ниже 2,5 В, и ракета была запущена по графику.

Рисунок 19.15 Системы, над которыми работают инженеры-электрики, варьируются от микропроцессорных схем (слева) до ракетных систем (справа).

Virtual Physics

Развлекайтесь, создавая схемы самых разных форм и размеров. Это моделирование предоставляет вам различные стандартные элементы схемы, такие как батареи, источники переменного напряжения, резисторы, конденсаторы, лампочки, переключатели и т. Д.Вы можете подключить их в любой конфигурации, которая вам нравится, и затем увидеть результат.

Создайте схему, которая начинается с резистора, подключенного к конденсатору. Подключите свободную сторону резистора к положительной клемме батареи, а свободную сторону конденсатора — к отрицательной клемме батареи. Нажмите кнопку сброса динамики , чтобы увидеть, как протекает ток, начиная с нулевого заряда конденсатора. Теперь щелкните резистор правой кнопкой мыши, чтобы изменить его значение. Когда вы увеличиваете сопротивление, схема достигает установившегося состояния быстрее или медленнее?

Проверка захвата

Когда схема достигла установившегося состояния, как напряжение на конденсаторе сравнивается с напряжением батареи? Какое напряжение на резисторе?

  1. Напряжение на конденсаторе больше, чем напряжение аккумулятора.В установившемся режиме через эту цепь не протекает ток, поэтому напряжение на резисторе равно нулю.
  2. Напряжение на конденсаторе меньше напряжения батареи. В установившемся режиме через эту цепь протекает конечный ток, поэтому напряжение на резисторе конечно.
  3. Напряжение на конденсаторе такое же, как напряжение аккумулятора. В установившемся режиме через эту цепь не протекает ток, поэтому напряжение на резисторе равно нулю.
  4. Напряжение на конденсаторе такое же, как напряжение аккумулятора. В установившемся режиме через эту цепь протекает конечный ток, поэтому напряжение на резисторе конечно.

Сопротивление и резисторы | Безграничная физика

Закон Ома

Закон

Ома гласит, что ток пропорционален напряжению; схемы являются омическими, если они подчиняются соотношению V = IR.

Цели обучения

Контрастная форма вольт-амперных графиков для омических и неомических цепей

Основные выводы

Ключевые моменты
  • Напряжение управляет током, а сопротивление препятствует ему.
  • Закон
  • Ома относится к пропорциональному соотношению между напряжением и током. Это также относится к конкретному уравнению V = IR, которое справедливо при рассмотрении схем, содержащих простые резисторы (сопротивление которых не зависит от напряжения и тока).
  • Цепи или компоненты, которые подчиняются соотношению V = IR, известны как омические и имеют линейные зависимости тока от напряжения, проходящие через начало координат.
  • Существуют неомические компоненты и схемы; их графики I-V не являются линейными и / или не проходят через начало координат.
Ключевые термины
  • простая схема : Схема с одним источником напряжения и одним резистором.
  • омический : То, что подчиняется закону Ома.

Закон Ома

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов V, которая создает электрическое поле.Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток. Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению V. Немецкий физик Георг Симон Ом (1787-1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению: [латекс] \ text {I} \ propto \ text {V} [/ latex ].

Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием.Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда. Напомним, что хотя напряжение управляет током, сопротивление ему препятствует. Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Следовательно, ток обратно пропорционален сопротивлению: [latex] \ text {I} \ propto \ frac {1} {\ text {R}} [/ latex].

Простая схема : Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленными красными параллельными линиями.Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Единицей измерения сопротивления является Ом, где 1 Ом = 1 В / А. Мы можем объединить два приведенных выше соотношения, чтобы получить I = V / R. Это соотношение также называется законом Ома. В этой форме закон Ома действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах.Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором, даже если его сопротивление невелико.

Падение напряжения : Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Дополнительное понимание можно получить, решив I = V / R для V, что дает V = IR. Это выражение для V можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I.Для этого напряжения часто используется фраза «падение ИК-излучения». Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывая ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию).В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку E = qΔV, и через каждую из них протекает одинаковое q. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.

В истинно омическом устройстве одно и то же значение сопротивления будет вычислено из R = V / I независимо от значения приложенного напряжения V. То есть отношение V / I является постоянным, и когда ток отображается как В зависимости от напряжения кривая является линейной (прямая линия).Если напряжение принудительно устанавливается равным некоторому значению V, тогда это напряжение V, деленное на измеренный ток I, будет равно R. Или, если ток принудительно установлен до некоторого значения I, тогда измеренное напряжение V, деленное на этот ток I, также будет R. график I против V как прямая линия. Однако есть компоненты электрических цепей, которые не подчиняются закону Ома; то есть их соотношение между током и напряжением (их ВАХ) нелинейное (или неомическое). Примером может служить диод с p-n переходом.

Кривые вольт-амперной характеристики : ВАХ четырех устройств: двух резисторов, диода и батареи.Два резистора подчиняются закону Ома: график представляет собой прямую линию, проходящую через начало координат. Два других устройства не подчиняются закону Ома.

Закон Ома : Краткий обзор закона Ома.

Температура и сверхпроводимость

Сверхпроводимость — это явление нулевого электрического сопротивления и выброс магнитных полей в некоторых материалах при температуре ниже критической.

Цели обучения

Описать поведение сверхпроводника при температуре ниже критической и в слабом внешнем магнитном поле.

Основные выводы

Ключевые моменты
  • Сверхпроводимость — это сверхпроводимость. Сверхпроводимость — это термодинамическая фаза, обладающая определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.
  • В сверхпроводящих материалах характеристики сверхпроводимости проявляются при понижении температуры ниже критической. Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств.
  • Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.
  • Сверхпроводники могут поддерживать ток без приложенного напряжения.
Ключевые термины
  • высокотемпературные сверхпроводники : материалы, которые ведут себя как сверхпроводники при необычно высоких температурах (выше примерно 30 K).
  • критическая температура : В сверхпроводящих материалах характеристики сверхпроводимости проявляются при этой температуре (и сохраняются ниже).
  • сверхпроводимость : Свойство материала, при котором он не оказывает сопротивления прохождению электрического тока.

Сверхпроводимость — это явление точно нулевого электрического сопротивления и выброса магнитных полей, возникающее в некоторых материалах при охлаждении ниже критической температуры.Он был обнаружен Хайке Камерлинг-Оннес (на фото) 8 апреля 1911 года в Лейдене.

Хайке Камерлинг-Оннес : Хайке Камерлинг-Оннес (1853-1926).

Большинство физических свойств сверхпроводников варьируются от материала к материалу, например теплоемкость и критическая температура, критическое поле и критическая плотность тока, при которых сверхпроводимость разрушается. С другой стороны, существует класс свойств, не зависящих от основного материала.Например, все сверхпроводники имеют точно нулевое удельное сопротивление по отношению к низким приложенным токам, когда нет магнитного поля или если приложенное поле не превышает критического значения. Существование этих «универсальных» свойств подразумевает, что сверхпроводимость является термодинамической фазой и, таким образом, обладает определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.

В сверхпроводящих материалах характеристики сверхпроводимости проявляются при понижении температуры T ниже критической температуры T c .Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств — отличительным признаком фазового перехода. Например, электронная теплоемкость пропорциональна температуре в нормальном (несверхпроводящем) режиме. При сверхпроводящем переходе он испытывает прерывистый скачок и после этого перестает быть линейным, как показано на.

Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.Эффект Мейснера не вызывает полного выброса поля. Скорее, поле проникает в сверхпроводник на очень небольшое расстояние (характеризуемое параметром λ), называемое лондонской глубиной проникновения. Он экспоненциально спадает до нуля в объеме материала. Эффект Мейснера — определяющая характеристика сверхпроводимости. Для большинства сверхпроводников лондонская глубина проникновения составляет порядка 100 нм.

Сверхпроводящий фазовый переход : Поведение теплоемкости (cv, синий) и удельного сопротивления (ρ, зеленый) при сверхпроводящем фазовом переходе.

Сверхпроводники также способны поддерживать ток без какого-либо приложенного напряжения — свойство, используемое в сверхпроводящих электромагнитах, таких как те, что используются в аппаратах МРТ. Эксперименты показали, что токи в сверхпроводящих катушках могут сохраняться годами без какого-либо измеримого ухудшения. Экспериментальные данные указывают на то, что в настоящее время продолжительность жизни составляет не менее 100 000 лет. Теоретические оценки времени жизни постоянного тока могут превышать расчетное время жизни Вселенной, в зависимости от геометрии провода и температуры.

Значение этой критической температуры варьируется от материала к материалу. Обычно обычные сверхпроводники имеют критические температуры в диапазоне от примерно 20 К до менее 1 К. Твердая ртуть, например, имеет критическую температуру 4,2 К. По состоянию на 2009 год самая высокая критическая температура, обнаруженная для обычного сверхпроводника, составляет 39 К. для магния. диборид (MgB 2 ), хотя экзотические свойства этого материала вызывают некоторые сомнения в правильности его классификации как «обычного» сверхпроводника.Высокотемпературные сверхпроводники могут иметь гораздо более высокие критические температуры. Например, YBa 2 Cu 3 O 7 , один из первых открытых купратных сверхпроводников, имеет критическую температуру 92 К; Были обнаружены купраты на основе ртути с критическими температурами, превышающими 130 К. Следует отметить, что химический состав и кристаллическая структура сверхпроводящих материалов могут быть довольно сложными, как показано в.

Элементарная ячейка сверхпроводника YBaCuO : Элементарная ячейка сверхпроводника YBaCuO.Атомы обозначены разными цветами.

Сопротивление и удельное сопротивление

Сопротивление и удельное сопротивление описывают степень, в которой объект или материал препятствуют прохождению электрического тока.

Цели обучения

Определить свойства материала, которые описываются сопротивлением и удельным сопротивлением

Основные выводы

Ключевые моменты
  • Сопротивление объекта (т. Е. Резистора) зависит от его формы и материала, из которого он состоит.
  • Удельное сопротивление ρ является внутренним свойством материала и прямо пропорционально общему сопротивлению R, внешней величине, которая зависит от длины и площади поперечного сечения резистора.
  • Удельное сопротивление различных материалов сильно различается. Точно так же резисторы могут иметь разные порядки величины.
  • Резисторы расположены последовательно или параллельно. Эквивалентное сопротивление цепи последовательно включенных резисторов является суммой всех сопротивлений.Сопротивление, обратное эквивалентному сопротивлению цепи параллельно включенных резисторов, является суммой обратных сопротивлений каждого резистора.
Ключевые термины
  • Эквивалентное сопротивление серии : Сопротивление сети резисторов, расположенных таким образом, что напряжение в сети является суммой напряжений на каждом резисторе. В этом случае эквивалентное сопротивление — это сумма сопротивлений всех резисторов в сети.
  • параллельное эквивалентное сопротивление : сопротивление сети, при котором на каждый резистор действует одинаковая разность потенциалов (напряжение), так что токи, проходящие через них, складываются.В этом случае сопротивление, обратное эквивалентному сопротивлению, равно сумме обратных сопротивлений всех резисторов в сети.
  • удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.

Сопротивление и удельное сопротивление

Сопротивление — это электрическое свойство, препятствующее прохождению тока. Ток, протекающий через провод (или резистор), подобен воде, протекающей по трубе, а падение напряжения на проводе подобно перепаду давления, которое проталкивает воду по трубе.Сопротивление пропорционально тому, сколько давления требуется для достижения заданного потока, в то время как проводимость пропорциональна тому, сколько потока возникает при заданном давлении. Проводимость и сопротивление взаимны. Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорционально его длине L, подобно сопротивлению трубы потоку жидкости.Чем длиннее цилиндр, тем больше зарядов соударяется с его атомами. Чем больше диаметр цилиндра, тем больше тока он может пропускать (опять же, аналогично потоку жидкости по трубе). Фактически, R обратно пропорционально площади поперечного сечения цилиндра A.

Цилиндрический резистор : однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление.Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.

Как уже упоминалось, для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы обладают разным сопротивлением потоку заряда. Мы определяем удельное сопротивление вещества ρ так, чтобы сопротивление объекта R было прямо пропорционально ρ. Удельное сопротивление ρ — это внутреннее свойство материала, независимо от его формы или размера. Напротив, сопротивление R — это внешнее свойство, которое действительно зависит от размера и формы резистора.(Аналогичная внутренняя / внешняя связь существует между теплоемкостью C и удельной теплоемкостью c). Напомним, что объект, сопротивление которого пропорционально напряжению и току, называется резистором.

Типичный резистор : Типовой резистор с осевыми выводами.

Что определяет удельное сопротивление? Удельное сопротивление разных материалов сильно различается. Например, проводимость тефлона примерно в 1030 раз ниже, чем проводимость меди. Почему такая разница? Грубо говоря, металл имеет большое количество «делокализованных» электронов, которые не застревают в каком-либо одном месте, но могут свободно перемещаться на большие расстояния, тогда как в изоляторе (например, тефлоне) каждый электрон прочно связан с одним атомом и требуется большая сила, чтобы оторвать его.Точно так же резисторы могут иметь разные порядки величины. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, тогда как сопротивление человеческого сердца составляет примерно 10 3 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Разность потенциалов (напряжение), наблюдаемая в сети, является суммой этих напряжений, поэтому общее сопротивление (последовательное эквивалентное сопротивление) можно найти как сумму этих сопротивлений:

[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} + \ text {R} _ {2} + \ cdots + \ text {R} _ {\ text {N}} [/ латекс].

В качестве особого случая сопротивление последовательно соединенных N резисторов, каждый из которых имеет одинаковое сопротивление R, определяется как NR. Каждый резистор в параллельной конфигурации подвержен одной и той же разности потенциалов (напряжению), однако протекающие через них токи складываются . Таким образом, можно вычислить эквивалентное сопротивление (Req) сети:

[латекс] \ frac {1} {\ text {R} _ {\ text {eq}}} = \ frac {1} {\ text {R} _ {1}} + \ frac {1} {\ text {R} _ {2}} + \ cdots + \ frac {1} {\ text {R} _ {\ text {N}}} [/ latex].

Параллельное эквивалентное сопротивление может быть представлено в уравнениях двумя вертикальными линиями «||» (как в геометрии) как упрощенное обозначение.Иногда вместо «||» используются две косые черты «//», если на клавиатуре или шрифте отсутствует символ вертикальной линии. Для случая, когда два резистора включены параллельно, это можно рассчитать по формуле:

[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} \ parallel \ text {R} _ {2} = \ frac {\ text {R} _ {1 } \ text {R} _ {2}} {\ text {R} _ {1} + \ text {R} _ {2}} [/ latex].

В качестве особого случая сопротивление N резисторов, подключенных параллельно, каждый из которых имеет одинаковое сопротивление R, определяется как R / N. Сеть резисторов, которая представляет собой комбинацию параллельного и последовательного соединения, может быть разбита на более мелкие части, которые являются одним или другим, например, как показано на.

Сеть резисторов : В этой комбинированной схеме цепь может быть разбита на последовательный компонент и параллельный компонент.

Однако некоторые сложные сети резисторов не могут быть решены таким образом. Это требует более сложного анализа схем. Одно из практических применений этих соотношений состоит в том, что нестандартное значение сопротивления обычно может быть синтезировано путем соединения ряда стандартных значений последовательно или параллельно. Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных используемых резисторов.В частном случае N идентичных резисторов, все подключенных последовательно или все подключенных параллельно, номинальная мощность отдельных резисторов умножается на N.

Сопротивление, резисторы и удельное сопротивление : краткий обзор сопротивления, резисторов и удельного сопротивления.

Зависимость сопротивления от температуры

Удельное сопротивление и сопротивление зависят от температуры, причем зависимость линейна для малых изменений температуры и нелинейна для больших.

Цели обучения

Сравнить температурные зависимости удельного сопротивления и сопротивления при больших и малых изменениях температуры

Основные выводы

Ключевые моменты
  • При изменении температуры на 100ºC или меньше удельное сопротивление (ρ) изменяется с изменением температуры ΔT как: [latex] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T }) [/ latex] где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления.
  • При больших изменениях температуры наблюдается нелинейное изменение удельного сопротивления с температурой.
  • Сопротивление объекта демонстрирует такую ​​же температурную зависимость, как и удельное сопротивление, поскольку сопротивление прямо пропорционально удельному сопротивлению.
Ключевые термины
  • удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.
  • температурный коэффициент удельного сопротивления : эмпирическая величина, обозначаемая α, которая описывает изменение сопротивления или удельного сопротивления материала в зависимости от температуры.
  • полупроводник : Вещество с электрическими свойствами, промежуточными между хорошим проводником и хорошим изолятором.

Удельное сопротивление всех материалов зависит от температуры. Некоторые материалы могут стать сверхпроводниками (нулевое сопротивление) при очень низких температурах (см.). И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы колеблются быстрее и на больших расстояниях при более высоких температурах, электроны, движущиеся через металл, например, создают больше столкновений, эффективно увеличивая удельное сопротивление.При относительно небольших изменениях температуры (около 100 ° C или меньше) удельное сопротивление ρ изменяется с изменением температуры ΔT, как выражается в следующем уравнении:

Сопротивление образца ртути : Сопротивление образца ртути равно нулю при очень низких температурах — это сверхпроводник примерно до 4,2 К. Выше этой критической температуры его сопротивление совершает внезапный скачок, а затем увеличивается почти линейно. с температурой.

[латекс] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]

, где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления.Для более значительных изменений температуры α может изменяться, или для нахождения ρ может потребоваться нелинейное уравнение. По этой причине обычно указывается суффикс для температуры, при которой измерялось вещество (например, α 15 ), и соотношение сохраняется только в диапазоне температур вокруг эталона. Обратите внимание, что α положителен для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Температурный коэффициент обычно составляет от + 3 · 10 −3 K −1 до + 6 · 10 −3 K −1 для металлов, близких к комнатной температуре.Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Например, манганин (состоящий из меди, марганца и никеля) имеет α, близкое к нулю, поэтому его удельное сопротивление незначительно меняется с температурой. Это полезно, например, для создания независимого от температуры эталона сопротивления.

Отметим также, что α отрицательна для полупроводников, что означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока.Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление объекта также зависит от температуры, поскольку R 0 прямо пропорционально ρ. Для цилиндра мы знаем, что R = ρL / A, поэтому, если L и A не сильно изменяются с температурой, R будет иметь ту же температурную зависимость, что и ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, и поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) Таким образом,

[латекс] \ text {R} = \ text {R} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]

— это температурная зависимость сопротивления объекта, где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры T. Многие термометры основаны на влиянии температуры на сопротивление (см.). Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *