Размеры резистора на схеме по госту: ГОСТ 2.702-2011 Единая система конструкторской документации (ЕСКД). Правила выполнения электрических схем

Содержание

Размеры условных графических обозначений

Выборка материалов из ГОСТ, имеющих отношение к размерам изображений условных графических обозначений элементов электрических схем.

Все изображения вставлены из ГОСТ без изменений.


ГОСТ 2.701-84 Схемы виды и типы. Общие требования к выполнению (фрагмент)

2.4.2. Условные графические обозначения элементов изображают в размерах, установленных в стандартах на условные графические обозначения. Условные графические обозначения, соотношения размеров которых приведены в соответствующих стандартах на модульной сетке, должны изображаться на схемах в размерах, определяемых по вертикали и горизонтали количеством шагов модульной сетки М (черт. 2а). При этом шаг модульной сетки для каждой схемы может быть любым, но одинаковым для всех элементов и устройств данной схемы.


Черт. 2а

 

 

Условные графические обозначения элементов, размеры которых в указанных стандартах не установлены, должны изображать на схеме в размерах, в которых они выполнены в соответствующих стандартах на условные графические обозначения.

Размеры условных графических обозначений, а также толщины их линий должны быть одинаковыми на всех схемах для данного изделия (установки).

Примечания:

1. Все размеры графических обозначений допускается пропорционально изменять.

2. Условные графические обозначения элементов, используемых как составные части обозначений других элементов (устройств), допускается изображать уменьшенными по сравнению с остальными элементами (например, резистор в ромбической антенне, клапаны в разделительной панели).


ГОСТ 2.722-68 Машины электрические (фрагмент)

9. Размеры основных элементов условных графических обозначений, табл. 3.


ГОСТ 2.721-74 Обозначения общего применения. Таблица 7


ГОСТ 2.728-74 Резисторы, конденсаторы (фрагмент)

7. Размеры условных графических обозначений приведены в табл. 6.
Все геометрические элементы условных графических обозначений следует выполнять линиями той же толщины, что и линии электрической связи.

Таблица 6

 


ГОСТ 2.730-73 Приборы полупроводниковые (фрагмент)

ПРИЛОЖЕНИЕ 2
Справочное
Размеры (в модульной сетке) основных условных графических обозначений

 


ГОСТ 2.732-68 ИСТОЧНИКИ СВЕТА (фрагмент)

4. Размеры условного графического обозначения лампы накаливания


ГОСТ 2.747-68 Размеры условных графических обозначений (фрагмент)

2. Размеры условных графических обозначений приведены в таблице.

 


ГОСТ 2.755-87 УСТРОЙСТВА КОММУТАЦИОННЫЕ И КОНТАКТНЫЕ СОЕДИНЕНИЯ (фрагмент)

Размеры (в модульной сетке) основных условных графических обозначений приведены в табл.10.
Таблица 10


ГОСТ 2.756-76 ВОСПРИНИМАЮЩАЯ ЧАСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ УСТРОЙСТВ (фрагмент)

Таблица 2


ГОСТ 2.767-89 РЕЛЕ ЗАЩИТЫ (фрагмент)

Размеры (в модульной сетке) основных условных графических обозначений
Таблица 4

 


ГОСТ 2. 768?90 ИСТОЧНИКИ ЭЛЕКТРОХИМИЧЕСКИЕ, ЭЛЕКТРОТЕРМИЧЕСКИЕ И ТЕПЛОВЫЕ (фрагмент)

СООТНОШЕНИЕ РАЗМЕРОВ ОСНОВНЫХ УСЛОВНЫХ ГРАФИЧЕСКИХ ОБОЗНАЧЕНИЙ


Дополнительно рекомендую прочитать статью: Размеры обозначений в электрических схемах.


 

ГОСТ 2.728-74* «ЕСКД. Обозначения условные графические в схемах. Резисторы, конденсаторы»

Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК "Трансстрой"СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.
ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской област

РЕЗИСТОРЫ | Маркировка резисторов ⋆ diodov.net

Резисторы относятся к наиболее простым, с точки зрения понимания и конструктивного исполнения, радиоэлектронным элементам. Однако при этом они занимают лидирующее место по применению в схемах различных электронных устройств. Поэтому очень важно научится применять их в практических целях, уметь самостоятельно рассчитать необходимые параметры и правильно выбрать резистор с соответствующими характеристиками. Этим и другим вопросам посвящена данная статья.

Основное назначение резисторов – ограничивать величину тока и напряжения в электрической цепи с целью обеспечения нормального режима работы остальных электронных компонентов электрической схемы, таких как транзисторы, диоды, светодиоды, микросхемы и т.п.

Главнейшим параметром любого резистора является сопротивление. Именно благодаря наличию сопротивления электронам становится сложнее перемещаться по электрической цепи, в результате чего снижается величина тока. Ввиду этого, сопротивление выполняет не только положительную роль – ограничивает ток, протекающий через другие радиоэлектронные элементы, но также является и паразитным явлением – снижает коэффициент полезного действия всего устройства. К паразитным относятся сопротивления проводов, различных соединений, разъемов и т.п. и его стремятся снизить.

Первооткрывателей такого свойства электрической цепи, как сопротивление является выдающийся немецкий ученый Георг Симон Ом, поэтому за единицу измерения электрического сопротивления приняли Ом. Наиболее практическое применение получили килоомы, мегаомы и гигаомы.

Расширенный список сокращений и приставок системы СИ физических величин, используемых в радиоэлектронике. Максимальное значение 1018 – экса, а минимальное – 10-18 – атто. Надеюсь, приведенная таблица станет полезной.

Условно резисторы подразделяются на два больших подвида: постоянные и переменные.

Постоянные резисторы

Постоянные резисторы могут иметь различное конструктивное исполнение, в основном отличающееся внешним видом и размерами. Характерной особенностью постоянных резисторов является постоянное значение сопротивления, которое не предусматривается изменять в процессе эксплуатации радиоэлектронной аппаратуры.

Подстроечные резисторы

Подстроечные резисторы применяются для тонкой настройки отдельных узлов радиоэлектронной аппаратуры на этапе ее окончательной регулировки перед выдачей в эксплуатацию. Чаще всего подстроечные резисторы не имеют специальной регулировочной рукоятки, а изменение сопротивления выполняется с помощью отвертки, что предотвращает самопроизвольное изменение положения регулировочного узла, а соответственно и сопротивления.

В некоторых устройствах после окончательной их регулировки на корпус и поворотный винт подстроечного резистора наносится краска, которая предотвращает поворот винта при наличии вибраций. Также метка, нанесенная краской, служит одновременно и индикатором самопроизвольного поворота регулировочного винта, что можно визуально определить по срыву краски в месте поворотного и стационарного элементов корпуса.

В современных электронных устройствах получили широкое применение многооборотные подстроечные резисторы, позволяющие более тонко выполнять регулировку аппаратуры. Как правило, они имеют синий пластиковый корпус прямоугольной формы.

Переменные резисторы

Переменные резисторы применяются для изменения электрических параметров в схеме устройства непосредственно в процессе работы, например для изменения яркости света светодиодных ламп или громкости звука приемника. Часто, вместо «переменный резистор» говорят потенциометр или реостат.

Также к переменным резисторам относятся радиоэлементы, имеющие всего два вывода, а сопротивление их изменяется в зависимости от освещенности или температуры, например фоторезисторы или терморезисторы.
Потенциометры применяются для изменения величины силы тока или напряжения. Регулируемый параметр зависит от схемы включения.

Если переменный либо подстроечный резистор используется в качестве регулятора тока, но его называют реостатом.

Ниже приведены две схемы, в которых реостат применяется для регулировки величины тока, протекающего через светодиод VD. В конечном итоге изменяется яркость свечения светодиода.

Обратите внимание, в первой цепи задействованы все три вывода реостата, а во второй – только два – средний (регулирующий) и один крайний. Обе схемы полностью работоспособны и выполняют возлагаемые на них функции. Однако вторую цепь применять менее предпочтительно, поскольку свободный вывод реостата, как антенна, может «поймать» различные электромагнитные излучения, что повлечет за собой изменение параметров электрической цепи. Особенно не рекомендуется применять такую электрическую цепь в усилительных каскадах, где даже незначительная электромагнитная наводка приведет к непредсказуемой работе аппаратуры. Поэтому берем за основу первую схему.

Изменять величину напряжения потенциометром можно по такой схеме: параллельно источнику питания подключается два крайних вывода; между одним крайним и средним выводами можно плавно регулировать напряжение от 0 до напряжения источника питания. В данном случае, от нуля до 12 В. Потенциометр служит делителем напряжения, которому более подробно уделено внимание в отдельной статье.

Условное графическое обозначение (УГО) резисторов

На чертежах электрических схем в независимости от внешнего вида резистора его обозначают прямоугольником. Прямоугольник подписывается латинской буквой R с цифрой, обозначающей порядковый номер данного элемента на чертеже. Ниже указывается номинальное значение сопротивления.

В некоторых государствах УГО резистора имеет следующий вид.

Мощность рассеивания резистора

Резистор, как и любой другой элемент, обладающий активным сопротивлением, подвержен нагреву при протекании через него тока. Природа нагрева заключается в том, что при движении электроны встречают на своем пути препятствия и ударяются об них. В результате столкновений кинетическая энергия электрона передается препятствиям, что вызывает нагрев последних. Аналогично нагревается гвоздь, когда по нему долго бьют молотком.

Мощность рассеивания нормируемый параметр для любого резистора и если ее не выдерживать, то он перегреется и сгорит.

Мощность рассеивания P линейно зависит от сопротивления R и в квадрате от тока I

P=I2R

Значение допустимой P показывает, какую мощность способен рассеять резистор не перегреваясь выше допустимой температуры в течение длительного времени.

Как правило, чем выше P, тем большие размеры имеет резистор, чтобы отвести и рассеять больше тепла.

На чертежах электрических схем этот параметр наносится в виде определенных меток.

Если прямоугольник пустой – значит мощность рассеивания не нормирована, поэтому можно применять самый «маленький» резистор.

Более наглядные примеры расчета P  можно посмотреть здесь.

Классы точности и номиналы резисторов

Ни один радиоэлектронный элемент невозможно выполнить со сто процентным соблюдением требуемых характеристик, так как точность связана с рядом параметров и технологических процессов, которым присуща погрешность, в основном связана с точностью производственного оборудования. Поэтому любая деталь или отдельный элемент имеют отклонение от заданных размеров или характеристик. Причем, чем меньший разброс характеристик, тем точнее производственное оборудование и выше конечная стоимость изделия. Поэтому далеко не всегда оправдано применение изделий с минимальными отклонениями характеристик. В связи с этим введены классы точности. В радиолюбительской практике наибольшее применение находят резисторы трех классов точности: I, II и III. Последним временем резисторы второго и третьего классов точности встречаются довольно редко, но мы их рассмотрим в качестве примера.

К I-му классу относится допуск отклонения сопротивления от номинального значения ±5%, II –му – ±10%, III –му – ±20%. Например, при номинальном значении сопротивления 100 Ом резистора I класса, допустимое отклонение может находиться в диапазоне 95…105 Ом; для II-го – 90…110 Ом; для III -го – 80…120 Ом.
Резисторы более высокого класса точности, с допуском 1% и менее, относятся к прецизионным. Они имеют более высокую стоимость, поэтому их применение оправдано только в измерительной и высокоточной технике.

Все стандартные значения сопротивлений I…III классов точности приведены выше в таблице, значения из которой могут умножаться на 0,1; 1, 10, 100, 1000 и т.д. Например, резисторы I-го класса изготавливаются со значениями 1,3; 13; 130; 1300; 13000; 130000 Ом и т.п.

В зависимости от класса точности, номинальные значения выпускаемых промышленностью резисторов строго стандартизированы. Например, если потребуется сопротивление 17 Ом I-го класса, то вы его не найдете, поскольку данный номинал не изготавливается в соответствующем классе точности. Вместо него следует выбрать ближайший номинал – 16 Ом или 18 Ом.

Маркировка резисторов

Маркировка резисторов служит для визуального восприятия ряда параметров, характерных для данных электронных элементов. Среди прочих параметров следует выделить три основных: номинальное значение сопротивления, класс точности и мощность рассеивания. Именно на эти параметры в первую очередь обращают внимание при выборе рассматриваемых радиоэлементов.

На протяжении долгих лет существовало много типов маркировки, однако постепенно, по мере развития технологических процессов, пару типов маркировки вытеснили все остальные.

На корпусах советских резисторов, которые все еще широко используются, наносится маркировка в виде цифр и букв. Латинские буквы «E» и «R», стоящие рядом с цифрами или только цифры, обозначают сопротивление в омах, например 21; 21E, 21R – 21 Ом. Буквы «k» и «M» означают соответственно килоомы и мегаомы. Например, если буква стоит перед цифрами или посреди них, то она одновременно служит десятичной точкой: 68к – 68 кОм; 6к8 – 6,8 кОм; к68 – 0,68 кОм.

Цветовая маркировка резисторов

Для большинства радиоэлектронных элементов сейчас применяется цветовая маркировка. Такой подход является вполне рациональный, поскольку цветные метки проще рассмотреть, чем цифры и буквы, поэтому хорошо распознаются даже на самых мелких корпусах.

Цветная маркировка резисторов наносится на корпус в виде четырех или пяти цветных колец или полос. В первом случае (4 полосы) первые две полосы обозначают мантису, а во втором (5 полос) – мантису обозначают три полосы. Третье или соответственно 4-е кольцо указывают множитель. Четвертое или пятое – допустимое отклонение в процентах от номинального сопротивления.

По моему мнению и личному опыту, гораздо удобней, проще и практичней измерять сопротивление мультиметром. Здесь наименьшая вероятность допустить ошибку, поскольку цвета колец не всегда четко различимы. Например, красный цвет можно принять за оранжевый и наоборот. Однако, выполняя измерения, следует избегать касания пальцами щупов мультиметра и выводов резистора. В противном случае тело человека зашунтирует резистор, и результаты измерений будут заниженные.

Маркировка SMD резисторов

Характерной особенностью SMD резисторов по сравнению с выводными аналогами являются минимальные габариты при сохранении необходимых характеристик.

В SMD компонентах отсутствуют гибкие выводы, вместо них имеются контактные площадки, посредством которых производится пайка SMD детали на аналогичные поверхности, предусмотренные на печатной плате. По этой причине SMD компоненты называют компонентами для поверхностного монтажа.

Благодаря смене традиционного корпуса на SMD упростился процесс автоматизации изготовления печатных плат, что позволило значительно снизить затраты время на изготовление электронного изделия, его массы и габаритов.

Маркировка SMD резисторов чаще всего состоит из трех цифр. Первые две указывают мантису ,а третья – множитель или количество нулей, следующих после двух предыдущих цифр. Например, маркировка 681 означает 68×101 = 680 Ом, то есть после числа 68 нужно прибавить один ноль.

Если все три цифры – нули, то это перемычка, сопротивление такого SMD резистора близкое к нулю.

Еще статьи по данной теме

Обозначение резисторов на схемах - Основы электроники

Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).

Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.

На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.

Рисунок 1. Общее обозначение резистора на схеме.

Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.

Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°).

Обозначение мощности резисторов на схемах показано на рисунке 2.

Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.

Обозначение переменных резисторов на схемах показано на рисунке 3.

Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.

Обозначение педстроечных резисторов на схемах показано на рисунке 4.

Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.

Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.

Эти обозначения приведены на рисунке 5.

Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Условное графическое обозначение и маркировки мощностей резисторов на схемах

Автор Aluarius На чтение 6 мин. Просмотров 339 Опубликовано

Если вы строите электрическую цепь (последовательную или параллельную), скорее всего, вам потребуется компонент, называемый резистором. Поставляется с фиксированным или переменным типом, они являются важной частью вашего следующего проекта по сборке схем. Поэтому сегодня мы стремимся помочь вам легко понять все, что вам нужно знать об этом крошечном электронном компоненте!

В этом руководстве по резисторам мы рассмотрим следующее, давая вам более глубокий взгляд на то, что такое резисторы и как вы можете их использовать:

  • что такое резистор;
  • символы и единицы измерения резистора;
  • типы резисторов;
  • как читать цветные полосы на резисторах;
  • резисторы в последовательной цепи и резисторы в параллельной цепи.

Какие бывают резисторы

Когда дело доходит до резисторов, есть в основном два типа – фиксированные и переменные резисторы. В этой части руководства мы объясним оба типа и то, из чего они состоят.

Примечание: есть еще другие типы резисторов, такие как фоторезистор, который использует датчик LDR для определения сопротивления от изменений уровня света и термистор для изменений температуры.

Что такое резистор? Описание

Мы знаем, что резистор является электронным компонентом, но его функциональность заключается в сопротивлении потоку электричества, ограничивая количество электронов, проходящих через цепь.

Обратите внимание! Резисторы не генерируют энергию, а вместо этого потребляют энергию, полагаясь на сопряжение с другими компонентами, такими как микроконтроллеры и интегральные схемы.

Вы можете сделать выводы или аналогии с проточной водопроводной трубой, в которой расположен резистор, чтобы уменьшить общий расход воды.

Какой блок использует резистор?

Резистор использует единицы измерения Ом (Ω) для измерения электрического сопротивления. Установленный г-ном Омом по закону Ома в 1827 году, вы можете рассчитать сопротивление, просто взяв напряжение, деленное на ток.

Условное графическое обозначение переменных резисторов

Как и все электронные компоненты, когда цепь сформирована, вы будете использовать символы для упрощения иллюстрации. В зависимости от стиля, который вы чаще всего видите, графическое обозначение мощности резисторов на схеме будет изображаться так:

УГО в американском стилеМеждународная маркировка резисторов

Понимание того, как выглядят символы резисторов, поможет вам различать различные электрические компоненты при анализе принципиальной схемы. Постоянный ток крайне хаотичен, поэтому нужно правильно применять резисторы.

Как определить по внешнему виду

Они представляют собой множество резисторов в диапазоне от 100 до 200 Ом, 330 Ом, 470 Ом, 10 кОм, 4,7 кОм и т. Д. Следовательно, чтобы понять, какой резистор подходит для вашей схемы, вам необходимо рассчитать требуемое сопротивление, чтобы подключить резистор.

Разница в резисторах определяется по маркировке, которая нанесена на корпус. Очень редко производитель делает нестандартную окраску.

Вот изображение того, как выбрать резистор, который соответствует требованиям вашего проекта:

Простая электронная схема с аккумулятором и светодиодом
  • Напряжение светодиода: 20 мА
  • Преобразование в Amps: 0.02A
  • Источник питания: 5 В

Резистор, который вы должны использовать: 5 В / 0,02 А = 250 Ом резистор. Если у вас нет резистора 250, это будет обозначать, что лучше использовать следующее ближайшее более высокое значение, чтобы быть в безопасности! Для более точного измерения применяют потенциометр.

Расчет резистора для светодиода смотрите здесь.

Расшифровка цветовой маркировки резисторов

Хотя они могут не отображать свою ценность напрямую, большинство резисторов размечены, чтобы показать их сопротивление. Резисторы из ПТГ используют систему цветовой кодировки, а резисторы SMD имеют свою собственную систему маркировки значений.

В сквозных отверстиях в осевых резисторах обычно используется система цветных полос для отображения их значения. Большинство из этих резисторов будут иметь четыре полосы цвета, окружающие резистор, хотя вы также найдете пяти-полосные и шести-полосные резисторы.

Резистор со стрелкой на схеме – обозначение, которое чаще всего используется в СНГ, чтобы отметить элемент электрической цепи. За границей они обозначаются по-другому, хотя можно встретить исключения.

Четырехполосные резисторы

В стандартных четырехполосных резисторах первые две полосы показывают две наиболее значимые цифры значения резистора. Третья полоса – это значение веса, которое умножает две значащие цифры на степень десяти.

Последняя полоса указывает на допуск резистора. Допуск объясняет, насколько больше или меньше фактического сопротивления резистора можно сравнить с его номинальным значением. Нет идеального резистора, и различные производственные процессы приведут к лучшим или худшим вариантам измерений допуска. Например, резистор 1 кОм с допуском 5% может быть где-то между 0,95 кОм и 1,05 кОм.

Как указать, какая группа первая и последняя? Последняя полоса сопротивления часто четко отделена от полос, и обычно это либо серебро, либо золото. Рассмотрим, какие бывают резисторы, какой размер нужен для конкретной цепи, как расчитывать параметры без калькулятора и подбирать на ходу параметры для обустройства конкретного участка цепи.

Пяти- и Шестиступенчатые Резисторы

Пяти-полосные резисторы имеют третью полосу значащих цифр между первыми двумя полосами и полосой умножителя . Пяти-полосные резисторы также имеют более широкий диапазон доступных условных допусков. Если не умножать полученное число на допускной коэффициент, результат будет искажаться.

Шести-полосные резисторы – это в основном пять полосных резисторов с дополнительной полосой на конце, которая указывает температурный коэффициент. Это указывает на ожидаемое изменение значения резистора при изменении температуры в градусах Цельсия. Как правило, эти значения температурного коэффициента чрезвычайно малы в своем диапазоне.

При декодировании цветовых полос резисторов обращайтесь к таблице цветовых кодов резисторов, как показано ниже. Для первых двух полос найдите соответствующее цифровое значение этого цвета. Резистор 4,7 кОм, показанный здесь, имеет начальные цветовые полосы желтого и фиолетового цвета, которые имеют цифры 4 и 7 (47). Третья полоса 4,7 кОм красного цвета , что означает, что 47 следует умножить на 10 2 (или 100). 47 раз 100 – это 4700!

Таблица цветовых кодов резисторов

Переменный резистор (обозначение на схеме), подстроечный резистор на схеме. Номенклатуру определяет ГОСТ 28883-90.

Цифровая маркировка на корпусе резисторов

Резисторы SMD, как и в пакетах 0603 или 0805, имеют свой собственный способ отображения их значения. Есть несколько распространенных методов маркировки, которые вы увидите на этих резисторах. Они обычно имеют от трех до четырех символов – цифры или буквы – напечатанные в верхней части корпуса.

Если все три символа, которые вы видите, являются цифрами , вы, вероятно, смотрите на резистор с маркировкой вида E24 . Эти маркировки на самом деле имеют некоторое сходство с системой цветовых полос, используемой на резисторах ПТГ. Первые два числа представляют первые две наиболее значимые цифры значения, последнее число представляет величину. Цифровая маркировка резисторов будет выглядеть так:

На приведенном выше примере изображения резисторы обозначены 104 , 105 , 205 , 751 и 754 . Резистор, помеченный 104, должен быть 100 кОм (10×10 4 ), 105 будет 1 МОм (10×10 5 ), а 205 – 2 МОм (20×10 5 ). 751 – это 750 Ом (75×10 1 ), а 754 – 750 кОм (75×10 4 ).

Еще одна распространенная система кодирования – E96 , и она самая необычная из всех. Резисторы E96 будут отмечены тремя символами – двумя цифрами в начале и буквой в конце. Два числа показывают первые три цифры значения, соответствующие одному из неочевидных значений в этой справочной таблице.

Буква в конце представляет множитель, соответствующий чему-то в этой таблице:

Таким образом, резистор 01C – лучший выбор, 10 кОм (100×100), 01B – 1 кОм (100×10), а 01D – 100 кОм. Это легко, другие коды могут не быть. 85A с картинки выше 750 Ом (750×1) и 30C на самом деле 20 кОм.

Коротко о характеристиках, отображенных в маркировке

Применяют такие обозначения и добавочные коэффициенты:

 

Маркировка SMD резисторов

Таблица международноймаркировки популярных моделей резисторов типа SMD

Классификация резисторов - Основные сведения - Лудим, паяем - Каталог статей

Классификация, основные параметры, обозначения и маркировка резисторов

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) являет­ся одним из самых распространенных радиоэлементов. Резисторы составляют до 35 % общего количества элементов в схемах совре­менной радиоэлектронной аппаратуры. Они используются в каче­стве нагрузочных и токоограничительных элементов, добавочных сопротивлений и шунтов, делителей напряжения. Резисторы обес­печивают режимы работы усилительных и генераторных прибо­ров и позволяют погасить излишек питающего напряжения. Раз­личные типы резисторов приведены на рис. 2.1.

 

Классификация резисторов

В зависимости от назначения различают постоянные и пере­менные резисторы (рис. 2.2).

Наибольшее распространение имеют постоянные резисторы об­щего назначения, которые используются практически во всех ви­дах радиоаппаратуры и блоках питания. Номинальные значения таких резисторов находятся в пределах от 1 Ом до 10 МОм, а номинальные мощности составляют 0,125... 100 Вт. Класс точнос­ти резисторов общего назначения составляет 2, 5, 10 или 20% номинала.

Кроме того, применяются постоянные резисторы специального назначения. К ним относятся, например, прецизионные (особо точные) резисторы, которые используются в основном в измери­тельных приборах в качестве шунтов. Допуск этих резисторов составляет от ±0,001 до 1 %. Они отличаются высокой стабиль­ностью.

Высокочастотные резисторы также являются резисторами спе­циального назначения. Они отличаются низкой собственной индуктивностью и предназначены для работы в высокочастот­ных узлах. Кроме того, имеются и другие виды постоянных рези­сторов.

Переменные резисторы подразделяются на подстроечные и ре­гулировочные. Подстроечные резисторы впаиваются в схему, и при наладке их сопротивление подстраивается с помощью регулятора. На лицевую панель радиоаппаратуры регуляторы подстроечных резисторов не выводятся. Износоустойчивость подстроечных ре­зисторов составляет до 1000 циклов.

Регуляторы регулировочных резисторов выводятся на лицевую панель. Они служат для регулировки параметров в процессе экс­плуатации. Такие резисторы обеспечивают до 5000 циклов пере­стройки.

По виду зависимости номинального сопротивления регулиро­вочного резистора от смещения его подвижной системы различа­ют резисторы с пропорциональным и непропорциональным (не­линейным) законами регулирования сопротивления.

Резисторы классифицируются также по материалу резистивно­го элемента (рис. 2.3).

Основные параметры резисторов

1. Номинальная мощность рассеяния Ртм — мощность, которую резистор может рассеивать при непрерывной нагрузке, номиналь­ных давлении и температуре. В радиоэлектронной аппаратуре чаще всего используются непроволочные резисторы с номинальными мощностями 0,125; 0,25; 0,5; 1 и 2 Вт. Мощность резистора опре­деляется по формуле Р = U2/R, где U — напряжение на резисто­ре, В; R — сопротивление резистора, Ом.
С учетом возможного повышения температуры резисторы вы­бирают с номинальной мощностью на 20... 30 % больше расчет­ной. Численное значение мощности обычно входит в обозначе­ние резистора, например МЛТ-1, где Р„ом = 1 Вт.JPmu.

3. Температурный коэффициент сопротивления (ТКС) характе­ризует относительное изменение сопротивления при изменении температуры на 1 °С. Если сопротивление резистора при повыше­нии температуры возрастает, а при понижении уменьшается, то ТКС положительный, если же с повышением (уменьшением) тем­пературы сопротивление снижается (увеличивается) — ТКС отрицательный. Температурный коэффициент сопротивления непроволочных резисторов составляет 0,03...0,1 1/°С, а резисто­ров повышенной точности — на порядок меньше.

4. Уровень шумов резистора, который оценивается по величине их переменной ЭДС, возникающей на его зажимах и отнесенной к 1 В приложенного к резистору напряжения постоянного тока.

5. Номинальное сопротивление — это электрическое сопротивле­ние, обозначенное на корпусе резистора и являющееся исходным для определения его допустимых отклонений. Резисторы выпуска­ются с таким значением номинального сопротивления, чтобы вме­сте с допуском оно было приблизительно равно значению сопро­тивления следующего номинала минус его допуск. Установлены следующие диапазоны номинальных сопротивлений: для посто­янных резисторов — от долей ома до единиц тераом; для пере­менных проволочных — от 0,47 Ом до 1 МОм; для переменных непроволочных — от 1 Ом до 10 МОм. Иногда допускается откло­нение от указанных пределов.

Численные значения номинальных сопротивлений резисторов, выпускаемых отечественной промышленностью, стандартизова­ны (ГОСТ 2825-67).

Разница между номинальным и действительным значениями (из-за погрешностей изготовления) сопротивления, отнесенная к номинальному значению, характеризует допускаемое отклоне­ние (допуск) от номинального сопротивления (в %). Допуски так­же стандартизованы и согласно ГОСТ 9667—74 имеют следующие значения: ±0,001, ±0,002, ±0,005, ±0,01, ±0,02, ±0,05, ±0,1, ±0,25, ±0,5, ±1, ±2, ±5, ±10, ±20 и ±30. Допуски указывают максимальное и минимальное значения номинального сопротив­ления.

Фактические значения сопротивлений могут отличаться от номинальных на величину стандартных допусков. Допуски указы­ваются в процентах (от ±0,001 до ±30).

Допустимые отклонения сопротивления (% от номинального значения) также обозначают буквами (табл. 2.1).

Таблица 2.1

Обозначение

Ж

У

Д

Р

Л

И

С

В

Допустимое отклонение, %

+0,1

±0,2

±0,5

±1

±2

±5

±10

±20

 

 

Обозначение резисторов на электрических схемах

Обозначение резисторов производится в соответствии с ГОСТом. Условное обозначение резисторов на электрических схемах в за­висимости от их типа приводится в табл. 2.2.

Таблица 2.2

Обозначение резисторов на электрических схемах

Резисторы с сопротивлением от 1 до 1000 Ом обозначаются на схемах целыми числами без указания единицы измерения (напри­мер, R330 означает, что резистор R имеет сопротивление 330 Ом).

Сопротивление, составляющее долю или число с долями ома, обозначается с указанием единицы измерения (например, 0,33 Ом или 3,3 Ом).

Резисторы с сопротивлением от 1 до 910 кОм обозначаются числом килоом с прибавление буквы К (например, R910К).

Резисторы с сопротивлением от 1 МОм и выше обозначаются без указания единицы измерения. Кроме того, если сопротивле­ние равно целому числу, то после его численного значения ста­вятся запятая и нуль (например, сопротивление 1 МОм обознача­ется 1,0).


   Материал для ознакомления взят из учебника «Радиоэлектронная аппаратура и приборы. Монтаж и регулировка». Автор: Ярочкина Г.В.

Приобрести учебник можно здесь.


 

Диаграмма последовательности

| Астах

Линия жизни

Вы можете создать линию жизни, дважды щелкнув диаграмму или выбрав способ ее представления на палитре инструментов.

※ Линия жизни онлайн доступна в Astah System Safety.

Добавление BaseClass

Вы можете добавить базовый класс в Lifeline, непосредственно введя его имя класса (блока) после имени Lifeline.

Или вы можете создать, нажав кнопку [Создать] в окне свойств Lifeline.

Или вы можете перетащить диаграмму «Класс в последовательность», чтобы создать линию жизни с классом в качестве базового класса.

Показать актера как Lifeline

Перетаскивая Актера из дерева на диаграмму, вы можете представить линию жизни в Актере на диаграмме последовательности.

Отрегулируйте длину троса

После создания диаграммы последовательности вы можете настроить длину линий жизни, чтобы очистить диаграмму.Щелкните диаграмму правой кнопкой мыши, выберите [Настроить длину линии жизни] и выберите один из этих трех вариантов.

По умолчанию

Сделайте весь жизненный путь как можно короче.

Выровнять по минимуму

Сделайте всю страховочную линию такой же длины, как и самая короткая на схеме.

Выровнять по максимуму

Сделайте всю страховочную линию такой же длины, как самая длинная на схеме.

Спецификация минимизации исполнения

Чтобы очистить диаграммы последовательности, вы можете уменьшить длину спецификаций выполнения. Щелкните диаграмму правой кнопкой мыши и выберите [Настроить длину спецификации выполнения].

Скрыть спецификацию исполнения

Вы можете скрыть поле Execution Specification на Lifeline.
В настоящее время это доступно только в версиях Astah Professional, UML и System Safety.

1. Щелкните в любом месте диаграммы.
2. В левой нижней панели откроется окно свойств для диаграммы последовательности. Установите флажок [Видимость спецификации выполнения].

Сообщение

Найдено сообщение

Чтобы создать найденное сообщение, выберите [Синхронное сообщение] или [Асинхронное сообщение] на палитре инструментов и щелкните целевую линию жизни.

Сообщение утеряно

Чтобы создать потерянное сообщение, выберите [Синхронное сообщение] или [Асинхронное сообщение] на палитре инструментов и нажмите «Линия жизни», а затем в любом месте, кроме «Линия жизни».

Ворота

Чтобы создать шлюз, выберите [Синхронное сообщение] или [Асинхронное сообщение] на палитре инструментов и щелкните рамку диаграммы, затем Линию жизни.

Ответное сообщение

Есть два способа создать ответное сообщение.

1. Выберите [Ответить на сообщение] на палитре инструментов и щелкните линию жизни.

2. Или включите [Режим ответного сообщения] на инструментальной палитре и создайте сообщения.

Комбинированный Фрагмент

Операнд

Вы можете создать операнд в режиме просмотра свойств CombinedFragment или во всплывающем меню диаграммы.


СОВЕТЫ: ​​Определите цикл в CombinedFragment

Вы можете вводить тексты и числа в окне свойств CombinedFragment.

Схемы и резисторы

  • Раздел 1.1 Проводники и изоляторы.
  • • Определите общие электрические проводники и способы их использования.
  • • Определите распространенные электрические изоляторы и способы их использования.
  • Раздел 1.2 Материалы в схемах.
  • • Определите электрические проводники на печатной плате.
  • • Определите распространенные изоляционные и проводящие материалы и способы их использования на печатной плате.
  • Раздел 1.3 Сопротивление проводников.
  • • Рассчитайте размеры проводника.
  • • Опишите влияние длины и площади поперечного сечения на сопротивление проводника.
  • Раздел 1.4 Удельное сопротивление.
  • • Опишите свойство удельного сопротивления.
  • • Выполните расчеты удельного сопротивления.
  • • Используйте соответствующие электрические единицы (Ом · м) для описания удельного сопротивления материалов обычных проводников и изоляционных материалов.
  • Раздел 1.5 Влияние температуры
  • • Опишите влияние температуры на сопротивление проводника.
  • • Опишите влияние температуры на сопротивление изолятора.
  • • Определите отрицательные и положительные температурные коэффициенты.
  • Раздел 1.6 Проверка удельного сопротивления
  • • Расчеты удельного сопротивления.

Рис.1.0.1 Сложная схема
Raspberry Pi

Введение

Электронные схемы варьируются от довольно простых схем из нескольких подключенных компонентов до обширных и очень сложных сетей.Этот модуль обеспечивает базовое введение в схемы и их свойства.

Рис.1.0.2 Raspberry Pi
Упрощенный!

Простая схема

Однако даже сложная схема, такая как Raspberry Pi, показанная на рис. 1.0.1, для некоторых целей анализа может быть проиллюстрирована простой схемой, такой как показанная на рис. 1.0.2. Это связано с тем, что вся сложность схемы может быть заменена (теоретически) одним резистором.

Raspberry Pi может питаться от 3.Источник питания 3 В постоянного тока, от которого он потребляет около 330 мА тока (в зависимости от того, в каком режиме он работает). Это означает, что теоретически Pi можно заменить резистором, номинал которого будет:

3,3 В, деленное на 330 мА = 10 Ом.

Почему? По общему признанию, резистор не будет работать так же, как Raspberry Pi, но он значительно упростит расчет схемы!

Любая электрическая или электронная цепь, какой бы сложной она ни была, на которую подается управляющее напряжение от какого-либо источника питания, пропускает определенное количество тока, и это то же действие, что и если бы источник питания (сеть / линия, аккумулятор, радиосигнал или что-то еще) подавали одиночный резистор с определенным значением сопротивления.

Использование только основных свойств простых схем, содержащих только источники питания, проводники, изоляторы и резисторы, может значительно упростить понимание более сложных схем. В этом начальном модуле будут изучены основные свойства проводников и изоляторов и показано, как рассчитать их важные значения. В последующих модулях этой серии будут представлены резисторы как в виде отдельных компонентов, так и в составе более сложных сетей.

Культурные аспекты и различия между культурами Хофстеде

Герт Хофстеде в своем пионерском исследовании, посвященном различиям в культуре современных наций, определил четыре аспекта культурных ценностей: индивидуализм-коллективизм, дистанция власти, избегание неопределенности и мужественность-женственность.Работая с исследователем Майклом Бондом, Хофстеде позже добавил пятое измерение под названием динамическое конфуцианство, или долгосрочная ориентация. Согласно исследованию Хофстеде, люди в индивидуалистических обществах должны заботиться только о себе и своих ближайших родственниках; в то время как в коллективистских культурах люди считают себя членами больших групп, включая членов расширенной семьи, и от них ожидается, что они несут ответственность за заботу друг о друге. Что касается дистанции власти, разные страны имеют разные уровни принятия неравного распределения власти.Избегание неопределенности принимает во внимание, что «степень, в которой общество чувствует угрозу неопределенными и двусмысленными ситуациями». Затем маскулинность-женственность исследует доминирующие ценности культуры и определяет, где эти ценности попадают в спектр, в котором «мужское начало» связано с напористостью, приобретением денег и вещей, а также безразличием к другим. Наконец, долгосрочная ориентация смотрит на то, в какой степени общество учитывает уважение к традициям и выполнение социальных обязательств; некоторые ориентированные на будущее ценности - настойчивость и бережливость.

Культурные аспекты Хофстеде сформировали фундаментальную основу для наблюдения за другими. Международные бизнесмены, психологи, исследователи коммуникаций и дипломаты извлекают выгоду из работы Хофстеде, как и все остальные. Использование этих интерпретационных рамок приводит к большему пониманию самих себя и других.

Чтобы более четко увидеть различия между культурами, мы составили список иллюстраций концепций Хофстеде в действии.

  1. Люди в коллективистских обществах, таких как большинство стран Латинской Америки, Африки и Азии, а также Ближнего Востока, подчеркивают обязательства, которые они имеют перед членами своей внутренней группы, и готовы пожертвовать своими индивидуальными потребностями и желаниями ради блага общества. группа.Коллективисты делают упор на приспособление; они ценят чувство принадлежности, гармонии и соответствия, и с большей вероятностью будут контролировать свои слова и действия, поскольку считают незрелым или неосмотрительным свободно выражать свои мысли, мнения или эмоции, не принимая во внимание их влияние на другие. Они заботятся о своих отношениях с внутренними группами, часто обращаясь с ними иначе, чем с незнакомцами или членами чужой группы, что также известно как партикуляризм.

«Сьерра-Леоне» Энни Спратт.Общественное достояние через Unsplash.
  1. В обществах с высокой дистанцией власти, таких как многие страны Латинской Америки, большинство стран Африки и Азии и большинство стран Средиземноморья, люди обычно принимают власть как неотъемлемую часть общества. Иерархия и неравенство сил считаются уместными и полезными. Ожидается, что начальство будет заботиться о подчиненных, и в обмен на это подчиненные будут подчиняться им, лояльны и уважительно относиться к ним, как это принято в армии.В этих культурах довольно распространено, что старшие или старшие имеют приоритет в сидении, еде, ходьбе и разговоре, тогда как младшие или подчиненные должны ждать и следовать за ними, чтобы проявить должное уважение. Младшие и подчиненные воздерживаются от свободного выражения своих мыслей, мнений и эмоций, особенно негативных, таких как разногласия, сомнения, гнев и т. Д. Большинство обществ с высокой дистанцией власти также являются коллективистскими обществами, за некоторыми исключениями, такими как Франция.
  1. В странах с низким уровнем власти, таких как Израиль, Дания и Ирландия, люди ценят равенство и стремятся минимизировать или устранить различные виды социального и классового неравенства. Они ценят демократию, а младшие и подчиненные вправе подвергать сомнению или бросать вызов власти. Большинство культур с низкой дистанцией власти также являются индивидуалистическими обществами.
  1. Люди из культур с высокой степенью избегания неопределенности, таких как многие латиноамериканские культуры, средиземноморские культуры и некоторые европейские (например.г., Германия, Польша) и азиатские культуры (например, Япония, Пакистан), как правило, больше нуждаются в формальных правилах, стандартах и ​​структурах. Отклонение от этих правил и стандартов считается деструктивным и нежелательным. Они также склонны избегать конфликтов, стремиться к консенсусу и меньше рисковать.

«Сианьская колокольня, Сиань, Китай» Линь Цяна. Общественное достояние через Unsplash.
  1. В культурах с низким уровнем избегания неопределенности, таких как Китай, Ямайка и Великобритания, люди более комфортно относятся к неструктурированным ситуациям.Неопределенность и двусмысленность считаются естественными и необходимыми. Они ценят творческий подход и индивидуальный выбор и могут свободно рисковать.
  1. В мужских культурах, таких как Мексика, Италия, Япония и Австралия, жесткие ценности, такие как достижения, амбиции, власть и напористость, предпочтительнее нежных, таких как качество жизни и сострадание к слабым. Кроме того, гендерные роли, как правило, различны и дополняют друг друга, что означает, что мужчины и женщины играют разные роли в обществе и, как ожидается, будут различаться в принятии этих ценностей.Например, от мужчин ожидается напористость, жесткость и стремление к материальному успеху, в то время как от женщин ожидается, что они будут скромными и нежными и сосредоточатся на улучшении качества жизни в семье.
  1. В женских культурах, таких как большинство скандинавских культур, гендерные роли изменчивы и гибки: мужчины и женщины не обязательно имеют разные роли, и они могут менять свою работу, заботясь о семье. Мало того, что женские общества больше заботятся о качестве жизни, услугах и заботе, но и такие нежные ценности приветствуются как мужчинами, так и женщинами в обществе.
  1. Основываясь на учении Конфуция, долгосрочная ориентация связана с поиском обществом добродетелей. Общества с долгосрочной ориентацией, такие как большинство восточноазиатских обществ, принимают ориентированные на будущее добродетели, такие как бережливость, настойчивость и настойчивость, упорядочивая отношения по статусу и культивируя чувство стыда за то, что не соответствуют коллективным ожиданиям.
  1. Общества с краткосрочной ориентацией поощряют больше ориентированных на настоящее или прошлое добродетелей, таких как личная устойчивость и стабильность, уважение к традициям и ответные приветствия, услуги и подарки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *