Регулятор мощности схема: принцип работы, варианты схем, как сделать своими руками

Содержание

Регулятор мощности своими руками - 90 фото постройки устройств разных типов

Стремление управлять электроприборами, влиять на их производительность привело к появлению диммеров. Наиболее популярный высоко востребованный – симисторный регулятор мощности, который при владении паяльником легко можно собрать своими руками.

Имея в своей конструкции катод и анод, регулятор мощности наиболее эффективно управляет направлением и силой тока, что напрямую отражается на управлении таких важных устройств как паяльник, сети освещения, динамики стереопроигрывателя, работа вентилятора.

Радиолюбители по достоинству оценили возможность разнообразного применения диммеров на основе симисторов. Некоторые вместо них используют реле, пускатели, контакторы, что в принципе, можно делать. Но преимущества в долговечности, прочности, в отсутствии искрения отодвигают все вышеназванные устройства на второй план.

Проанализировав схемы, в которых используется такая разновидность тиристоров, было выявлено, что их использование гораздо дешевле обходится, чем транзисторный сборки и микросхемы.


Краткое содержимое статьи:

Варианты монтажа

Схемы сборки регулятора мощности могут быть как простыми, так и сложными.

Понадобится:

  • Коробка под диммер;
  • Печатная плата;
  • Радиодетали для сборки схемы;
  • Паяльник;
  • Припой;
  • Флюс;
  • Пинцет.

Корпус можно изготовить из пластика, вырезав заготовки и склеив коробку или подобрать по размеру платы, используя старое зарядное устройство, тройник, одинарную или двойную внешнюю розетку и прочее.

Важно, чтобы вся микросхема поместилась в нем и прибором было удобно работать. Подбор корпуса зависит как от мощности, так и задач регулятора напряжения.

Если диммер изготавливается под паяльник, то можно его вмонтировать в заранее приобретенную подставку для паяльника. Когда нужно регулировать мощность лампы накаливания или скорость вращения вентилятора, то его нужно разместить так, чтобы им было удобно пользоваться. Лучше установить в корпус устройства, когда внутри его есть место, или жестко прикрепить к нему.

Простой вариант монтажа регулятора мощности своими руками

Существуют различные варианты сборки диммеров. Отличия – в полупроводниках (тиристорах и симмисторах), регулирующих интенсивность подачи силы тока.

Когда в схеме присутствует микроконтроллер управление диммером – намного точнее. Таким образом, можно собрать простой регулятор мощности на тиристоре или симисторе своими руками.


Между этими полупроводниками есть отличия.

  • Тиристор – позволяет течь току однонаправленно. При реверсе или отсутствии подачи напряжения он просто закрывается, работает как простой микровыключатель, точнее – пускатель. Только в отличие от последнего, не искрит и имеет более стабильные характеристики.
  • Симистор – одна из его разновидностей. Проводит ток в любом направлении. Это 2 тиристора, спаянных вместе в одном корпусе.

Наиболее популярная схема, которую часто можно увидеть на фотографиях – сборка регулятора мощности для паяльника своими руками.

Инструкция как сделать регулятор мощности

Первоначально нам нужно изготовить и подготовить для монтажа печатную плату. Нет необходимости использовать специальные компьютерные программы для этого и распечатывать ее лазерным принтером на специальной бумаге. Схема не так уж сложна, чтобы использовать дорогостоящее оборудование для ее изготовления.

Самый простой путь – самостоятельно сделать печатную плату из куска текстолита в такой последовательности:


Отрезаем нужный размер, обезжириваем и зашкуриваем поверхность. Карандашом создаем контуры схемы, потом обводим их маркером. Производим травление хлористым железом для удаления остатков меди с поверхности платы.

Просверливаем нужные отверстия под концы радиодеталей. Протираем изготовленную плату жидким флюсом (растворенным в спирте канифолем). С помощью тонкого слоя припоя создаем токоведущие дорожки и площадки.

Когда плата готова, впаиваем в нее следующие радиодетали:

  • Микроконтроллер;
  • Симистор bta16;
  • Динистор db3;
  • Резистор, на 2 кОм;
  • Конденсатор, на 100 нФ;
  • Пластина со штырьками.

Также нам понадобится штепсельная вилка, шнур и розетка. И коробка, куда будет помещаться плата с микросхемой.

Монтаж диммера выполняем в такой последовательности:


Откусываем и впаиваем штырьки (4 шт.). Размещаем все детали кроме микроконтроллера. Тщательно пропаиваем. Тщательно зачищаем промежутки между токоведущими дорожками с помощью иглы и щеточки;

В алюминиевом радиаторе просверливаем отверстие. Закрепляем на нем симистор. Наносим термопасту КПТ-8 на поверхность радиатора. Подключаем переменный резистор.

Куском провода замыкаем средний и крайний выводы. К крайним выводам припаиваем провода. Противоположные подсоединяем к плате в соответствующем месте.

Берем розетку с подключенными к ней двумя проводами. Один конец жилы припаиваем к плате. Другой – к сетевому шнуру. Оставшуюся жилу (от вилки) припаиваем к плате. Помещаем всю собранную «начинку» в коробку.

Когда диммер собран, берем в руки мультиомметр и прозваниваем схему. Когда все в порядке, подключаем настольную лампу и вращением ручки на корпусе устройства изменяем ее интенсивность свечения. Ее яркость будет расти и падать в зависимости от направления вращения.

Если лампа ведет себя так, как описано, то регулятор мощности сделан правильно, и его можно использовать по-назначению.

Фото регулятора мощности своими руками

Схема регулятора мощности на симисторе 3,5 кВт

Если вы ищите схему простого регулятора мощности то эта схема вам обязательно пригодится. Она достаточно простая, мощность нагрузки составляет 3,5 кВт, с её помощью можно регулировать освещение, нагревательные тэны и тому подобное. 

Единственный минус данной схемы, это то что подключить к ней индукционную нагрузку не получится, так как симистор выходит из строя! 

Схема регулятора мощности.

Детали регулятора

  1. Симистор Т1 можно взять BTB16-600BW или подобный (КУ 208 ил ВТА, ВТ).
  2. Динистор Т — DB3 или DB4
  3. Конденсатор 0,1мкФ керамический 

 

Резистор R2 510Ом ограничивает максимальное напряжение на конденсатор 0,1 мкФ, если поставить движок регулятора в положение 0Ом, то сопротивление цепи всё равно будет 510Ом

[ads1]

Заряжается он через резисторы R2 510Ом и переменный резистор R1 420кОм, после того, как напряжение на конденсаторе достигнет напряжения открывания динистора DB3, динистор формирует импульс, открывающий симистор, после чего, при проходе синусоиды, симистор закрывается. Частота открывания-закрывания симистора зависит от напряжения на конденсаторе 0.1мкФ, которое, в свою очередь, зависит от сопротивления переменного резистора. Таким образом, прерывая ток (с большой частотой) схема регулирует мощность в нагрузке. Допустим, если подключить электролампу через диод, мы заставим работать её «в пол накала» и продлим ей срок службы, однако не получиться регулировать яркость, да и неприятного мерцания не избежать. В симисторных схемах этого недостатка нет, так как частота переключения симистора слишком высока, и увидеть мерцание лампы человеческому глазу не под силу. При работе на индуктивную нагрузку, например электродвигатель, можно услышать что-то вроде пение, это будет частота с которой симистор подключает нагрузку к цепи.

Аналоги деталей используемых в схеме:

  • BTB16-600BW полные аналоги: BTA216-500B, MAC15-4, MAC15-6, MAC15-8, MAC16-4, MAC16-6, MAC16-8, MAC16D, MAC16M, Q2015R6, Q4015R6, Q5015R6, Q6015L5, Q6015R6
  • DB3 полные аналоги: HT-32, 

Источник

Регулятор напряжения для тена от 1 до 6 кВт

Регулятор напряжения в электрических цепях, служит для изменения мощности, подаваемой в нагрузку.

 С помощью регулятора напряжения можно управлять скоростью вращения электродвигателей, уровнем освещенности и нагревательными приборами такие как паяльник, электрическая плитка, тэн. В радиомагазинах можно купить готовое изделие но сделать регулятор напряжения своими руками не сложно.

В процессе самогоноварения выяснилось что на газу процес нагревания браги происходит достаточно долго (около 2-х часов) и к тому же, неудобно регулировать процесс дистилляции браги, газовой плиткой. В следствии чего возникла острая необходимость в модернизации самогонного(дистиллятного) аппарата, врезкой в него электрического нагревателя. Изначально задумывалось, что тен будет ставится мощностью 3 kW но в дальнейшем передумали и уменьшили до 2500 ватт. Далее нам понадобилась регулировка напряжения для управления процессом дисциляции, её мы решили изготовить своими руками, благо схем в общем доступе полно, они простые, минимум деталей и изготовление много времени не занимает.

Схема регулятора напряжения на 220 вольт

  • Рисунок 1. Схема.

Схема состоит из симистора, BTA41-800B по названию можно определить его параметры ток и напряжение. Например BTA это обозначение симистора, 41 это его ток в амперах и 800B это его напряжение. Симистор можна заменить на более слабый ток для этого нужно мощность вашего тена разделить на напряжение, например: 2 кВт разделить на напряжение в сети 220 вольт мы получим нужный нам ток 2000/220=9,1 Ампер. В этом случае мы можем использовать другой симистор BTA12-600B, но так как симистор будет работать практически на пределах своих возможностей, он будет греться и придется закрепить его на радиатор, в противном случае он может выйти из строя.

  • Рисунок 2. Схема с вольтметром.

Примечание.В схеме можно применять любой симистор не менее 600B и током в зависимости применяемого нагревательного элемента. В любом случае для облегчения работы симистора его следует разместить на радиаторе охлаждения. Дополнительно можно поставить вольтметр на выход схемы, чтобы видеть изменение напряжения наглядно и на вход поставить автомат на 16-25 ампер.

Детали для схемы:

1.Симистор выбираем от нагрузки но можете как в моем случае чем больше тем лучше BTA8-600b, BTA12-600b, BTA16-600b, BTA20-600b, BTA24-600b, BTA25-600b, BTA26-600b, BTA40-600b, BTA41-600b.

2.Потенциометр можно ставить в пределах от 470 кОм до 1 мегаом (МОм). Советую ставить потенциометр на 1 МОм так как у него больше диапазон регулировки, можно регулировать фактически до нуля. В начале я собрал схему с потенциометром на 500 кОм и в дальнейшем перепаивал на 1 мОм.

3.Динистор DB3 у него нет полярности припаиваем как хотим.

4.Резистор 10 кОм.

5.Конденсатор керамический 0,1 мкФ.

Изготовление схемы

  • Рисунок 3. Схема в моем исполнение.

Для изготовления схемы нам понадобится в первую очередь паяльник, припой и канифоль и радио детали которые без труда можно приобрести в любом радио-магазине. Пожалуйста, уделяйте пристальное внимание, есть риск поражения электрическим током (как и во всем электрическом).

И так, для начала берем печатную плату и на ней располагаем компактно все детали после чего спаиваем все по схеме. Останется прикрепить симистор на радиатор. Я взял радиатор из старого блока питания телевизора. И останется самое сложное найти корпус и разместить схему в нем. На собирание схемы по времени у меня ушло буквально 15 минут.

  • Рисунок 4. Схема регулятора мощности в моем исполнение.

Примечание. Эта схема часто встречается в пылесосах, китайских точильных станках.

  • Рисунок 5. Регулировка с пылесоса.

Также можно заказать с сайта Алиэкспресс вот несколько вариантов. 1 вариант, 2 вариант по заверению китайца способен держать 5 кВт, 3 вариант в красивом корпусе с вольтметром, 4 вариант.

Как происходит процесс регулировки напряжения в дистилляторном аппарате.

На начальном этапе нагреватель включаем на полную мощность. После достижения температуры (78,8) градусов, что соответствует точки кипения этилового спирта, мощность нагревателя уменьшаем. Опытным путем меняя положения регулятора, нужно добиться того, чтобы весь выделяющийся пар конденсировался системой охлаждения. Это поможет избежать лишних потерь спирта и в то же время при правильно подобранной мощности позволит сократить время производства до возможного минимума.

Регулятор напряжения

Как сделать своими руками регулятор мощности

Электроника – интересная, увлекательная и полезная наука. Всё, что нас окружает, чем пользуемся в быту, офисе, производстве, основано на управлении электронными приборами.

Люди разных возрастов (от 7 до 70 лет), увлеченные электроникой, приносят пользу человечеству, изобретая, конструируя, создавая приборы управления, гаджеты, вычислительную технику, телевизоры, музыкальные центры, аппаратуру связи и управления космической техникой и многое другое.

Бил Гейтс и Марк Цукерберг, Борис Евсеевич Черток и Николай Алексеевич Пилюгин, Александр Степанович Попов и Владимир Кузьмич Зворыкин – великие электронщики, создавшие мощную инфраструктуру, без которой современная жизнь немыслима.

Краткое содержимое статьи:

Идеи автоматизации двигают прогресс

Одним из разделов электроники является автоматизация и управление электронными и электрическими приборами.

Широкое применение имеют коммутационные приборы – тиристоры, разделяющиеся на типы:

  • кремниевый управляемый выпрямитель;
  • тетроидный тиристор;
  • симметричный (двунаправленный) триодный тиристор или симистор;
  • диодный тиристор – динистор;
  • симметричный динистор.

В различных бытовых приборах и электрических инструментах для регулировки мощности используется симисторный регулятор мощности.

Принцип работы симисторного регулятора мощности

Принцип работы симисторного регулятора мощности состоит в уникальных свойствах симистора, работающего как управляемое реле.

Симистор представляет собой два кремниевых управляемых выпрямителя (КУВ), включенных встречно, что позволяет протекать току в обоих направлениях и использовать симистор для коммутации и передаче переменного тока.

Симистор имеет три вывода, два из которых основные (силовые), обозначаются Т1; Т2 или ОВ1; ОВ2, третий – управляющий, обозначается УЭ или G.

Когда управляющий вывод обесточен, на основных выводах напряжение отсутствует, так как КУВы запирают электрическую цепь.

При подаче напряжения на управляющий вывод оба КУВа открываются, и через симистор протекает переменный ток.

Применяется симистор в различных устройствах:

  • переключатель для включения электрической нагрузки;
  • регуляторы:
  • яркости света;
  • скорости вращения электродвигателя;
  • мощности.

Схема регулятора мощности своими руками

Регулятор мощности просто сделать на тиристоре или симисторе своими руками. Тиристор пропускает ток в одном направлении и работает как пускатель.

Достоинства перед последним в том, что нет искрения в контактной группе, потому что тиристор прибор полупроводниковый бесконтактный.

Симистор, как уже говорилось, пропускает переменный ток и в зависимости от величины напряжения на управляющем входе регулирует напряжение на выходе схемы, в которую включен.

Схемы регулятора мощности можно найти в Интернете и выбрать по своим требованиям.

Инструкция, как сделать регулятор мощности

Для изготовления регулятора мощности понадобятся:

  • радиодетали в соответствии с применяемой схемой;
  • печатная плата;
  • корпус для будущего устройства;
  • паяльник;
  • пинцет;
  • бокорезы;
  • держатель для монтажной платы;
  • игла;
  • кисточка;
  • хлористое железо для травления печатной платы;
  • припой;
  • канифоль или флюс.

Корпус, в зависимости от фантазии конструктора можно склеить из пластика по размерам изделия, можно подобрать готовые корпуса от розеток, тройников или встроить устройство в инструмент, для которого делается регулятор.

Порядок выполнения работ

В первую очередь готовится печатная плата из куска фольгированного текстолита. На приобретенном куске текстолита размечаем расположение элементов схемы, отмечаем необходимые размеры платы и вырезаем её.

Обезжириваем фольгу, чистим мелкой шкуркой, рисуем карандашом монтажную схему регулятора, соответствующую принципиальной.

Лаком (можно лаком для ногтей) обводим карандашный рисунок. После высыхания лака опускаем плату в ванночку с хлористым железом и вытравливаем медную фольгу не участвующую в работе схемы.

В местах установки элементов схемы сверлим отверстия, наносим на остатки фольги пленку флюса и лудим дорожки и площадки, создавая токоведущие соединения. По готовности платы к установке элементов заканчиваем монтаж их установкой и впаиванием.

Устанавливаем симистор или тиристор на радиаторе для отвода тепла.

Припаиваем по схеме провода питания

Перед первым включением необходимо прозвонить всю схему и убедиться в том, что она собрана правильно. Убедившись в правильной сборке, подключаем на выход нагрузку. Наглядной нагрузкой для определения правильности работы регулятора может служить лампочка.

Изменяя положение ползунка потенциометра, убеждаемся в изменении интенсивности свечения лампы.

Схема работает и её можно использовать для регулировки мощности любой нагрузки.

Симисторный регулятор мощности

Простейший симисторный регулятор мощности состоит из симистора, переменного резистора и емкости (конденсатора).

Работает схема следующим образом. При включении устройства в сеть начинает заряжаться конденсатор.

Когда напряжение на нем достигнет напряжения открывания симистора, на выход схемы поступает импульс положительной или отрицательной полярности в соответствии с поступившей на вход полуволной. При переходе синусоиды входного тока через ноль симистор закрывается.

Переменный резистор и емкость образуют RC-цепочку, формирующую величину отсечки, т. е. время между двумя импульсами тока на выходе схемы. Чем больше их величины, тем больше величина отсечки и меньше ток, протекающий через нагрузку.

Применение регуляторов мощности на симисторе вместо переменного резистора, подключенного последовательно с нагрузкой, снижает потребление электроэнергии и повышает долгосрочность работы устройства.

Простой регулятор мощности

Один из вариантов простого регулятора мощности состоит из диодного моста, тиристора, переменного и постоянного резисторов и емкости.

Величина сопротивления переменного резистора и емкости конденсатора определяют время отсечки и мощность нагрузки. Применяется регулятор мощности в регулировке яркости освещения, нагреве паяльника и других аналогичных целях.

Преимущество простейшего регулятора мощности перед симисторным в использовании элементов, доступных каждому радиолюбителю в любое время. Быстрая сборка и простота отладки.

Увлечение техническим творчеством – занятие интересное и полезное. Удачи в техническом творчестве!

Фото советы как сделать своими руками регулятор мощности

Вам понравилась статья? Поделитесь 😉  

Регулятор мощности для паяльника своими руками: конструкция и элементная база

Во время работы с электрическим паяльником необходимо следить за температурой нагрева его жала. Она должна быть постоянной и не меняться. Однако в реальных условиях показатели часто то уменьшаются, то увеличиваются. Это приводит к тому, что приходится использовать специальный регулятор мощности для паяльника.


Паяльник часто используется во время ремонта электроники

Конструкция и детали

Многих людей интересует, какая может быть конструкция у такого регулятора. Данное устройство может быть наружным, в виде небольшого отдельного блока. Иногда встречаются более компактные конструкции, которые встраиваются в паяльную станцию или в корпус розетки.

Главными деталями регулятора мощности паяльника являются резисторы. Их мощность должна составлять не меньше 0,125 Вт. Если в устройстве присутствует R5, его мощность — от 2 Вт.

Дополнительная информация! Возможно, придется подбирать другой номинал деталей, чтобы напряжение в питании не опускалось ниже 11 В.

Как функционирует контролер паяльника

Существует огромное количество схем устройств для настройки нагрева паяльной станции. Однако все они работают по одинаковому принципу, который заключается в увеличении или уменьшении входной мощности. В редких случаях тот или иной регулятор для паяльника может отличаться по таким признакам:

  • тип используемой электронной схемы;
  • установленный измеряемый элемент для определения мощности;
  • число ступеней настройки мощности.

Независимо от вышеперечисленных отличий, данные устройства в любом случае будут представлять собой обычный коммутатор для регулирования мощности.

Варианты монтажа регуляторов мощности паяльника

Корпус розетки идеально подходит для установки регулятора мощности

В зависимости от поставленных задач, устройство для настройки мощности паяльной станции можно поместить в несколько различных корпусов:

  • Вилка. Это наиболее распространенный и удобный вариант. Довольно часто люди используют для этого зарядку от смартфона или корпусы от других адаптеров.
  • Внутри паяльника. Некоторые паяльные станции имеют достаточно большие корпуса, внутри которых можно без проблем расположить регулятор. Это очень удобно, так как устройство будет всегда под рукой.
  • Розетка. Часто регулятор напряжения для паяльника располагают внутри розеток. Этот способ можно использовать, если нет вилки или не хватает места в паяльной станции.

Важно! Прежде чем устанавливать регулятор в тот или иной корпус, надо ознакомиться с инструкцией и разобраться, как это делать правильно.

Необходимые материалы и инструменты

Микроконтроллер нужен для управления устройством

Чтобы сделать регулятор для паяльника своими руками, понадобятся следующие материалы:

  • Тиристор — электронный ключ для пропуска тока в одном направлении.
  • Симистор — подвид тиристора для проведения тока в двух направлениях.
  • Резистор — используется для конвертации напряжения в силу тока.
  • Конденсатор — необходим для своевременного выключения тиристора.
  • Стабилитрон — нужен для стабилизации напряжения.
  • Микроконтроллер Atmega — отвечает за электронное управление.

Из инструментов может понадобиться паяльник, отвертки, нож, флюс и припой.

Электрические принципиальные схемы регуляторов температуры паяльника

Прежде чем приступить к созданию и установке регулятора, необходимо ознакомиться с основными принципиальными схемами.

Схема регулятора для паяльника без помех на микросхеме

Данный вариант используют довольно редко, так как воплотить в жизнь такую схему непросто. Однако если в доме подключено огромное количество электроники, лучше пользоваться именно таким регулятором. Он будет отлично работать и при этом не выдавать в сеть помехи.

Стоит отметить, что пользоваться данной схемой нужно только в тех случаях, если человек работает с паяльной станцией ежедневно. Если же она большую часть времени лежит без дела, можно попробовать варианты попроще.

На базе фазовых регуляторов мощности PR1500S

PR1500S часто используется для изменения мощности паяльников

В данном случае устройство оснащается специальным фазовым регулятором. Других деталей в этой схеме не так много и поэтому сборка конструкции выполняется достаточно быстро.

Чтобы сделать регулятор температуры паяльника, используя эту схему, придется заранее подготовить резистор переменного типа с встроенным выключателем. Также понадобится конденсатор на 620 В. Он нужен, чтобы устранить помехи, которые могут появиться во время работы.

Регулятор мощности на симисторе КУ208Г

Это одна из наиболее простых схем, которую часто используют во время создания регуляторов мощности паяльника. Все, что понадобится для изготовления устройства — симистор и димистор.

Чтобы приспособление для настройки температуры правильно работало, пригодится димистор DB3 и симистор ВТ139.

Главное достоинство такой схемы — ее компактность. Она без проблем помещается в зарядный блок телефона.

На оптосимисторе МОС204х/306х/308х

Оптосимисторы устанавливаются практически во все регуляторы

Относительно популярная схема, которой довольно часто пользуются во время создания регуляторов. В этом случае при создании устройства рекомендуется пользоваться оптическими симисторами, так как они могут открываться, если напряжение переходит через ноль.

Также в схеме используется специальный индикатор-таймер 555 серии. Он необходим для своевременного отключения регулятора.

Важно! Все компоненты, которые используются в этой схеме, очень маленькие. Это позволяет размещать устройство практически в любом корпусе.

Регулировка на интегральном стабилизаторе

Распространенный метод настройки мощности паяльной станции — использование стабилизаторов интегрального типа. С их помощью удастся легко сделать регулятор напряжения, который позволит уменьшать и увеличивать температуру нагрева паяльного жала.

Единственный серьезный недостаток применения таких стабилизаторов заключается в том, что они сильно нагреваются. Это часто приводит к перегреванию стабилизирующей микросхемы.

С ШИМ-контроллером

Некоторые люди решают регулировать мощность при помощи специального ШИМ-контроллера. Для таких целей можно воспользоваться любой моделью, которая работает на частоте около 1 Гц. В качестве основного коммутирующего элемента в этой плате используется полевой транзистор. Его можно купить или найти на любой старой материнке. Подойдет любой транзистор, напряжение которого не опускается ниже 12 В.

Транзисторный регулятор мощности

Устройства на ШИМ-контроллерах — одни из наиболее эффективных

Многие пользуются транзисторными терморегуляторами для паяльника. Главное их преимущество заключается в том, что в них отсутствуют помехи. Еще одно преимущество таких устройств заключается в том, что они могут работать с индуктивной нагрузкой. Это позволяет использовать их не только с паяльниками, но и со светодиодными лампочками.

Монтировать транзистор необходимо на радиатор толщиной не менее трех сантиметров. Это предотвратит перегревание устройства во время его работы.

Важно! Подключаемая нагрузка должна быть меньше 100 Вт. При этом диапазон регулировки составляет от 10 до 220 В.

Регулятор мощности для паяльника на 20-36 В переменного напряжения

Если паяльник работает от сети с пониженным напряжением, для него придется делать отдельный регулятор.

Элементная база

Чтобы самостоятельно сделать такое устройство, понадобится заранее подготовить следующие компоненты:

  • Транзистор КТ815Б. Если такого нет, вместо него можно установить КТ815Г.
  • Диодный мост КЦ401А. Также для регулятора подойдет КЦ402 Б или С.
  • Диоды. Для регулятора мощности лучше использовать модели из серии Д9.

Также понадобятся конденсаторы. Рекомендуется устанавливать оксидные элементы типа К50-6.

Особенности монтажа

Печатная плата используется для соединения всех элементов регулятора

Чтобы изготовить такой регулятор, придется заранее заказать макет печатной платы и на нем разместить всю элементную базу. Особое внимание необходимо уделить резисторам. Дело в том, что их параметры подбираются в зависимости от желаемого предела регулирования.

Все компоненты рекомендуется размещать на радиаторе Г-образной формы. С лицевой стороны или в верхней части корпуса регулятора необходимо установить розетку для подключения паяльной станции.

Проверка и регулировка схемы

Чтобы проверить работоспособность устройства, необходимо воспользоваться мультиметром. Если во время вращения ручки регулирования мощности выходное напряжение будет меняться, значит все работает исправно. Однако иногда показатели напряжения не изменяются. Это говорит о том, что во время сборки регулятора были допущены ошибки.

Во время использования паяльника часто приходится вручную настраивать его мощность. Делается это при помощи специального регулятора. Его можно приобрести в специализированных магазинах или сделать самостоятельно.

схема, принцип работы и применение. Тиристорный прибор управления

Регуляторы мощности получили широкое применение в повседневной жизни. Их использование очень разнообразное: от регулирования величины яркости освещения до управления оборотами различных двигателей, с их помощью можно выставлять требуемую температуру различных нагревательных приборов. Таким образом, регулировать мощность можно для нагрузки любого вида как реактивной, так и активной.

Регулятор мощности представляет собой определённую электронную схему, с помощью которой можно контролировать значение энергии, подводимой к нагрузке.

Устройства, предназначенные для управления значениями мощности, разделяют по способу регулировки:

По виду выходного сигнала:

  • стабилизированные;
  • не стабилизированные.

Регулировка осуществляется при питании как от постоянного, так и переменного напряжения. Управлять можно величиной напряжения или тока.

По своему виду расположения регуляторы могут быть портативными и стационарными, устанавливаться в любом положении: вертикальном, потолочном, горизонтальном, крепиться на специальную дин рейку или встраиваться. Конструктивно выполняются как на специализированных печатных платах, так и с помощью навесного монтажа.

Основными характеристиками , на которые следует обращать внимание, являются следующие параметры:

  • плавность регулировки;
  • рабочая и пиковая подводимая мощность;
  • диапазон входного рабочего напряжения;
  • диапазон задания напряжения, поступающего на нагрузку;
  • условия эксплуатации.

Тиристорный регулятор мощности

Схема и принцип работы такого устройства не отличается особой сложностью. Основное назначение тиристорного преобразователя — управление устройствами с малой мощностью, но в редких случаях и большой. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока. Главным компонентом такой схемы является тиристор, работающий в режиме ключа. При появлении разности потенциалов на управляющем контакте он открывается. Чем больше задержка при включении, тем меньше мощности поступает в нагрузку.

Простейшая схема, кроме тиристора, содержит два биполярных транзистора, два резистора, задающих рабочую точку, и конденсатор. Транзисторы, работая в режиме ключа, формируют управляющий сигнал. Как только разность потенциалов на конденсаторе достигает значения, равному рабочему, то транзисторы открываются, и подаётся сигнал на управляющий контакт. Конденсатор начинает разряжаться до следующего полупериода.

Преимущества этого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом используется как активная, так и пассивная система охлаждения.

Применяется тиристорный регулятор для управления мощностью бытовых (паяльники, электронагреватели, лампы накаливания и т. д.) и производственных приборов (плавный запуск мощных силовых установок). Агрегат может быть однофазным и трёхфазным.

Изготовление устройства самостоятельно

Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Для этого нужно в специализированной точке продаж приобрести набор, содержащий подробную схему с описанием принципа сборки и работы. Или можно использовать любую схему из интернета или литературы и спаять устройство самостоятельно.

В качестве тиристоров можно использовать любой тип, например, отечественный КУ202Н или импортный bt151, в зависимости от необходимой мощности. Кроме тиристора, значение последней будет также зависеть от параметров , применяемого в схеме. Регулировка мощности осуществляется с помощью переменного резистора. Если нет возможности или желания изготовить печатную плату, можно собрать прибор с помощью навесного монтажа. При этом необходимо тщательно заизолировать все места соединений во избежание короткого замыкания.

Симистор является полупроводниковым элементом, предназначенным для использования в цепях переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, проводящего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно из-за этой способности симистор и применяется в сетях переменного тока.

Мощность регулируется в этом случае путём изменения количества полупериодов напряжения, которые действуют на нагрузку. Главное отличие от тиристорных схем в том, что здесь не используется выпрямительное устройство. Работа схемы основана на принципе фазного управления, то есть на изменении момента открытия симистора относительно перехода сетевого напряжения через ноль.

Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Сигнал на выходе устройства имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Широкую популярность получили симисторы средней мощности типа BT137−600E или MAC97A6. Схема регулятора мощности на симисторе с использованием этих элементов отличается простотой изготовления.

Фазовый регулятор

Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Один из видов таких приборов является диммер.

Основа работы лежит в изменении угла открытия ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижается действующая величина напряжения.

Достоинство такого типа регулирования — низкая стоимость ввиду применения недорогих радиодеталей. А вот основной недостаток — значимый коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Нередко в конструкции такого вида регуляторов используются микросхемы низкочастотного типа. Благодаря этому регулятор способен быстро изменять мощность. Фазовые регуляторы редко стабилизируют с помощью стабилитронов, обычно роль стабилизатора выполняют попарно работающие тиристоры.

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Такого типа устройства выпускаются достаточно давно. Одним из видов его был отечественный прибор, носящий название «Добавочное устройство для электропаяльника типа П223». Он позволял использовать низковольтный паяльник напряжением 36 вольт, питаемый от сети 220 В.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать.

Если в жилье есть газоснабжение, готовить пищу на газовой плите удобнее, а отопление газовым котлом обычно дешевле электрического варианта. Но при отсутствии газа оптимизация потребления электроэнергии становится очень важной задачей. Для ее решения надо потреблять ровно столько электрической энергии, сколько необходимо. А для этого потребуется оптимальное управление бытовыми электроприборами и освещением. Многие электроплиты, электрообогреватели, вентиляторы и т.д. снабжены встроенными регуляторами.

Но технические возможности системы управления электрооборудованием стоят немалых денег. И по этой причине чаще всего покупаются недорогие электроприборы с простейшими регуляторами. Далее мы расскажем читателям об устройствах, использование которых даст не только экономию электроэнергии, но и сделает многие электроприборы более удобными. Эти устройства - регуляторы мощности. Их назначение - регулировка среднего значения напряжения на нагрузке.

Проще всего купить диммер

Они уменьшают его величину, а соответственно, и потребляемую мощность. По законам Джоуля-Ленца и Ома для электрической цепи. Эффективное регулирование мощности нагрузки обеспечивают специальные технические решения. А любая схема регулятора мощности содержит полупроводниковый коммутатор. Кто желает поскорее обрести возможность гибкого управления своими электроприборами, может легко купить простой регулятор мощности. Им является диммер. Разнообразные модели этого устройства продаются в торговых сетях.

Очень удобен такой регулятор на даче. Он будет замечательным дополнением к маленькому кипятильнику или одно-, двухконфорочной электроплитке. Теперь в ходе приготовления еды не будет подгорания и слишком сильного кипения. Покупая регулятор мощности, обязательно удостоверьтесь в его соответствии решаемым задачам. Он должен быть мощнее управляемого электрооборудования. Большинство моделей диммеров рассчитано на обслуживание квартирного освещения. По этой причине они в основном регулируют мощность до 300 Вт.

Не нашел в магазине - сделай сам

Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение - просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на

Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку). При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.

Выбери триак

По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные. Поэтому рекомендуем остановиться на симисторах - схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое.

Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.

Современные симисторы в регуляторах

Устаревший дизайн КУ208Г не всегда удобен для размещения в корпусе регулятора. Новая модель BT136 600E, у которой параметры включения и регулировки примерно такие же, позволит собрать более компактный симисторный регулятор мощности. С этой моделью из-за ее компактности получается значительно больше вариантов конструкции, из которых можно выбирать.

Если самостоятельно изготавливается регулятор мощности, схема которого взята из какого-либо источника, обязательно сравните максимальные токи используемого ключа и нагрузки. В этих целях разделите паспортную мощность нагрузки на 220. Для надежной работы регулятора мощности на симисторе и не только полученное значение тока должно составлять 0,7 от номинального значения ключа, используемого в схеме. Поэтому для многих бытовых электроприборов КУ208Г окажется слабоват. Но его можно заменить более мощным, например ВТА 12.

Этот ключ со своими 12 амперами сможет надежно регулировать нагрузку до 1848 Вт с непродолжительным увеличением ее до 2000 Вт. Собранный регулятор мощности на симисторе этой модели, например, можно применить для управления электрическим чайником. Один из таких вариантов показан далее.

При выборе схемы регулятора мощности

  • коллекторного мотора постоянного тока,
  • универсальных (тоже коллекторных) двигателей,
  • пригодного для управления электродвигателя в каком-либо электрооборудовании,

рекомендуем обратить внимание на безопасность управления. Она обеспечивается гальванической развязкой в схеме регулятора. Ключ надежно развязывается от управляющего элемента, к которому прикасается пользователь. Для этого применяются схемотехнические решения с трансформаторами, а также оптронные электронные приборы. Примеры подобных схем показаны далее. В этих схемах управляющий элемент является частью контроллера.

Эффективный, надежный и безопасный регулятор мощности добавит многим вашим электроприборам новые потребительские свойства. За вами остается правильный выбор устройства при покупке или изготовление их без ошибок своими руками по выбранной схеме.

В статье мы расскажем о том, как изготовить симисторный регулятор мощности своими руками. Что такое симистор? Это прибор, построенный на кристалле полупроводника. У него аж 5 p-n-переходов, ток может проходить как в прямом, так и в обратном направлении. Но эти элементы широкое распространение в современной промышленной аппаратуре не получили, так как у них высокая чувствительность к помехам электромагнитной природы.

Также они не могут работать при высокой частоте тока, выделяют большое количество тепла, если производят коммутацию больших нагрузок. Поэтому в промышленной аппаратуре используют IGBT-транзисторы и тиристоры. Но симисторы тоже не стоит упускать из виду - они дешевые, у них маленький размер, а самое главное - высокий ресурс. Поэтому они могут использоваться там, где перечисленные выше недостатки не играют большой роли.

Как работает симистор?

Встретить сегодня симисторный регулятор мощности можно в любой бытовой технике - в болгарках, шуруповертах, стиральных машинках и пылесосах. Другими словами, везде, где есть необходимость в плавной регулировке частоты вращения двигателя.

Регулятор работает как электронный ключ - он закрывается и открывается с определенной частотой, которая задается схемой управления. Когда прибор отпирается, полуволна напряжения проходит через него. Следовательно, к нагрузке поступает небольшая часть минимальной мощности.

Можно ли сделать самому?

Многие радиолюбители изготавливают своими руками симисторные регуляторы мощности для различных целей. С его помощью можно контролировать нагрев жала паяльника. Но, к сожалению, на рынке готовые устройства встретить можно, но довольно редко.

У них низкая стоимость, но часто приборы не отвечают требованиям, которые предъявляются потребителями. Именно поэтому намного проще, оказывается, не купить готовый регулятор, а сделать его самостоятельно. В этом случае вы сможете учесть все нюансы использования прибора.

Схема регулятора

Давайте рассмотрим простой симисторный регулятор мощности, который можно использовать с любой нагрузкой. Управление фазово-импульсное, все компоненты традиционные для таких конструкций. Нужно применять такие элементы:

  1. Непосредственно симистор, рассчитанный на напряжение 400 В и ток 10 А.
  2. Динистор с порогом открывания 32 В.
  3. Для регулировки мощности используется переменный резистор.

Ток, который протекает через переменный резистор и сопротивление, заряжает конденсатор с каждой полуволной. Как только конденсатор накопит заряд и напряжение между его пластинами будет 32 В, откроется динистор. При этом конденсатор разряжается через него и сопротивление на управляющий вход симистора. Последний при этом открывается, чтобы ток прошел к нагрузке.

Чтобы изменить длительность импульсов, нужно подобрать переменный резистор и пороговое напряжение динистора (но это постоянная величина). Поэтому придется «играть» с сопротивлением переменного резистора. В нагрузке мощность оказывается сопротивлению переменного резистора. Диоды и постоянный резистор использовать не обязательно, цепочка предназначена для того, чтобы обеспечить точность и плавность регулировки мощности.

Как работает устройство

Ток, который протекает через динистор, ограничивается постоянным резистором. Именно с его помощью происходит корректировка длины импульса. С помощью предохранителя происходит защита цепи от КЗ. Нужно отметить тот факт, что динистор в каждой полуволне открывается на один и тот же угол.

Поэтому выпрямление протекающего тока не происходит, можно подключить даже индуктивную нагрузку к выходу. Поэтому использоваться может симисторный регулятор мощности и для трансформатора. Для того чтобы подобрать симисторы, нужно учесть, что для нагрузки в 200 Вт необходимо, чтобы ток был равен 1 А.

В схеме используются такие элементы:

  1. Динистор типа DB3.
  2. Симисторы типа ВТ136-600, ТС106-10-4 и аналогичные с номиналом по току до 12 А.
  3. Полупроводниковые диоды германиевые - 1N4007.
  4. Электролитический конденсатор на напряжение более 250 В, емкость 0,47 мкФ.
  5. Переменный резистор 100 кОм, постоянные - от 270 Ом до 1,6 кОм (подбираются опытным путем).

Особенности схемы регулятора

Такая схема является самой распространенной, но можно встретить и небольшие ее вариации. Например, иногда вместо динистора ставят диодный мостик. В некоторых схемах встречается цепочка из емкости и сопротивления для подавления помех. Существуют и более современные конструкции, в которых применяется схема управления на микроконтроллерах. При использовании такой схемы вы получаете точную регулировку тока и напряжения в нагрузке, но реализовать ее сложнее.

Подготовительные работы

Для того чтобы собрать симисторный регулятор мощности для электродвигателя, вам достаточно придерживаться такой последовательности:

  1. Сначала нужно определить характеристики прибора, который будет подключаться к регулятору. К характеристикам можно отнести: число фаз (либо 3, либо 1), необходимость в точной корректировке мощности, напряжение и ток.
  2. Теперь нужно выбрать конкретный тип устройства - цифровой или аналоговый. После этого можно осуществить выбор компонентов по мощности нагрузки. В принципе, для моделирования можно использовать специально программное обеспечение.
  3. Рассчитайте тепловыделение. Для этого умножьте два параметра - номинальный ток (в Амперах) и падение напряжения на симисторе (в Вольтах). Все эти данные можно найти среди характеристик элемента. В итоге вы получите мощность рассеяния, выраженную в Ваттах. Исходя из этого значения, нужно выбрать радиатор и кулер (при необходимости).
  4. Закупите все необходимые элементы или подготовьте их, если они у вас имеются.

Теперь можно приступить непосредственно к сборке устройства.

Сборка регулятора

Прежде чем собрать по схеме симисторный регулятор мощности, нужно выполнить ряд действий:

  1. Осуществите разводку дорожек на плате и подготовьте площадки, на которых нужно установить элементы. Заранее предусмотрите места для монтажа симистора и радиатора.
  2. Установите все элементы на плате и припаяйте их. В том случае, если у вас нет возможности сделать печатную плату, допускается использование навесного монтажа. Провода, которыми соединяются все элементы, должны быть как можно короче.
  3. Обратите внимание на то, соблюдена ли полярность при подключении симистора и диодов. Если отсутствует маркировка, прозвоните элементы мультиметром.
  4. Проверьте схему, используя мультиметр в режиме измерения сопротивления.
  5. Закрепите на радиаторе симистор, желательно использовать термопасту для лучшего контакта поверхностей.
  6. Всю схему можно установить в пластиковом корпусе.
  7. Установите в крайнее левое положение ручку переменного резистора и включите прибор.
  8. Измерьте значение напряжения на выходе устройства. Если вращать ручку резистора, напряжение должно плавно увеличиваться.

Как видите, изготовленный своими руками симисторный регулятор мощности - это полезная конструкция, которую можно использовать в быту практически без ограничений. Ремонт этого устройства копеечный, так как себестоимость довольно низкая.

Приборы, которые работают на потреблении электрического тока, можно настраивать. Для этого существуют специальные регуляторы. Сегодня всё большую популярность набирает симисторный подтип. Его существенным отличием стало двухстороннее действие. Благодаря тому, что в приборе есть анод и катод, в процессе их передвижения появляется возможность изменять направления тока.

Не стоит думать, то этот элемент можно заменить контакторами, пускателями или реле. Именно симисторы отличаются долговечностью, детали на приборе практически не изнашиваются. Основным положительным моментом от использования симистора, стало полное отсутствие искры в электрических приборах. Были проанализированы схемы, в которых использовались симисторы двунаправленные, их стоимость была значительно меньше, чем те, которые базировались на транзисторах и микросхемах .

Плюсы и минусы использования симисторов

Среди основных преимуществ можно назвать следующие:

  • минимальная стоимость прибора;
  • длительный срок эксплуатации;
  • возможность избежать механических контактов.

Есть и недостатки:

  • чтобы не произошло перегрева прибора, необходимо обязательно устанавливать радиатор;
  • симистор очень чувствителен к переходным процессам;
  • нет возможности использовать на больших частотах;
  • реагирует на посторонние помехи и шумы.

Особенности применения в электроприборах

Учитывая те показатели, которыми обладает симистор, его активно используют в работе приборов бытовой техники, таких как:

  • осветительные приборы, которые можно регулировать;
  • бытовые строительные электроинструменты;
  • нагревательные приборы;
  • приборы с наличием компрессора;
  • стиральные машины , пылесосы, вентиляторы, фены.

Как сделать регулятор мощности своими руками

Сегодня есть возможность установки простых диммеров в электрические приборы. Рассмотрим несколько вариантов схем по установке симисторов.

Для паяльника

Для этого прибора есть возможность собрать устройство настройки мощности до 100 Вт, необходимо всего несколько деталей. Именно с помощью него можно контролировать температуру жала паяльника, яркость настольной лампы, скорость вращения вентилятора. Сам регулятор можно собрать на основе симистора ВТА 16600. Его отличительными чертами станет то, что в цепи управляющего электрода симистора будет находить неоновая лампа.

Если вы решите использовать именно такой вид, то необходимо правильно выбрать неоновую лампу, она должна иметь минимальные показатели напряжения пробоя. Это очень важно, так как именно этот показатель и будет влиять на плавность регулировки мощности лампы или паяльника. Если устанавливать стартер в светильник, здесь можно неоновую лампочку не применять.

Варианты схем

Схемы диммера являются сами простыми. В качестве диодного моста используются диоды Д226, обязательно включаются тиристор КУ202Н, который имеет свою цепь управления. Если вы хотите иметь до 9 фиксированных положений регулировки, то нужно немного усложнить схему и добавить элемент логики – счётчик К561ИЕ8. Здесь также регулировать нагрузку будет тиристор. В схеме после установки диодного моста будет находиться обычный параметрический стабилизатор, который будет подавать питание на микросхему. Необходимо правильно для такой схемы подобрать диоды, их мощность должна равняться нагрузке, которую будет настраивать аппарат.

Существует ещё один вариант составления схемы для регулировки мощности пальника. В самой схеме нет ничего сложного, никаких дорогих или дефицитных деталей. С помощью установки светодиода можно контролировать включение и выключение прибора. Допустимые параметры выходного напряжения варьируются в пределах от 130 до 220 вольт. Для всех приборов можно использовать специальный индикатор напряжения. Его можно взять из старых моделей магнитофонов. Для того чтобы усовершенствовать такую головку, можно добавить светодиод. Он покажет включение и выключение прибора и будет подсвечивать шкалу мощности.

Не стоит забывать, что для такого прибора должен быть подобран правильный корпус. Его можно изготовить из обычного пластика, так как его удобно и легко резать, гнуть, обрабатывать, склеивать. Из куска пластика необходимо вырезать заготовку, зачистить края, и с помощью клея собрать коробку. В неё вкладывается собранный диммер. Когда собран сам прибор регулирования мощности, то его необходимо проверить перед введением в эксплуатацию.

Для проверки можно использовать обычный паяльник или мультиметр. Эти проборы достаточно подключить к выходу схемы, и постепенно вращать ручку регулятора. Это даст возможность определить плавность изменения выходного напряжения. Если в устройстве вы установили светодиод, то по его яркости свечения можно определить уменьшение или увеличение выходного напряжения.

Настройка устройства

Существуют схемы регулировки мощности, при нагрузке до 500 Вт или при переменном токе в 220 В. Это могут быть домашние вентиляторы, электродрели. Здесь нужно использовать устройства широкого диапазона, большой мощности. Симисторный регулятор будет использоваться в качестве фазового управления. Основным назначением прибора будет изменение момента включения симистора относительно перехода сетевого напряжения через ноль.

Изначально, в периоде положительного полупериода симистор закрыт. Как только начнёт увеличиваться напряжение, конденсатор заряжается и делится в двух направлениях. По мере увеличения сетевого напряжения, напряжение на конденсате отстаёт на величину, суммарного сопротивления делителя и ёмкости. Конденсатор будет заряжаться до момента получения напряжения около 32 В. В этот момент происходит открытие динистора, а с ним и симистора. Тогда начнёт поступать равный суммарному сопротивлению симистора и нагрузки. Симистор будет открыт на весь полупериод. Таким образом, происходит регулировка мощности напряжения.

Собрать симисторный регулятор мощности достаточно просто, даже не обладая специальными знаниями. Гораздо сложнее чётко усвоить правила его эксплуатации. Чрезвычайно важно, чтобы вышеизложенные нюансы строго соблюдались. В ином случае, собственноручная конструкция не будет функционировать качественно и может принести проблемы, связанные с целостностью и эффективной эксплуатацией электроприборов.

Видео: изготовление симисторного диммера

Регулятор мощности симисторный предназначен для регулировки мощности нагревательных и осветительных приборов мощность которых не првышает 1000 Вт.

Технические характеристики :
Рабочее напряжение; 160-300 В
Диапазон регулировки мащности 10-90%
Ток нагрузки: до 5 А

Устройство состоит из симистора и времязадающей цепочки. Принцип регулировки мощности заключается в изменения продолжительности времени открытого состояния симистора (рисунок 1). Чем большее время симистор открыт, тем большая мощность отдается в нагрузку. А так как симистор выключается в момент когда ток протекающий через симистор равен нулю, то задавать продолжительность открытия симистора будем в пределах половины периода. В начале положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения, конденсатор С1 заряжается через делитель R1, R2. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Динистор замкнет цепь Dl, Cl, D3 и откроет симистор U1. Симистор остается открытым до конца полупериода. Время зарядки конденсатора задается параметрами цепочки R1, R2, С1. Резистором R2 задаем время зарядки конденсатора, а соответственно и момент открытия динистора и симистора. Т.е. этим резистором производится регулировка мощности. При действии отрицательной полуволны принцип работы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности.


Используемые радиоэлементы:
R1 - 3.9...10K
R2 - 500K
C1 - 0.22мкФ
D1 - 1N4148
D2 - светодиод
D3 - DB4
U1 - BT06-600
P1,P2 клемники
R3 - 22K 2Вт
C2 - 0.22мкФ 400В


Правильно собранная схема наладки не требует.
При использовании нагрузки мощностью более 300 Вт, симистор необходимо установить на радиатор с площадью поверхности не мене 20 см 2
На переменный резистор необходимо установить ручку из изолированного материала.

При дополнении схемы всего двумя элементами (на схеме обозначены красным цветом)появляется возможность управления индуктивной нагрузкой. Т.е. можно на выход симисторного регулятора мощности подключить трансформатор.

ВНИМАНИЕ! Устройство гальванически не развязано от сети! Запрещается прикасаться к элементам включенной схемы!

Радиоконструктор 009, симисторный регулятор мощности 1 КВт,

Описание Радиоконструктор 009, симисторный регулятор мощности 1 КВт,

Радиоконструктор 009 Симисторный регулятор мощности 1 КВт.  Симисторный регулятор мощности (до 1 киловатт).  В состав входит печатная плата, симистор, радиатор охлаждения симистора, регулятор (переменный резистор) необходимый набор радиодеталей, монтажный провод, схема и описание. Позволяет изменять потребляемую мощность нагревательными приборами (паяльник, обогреватель, эл. плита), регулировать обороты дрели, перфоратора, регулировать напряжение на выходе !!!трансформатора.
 

  Начинающим                                                 Регулятор мощности на симисторе.                                                       (009)

              

           В радиолюбительской практике часто случается, что паяльник на 40 Ватт сильно нагревается, а на 25 Ватт не хватает мощности или необходимо уменьшить мощность нагревательного прибора, изменить яркость свечения лампы накаливания, снизить обороты коллекторного двигателя, электрической дрели, подключить к сети напряжением 220 вольт нагрузку, рассчитанную на напряжение 110 вольт, уменьшить напряжение на вторичной обмотке трансформатора. Тогда на помощь придёт симисторный регулятор мощности. Принцип его работы основан на изменении времени открытого состояния (фазово-импульсном управлении) симистора (симистор - это двунаправленный тиристор или «триак»). Это можно увидеть и понять, сравнив графики рис.1 полного периода сетевого напряжения на входе (верхний график) симистора и на выходе (нижний график). В определённый момент происходит отсечка симистором каждой полуволны сетевого напряжения и в результате в нагрузку поступает только часть мощности. Принципиальная схема регулятора мощности с фазово-импульсным управлением показана на рис. 2. Он собран по классической схеме на симметричном динисторе DB3 на 32V (VD3) и симисторе ТС106-10-4 (отечественного производства 10 ампер 400 вольт) или импортных аналогах ВТ136-600, ВТ134-600 (4А, 600В), ВТ137-600 (8А, 600В), ВТ138-600 (12А, 600В), ВТ139-600, ВТА16-600 (16А, 600В) (VD4). При каждой полуволне сетевого напряжения конденсатор С1 заряжается током, протекающим через резисторы R2, R3. Когда напряжение на нем достигает 32 В, динистор открывается и конденсатор С1 быстро разряжается через резистор R4, динистор VD3 и управляющий электрод симистора. Таким образом, происходит управление симистором: когда напряжение на условном аноде симистора (верхний по схеме вывод) положительное, управляющий импульс тоже положительный, а при отрицательном напряжении - отрицательной полярности. Значение мощности в нагрузке, зависит от того, как долго симистор будет включен в течение каждого полупериода сетевого напряжения. Момент включения симистора определяется пороговым напряжением динистора и постоянной времени (R2 + R3), C1. Чем больше сопротивление переменного резистора R2, тем длительнее промежуток времени, в течение которого симистор находится в закрытом состоянии, тем меньше мощность в нагрузке. Схема обеспечивает практически полный диапазон регулирования выходной мощности - от 0 до 99 %. При подключении переменного резистора R2, необходимо учесть то, что увеличение выходной мощности происходит с уменьшением сопротивления переменного резистора.     Цепь, образованная диодами VD1, VD2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без нее характеристика управления регулятором имеет гистерезис. Например, яркость лампы накаливания, используемой в качестве нагрузки, при увеличении выходной мощности изменяется скачком от нуля до 3...5% от максимальной яркости.          Суть этого явления заключается в следующем: при большом сопротивлении резистора R2, когда напряжение на конденсаторе С1 не превышает 30 В, динистор не открывается в течение всего полупериода сетевого напряжения и выходная мощность равна нулю. При этом к моменту перехода сетевого напряжения через "ноль" напряжение на конденсаторе имеет нулевое значение и в следующем полупериоде значительную часть времени конденсатор разряжается. Если сопротивление резистора R2 уменьшать, то после того, как напряжение на конденсаторе начнет превышать порог срабатывания динистора, конденсатор будет разряжен в конце полупериода и в следующем полупериоде сразу же начнет заряжаться, поэтому в новом полупериоде динистор откроется раньше. Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и тем самым устраняет эффект скачкообразного начального увеличения мощности в нагрузке. Резистор R4 ограничивает максимальный ток через динистор примерно до 0,1 А и замедляет процесс разрядки конденсатора С1. Тем самым обеспечивается относительно большая длительность импульса, достаточная для надежного запуска симистора VD4 даже при значительной индуктивной составляющей нагрузки. При указанных на схеме номиналах резистора R4 и конденсатора С1 длительность импульса управления равна 130 мкс. Значительную часть этого времени через управляющий электрод симистора протекает ток, достаточный для открывания симистора.

                Симметричный динистор 32V (VD3) обеспечивает одинаковость угла открывания симистора в обеих полуволнах сетевого напряжения. Следовательно, описываемый регулятор не будет выпрямлять сетевое напряжение, поэтому во многих случаях может быть применен даже для управления нагрузкой, подключенной к нему через трансформатор.  Падение напряжения на симисторе VS1 равно примерно 2 В, поэтому при нагрузке мощностью более 100 Вт симистор необходимо установить на соответствующий теплоотвод (радиатор). Максимальная мощность нагрузки не должна превышать возможности симистора (4 А = 800 Вт, 8 А = 1600 Вт, 10 А = 2 КВт, 12 А = 2,4 КВт, 16 А = 3,2 КВт, 40 А = 8 КВт).

          При включении схемы в сеть 220 вольт необходимо строго соблюдать правила техники безопасности! Все элементы схемы находятся под смертельно опасным напряжением! Категорически запрещается касаться любыми частями тела элементов схемы. При установке радиатора симистора, необходимо между симистором и радиатором установить изолирующую теплопроводящую прокладку, а на крепящий винт (саморез) одеть фторопластовую изолирующую втулку и плотно прижать симистор к радиатору. Не смотря на то, что вал переменного резистора гальванически не связан с его выводами, обязательно на вал необходимо установить пластиковую изолирующую ручку, так как при поломке подвижного контакта резистора не исключается возможность электрического контакта вала с выводами резистора.

         Настоящая схема имеет недостаток – при работе симистора в режиме отсечки, на его выходах появляются помехи. Если эти помехи оказывают влияние на другую аппаратуру, необходимо установить в схему помехоподавляющую цепочку R2, C6 (в комплект набора входят, но изначально в схему не устанавливаются). Если этой цепочки будет недостаточно, необходимо включать схему в сеть через сетевой фильтр (рис. 5). Этот фильтр можно взять из неисправного блока питания компьютера, использовав дроссель, состоящий из двух одновременно (бифилярно) намотанных обмоток на ферритовом кольце и параллельно подключенного конденсатора с рабочим напряжением не менее 400 вольт. На рис. 3 показаны три возможных вида маркировки выводов симистора (все они аналогичны). На отечественном ТС106-10 выбито наверху справа и слева от крепёжного отверстия, «старая маркировка»: К – катод, А – анод, У.Э.- управляющий электрод, новая: А1 – первый анод, А2 – второй анод, У – управляющий электрод.




 

Комплектация выбирается перед тем как положить набор в корзину.

ПАКЕТ: Содержание набора 009

1. Симистор ВТ137 (8А),
2. Печатная плата,    
3. Диоды 1N4007 (2 шт.),
4. Динистор DB3,
5. Резисторы:
   R1 – 100   кОм (Кч/Ч/Ж),
   R2 – 100 кОм (переменный),
   R3 – 1 кОм (Кч/Ч/Кр),
   R4 –  270 Ом (Кр/Ф/Кч),
   R5 –  1,5 кОм Кч/Зел/Кр),
   R6 –  100 Ом (Кч/Ч/Кч).
6. Конденсаторы:
   С1 – 0,47 мкФ (не менее 250 В),
   С2 – 0,068мкФ  (Uраб. не менее 400 В),

7. Пластиковая ручка для переменного резистора,    

8. Монтажный провод,
9. Схема и описание.
 

.    

КОРОБКА: Содержание набора 009  

1. Симистор ВТ138 (12А),

2. Печатная плата,                                                    

3. Диоды 1N4007 (2 шт.),

4. Динистор DB3,

5. Резисторы:

    R1 – 100   кОм (Кч/Ч/Ж),

    R2 – 100 кОм (переменный),

    R3 – 1 кОм (Кч/Ч/Кр),

    R4 –  270 Ом (Кр/Ф/Кч),

    R5 –  1,5 кОм Кч/Зел/Кр),

    R6 –  100 Ом (Кч/Ч/Кч).

6. Конденсаторы:

    С1 – 0,47 мкФ (не менее 250 В),

    С2 – 0,068мкФ  (Uраб. не менее 400 В),

7. Пластиковая ручка для переменного резистора,

8. Радиатор для симистора,

9. Изолирующая прокладка и втулка,

10. Винт М3 (гайка М3 отдельно или в радиаторе),             
11. Монтажный провод,

12. Схема и описание.

ВЫПУСК 009.

Регулятор мощности симисторный 220 В,  2 КВт.


1.  Симистор ВТ138-600,

2.  Печатная плата,

3.  Диод 1N4007 (2 шт.),

4.  Динистор DB3,

5.  Набор постоянных резисторов,

6.  Переменный резистор с ручкой,

7.  Конденсаторы,

8.  Радиатор для симистора,

9.  Винт, гайка М3,

10. Теплопроводящая изолирующая прокладка,

11. Фторопластовая изолирующая втулка,

12. Монтажный провод,

13. Схема и описание,

14. Контейнер с деталями схемы.

 

Типы регуляторов напряжения

и принцип работы | Статья

.

СТАТЬЯ

Получайте ценные ресурсы прямо на свой почтовый ящик - рассылается раз в месяц

Мы ценим вашу конфиденциальность


Как работает регулятор напряжения?

Стабилизатор напряжения - это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.

Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами.Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.

Типы регуляторов напряжения: линейные и импульсные

Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД. В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.

Линейные регуляторы

В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.

Линейные регуляторы - это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного.Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обладают низким уровнем шума, а также малыми колебаниями выходного напряжения.

Линейные регуляторы, такие как MP2018, требуют только входной и выходной конденсаторы для работы (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.

Рисунок 1: Линейный регулятор MP2018

Импульсные регуляторы

Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.

Импульсные регуляторы

могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.

Преимущества импульсных регуляторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT. Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи.HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .

Рисунок 2: Импульсный регулятор HF920

Ограничения регуляторов напряжения

Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии. Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение на 2 В, а эффективность ограничивается 3 В / 5 В (60%).Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.

Важно учитывать расчетную рассеиваемую мощность линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к высокому рассеянию мощности, которое может привести к перегреву и повреждению компонентов.

Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.

Импульсные регуляторы

очень эффективны, но к их недостаткам относится то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.

Топологии импульсного регулятора

: понижающий, повышающий, линейный, LDO и регулируемый

Существуют различные топологии линейных и импульсных регуляторов.Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и повышающие-понижающие преобразователи. Каждая топология описана ниже:

Регуляторы LDO

Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO). Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.

Понижающие и повышающие преобразователи

Понижающие преобразователи

(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.

Пониженно-повышающие преобразователи

Понижающий-повышающий преобразователь - это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.

Управление регулятором напряжения

Четыре основных компонента линейного регулятора - это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи резистора. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения. Другой вход - это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).

Для работы линейных регуляторов

обычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.

С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход. Подобно линейному регулятору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из цепи обратной связи и сравнивает его с внутренним опорным напряжением.Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.

Применение линейного регулятора и импульсного регулятора

Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, чувствительны к шуму, слаботочны или ограничены в пространстве.Некоторые примеры включают бытовую электронику, такую ​​как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.

Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.

Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) .Например, если приложение требует большого понижающего решения, лучше подойдет импульсный стабилизатор, поскольку линейный регулятор может создать большое рассеивание мощности, которое может повредить другие электрические компоненты.

Рисунок 3: Понижающий регулятор MPQ4430-AEC1

Каковы основные параметры микросхемы регулятора напряжения?

Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, - это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.

Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.

Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.

Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе.Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.

Напряжение обратной связи - еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает нижнее выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.

Как правильно выбрать регулятор напряжения

Чтобы выбрать подходящий регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например, эффективность, производительность, стоимость) и любые дополнительные ключевые особенности, такие как индикация хорошего питания (PG) или включение управления.

После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям.Таблица параметрического поиска - ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для удовлетворения требуемых параметров для вашего приложения.

Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции. Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы.Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.

MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.

Список литературы

Глоссарий по электронике

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик - рассылайте их раз в месяц!

Получить техническую поддержку

Основы электроники: регулятор напряжения

Создание регулятора напряжения

Теория предыстории: как работает регулятор напряжения?


Название говорит само за себя: регулятор напряжения.Аккумулятор в вашем автомобиле, который заряжается от генератора, розетка в вашем доме, которая обеспечивает все необходимое вам электричество, сотовый телефон , который вы, вероятно, будете держать под рукой каждую минуту дня, все они требуют определенного напряжения, чтобы функция. Колеблющиеся выходы, выходящие за пределы ± 2 В, могут вызвать неэффективную работу и, возможно, даже повредить ваши зарядные устройства. Колебания напряжения могут происходить по разным причинам: состояние электросети, включение и выключение других приборов, время суток, факторы окружающей среды и т. Д.Из-за необходимости постоянного постоянного напряжения введите регулятор напряжения.

Регулятор напряжения - это интегральная схема (ИС), которая обеспечивает постоянное фиксированное выходное напряжение независимо от изменения нагрузки или входного напряжения. Это можно сделать разными способами, в зависимости от топологии схемы внутри, но для того, чтобы этот проект оставался базовым, мы в основном сосредоточимся на линейном регуляторе. Линейный регулятор напряжения работает, автоматически регулируя сопротивление через контур обратной связи, учитывая изменения как нагрузки, так и входа, при этом сохраняя постоянное выходное напряжение.

Микросхема стабилизатора напряжения в корпусе ТО-220 С другой стороны, для импульсных регуляторов, таких как понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий / понижающий), требуется несколько дополнительных компонентов, а также повышенная сложность как различные компоненты повлияют на результат. Импульсные регуляторы намного более эффективны с точки зрения преобразования энергии, где эффективность играет большую роль, но линейные регуляторы очень хорошо работают как регуляторы напряжения в низковольтных приложениях.

В зависимости от приложения, стабилизатору напряжения может также потребоваться больше внимания для улучшения других параметров, таких как пульсирующее напряжение на выходе, переходная характеристика нагрузки, падение напряжения и выходной шум.Такие приложения, как аудиопроекты, более чувствительны к шуму и помехам, поэтому потребуется дополнительная фильтрация, особенно в импульсных регуляторах, где пульсации на выходе могут быть значительными. Большую часть информации, включая схемы, можно найти в техническом описании микросхемы стабилизатора напряжения, с которой вы работаете, в разделе «Примечания по применению».


Указания по применению для регулятора 7805T У
Afrotechmods также есть информативное видео о работе с популярным регулятором напряжения LM317T для получения регулируемого выхода.


Проект

Комплект регулятора напряжения макетной платы - отличный набор для пайки для любого новичка. Он выдает чистое 5 В постоянного тока с максимальным выходным током 500 мА. Он способен принимать входное напряжение в диапазоне 6-18 В постоянного тока и имеет контакты, размер которых идеально подходит для любой стандартной макетной платы с шагом 0,1 дюйма.

В комплект входит:

(1) Печатная плата
(1) Выключатель питания
(1) Разъем питания постоянного тока 2,1 мм
(1) Электролитический конденсатор 10 мкФ
(1) 0.Монолитный конденсатор 1 мкФ
(1) Резистор 1 кОм
(1) Красный светодиодный индикатор питания
(1) Разъемы контактов
(1) Руководство пользователя

Вам понадобится:
• Паяльник
• Припой
• Фрезы
• Блок питания настенного адаптера 6-18В (Mean Well GS06U-3PIJ)


Комплект стабилизатора напряжения макетной платы Solarbotics 34020
Направление:

1. Резистор и конденсатор 0,1 мкФ:
Удалите ленту и согните выводы резистора, затем вставьте его в положение, обозначенное R1.Припаяйте его с другой стороны и отрежьте лишние выводы. Сделайте то же самое для конденсатора 0,1 мкФ в позиции C2. Неважно, как эти детали установлены - они не поляризованные .

2. Регулятор напряжения и цилиндрический разъем:
Припаяйте регулятор напряжения в положение V-REG. Убедитесь, что сторона табуляции выровнена с жирной линией на символе - обратное направление не работает! Затем обрежьте лишние провода. Защелкните цилиндрический домкрат в положение B1 и припаяйте его на место.

Шаг 1 Шаг 2
3. Конденсатор 10 мкФ и индикатор питания:
Установите электролитический конденсатор 10 мкФ в положение C1. Позиционирование имеет решающее значение. Убедитесь, что более длинный провод входит в площадку, отмеченную (+). Убедитесь, что он находится в правильном положении, проверив, что полоса на стороне конденсатора находится ближе всего к этикетке PWR. Сделайте то же самое со светодиодом; более длинный вывод входит в круглую площадку. Вы можете убедиться, что светодиод находится в правильном положении, заметив небольшую выемку на светодиоде, расположенную на стороне символа светодиода с линией (рядом с квадратной площадкой).

4. Контакты выключателя питания и макетной платы:
Выключатель питания просто устанавливается в положение PWR. С выводами на макетной плате посложнее - они идут снизу, и их сложнее удерживать при пайке. Тщательно припаяйте их как можно ровнее вручную или, если вы уверены, вставьте длинную сторону контактов в макет так, чтобы они совпадали с отверстиями в печатной плате, затем припаяйте их, пока макетная плата удерживает все на одном уровне.

Шаг 3 Шаг 4
5.Настройка Power Rails:
ЭТО ВАЖНО.
Если вы забудете это сделать, ваша доска не будет работать! Выберите, на какой стороне макета вы хотите установить плату (в этом примере мы используем левую сторону). Обратите внимание на полярность направляющих макетной платы «+» внизу и «-» вверху. Найдите, какой набор контактных площадок на плате соответствует этому расположению, и нанесите каплю припоя на маленькие полумесяцы.

Если вы планируете переключать полярность питания на направляющих, вы можете установить номер детали SWT7 на контактные площадки между контактными площадками. В этом случае не допускайте попадания капель на подушечки. Обратите внимание, что это не рекомендуемая модификация.

Подайте питание на плату от любого источника постоянного тока диаметром 2,1 мм с номинальным напряжением 6–18 В - не превышайте максимальное значение 35 В постоянного тока! Регулятор мощности нагревается при питании от более 12 В (это нормально). Если вы не хотите использовать его на макетной плате, используйте контактные площадки с маркировкой «+ -» на конце, ближайшем к гнезду цилиндра, для регулируемой выходной мощности 5 В.


Шаг 5
SWT7 Навесной

Вопросы для обсуждения


1.Какое влияние на выход цепи окажут тепло и шум?
2. Как конденсаторы помогают отфильтровывать помехи?
3. Каковы преимущества и недостатки линейных и импульсных регуляторов? Регуляторы напряжения

, схемы, типы, принцип работы, конструкция, применение

Регулятор напряжения предназначен для автоматического «регулирования» уровня напряжения. Он в основном снижает входное напряжение до желаемого уровня и поддерживает его на том же уровне во время подачи питания.Это гарантирует, что даже при приложении нагрузки напряжение не падает.

Таким образом, регулятор напряжения используется по двум причинам: -

  1. Для регулирования или изменения выходного напряжения цепи.
  2. Для поддержания постоянного выходного напряжения на желаемом уровне, несмотря на колебания напряжения питания или тока нагрузки.

Чтобы узнать больше об основах этого предмета, вы также можете обратиться к Регулируемый источник питания .

Регуляторы напряжения

находят свое применение в компьютерах, генераторах переменного тока, электростанциях, где схема используется для управления мощностью установки.Регуляторы напряжения можно разделить на электромеханические и электронные. Его также можно классифицировать как регуляторы переменного тока или регуляторы постоянного тока.

Мы уже рассказали о регуляторах напряжения IC .

Электронный регулятор напряжения

Все электронные регуляторы напряжения имеют стабильный источник опорного напряжения, который обеспечивается рабочим диодом обратного напряжения пробоя, называемым стабилитроном. Основная причина использования регулятора напряжения - поддержание постоянного выходного напряжения постоянного тока.Он также блокирует пульсации переменного напряжения, которые не могут быть заблокированы фильтром. Хороший регулятор напряжения может также включать дополнительные схемы защиты, такие как короткое замыкание, схему ограничения тока, тепловое отключение и защиту от перенапряжения.

Электронные регуляторы напряжения разработаны на основе любого из трех или комбинации любого из трех регуляторов, указанных ниже.

1. Транзисторный стабилизатор напряжения с стабилитроном

Стабилизатор напряжения, управляемый стабилитроном, используется, когда эффективность регулируемого источника питания становится очень низкой из-за высокого тока.Существует два типа транзисторных стабилизаторов напряжения, управляемых стабилитроном.

Стабилизатор напряжения серии управляемых транзисторов

Такую схему еще называют регулятором напряжения на эмиттерном повторителе. Он назван так потому, что используемый транзистор подключен по схеме эмиттерного повторителя. Схема состоит из транзистора N-P-N и стабилитрона. Как показано на рисунке ниже, выводы коллектора и эмиттера транзистора включены последовательно с нагрузкой. Таким образом, в этом регуляторе есть именная серия.Используемый транзистор представляет собой транзистор с последовательным проходом.

Стабилизатор напряжения с последовательным транзисторным управлением на стабилитронах

Выходной сигнал выпрямителя, который отфильтрован, затем подается на входные клеммы, и на нагрузочном резисторе Rload получается регулируемое выходное напряжение Vload. Опорное напряжение обеспечивается стабилитроном, а транзистор действует как переменный резистор, сопротивление которого изменяется в зависимости от рабочих условий тока базы Ibase.

Основной принцип работы такого регулятора заключается в том, что большая часть изменения напряжения питания или входного напряжения возникает на транзисторе, и, таким образом, выходное напряжение имеет тенденцию оставаться постоянным.

Таким образом, выходное напряжение можно записать как

.

Vout = Vzener - Vbe

Напряжение базы транзистора Vbase и напряжение стабилитрона Vzener равны, поэтому значение Vbase остается почти постоянным.

Эксплуатация

Когда входное напряжение питания Vin увеличивается, выходное напряжение Vload также увеличивается. Это увеличение Vload вызовет снижение напряжения Vbe эмиттера базы транзистора, поскольку напряжение стабилитрона Vzener является постоянным.Это уменьшение Vbe вызывает снижение уровня проводимости, что дополнительно увеличивает сопротивление коллектор-эмиттер транзистора и, таким образом, вызывает увеличение напряжения коллектор-эмиттер транзистора, и все это вызывает уменьшение выходного напряжения Vout. Таким образом, выходное напряжение остается постоянным. Работа аналогична при уменьшении входного напряжения питания.

Следующим условием будет влияние изменения выходной нагрузки на выходное напряжение. Рассмотрим случай, когда ток увеличивается за счет уменьшения сопротивления нагрузки Rload.Это вызывает уменьшение значения выходного напряжения и, таким образом, вызывает увеличение напряжения эмиттера базы транзистора. Это вызывает уменьшение сопротивления коллектора-эмиттера из-за увеличения уровня проводимости транзистора. Это приводит к небольшому увеличению входного тока и, таким образом, компенсирует уменьшение сопротивления нагрузки Rload.

Самым большим преимуществом этой схемы является то, что изменения тока стабилитрона уменьшаются в β раз, и, таким образом, эффект стабилитрона значительно снижается, и получается гораздо более стабильный выходной сигнал.

Выходное напряжение последовательного регулятора Vout = Vzener - Vbe. Ток нагрузки Iload схемы будет максимальным током эмиттера, который может пройти транзистор. Для обычного транзистора, такого как 2N3055, ток нагрузки может доходить до 15 А. Если ток нагрузки равен нулю или не имеет значения, то ток, потребляемый от источника питания, можно записать как Izener + Ic (min). Такой регулятор напряжения с эмиттерным повторителем более эффективен, чем обычный стабилизатор напряжения. Обычный стабилитрон, в котором есть только резистор и стабилитрон, должен обеспечивать ток базы транзистора.

Ограничения

Ограничения, перечисленные ниже, доказали, что использование этого последовательного регулятора напряжения подходит только для низких выходных напряжений.

  1. С повышением температуры в помещении значения Vbe и Vzener имеют тенденцию к уменьшению. Таким образом, выходное напряжение нельзя поддерживать постоянным. Это еще больше увеличит напряжение эмиттера базы транзистора и, следовательно, нагрузку.
  2. Нет возможности изменить выходное напряжение в цепи.
  3. Из-за небольшого процесса усиления, обеспечиваемого только одним транзистором, схема не может обеспечить хорошее регулирование при высоких токах.
  4. По сравнению с другими регуляторами, этот регулятор имеет плохую регулировку и подавление пульсаций при изменении входного сигнала.
  5. Рассеиваемая мощность проходного транзистора велика, потому что она равна Vcc Ic, и почти все изменения возникают при Vce, а ток нагрузки приблизительно равен току коллектора. Таким образом, при прохождении больших нагрузочных токов транзистор должен рассеивать большую мощность и, следовательно, нагреваться.

Шунтирующий стабилизатор напряжения транзистора с стабилитроном

На изображении ниже показана принципиальная схема шунтирующего регулятора напряжения.Схема состоит из NPN-транзистора и стабилитрона, а также последовательного резистора Rseries, подключенного последовательно с входным источником питания. Стабилитрон подключен к базе и коллектору транзистора, который подключен к выходу.

Транзисторный шунтирующий стабилизатор напряжения с стабилитроном

Operation

Поскольку в последовательном сопротивлении Rseries наблюдается падение напряжения, вместе с ним уменьшается и нерегулируемое напряжение. Величина падения напряжения зависит от тока, подаваемого на нагрузку Rload.Величина напряжения на нагрузке зависит от стабилитрона и напряжения эмиттера базы транзистора Vbe.

Таким образом, выходное напряжение можно записать как

Vout = Vzener + Vbe = Vin - I.Rseries

Выход остается почти постоянным, поскольку значения Vzener и Vbe почти постоянны. Это условие объясняется ниже.

Когда напряжение питания увеличивается, выходное напряжение и напряжение база-эмиттер транзистора увеличивается и, таким образом, увеличивается базовый ток Ibase и, следовательно, увеличивается ток коллектора Icoll (Icoll = β.Ibase).

Таким образом, напряжение питания увеличивается, вызывая увеличение тока питания, который, в свою очередь, вызывает падение напряжения на последовательном сопротивлении Rseries и тем самым снижает выходное напряжение. Этого уменьшения будет более чем достаточно, чтобы компенсировать первоначальное увеличение выходного напряжения. Таким образом, выпуск остается почти постоянным. Работа, описанная выше, происходит в обратном порядке, если напряжение питания снижается.

Когда сопротивление нагрузки Rload уменьшается, ток нагрузки Iload увеличивается из-за уменьшения токов через базу и коллектор Ibase и Icoll.Таким образом, на Rseries не будет падения напряжения, а входной ток останется постоянным. Таким образом, выходное напряжение останется постоянным и будет разницей между напряжением питания и падением напряжения на последовательном сопротивлении. Это происходит наоборот, если увеличивается сопротивление нагрузки.

Ограничения

Последовательный резистор вызывает огромные потери мощности.

1. Ток питания через транзистор будет больше, чем через нагрузку.

2. В цепи могут быть проблемы, связанные с перенапряжением.

2. Дискретный транзисторный регулятор напряжения

Дискретные транзисторные регуляторы напряжения можно разделить на два. Они объясняются ниже. Эти две схемы способны создавать регулируемое выходное постоянное напряжение, которое регулируется или поддерживается на заданном уровне, даже если входное напряжение изменяется или нагрузка, подключенная к выходному зажиму, изменяется.

Регулятор напряжения серии на дискретных транзисторах

Блок-схема дискретного стабилизатора напряжения транзисторного типа приведена ниже.Элемент управления размещен для сбора нерегулируемого входа, который контролирует величину входного напряжения и передает его на выход. Затем выходное напряжение возвращается в схему выборки, затем сравнивается с опорным напряжением и отправляется обратно на выход.

Стабилизатор напряжения

на дискретных транзисторах Таким образом, если выходное напряжение имеет тенденцию к увеличению, схема компаратора выдает управляющий сигнал, чтобы заставить элемент управления уменьшать величину выходного напряжения, пропуская его через схему выборки и сравнивая его, тем самым поддерживая постоянное значение. и стабильное выходное напряжение.

Предположим, что выходное напряжение имеет тенденцию к снижению, схема компаратора выдает управляющий сигнал, который заставляет последовательный элемент управления увеличивать величину выходного напряжения, таким образом поддерживая стабильность.

Шунтирующий стабилизатор напряжения на дискретных транзисторах

Блок-схема дискретного транзисторного шунтирующего стабилизатора напряжения приведена ниже. Как следует из названия, регулирование напряжения обеспечивается за счет отвода тока от нагрузки. Элемент управления шунтирует часть тока, возникающего в результате входного нерегулируемого напряжения, подаваемого на нагрузку.Таким образом, напряжение регулируется на нагрузке. Из-за изменения нагрузки, если есть изменение выходного напряжения, оно будет скорректировано путем подачи сигнала обратной связи в схему компаратора, которая сравнивается с опорным напряжением и передает выходной управляющий сигнал на элемент управления для корректировки величины. сигнала, необходимого для отвода тока от нагрузки.

Шунтирующий стабилизатор напряжения на дискретных транзисторах

Если выходное напряжение увеличивается, ток шунта увеличивается и, таким образом, создается меньший ток нагрузки и поддерживается стабилизированное выходное напряжение.Если выходное напряжение уменьшается, ток шунта уменьшается и, таким образом, создается больший ток нагрузки и поддерживается постоянное регулируемое выходное напряжение. В обоих случаях важную роль играют схема выборки, схема компаратора и элемент управления.

Ограничения транзисторных регуляторов напряжения

Устойчивое и стабилизированное выходное напряжение, получаемое от регулятора, ограничено диапазоном напряжений (30-40) вольт. Это связано с малым значением максимального напряжения коллектор-эмиттер транзистора (50 Вольт).Это ограничивает использование транзисторных источников питания.

3. Электромеханический регулятор

Как следует из названия, это регулятор, сочетающий в себе электрические и механические характеристики. Процесс регулирования напряжения осуществляется спиральным измерительным проводом, который действует как электромагнит. Магнитное поле создается соленоидом в соответствии с протекающим через него током. Это магнитное поле притягивает движущийся материал сердечника из железа, который связан с натяжением пружины или силой тяжести.Когда напряжение увеличивается, ток усиливает магнитное поле, поэтому сердечник притягивается к соленоиду. Магнит физически связан с механическим переключателем. Когда напряжение уменьшается, магнитное поле, создаваемое сердечником, уменьшается, поэтому натяжение пружины заставляет сердечник втягиваться. Это замыкает механический переключатель и позволяет току течь.

Если конструкция механического регулятора чувствительна к небольшим колебаниям напряжения, к соленоиду может быть добавлен селекторный переключатель в диапазоне сопротивлений или обмотки трансформатора для постепенного повышения и понижения выходного напряжения или для изменения положения подвижного элемента. катушка регулятора переменного тока.

Ранее автомобильные генераторы и генераторы переменного тока содержали механические регуляторы. В регуляторах такого типа процесс осуществляется одним, двумя или тремя реле и различными резисторами, чтобы установить выходную мощность генератора чуть более 6 или 12 вольт, и этот процесс не зависит от частоты вращения двигателя или нагрузки, изменяющейся на транспортном средстве. электрическая система. Реле используются для выполнения широтно-импульсной модуляции для регулирования выходной мощности генератора и управления током возбуждения, проходящим через генератор.

Регулятор, используемый для генераторов постоянного тока, отключается от генератора, когда он не работает, чтобы предотвратить обратный поток электричества от батареи к генератору. В противном случае он будет работать как мотор.

4. Автоматический регулятор напряжения (АРН)

Этот активный системный регулятор в основном используется для регулирования выходного напряжения очень больших генераторов, которые обычно используются на кораблях, нефтяных вышках, больших зданиях и т. Д. Схема AVR сложна и состоит из всех активных и пассивных элементов, а также микроконтроллеров.Основной принцип работы AVR такой же, как и у обычного регулятора напряжения. Входное напряжение возбудителя генератора контролируется АРН, и когда напряжение генератора увеличивается или уменьшается, выходное напряжение генератора автоматически увеличивается или уменьшается. Будет предопределенная уставка, по которой АРН определяет величину напряжения, которое должно передаваться на возбудитель каждую миллисекунду. Таким образом регулируется выходное напряжение. Та же операция становится более сложной, когда только один АРН используется для регулирования нескольких генераторов, подключенных параллельно.

5. Трансформатор постоянного напряжения (CVT)

В некоторых случаях вариатор также используется в качестве регулятора напряжения. CVT состоит из резонансной обмотки высокого напряжения и конденсатора, который производит регулируемое выходное напряжение для любого типа входного переменного тока. Как и у обычного трансформатора, вариатор имеет первичную и вторичную обмотки. Первичная обмотка находится на стороне магнитного шунта, а вторичная обмотка - на противоположной стороне с настроенной цепью катушки. Регулирование поддерживается за счет магнитного насыщения вторичных обмоток.Чтобы узнать больше о вариаторах, ознакомьтесь с нашей статьей - Трансформатор постоянного напряжения.

Некоторые применения регуляторов напряжения

  • Используется во всех блоках питания электронных устройств для регулирования напряжения и защиты устройства от повреждений
  • Используется с генератором двигателей внутреннего сгорания для регулирования выходной мощности генератора.
  • Используется для электронных схем для подачи точного напряжения

Примечание: Регуляторы напряжения отличаются от стабилизаторов напряжения.Регуляторы используются для понижения напряжения до желаемого уровня, тогда как стабилизатор «стабилизирует» напряжение. Регуляторы в основном используются для постоянного тока, а стабилизаторы - для переменного тока. Стабилизаторы удерживают напряжение от слишком высокого или слишком низкого, чтобы не повредить подключенное к нему устройство, например телевизор или холодильник.

Общие сведения о том, как работает регулятор напряжения

Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений его входного напряжения или условий нагрузки.Существует два типа регуляторов напряжения: линейные и импульсные.

В линейном регуляторе используется устройство активного (BJT или MOSFET) прохода (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.

Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT-переключатель. Отфильтрованное выходное напряжение переключателя мощности подается обратно в схему, которая управляет временем включения и выключения переключателя питания, так что выходное напряжение остается постоянным независимо от изменений входного напряжения или тока нагрузки.

Каковы некоторые топологии импульсных регуляторов?

Существует три распространенных топологии: понижающая (понижающая), повышающая (повышающая) и понижающая-повышающая (повышающая / понижающая). Другие топологии включают обратноходовые, SEPIC, Cuk, двухтактные, прямые, полномостовые и полумостовые топологии.

Каким образом регулятор частоты коммутации влияет на конструкцию регулятора?

Более высокие частоты переключения означают, что в регуляторе напряжения можно использовать катушки индуктивности и конденсаторы меньшего размера. Это также означает более высокие коммутационные потери и больший шум в цепи.

Какие потери происходят с импульсным регулятором?

Потери возникают из-за мощности, необходимой для включения и выключения полевого МОП-транзистора, которые связаны с драйвером затвора полевого МОП-транзистора. Кроме того, потери мощности полевого МОП-транзистора возникают из-за того, что переключение из состояния проводимости в состояние непроводимости занимает конечное время. Потери также связаны с энергией, необходимой для заряда и разряда емкости затвора MOSFET между пороговым напряжением и напряжением затвора.

Каковы обычные области применения линейных и импульсных регуляторов?

Рассеиваемая мощность линейного регулятора прямо пропорциональна его выходному току для данного входного и выходного напряжения, поэтому типичный КПД может быть 50% или даже ниже.Используя оптимальные компоненты, импульсный регулятор может достичь КПД в диапазоне 90%. Однако выходной шум линейного регулятора намного ниже, чем импульсный стабилизатор с такими же требованиями к выходному напряжению и току. Обычно импульсный регулятор может управлять более высокими токовыми нагрузками, чем линейный регулятор.

Как импульсный регулятор управляет своим выходом?
Для импульсных регуляторов

требуются средства для изменения выходного напряжения в ответ на изменения входного и выходного напряжения.Один из подходов - использовать ШИМ, который управляет входом в соответствующий выключатель питания, который контролирует время его включения и выключения (рабочий цикл). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом. Если отфильтрованный выходной сигнал имеет тенденцию к изменению, обратная связь, подаваемая на ШИМ-контроллер, изменяет рабочий цикл для поддержания постоянного выходного напряжения.

Какие проектные характеристики важны для ИС регулятора напряжения?

Среди основных параметров - входное напряжение, выходное напряжение и выходной ток.В зависимости от приложения могут быть важны другие параметры, такие как пульсирующее напряжение на выходе, переходная характеристика нагрузки, выходной шум и КПД. Важными параметрами для линейного регулятора являются падение напряжения, PSRR (коэффициент отклонения источника питания) и выходной шум.

использованная литература

Загрузить средства проектирования управления питанием

Цепи регулятора напряжения

- линейный регулятор напряжения, стабилизатор напряжения Зенера и импульсный регулятор напряжения

Регулятор напряжения

, как следует из названия, представляет собой схему, которая используется для регулирования напряжения.Регулируемое напряжение - это плавная подача напряжения без каких-либо шумов или помех. Выход регулятора напряжения не зависит от тока нагрузки, температуры и изменения линии переменного тока. Стабилизаторы напряжения присутствуют почти в каждой электронике или бытовой технике, такой как телевизор, холодильник, компьютер и т. Д., Для стабилизации напряжения питания.

В основном, регулятор напряжения минимизирует колебания напряжения для защиты устройства. В системе распределения электроэнергии регуляторы напряжения находятся либо в фидерных линиях, либо на подстанции.В этой линейке используются два типа регуляторов, один - ступенчатый, в котором переключатели регулируют подачу тока. Другой - индукционный регулятор, представляющий собой переменную электрическую машину, подобную асинхронному двигателю, которая подает энергию в качестве вторичного источника. Он сводит к минимуму колебания напряжения и обеспечивает стабильный выход.

Существуют различные типы регуляторов напряжения, которые описаны ниже.

Типы схем регулятора напряжения

Цепь линейного регулятора напряжения

    Регулятор напряжения серии
  • Шунтирующий регулятор напряжения

Цепь стабилизатора напряжения Зенера

Цепь импульсного регулятора напряжения

  • Бак типа
  • Тип наддува
  • Buck / Boost тип

Цепь линейного регулятора напряжения

Это наиболее распространенные регуляторы, используемые в электронике для поддержания постоянного выходного напряжения.Линейные регуляторы напряжения действуют как цепь делителя напряжения, в этом регуляторе сопротивление изменяется в зависимости от изменения нагрузки и дает постоянное выходное напряжение. Некоторые преимущества и недостатки линейного регулятора напряжения приведены ниже:

Преимущества

  • Низкое напряжение пульсации на выходе
  • Ответ быстрый
  • Меньше шума

Недостатки

  • Низкий КПД
  • Требуется большое пространство
  • Выходное напряжение всегда будет меньше входного

1.Регулятор напряжения серии Регулятор напряжения серии

является частью линейного регулятора напряжения и также называется последовательным регулятором напряжения. Последовательно включенный регулируемый элемент, используемый для поддержания постоянного выходного напряжения. При изменении сопротивления падения напряжения на последовательном элементе его можно изменять, чтобы напряжение на выходе оставалось постоянным.

Как вы можете видеть на принципиальной схеме последовательного регулятора напряжения, NPN-транзистор T1 является последовательным элементом, а стабилитрон используется для обеспечения опорного напряжения.

Когда выходное напряжение увеличивается, напряжение база-эмиттер уменьшается, из-за этого транзистор T1 проводит меньше. Поскольку T1 проводит меньше, он снижает выходное напряжение, следовательно, поддерживает постоянное выходное напряжение.

Когда выходное напряжение уменьшается, напряжение база-эмиттер увеличивается, благодаря чему транзистор T1 проводит больше. По мере того, как T1 проводит больше, выходное напряжение увеличивается, следовательно, выходное напряжение остается постоянным.

Выходное напряжение определяется как:

  V  O  = V  Z  - V  BE  
Где,
V  O  - выходное напряжение
V  Z  - напряжение пробоя стабилитрона
V  BE  - напряжение база-эмиттер 

2.Шунтирующий регулятор напряжения

Нерегулируемое напряжение прямо пропорционально падению напряжения на последовательно соединенных сопротивлениях, и это падение напряжения зависит от тока, потребляемого нагрузкой. Если ток, потребляемый нагрузкой, увеличивается, базовый ток также будет уменьшаться, и из-за этого меньший ток коллектора будет течь через вывод коллектора-эмиттера, и, следовательно, ток через нагрузку будет увеличиваться, и наоборот.

Регулируемое выходное напряжение шунтирующего регулятора напряжения определяется как:

  V  OUT  = V  Z  + V  BE   

Стабилитрон

Стабилитроны

дешевле и подходят только для цепей малой мощности.Его можно использовать в приложениях, где количество энергии, потраченное впустую во время регулирования, не имеет большого значения.

Резистор

А, соединенный последовательно со стабилитроном, чтобы ограничить количество тока, протекающего через диод, и входное напряжение Vin (которое должно быть больше, чем напряжение стабилитрона). подключено параллельно, как показано на изображении, и выход напряжение Vout снимается на стабилитроне с Vout = Vz (напряжение стабилитрона). Как мы знаем, стабилитрон начинает проводить в обратном направлении, когда приложенное напряжение выше, чем напряжение пробоя стабилитрона.Поэтому, когда он начинает проводить, он поддерживает то же напряжение на нем и возвращает дополнительный ток, таким образом обеспечивая стабильное выходное напряжение.

Узнайте больше о работе стабилитрона здесь.

Импульсный регулятор напряжения

Существует три типа импульсных регуляторов напряжения:

  • Понижающий или понижающий импульсный регулятор напряжения
  • Повышающий или повышающий импульсный регулятор напряжения
  • Понижающий / повышающий импульсный регулятор напряжения

Понижающий или понижающий импульсный регулятор напряжения

Понижающий регулятор используется для понижения напряжения на выходе, мы даже можем использовать схему делителя напряжения для уменьшения выходного напряжения, но эффективность схемы делителя напряжения низкая, потому что резисторы рассеивают энергию в виде тепла.Мы используем в схеме конденсатор, диод, индуктор и переключатель. Принципиальная схема понижающего импульсного регулятора напряжения приведена ниже:

.

Когда переключатель находится в положении ON, диод остается смещенным в обратном направлении, и к катушке индуктивности подается питание. Когда переключатель разомкнут, полярность индуктора меняется на обратную, диод становится смещенным вперед и подключает индуктор к земле. Затем ток через катушку индуктивности уменьшается с крутизной:

  d I  L  / dt = (0-V  OUT ) / L  

Конденсатор используется для предотвращения падения напряжения до нуля на нагрузке.Если мы продолжаем открывать и закрывать переключатель, среднее напряжение на нагрузке будет меньше подаваемого входного напряжения. Вы можете контролировать выходное напряжение, изменяя рабочий цикл переключающего устройства.

  Выходное напряжение = (Входное напряжение) * (процент времени, в течение которого переключатель находится в положении ВКЛ)  

Если вы хотите узнать больше о Buck Converter, перейдите по ссылке.

Повышающий или повышающий импульсный регулятор напряжения

Повышающий регулятор используется для повышения напряжения на нагрузке.Принципиальная схема регулятора наддува приведена ниже:

Когда переключатель замкнут, диод ведет себя как смещенный в обратном направлении, и ток через катушку индуктивности продолжает увеличиваться. Теперь, когда переключатель разомкнут, катушка индуктивности создает силу, заставляющую ток продолжать течь, и конденсатор начинает заряжаться. Постоянно поворачивая переключатель в положение ВКЛ и ВЫКЛ, мы получим напряжение на нагрузке выше, чем входное напряжение. Мы можем контролировать выходное напряжение, контролируя время включения (Ton) переключателя.

  Выходное напряжение = Входное напряжение / процент времени, в течение которого переключатель разомкнут  

Если вы хотите узнать больше о Boost Converter, перейдите по ссылке.

Понижающий импульсный стабилизатор напряжения

Понижающий-повышающий импульсный регулятор представляет собой комбинацию понижающего и повышающего регуляторов, он дает инвертированный выходной сигнал, который может быть больше или меньше подаваемого входного напряжения.

Когда переключатель включен, диод ведет себя как смещенный в обратном направлении, и катушка индуктивности накапливает энергию, а когда переключатель находится в положении OFF, индуктор начинает выделять энергию с обратной полярностью, которая заряжает конденсатор.Когда энергия, запасенная в катушке индуктивности, становится равной нулю, конденсатор начинает разряжаться в нагрузку с обратной полярностью. Из-за этого понижающе-повышающий регулятор также называется инвертирующим регулятором .

Выходное напряжение определяется как

.
  Выход = Vin (D / 1-D) 
  Где, D - рабочий цикл  

Следовательно, если рабочий цикл низкий, регулятор ведет себя как понижающий регулятор, а когда рабочий цикл высокий, регулятор ведет себя как повышающий регулятор.

Практический пример схем регулятора

Цепь регулятора положительного линейного напряжения

Мы разработали схему положительного линейного стабилизатора напряжения с использованием 7805 IC . Эта ИС имеет все схемы для обеспечения 5-вольтного стабилизированного питания. Входное напряжение должно быть как минимум более чем на 2 В от номинального значения, как для LM7805, мы должны обеспечить как минимум 7 В.

На микросхему подается нерегулируемое входное напряжение, и мы получаем стабилизированное напряжение на выходе.Название ИС определяет ее функцию, 78 представляет собой положительный знак, а 05 представляет значение регулируемого выходного напряжения. Как вы видите на принципиальной схеме, мы подаем 9 В на 7805IC и получаем стабилизированное + 5 В на выходе. Конденсаторы C1 и C2 используются для фильтрации.

Цепь стабилитрона

Здесь мы разработали стабилизатор напряжения на стабилитроне с напряжением 5,1 В. Стабилитрон работает как чувствительный элемент.Когда напряжение питания превышает его напряжение пробоя, он начинает проводить в обратном направлении и поддерживает то же напряжение на нем, а дополнительный ток течет обратно, обеспечивая тем самым стабильное выходное напряжение. В этой схеме мы даем 9 В входного напряжения и получаем почти 5,1 напряжения регулируемого выхода.

Типы регуляторов напряжения: работа и их ограничения

В электроснабжении регуляторы напряжения играют ключевую роль. Итак, прежде чем переходить к обсуждению регулятора напряжения, мы должны знать, какова роль источника питания при проектировании системы?Например, в любой рабочей системе, такой как смартфон, наручные часы, компьютер или ноутбук, источник питания является важной частью для работы системы Owl, поскольку он обеспечивает последовательное, надежное и непрерывное питание внутренних компонентов системы. В электронных устройствах источник питания обеспечивает стабильную, а также регулируемую мощность для правильной работы цепей. Источники питания бывают двух типов, такие как источник питания переменного тока, который поступает от сетевых розеток, и источник питания постоянного тока, который поступает от батарей.Итак, в этой статье рассматривается обзор различных типов регуляторов напряжения и их работы.


Что такое регулятор напряжения?

Регулятор напряжения используется для регулирования уровней напряжения. Когда требуется стабильное и надежное напряжение, предпочтительным устройством является регулятор напряжения. Он генерирует фиксированное выходное напряжение, которое остается постоянным при любых изменениях входного напряжения или условий нагрузки. Он действует как буфер для защиты компонентов от повреждений. Стабилизатор напряжения - это устройство с простой конструкцией с прямой связью, в котором используются контуры управления с отрицательной обратной связью.

Регулятор напряжения

Существует два основных типа регуляторов напряжения: линейные регуляторы напряжения и импульсные регуляторы напряжения; они используются в более широких приложениях. Линейный регулятор напряжения - самый простой тип регулятора напряжения. Он доступен в двух типах, которые являются компактными и используются в системах с низким энергопотреблением и низким напряжением. Обсудим различные типы регуляторов напряжения.

Основные компоненты , используемые в регуляторе напряжения :

  • Цепь обратной связи
  • Стабильное опорное напряжение
  • Цепь управления проходным элементом

Процесс регулирования напряжения очень прост за счет использования трех вышеуказанных компонентов.Первый компонент регулятора напряжения, такой как цепь обратной связи, используется для обнаружения изменений в выходном напряжении постоянного тока. На основе опорного напряжения, а также обратной связи может быть сгенерирован управляющий сигнал, который приводит в действие элемент Pass для компенсации изменений.

Здесь проходной элемент - это один из видов твердотельного полупроводникового устройства, подобный транзистору BJT, диод с PN-переходом, иначе MOSFET. Теперь выходное напряжение постоянного тока можно поддерживать приблизительно стабильным.

Работа регулятора напряжения

Схема регулятора напряжения используется для создания и поддержания постоянного выходного напряжения, даже когда входное напряжение в противном случае изменяется.Регулятор напряжения получает напряжение от источника питания, и его можно поддерживать в диапазоне, который хорошо подходит для остальных электрических компонентов. Чаще всего эти регуляторы используются для преобразования мощности постоянного / постоянного тока, переменного / переменного тока или переменного / постоянного тока.


Типы регуляторов напряжения и их работа

Эти регуляторы могут быть реализованы в виде интегральных схем или дискретных компонентных схем. Стабилизаторы напряжения подразделяются на два типа: линейный регулятор напряжения и импульсный регулятор напряжения.Эти регуляторы в основном используются для регулирования напряжения в системе, однако линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД. В импульсных регуляторах с высоким КПД большая часть i / p-мощности может передаваться на o / p без рассеивания.

Типы регуляторов напряжения

В основном существует два типа регуляторов напряжения: линейный регулятор напряжения и импульсный регулятор напряжения.

  • Существует два типа линейных регуляторов напряжения: последовательные и шунтовые.
  • Существует три типа импульсных регуляторов напряжения: повышающие, понижающие и инверторные регуляторы напряжения.

Линейные регуляторы напряжения

Линейный регулятор действует как делитель напряжения. В омической области используется полевой транзистор. Сопротивление регулятора напряжения меняется в зависимости от нагрузки, что приводит к постоянному выходному напряжению. Линейные регуляторы напряжения - это оригинальный тип регуляторов, используемых для регулирования источников питания. В этом типе регулятора переменная проводимость активного проходного элемента, такого как MOSFET или BJT, отвечает за изменение выходного напряжения.

Как только нагрузка объединена, изменения на любом входе, в противном случае нагрузка приведет к разнице в токе по всему транзистору, чтобы поддерживать постоянный выход. Чтобы изменить ток транзистора, он должен работать в активной, иначе омической области.

Во время этой процедуры этот тип регулятора рассеивает много энергии, потому что сетевое напряжение падает внутри транзистора и рассеивается подобно теплу. Как правило, эти регулирующие органы делятся на разные категории.

  • Положительный регулируемый
  • Регулируемый отрицательный
  • Фиксированный выход
  • Отслеживание
  • Плавающий
Преимущества

К преимуществам линейного регулятора напряжения можно отнести следующее.

  • Обеспечивает низкую пульсацию выходного напряжения
  • Быстрое время отклика на изменение нагрузки или линии
  • Низкие электромагнитные помехи и низкий уровень шума
Недостатки

К недостаткам линейного стабилизатора напряжения можно отнести следующее.

  • КПД очень низкий
  • Требуется большое пространство - необходим радиатор
  • Напряжение выше входа не может быть увеличено
Регуляторы напряжения серии

В последовательном регуляторе напряжения используется переменный элемент, включенный последовательно с нагрузкой. Изменяя сопротивление этого последовательного элемента, можно изменить падение напряжения на нем. И напряжение на нагрузке остается постоянным.

Количество потребляемого тока эффективно используется нагрузкой; это главное преимущество последовательного регулятора напряжения.Даже когда нагрузка не требует тока, последовательный регулятор не потребляет полный ток. Следовательно, последовательный стабилизатор значительно эффективнее шунтирующего регулятора напряжения.

Шунтирующие регуляторы напряжения

Шунтирующий регулятор напряжения работает, обеспечивая путь от напряжения питания к земле через переменное сопротивление. Ток через шунтирующий регулятор отклоняется от нагрузки и бесполезно течет на землю, что делает эту форму, как правило, менее эффективной, чем последовательный регулятор.Однако он проще, иногда состоит только из диода опорного напряжения и используется в схемах с очень низким энергопотреблением, в которых потери тока слишком малы, чтобы вызывать беспокойство. Эта форма очень распространена для схем опорного напряжения. Шунтирующий регулятор обычно может только поглощать (поглощать) ток.

Применение шунтирующих регуляторов

Шунтовые регуляторы используются в:

  • Импульсные источники питания с низким выходным напряжением
  • Цепи источника и стока тока
  • Усилители ошибок
  • Линейные и импульсные источники питания с регулируемым напряжением или током
  • Контроль напряжения
  • Аналоговые и цифровые схемы, требующие точных эталонов
  • Прецизионные ограничители тока

Импульсные регуляторы напряжения

Импульсный регулятор быстро включает и выключает последовательное устройство.Рабочий цикл переключателя устанавливает количество заряда, передаваемого нагрузке. Это контролируется механизмом обратной связи, аналогичным линейному регулятору. Импульсные регуляторы эффективны, потому что последовательный элемент либо полностью проводит ток, либо выключен, потому что он почти не рассеивает мощность. Импульсные регуляторы способны генерировать выходное напряжение, превышающее входное напряжение, или противоположную полярность, в отличие от линейных регуляторов.

Импульсный регулятор напряжения быстро включается и выключается для изменения выходной мощности.Он требует управляющего генератора, а также заряжает компоненты накопителя.

В импульсном регуляторе с частотно-импульсной модуляцией, изменяющейся по частоте, постоянный рабочий цикл и спектр шума, налагаемый PRM, изменяются; отфильтровать этот шум труднее.

Импульсный стабилизатор с широтно-импульсной модуляцией, постоянной частотой, изменяющимся рабочим циклом, эффективен и легко отфильтровывает шум.
В импульсном регуляторе ток в непрерывном режиме через катушку индуктивности никогда не падает до нуля.Это обеспечивает максимальную выходную мощность. Это дает лучшую производительность.

В импульсном стабилизаторе ток в прерывистом режиме через катушку индуктивности падает до нуля. Это дает лучшую производительность при низком выходном токе.

Коммутационные топологии

Имеет два типа топологии: диэлектрическая изоляция и неизолированная.

Изолированный

Он основан на радиации и интенсивных средах. Опять же, изолированные преобразователи подразделяются на два типа, в том числе следующие.

  • Обратные преобразователи
  • Прямые преобразователи

В перечисленных выше изолированных преобразователях рассматривается тема импульсных источников питания.

Без изоляции

Он основан на небольших изменениях Vout / Vin. Примеры: повышающий регулятор напряжения (Boost) - увеличивает входное напряжение; Step Down (Buck) - снижает входное напряжение; Повышение / Понижение (повышение / понижение) Регулятор напряжения - понижает, повышает или инвертирует входное напряжение в зависимости от контроллера; Зарядный насос - обеспечивает многократный ввод без использования индуктора.

Опять же, неизолированные преобразователи делятся на разные типы, но наиболее значимыми являются

.
  • Понижающий преобразователь или понижающий регулятор напряжения
  • Повышающий преобразователь или повышающий регулятор напряжения
  • Понижающий или повышающий преобразователь

Преимущества топологий коммутации

Основными преимуществами импульсного источника питания являются эффективность, размер и вес. Это также более сложная конструкция, способная обеспечить более высокую энергоэффективность.Импульсный регулятор напряжения может обеспечивать выходной сигнал, который больше или меньше, или инвертирует входное напряжение.

Недостатки топологий коммутации

  • Повышенное пульсирующее напряжение на выходе
  • Более медленное переходное время восстановления
  • EMI производит очень шумный выходной сигнал
  • Очень дорого

Повышающие импульсные преобразователи, также называемые повышающими импульсными регуляторами, обеспечивают более высокое выходное напряжение за счет повышения входного напряжения.Выходное напряжение регулируется до тех пор, пока потребляемая мощность находится в пределах выходной мощности схемы. Для управления гирляндой светодиодов используется повышающий импульсный регулятор напряжения.

Повышающие регуляторы напряжения

Предположим, что цепь без потерь Pin = Pout (входная и выходная мощности одинаковы)

Тогда V на выходе I на выходе = V на выходе I на выходе ,

I из / I из = (1-D)

Из этого следует, что в этой схеме

  • Полномочия остались прежними
  • Напряжение увеличивается
  • Снижение тока
  • Аналог трансформатора постоянного тока
Понижающий регулятор напряжения

Понижает входное напряжение.

Понижающие регуляторы напряжения

Если входная мощность равна выходной мощности, то

P вход = P выход ; V вход I вход = V выход I выход ,

I выход / I вход = V вход / V выход = 1 / D

Понижающий преобразователь эквивалентен трансформатору постоянного тока, в котором коэффициент передачи находится в диапазоне 0-1.

Шаг вверх / шаг вниз (Boost / Buck)

Его еще называют инвертором напряжения.Используя эту конфигурацию, можно повышать, понижать или инвертировать напряжение в соответствии с требованиями.

  • Выходное напряжение имеет полярность, противоположную входной.
  • Это достигается за счет прямого смещения диода с обратным смещением VL во время выключения, выработки тока и зарядки конденсатора для выработки напряжения во время выключения
  • Используя этот тип импульсного регулятора, можно достичь КПД 90%.
Повышающие / понижающие регуляторы напряжения

Регуляторы напряжения генератора

Генераторы переменного тока вырабатывают ток, необходимый для удовлетворения требований к электричеству автомобиля во время работы двигателя.Он также восполняет энергию, которая используется для запуска автомобиля. Генератор переменного тока может производить больше тока на более низких скоростях, чем генераторы постоянного тока, которые когда-то использовались в большинстве транспортных средств. Генератор состоит из двух частей

Регулятор напряжения генератора

Статор - это неподвижный элемент, который не движется. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
Ротор / Якорь - Это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов: (i) индукцией (ii) постоянными магнитами (iii) с помощью возбудителя.

Электронный регулятор напряжения

Простой регулятор напряжения может быть изготовлен из резистора, включенного последовательно с диодом (или последовательно соединенными диодами). Из-за логарифмической формы кривых V-I на диоде напряжение на диоде изменяется незначительно из-за изменений потребляемого тока или изменений на входе. Когда точный контроль напряжения и эффективность не важны, эта конструкция может работать нормально.

Электронный регулятор напряжения

Транзисторный регулятор напряжения

Электронные регуляторы напряжения имеют источник нестабильного опорного напряжения, который обеспечивается стабилитроном, который также известен как рабочий диод обратного пробоя.Он поддерживает постоянное выходное напряжение постоянного тока. Пульсации переменного напряжения заблокированы, но фильтр не может быть заблокирован. Регулятор напряжения также имеет дополнительную схему защиты от короткого замыкания, схему ограничения тока, защиту от перенапряжения и тепловое отключение.

Основные параметры регуляторов напряжения

  • Основные параметры, которые необходимо учитывать при работе регулятора напряжения, в основном включают в себя напряжение i / p, напряжение o / p, а также ток o / p. Как правило, все эти параметры в основном используются для определения топологии типа VR, хорошо согласованной или нет с ИС пользователя.
  • Другие параметры этого регулятора: частота коммутации, ток покоя; термическое сопротивление напряжения обратной связи может применяться в соответствии с требованием
  • Ток покоя имеет большое значение, если главной проблемой является эффективность в режимах ожидания или при небольшой нагрузке.
  • Если частота коммутации рассматривается как параметр, использование частоты коммутации может привести к решениям небольшой системы. Кроме того, тепловое сопротивление может быть опасным для отвода тепла от устройства, а также для отвода тепла от системы.
  • Если контроллер имеет полевой МОП-транзистор, после этого все кондуктивные, а также динамические потери будут рассеиваться внутри корпуса и должны учитываться при измерении предельной температуры регулятора.
  • Наиболее важным параметром является напряжение обратной связи, поскольку оно определяет меньшее напряжение включения / выключения, которое может выдержать ИС. Это ограничивает меньшее напряжение o / p, а точность влияет на регулирование выходного напряжения.

Как правильно выбрать регулятор напряжения?

  • Ключевые параметры играют ключевую роль при выборе регулятора напряжения разработчиком, например Vin, Vout, Iout, системные приоритеты и т. Д.Некоторые дополнительные ключевые функции, такие как включение управления или индикация состояния питания.
  • Когда разработчик описал эти потребности, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее предпочтительным потребностям.
  • Для дизайнеров эта таблица очень ценна, потому что она предоставляет несколько функций, а также пакеты, доступные для удовлетворения необходимых параметров для требований дизайнера.
  • Устройства MPS доступны со своими техническими описаниями, в которых подробно описаны необходимые внешние части, как измерить их значения, чтобы получить стабильную, эффективную конструкцию с высокой производительностью.
  • Это техническое описание в основном помогает при измерении значений таких компонентов, как выходная емкость, сопротивление обратной связи, индуктивность выходного сигнала и т. Д.
  • Кроме того, вы можете использовать некоторые инструменты моделирования, такие как программное обеспечение MPSmart / DC / DC Designer и т. Д. MPS предоставляет различные регуляторы напряжения с компактными линейными, различными эффективными и переключаемыми типами, такие как семейство MP171x, семейство HF500-x, MPQ4572- AEC1, MP28310, MP20056 и MPQ2013-AEC1.

Ограничения / недостатки

Ограничения регуляторов напряжения включают следующее.

  • Одним из основных ограничений регулятора напряжения является его неэффективность из-за рассеивания большого тока в некоторых приложениях
  • Падение напряжения на этой ИС аналогично падению напряжения на резисторе. Например, когда на входе регулятора напряжения 5 В, а на выходе получается 3 В, тогда падение напряжения между двумя клеммами составляет 2 В.
  • Эффективность регулятора может быть ограничена до 3 В или 5 В, что означает, что эти регуляторы применимы с меньшим количеством дифференциалов Vin / Vout.
  • В любом приложении очень важно учитывать ожидаемое рассеивание мощности для регулятора, потому что при высоких входных напряжениях рассеиваемая мощность будет высокой, что может привести к повреждению различных компонентов из-за перегрева.
  • Другое ограничение состоит в том, что они просто способны к понижающему преобразованию по сравнению с переключательными типами, поскольку эти регуляторы обеспечивают понижающее преобразование и преобразование.
  • Регуляторы, подобные импульсным, очень эффективны, однако у них есть некоторые недостатки, такие как экономическая эффективность по сравнению с регуляторами линейного типа, более сложные, большие по размеру и могут генерировать больше шума, если их внешние компоненты не выбраны осторожно.

Речь идет о различных типах регуляторов напряжения и принципах их работы. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять эту концепцию. Кроме того, по любым вопросам относительно этой статьи или любой помощи в реализации проектов в области электротехники и электроники вы можете обратиться к нам, оставив комментарий в разделе комментариев ниже. Вот вам вопрос - где мы будем использовать регулятор напряжения генератора?

Цепи стабилизатора напряжения

»Электроника

- обзор основ схем линейных и импульсных стабилизаторов напряжения, используемых в источниках питания электроники.


Пособие по схемам источника питания и учебное пособие Включает:
Обзор электроники источника питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Регуляторы напряжения широко используются в схемах питания электроники. Они обеспечивают очень высокую степень регулирования и низкий уровень пульсаций, хотя их уровни эффективности намного ниже, чем у другой популярной формы регулятора, называемой регулятором режима переключения.Однако линейные регуляторы все еще используются в больших количествах из-за их относительной простоты и высокого уровня производительности.

Можно изготавливать схемы регуляторов напряжения как из дискретных компонентов, так и использовать регуляторы IC. Регуляторы IC позволяют достичь очень высоких уровней производительности, часто с использованием сравнительно небольшого количества компонентов, но часто для многих проектов можно использовать несколько доступных компонентов, чтобы создать совершенно адекватную схему регулятора напряжения.

Основная концепция схем регулятора напряжения

Несмотря на то, что существует множество различных схем регуляторов напряжения и интегральных схем регуляторов, основные концепции этих схем делятся на одну из двух основных категорий:

  • Последовательная цепь регулятора
  • Цепь параллельного или шунтирующего регулятора.

Все схемы регуляторов напряжения попадают в одну из этих категорий, хотя из двух наиболее распространенным типом, наблюдаемым для схем полного регулятора напряжения, является последовательный регулятор.

В дополнение к тому, что регуляторы напряжения классифицируются как последовательные и шунтирующие регуляторы, их также можно разделить на две другие категории в зависимости от режима работы:

  • Линейные регуляторы напряжения.
  • Импульсные регуляторы напряжения.

Широко используются как линейные, так и импульсные схемы регуляторов. Каждый тип имеет свои преимущества и недостатки, поэтому выбор типа регулятора необходимо делать в зависимости от предполагаемого применения.

Цепь регулятора напряжения серии

Цепи последовательного регулятора напряжения работают с использованием последовательного элемента управления, такого как биполярный транзистор или полевой транзистор. Принцип работы схемы основан на контроле проводимости этого последовательного элемента с помощью управляющего напряжения. Если выходное напряжение имеет тенденцию к повышению, это будет обнаружено, и управляющее напряжение будет отрегулировано для уменьшения проводимости последовательного элемента, что вызовет повышение напряжения на последовательном элементе.Поскольку последовательный элемент и нагрузка образуют схему делителя потенциала, любое увеличение напряжения на последовательном элементе управления вызовет падение напряжения на нагрузке.

Точно так же, если напряжение на нагрузке имеет тенденцию падать слишком низко, это будет обнаружено, управляющее напряжение для последовательного элемента затем вызовет повышение проводимости последовательного элемента, и напряжение на нагрузке будет поддерживаться.

Это типичная форма системы отрицательной обратной связи.Управляющее напряжение должно иметь эталон, с которым можно сравнивать выходной сигнал. Это часто обеспечивается схемой опорного напряжения на основе стабилитрона. Выходное напряжение регулятора снимается, часто через делитель потенциала, и сравнивается с опорным напряжением, а напряжение ошибки возвращается в качестве управляющего напряжения для изменения проводимости элемента последовательного управления.

Можно изменить выходное напряжение, изменив величину деления выхода.Поместив переменный резистор в делитель потенциала, можно изменить напряжение, которое сравнивается с опорным напряжением. Это, в свою очередь, изменит выходное напряжение схемы регулятора напряжения.

Цепь шунтирующего регулятора напряжения

Как следует из названия, шунтирующий регулятор напряжения работает параллельно с нагрузкой, а не последовательно с ней. Используя форму устройства постоянного тока, которое может быть таким же простым, как резистор, оно работает параллельно с нагрузкой, шунтируя или поглощая ток, так что напряжение на нагрузке остается неизменным.

В простейших формах шунтирующих регуляторов используются устройства постоянного напряжения, такие как стабилитроны. В этих схемах используется последовательный резистор для обеспечения действия по ограничению тока, а стабилитрон устанавливается между резистором и землей параллельно нагрузке. Поскольку стабилитрон поддерживает постоянное напряжение, а изменения тока нагрузкой не вызовут каких-либо (значительных) изменений напряжения, потому что диод будет поддерживать постоянное напряжение, принимая любые изменения тока. Естественно, существуют и другие, более сложные формы шунтирующего регулятора, но вариант с стабилитроном является наиболее простым и понятным.

Линейный регулятор напряжения

Схема линейного регулятора напряжения - это схема, в которой проводимость элемента последовательного регулятора изменяется линейно, чтобы гарантировать поддержание требуемого напряжения на выходе. Таким образом, выходное напряжение поддерживается настолько точно, насколько это возможно, и получается самый чистый выходной сигнал.

Хотя схема линейного регулятора напряжения обеспечивает очень высокие уровни производительности с точки зрения шума, пульсаций и регулирования, этот тип схемы неэффективен.Элемент последовательного регулятора требует значительного падения напряжения на нем, чтобы он мог поддерживать требуемый высокий уровень шума и подавления пульсаций. Элемент последовательного регулятора должен быть способен рассеивать значительный уровень мощности в зависимости от требуемой выходной мощности. Это означает, что эти блоки питания могут быть большими и тяжелыми.

Импульсный регулятор напряжения

В отличие от линейных регуляторов, в которых последовательный элемент изменяется линейно, последовательный элемент в импульсных регуляторах имеет только два состояния - включено и выключено.Регулятор работает, заряжая большой конденсатор на выходе. Когда напряжение падает, поскольку для питания нагрузки используется заряд, включается последовательный стабилизатор. Как только он достигнет необходимого напряжения, он снова отключается. Благодаря наличию на выходе емкостного конденсатора достаточно большого размера переключающие пики в основном устраняются.

Преимущество импульсных регуляторов заключается в гораздо более высоком уровне эффективности, который они могут предложить. Последовательный элемент рассеивает очень мало энергии как во включенном, так и в выключенном состоянии.В результате эти блоки питания не только очень эффективны, но и могут быть намного меньше по размеру. Проблема в том, что на выходе всегда присутствуют всплески переключения, а общий уровень шума на выходе больше, чем у линейных регуляторов. Однако они вполне подходят для многих приложений и, как следствие, очень широко используются.

Сводка

Линейные регуляторы напряжения очень широко используются в электронных схемах. В цепях, работающих на высоких скоростях и требующих точного обслуживания шин питания, цепи регулятора напряжения используются для обеспечения питания большинства цепей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *