Регулятор вращения: Регулятор оборотов своими руками — 95 фото как и из чего изготовить регулятор оборотов

Содержание

Подборка схем регулятора оборотов двигателя постоянного тока

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания резистор. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Регулятор скорости вращения двигателя

ШИМ: 0%-99%, напряжение: 5…16 В, ток: 10A….


Регулятор оборотов коллекторного двигателя

Мощность: 400 Вт, обороты: 90-1400 об/мин, 220В/50Гц…


Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Радиоаматор, 4/2008

Регулятор оборотов с поддержанием мощности своими руками

Залогом долговечности любого двигателя является плавность его работы. Для решения поставленной задачи в коллекторных силовых установках используются регуляторы оборотов с поддержанием мощности. Эти устройства можно приобрести либо сделать своими руками.Регулятор оборотов представляет собой частотный преобразователь, в основе которого лежит мощный транзистор. Он необходим для инвертирования напряжения, а также плавной остановки (пуска) электродвигателя при помощи широко-импульсного управления электрическими устройствами или ШИМ.

Область применения регуляторов

Простым примером такого преобразователя является стабилизатор напряжения, часто используемый в быту. Однако в сравнении с ним регулятор оборотов более функционален. Частотные преобразователи нашли широкое применение и используются во всех электроустройствах. Благодаря их применению не только обеспечивается точный контроль над работой двигателя,

но также достигается экономия электрической энергии, так как силовая установка потребляет лишь необходимую мощность, а не максимальную.

Купить регулятор оборотов двигателя без потери мощности можно для решения следующих задач:

  • Контроль температуры мотора без использования дополнительных контроллеров.
  • Сокращаются затраты на техническое обслуживание.
  • Обеспечивается плавный пуск.
  • Экономится электрическая энергия.

Устройство используется во всей бытовой технике, сварочных аппаратах и т. д.

Принцип работы устройства

В состав устройства входит три основных подсистемы:

  • Электромотор.
  • Микроконтроллерная система управления с блоком преобразователя.
  • Привод и связанные с ним механизмы.

После того как электродвигатель был запущен, показатель силы тока в цепи достигает максимальных значений. Причем этот процесс повторяется несколько раз, что приводит к выделению большого количества тепла. В результате долговечность электродвигателя сокращается. Используемое устройство исполняет роль ступенчатого инвертора, обеспечивая двойное преобразование энергии.

В зависимости от подаваемого напряжения, частотный регулятор выпрямляет ток посредством диода, расположенного на входе схемы. Затем ток проходит дополнительную фильтрацию, благодаря нескольким конденсаторам и поступает в микросхему, формирующую ШИМ. Вследствие всех этих процессов обмотка двигателя не подвергается чрезмерной нагрузке.

Рекомендации по выбору

Есть несколько характеристик, на которые необходимо обращать внимание при выборе регулятора:

  • Тип управления — в коллекторных электродвигателях используются векторные и скалярные системы управления. Первый вид чаще применяется, но второй является более надежным.
  • Мощность — этот показатель должен соответствовать максимально допустимой мощности предохраняемого устройства. Если силовая установка является низковольтной, то стоит остановить выбор на регуляторе с более высоким показателем мощности в сравнении с допустимым.
  • Напряжение — подбирается в соответствии с характеристиками двигателя.
  • Частотный диапазон — должен полностью соответствовать поставленным задачам, например, для ручного фрезерного станка вполне достаточно 1000 Гц.

Все остальные характеристики (габариты, срок гарантии и т. д. ) можно смело считать второстепенными. На рынке достаточно много брендов, выпускающих качественные и сравнительно недорогие устройства.

Изготовление своими руками

Если устройство планируется использовать в домашних условиях, то порой покупать готовое не имеет смысла. С финансовой точки зрения проще изготовить регулятор оборотов с поддержанием мощности своими руками. Для этого потребуется лишь несколько радиодеталей, которые могут быть легко приобретены. Основным элементом схемы является симистор типа ВТ138−600, а для регулирования оборотов используется потенциометр (обозначен буквой Р).

Существует много схем для создания регулятора частоты вращения, но предложенная наиболее проста в изготовлении. Собранное на ее основе устройство может использоваться для решения различных задач, например, в электроприводе швейной машинки или настольного станка. Принцип работы схемы предельно прост: при замедлении вращения двигателя показатель его индукции снижается, что приводит к росту напряжения на С3, R 2 и Р с последующим открытием тиристора.

Хотя предложенная схема проста, она позволяет решить большое количество задач. При желании можно собрать более сложное устройство — тиристорный регулятор с обратной связью. Это выгодное решение с точки зрения экономии электроэнергии, но требующее большего набора знаний в области радиотехники, ведь практически все они основаны на микросхемах, например, TDA 1080.

Регулятор частоты вращения двигателя 220в своими руками

При использовании электродвигателя в инструментах, одной из серьёзных проблем является регулировка скорости их вращения. Если скорость недостаточно высока, то действие инструмента является недостаточно эффективным.

Если же она излишне высока, то это приводит не только к существенному перерасходу электрической энергии, но и к возможному пережогу инструмента. При слишком высокой скорости вращения, работа инструмента может стать также менее предсказуемой. Как это исправить? Для этой цели принято использовать специальный регулятор скорости вращения.

Двигатель для электроинструментов и бытовой техники обычно относится к одному из 2 основных типов:

  1. Коллекторные двигатели.
  2. Асинхронные двигатели.

В прошлом, вторая из указанных категорий имела наибольшее распространение. Сейчас, примерно 85% двигателей, которые употребляются в электрических инструментах, бытовой или кухонной технике, относятся к коллекторному типу. Объясняется это тем, что они имеют большую степень компактности, они мощнее и процесс управления ими является более простым.

Действие любого электродвигателя построено на очень простом принципе: если между полюсами магнита поместить прямоугольную рамку, которая может вращаться вокруг своей оси, и пустить по ней постоянный ток, то рамка станет поворачиваться. Направление вращения определяется согласно «правилу правой руки».

Эту закономерность можно использовать для работы коллекторного двигателя.

Важным моментом здесь является подключение тока к этой рамке. Поскольку она вращается, для этого используются специальные скользящие контакты. После того, как рамка повернётся на 180 градусов, ток по этим контактам потечёт в обратном направлении. Таким образом, направление вращения останется прежним. При этом, плавного вращения не получится. Для достижения такого эффекта принято использовать несколько десятков рамок.

Устройство

Коллекторный двигатель состоит обычно из ротора (якоря), статора, щёток и тахогенератора:

  1. Ротор — это вращающаяся часть, статор — это внешний магнит.
  2. Щётки, сделанные из графита – это основная часть скользящих контактов, через которую на вращающийся якорь подаётся напряжение.
  3. Тахогенератор – это прибор, который отслеживает характеристики вращения. В случае нарушения равномерности движения, он корректирует поступающее в двигатель напряжение, тем самым делая его более плавным.
  4. Статор может содержать не один магнит, а, например, 2 (2 пары полюсов). Также, вместо статических магнитов, здесь могут быть использованы и катушки электромагнитов. Работать такой мотор может как от постоянного, так и от переменного тока.

Простота регулировки скорости коллекторного двигателя определяется тем, что скорость вращения прямо зависит от величины поданного напряжения.

Кроме этого, важной особенностью является то, что ось вращения непосредственно можно присоединять к вращающемуся инструменты без использования промежуточных механизмов.

Если говорить об их классификации, то можно говорить о:

  1. Коллекторных двигателях постоянного тока.
  2. Коллекторных двигателях переменного тока.

В этом случае, речь идёт о том, каким именно током происходит питание электродвигателей.

Разница состоит в том, как организованы эти подключения.

Тут принято различать:

  • Параллельное возбуждение.
  • Последовательное возбуждение.
  • Параллельно-последовательное возбуждение.

Регулировка

Теперь расскажем о том, как можно регулировать обороты коллекторных двигателей. В связи с тем, что скорость вращения мотора просто зависит от величины подаваемого напряжения, то любые средства регулировки, которые способны выполнять эту функцию для этого вполне пригодны.

Перечислим несколько такого рода вариантов для примера:

  1. Лабораторный автотрансформатор (ЛАТР).
  2. Заводские платы регулировки, используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
  3. Кнопки, используемые в конструкции электроинструментах.
  4. Бытовые регуляторы освещения с плавным действием.

Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе. При отклонениях в скорости вращения мотора, через симисторы в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения. Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю. Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк, происходит потеря мощности вращения мотора. Является дешёвым решением. Не применяется для достаточно мощных моторов по упомянутым причинам.

Во втором случае, при использовании

Регулятор оборотов коллекторного двигателя без потери мощности

/

/

Регулятор оборотов коллекторного двигателя без потери мощности

Каждый из нас дома имеет какой-то электроприбор, который работает в доме не один год. Но со временем мощность техники слабеет и не выполняет своих прямых предназначений. Именно тогда стоит обратить внимание на внутренности оборудования. В основном проблемы возникают с электродвигателем, который отвечает за функциональность техники. Тогда стоит обратить свое внимание на прибор, который регулирует обороты мощности двигателя без снижения их мощности.

Виды двигателей

Регулятор оборотов с поддержанием мощности — изобретение, которое вдохнет новую жизнь в электроприбор, и он будет работать как только что приобретенный товар. Но стоит помнить о том, что двигатели бывают разных форматов и у каждого своя предельная работа.

Двигатели разные по характеристикам. Это значит то, что та или иная техника работает на разных частотах оборота вала, запускающего механизм. Мотор может быть:

В основном трехфазные электромоторы встречаются на заводах или крупных фабриках. В домашних условиях используются однофазные и двухфазные. Данного электричества хватает на работу бытовой техники.

Регулятор оборотов мощности

Принципы работы

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его кату

Регулятор оборотов минидрели / Блог компании MakeItLab / Хабр

Сверление печатных плат — настоящая головная боль для электронщика, но наше новое устройство поможет ее немного смягчить. Это простое и компактное дополнение к минидрели позволит продлить жизнь двигателю и сверлам. Схема, плата, инструкции по настройке, видео — все в статье!



Для чего нужен регулятор оборотов


Обычно минидрели строятся на базе обычных двигателей постоянного тока. А обороты таких двигателей зависят от нагрузки и приложенного напряжения. В результате на холостых оборотах двигатель раскручивается очень сильно, а в моменты сверления обороты двигателя плавают в большом диапазоне.

Если снижать напряжение на двигателе, когда не нем нет нагрузки, можно добиться увеличения ресурса как свёрл, так и самих двигателей. Кроме того, даже точность сверления повышается. Самый простой способ добиться этого — измерение тока, потребляемого двигателем.

В интернете много схем подобных регуляторов, но большинство из них используют линейные регуляторы напряжения. Они массивные и требуют охлаждения. В соавторстве с TinyElectronicFriends нам захотелось сделать компактную плату на базе импульсного стабилизатора, чтобы она могла быть просто «надета» на двигатель.

Схема


ШИМ-регулятор со встроенным ключом MC34063 регулирует напряжение на двигателе. Напряжение на шунте R7,R9,R11 усиливается операционным усилителем и через компаратор подается на вход обратной связи ШИМ-контроллера.

Если ток меньше определенного значения, то на двигатель подается напряжение, зависящее от настройки сопротивления RV1. То есть на холостых оборотах на двигатель будет подаваться только часть мощности, а подстроечный резистор RV1 позволит отрегулировать обороты при этом.

Если сигнал на выходе ОУ превысит напряжение на компараторе, то на двигатель будет подано полное напряжение питания. То есть при сверлении двигатель будет включаться на максимальную мощность. Порог включения задается резистором RV2.
Для питания ОУ используется линейный стабилизатор.

Все компоненты схемы будут рассеивать очень мало тепла и можно собрать ее полностью на SMD-компонентах. Работать она может при большом диапазоне питающих напряжений (в зависимости от сопротивления R6), не требует контроллеров и датчиков оборотов.

Печатная плата


Вся схема умещается на двухсторонней печатной плате диаметром 30мм. На ней всего несколько штук переходных отверстий и ее легко можно изготовить «в домашних условиях». Ниже в статье будут файлы для скачивания файла печатной платы для SprintLaout.

Перечень компонентов


Вот полный список всего, что потребуется для сборки:
  1. Печатная плата (ссылка на файлы для изготовления в конце статьи)
  2. U1 — MC34063AD, импульсный стабилизатор, SOIC-8
  3. U2 — LM358, операционный усилитель, SOIC-8
  4. U3 — L78L09, стабилизатор, SOT-89
  5. D1,D3 — SS14, диод Шоттки, SMA — 2шт
  6. D2 — LL4148, диод выпрямительный, MiniMELF
  7. C1 — конденсатор, 10мкФ, 50В, 1210
  8. C2 — конденсатор, 3.3нФ, 1206
  9. C3,C4 — конденсатор, 4.7мкФ, 1206 — 2шт
  10. C5 — конденсатор, 22мкФ, 1206
  11. R1-R3,R7,R9,R11 — резистор 1 Ом, 1206 — 6шт
  12. R4,R10 — резистор 22кОм, 1206 — 2шт
  13. R5 — резистор 1кОм, 1206
  14. R6 — резистор 10-27кОм, 1206. Сопротивление зависит от номинального напряжения используемого двигателя. 12В — 10кОм, 24В — 18кОм, 27В — 22кОм, 36В — 27кОм
  15. R8 — резистор 390 Ом, 1206
  16. RV1,RV2 — резистор подстрочный, 15кОм, типа 3224W-1-153 — 2шт
  17. XS1 — клемма, 2 конт, шаг 3,81мм

Также мы сделали на 3D-принтере кольцо-ограничитель, для удобной установки на двигатель. Ссылка для скачивания STL-файла для скачивания в конце статьи.

Сборка и настройка


Собирается все достаточно просто. Контактные площадки нарисованы под ручную пайку.
Стоит начинать сборку самой платы с установки всех компонентов на стороне платы без подстроечных резисторов, а затем на обратной стороне. Клемму проще устанавливать в последнюю очередь. Номинал R6 подбирается в соответствии с номинальным напряжением вашего двигателя. В этом устройстве важно контролировать положение ключа на микросхемах и полярность диодов. Все остальные компоненты не полярные.

Между платой и двигателем над установить проставку, чтобы плата не касалась двигателя. Сама плата надевается прямо на ламели двигателя. Несколько раз проверьте полярность подключения двигателя, чтобы он крутился в правую сторону, а затем припаяйте контакты.

Контакты для подачи напряжения, на вход платы подписаны «GND» и «+36V». Минус источника входного напряжения подключается к контакту «GND», а плюс к «+36V». Напряжение источника питания должно совпадать с номинальным напряжением двигателя.

Настройка регулятора очень проста:

  1. Установить резистором RV2 порог срабатывания регулятора на максимум
  2. Установить резистором RV1 оптимальные обороты двигателя в режиме холостого хода
  3. Установить резистором RV2 такой порог срабатывания, чтобы при появлении малейшей нагрузки, увеличивалось напряжение на двигателе

Видео


Эффект от использования сложно оценить по видео, но мы теперь всегда сверлим только с регулятором! Требуется лишь немного привыкнуть и следить чтобы сверла были хорошо заточены. И, конечно, его можно в любой момент просто включить на максимум на всегда.


Ссылки


Ссылки для скачивания всех необходимых файлов вы можете найти на основной странице проекта.
Спасибо за проявленный интерес!

регулятор оборотов с поддержанием мощности

Здравствуйте дорогие мои посетители. Хочу сегодня продолжить тему о коллекторных электродвигателях, а именно как подключить двигатель от стиральной машины с помощью платы регулирования оборотов с поддержкой мощности. Как вы, видели, я затрагивал уже эту тему. Снимал по этому поводу видео «Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат». Это видео стало очень популярным на моём канале, зрители оставили множество разных комментариев по этой теме. Также я там выложил источник, где я взял схему регулятора оборотов с поддержкой мощности коллекторных электродвигателей. И как мне показалось на тот момент, что человек скачает себе этот файл и соберет себе такую же схему как у меня, и будет её использовать. Но нет, оказалось не все так просто как мне этого хотелось, посыпалась, куча вопросов от людей не только гуманитариев, но и совсем не плохих радиолюбителей. Были даже предложения о покупке плат регулирования оборотов.

Что бы сразу ответить на многие вопросы, Вам, мои дорогие читатели, и появилась эта статья.

 Занимаюсь я ремонтом электроинструмента в частности перемоткой электродвигателей. И во время ремонта качественного электроинструмента замечал там «Константную электронику»,  которая при снижении оборотов на электроинструменте поддерживала мощность электродвигателя. Меня это очень заинтересовало, начал пробовать различные простые регуляторы оборотов, регуляторы оборотов с обратной связью по току, в общем, кучу разных штуковин. Пока не наткнулся на сайт «chipmaker.ru» где пользователь  «Bogdan» выложил «схему управления коллекторным двигателем на TDA1085». Собственно говоря, вот эта ссылка: http://www.chipmaker.ru/files/file/1490/ . После того как Вы перешли, жмем на кнопку «Загрузить» 

В следующем окне обратно жмем «Загрузить» 

У нас скачивается архив, разархивировав который, видим в нем несколько файлов (два варианта схем для управления двигателями постоянного и переменного тока с монтажными платами), нам для двигателя переменного тока нужны PSD файлы с пометкой «АС» 


Распечатав  их (принципиальная, монтажная и печатная плата), я отнес их своему очень хорошему товарищу Игорю , который мне спая регулятор оборотов с поддержкой мощности (сам я, к сожалению, не люблю работу с паяльником). Я испытал регулятор оборотов электроинструмента на TDA1085 на своей «болгарке». К счастью мой товарищ оказался хорошим радиолюбителем и нашел некоторые неточности в этих схемах и исправил их.

 


 Я не могу вам сейчас сказать что этот регулятор оборотов коллекторных электродвигателей панацея, возможно, есть что-то и лучше я не знаю. Как поведет она себя на высоких или даже средних оборотах, честно сказать я не знаю( здесь уже можно посмотреть тест этой платы в разных режимах). Эта схема отлично ведет себя на низких оборотах, и вот уже целый год  отлично себя показывает на Самодельном лобзиковом станке , приводом там служит та самая «болгарка»  на которой я испытывал регулятор оборотов.

Если Вы уже собрались делать себе регулятор оборотов, давайте немного разберем его:

К клеммам «Фаза и Ноль» подключаем напряжение 220 Вольт (фазировка не влияет на работу схемы), светодиод «HL» служит нам индикатором питания платы регулятора оборотов, к клеммам « М1» подключаем наш электродвигатель, «таходатчик» который выдает постоянный ток подключаем к «Х3» а если же у вас он выдает переменный ток или импульсы, то к «Х2» (Как сделать таходатчик). К контактам «Х4» можно подключить тумблер (выключатель) который будет отключать наш двигатель, его ставить не обязательно, можно также отключать двигатель с помощью  регулятора оборотов «R1» который подключается к контактам «Х1». У Bogdana  на этой схеме не был указан конденсатор «С 100µF х25V» хотя он присутствует на монтажной плате (забыл указать). Также у него в схеме находится очень мощный симистор «ВТА41 800V» который подходит для управления мощными коллекторными электродвигателями, а для нас подойдет совсем другой на 10…16 Ампер (по цене будет на много дешевле). Симистор должен обязательно быть  с радиатором (вся эта схема построена  для управления этим симистором, который в свою очередь управляет непосредственно нашим электродвигателем). Ниже симистора на схеме указаны два мощных сопротивления «R31» и «R33» рассчитанные на 0,1 Ом и мощностью 5 Ватт каждый. Под каждые электродвигатель нужно индивидуально настраивать плату регулятора оборотов (как это сделать). Регулируется схема с помощью подстрочных сопротивлений «R3» и «R21». Построечный резистор «R3» регулирует плавность пуска двигателя, а «R21» служит для быстроты реагирования на нагрузку электродвигателя (в зависимости отнего схема будет реагировать плавно или резко на нагрузку).

 Для лучшего удобства я подготовил Вам список всех деталей, которые применяются в этом регуляторе оборотов с поддержкой мощности («+» обозначены полярные конденсаторы):

20кОм

Пременное         1шт

20кОм

Подстроечное   1шт

R3

1,2кОм    0,25-0,125W

3шт

R4;5;9

160кОм     0,25-0,125W

2шт

R6;8

24 Ом     0,25-0,125W

1шт

R7

1м      0,25-0,125W

1шт

R10

120кОм       0,25-0,125W

1шт

R11

47кОм       0,25-0,125W

1шт

R12

470кОм      0,25-0,125W

1шт

R13

220кОм      0,25-0,125W

1шт

R14

51 Ом       0,25-0,125W

4шт

R15;19;25;30

2,2кОм     0,25-0,125W

2шт

R16;22

68кОм      0,25-0,125W

1шт

R17

820 Ом     0,25-0,125W

1шт

R18

2,7кОм      0,25-0,125W

1шт

R20

10кОм

Подстроечное  1шт

R21

390кОм       0,25-0,125W

4шт

R23;24;28;29

1шт

R26

1шт

R27

1шт

32

2шт

R31;33

1шт

R34

1шт

35

3шт

С1;5;неуказанный

3шт

C2;8;9

3шт

С3;4;7

820р

1шт

С6

1шт

С10

1шт

С11

1шт

С12

1шт

С13

1шт

С14

1шт

С15

1шт    Микросхема

МС1

ВТА41   800V  (не обязат)

1шт    Семистор

Т1

1шт   стабилитрон

1шт   стабилитрон

1шт диод

1шт    предохранитель

FU1

На  3В

1шт     светодиод

Изначально автор Bogdan на монтажной плате регулятора оборотов не указал буквенные обозначения всех деталей, но благодаря моему товарищу (огромное ему спасибо) он расставил все обозначения и исправил все неточности которые были у Bogdanа 


ВНИМАНИЕ!!! В расположении деталей ОШИБКА! Сопротивление R21 обозначено как R27. Будьте внимательны!

Ссылки для скачивания:

ОЧЕНЬ интересные видео по теме!!!

Агрессивные тесты.

Добавлено Анатолием:

Я думаю Александр не обидится если я в его теме выскажу несколько своих соображений.
Собрал уже не одну плату и могу сказать со сто процентной уверенностью. Если у кого то что то не работает, то проверяйте качество изготовления платы, качество и правильность монтажа, исправность элементов и двигателя. Все причины не работы (некорректной работы) кроются только в этом. Печатки и схемы выложенные в нете рабочие. Сам недавно столкнулся с подобным, две разные платы, а проявление неисправности одно и тоже. При включении и добавлении оборотов двигатель раскручивается рывками было ощущение как будто семистор работает на одном полупериоде. Оказалось на одной плате при травлении исчезла дорожка к конденсатору С10 на 47,0х16V, во втором случае этот же конденсатор был высохший.
Попутно убедился, что если уменьшить С11 идущий на 14 ногу микросхемы до 22Н, то двигатель стартует, набирает максимальные обороты и обороты не регулируются. Поэтому с ним тоже нельзя ошибаться 47Н и точка.
Теперь по поводу замеров напряжения.
Я собираю платы с отдельным блоком питания, поэтому промеры даю для этого случая.
Исходные условия, к плате подключен двигатель с таходатчиком, регулятор оборотов в нулевом положении (минимум до конца), блок питания в розетку включён, 220В на плату не подаётся.
1-0,17В
2-0,17В
3-2,63В
4-0
5-0
6-2,4В
7-0,05В
8-0
9-14,65В
10-13,7В
11-12,83В
12-0,55В
13-0
14-11,34В
15-0,03В
16-0,03В

Условия те-же, но подключено 220В и регулятор стоит на небольших оборотах. Двигатель медленно вращается.
1-0,25В
2-0,3В
3-2,62В
4-0,55В
5-0,55В
6-2,4В
7-1,14В
8-0
9-14,2В
10-14,2В
11- не измеряется.
12-0,74В
13-0,69В
14-4,8В при касании щупом двигатель ускоряется.
15-0,73В
16-0,58В
Отличия могут быть но не очень большие. Напряжение на ноге 3 устанавливается регулятором R21.
Кроме этого советовал бы увеличить резистор R9 вместо 1,2 кОм ставить 20кОм. Этим уменьшается напряжение с таходатчика. И R17 вместо 68кОм ставить 27кОм. Ну и диод для защиты микросхемы само собой. 

Пару слов по немецкой схеме. При правильной сборке, правильно выполненной печатке и исправных деталях всё работает без вопросов. Рекомендовал бы такую последовательность действий. Собрали плату, проверили сборку, микросхему не ставим. В панельку микросхемы подключаем на ноги 8-9 резистор 1,6кОм 1Вт, подключаем питание 220В, двигатель и таходатчик не подключен (это не принципиально), и меряем напряжение на подключённом резисторе. Должно быть 15-17В. Ставим микросхему, подключаем мотор и таходатчик и наслаждаемся работой. В немецкую схему советую внести следующее изменение. На регуляторе частоты вращения, на центральном отводе, запаять резистор 1,2кОм и второй конец этого резистора на клемму Х2-2, по семе. Боковую ногу регулятора которая раньше шла на центральный отвод, подключаем на корпус. Что это даёт. Раньше, при выведенном в ноль регуляторе, двигатель продолжал вращаться, теперь стоит как ему и положено. А методика настройки простая. Регулятор на ноль, включили, добавили немного оборотов, крутим Р1 пока обороты не станут красивыми на слух и визуально, обороты на максимум, крутим ограничение максимальных оборотов Р3, наслаждаемся своим мастерством. 

Регулятор частоты вращения непрямого действия с жесткой обратной связью (RFB)

Регулятор частоты вращения непрямого действия с жесткой обратной связью, который является стабилизированным средством вращения частоты в процессе передачи, предназначен для улучшения динамических характеристик управления системой.

Регулятор частоты вращения с RFB (рис. 5.4.) — это следующая разработка астатического регулятора непрямого действия. На отклонение режима работы от равновесного SE, золотниковый клапан и регулирующее устройство в регуляторах с RFB реагируют так же, как соответствующие элементы астатического регулятора непрямого действия.

Разница в том, что движение поршня сервомеханизма передается как на CD, так и на рычаг AC (рис. 5.4. A), это приводит к его вращению вокруг точки A.

В результате золотниковый клапан перемещается в направлении, противоположном начальному движению, то есть приближается к нейтральному положению. В результате этого процесс управления прекращается быстрее. На функциональной схеме регулятора (рис. 5.4. C) мы видим, что звено обратной связи охватывает CSV и сервомеханизм.Выходной сигнал сервомеханизма преобразуется в обратную связь, и с точки зрения координаты z снова подается на выход в CSV, где суммируется с сигналом несогласованности D n .

Рис. 5.4. Конструктивная схема (), статическая характеристика (б) и функциональная схема (в) регулятора частоты вращения непрямого действия с жесткой обратной связью

Выбирая соотношение рычага обратной связи AC, мы можем обеспечить движение золотникового клапана, при котором время открытия окон уменьшается, а блокировка золотникового клапана и скопление движения КД при увеличении подачи топлива происходит быстрее, чем получение двигателем нового значения частоты вращения.Благодаря этому перекоррекция и разброс частоты вращения практически не уменьшается.

Включение RFB в регулятор улучшает характеристики регулятора, но снижает его статические свойства. Для понимания этого факта необходимо сравнить расположение деталей регулятора для одного и того же фиксированного положения РРЧ при двух разных режимах работы, которые характеризуются температурой и атмосферным давлением. Например, при более низкой температуре окружающего воздуха и большем расходе топлива двигателем — магистраль 1 (см. Рис.5.4.b) и с более высокой температурой окружающей среды и с более низким расходом топлива, магистраль 5.

При остановке процесса рулевого управления из-за внешних условий золотниковый клапан CSV принимает нейтральное положение, перекрывая своими ремнями оба подающих канала, что обеспечивает поступление рабочей жидкости в корпус сервомеханизма.

Итак, в режимах равновесия при одном и том же фиксированном положении TCL при разных внешних условиях точка B рычага AC займет одно и то же положение.При повышении температуры окружающего воздуха * для уменьшения подачи топлива поршень сервомеханизма должен опуститься, при этом точка C опустится в положение ¢.

Такая замена сервомеханизма с дозирующей иглой, рычагом и исполнительным стержнем обратной связи может работать только при увеличении частоты вращения ротора двигателя и появлении превышения центробежной силы, сжимающей пружину регулятора.



Соответственно, при неизменном повороте регулятора с ВРЧ повышение температуры окружающего воздуха и связанное с этим уменьшение момента потребителя для привода компрессора приводит к увеличению частоты вращения.

Очевидно, что снижение температуры воздуха приводит к уменьшению частоты вращения, т.е. в обоих случаях будет иметь место статическая погрешность. Аналогичные процессы проявятся при изменении давления окружающего воздуха * .

Это состояние подтверждается расходными характеристиками (см. Рис. 5.4. Б)

В строках 1 и 5 показан необходимый расход топлива для различных условий окружающей среды, в строке 3 — расход топлива, который поддерживается регулятором при изменении условий окружающей среды, D n = n 1 n 0 статическая ошибка управления.Как следует из рисунка, если изменить соотношение рычагов , и b, рычага переменного тока, это изменит статические и динамические характеристики.

Преимущества регулятора:

Регулятор частоты вращения

непрямого действия с жесткой обратной связью обеспечивает высокую динамическую характеристику системы управления, т.е. дает возможность получить апериодический или близкий к нему переходный процесс управления;

Регулятор

можно использовать для двигателей с большим расходом топлива

Недостатки регулятора:

данный регулятор по принципу действия имеет статическую погрешность, что ограничивает диапазоны эксплуатации регулятора.

В АСУ ГТД (ГТУ), как правило, используется регулятор частоты вращения непрямого действия с жесткой обратной связью, работающий в низких диапазонах температур и атмосферного давления. Иногда регуляторы такого типа оснащаются дополнительными устройствами-корректорами статической погрешности. Более эффективным методом устранения статической погрешности и получения хороших динамических характеристик управления является использование в регуляторах принципиально иной обратной связи, получившей название гибкой или изодромной обратной связи.


Дата: 16.02.2015; вид: 691


вращения регулятора Opii — Купить онлайн и получить dla вращения регулятора на AliExpress

Grandes promociones en вращение регулятора: las mejores ofertas y descuentos en Internet con valoraciones positivas de los clientes.

¡Buenas noticias! Estás en el lugar idóneo для вращения регулятора encontrar.A estas alturas ya sabrás que cualquier producto que busques, lo encontrarás en AliExpress. Tenemos, literalmente, miles de productos de todas lasategorías. Tanto si buscas las mejores marcas como si prefieres comprar en grandes cantidades al mejor Precio, AliExpress es tu aliado. Aquí encontrarás oficiales de las mejores marcas junto con pequeños vendedores independientes. Todos ellos ofrecen plazos de entrega rápidos y fiables, y formas de pago seguras y cómodas, sin importar lo que gastes.

Todos los días verás ofertas nuevas, descuentos en tiendas y tenrás la oportunidad de ahorrar todavía más con nuestros cupones. Pero te aconsejamos que pases rápido a la acción porque este регулятор вращения se va a convertir en uno de nuestros artículos más codiciados en un tiempo récord. Imagínate la cara de envidia de tus amigos cuando les cuentes que имеет согласованный hacerte с вращением регулятора на AliExpress.Puedes ahorrarte mucho dinero, ya que compras al mejor Precio en Internet, con unos gastos de envío mínimos y opciones de recogida local.

Si todavía no te Convention Regulator Rotation y estás pensando en buscar un producto parecido, AliExpress es un buen lugar para compare Precios y vendedores. Te ayudaremos a decidir si vale la pena pagar más por una versión de alta calidad o si el artículo más económico ofrece las mismas prestaciones.Y si quieres darte un capricho y optar por la versión más cara, AliExpress siempre se asegurará de que encuentres el mejor Precio; incluso te avisará si es mejor esperar a que empiece una promoción y te dirá lo que te ahorras.

Nos enorgullecemos de ofrecer toda la información para tomar la mejor decisión antes de comprar en los cientos de tiendas y vendedores de nuestra plataforma.Todos ellos reciben valoraciones de clientes reales en cuanto a servicio al cliente, Precio y calidad. Además, si lees los comentarios y lasviewes, verás las valoraciones de una tienda o un vendedor en concreto, y podrás compare Precios, gastos de envío y descuentos para el mismo producto. Cada compra recibe una calificación mediante estrellas y, a veces, los clientes dejan comentarios sobre su experiencecia para que tengas una referencia a la hora de hacer tu elección. Resumiendo: no confíes solo en nuestra palabra; escucha a nuestros millones de clientes satisfechos.

Si eres nuevo en AliExpress, te contaremos un secret. Antes de hacer clic en «Comprar ahora», comprueba si tienes cupones y podrás ahorrar aún más. Puedes hacerte con cupones de la tienda, de AliExpress или consguirlos jugando en nuestra aplicación. Como la mayoría de los vendedores ofrecen envío gratuito, puedes estar seguro de que conguirás este регулятор вращения в uno de los mejores Precios de Internet.

Nos diferenciamos por tener lo último en tecnología, las tendencias más in y las marcas de moda. На AliExpress, una gran calidad, un buen Precio y un servicio excelente vienen de serie. Disfruta de una experiencecia de compra inmejorable, aquí y ahora.

DC PWM Регулятор скорости двигателя Щеточный двигатель Регулятор прямого обратного вращения Переключатель регулятора 12V24V36V 40A Регулятор двигателя | Контроллер двигателя |

DC PWM регулятор скорости двигателя щеточный двигатель прямой обратный регулятор вращения переключатель регулятора 12V24V36V 40A

Характеристика:

1.Цифровой дисплей ШИМ-контроллер скорости двигателя постоянного тока отображает скорость от 0 до 100, интуитивно понятный и понятный.
2. Входное напряжение должно быть равно номинальному напряжению двигателя и должно быть разделено на положительное и отрицательное.
3. Поддержка управления прямым и обратным вращением с помощью переключателя без блокировки.
4. Диапазон регулировки скорости от 0 до 100% и регулируется током.
5. Компактный дизайн, хорошая теплоотдача, высокая надежность.

Спецификация:

Тип товара: Контроллер двигателя постоянного тока
Входное напряжение: 10 В-55 В
Выходное напряжение: линейное под нагрузкой
Максимальный ток: 60A
Постоянный ток: 40A
Диапазон скорости: 0% ~ 100%
Частота управления: 15 кГц
Режим управления скоростью: потенциометр (с переключателем)
Тип скорости: Регулировка тока
Прямое вращение назад: поддержка (без переключателя блокировки)
Цифровое позиционирование: 0-100% (процент полной скорости)
Поддержка двигателя: DC Brush
Тип подключения: винтовой зажим
Размер: 100 х 76 х 28 мм / 3.94 x 2,99 x 1,1 дюйма
Вес: 170 г / 6 унций (прибл.)

Список пакетов:

1 х контроллер двигателя

Примечание:

Цифровой дисплей показывает только 0-100 как процент полной скорости двигателя.

1) Мы принимаем Alipay, West Union, TT. Все основные кредитные карты принимаются через безопасный платежный процессор ESCROW.

2) Оплата должна быть произведена в течение 3 дней с момента заказа.

3) Если вы не можете оформить заказ сразу после закрытия аукциона, подождите несколько минут и повторите попытку. Платежи должны быть завершены в течение 3 дней.

О доставке

1. ДОСТАВКА ПО ВСЕМУ МИРУ. (За исключением некоторых стран и APO / FPO)
2. Заказы обрабатываются своевременно после подтверждения оплаты.
3. Мы отправляем только на подтвержденные адреса заказа.Адрес вашего заказа ДОЛЖЕН СООТВЕТСТВОВАТЬ вашему адресу доставки.
4. Представленные изображения не являются фактическим товаром и предназначены только для справки.
5. ВРЕМЯ ПЕРЕХОДА ОБСЛУЖИВАНИЯ предоставляется перевозчиком и не включает выходные. и праздники. Время доставки может меняться, особенно во время отпуска. сезон.
6. Если вы не получили посылку в течение указанного срока, пожалуйста свяжитесь с нами. Мы отследим доставку и свяжемся с вами как как можно скорее с ответом.Наша цель — удовлетворение клиентов!
7. Из-за наличия на складе и разницы во времени мы выберем для вас доставку товар с нашего первого доступного склада для быстрой доставки.

8. Мы, продавец, не несем ответственности за импортные пошлины, покупатель несет за это ответственность. Любые споры, вызванные этим, необоснованны.

9. Покупатель BR, пожалуйста, предоставьте cpf или cnpj, вам будет лучше получить его быстрее. благодаря

Возврат и возврат

1.У вас есть 7 дней, чтобы связаться с нами и 30 дней, чтобы вернуть его с даты был получен. Если этот предмет находится в вашем распоряжении более 7 дней, он считается использованным, и МЫ НЕ ВЫДАЕМ ВАМ ВОЗВРАТ ИЛИ ЗАМЕНУ. БЕЗ ИСКЛЮЧЕНИЙ! Стоимость доставки оплачивается продавцом и покупателем. в половине.
2. Все возвращаемые товары ДОЛЖНЫ БЫТЬ в оригинальной упаковке и Вы ДОЛЖНЫ ПРЕДОСТАВИТЬ нам номер отслеживания доставки, конкретная причина за возврат, и ваш po #.
3. Мы вернем ВАШУ ПОЛНУЮ ВЫИГРЫШНУЮ СТАВКУ. СУММА, при получении товара в исходном состоянии и упаковка со всеми включенными компонентами и аксессуарами ПОСЛЕ ОБОИХ ПОКУПАТЕЛЕЙ и продавец отменяет транзакцию с aliexpress. ИЛИ вы можете выбрать иметь замену.
4. Мы будем нести всю стоимость доставки, если товар (ы) не соответствует рекламе.

О обратной связи

Мы поддерживать высокие стандарты качества и стремиться к 100% -ному клиенту удовлетворение! Обратная связь очень важна, мы просим вас связаться с нами немедленно, прежде чем вы оставите нам нейтральный или отрицательный отзыв, чтобы мы может удовлетворительно решить ваши проблемы.
Невозможно решить проблемы, если мы о них не знаем!

Pololu — Сервоприводы непрерывного вращения

Сервоприводы с непрерывным вращением — это стандартные RC-сервоприводы для хобби, которые были модифицированы, чтобы предлагать управление скоростью без обратной связи вместо их обычного управления положением с обратной связью. Модификация эффективно превращает их в двигатели со встроенными драйверами двигателей в компактной недорогой упаковке. Просто поставьте колесо, и у вас будет приводная система для вашего робота, которой можно управлять с помощью RC-сигнала или простого прямого подключения к одной линии ввода-вывода микроконтроллера.В следующей таблице показано, как наши сервоприводы непрерывного вращения сравниваются друг с другом.

Сравнение размеров сервоприводов непрерывного вращения. Слева направо: SpringRC SM-S4303R, Power HD AR-3606HB, FEETECH FS5106R, Parallax Feedback 360 °, Parallax (Futaba S148) и FEETECH FS90R.

6 В 4,8 В Вес (г) Размер (мм) Цифровой? Обратная связь? Цена
Макс.скорость
(об / мин)
Крутящий момент
(унция · дюйм)
Макс.скорость
(об / мин)
Крутящий момент
(унция · дюйм)
SpringRC SM-S4303R 54 71 43 46 41 41.3 × 20,7 × 40,2 $ 12.95
PowerHD AR-3606HB 71 93 62 83 40 40,5 × 20,0 × 38,0 $ 14.95
FEETECH FS5106R 95 83 78 70 39 40.8 × 20,1 × 38,0 $ 13.95
Обратная связь по параллаксу 360 ° 140 35 41 40,0 × 20,0 × 37,2 $ 27,99
FEETECH FT90R 135 21 108 18 9 22.9 × 12,1 × 26,5 $ 7.95
FEETECH FS90R 130 21 100 18 9 23,2 × 12,5 × 22,0 $ 4,95

Сравнить все товары в этой категории

Продукты в категории «Сервоприводы непрерывного вращения»

AR-3606HB — сервопривод стандартного размера, который был построен Power HD специально для непрерывного вращения, что делает его простым способом заставить вашего робота двигаться.Он оснащен двумя шарикоподшипниками на выходном валу для уменьшения трения и обеспечивает легкий доступ к потенциометру регулировки точки покоя. Это самый мощный сервопривод непрерывного вращения, который мы имеем.

Основные характеристики при 6 В: 71 об / мин (без нагрузки), 93 унции дюйм (6,7 кг-см), 40 г

SM-S4303R — это сервопривод стандартного размера, который был построен SpringRC специально для непрерывного вращения, что делает его простым способом заставить вашего робота двигаться. Он оснащен двумя шарикоподшипниками на выходном валу для уменьшения трения и обеспечивает легкий доступ к потенциометру регулировки точки покоя.Это самый популярный сервопривод непрерывного вращения, который мы предлагаем.

Основные характеристики при 6 В: 54 об / мин (без нагрузки), 71 унция дюйм (5,1 кг-см), 41 г

FS5106R — сервопривод стандартного размера, который был построен FEETECH специально для непрерывного вращения, что делает его простым способом заставить вашего робота двигаться. Он оснащен двумя шарикоподшипниками на выходном валу для уменьшения трения и обеспечивает легкий доступ к потенциометру регулировки точки покоя. Этот сервопривод может работать как с 5 В, так и с 3.Сервосигналы 3 В.

Основные характеристики при 6 В: 95 об / мин (без нагрузки), 83 унции дюйм (6 кг-см), 40 г

Parallax Feedback 360 ° обеспечивает функциональность легкого стандартного сервопривода, сервопривода непрерывного вращения, высокоскоростного сервопривода и обратной связи энкодера в одном удобном пакете. Его скорость регулируется стандартными импульсами сервопривода RC, как и у обычного сервопривода непрерывного вращения, и он обеспечивает линию обратного сигнала от внутреннего датчика Холла, который обеспечивает цифровую обратную связь по угловому положению.Внешний микроконтроллер может использовать этот сигнал, чтобы заставить сервопривод удерживать любой угол, во многом как стандартный сервопривод, за исключением того, что диапазон движения не ограничен, или он может использовать его для управления скоростью с обратной связью. Рекомендуемый диапазон рабочего напряжения: от 5,8 В до 8,4 В

Основные характеристики при 6 В: 140 об / мин (без нагрузки), 2,5 кг-см (35 унций на дюйм), 41 г

FS90R — это микро-сервопривод, который был построен FEETECH специально для непрерывного вращения, предлагая недорогой и простой способ заставить вашу небольшую револьверную головку вращаться или миниатюрного робота, особенно в сочетании с нашими колесами 60 × 8 мм, разработанными специально для этого сервопривода.Этот сервопривод может работать с сервосигналами как 5 В, так и 3,3 В.

Основные характеристики при 6 В: 130 об / мин (без нагрузки), 21 унция дюйм (1,5 кг-см), 9 г

FT90R — это цифровой сервопривод, созданный FEETECH специально для непрерывного вращения, предлагающий недорогой и простой способ заставить вращаться вашу небольшую револьверную головку или миниатюрного робота, особенно в сочетании с нашими колесами 60 × 8 мм, разработанными специально для этого сервопривода. . Этот сервопривод может работать с сервосигналами как 5 В, так и 3,3 В.

Основные характеристики при 6 В: 135 об / мин (без нагрузки), 21 унция дюйм (1,5 кг-см), 9 г

Строительные, рабочие и проектные типы

Так же, как ситуации, в которых нам нужно регулировать напряжение в наших конструкциях, существуют сценарии, в которых нам нужно регулировать ток, который подается в определенную часть нашей цепи. В отличие от преобразования (перехода от одного уровня напряжения к другому), которое обычно является одной из основных причин регулирования напряжения, регулирование тока обычно заключается в поддержании постоянного тока, который подается, независимо от изменений сопротивления нагрузки или входного напряжения.Цепи (встроенные или нет), которые используются для обеспечения источника постоянного тока , называются (постоянными) регуляторами тока и очень часто используются в силовой электронике.

Хотя регуляторы Current использовались в нескольких приложениях на протяжении многих лет, возможно, до недавнего времени они не были одной из самых популярных тем в обсуждениях проектирования электроники. Текущие регуляторы теперь достигли своего рода повсеместного статуса благодаря их важным приложениям в светодиодном освещении среди других приложений.

В сегодняшней статье мы рассмотрим эти регуляторы тока и исследуем лежащие в их основе принципы работы, их конструкцию, типы и применение, среди прочего .

Принцип действия регулятора тока

Работа регулятора тока аналогична работе регулятора напряжения с основным отличием в параметре, который они регулируют, и величине, которую они изменяют для обеспечения своего выхода. В регуляторах напряжения ток изменяется для достижения необходимого уровня напряжения, в то время как регуляторы тока обычно включают изменения напряжения / сопротивления для достижения необходимого выходного тока.Таким образом, хотя это возможно, обычно трудно одновременно регулировать напряжение и ток в цепи.

Чтобы понять, как работают регуляторы тока, необходимо быстро взглянуть на закон Ома;

  В = ИК или I = В / П  

Это означает, что для поддержания постоянного тока на выходе эти два свойства (напряжение и сопротивление) должны поддерживаться постоянными в цепи или настраиваться таким образом, чтобы при изменении одного значения другого соответственно регулировалось для сохранения такой же выходной ток.Таким образом, регулирование тока включает в себя регулировку напряжения или сопротивления в цепи или обеспечение неизменности значений сопротивления и напряжения независимо от требований / воздействий подключенной нагрузки.

Регулятор тока рабочий

Чтобы правильно описать, как работает регулятор тока, рассмотрим приведенную ниже принципиальную схему.

Переменный резистор в приведенной выше схеме используется для обозначения действия регулятора тока.Предположим, что переменный резистор автоматизирован и может автоматически регулировать собственное сопротивление. Когда схема находится под напряжением, переменный резистор регулирует свое сопротивление, чтобы компенсировать изменения тока из-за изменения сопротивления нагрузки или напряжения питания. Относительно базового класса электричества вы должны помнить, что при увеличении нагрузки, которая по сути является сопротивлением (+ емкость / индуктивность), происходит эффективное падение тока, и наоборот. Таким образом, когда нагрузка в цепи увеличивается (увеличение сопротивления), а не падение тока, переменный резистор уменьшает свое собственное сопротивление, чтобы компенсировать повышенное сопротивление и обеспечить одинаковые токи.Таким же образом, когда сопротивление нагрузки уменьшается, переменное сопротивление увеличивает свое собственное сопротивление, чтобы компенсировать уменьшение, таким образом поддерживая значение выходного тока.

Другой подход к регулированию тока состоит в том, чтобы подключить достаточно высокий резистор параллельно нагрузке так, чтобы в соответствии с законами основного электричества ток протекал по пути с наименьшим сопротивлением, который в этом случае будет проходить через нагрузку с только «незначительное» количество тока, протекающего через резистор высокого номинала.

Эти изменения также влияют на напряжение, так как некоторые регуляторы тока поддерживают ток на выходе, изменяя напряжение. Таким образом, практически невозможно регулировать напряжение на том же выходе, на котором регулируется ток.

Конструкция регуляторов тока

Регуляторы тока

обычно реализуются с использованием стабилизаторов напряжения на основе микросхем, таких как MAX1818 и LM317, или с использованием пассивных и активных компонентов, таких как транзисторы и стабилитроны.

Разработка регуляторов тока с использованием регуляторов напряжения

Для разработки регуляторов тока с использованием регулятора напряжения на основе IC метод обычно включает настройку регуляторов напряжения с постоянным сопротивлением нагрузки, и обычно используются линейные регуляторы напряжения, поскольку напряжение между выходом линейных регуляторов и их землей обычно составляет Таким образом, жестко регулируемый, фиксированный резистор может быть вставлен между выводами так, чтобы фиксированный ток протекал к нагрузке.Хороший пример дизайна, основанного на этом, был опубликован Budge Ing в одной из публикаций EDN в 2016 году.

Используемая схема использует линейный стабилизатор LDO MAX1818 для создания стабилизированного источника постоянного тока на стороне высокого напряжения. Источник питания (показанный на изображении выше) был разработан так, что он питает RLOAD постоянным током, который равен I = 1,5 В / ROUT. Где 1,5 В — предустановленное выходное напряжение MAX1818 , но его можно изменить с помощью внешнего резистивного делителя.

Для обеспечения оптимальной производительности конструкции напряжение на входной клемме MAX1818 должно быть до 2,5 В, а не выше 5,5 В, поскольку это рабочий диапазон, указанный в техническом паспорте. Чтобы удовлетворить это условие, выберите значение ROUT, которое позволяет от 2,5 В до 5,5 В между IN и GND. Например, при нагрузке, скажем, 100 Ом при 5 В VCC, устройство правильно работает с ROUT выше 60 Ом, так как это значение допускает максимальный программируемый ток 1,5 В / 60 Ом = 25 мА. Тогда напряжение на устройстве будет равно минимально допустимому: 5 В — (25 мА × 100 Ом) = 2.5В.

Другие линейные регуляторы, такие как LM317, также могут использоваться в аналогичном процессе проектирования, но одно из основных преимуществ , которые имеют микросхемы типа MAX1818 по сравнению с другими, заключается в том, что они включают тепловое отключение, которое может быть очень важным в текущем положении , поскольку температура микросхемы имеет тенденцию к нагреванию при подключении нагрузок с высокими требованиями к току.

Для регулятора тока на базе LM317 рассмотрите схему ниже;

LM317 сконструированы таким образом, что регулятор продолжает регулировать свое напряжение до тех пор, пока напряжение между его выходным выводом и его регулировочным выводом не станет равным 1.25 В и как таковой делитель обычно используется при реализации в ситуации регулятора напряжения. Но для нашего случая использования в качестве регулятора тока он на самом деле очень упрощает нам задачу, потому что, поскольку напряжение постоянно, все, что нам нужно сделать, чтобы сделать ток постоянным, — это просто вставить резистор последовательно между выводами Vout и ADJ. как показано на схеме выше. Таким образом, мы можем установить выходной ток на фиксированное значение, которое задается:

  I = 1,25 / R 
 

Когда значение R является определяющим фактором значения выходного тока.

Чтобы создать регулятор переменного тока, нам нужно только добавить переменный резистор в схему вместе с другим резистором, чтобы создать делитель на регулируемом выводе, как показано на изображении ниже.

Работа схемы такая же, как и в предыдущей, с той разницей, что ток можно регулировать в цепи, поворачивая ручку потенциометра для изменения сопротивления. Напряжение на R составляет;

  В = (1 + R1 / R2) х 1.25  

Это означает, что ток через R определяется выражением;

  I  R  = (1,25 / R) x (1+ R1 / R2). 
 

Это дает цепи диапазон тока I = 1,25 / R и (1,25 / R) x (1 + R1 / R2)

Зависит от установленного тока; Убедитесь, что номинальная мощность резистора R может выдерживать ток, протекающий через него.

Преимущества и недостатки использования LDO в качестве регулятора тока

Ниже приведены некоторые преимущества для выбора подхода линейного регулятора напряжения.

    ИС регулятора
  1. имеют защиту от перегрева, которая может пригодиться при подключении нагрузок с повышенными требованиями к току.
  2. ИС регулятора
  3. имеют больший допуск для больших входных напряжений и в значительной степени поддерживают высокое рассеивание мощности.
  4. Подход ИС регулятора предполагает использование меньшего количества компонентов с добавлением всего нескольких резисторов в большинстве случаев, за исключением случаев, когда требуются более высокие токи и подключены силовые транзисторы.Это означает, что вы можете использовать одну и ту же микросхему для регулирования напряжения и тока.
  5. Уменьшение количества компонентов может означать снижение стоимости внедрения и времени разработки.

Недостатки:

С другой стороны, конфигурации, описанные в рамках подхода ИС регулятора, позволяют пропускать ток покоя от регулятора к нагрузке в дополнение к регулируемому выходному напряжению. Это приводит к ошибке, которая может быть недопустимой в некоторых приложениях.Однако это можно уменьшить, выбрав регулятор с очень низким током покоя.

Еще одним недостатком подхода к регулятору IC является отсутствие гибкости в конструкции.

Помимо использования микросхем регуляторов напряжения, регуляторы тока также могут быть спроектированы с использованием желейных деталей, включая транзисторы, операционные усилители и стабилитроны с необходимыми резисторами. Стабилитрон используется в схеме, вероятно, просто, как будто вы помните, что стабилитрон используется для регулирования напряжения.Конструкция регулятора тока с использованием этих частей является наиболее гибкой, поскольку их обычно легко интегрировать в существующие схемы.

Регулятор тока на транзисторах

В этом разделе мы рассмотрим два дизайна. В первом будут использованы только транзисторы, а во втором — операционный усилитель и силовой транзистор .

Для модели с транзисторами рассмотрим схему ниже.

Регулятор тока, описанный на схеме выше, является одной из простейших конструкций регулятора тока. Это регулятор тока низкого напряжения ; Подключал после нагрузки до земли. Он состоит из трех основных компонентов; управляющий транзистор (2N5551), силовой транзистор (TIP41) и шунтирующий резистор (R). Шунт, который по сути представляет собой резистор малой мощности, используется для измерения тока, протекающего через нагрузку. При включении цепи на шунте отмечается падение напряжения.Чем выше значение сопротивления нагрузки RL, тем выше падение напряжения на шунте. Падение напряжения на шунте действует как триггер для управляющего транзистора, так что чем выше падение напряжения на шунте, тем больше транзистор проводит и регулирует напряжение смещения, приложенное к базе силового транзистора, для увеличения или уменьшения проводимости с помощью резистор R1, действующий как резистор смещения.

Как и в других схемах, переменный резистор может быть добавлен параллельно шунтирующему резистору для изменения уровня тока за счет изменения величины напряжения, приложенного к базе управляющего транзистора.

Регулятор тока с операционным усилителем

Для второго варианта конструкции рассмотрим схему ниже;

Эта схема основана на операционном усилителе , и, как и в примере с транзистором, также использует шунтирующий резистор для измерения тока. Падение напряжения на шунте подается в операционный усилитель, который затем сравнивает его с опорным напряжением, установленным стабилитроном ZD1.Операционный усилитель компенсирует любые расхождения (высокие или низкие) в двух входных напряжениях, регулируя свое выходное напряжение. Выходное напряжение операционного усилителя подключается к мощному полевому транзистору, и проводимость зависит от приложенного напряжения.

Основное различие между этой конструкцией и первым из них является источник опорного напряжения осуществляется диодом Зенера. Обе эти конструкции являются линейными, и при высоких нагрузках будет выделяться большое количество тепла, поэтому к ним следует присоединить радиаторы для отвода тепла.

Преимущества и недостатки

Основным преимуществом этого подхода к проектированию является гибкость, которую он предоставляет проектировщику. Детали могут быть выбраны, а конструкция сконфигурирована по вкусу без каких-либо ограничений, связанных с внутренней схемой, которая характерна для подхода, основанного на регуляторе на основе ИС.

С другой стороны, этот подход имеет тенденцию быть более утомительным, трудоемким, требует большего количества деталей, громоздких, подверженных сбоям и более дорогих по сравнению с подходом на основе регуляторов.

Применение регуляторов тока

Регуляторы постоянного тока находят применение во всех видах устройств, от цепей питания до цепей зарядки аккумуляторов, драйверов светодиодов и других приложений, где необходимо регулировать постоянный ток независимо от приложенной нагрузки.

Вот и все для этой статьи! Надеюсь, вы узнали одну или две вещи.

До следующего раза!

Регулировка скорости с обратной связью для коллекторного двигателя переменного тока — Меандр — занимательная электроника

Большинство мировых производителей профессиональных угловых шлифовальных машин (болгар), таких как Bosch, Metabo, Makita, используют два типа контроллеров с обратной связью DeWalt и другие.

С тахосенсором

На торце якоря двигателя установлен кольцевой магнит с прорезью или, и катушка индуктивности, или датчик Холла, установленный на плате управления. Такой регулятор обеспечивает наиболее точную стабилизацию оборотов двигателя при нагрузке.

На основе измерения падения напряжения на двигателе

В этом случае измеряется падение напряжения на двигателе, и схема управления изменяет продолжительность размыкания выключателя питания.такой регулятор, если он правильно настроен, также обеспечивает хорошую стабилизацию оборотов двигателя при нагрузке.

Все промышленные контроллеры, собранные на микроконтроллерах, полностью залиты эпоксидной смолой и в результате не подлежат ремонту, а цена нового регулятора достаточно велика и составляет примерно 20-30% от стоимости мощности.

Ищу ASIC для решения этой проблемы. Мне понравились контроллеры Phase Control от Atmel. например простой контроль версий на микросхеме U2008B.Рассмотрим схему регулятора IC U2008B, представленную на рис.1. В этом контроллере можно использовать обратную связь по току и режим плавного пуска, но нет защиты от перегрузки. Если вы используете плавный старт, то нужно только элементы C1, R4 и X1 не ставить перемычку, а если хотите обратную связь — то все наоборот.

рис. 1

Поскольку IMC U2008B не может одновременно работать в режиме устройства плавного пуска и обратной связи, то для нашей задачи это не подходит. На рисунке 2 показана схема встроенного регулятора U2010B, которая имеет одновременно токовую обратную связь, защиту от перегрузки и плавный пуск.Светодиод D2 указывает на перегрузку двигателя. Переключатель SA1 «Mode» позволяет выбирать действия при перегрузке двигателя в трех режимах: Position A — Индикация перегрузки с последующим сбросом на минимум. Чтобы восстановить рабочую скорость, необходимо отключить питание.

рис. 2

Ситуация в — индикация перегрузки, последующий сброс на минимум, после снятия нагрузки с инструмента, восстановление установленного импульса, т.е. авто начало происходит.

C — Только индикация перегрузки, без остановки двигателя и защиты.

Подбором емкости конденсатора NW от 1 до 10 мкФ можно изменять длительность и плавность пуска двигателя.

Регулировка контроллера .

В технической спецификации ИМС в схеме подключения U2010B указано падение напряжения на R6 250 мВ и неизвестно, каким должен быть этот резистор.

R6 можно рассчитать сопротивление исходя из мощности двигателя по формуле:

R6 = U R6 / (R Двигатель / в приямке ),

Где:
в R 6 — напряжение на R6 (250 мВ),
R Motor — мощность двигателя,
в PIT — напряжение питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *