Ряд номинальных токов автоматических выключателей: Автоматический выключатель

Содержание

Номинал и токовые характеристики автоматических выключателей

Здравствуйте, уважаемые читатели сайта elektrik-sam.info.

В этой статье мы рассмотрим основные характеристики автоматических выключателей, которые необходимо знать, чтобы правильно ориентироваться при их выборе — это номинальный ток и время токовые характеристики автоматических выключателей.

Напомню, что эта публикация входит в серию статей и видео, посвященных электрическим аппаратам защиты из курса Автоматические выключатели, УЗО, дифавтоматы — подробное руководство.

Основные характеристики автоматического выключателя указываются на его корпусе, где также наносится торговая марка или бренд производителя и каталожный либо серийный номер.

Самая главная характеристика автоматического выключателя – номинальный ток. Это максимальный ток (в Амперах), который может протекать через автомат бесконечно долго, не отключая защищаемую цепь.

При превышении протекающим током этой величины, автомат срабатывает и размыкает защищаемую цепь.

Ряд значений номинального тока автоматических выключателей стандартизован и составляет:

6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А.

Величина номинального тока автомата указывается на его корпусе в амперах и соответствует температуре окружающей среды +30˚С. С увеличением температуры, значение номинального тока снижается.

Также автоматы в электрощитах обычно устанавливаются по несколько штук в ряд вплотную друг к другу, это приводит к увеличению температуры (автоматы «подогревают» друг друга) и снижению величины коммутируемого ими тока.

Некоторые производители автоматических выключателей указывают в каталогах поправочные коэффициенты для учета этих параметров.

Подробно о влиянии температуры окружающей среды и количества рядом установленных аппаратов защиты смотрите в статье

Почему в жару срабатывает автоматический выключатель.

В момент подключения в электрическую сеть некоторых потребителей, например, холодильников, пылесосов, компрессоров и др. в цепи кратковременно возникают пусковые токи, которые могут в несколько раз превышать номинальный ток автомата. Для кабеля такие кратковременные броски тока не страшны.

Поэтому, чтобы автомат не выключался каждый раз при небольшом кратковременном возрастании тока в цепи, применяют автоматы с разными типами время-токовой характеристики.

Таким образом, следующая основная характеристика:

время-токовая характеристика срабатывания автоматического выключателя – это зависимость времени отключения защищаемой цепи, от силы протекающего через нее тока. Ток указывается как отношение к номинальному току I/Iном, т.е. во сколько раз протекающий через автомат ток превышает номинальный для данного автоматического выключателя.

Важность этой характеристики заключается в том, что автоматы с одинаковым номиналом будут отключаться по-разному (в зависимости от типа время-токовой характеристики). Это дает возможность уменьшить количество ложных срабатываний, применяя автоматические выключатели с различными токовыми характеристиками для разных типов нагрузки,

Рассмотрим типы время-токовых характеристик:

Тип A (2-3 значения номинального тока) применяются для защиты цепей с большой протяженностью электропроводки и для защиты полупроводниковых устройств.

Тип B (3-5 значений номинального тока) применяются для защиты цепей с малым значением кратности пускового тока с преимущественно активной нагрузкой (лампы накаливания, обогреватели, печи, осветительные электросети общего назначения). Показаны для применения в квартирах и жилых зданиях, где нагрузки в основном активные.

Тип C (5-10 значений номинального тока) применяются для защиты цепей установок с умеренными пусковыми токами — кондиционеры, холодильники, домашние и офисные розеточные группы, газоразрядные лампы с повышенным пусковым током.

Тип D (10-20 значений номинального тока) применяются для защиты цепей, питающих электроустановки с высокими пусковыми токами (компрессоры, подъемные механизмы, насосы, станки). Устанавливаются, в основном, в производственных помещениях.

Тип K (8-12 значений номинального тока) применяются для защиты цепей с индуктивной нагрузкой.

Тип Z (2,5-3,5 значений номинального тока) применяются для защиты цепей с электронными приборами, чувствительными к сверхтокам.

В быту обычно используются автоматические выключатели с характеристиками B,C и очень редко D. Тип характеристики обозначается на корпусе автомата латинской буквой пред значением номинального тока.

Маркировка «С16» на автоматическом выключателе будет обозначать, что он имеет тип мгновенного расцепления С (т.е. срабатывает при величине тока от 5 до 10 значений от номинального тока) и номинальный ток, равный 16 А.

Время-токовая характеристика автоматического выключателя обычно приводится в виде графика. На горизонтальной оси указывается кратность значения номинального тока, а по вертикальной оси — время срабатывания автомата.

Широкий диапазон значений на графике обусловлен разбросом параметров автоматических выключателей, которые зависят от температуры — как внешней, так и внутренней, поскольку автоматический выключатель нагревается проходящим через него электрическим током, особенно, при аварийных режимах — током перегрузки или током короткого замыкания (КЗ).

На графике видно, что при значении I/Iн≤1 время отключения автоматического выключателя стремится к бесконечности. Другими словами, до тех пор, пока ток, протекающий через автоматический выключатель, меньше или равен номинальному току, автоматический выключатель не сработает (не отключится).

Также график показывает, что чем больше значение I/Iн (т.е. чем больше протекающий через автомат ток превышает номинальный), тем быстрее автоматический выключатель отключится.

При протекании через автоматический выключатель тока, величина которого равна нижней границе диапазона срабатывания электромагнитного расцепителя (3In для «В», 5In для «С» и 10In для «D»), он должен отключиться за время более 0,1с.

При протекании тока, равного верхней границе диапазона срабатывания электромагнитного расцепителя (5In для «В», 10In для «С» и 20In для «D»), автоматический выключатель отключится за время менее 0,1с. Если значение тока главной цепи находится внутри диапазона токов мгновенного расцепления, автоматический выключатель расцепляется либо с незначительной выдержкой, либо без задержки времени (менее 0,1 с).

В следующих статьях мы продолжим рассмотрение характеристик автоматических выключателей, методику и стратегию их расчета и выбора, потому если хотите не пропустить новые интересные материалы по этой теме — подписывайтесь на новости сайта, форма подписки внизу статьи.

В заключении статьи подробное видео Номинал и токовые характеристики автоматических выключателей:

 


Рекомендую прочитать:

 

Автоматические выключатели УЗО дифавтоматы — подробное руководство.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Автоматические выключатели — конструкция и принцип работы.

Номиналы групповых автоматов превышают номинал вводного?

Почему в жару срабатывает автоматический выключатель?

Менять ли автоматический выключатель, если его «выбивает»?

Конструкция (устройство) УЗО.

Устройство УЗО и принцип действия.

Работа УЗО при обрыве нуля.

Как проверить тип УЗО?

Почему УЗО выбирают на ступень выше?

Номиналы автоматических выключателей по току

Номинальный ток автомата

Пришло время разобраться с тем, что на деле означает номинальный ток автомата и какой при этом будет ток срабатывания защиты. Для тех, кто понимает разницу между действующим и мгновенным значениями, уточняю, что все параметры автоматов, связанные с током или напряжением — это действующие значения, если это особо не оговорено. Согласно ГОСТ Р 50345-2010 (п.3.5.1), Номинальный ток автоматического выключателя есть значение тока, определяющее рабочие условия, для которых он спроектирован и построен.

Кратко и точно.

Распространенная ошибка — часто люди считают, что номинальный ток и есть ток срабатывания. На самом деле, исправный автоматический выключатель никогда при номинальном токе не сработает. Более того, он не сработает даже при 10% перегрузке. При большей перегрузке автомат отключится, но это не значит, что он отключится быстро. Обычный модульный автомат имеет 2 расцепителя: медленный тепловой и быстро реагирующий электромагнитный.

Тепловой расцепитель в своей основе содержит биметаллическую пластину, которая нагревается от проходящего через нее тока. От нагрева пластина изгибается, и при определенном положении воздействует на защелку, и выключатель отключается. Электромагнитный расцепитель представляет собой катушку со втягивающимся сердечником, который при большом токе также воздействует на защелку, отключающую автомат. Если назначение теплового расцепителя — отключать автомат при перегрузках, то задача электромагнитного — быстрое отключение при коротких замыканиях, когда значение тока в разы превышает номинальное.

Ряд значений номинальных токов

Мне приходилось устанавливать автоматические выключатели номиналом от 0.2А. Вообще, мне встречались модульные автоматы следующих номиналов: 0.2, 0.3, 0.5, 0.8, 1, 1.6, 2, 2.5, 3, 3.15, 4, 5, 6, 6.3, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 Ампер. Максимальный номинал автомата, предназначенного для работы в сетях 0.4 кВ, который я видел — 6300А. Это соответствует трансформатору мощностью 4МВА, ну а более мощных трансформаторов под это напряжение у нас не делают, это предел. Cказать, что номиналы строго соответствуют какому-то единому стандартному ряду, как например Е6, Е12 у радиоэлементов, я не могу. Создается впечатление, что лепят кто во что горазд. С автоматами выше 100А ситуация примерно такая же. Тем не менее, существует и действует поныне стандарт ГОСТ 8032-84 «Предпочтительные числа и ряды предпочтительных чисел». Согласно этому стандарту, номиналы должны соответствовать определенным рядам значений. Основной ряд R5, который определяет следующую шкалу номинальных значений: 1, 1.

6, 2.5, 4, 6.3, 10, 16, 25, 40, 63, 100, 160 и т.д.
Как видим, ряд состоит из пяти повторяющихся значений, просто после каждого цикла сдвигается десятичная точка. Если есть спрос на более точный подбор, ГОСТом предусмотрены ряды R10 (1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8) иR20 (1, 1.12, 1.25, 1.4, 1.6, 1.8, 2, 2.24, 2.5, 2.8, 3.15, 3.55, 4, 4.5, 5, 5.6, 6.3, 6.3, 7.1, 8, 9).
При этом, в обоснованных случаях, допускается некоторое округление (например 3.2 вместо 3.15 или 6 вместо 6.3). Думаю, нет нужды расписывать стандарт более подробно, каждый желающий может его найти и почитать.

Но и это еще не все. В том же ГОСТ Р 50345-2010 есть глава 5.3 под названием «Стандартные и предпочтительные значения». Согласно ей, предпочтительными значениями номинального тока модульных автоматов являются: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 А.

Разновидности защитных устройств

Существует несколько видов АВ, которые подключаются в сеть с целью контроля состояния проводки и, в случае необходимости, прекращения подачи тока. Они могут быть следующими:

  • Мини-модели (маленьких габаритов).
  • Воздушные (открытого типа).
  • Устройства защитного отключения (сокращенное наименование — УЗО).
  • Закрытые (элементы устройств размещены в литом корпусе).
  • Дифференциальные (автоматические выключатели, совмещенные с УЗО).

Мини-модели

Эти аппараты предназначены для работы в цепях, нагрузка в которых невысока. Функцией дополнительной регулировки они обычно не обладают. В этом ряду представлены устройства, которые могут выдерживать ток осечки величиной 4,5 – 15А. Для заводскихх мощностей они не подходят, поскольку сила тока на предприятиях значительно выше их номинала. Поэтому подключают их, как правило, в бытовую проводку.

Большой популярностью пользуются автоматы, входящие в производственную линейку французской фирмы Schneider Electric. Номиналы АВ, выпускаемых этой компанией, могут составлять 2 – 125А, поэтому можно выбрать пакетник для домашних линий различной мощности.

Воздушные (открытые) устройства

Если суммарная мощность приборов, подключенных в сеть, велика, и номиналы автоматов, о которых говорилось выше, недостаточны, следует выбирать воздушные защитные устройства. Номинальный ток отсечки пакетников открытого типа на порядок превышает аналогичный показатель мини-моделей. Чаще всего они бывают трехполюсными, но в последнее время многие компании наладили производство четырехполюсных автоматов.

Защитные устройства открытого типа следует устанавливать в распределительных шкафах, оснащенных изнутри специальными DIN-рейками.

Если класс защиты шкафа – от IP55, то его можно размещать вне здания. Корпус этого оборудования сделан из тугоплавкого металла и надежно защищен от проникновения влаги, что позволяет обеспечить высокий уровень безопасности автоматов, расположенных внутри него.

Воздушные АВ имеют большое преимущество перед миниатюрными. Оно заключается в возможности настройки их номинальных характеристик с помощью специальных вставок, которые ставятся на активный контакт.

Закрытые автоматические выключатели

Корпус этих устройств отливается из тугоплавкого металла, что обеспечивает их идеальную герметичность и делает пригодными для эксплуатации в тяжелых условиях. Максимальный показатель напряжения, который могут выдерживать такие автоматы, составляет 750В, а тока – 200А. Закрытые АВ классифицируются по типу действия на следующие группы:

  • Регулируемые.
  • Тепловые.
  • Электромагнитные.

Выбирать оптимальный тип следует, исходя из решаемых задач.

Наиболее высокой точностью обладают электромагнитные закрытые автоматы, определяющие с минимальной погрешностью среднеквадратичный показатель активного электротока и моментально обесточивающие сеть в случае КЗ, не допуская серьезных последствий.

Электромагнитные автоматы успешно используются для контроля функционирования моторов заводских станков, а также другого мощного оборудования, поскольку они могут выдерживать силу тока величиной до 70 кА. Цифра, обозначающая номинал автомата по току, нанесена на его корпус.

Все типы закрытых выключателей могут иметь от двух до четырех полюсов. Благодаря этому они могут быть использованы для защиты электросетей любых зданий и сооружений жилого и нежилого типа.

Устройства защитного отключения

В качестве самостоятельных защитных аппаратов использовать устройства защитного отключения не следует, поскольку их основной задачей является защита человека от внезапного поражения электричеством. Поэтому устанавливать их рекомендуется вместе с АВ, или приобретать дифференциальный автомат, в составе которого УЗО уже имеется. В первом случае нужно учесть, что в первую очередь должно устанавливаться устройство защитного отключения, а после него автоматы.

Если изменить порядок монтажа, то короткое замыкание приведет к выходу УЗО из строя в результате слишком высокой нагрузки.

ТОП-5 моделей автомата на рынке в текущем году

Подбирая АВ, необходимо учитывать рейтинг производителей подобных устройств.

Самые лучшие автоматы (точнее, их производители) на сегодняшний день:

  • Schneider Electric. Французская фирма. Автоматы ее производства давно испытаны в российских условиях, служат долго и отличаются надежностью.
  • General Electric. Недостаток – высокая цена, зато надежность и качество исполнения также на высоте. Американский производитель выпускает отличные АВ для трехфазных сетей.
  • Siemens. Низкая цена, но качество хуже, чем у двух лидеров, представленных выше. Тяжело найти приборы в продаже. Изначально бренд был немецким, затем его приобрели американцы. Надежность АВ и средняя стоимость делают компанию такой популярной.
  • Контактор. Лучший бренд из российских, однако цены кусаются. Лучше приобрести автоматы европейского производства, хотя Контактор – хорошее решение для слабонагруженных сетей.

Коротко принцип работы и предназначение защитных автоматов

Автоматический выключатель при коротком замыкании срабатывает практически моментально благодаря электромагнитному расщепителю. При определённом превышении номинального значения тока нагревающаяся биметаллическая пластина отключит напряжение спустя некоторое время, которое можно узнать из графика время токовой характеристики.

Данное предохранительное устройство защищает проводку от КЗ и сверх токов, превышающих расчётное значение для данного сечения провода, которые могут разогреть токопроводящие жилы до температуры плавления и возгорания изоляции. Чтобы этого не произошло, нужно не только правильно подобрать защитный выключатель, соответствующий мощности подключаемых устройств, но и проверить, выдержит ли имеющаяся сеть такие нагрузки.

Внешний вид трех полюсного автоматического выключателя

Провода должны соответствовать нагрузке

Очень часто бывает, что в старом доме устанавливается новый электросчётчик, автоматы, УЗО, но проводка остаётся старой. Покупается много бытовой техники, суммируется мощность и под неё подбирается автомат, который исправно держит нагрузку всех включённых электроприборов.

Вроде всё правильно, но вдруг изоляция проводов начинает выделять характерный запах и дым, появляется пламя, а защита не срабатывает. Это может случиться, если параметры электропроводки не рассчитаны на такой ток .

Допустим, поперечное сечение жилы старого кабеля — 1,5мм², с максимально допустимым пределом по току в 19А. Принимаем, что одновременно к нему подключили несколько электроприборов, составляющих суммарную нагрузку 5кВт, что в токовом эквиваленте составляет приблизительно 22,7А, ему соответствует автомат 25А.

Провод будет разогреваться, но данный автомат будет оставаться включённым все время, пока не произойдёт расплавление изоляции, что повлечёт короткое замыкание, а пожар уже может разгораться полным ходом.

кабель силовой NYM

Защитить самое слабое звено электропроводки

Поэтому, прежде чем сделать выбор автомата соответственно защищаемой нагрузке, нужно удостовериться, что проводка данную нагрузку выдержит.

Согласно ПУЭ 3.1.4 автомат должен защищать от перегрузок самый слабый участок электрической цепи, или выбираться с номинальным током, соответствующим токам подключаемых электроустановок, что опять же подразумевает их подключение проводниками с требуемым поперечным сечением.

При игнорировании этого правила не стоит нарекать на неправильно рассчитанный автомат и проклинать его производителя, если слабое звено электропроводки вызовет пожар.

Расплавленная изоляция проводов

Расчет номинала автомата

Допускаем, что проводка новая, надёжная, правильно рассчитанная, и соответствует всем требованиям. В этом случае выбор автоматического выключателя сводится к определению подходящего номинала из типичного ряда значений, исходя из расчетного тока нагрузки, который вычисляется по формуле:

где Р – суммарная мощность электроприборов.

Подразумевается активная нагрузка (освещение, электронагревательные элементы, бытовая техника). Такой расчет полностью подходит для домашней электросети в квартире.

Допустим расчет мощности произведён: Р=7,2 кВт. I=P/U=7200/220=32,72 А. Выбираем подходящий автомат на 32А из ряда значений: 1, 2, 3, 6, 10, 16, 20, 25, 32, 40, 63, 80, 100.

Данный номинал немного меньше расчётного, но ведь практически не бывает одновременного включения всех электроприборов в квартире. Также стоит учитывать, что на практике срабатывание автомата начинается со значения в 1,13 раза больше от номинального, из-за его времятоковой характеристики, то есть 32*1,13=36,16А.

Для упрощения выбора защитного автомата существует таблица, где номиналы автоматов соответствуют мощности однофазной и трёхфазной нагрузки:

Таблица выбора автомата по току

Найденный по формуле в вышеприведённом примере номинал наиболее близок по значению мощности, которое указано в выделенной красном ячейке. Также, если вы хотите рассчитать ток для трехфазной сети, при выборе автомата, ознакомьтесь со статьей про расчет и выбор сечения провода

Подбор защитных автоматов для электрических установок (электродвигателей, трансформаторов) с реактивной нагрузкой, как правило, не производится по мощности. Номинал и тип время токовой характеристики автоматического выключателя подбирается соответственно рабочему и пусковому току, указанному в паспорте данного устройства.

Таблица подбор сечения провода по мощности

Какое сечение провода нужно для 3 квт

Формула как найти мощность тока

Плавный пуск асинхронного электродвигателя с короткозамкнутым ротором

Новогодние поздравления с юмором

Что такое номинальный ток автомата

Номинальный ток – это максимально допустимое значение электрического тока, который пропускает автоматический выключатель без отключения сети.

Чтобы понять и сделать выбор автомата по току, нужно исходить из двух факторов:

  1. 1. Сечение электрического кабеля – площадь поперечного сечения кабеля электропроводки, который способен без нагрева выдерживать определенную мощность нагрузки.
  2. 2. Максимальной нагрузке – мощности всех электроприборов, подключённых к данной линии на максимальном режиме работы.

При выборе автоматического выключателя нельзя ставить защитное устройство номиналом по току выше, чем может выдержать смонтированный силовой кабель. Такой автомат не защитит электропроводку и сработает уже поле перегрева линии.

В любом случае сечение электрического кабеля, номинал автомата и мощность нагрузки между собой очень сильно связаны. Силовой кабель может пропускать ограниченную его сечением величину тока.

Поэтому идеальным вариантом для устройства электрической сети будет такая последовательность: расчет мощности всех потребителей на силовой линии, расчет площади поперечного сечения, монтируемого кабеля по максимальной мощности всех устройств, расчет автоматического выключателя исходя из выбранного кабеля.

Номиналы автоматических выключателей по току

Предельное значение номинала определяют по формуле Iном ≤ Iпр/1,45, где Iпр – допустимый в длительном режиме ток для определенной проводки. Если планируется монтаж сети, действуют следующим образом:

  • уточняют схему подключения потребителей;
  • собирают паспортные данные техники, измеряют напряжение;
  • по представленной схеме рассчитывают отдельно, суммируют токи в отдельных цепях;
  • для каждой группы надо подобрать автомат, который будет выдерживать соответствующую нагрузку;
  • определяют кабельную продукцию с подходящим сечением проводника.

Правила выбора номинала

Пример выбора номинала автомата для каждой линии

Для корректных выводов надо учитывать особенности подключаемого оборудования. Если по расчету суммарный ток составляет 19 ампер, пользователи предпочитают покупать аппарат на 25А. Это решение предполагает возможность применения дополнительных нагрузок без существенных ограничений.

Однако в некоторых ситуациях лучше выбрать автоматический выключатель на 20А. Этим обеспечивают относительно меньшее время на отключения питания при росте тока (повышении температуры) биметаллическим разъединителем

Такая предосторожность поможет сохранить в целостности обмотки электродвигателя при блокировке вращения ротора заклинившим приводом

Разное время срабатывания пригодится для обеспечения селективной работы средств защиты. На линиях устанавливают устройства с меньшей задержкой. При аварийной ситуации отсоединяется от электричества только поврежденная часть. Вводной автомат не успеет отключиться. Питание по другим цепям пригодится для поддержания в работоспособном состоянии освещения, сигнализации, других инженерных систем.

Как работает автоматический выключатель

Главная задача автоматического выключателя (автомата) — это улавливание чрезмерных токов в электросети, и мгновенное её обесточивание

Неважно, к какой категории относится автоматический выключатель, он должен уметь быстро обесточить электросеть и предотвратить тем самым повреждение кабелей

Поэтому главной функцией автоматического выключателя, является:

  • Срабатывание в случае перегрузки электросети. Здесь все достаточно просто, и если в сети возникнет чрезмерно большая нагрузка, например, из-за большого количества подключённых электроприборов в доме, автоматический выключатель должен сработать и обесточить домашнюю электросеть. Если этого не произойдёт, и автомат не справится со своей задачей, то может загореться электропроводка в доме;
  • Среагировать на сверхток, вызванный коротким замыканием электропроводки. Здесь все, также понятно. В случае замыкания, электропроводка подвергается сильному нагреву, а там где тонко, как известно, там и рвётся, поэтому, если автомат не сработает, возможно, повреждение и возгорание электропроводки.

Следует знать, что каждый автоматический выключатель рассчитан на разную силу тока. Время срабатывания автомата, зависит от величины перегрузки электросети. Если это короткое замыкание, то автоматический выключатель сработает мгновенно, буквально за считанные секунды. Если величина перегрузки не слишком большая, то автомат и электропроводка могут греться часами.

Что касается конструкции автоматического выключателя и его принципа работы, то в основе лежит биметаллическая пластина, через которую проходит электрический ток. Если он слишком большой величины, на которую автомат не рассчитан, то пластина начинает греться, что в итоге и приводит к срабатыванию автоматического выключателя.

Автоматы «В» и «С» — в чем разница, категории автоматических выключателей

Тех людей, которые занимаются модернизацией домашней электросети, часто интересует вопрос о том, чем именно отличаются автоматические выключатели категории «В» и «С», ведь именно они, чаще всего, устанавливаются в бытовых сетях. Главное отличие автоматов «В» и «С» в чувствительности электромагнитного расцепителя.

Буквы А, В, С, D и K, Z — как раз и указывают на характеристики расцепителя установленного в автоматическом выключателе:

А — автоматические выключатели данной категории имеют самую высокую чувствительность. Если номинальный ток на линии где будет установлен автомат категории «А» превысит 30%, то автоматический выключатель отключится.

В — автоматы этой категории срабатывают при превышении нагрузки по номинальному току в 3-5 раз. Автоматические выключатели категории «В» предназначены для установки в электросетях с отсутствием или с минимальным пусковым током (электродвигатели и т. д.). Простыми словами говоря, автоматы категории «В», более чувствительны к проходящему току, и при запуске мощных электродвигателей могут сработать.

С — автоматические выключатели стандартного типа с ещё большей перегрузочной способностью, чем у автоматов «В» класса. Их выключение происходит в том случае, если номинальный ток, проходящий через автомат, станет в 5-10 раз выше. Время срабатывания автомата категории «С», порядка 1,5 секунды. Такие автоматы предназначены для обеспечения защиты электросетей общего назначения.

Автоматы категории D, редко используются в быту. Чаще всего эти автоматические выключатели применяются в электросетях с большими пусковыми нагрузками. Ну и последние категории автоматов, это «K» и «Z», они используются в специальных целях, например, для защиты линий к которым подключены электронные устройства.

Мощность рассеивания автоматических выключателей

Рассеивание — это потери электроэнергии, которые в виде тепла уходят в окружающую среду. Для примера приведу паспортные значения рассеиваемой мощности для автоматов ВА 47-63 (для новых автоматов при значениях тока, равных номинальному):

Номинальный ток In, AМощность рассеивания, Вт
1-полюсные2-полюсные3-полюсные4-полюсные
11,22,43,64,8
21,32,63,95,2
31,32,63,95,2
41,42,84,25,6
51,63,24,86,4
61,83,65,57,2
81,83,65,57,33
101,93,95,97,9
132,55,37,810,3
162,75,68,111,4
203,06,49,413,6
253,26,69,813,4
323,47,511,213,8
353,87,611,415,3
403,78,112,115,5
504,59,914,920,5
635,211,517,221,4

Как видим, автоматический выключатель тоже хочет есть. Поэтому не стоит увлекаться и втыкать автоматы везде, где это возможно. Где же происходят потери? Основная часть приходится на тепловой расцепитель. Но не надо излишне драматизировать ситуацию. Эти потери пропорциональны протекающему току. Поэтому, если например нагрузка в 2 раза меньше номинальной, то и потери будут соответственно в 4 раза меньше, а при отсутствии нагрузки не будет и потерь. Если их представить в процентном виде, то будут величины порядка 0,05-0.5%, причем наименьший процент у самых мощных автоматов. В самих контактах, пока автомат новый, потери незначительны. Но в процессе эксплуатации контакты будут подгорать, переходное сопротивление будет расти, а с ним будут расти и потери. Поэтому у старого автомата потери могут быть заметно больше. Как измерить потери —

Класс токоограничения

Движемся дальше. Электромагнитный расцепитель, хоть и называется мгновенным, но тоже имеет определенное время срабатывания, которое отражает такой параметр, как класс ограничения. Он обозначается одной цифрой и у многих моделей эту цифру можно найти на корпусе аппарата. В основном сейчас выпускаются автоматы с классом токоограничения 3 — это значит, что со времени достижения током значения срабатывания до полного разрыва цепи пройдет время не более чем 1/3 полупериода. При стандартной у нас частоте 50 Герц это получается около 3,3 миллисекунд. Класс 2 соответствует значению 1/2 (порядка 5 мс). По некоторым источникам, отсутствие маркировки этого параметра равносильно классу 1. Самый высокий класс, который мне попадался — это 4-й у автоматов OptiDin производства КЭАЗ.

Недопустимые ошибки при покупке

Существует несколько ошибок, которые могут допустить электрики-новички при выборе автоматического выключателя по силе тока и нагрузке. Если Вы неправильно выберите защитную автоматику, даже немного «промахнувшись» с номиналом, это может повлечь за собой множество неблагоприятных последствий: срабатывание автомата при включении электроприбора, электропроводка не выдержит токовые нагрузки, срок службы выключателя быстро сократиться и т. д.

Первое и самое важное, что вы должны знать — во время заключения договора новые абоненты заказывают энергетическую мощность своего присоединения. От этого технический отдел производит расчет и выбирает в каком месте будет происходить подключение и сможет ли оборудование, линии, ТП выдержать нагрузку

Также по заявленной мощности рассчитывается сечение кабеля и номинал защитного автомата. Для квартирных абонентов недопустимо самовольное увеличение нагрузки на ввод без его модернизации, поскольку по проекту уже заявлена мощность и проложен питающей кабель. В общем номинал вводного автомата выбираете не вы, а технический отдел. Если в итоге вы захотите выбрать более мощный автоматический выключатель, все должно согласовываться.
Всегда ориентируйтесь не на мощность бытовой техники, а на электропроводку. Не стоит осуществлять выбор автомата только по характеристикам электроприборов, если проводка старая. Опасность в том, что если, к примеру, для защиты электроплиты Вы выберите модель на 32А, а сечение старого алюминиевого кабеля способно выдержать только ток в 10А, то Ваша проводка не выдержит и быстро расплавиться, что станет причиной короткого замыкания в сети. Если же Вам нужно выбрать мощный коммутационный аппарат для защиты, первым делом замените электропроводку в квартире на новую, более мощную.
Если, к примеру, при расчете подходящего номинала автомата по рабочему току у Вас вышло среднее значение между двумя характеристиками – 13,9А (не 10 и не 16А), отдавайте предпочтение большему значению только в том случае, если Вы знаете, что проводка выдержит токовую нагрузку в 16А.
Для дачи и гаража лучше выбрать автоматический выключатель помощнее, т.к. здесь могут использоваться сварочный аппарат, мощный погружной насос, асинхронный двигатель и т.д. Лучше заранее предусмотреть подключение мощных потребителей, чтобы потом не переплачивать на покупке коммутационного аппарата большего номинала. Как правило, 40А вполне хватает для защиты линии в бытовых условиях применения.
Желательно подобрать всю автоматику от одного, качественного производителя. В этом случае вероятность какого-либо несоответствия сводится к минимуму.
Покупайте товар только в специализированных магазинах, а еще лучше – у официального дистрибьютора. В этом случае Вы вряд ли выберите подделку и к тому же, стоимость изделий у прямого поставщика, как правило, немного ниже, чем у посредников.

Вот и вся методика правильного выбора автомата для собственного дома, квартиры и дачи! Надеемся, что теперь Вы знаете, как выбрать автоматический выключатель по току, нагрузке и остальным, не менее важным характеристикам, а также какие ошибки не следует допускать при покупке!

Рекомендуем прочитать:

{SOURCE}

Виды автоматов

Классификация автоматических выключателей происходит по следующим параметрам:

  • количество полюсов;
  • номинальный и предельный токи;
  • применяемый тип электромагнитного расцепителя;
  • максимальная мощность отключаемой способности.

Рассмотрим по порядку.

Количество полюсов

Количество полюсов — такое количество фаз, которое способен защищать автомат. По количеству полюсов автоматы могут быть:

  1. Однополюсные.
    Обеспечивается защита одного выходящего провода, одной фазы.
  2. Двухполюсные.
    Как правило, это два совмещенных однополюсных автомата с одной общей ручкой управления. В ситуации, когда ток одного из автоматов превышает разрешенную нагрузку происходит отключение обоих устройств. Используются двухполюсные автоматы для полного отключения нагрузки (одна фаза), отключая рабочую фазу и рабочий нуль.
  3. Трехполюсные.
    Используются с трехфазными цепями, при превышении нагрузки происходит отключение трех фаз одновременно. Такие автоматы так же имеют один общий размыкатель цепи.
  4. Четырехполюсные.
    Аналогичны двухполюсным, но предназначены для работы с трехфазными цепями. При превышении нагрузки происходит размыкание трех фаз и рабочего нуля одновременно.

Номинальный и предельный токи

Тут все просто — такая сила тока, при которой автомат будет размыкать цепь. При номинальном токе и даже немного больше заявленного будет осуществляться работа, однако только при превышении предельного тока на 10–15% произойдет отключение. Обусловлено это тем, что достаточно часто стартовые токи превышают предельно возможные токи на небольшой промежуток времени, поэтому в автомате есть определенный запас времени, по истечению которого произойдет размыкание цепи.

Тип электромагнитного расцепителя

Эта деталь автомата, которая позволяет размыкать цепь при коротком замыкании, а так же в случае повышения тока (перегрузки) на определенное количество раз. Расцепители разделяются на несколько категорий, рассмотрим самые популярные:

  • B — размыкание при превышении номинального тока в 3–5 раз;
  • C — при превышении в 5–10 раз;
  • D — при превышении в 10–20 раз.

Максимальная мощность отключаемой способности. Такое значение тока короткого замыкания (определяется в тысячах ампер), при котором автомат останется рабочим после размыкания цепи из-за короткого замыкания.

Подбор оптимального сечения кабеля

Каждый кабель, как и автомат, имеет определенный разрешенный ток нагрузки. В зависимости от сечения и материала кабеля варьируется и ток нагрузки. Для выбора автомата по сечению кабеля следует использовать таблицу.

Необходимо заметить, что допускается выбирать кабель с небольшим запасом, но никак не пакетный выключатель! Автомат должен соответствовать планируемой нагрузке! В соответствии с правилами устройств электроустановок 3.1.4 — токи уставок автоматов следует выбирать такие, которые будут меньше расчетных токов выбираемых зон.

Рассмотрим на примере, на определенном участке электропроводка проложена кабелем сечением 2.5 мм квадратных, а нагрузка составляет 12 кВт, в данном случае при монтаже автомата (по минимальному току) на 50 А произойдет возгорание проводки, так как провод с данным сечением рассчитан на разрешенный ток в 27 А, а через него проходит значительно больше. В данном случае разрыва цепи не происходит, так как автомат адаптирован под данные токи, а провод — нет, автоматика отключит автомат только в случае короткого замыкания.

Пренебрежение данным правилом грозит серьезными последствиями!

Именно благодаря такому принципу проводка никогда не перегреется и, следовательно, не произойдет возгорания.

Номиналы автоматических выключателей по току для грамотного подбора


Устройства для отключения электричества при перегрузках и коротких замыканиях устанавливают на входе в любую домашнюю сеть. Необходимо правильно рассчитать номиналы автоматических выключателей по току, иначе их работа будет неэффективной. Согласны?

Мы расскажем, как производится расчет параметров автомата, согласно которым подбирают это защитное устройство. Из предложенной нами статьи вы узнаете, как выбрать прибор, требующийся для защиты электросети. С учетом наших советов вы приобретете вариант, четко срабатывающий в опасный для проводки момент.

Содержание статьи:

Параметры автоматических выключателей

Для обеспечения правильного выбора номинала устройств отключения необходимо понимание принципов их работы, условий и времени срабатывания.

Рабочие параметры автоматических выключателей стандартизированы российскими и международными нормативными документами.

Основные элементы и маркировка

В конструкцию выключателя входят два элемента, которые реагируют на превышение силой тока установленного диапазона значений:

  • Биметаллическая пластина под воздействием проходящего тока нагревается и, изгибаясь, надавливает на толкатель, который разъединяет контакты. Это “тепловая защита” от перегрузки.
  • Соленоид под воздействием сильного тока в обмотке генерирует магнитное поле, которое давит сердечник, а тот уже воздействует на толкатель. Это “токовая защита” от короткого замыкания, которая реагирует на такое событие значительно быстрее, чем пластина.

Типы устройств электрической защиты обладают маркировкой, по которой можно определить их основные параметры.

На каждом автоматическом выключателе обозначены его основные характеристики. Это позволяет не перепутать устройства, когда они установлены в щитке

Тип времятоковой характеристики зависит от диапазона уставки (величины силы тока при которой происходит срабатывание) соленоида. Для защиты проводки и приборов в квартирах, домах и офисах используют выключатели типа “C” или, значительно менее распространенные – “B”. Особенной разницы между ними при бытовом применении нет.

Тип “D” используют в подсобных помещениях или столярках при наличии оборудования с электродвигателями, которые имеют большие показатели пусковой мощности.

Существует два стандарта для устройств отключения: жилой (EN 60898-1 или ГОСТ Р 50345) и более строгий промышленный (EN 60947-2 или ГОСТ Р 50030.2). Они отличаются незначительно и автоматы обоих стандартов можно использовать для жилых помещений.

По номинальному току стандартный ряд автоматов для использования в бытовых условиях содержит приборы со следующими значениями: 6, 8, 10, 13 (редко встречается), 16, 20, 25, 32, 40, 50 и 63 A.

Время-токовые характеристики срабатывания

Для того чтобы определить быстроту срабатывания автомата при перегрузке существуют специальные таблицы зависимости времени отключения от коэффициента превышения номинала, который равен отношению существующей силы тока к номинальной:

K = I / In.

Резкий обрыв вниз графика при достижении значения коэффициента диапазона от 5 до 10 единиц, обусловлен срабатыванием электромагнитного расцепителя. Для выключателей типа “B” это происходит при значении от 3 до 5 единиц, а для типа “D” – от 10 до 20.

График показывает зависимость диапазона времени срабатывания автоматов типа “C” от отношения силы тока к значению, которое установлено для этого выключателя

При K = 1,13 автомат гарантированно не отключит линию в течение 1 часа, а при K = 1,45 – гарантированно отключит за это же время. Эти величины утверждены в п. 8.6.2. ГОСТ Р 50345-2010.

Чтобы понять, за какое время сработает защита, например, при K = 2, необходимо провести вертикальную линию от этого значения. В результате получим, что согласно приведенному графику, отключение произойдет в диапазоне от 12 до 100 секунд.

Столь большой разброс времени обусловлен тем, что нагрев пластины зависит не только от мощности проходящего через нее тока, но и параметров внешней среды. Чем выше температура, тем быстрее срабатывает автомат.

Правила выбора номинала

Геометрия внутриквартирных и домовых электрических сетей индивидуальна, поэтому типовых решений по установке выключателей определенного номинала не существует. Общие правила расчета допустимых параметров автоматов достаточно сложны и зависят от многих факторов. Необходимо учесть их все, иначе возможно создание аварийной ситуации.

Принцип устройства внутриквартирной разводки

Внутренние электрические сети имеют разветвленную структуру в виде “дерева” – графа без циклов. Соблюдение такого принципа построения называется , согласно которой оснащаются защитными устройствами все виды электрических цепей.

Это улучшает устойчивость системы при возникновении аварийной ситуации и упрощает работы по ее устранению. Также гораздо легче происходит распределение нагрузки, подключение энергоемких приборов и изменение конфигурации проводки.

У основания графа находится вводной автомат, а сразу после разветвления для каждой отдельной электрической цепи размещают групповые выключатели. Это проверенная годами стандартная схема

В функции вводного автомата входит контроль общей перегрузки – недопущение превышения силой тока разрешенного значения для объекта. Если это произойдет, то существует риск повреждения наружной проводки. Кроме того, вероятно срабатывание защитных устройств за пределами квартиры, которые уже относится к общедомовой собственности или принадлежит местным энергосетям.

В функции групповых автоматов входит контроль силы тока по отдельным линиям. Они защищают от перегрузки кабель на выделенном участке и подключенную к нему группу потребителей электроэнергии. Если при коротком замыкании такое устройство не срабатывает, то его страхует вводной автомат.

Даже для квартир с небольшим количеством электропотребителей желательно выполнить отдельную линию на освещение. При отключении автомата другой цепи, свет не погаснет, что позволит в более комфортных условиях устранить возникшую проблему. Практически в каждом щитке значение номинала вводного автомата меньше чем сумма на групповых.

Суммарная мощность электроприборов

Максимальная нагрузка на цепь возникает при одновременном включении всех электроприборов. Поэтому обычно, суммарную мощность вычисляют простым сложением. Однако в ряде случаев этот показатель будет меньше.

Для некоторых линий, одновременная работа всех подключенных к ней электроприборов маловероятна, а порой и невозможна. В домах иногда специально устанавливают ограничения на работу мощных устройств. Для этого нужно помнить о недопущении их одновременного включения или использовать ограниченное число розеток.

Вероятность одновременной работы всей офисной оргтехники, освещения и вспомогательного оборудования (чайники, холодильники, вентиляторы, обогреватели и т.д.) очень низка, поэтому при расчете максимальной мощности используют поправочный коэффициент

При электрификации офисных зданий для расчетов часто используют эмпирический коэффициент одновременности, значение которого берут в диапазоне от 0,6 до 0,8. Максимальная нагрузка вычисляется умножением суммы мощностей всех электроприборов на коэффициент.

В расчетах существует одна тонкость – необходимо учитывать разницу между номинальной (полной) мощностью и потребляемой (активной), которые связаны коэффициентом (cos (f)).

Это означает, что для работы устройства необходим ток мощности равной потребляемой деленной на этот коэффициент:

Ip = I / cos (f)

Где:

  • Ip – сила номинального тока, которую применяют в расчетах нагрузки;
  • I – сила потребляемого прибором тока;
  • cos (f) <= 1.

Обычно номинальный ток сразу или через указание величины cos (f) указывают в техническом паспорте электрического прибора.

Так, например, значение коэффициента для люминесцентных источников света равно 0,9; для LED-ламп – около 0,6; для обыкновенных ламп накаливания – 1. Если документация утеряна, но известна потребляемая мощность бытовых устройств, то для гарантии берут cos (f) = 0,75.

Указанные в таблице рекомендуемые значения коэффициента мощности можно использовать при расчете электрических нагрузок, когда отсутствуют данные о номинальном токе

О том, как подобрать автоматический выключатель по мощности нагрузки, написано в , с содержанием которой мы советуем ознакомиться.

Выбор сечения жил

Прежде чем прокладывать силовой кабель от распределительного щитка к группе потребителей, необходимо вычислить мощность электроприборов при их одновременной работе. Сечение любой ветви выбирают по таблицам расчета в зависимости от типа металла проводки: меди или алюминия.

Производители проводов сопровождают выпускаемую продукцию подобными справочными материалами. Если они отсутствуют, то ориентируются на данные из справочника “Правила устройства электрооборудования” или производят .

Однако часто потребители перестраховываются и выбирают не минимально допустимое сечение, а на шаг большее. Так, например, при покупке медного кабеля для линии 5 кВт, выбирают сечение жил 6 мм2, когда по таблице достаточно значения 4 мм2.

Справочная таблица, представленная в ПУЭ, позволяет выбрать необходимое сечение из стандартного ряда для различных условий эксплуатации медного кабеля

Это бывает оправдано по следующим причинам:

  • Более длительная эксплуатация толстого кабеля, который редко подвергается предельно допустимой для его сечения нагрузке. Заново выполнять прокладку электропроводки – непростая и дорогостоящая работа, особенно если в помещении сделан ремонт.
  • Запас пропускной способности позволяет беспроблемно подключать к ветви сети новые электроприборы. Так, в кухню можно добавить дополнительную морозильную камеру или переместить туда стиральную машину из ванной комнаты.
  • Начало работы устройств, содержащих электродвигатели, дает сильные стартовые токи. В этом случае наблюдается просадка напряжения, которая выражается не только в мигании ламп освещения, но и может привести к поломке электронной части компьютера, кондиционера или стиральной машины. Чем толще кабель, тем меньше будет скачок напряжения.

К сожалению, на рынке много кабелей, выполненных не по ГОСТу, а согласно требованиям различных ТУ.

Часто сечение их жил не соответствует требованиям или они выполнены из токопроводящего материала с большим сопротивлением, чем положено. Поэтому реальная предельная мощность, при которой происходит допустимый нагрев кабеля, бывает меньше чем в нормативных таблицах.

Эта фотография показывает отличия между кабелями, выполненными по ГОСТ (слева) и согласно ТУ (справа). Очевидна разница в сечении жил и плотности прилегания изоляционного материала

Расчет номинала выключателя для защиты кабеля

Устанавливаемый в щитке автомат должен обеспечить отключение линии при выходе мощности тока за пределы диапазона, разрешенного для электрического кабеля. Поэтому для выключателя необходимо провести расчет максимально допустимого номинала.

По ПУЭ допустимую длительную нагрузку проложенных в коробах или по воздуху (например, над натяжным потолком) медных кабелей, берут из приведенной выше таблицы. Эти значения предназначены для аварийных случаев, когда идет перегрузка по мощности.

Некоторые проблемы начинаются при соотнесении номинальной мощности выключателя длительному допустимому току, если это делать в соответствии с действующим ГОСТ Р 50571.4.43-2012.

Приведен фрагмент п. 433.1 ГОСТ Р 50571.4.43-2012. В формуле “2” допущена неточность, а для правильного понимания определения переменной In нужно учесть Приложение “1”

Во-первых, в заблуждение вводит расшифровка переменной In, как номинальной мощности, если не обратить внимания на Приложение “1” к этому пункту ГОСТа. Во-вторых, в формуле “2” существует опечатка: коэффициент 1,45 добавлен неправильно и этот факт констатируют многие специалисты.

Согласно п. 8.6.2.1. ГОСТ Р 50345-2010 для бытовых выключателей с номиналом до 63 A условное время равно 1 часу. Установленный ток расцепления равен значению номинала, умноженного на коэффициент 1,45.

Таким образом, согласно и первой и измененной второй формулам номинальная сила тока выключателя должна рассчитываться по следующей формуле:

In <= IZ / 1,45

Где:

  • In – номинальный ток автомата;
  • IZ – длительный допустимый ток кабеля.

Проведем расчет номиналов выключателей для стандартных сечений кабелей при однофазном подключении с двумя медными жилами (220 В). Для этого разделим длительный допустимый ток (при прокладке по воздуху) на коэффициент расцепления 1,45.

Выберем автомат таким образом, чтобы его номинал был меньше этого значения:

  • Сечение 1,5 мм2: 19 / 1,45 = 13,1. Номинал: 13 A;
  • Сечение 2,5 мм2: 27 / 1,45 = 18,6. Номинал: 16 A;
  • Сечение 4,0 мм2: 38 / 1,45 = 26,2. Номинал: 25 A;
  • Сечение 6,0 мм2: 50 / 1,45 = 34,5. Номинал: 32 A;
  • Сечение 10,0 мм2: 70 / 1,45 = 48,3. Номинал: 40 A;
  • Сечение 16,0 мм2: 90 / 1,45 = 62,1. Номинал: 50 A;
  • Сечение 25,0 мм2: 115 / 1,45 = 79,3. Номинал: 63 A.

Автоматические выключатели на 13A в продаже бывают редко, поэтому вместо них чаще используют устройства с номинальной мощностью 10A.

Кабели на основе алюминиевых жил сейчас редко используют при монтаже внутренней проводки. Для них тоже есть таблица, позволяющая выбрать сечение по нагрузке

Подобным способом для алюминиевых кабелей рассчитаем номиналы автоматов:

  • Сечение 2,5 мм2: 21 / 1,45 = 14,5. Номинал: 10 или 13 A;
  • Сечение 4,0 мм2: 29 / 1,45 = 20,0. Номинал: 16 или 20 A;
  • Сечение 6,0 мм2: 38 / 1,45 = 26,2. Номинал: 25 A;
  • Сечение 10,0 мм2: 55 / 1,45 = 37,9. Номинал: 32 A;
  • Сечение 16,0 мм2: 70 / 1,45 = 48,3. Номинал: 40 A;
  • Сечение 25,0 мм2: 90 / 1,45 = 62,1. Номинал: 50 A.
  • Сечение 35,0 мм2: 105 / 1,45 = 72,4. Номинал: 63 A.

Если производитель силовых кабелей заявляет иную зависимость допустимой мощности от площади сечения, то необходимо пересчитать значение для выключателей.

Формулы зависимости силы тока от мощности для однофазной и трехфазной сети отличаются. Многие люди, которые имеют приборы, рассчитанные на напряжения 380 Вольт, на этом этапе допускают ошибку

Как определить технические параметры автоматического выключателя по маркировке, подробно . Рекомендуем ознакомиться с познавательным материалом.

Предупреждение перегрузки от работы потребителей

Иногда на линию устанавливают автомат с номинальной мощностью значительно более низкой, чем необходимо для гарантированного сохранения работоспособности электрического кабеля.

Снижать номинал выключателя целесообразно, если суммарная мощность всех устройств в цепи значительно меньше, чем способен выдержать кабель. Это происходит, если исходя из соображений безопасности, когда уже после монтажа проводки часть приборов была удалена с линии.

Тогда уменьшение номинальной мощности автомата оправдано с позиции его более быстрого реагирования на возникающие перегрузки.

Например, при заклинивании подшипника электродвигателя, ток в обмотке резко увеличивается, но не до значений короткого замыкания. Если автомат среагирует быстро, то обмотка не успеет оплавиться, что спасет двигатель от дорогостоящей процедуры перемотки.

Также используют номинал меньше расчетного по причинам жестких ограничений на каждую цепь. Например, для однофазной сети на входе в квартиру с электроплитой установлен выключатель 32 A, что дает 32 * 1,13 * 220 = 8,0 кВт допустимой мощности. Пусть при выполнении разводки по квартире были организованы 3 линии с установкой групповых автоматов номинала 25 A.

Если количество установленных в распределительный щит групповых автоматов велико, то их необходимо подписать и пронумеровать. Иначе можно запутаться

Допустим, что на одной из линий происходит медленное возрастание нагрузки. Когда потребляемая мощность достигнет значения равного гарантированному расцеплению группового выключателя, на остальные два участка останется только (32 – 25) * 1,45 * 220 = 2,2 кВт.

Это очень мало относительно общего потребления. При такой схеме распределительного щитка входной автомат будет чаще отключаться, чем устройства на линиях.

Поэтому чтобы сохранить принцип селективности, нужно поставить на участки выключатели номиналом в 20 или 16 ампер. Тогда при таком же перекосе потребляемой мощности на другие два звена будет приходиться суммарно 3,8 или 5,1 кВт, что приемлемо.

Рассмотрим возможность с номиналом 20A на примере выделенной для кухни отдельной линии.

К ней подсоединены и могут быть одновременно включены следующие электроприборы:

  • Холодильник, номинальной мощностью 400 Вт и стартовым током в 1,2 кВт;
  • Две морозильные камеры, мощностью 200 Вт;
  • Духовка, мощностью 3,5 кВт;
  • При работе электрической духовки разрешено дополнительно включить только один прибор, самые мощный из которых – электрочайник, потребляющий 2,0 кВт.

Двадцатиамперный автомат позволяет более часа пропускать ток с мощностью 20 * 220 * 1,13 = 5,0 кВт. Гарантированное отключение меньше чем за один час произойдет при пропуске тока в 20 * 220 * 1,45 = 6,4 кВт.

На кухне постоянное подключение к электричеству должно быть у холодильного оборудования и плиты. Если существует риск превышения силы тока, то одновременную работу остальных устройств можно исключить, выделив для них всего две розетки

При одновременном включении духовки и электрочайника суммарная мощность составит 5,5 кВт или 1,25 части от номинала автомата. Так как чайник работает недолго, то отключения не произойдет. Если в этот момент включатся в работу холодильник и обе морозильные камеры, то мощность составит уже 6,3 кВт или 1,43 части номинала.

Это значение уже близко к параметру гарантированного расцепления. Однако вероятность возникновения такой ситуации крайне мала и длительность периода будет незначительна, так как время работы моторов и чайника невелико.

Возникающего при запуске холодильника стартового тока, даже в сумме со всеми работающими устройствами, будет недостаточно для срабатывания электромагнитного расцепителя. Таким образом, в заданных условиях можно использовать автомат на 20 A.

Единственный нюанс заключается в возможности увеличения напряжения до 230 В, что разрешено нормативными документами. В частности ГОСТ 29322-2014 (IEC 60038:2009) определяет стандартное напряжение равным 230 В с возможностью использования 220 В.

Сейчас в большинство сетей электричество подают напряжение 220 В. Если же параметр тока приведен к международному стандарту 230 В, то можно пересчитать номиналы в соответствии с этим значением.

Выводы и полезное видео по теме

Устройство выключателя. Выбор вводного автомата в зависимости от подключаемой мощности. Правила распределения питания:

Выбор выключателя по пропускной способности кабеля:

Расчет номинального тока выключателя – сложная задача, для решения которой необходимо учесть множество условий. От установленного автомата зависит удобство обслуживания и безопасность работы локальной электросети.

В случае возникновения сомнений в возможности сделать правильный выбор необходимо обратиться к опытным электрикам.

Пишите, пожалуйста, комментарии в находящемся ниже блоке. Расскажите о собственном опыте в подборе автоматических выключателей. Поделитесь полезной информацией и фото по теме статьи, задавайте вопросы.

Автоматический выключатель ВА в Санкт-Петербурге, ООО М-Энерго

Данные специализированные коммутационные аппараты служат для защиты электрического оборудования и устройств от перегрузки, критических снижений напряжения, коротких замыканий. Компания «М-Энерго» реализует выключатель автоматический ВА в ассортименте; производитель продукции — Курский ЭАЗ, крупнейший в России.

Каждый электроаппарат, представленный в каталоге, проходит обязательную предпродажную проверку в нашей технической лаборатории. Мы ручаемся за образцовое качество электротехнической продукции, предлагаем лучшие цены и оперативную доставку товара на Ваш объект.

В активе нашей фирмы — многолетний опыт работы в качестве поставщика электротехники, отличное знание спроса и предложения, безукоризненный клиентский сервис. К Вашим услугам лучшие комплексные решения на отечественном рынке электротехники!

Автоматы ВА давно приобрели популярность во всех отраслях деятельности, в силу надежности и оптимальных технических характеристик. Выключатель автоматического типа:

Установка прибора осуществляется на монтажную панель. Вариант исполнения — климатический УХЛЗ (для помещений в зонах холодного/умеренного климата). Уровень защиты оболочки IP20.

Наша компания работает на условиях прямого контакта с заводом-производителем автоматов ВА, поэтому мы можем гарантировать фирменное качество изделий и адекватность установленных расценок. Обращение в «М-Энерго» с целью приобретения электротехнических устройств — оптимальный шаг для заказчиков, нацеленных на экономию финансов без потерь в качественных характеристиках товара.

Назначение и общие характеристики ВА57 (57-35, 57Ф-35)

Выключатели серии ВА57 предназначены для проведения тока в нормальных режимах и его отключения в случаях короткого замыкания, перегрузки, значительного падения напряжения. Допускается до 30 оперативных включений/отключений в течение суток. Устройства устанавливаются в сетях трехфазного переменного напряжения 380/660 В с частотой 50 и 60 Гц или в сетях с постоянным напряжением 220/440 В. Уставка по току: от 16 до 250 А. Имеют тепловой и электромагнитный расцепитель.

Соответствие нормативным документам

Автоматы соответствуют требованиям ГОСТ 17516.1 (механическое исполнение – МЗ), ГОСТ Р 50030.2 (категория применения А) и І-го раздела ГОСТ 12.1.004 (пожарная безопасность). Климатическое исполнение по ГОСТ 15150:

  • УХЛ3 (от – 60 до + 40 оС),
  • Т3 (от – 10 до + 50 оС).

Расшифровка условного обозначения

Если изделие имеет расширенную маркировку, то его основные характеристики можно узнать без технического паспорта. В качестве примера рассмотрим ВА57-35-340010-100А-500-690AC-УХЛ3. Цифры обозначают следующее:

  • 57 – серия;
  • 35 – диапазон номинального тока – до 250 А;
  • 34 – 3 полюса с защитой от токовой перегрузки и КЗ;
  • 00 – дополнительных сборочных единиц нет;
  • 1 – ручной привод;
  • 0 – дополнительных механизмов нет.

Далее указано, что автомат рассчитан на 100 А, электромагнитный расцепитель реагирует на токи от 500 А, рабочее переменное напряжение – 690 В.

Автоматические выключатели типа ВА51-35

ВА51-35 – трехполюсные автоматические выключатели с естественным воздушным охлаждением. Применяются в электрических цепях трехфазного переменного тока частотой 50/60 Гц с напряжением до 690 В. Допускается установка в цепях постоянного напряжения до 440 В. Выпускаются в 3 модификациях:

  • М1 – на токи 16-100 А;
  • М2 – на токи 125-250 А;
  • М3 – на токи 320-400 А.

Предназначены для нечастых оперативных переключений (не более 3 в час). Износостойкость: 8000 циклов (по ГОСТ 300311.5.1). Эксплуатируются в диапазоне температур от – 60 до + 40 оС (ГОСТ 15150).

Внутри корпуса может быть один расцепитель (защита от токов КЗ) или два чувствительных элемента (защита от КЗ и тепловых перегрузок по току).

Автоматические выключатели типа ВА04-36

Автоматы ВА04-36 служат для проведения тока в стационарных режимах работы, нечастых оперативных включений/отключений (до 6 раз в сутки) и защиты от аварийных режимов (короткие замыкания, токовые перегрузки). Рассчитаны на переменное напряжение до 660 В, при частоте 50 и 60 Гц, или на постоянное напряжение до 220 В.

Изделия имеют независящую от рода тока и величины напряжения коммутационную способность: до 40 кА. В части сейсмостойкости отвечают требованиям ГОСТ 17516.1. Степень защиты от воздействия окружающей среды – по ГОСТ 14255.

Автоматические выключатели типа ВА52-37

Аппараты ВА52-37 предназначены для нечастых коммутаций (до 6 в сутки), защиты электрических цепей от токовых перегрузок, КЗ и недопустимых снижений напряжения. Оснащаются термомагнитными или электромагнитными расцепителями, которые могут дополняться независимыми расцепителями. Есть модификации со свободными контактами.

Аппараты рассчитаны на номинальное напряжение до 660 В (переменное, частотой 50 и 60 Гц) или 440 В (постоянное). Номиналы тока: 160, 250, 320 и 400 А. Износостойкость: 10000 циклов без нагрузки, 2000 циклов под нагрузкой. Виды климатического исполнения: УХЛ 3, УХЛ 3.1, ТЗ.

Автоматические выключатели серии ВА88

Назначение и общие характеристики

Автоматические выключатели серии ВА88 выполняют функцию проведения тока в нормальных режимах работы и отключения тока при перегрузках, КЗ и недопустимых снижениях уровня напряжения в трехфазных электрических сетях переменного тока частотой 50 Гц. Серийный ряд насчитывает 6 типоразмеров на номинальные токи от 12,5 до 1500 А. Климатическое исполнение: УХЛ3, УХЛ3.1 (ГОСТ 15150). Номинальное напряжение – до 400 В. Предельная отключающая способность: от 12,5 кА до 50 кА.

В зависимости от исполнения, автоматы комплектуются комбинированными (тепловой и электромагнитный) и электронными расцепителями. Последние обеспечивают надежность, широкий диапазон регулирования и возможность оперативной настройки в процессе эксплуатации.

Область применения ВА88 (88-32, 88-33, 88-35, 88-37, 88-40, 88-43)

Область использования зависит от характеристик, основными из которых являются номинальный ток и отключающая способность. Для разных моделей рекомендации такие:

  • ВА88-32 (125 А), ВА88-33 (160 А):
    • защита отходящих линий;
    • в качестве вводных защитных устройств;
    • защита электродвигателей.
  • ВА88-35 (250 А), ВА88-37 (400 А), ВА88-40 (800 А):
    • резервный ввод;
    • в качестве вводных защитных устройств;
    • защита отходящих линий в ЩР, ЩС, ГРЩ.
  • ВА88-43 (1600 А):
    • резервный ввод;
    • защита отходящих линий со стороны НН трансформаторных подстанций 10/0,4 кВ;
    • защита отходящих линий в ЩР, ЩС, ГРЩ.

Допускается использовать автоматы серии ВА88 для нечастых пусков асинхронных двигателей, а также для коммутаций и автоматического управления электрооборудованием в схемах АВР, диспетчеризации и энергосбережения.

Структура условного обозначения выключателей

ВА ХХ – ХХ – ХХ ХХ Х Х – ХХ ХХ

ВА

— Обозначение вида аппарата

ХХ

— Условное обозначение серии:

ХХ

— Условное обозначение номинального тока:

ХХ

— Условное обозначение числа полюсов и количества максимальных расцепителей тока в комбинации с исполнением максимальных расцепителей тока по зоне защиты:
  • 3 полюса с расцепителями в зоне токов короткого замыкания – 33;
  • 3 полюса с расцепителями в зоне токов перегрузки и короткого замыкания – 34;
  • 2 полюса с расцепителями в зоне токов короткого замыкания – 83;
  • 2 полюса с расцепителями в зоне токов перегрузки и короткого замыкания – 84.
ХХ— Условное обозначение исполнения по дополнительным сборочным единицам:
  • без дополнительных сборочных единиц – 00;
  • со свободными контактами – 11;
  • со свободными контактами и независимым расцепи-телем – 18.
Х— Условное обозначение исполнения по виду привода и способа установки выключателя:
  • стационарный с ручным приводом – 1;
  • стационарный с электромагнитным приводом – 3;
  • выдвижнй с ручным дистанционным приводом – 5;
  • выдвижной с электромагнитным приводом – 7;
  • врубной с ручным приводом – 2;
  • врубной с электромагниным приводом – 9.
Х— Условное обозначение исполнения по дополнительным механизмам:
  • отсутствуют – 0;
  • ручной дистанционный привод;
  • для оперирования через дверь распредустройства – 5.
ХХ— Условное обозначение степени защиты выключателя:
ХХ— Условное обозначение климатического исполнения:

Номиналы автоматических выключателей по току: стандарты и расчеты

Автор Aluarius На чтение 5 мин. Просмотров 373 Опубликовано

Наверное, не стоит напоминать о том, что в современных электрических сетях возникают перегрузки, которые негативно влияют на сами сети. Поэтому для защиты устанавливаются автоматические выключатели, или как их называют в обиходе – автоматы. Именно они отключают подачу питания в сеть, если в ней произошел перегруз. Но тут встает другой вопрос, касающийся параметров этих автоматов, где выделяются два основных: номиналы автоматических выключателей по току и времятоковая характеристика. Давайте разбираться в этих показателях.

Токовые номиналы автоматов

Начнем с того, что все характеристики автоматических выключателей располагаются на их корпусе. Поэтому найти их не проблема. Что касается номинального тока автомата, то электрики считают его основной характеристикой. По сути, это максимальное значение силы тока, которое автомат может выдержать, не отключая питающую электрическую сеть. Как только фактическая сила тока превысит номинальную, автомат сработает и отключает цепочку.

Надо сразу же отметить, что номиналы автоматических выключателей стандартизированы, то есть, имеют определенные цифровые значения. Вот этот стандартный ряд:  6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100 А. Некоторые европейские производители выпускают приборы с номиналом 125 ампер.

Внимание! Все эти величины обязательно указываются на корпусе самого автомата, и они действительны при температуре окружающей среды, равной +30С. Уж так повелось.

Именно температура эксплуатации действует на токовую нагрузку автомата. И чем в данном случае выше температура, тем ниже токовую нагрузку может выдержать данный защитный прибор. Есть еще один момент, который определяет способ установки автоматов. Обычно в распределительном щите они устанавливаются друг к другу, прижатые плотно. Каждый автоматический выключатель в процессе работы выделяет тепло, ведь через него проходит электричество. Поэтому каждый прибор действует на соседний, увеличивая температуру последнего. При этом чем больше устройство по токовому номиналу, тем больше оно выделяет тепловой энергии.

Необходимо отметить, что многие производители автоматических выключателей в каталогах своих изделий обязательно указывают поправочные коэффициенты, с помощью которых можно правильно рассчитать номинал тока в зависимости от температуры окружающего воздуха. Это упрощает провести правильный выбор.

И это еще не все. Некоторые бытовые приборы при включении выделяют так называемый пусковой ток. Он обычно больше номинального в пять-шесть раз, что опять-таки будет влиять на повышение нагрузки в питающей сети. Правда, такие токи кратковременные и на кабель они никакого влияния не имеют, а вот автомат на них может реагировать. Правда, все будет зависеть от второй характеристики данного прибора – времятоковой.

Времятоковая характеристика

Что обозначает этот физический показатель? В принципе, все достаточно просто. При перегрузе сети, особенно когда нагрузка зависит от пускового момента бытового прибора, происходит отключение автомата. Но так как данная нагрузка является краткосрочной, то иногда нет необходимости отключать питающую сеть. Получается так, что автомат дает возможность прибору включиться, и при этом он не отключает подачу электроэнергии в электрическую разводку здания.

Но тут есть один нюанс. Сколько времени требуется бытовому прибору войти в штатный режим работы, насколько быстро он включается? То есть, как долго будет действовать пусковой ток? Именно временной показатель и закладывается в эту характеристику автоматического выключателя. Это создает условия, при которых отключение автомата будет уменьшено.

Существует несколько автоматов с разными времятоковыми нагрузками.

  • Тип-А. Это устройство применяется в линейных сетях, в которых длина электрической разводки очень большая, или где установлены полупроводниковые приборы. Выдерживает перегруз в 2-3 раза.
  • Тип-В. Обычно устанавливают в сети с активной нагрузкой и малой кратностью пускового токового момента. Обычно такие автоматы используются на участках, в которые устанавливаются освещение, печи, обогреватели и так далее. Перегруз составляет 3-5 номинальных нагрузок.
  • Тип-С. Монтируется в сети с умеренными токовыми нагрузками. Это обычно розеточные группы, куда подключаются кондиционеры, холодильники. Выдерживает превышение номинала в 5-10 раз.
  • Тип-D. Используется в цепях, где установлены агрегаты с высоким пусковым током. Это могут быть компрессоры, насосы, небольшие станки. Превышение составляет 10-20 номиналов.
  • Тип-К. используется в электрических цепях с индуктивными нагрузками. Превышение: 8-12.
  • Тип-Z. Такие автоматы устанавливаются в цепи, в которые подключены электронные приборы. Они чувствительны к сверхтокам.

Если говорить о бытовом применении, то чаще всего в электроразводки устанавливают типы «B» и «C», редко «D».

Итак, как определить на самом автоматическом выключателе обе характеристики? Обычно на корпусе можно встретить вот такое обозначение: «С16» или любое другое, главное, чтобы это была буква латинского алфавита и число. Это говорит о том (в данном случае), что номинал автоматического выключателя по току составляет 16 ампер, а времятоковая характеристика относит данный прибор к типу «С». То есть, этот автомат будет некоторое время выдерживать силу тока, равную 80-160 ампер. Обычно время срабатывания автомата равно 0,1 секунды.

Расчет

Как рассчитать номинальный ток автоматического выключателя? Все достаточно просто. Давайте рассмотрим такой расчет на примере розеточной группы, куда подключают электрический чайник мощностью 1,5 кВт, холодильник мощностью 400 Вт и посудомоечную машину – 2,5 кВт.

В первую очередь необходимо определить суммарную мощность потребителей, которая равна 4,4 кВт. Теперь вставляем все показатели в формулу закона Ома:

I=P/U=4400 : 220=20 А. Автомат с такой токовой нагрузкой у нас в каталоге присутствует, но необходимо учитывать те условия, которые были оговорены в статье выше. То есть, лучше выбрать автоматический выключатель с большим номиналом тока. А это будет 25 ампер.

Выбор автоматического выключателя

Автоматический выключатель должен соответствовать требованиям, предъявляемым к нему в каждом конкретном случае, поэтому для успешного выбора модели нужно знать параметры защищаемой электропроводки, подключаемых к ней нагрузок и главные характеристики электропитания.

Основываясь на этих данных и необходимых параметрах защиты, можно выбрать нужные автоматы для реализации схемы электрощита и системы токовой защиты в целом. Так как схема может быть достаточно сложной и не только состоять из нескольких ступеней защиты, но и иметь несколько вводных и отходящих линий, то для выбора выключателей в то или иное место нужно также учитывать указанные выше параметры смежных автоматов и других аппаратов защиты установленных до и после выбираемого автомата.

Чтобы выбрать подходящий автоматический выключатель, нужно обратить внимание на следующие характеристики:

Номинальное напряжение Ue (B)

Это максимальное допустимое значение напряжения в условиях нормальной работы. При меньших величинах напряжения отдельные характеристики могут изменяться или, в некоторых случаях, улучшаться (например отключающая способность).

Номинальное напряжение изоляции Ui (кB)

Установленное изготовителем значение напряжения, характеризующее максимальное номинальное напряжение выключателя. Максимальное номинальное напряжение ни в коем случае не должно превышать номинальное напряжение изоляции.

Номинальное импульсное напряжение Uimp (кВ)

Номинальное импульсное напряжение – пиковое значение импульсного напряжения заданной формы и полярности, которое автомат способен выдержать без ущерба.

Номинальный ток In (А)

Это наибольший ток, который автомат может проводить неограниченное долгое время при температуре окружающего воздуха 40°С по ГОСТ Р 50030. 2-99 и 30°С по ГОСТ Р 50345-99. При более высоких температурах значение номинального тока уменьшается.

Предельный ток короткого замыкания

Эта характеристика определяет максимальный ток, при протекании которого автоматический выключатель способен разомкнуть цепь хотя бы один раз. Так же её называют предельная коммутационная способность (ПКС). Иначе говоря, ПКС показывает максимальный ток при котором подвижный контакт автомата не приварится (не пригорит) к неподвижному контакту при возникновении и гашении дуги при размыкании контактов. Токи короткого замыкания могут достигать нескольких тысяч ампер и указываются на маркировке модели.

Класс токоограничения

Параметр, напрямую влияющий на безопасность, надежность и долговечность электропроводки. Он заключается в отключении питания защищаемой цепи раньше, чем ток короткого замыкания достигнет своего максимума. Благодаря этому изоляция не подвергается повышенному нагреву при коротких замыканиях, тем самым снижая риск возникновения возгорания. Класс токоограничения — это время от момента начала размыкания силовых контактов автоматического выключателя до момента полного гашения электрической дуги в дугогасительной камере. Существует три класса токоограничения: 1, 2, 3. Самый высокий класс — 3. Время гашения дуги автомата этого класса происходит за 2,5…6 мс , 2-го класса — 6…10 мс, 1 класса — за время более 10 мс. Данная характеристика указывается под значением предельной коммутационной способности в черном квадрате. Автоматы с токоограничением 1-го класса не маркируются.

Количество полюсов

Данная характеристика определяет максимально возможное количество подключаемых к автомату защиты питающих и защищаемых проводов/проводников, одновременное отключение которых происходит при аварийной ситуации (превышение значения номинального тока и кривой отключения свыше определенного времени) в любой из подключенных цепей.

Номинальная отключающая способность Icu (кА)

Это способность автомата отключить защищаемый участок при возникновения в нем тока короткого замыкания, не превышающем величины предельной коммутационной способности. Если ток будет превышать её, то защита линии и способность автомата отключиться не гарантируется. Если автомат выбран по номинальной отключающей способности, то он может обеспечить защиту от тока короткого замыкания несколько раз.

Кривая отключения

Это характеристика зависимости времени отключения от протекаемого тока. Иначе её еще называют токо-временная характеристика. Выбор должен осуществляться в соответствии с типом Вашей системы, так как требования по защите всегда различны. Существует несколько типов кривых, самые популярные из них это типы B, C, и D: 1. Кривая B предназначена в основном для защиты генераторов, пиковых бросков тока нет. Расцепление от 3 до 5 номинальных токов. 2. Кривая C необходима для защиты цепей в случаях общего применения. Расцепление от 5 до 10 номинальных токов. 3. Кривая D требуется для защиты цепей с высоким пусковым током (трансформаторов и двигателей). Расцепление от 10 до 20 номинальных токов.

Степень защиты — IP

Степень защиты автоматического выключателя от неблагоприятных воздействий окружающей среды характеризуется международным стандартом IP и обозначается двумя цифрами, например IP20. Более подробно об этой важной характеристике Вы можете узнать в статье Что такое класс защиты IP

Что обозначает маркировка выключателя?

На фото изображена маркировка однополюсного автоматическиго выключателя фирмы Siemens. На его примере рассмотрим типичные обозначения данного ряда устройств: 5SY61 MCB — полное название модели, С 10 — кривая отключения типа С и номинальный ток 10 А, 230-400V — номинальное напряжение. Схемы показывают 2 рабочих положения автомата: I — цепь замкнута ( положение 1), O — цепь разомкнута (положение 2). Ниже слева от индикатора включения представлена предельная коммутационная способность (ток короткого замыкания) — 6000 А, под ней расположен класс токоограничения — 3. Подробное описание всех этих параметров приведено выше.

Зная эти характеристики можно без труда подобрать нужную модель. На нашем сайте представлен широкий ассортимент автоматических выключателей и вся необходимая информация о них. Задавайте все интересующие Вас вопросы через форму «Помощь онлайн», и Вам обязательно помогут с выбором. Удачных приобретений!

Номинальные токи автоматических выключателей

Основной характеристикой автоматических средств защиты являются номинальные токи автоматических выключателей. Этот параметр отображается на корпусе прибора вместе с торговой маркой производителя и серийным номером. Данная величина представляет собой максимальное значение тока в амперах. Время протекания тока через автомат может быть бесконечно долгим, без отключения защищаемой цепи. Если же номинальная величина превышена, происходит срабатывание автомата и размыкание защищаемой цепи.

Параметры автоматов

Основные значения номинальных токов стандартизированы и представляют собой следующий ряд значений: 6, 10, 16, 20, 25, 32, 40, 50, 63, 80 и 100 ампер. Данные величины точно соответствуют своему значению, когда окружающая автоматы температура не превышает 30 градусов. Если температура увеличивается, то соответствующий номинальный ток будет понижаться.

Это может произойти при установке в электрощите сразу нескольких устройств на очень близком расстоянии между собой. Происходит взаимный нагрев, в результате которого снижается величина коммутируемого электротока. Для того, чтобы учесть эту погрешность, допускается применение специальных поправочных коэффициентов.

При подключении в сеть сразу нескольких потребителей, на короткое время могут возникнуть пусковые токи, неоднократно превышающие номинальный ток автоматического выключателя. Во избежание самопроизвольных отключений в такие моменты, практикуется использование автоматов с различными время-токовыми характеристиками.

Время-токовая характеристика

Рассматривая номинальные токи автоматов, нельзя забывать и о время-токовой характеристике их срабатывания. Здесь находятся в зависимости время отключения цепи и силы тока, протекающего через нее. Фактически протекающий электроток соотносится с номинальным и показывает во сколько раз превышает его. То есть, при одинаковом токе, отключение может происходить по-разному.

Существует несколько типов автоматических выключателей, в зависимости от время-токовых характеристик. Каждый тип показывает, во сколько раз он превышает значение тока. От этого зависит и область применения того или иного типа автоматических выключателей.

В некоторых моделях устройств существует маркировка С, означающая возможность максимально быстрого расцепления. Данная характеристика автоматов представляет собой график, где по горизонтали указывается номинальный ток, а по вертикали – время срабатывания устройства.

Выбор автоматического выключателя

Подбор автоматического выключателя | EC&M

Спасибо за посещение одной из наших самых популярных классических статей. Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьей
Overcurrent Protective Device Sizing .

Один из наиболее часто задаваемых вопросов: «Как выбрать автоматический выключатель?» Часто неправильно понимаемый факт об автоматических выключателях (CB) связан с процентом нагрузки, разрешенной NEC и конструкцией выключателя, и почему они могут отличаться.Давайте исследуем оба аспекта.

CB Дизайн

Автоматический выключатель рассчитан на то, чтобы выдерживать 100% номинального тока в течение неопределенного периода времени в стандартных условиях испытаний. Эти условия в соответствии со стандартом UL 489 по безопасности для автоматических выключателей в литом корпусе и кожухов автоматических выключателей UL 489 включают установку выключателя на открытом воздухе (т. Е. Без корпуса), где температура окружающей среды поддерживается на уровне 40 [градусов] C ( приблизительно 104 [градусов] F). В этих условиях выключатели в литом корпусе не должны срабатывать при номинальном токе.

Тем не менее, выключатель чаще всего применяется в оборудовании на 80% от его номинального тока в соответствии с NEC Sec. 384-16 (с). Если вы понимаете, почему существует это требование, вы сможете правильно применять CB.

Характеристики отключения CB

Характеристические кривые отключения выключателя документируют, сколько времени требуется для отключения определенных выключателей в зависимости от уровня тока. На рис. 1 представлена ​​типичная кривая для термомагнитного выключателя. Изогнутая часть вверху показывает время, необходимое выключателю для отключения при перегрузке.Состояние перегрузки вызовет накопление тепла вокруг пути тока, внутри выключателя, а также вдоль силовых проводов. Это тепло, которое генерируется током, на самом деле вызывает отключение выключателя в этой области, а не просто величина тока. Считается, что эта часть кривой имеет обратнозависимую временную характеристику, что означает, что выключатель сработает за меньшее время при более высоких уровнях протекания тока.

Поскольку путь тока (включая выключатель и проводник) реагирует на тепло, общая рабочая температура оборудования становится фактором при выборе выключателя в корпусе.

Другие факторы, которые могут повлиять на рабочую температуру оборудования, включают:

  • Размер и расположение корпуса;
  • В одном корпусе размещено более одного токонесущего устройства;
  • Уровень тока, который несет каждое устройство; и
  • Условия окружающей среды в зоне установки оборудования.

Следовательно, простая разработка автоматического выключателя на 100% номинального тока решает лишь часть проблемы.Оборудование должно быть в состоянии безопасно выдерживать тепло, выделяемое всеми источниками, без превышения температурных пределов, установленных в стандарте испытаний продукции. Оба эти фактора учитываются правилами калибровки, установленными NEC.

1996 NEC

NEC 1996 года признает, что на устройства защиты от сверхтоков будет влиять тепло в системе. Таким образом, он определяет концепцию непрерывных нагрузок и правило 80%, чтобы попытаться компенсировать влияние тепла в системе при определении размеров выключателя.

Постоянные нагрузки. Чтобы лучше понять размерные аспекты CB, вы должны сначала четко понять концепцию непрерывных нагрузок. В ст. 100, NEC определяет непрерывную нагрузку как «нагрузку, при которой ожидается, что максимальный ток будет продолжаться в течение трех часов или более». Вам очень важно понимать, что это нагрузка при максимальном токе без перебоев в течение как минимум трех часов. Офисное освещение обычно соответствует этому критерию.

Правила определения размеров NEC. П. 210-22 (c), 220-3 (a), 220-10 (b) и 384-16 (c) все относятся к правилам определения размеров для устройств защиты от сверхтоков (OCPD).Первые три указывают одно и то же требование:

Размер OCPD = 100% периодической нагрузки + 125% продолжительной нагрузки.

п. 384-16 (c) имеет то же требование, за исключением того, что оно указано в терминах загрузки OCPD. Это правило гласит, что OCPD может быть загружен только до 80% от своего номинала для непрерывных нагрузок. Помните, что 80% — это величина, обратная 125% (0,80 = 1 [деленное на] 1,25), и поэтому правила действительно идентичны по конечным требованиям.

Внимательно прочтите правило; 125% -ный размер OCPD (или 80% -ная нагрузка) применим только при постоянных нагрузках.Автоматические выключатели и другие OCPD могут быть рассчитаны на 100% от их номинала для приложений с прерывистой нагрузкой.

100% -норейтинговых устройств. NEC распознает полные сборки (включая OCPD), которые указаны для работы на 100% от их номинала для продолжительных нагрузок. Это означает, что оборудование прошло дополнительные испытания, чтобы убедиться, что оно может выдерживать дополнительный нагрев, связанный с этим уровнем эксплуатации.

Автоматический выключатель со 100% номинальными характеристиками и оборудование конечного использования были испытаны для подтверждения того, что дополнительное тепло, генерируемое в условиях 100% непрерывной нагрузки, безопасно рассеивается.Другие спецификации оборудования также обусловлены необходимостью рассеивания тепла, связанного с уровнем нагрева, достигнутым во время 100% номинальных испытаний. В случаях, когда температура на клеммах проводки выключателя превышает 50 [градусов] C во время 100% номинального испытания, UL 489 требует использования изолированного провода 90 [градусов] C (рассчитанного на допустимую нагрузку 75 [градусов] C) с этими выключателями. и CB должен быть отмечен производителем как таковой. UL 489 также определяет минимальный размер корпуса и требования к вентиляции, если это необходимо для отвода тепла.CB, успешно прошедший эти дополнительные испытания, все еще не включен в список для применения со 100% -ным рейтингом для непрерывной нагрузки, если он не отмечен как таковой производителем.

Таким образом, ЦБ имеет либо стандартный рейтинг (80%), либо рейтинг 100%. Стандартный рейтинг зависит от правил NEC, которые мы только что обсудили. Автоматические выключатели со 100% -ным номиналом разрешается непрерывно нагружать с полным номиналом до тех пор, пока сборка указана в списке и проводники подключены должным образом.

CB Примеры размеров

Ниже приведены примеры правил выбора размеров.

Пример 1: 50 А непрерывная нагрузка и 125 А прерывистая нагрузка.

OCPD = 100% прерывистая нагрузка + 125% продолжительная нагрузка = (1,00 x 125A) + (1,25 x 50A) = 187,5A

Следовательно, требуется OCPD на 200 А. Если выбран автоматический выключатель со 100% -ным номиналом, допустимым является номинал 175А (125А + 50А).

Пример 2: Прерывистая нагрузка 300 А.

Допускается устройство на 300 А; устройство со 100% номиналом не требуется, поскольку нагрузка непостоянна.

Пример 3: 200A непрерывная нагрузка.

OCPD = 100% прерывистая нагрузка + 125% продолжительная нагрузка = (1,00 x 0A) + (1,25 x 200A) = 250A

Следовательно, нужен прибор на 250А. Если выбран автоматический выключатель со 100% -ным номиналом, допускается номинальный ток 200А.

Пример 4: 16A непрерывно и 30A прерывисто.

OCPD = 100% прерывистая нагрузка + 125% продолжительная нагрузка = (1,00 x 30A) + (1,25 x 16A) = 50A

Следовательно, можно выбрать устройство на 50 А.Хотя устройства со 100% -ным номиналом обычно недоступны в таких небольших размерах, допустимый номинал все равно будет 50 А (16 А + 30 А = 46 А; округлено до 50 А).

Джим Поли — менеджер по отраслевым стандартам, а Сэнди Янг — специалист по продукции для автоматических выключателей в Square D Co., Лексингтон, штат Кентукки, и в Сидар-Рапидс, штат Айова, соответственно.

Каковы рейтинги автоматического выключателя? — Типы номиналов автоматического выключателя

Номинальные характеристики автоматического выключателя указаны в зависимости от выполняемых им функций.Для получения полной спецификации стандартные характеристики и различные испытания переключателей и автоматических выключателей можно проконсультироваться. Помимо нормальной работы автоматических выключателей, автоматический выключатель должен выполнять следующие три основных функции в условиях короткого замыкания.

  • Способен вывести из строя неисправный участок системы. Это называется отключающей способностью автоматического выключателя.
  • Автоматический выключатель должен обеспечивать замыкание цепи при наибольшем асимметричном токе в волне тока.Это относится к включению мощности автоматического выключателя.
  • Он должен быть способен безопасно переносить неисправность в течение короткого времени, пока другой выключатель устраняет неисправность. Это относится к кратковременной способности автоматического выключателя.

В дополнение к вышеуказанному номиналу автоматические выключатели должны быть указаны в терминах

  1. Количество полюсов
  2. Номинальное напряжение
  3. Номинальный ток
  4. Номинальная частота
  5. Рабочее напряжение

Эти термины подробно разъясняются ниже.

Номинальное напряжение — Номинальное максимальное напряжение автоматического выключателя — это максимальное действующее значение напряжения, превышающее номинальное напряжение, на которое рассчитан автоматический выключатель, и верхние пределы срабатывания. Номинальное напряжение выражается в KVrms и используется межфазное напряжение для трехфазной цепи.

Номинальный ток — Номинальный нормальный ток автоматического выключателя — это среднеквадратичное значение тока, с которым автоматический выключатель должен постоянно выдерживать номинальную частоту и номинальное напряжение при определенных условиях.

Номинальная частота — Номинальная частота автоматического выключателя — это частота, на которой он рассчитан на работу. Стандартная частота 50 Гц

Рабочий режим — Рабочий режим автоматического выключателя состоит из предписанного количества единичных операций с установленными интервалами. Последовательность операций относится к размыканию и замыканию контактов выключателя.

Размыкающий контакт — Термины, выражающие наибольшее значение тока короткого замыкания, которое выключатели способны отключать при определенных условиях переходного восстанавливающегося напряжения и напряжения промышленной частоты.Выражается в KA RMS при разъединении контактов. Отключающие способности делятся на два типа.

  • Симметричная отключающая способность выключателя
  • Несимметричная отключающая способность автоматического выключателя.

Включающая способность — Всегда существует вероятность включения автоматического выключателя в условиях короткого замыкания. Включающая способность автоматического выключателя — это его способность противостоять воздействию электромагнитных сил, которые прямо пропорциональны квадрату пикового значения тока включения автоматического выключателя.

Включающий ток автоматического выключателя при замыкании на короткое замыкание — это пиковое значение максимальной волны тока (включая составляющую постоянного тока) в первом цикле тока после того, как цепь замыкается автоматическим выключателем.

Ток короткого замыкания — Ток короткого замыкания автоматического выключателя — это действующее значение тока, которое выключатель может выдерживать в полностью замкнутом состоянии без повреждений в течение указанного интервала времени при заданных условиях.Обычно это выражается в терминах КА за 1 или 4 секунды. Эти характеристики основаны на тепловом ограничении.

Низковольтный автоматический выключатель не имеет такого тока короткого замыкания, потому что он обычно оборудован последовательными расцепителями перегрузки прямого действия.

Основные характеристики выключателя

Основные характеристики автоматического выключателя:

  • Его номинальное напряжение Ue
  • Его номинальный ток В
  • Диапазон регулировки уровня тока срабатывания для защиты от перегрузки (Ir [1] или Irth [1] ) и для защиты от короткого замыкания (Im) [1]
  • Его номинальный ток отключения при коротком замыкании (Icu для промышленных выключателей; Icn для выключателей бытового типа).

Номинальное рабочее напряжение (Ue)

Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях.

Автоматическому выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям, как указано в разделе «Другие характеристики автоматического выключателя».

Номинальный ток (In)

Это максимальное значение тока, которое автоматический выключатель, оснащенный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной производителем, без превышения установленных температурных пределов токоведущих частей.

Пример

Автоматический выключатель, рассчитанный на In = 125 A для температуры окружающей среды 40 ° C, будет оснащен соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель может использоваться при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен». Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 А в течение неограниченного периода времени или, опять же, только 109 А при 60 ° C, при соблюдении указанного температурного предела.

Таким образом, снижение номинальных характеристик автоматического выключателя достигается за счет уменьшения уставки тока срабатывания его реле перегрузки и соответствующей маркировки выключателя.Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).

Примечание: In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu — это номинальный непрерывный ток.

Размер рамы

Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, присваивается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.

Пример

Автоматический выключатель Compact NSX630N может быть оборудован 11 электронными расцепителями от 150 до 630 А. Номинальный ток автоматического выключателя составляет 630 А.

Уставка тока срабатывания реле перегрузки (Irth или Ir)

Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми, реле максимального тока. Кроме того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) — это ток, при превышении которого автоматический выключатель сработает. Он также представляет собой максимальный ток, который автоматический выключатель может выдерживать без отключения. Это значение должно быть больше максимального тока нагрузки IB, но меньше максимально допустимого тока в цепи Iz (см. Главу «Размеры и защита проводов»).

Реле теплового срабатывания обычно регулируются в пределах от 0,7 до 1,0 от In, но когда для этого используются электронные устройства, диапазон регулировки больше; обычно 0.4 к 1 разу В.

Пример

(см. рис. h37)

Выключатель NSX630N, оборудованный реле максимального тока 400 A Micrologic 6.3E, установленным на 0,9, будет иметь уставку тока срабатывания:

Ir = 400 x 0,9 = 360 А

Примечание: Для автоматических выключателей, оборудованных нерегулируемыми реле максимального тока, Ir = In. Пример: для автоматического выключателя iC60N на 20 А,

Ir = In = 20 А.

Рис. H37 — Пример автоматического выключателя Compact NSX630N с номиналом 400 А от Micrologic, настроенным на 0.9, чтобы получить Ir = 360 A

Уставка тока срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенного действия или с небольшой задержкой по времени) предназначены для быстрого отключения выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im равен:

  • Либо фиксируется стандартами для отечественных автоматических выключателей, например IEC 60898 или
  • Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.

Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки (см. Рис. h38, Рис. h39 и рис. h40).

Рис. H38 — Диапазоны токов отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения

Тип реле защиты Защита от перегрузки
Защита от короткого замыкания
Бытовые выключатели IEC 60898 Термомагнитный Ir = In Низкое значение
тип B
3 In ≤ Im ≤ 5 In
Стандартная настройка
тип C
5 In ≤ Im ≤ 10 In
Цепь высокой уставки
тип D
10 In ≤ Im ≤ 20 In [a]
Модульные промышленные автоматические выключатели [b] Термомагнитный Ir = In
фиксированный
Низкое значение
тип B или Z
3.2 In ≤ фиксированный ≤ 4,8 дюйма
Стандартная настройка
тип C
7 In ≤ фиксированный ≤ 10 In
Высокая уставка
тип D или K
10 In ≤ фиксированная ≤ 14 In
Автоматические выключатели промышленные [b]

IEC 60947-2

Термомагнитный Ir = фиксированный Фиксированное: Im = от 7 до 10 дюймов
Регулируемый:
0,7 In ≤ Ir ≤ In
Регулируемый:
  • Нижнее значение: от 2 до 5 дюймов
  • Стандартная настройка: от 5 до 10 дюймов
Электронный Длительная задержка
0. 1 2 Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные.

Рис. H39 — Кривая отключения термомагнитного выключателя

Ir : Уставка тока срабатывания реле перегрузки (теплового или с большой задержкой)
Im : Уставка тока срабатывания реле короткого замыкания (магнитного или короткого замыкания)
Ii : Срабатывание реле мгновенного действия при коротком замыкании- текущая настройка.
Icu : Отключающая способность

Рис. H40 — Кривая отключения автоматического выключателя с усовершенствованным электронным расцепителем

Автоматический выключатель с изоляцией

Автоматический выключатель пригоден для разъединения цепи, если он удовлетворяет всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его лицевой стороне символом

К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного выключателя по току короткого замыкания связана (приблизительно) с cos φ петли тока короткого замыкания. Стандартные значения для этого отношения установлены в некоторых стандартах.

Номинальный ток отключения при коротком замыкании выключателя — это наибольшее (ожидаемое) значение тока, которое выключатель способен отключать без повреждения. Величина тока, указанная в стандартах, представляет собой действующее значение переменной составляющей тока короткого замыкания, т.е.е. переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) предполагается равной нулю для расчета стандартизованного значения. Это номинальное значение (Icu) для промышленных выключателей и (Icn) для выключателей бытового типа обычно выражается в кА (действующее значение).

Icu (номинальная предельная отключающая способность sc) и Ics (номинальная рабочая отключающая способность sc) определены в IEC 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A (мгновенное отключение) и B (с выдержкой времени). отключение), как описано в разделе Другие характеристики автоматического выключателя.

Испытания для подтверждения номинальных значений н.у. Отключающая способность автоматических выключателей регулируется стандартами и включает:

  • Последовательность операций, состоящая из последовательности операций, т.е. замыкание и размыкание при коротком замыкании
  • Смещение фаз тока и напряжения. Когда ток находится в фазе с напряжением питания (cosφ для цепи = 1), прерывание тока легче, чем при любом другом коэффициенте мощности. Прерывание тока при малых значениях запаздывания cosφ значительно труднее; схема с нулевым коэффициентом мощности (теоретически) является наиболее обременительным случаем.

На практике все токи короткого замыкания в энергосистеме имеют (более или менее) отстающие коэффициенты мощности, и стандарты основаны на значениях, которые обычно считаются репрезентативными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов.

На рисунке h41 ниже, взятом из IEC 60947-2, приведены стандартизованные значения cos φ для промышленных автоматических выключателей в соответствии с их номинальным значением Icu.

  • После последовательности размыкания — выдержки времени — замыкания / размыкания для проверки емкости Icu выключателя выполняются дополнительные тесты, чтобы убедиться, что:
    • Диэлектрическая стойкость
    • Отключение (изоляция) исполнения и
    • Проверка не нарушила правильную работу защиты от перегрузки.

Рис. H41 — Icu, связанное с коэффициентом мощности (cosφ) цепи тока короткого замыкания (IEC 60947-2)

Icu cosφ
6 кА 0. 1 2 3 Значения уставок тока, которые относятся к токовым тепловым и «мгновенным» магнитным расцепителям для защиты от перегрузки и короткого замыкания.

Основные характеристики выключателя

Основные характеристики автоматического выключателя:

  • Его номинальное напряжение Ue
  • Его номинальный ток В
  • Диапазон регулировки уровня тока срабатывания для защиты от перегрузки (Ir [1] или Irth [1] ) и для защиты от короткого замыкания (Im) [1]
  • Его номинальный ток отключения при коротком замыкании (Icu для промышленных выключателей; Icn для выключателей бытового типа).

Номинальное рабочее напряжение (Ue)

Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях.

Автоматическому выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям, как указано в разделе «Другие характеристики автоматического выключателя».

Номинальный ток (In)

Это максимальное значение тока, которое автоматический выключатель, оснащенный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной производителем, без превышения установленных температурных пределов токоведущих частей.

Пример

Автоматический выключатель, рассчитанный на In = 125 A для температуры окружающей среды 40 ° C, будет оснащен соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель может использоваться при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен». Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 А в течение неограниченного периода времени или, опять же, только 109 А при 60 ° C, при соблюдении указанного температурного предела.

Таким образом, снижение номинальных характеристик автоматического выключателя достигается за счет уменьшения уставки тока срабатывания его реле перегрузки и соответствующей маркировки выключателя.Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).

Примечание: In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu — это номинальный непрерывный ток.

Размер рамы

Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, присваивается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.

Пример

Автоматический выключатель Compact NSX630N может быть оборудован 11 электронными расцепителями от 150 до 630 А. Номинальный ток автоматического выключателя составляет 630 А.

Уставка тока срабатывания реле перегрузки (Irth или Ir)

Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми, реле максимального тока. Кроме того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) — это ток, при превышении которого автоматический выключатель сработает. Он также представляет собой максимальный ток, который автоматический выключатель может выдерживать без отключения. Это значение должно быть больше максимального тока нагрузки IB, но меньше максимально допустимого тока в цепи Iz (см. Главу «Размеры и защита проводов»).

Реле теплового срабатывания обычно регулируются в пределах от 0,7 до 1,0 от In, но когда для этого используются электронные устройства, диапазон регулировки больше; обычно 0.4 к 1 разу В.

Пример

(см. рис. h37)

Выключатель NSX630N, оборудованный реле максимального тока 400 A Micrologic 6.3E, установленным на 0,9, будет иметь уставку тока срабатывания:

Ir = 400 x 0,9 = 360 А

Примечание: Для автоматических выключателей, оборудованных нерегулируемыми реле максимального тока, Ir = In. Пример: для автоматического выключателя iC60N на 20 А,

Ir = In = 20 А.

Рис. H37 — Пример автоматического выключателя Compact NSX630N с номиналом 400 А от Micrologic, настроенным на 0.9, чтобы получить Ir = 360 A

Уставка тока срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенного действия или с небольшой задержкой по времени) предназначены для быстрого отключения выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im равен:

  • Либо фиксируется стандартами для отечественных автоматических выключателей, например IEC 60898 или
  • Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.

Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки (см. Рис. h38, Рис. h39 и рис. h40).

Рис. H38 — Диапазоны токов отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения

Тип реле защиты Защита от перегрузки
Защита от короткого замыкания
Бытовые выключатели IEC 60898 Термомагнитный Ir = In Низкое значение
тип B
3 In ≤ Im ≤ 5 In
Стандартная настройка
тип C
5 In ≤ Im ≤ 10 In
Цепь высокой уставки
тип D
10 In ≤ Im ≤ 20 In [a]
Модульные промышленные автоматические выключатели [b] Термомагнитный Ir = In
фиксированный
Низкое значение
тип B или Z
3.2 In ≤ фиксированный ≤ 4,8 дюйма
Стандартная настройка
тип C
7 In ≤ фиксированный ≤ 10 In
Высокая уставка
тип D или K
10 In ≤ фиксированная ≤ 14 In
Автоматические выключатели промышленные [b]

IEC 60947-2

Термомагнитный Ir = фиксированный Фиксированное: Im = от 7 до 10 дюймов
Регулируемый:
0,7 In ≤ Ir ≤ In
Регулируемый:
  • Нижнее значение: от 2 до 5 дюймов
  • Стандартная настройка: от 5 до 10 дюймов
Электронный Длительная задержка
0. 1 2 Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные.

Рис. H39 — Кривая отключения термомагнитного выключателя

Ir : Уставка тока срабатывания реле перегрузки (теплового или с большой задержкой)
Im : Уставка тока срабатывания реле короткого замыкания (магнитного или короткого замыкания)
Ii : Срабатывание реле мгновенного действия при коротком замыкании- текущая настройка.
Icu : Отключающая способность

Рис. H40 — Кривая отключения автоматического выключателя с усовершенствованным электронным расцепителем

Автоматический выключатель с изоляцией

Автоматический выключатель пригоден для разъединения цепи, если он удовлетворяет всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его лицевой стороне символом

К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного выключателя по току короткого замыкания связана (приблизительно) с cos φ петли тока короткого замыкания. Стандартные значения для этого отношения установлены в некоторых стандартах.

Номинальный ток отключения при коротком замыкании выключателя — это наибольшее (ожидаемое) значение тока, которое выключатель способен отключать без повреждения. Величина тока, указанная в стандартах, представляет собой действующее значение переменной составляющей тока короткого замыкания, т.е.е. переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) предполагается равной нулю для расчета стандартизованного значения. Это номинальное значение (Icu) для промышленных выключателей и (Icn) для выключателей бытового типа обычно выражается в кА (действующее значение).

Icu (номинальная предельная отключающая способность sc) и Ics (номинальная рабочая отключающая способность sc) определены в IEC 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A (мгновенное отключение) и B (с выдержкой времени). отключение), как описано в разделе Другие характеристики автоматического выключателя.

Испытания для подтверждения номинальных значений н.у. Отключающая способность автоматических выключателей регулируется стандартами и включает:

  • Последовательность операций, состоящая из последовательности операций, т.е. замыкание и размыкание при коротком замыкании
  • Смещение фаз тока и напряжения. Когда ток находится в фазе с напряжением питания (cosφ для цепи = 1), прерывание тока легче, чем при любом другом коэффициенте мощности. Прерывание тока при малых значениях запаздывания cosφ значительно труднее; схема с нулевым коэффициентом мощности (теоретически) является наиболее обременительным случаем.

На практике все токи короткого замыкания в энергосистеме имеют (более или менее) отстающие коэффициенты мощности, и стандарты основаны на значениях, которые обычно считаются репрезентативными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов.

На рисунке h41 ниже, взятом из IEC 60947-2, приведены стандартизованные значения cos φ для промышленных автоматических выключателей в соответствии с их номинальным значением Icu.

  • После последовательности размыкания — выдержки времени — замыкания / размыкания для проверки емкости Icu выключателя выполняются дополнительные тесты, чтобы убедиться, что:
    • Диэлектрическая стойкость
    • Отключение (изоляция) исполнения и
    • Проверка не нарушила правильную работу защиты от перегрузки.

Рис. H41 — Icu, связанное с коэффициентом мощности (cosφ) цепи тока короткого замыкания (IEC 60947-2)

Icu cosφ
6 кА 0. 1 2 3 Значения уставок тока, которые относятся к токовым тепловым и «мгновенным» магнитным расцепителям для защиты от перегрузки и короткого замыкания.

Выбор автоматического выключателя — Руководство по электрическому монтажу

Выбор ряда автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор выключателя

Выбор CB производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в месте установки
  • Характеристики защищаемых кабелей, шин, шинопроводов и области применения (распределение, двигатель …)
  • Координация с вышестоящим и / или последующим устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Нагрузочные характеристики, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения.

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при данной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их отключающих устройств (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют ток срабатывания, зависящий от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные характеристики будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. , рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Более того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их снижения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Выключатель iC60N номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. , рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран с номинальным (пониженным) током 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока отключения при перегрузке (Ir или Irth) в пределах указанного диапазона независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и подобные) установки защищены на рабочем месте автоматическим выключателем, предоставленным органом электроснабжения. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • НН на номинальные токи ≤ 630 A обычно оснащаются компенсируемыми расцепителями для этого диапазона (от — 5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики автоматического выключателя приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Фиг.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1.08 1.06 1,04 1.02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / повышенные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в изменяющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока отключения с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 18:30 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор порога срабатывания мгновенного или кратковременного срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, генерирующие малые токи короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий случай
Высокая установка

тип D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,г. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

тип МА

  • Защита двигателей в сочетании с контакторами и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установку низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, которое расположено выше по потоку и которое имеет требуемую отключающую способность при коротком замыкании

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты, без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадный» (см. «Координация между автоматическими выключателями»).

Автоматические выключатели для IT-систем

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. , рисунок h52).

В этом случае автоматический выключатель должен устранить короткое замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка с помощью символа.

Правила некоторых стран могут добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно определенным национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора СН / НН (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Компактный NSX400N с регулируемым диапазоном отключающего устройства от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на стороне входа CBM1.

Из этих соображений будет видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как автоматический выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. -схемный ток

  • Номинальные параметры CBM следует выбирать в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. фазовый сдвиг напряжений от первичного к вторичному должен быть одинаковым во всех параллельных устройствах.

2. Соотношение напряжения холостого хода между первичной и вторичной обмотками должно быть одинаковым для всех устройств.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех устройств.

Например, трансформатор на 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc, равным 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальной мощности в кВА. Для трансформаторов, имеющих коэффициент мощности более 2 кВА, параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, в , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные устройства 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора до его выключателя низкого напряжения состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C.

Пример

(см. рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рисунке Рисунок h56 как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 будут токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинал Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с связанной с ним экономией на всех последующих компонентах

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно), для нескольких трансформаторов, включенных параллельно

Количество и номинальные значения кВА трансформаторов 20 / 0,4 кВ Минимальная отключающая способность S.C главных выключателей (Icu) кА Общая селективность главных автоматических выключателей (CBM) с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основных выключателей (Icu) кА Номинальный ток In главного выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 X 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 X 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 X 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 X 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Н 108 NSX100-630L
2 X 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в схеме ИТ должны соблюдаться следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Номинальный ток отключения при коротком замыкании: 2-полюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного короткого замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается согласно правилам для ИТ-схем

Объяснение номиналов силового выключателя

Дэррил Мозер
Менеджер по продажам
Подразделение продукции для электрификации АББ

При выборе правильного силового выключателя низкого напряжения для применения важно учитывать как номинальные значения тока короткого замыкания, так и номинальные значения тока короткого замыкания.Понимание этих рабочих характеристик поможет вам выбрать между различными конструкциями автоматического выключателя.

Автоматический выключатель выбирается в зависимости от его электрических характеристик для конкретной цели в каждом приложении, правильный выбор автоматического выключателя важен для безопасной и правильной работы электрической системы. Следует учитывать два важных рейтинга: номинальный ток короткого замыкания (его обычно называют максимальной отключающей способностью) и номинальный ток кратковременного замыкания.В этом посте мы обсудим эти номиналы автоматических выключателей и то, как они могут повлиять на защиту и выборочную координацию системы.

Определены номинальные значения тока короткого замыкания

Номинальный ток короткого замыкания — это максимальный ток короткого замыкания, который автоматический выключатель рассчитан на безопасное прерывание при определенном максимальном напряжении. Этот номинальный ток короткого замыкания обычно выражается в среднеквадратичных симметричных амперах и определяется только величиной тока.Если автоматический выключатель снабжен элементами мгновенного отключения фазы, отключающая способность — это максимальная мощность устройства без преднамеренной задержки. Если автоматический выключатель поставляется без элементов мгновенного отключения по фазе или если элементы отключения по мгновенной фазе могут быть отключены пользователем, отключающая способность является максимальной мощностью устройства для номинального временного интервала. Инженер может безопасно применить автоматический выключатель в энергосистеме, где доступный ток короткого замыкания на клеммах стороны питания не превышает его максимального отключающего номинала.

Определены номинальные кратковременные токи

Номинальный кратковременный ток автоматического выключателя — это способность автоматического выключателя выдерживать воздействие номинального уровня кратковременного тока в течение определенного времени. Он демонстрирует способность выключателя оставаться включенным в течение некоторого времени в условиях высокого тока короткого замыкания. Номинальный кратковременный ток используется инженером для определения способности автоматического выключателя защищать себя и координировать работу с другими автоматическими выключателями, чтобы система срабатывала выборочно.

Параметры распределительного устройства

Пользователи низковольтных распределительных устройств обычно используют фразу «распорка шины» для обозначения механической прочности системы шин в оборудовании, но если вы посмотрите на стандарты, вы не найдете «распорки шины», определенные или перечисленные как рейтинг. Стандарты продукции, применимые к распределительным устройствам с силовыми выключателями в металлическом корпусе: IEEE C37.20.10 для определений и IEEE C37.20.1-2018 и C37.51-
2018 для номинальных значений; [1] [2] [4].

“Номинальный выдерживаемый ток короткого замыкания: Максимальный среднеквадратичный ток, который цепь может выдержать мгновенно без электрических, тепловых или механических повреждений или остаточной деформации. Ток должен быть среднеквадратичным значением, включая составляющую постоянного тока, на основном пике максимальной фазы смещения, определяемой по огибающей волны тока в течение заданного интервала времени испытания ». [1]

Номинальные характеристики см. В IEEE C37.20.1 — 2015, стандарте IEEE для распределительного устройства с автоматическим выключателем в металлическом корпусе (1000 В переменного тока и ниже, 3200 В постоянного тока и ниже).[2]

Номинальный выдерживаемый ток короткого замыкания, который представляет собой номинальный симметричный ток короткого замыкания, который шина распределительного устройства должна выдерживать в течение не менее четырех электрических циклов, 0,067 секунды в системе с частотой 60 Гц. Во время этого испытания напряжение должно быть на максимальном номинальном значении, таком как 635 В, в отличие от номинального значения 600 В, и должно быть при коэффициенте мощности 15% или ниже, что соответствует пиковому току, по крайней мере, в 2,3 раза превышающему действующее значение. .

Испытание для проверки номинального кратковременного выдерживаемого тока в низковольтном распределительном устройстве в металлическом корпусе проводят путем применения уровня кратковременного тока в течение двух периодов по полсекунды (30 циклов), разделенных пятнадцатисекундным интервалом при отсутствии тока. ; или, по усмотрению производителя распределительного устройства, испытание может быть выполнено как одиночное испытание продолжительностью в одну полную секунду (60 циклов).

Номинальные параметры выключателя

Эти характеристики шины распределительного устройства относятся непосредственно к испытаниям и номинальным характеристикам силовых выключателей низкого напряжения (LVPCB), которые используются в распределительном устройстве. Например, номинальный ток короткого замыкания распределительного устройства напрямую соответствует требованиям к испытаниям номинального тока короткого замыкания для силовых выключателей без предохранителей в ANSI C37.50-2018, справочный пункт 3.10.1. [3]

Номинальный кратковременный ток в LVPCB — это номинальное значение, присвоенное неавтоматическим выключателям, выключателям без расцепителей и автоматическим выключателям без предохранителей.

Примечание. Номинальный кратковременный выдерживаемый ток не применяется к автоматическим выключателям с предохранителями, так как предохранитель срабатывает преждевременно и не позволяет току протекать в течение всего срока номинального испытания на кратковременную стойкость.

Расцепители

Силовые выключатели низкого напряжения имеют номинальный ток короткого замыкания 30 циклов в соответствии со стандартами ANSI C37.50 и UL 1066 [3] [5]. Это позволяет использовать их без элемента мгновенного отключения. Номинальная отключающая способность LVPCB — это номинальная мощность автоматического выключателя с активированным или активированным мгновенным отключающим элементом.Любой, кто применяет LVPCB без элементов мгновенного отключения, должен убедиться, что номинальный кратковременный ток устройства больше или равен доступному току короткого замыкания.

Современные электронные расцепители позволяют максимально формировать кривую время-ток, что помогает вам выборочно координировать свою работу с другими автоматическими выключателями. Эти расцепители спроектированы с возможностью регулировки порога срабатывания длительного срабатывания и временной задержки, порога кратковременного срабатывания и временной задержки, мгновенного срабатывания, порога срабатывания замыкания на землю и временной задержки.

Защита и координация

Защита и координация оборудования могут быть конкурирующими задачами разработчика системы, если автоматические выключатели применяются в пределах своих электрических характеристик, они надежно защищают как себя, так и электрическую систему. Выборочная координация необходима, когда желательна непрерывность обслуживания. Это часто достигается за счет использования кратковременных характеристик автоматического выключателя. Умышленная задержка срабатывания может применяться только в том случае, если автоматические выключатели, расположенные ниже по цепи, имеют соответствующий номинальный ток короткого замыкания или являются самозащитными.

Для многих применений в системах распределения электроэнергии низкого напряжения может быть приемлем меньший номинальный кратковременный ток; но для таких применений, как главный автоматический выключатель в распределительном щите служебного входа или распределительном устройстве, это может быть не так. Низковольтный силовой выключатель, используемый в качестве главного выключателя, который имеет номинальный ток короткого замыкания 65 кА, позволит гибко координировать свои действия с последующими автоматическими выключателями при КЗ любой величины вплоть до полного номинального тока короткого замыкания 65 кА автоматические выключатели и распределительное устройство.

Заключение

Правильный выбор LVPCB имеет решающее значение для работы электрической системы. Выбор автоматических выключателей с соответствующим номинальным током короткого замыкания и номинальным током короткого замыкания дает возможность иметь избирательно скоординированную систему до высоких уровней тока короткого замыкания.

Номинальные характеристики автоматического выключателя Emax 2

Список литературы

[1] IEEE C37.20.10 — 2016, Стандартные определения IEEE для переменного тока (52 кВ и ниже) и постоянного тока (3.2 кВ и ниже) КРУЭ
[2] IEEE C37.20.1 — 2015, Стандарт IEEE для низкого напряжения в металлическом корпусе (1000 В переменного тока и ниже, 3200 В постоянного тока и ниже) Распределительное устройство с автоматическим выключателем
[3] ANSI C37.50 — 2018, Силовые выключатели переменного тока низкого напряжения, используемые в корпусах — Процедуры испытаний
[4] ANSI C37.51 — 2018, Узлы распределительных устройств силовых выключателей переменного тока низкого напряжения в металлическом корпусе — Процедуры испытаний на соответствие
[5] UL 1066, четвертый Выпуск, низковольтные силовые выключатели переменного и постоянного тока, используемые в корпусах

Связанное содержимое

Дополнительная информация о силовых автоматических выключателях: Автоматические выключатели Emax 2 на веб-сайте ABB

Почему мощность автоматического выключателя была указана в МВА, а теперь в кА?

Номинальные параметры автоматического выключателя — отключающая способность, включающая способность, номинальное напряжение и ток, рабочий цикл и кратковременная работа выключателя

Пожалуйста, не убивайте меня, чтобы упомянуть неожиданный рейтинг MVA автоматического выключателя, который есть у всех слышал про автоматические выключатели на 500 или 1000 МВА.Эти рейтинги не будут отображаться на последних моделях, поскольку это была старая логика, и сейчас все изменилось. Чтобы прояснить основную концепцию и узнать, что именно произошло с правилами, давайте рассмотрим следующее объяснение. Фактически это отключающая способность (а не ток отключения) выключателя, которая теперь выражается в кА, а не в МВА (как было раньше).

Прежде чем мы углубимся в детали, давайте узнаем, что именно делает автоматический выключатель и каковы различные типы номиналов автоматических выключателей.

Автоматический выключатель — это устройство управления и защиты, используемое для механизма переключения и защиты системы, которое:

  • Включает и размыкает цепь вручную или автоматически в нормальных и аварийных условиях.
  • Разомкните цепь автоматически и закройте путь к короткому замыканию и токам, протекающим через него.
  • Перенести ток короткого замыкания в течение очень короткого времени, пока другой последовательно подключенный автоматический выключатель устраняет замыкание, происходящее в подключенной цепи.

Исходя из трех функций автоматического выключателя, упомянутых выше, существует шесть следующих номиналов автоматического выключателя:

  • Отключающая способность
  • Включающая способность
  • Рабочий цикл автоматического выключателя ( Номинальная рабочая последовательность)
  • Номинальное напряжение
  • Кратковременная рабочая способность
  • Нормальный номинальный ток

Отключающая способность (ранее МВА, теперь кА)

Отключающая способность является максимальной неисправностью ток короткого замыкания (RMS), который автоматический выключатель может выдержать или прервать, размыкая его замкнутые контакты при номинальном восстанавливающемся напряжении, без повреждения автоматического выключателя и подключенных устройств.

Отключающая способность автоматического выключателя выражается в среднеквадратичном значении из-за симметричных и асимметричных факторов из-за наличия пульсаций и составляющих постоянного тока во время короткого замыкания в течение очень короткого времени.

Отключающая способность выключателя ранее была рассчитана в МВА с учетом номинального тока отключения и номинального рабочего напряжения выключателя. Ее можно рассчитать следующим образом:

Отключающая способность = √3 x V x I x 10 -6 … MVA

или

Отключающая или отключающая способность = √3 x номинальное напряжение сети x номинальный ток сети x 10 -6 … MVA

Пример:

Что такое ток отключения или отключения выключателя с номинальной отключающей способностью 100 МВА и номинальным рабочим напряжением 11 кВ.

Решение:

Ток отключения = 100 x 10 -6 / (√3 x 11 кВ) = 52,48 кА

Почему отключающая способность выражается в кВт, а не в МВА?

Очевидно нелогично выражать мощность автоматического выключателя в МВА, потому что во время короткого замыкания возникает очень низкое напряжение и самый высокий ток. Когда выключатель размыкает контакты для устранения токов повреждения, на контактах выключателя появляется номинальное напряжение.Короче говоря, одни и те же номинальные величины не появляются постоянно во время токов короткого замыкания. Вот почему номинальная отключающая способность автоматического выключателя не может быть выражена в МВА.

По этим причинам производители следуют последним и пересмотренным международным стандартам, чтобы выразить номинальную отключающую способность выключателя в симметричном токе отключения в кА при номинальном напряжении вместо МВА. За номинальной отключающей способностью автоматического выключателя в амперах или кА следуют ток отключения и переходное восстанавливающееся напряжение (TRV), поскольку оно может быть как симметричным, так и асимметричным во время короткого замыкания.

Включающая способность

Включающая способность автоматического выключателя — это пиковое значение тока, включая кратковременные коэффициенты пульсаций и составляющие постоянного тока во время первого цикла волны тока повреждения после замыкания контактов автоматического выключателя.

Имейте в виду, что номинальная включающая способность автоматического выключателя в кА выражается в пиковом значении, а не в среднеквадратичном значении (отключающая способность определяется в действующем значении). Это связано с возможностью успешного замыкания контактов выключателя во время токов короткого замыкания при одновременном управлении электромагнитными силами, а также возникновении и гашении дуги без повреждения выключателя и цепи.

Эти вредные силы прямо пропорциональны квадрату максимального мгновенного значения тока при замыкании. Вот почему включающая способность указывается в пиковом значении по сравнению с отключающей способностью, которая выражается в среднеквадратичном значении.

Значение токов короткого замыкания является максимальным в первой фазе или волнах в случае максимальной асимметрии в фазе, подключенной к выключателю. Проще говоря, включающий ток равен максимальному значению асимметричного тока, то есть включающая способность выключателя всегда больше, чем отключающая способность выключателя .

Номинальный ток включения при коротком замыкании принимается равным 2,5 x среднеквадратичное значение составляющих переменного тока номинального тока отключения, поскольку теоретически ток короткого замыкания может возрасти в два раза по сравнению с уровнем симметричного замыкания на начальной стадии.

Включающую способность выключателя можно рассчитать следующим образом.

Чтобы преобразовать симметричный ток отключения из среднеквадратичного значения в пиковое значение:

Включающая способность выключателя = симметричный ток отключения x √2

Умножьте указанное выше выражение на 1.8, чтобы включить эффект удвоения максимальной асимметрии. то есть влияние тока короткого замыкания с учетом небольшого падения тока в течение первой четверти цикла.

Включающая способность выключателя = √2 x 1,8 x Симметричный ток отключения = 2,55 x Симметричный ток отключения

Включающая способность выключателя = 2,55 x Симметричный ток отключения

Рабочий цикл выключателя или номинальная рабочая последовательность

Это показывает требования к механической нагрузке механизма переключения автоматического выключателя.

Рабочий цикл или номинальная рабочая последовательность выключателя может быть выражена следующим образом:

O — t — CO — t ‘- CO

Где:

  • O = Отключение выключателя
  • t = 0,3 секунды для первого автоматического повторного включения, если не указано
  • t ‘= Время между двумя операциями (восстановить исходное состояние и предотвратить несоответствующий нагрев контактов выключателя
  • CO = Операция замыкания сразу после операции размыкания без задержки по времени

:

Номинальное напряжение

Значение безопасного максимального предела напряжения, при котором выключатель может работать без каких-либо повреждений, называется номинальным напряжением выключателя.

Значение номинального напряжения выключателя зависит от толщины изоляции и изоляционного материала, из которого изготовлен выключатель. Номинальное напряжение выключателя связано с самым высоким напряжением в системе из-за повышения напряжения из-за отсутствия нагрузки или внезапного изменения нагрузки до более низкого значения. Таким образом, он может справиться с повышением напряжения в системе до максимальной номинальной мощности. Например, автоматический выключатель должен выдерживать 10% номинального напряжения системы в случае системы 40 кВ, где предел на 5% выше напряжения системы 400 кВ.Сюда. автоматический выключатель, который будет использоваться на линии 6,6 кВ, должен иметь номинальное значение около 7,2 кВ и так далее из-за соответствующего максимального напряжения системы

С другой стороны, автоматический выключатель номинального напряжения 400 В переменного тока не должен работать при более высоком напряжении, т.е. 1000 В или более того, выключатель с номинальным напряжением 1000 В переменного тока может использоваться при напряжении системы 400 В. Если использовать выключатель на номинальном уровне напряжения, он сможет погасить дугу, возникающую в контактах выключателя. Если мы используем прерыватель на более высоких уровнях напряжения вместо номинального напряжения, переходное восстанавливающееся напряжение (TVR) по сравнению с диэлектрической прочностью среды гашения дуги.В этом случае дуга может все еще существовать, поскольку гаситель дуги не может ее успешно различить, что приводит к повреждению автоматического выключателя или изоляции выключателя.

Обычно номинальное напряжение автоматического выключателя выше, чем номинальное напряжение шины и нагрузки в энергосистеме. Как правило, существует два типа автоматических выключателей, связанных с уровнями напряжения, то есть низковольтные выключатели и высоковольтные выключатели, имеющие следующие особенности.

  • Выключатели низкого напряжения могут использоваться для 1кВ переменного тока и 1.2кВ постоянного тока, при этом уровень высокого напряжения больше, чем у выключателей низкого напряжения.
  • Высоковольтные автоматические выключатели используются как для внутреннего, так и для наружного управления в высоковольтных системах, в то время как низковольтные автоматические выключатели используются внутри помещений.
  • Низковольтные выключатели более сложны и срабатывают чаще, чем высоковольтные выключатели из-за меньших межфазных зазоров и межфазных зазоров. Методы испытаний различаются для обоих типов выключателей уровня напряжения.

Соответствующее сообщение: Автоматический выключатель Smart WiFi — Строительство, установка и работа

Ожидая вышеуказанного номинального напряжения, два дополнительных номинала напряжения могут быть приняты во внимание при рассмотрении уровня напряжения для автоматических выключателей для различных операций.

  1. Номинальное импульсное напряжение
  2. Номинальное выдерживаемое напряжение промышленной частоты

Номинальное импульсное напряжение автоматического выключателя показывает способность справляться с переходным импульсом молнией или импульсами переключения. Продолжительность импульсного или переходного напряжения автоматического выключателя выражается в микросекундах. По этой причине его контакты относительно изоляции рассчитаны на то, чтобы выдерживать переходное пиковое напряжение в течение очень короткого времени или периода.

Выдерживаемое напряжение промышленной частоты Номинальное значение автоматического выключателя показывает способность справляться с внезапным повышением напряжения, которое очень высоко, чем более высокое напряжение в системе. Это происходит из-за резких изменений нагрузки или одновременного отключения большой части нагрузки.

Это напряжение из-за промышленной частоты составляет очень короткое время, обычно 60 секунд, но автоматический выключатель должен выдерживать перенапряжение промышленной частоты.

В следующей таблице показаны различные номинальные уровни напряжения автоматического выключателя i.е. Номинальное напряжение системы, максимальное напряжение системы, выдерживаемое напряжение промышленной частоты и уровни импульсного напряжения.

Соответствующее сообщение:

Кратковременная производительность

Кратковременная способность автоматического выключателя — это определенный короткий период, в течение которого автоматический выключатель проводит ток повреждения, оставаясь замкнутым.

Чтобы уменьшить нежелательное срабатывание автоматического выключателя, такое как ток короткого замыкания, в течение очень короткого времени или внезапное изменение или снижение нагрузки, автоматический выключатель не должен отключать и отключать цепь, если сбой исчезает автоматически, и обрабатывать электромагнитную силу и температуру подниматься.Если оно превышает указанное время в секундах или миллисекундах, выключатель размыкает контакты, чтобы обеспечить максимально возможную защиту подключенной части нагрузки и оборудования.

Используются различные классы, такие как B, C, D и класс 1, класс 2 и класс 3 с соответствующими кривыми. Класс 3 является наилучшим, который обеспечивает максимальное испытание 1,5 л джоуль / секунду в соответствии с IS 60898. Например, масляный контур прерыватель имеет выдержку времени 3 секунды, и она не должна превышать точных 3 секунд при прохождении тока короткого замыкания. Номинальная кратковременная токовая нагрузка должна равняться номинальной отключающей способности автоматического выключателя . Таким образом, необходимо обращать внимание на чувствительное устройство, принимая во внимание номинальную временную нагрузку выключателей.

Связанные сообщения:

Нормальный номинальный ток

Нормальный номинальный ток автоматического выключателя — это среднеквадратичное значение тока, который он способен непрерывно выдерживать при номинальном напряжении и частоте без изменений в работе из-за повышения по температуре во время нормальной работы.

Нормальный ток должен составлять 125% от номинального тока цепи. Например, если ток нагрузки составляет 24 А, номинал автоматического выключателя должен быть следующим.

= 24A x 125%

= 24A x 1,25

Размер тока автоматического выключателя = 30 A

Другой способ: величина тока выключателя может быть равна 0,8, чтобы найти ток нагрузки. то есть выключатель на 25 А может использоваться для световой нагрузки 20 А и т. д.

Ток нагрузки = Номинальный ток выключателя x 0,8

Ток нагрузки = 25A x 0.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *